016104-1-F CURRENT AND CHARGE MEASUREMENTS ON SCALE MODEL EC-130 AIRCRAFT Valdis V. Liepa The Radiation Laboratory Department of Electrical and Computer Engineering University of Michigan Ann Arbor, Michigan 48109 September 1978

016104-1-F ABSTRACT Measured data are presented for the surface currents and charges induced on scale model EC-130 aircraft when illuminated by a plane electromagnetic wave in a simulated free space environment. The measurements were made on 1/144 and 1/72 scale models over the frequency range 225 to 4400 MHz, simulating 1.5 to 51.1 MHz full scale. The data are for 6 test points and 6 excitations chosen to compliment the full-scale HPD/VPD ground and the VPD fly-by tests made at Kirtland Air Force Base.

016104-1-F PREFACE It is a pleasure to acknowledge the assistance of Messrs. J. Tedesco, D. Brown and F. Lenning of the Radiation Laboratory in performing the measurements, data processing and data preparation. The assistance of Dr. E. O'Donnell of SAI and Mr. W. Prather of AFWL is also appreciated.

016104-1-F TABLE OF CONTENTS Section Page No. ABSTRACT..... i PREFACE........................ ii 1. INTRODUCTION...................... 1 2. MODELS, MEASUREMENTS AND DATA.. 2 2.1 Models...................... 2 2.2 Measurements.. 4 2.3 Data....................... 6 FIGURES........................ 8 TABLES......................... 16 DATA.......................... 21 iii/iv

016104-1-F SECTION I INTRODUCTION The data presented here were obtained for Science Applications, Inc. (SAI) to be used in determining the surface response extrapolation function [1] for the EC-130 aircraft. The test points and excitation conditions in the scale model measurements were therefore chosen in conformity with those of the full scale measurements made in the Horizontally Polarized Dipole (HPD) and Vertically Polarized Dipole (VPD) simulators at Kirtland AFB, but measurements were also made for excitation conditions similar to those of the VPD flight exposure tests performed at Kirtland [2]. Surface current and charge data are presented at 6 locations or test points on the aircraft for 6 different excitation conditions. The measured quantities are the axial current component Ja' the circumferential current component Jc' and the normal electric field component En. One hundred and eight measurement situations were therefore possible, but since some of these correspond to null field situations or to low excitation levels in the case of the VPD flight exposure simulation, the number of actual measurements was only 54. The resulting data are shown in the form of amplitude and phase plots as a function of the full scale frequency, and have also been furnished to SAI in digital form on computer cards. i. Carl E. Baum, "Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in Terms of EMP Criteria," AFWL Sensor and Simulation Notes, Note 222, 1977. 2. R.W. Sutton and D.R. Stribling, "TEMPAT I/AFWL Add-On Test Requirements," Science Applications, Inc., Report No. SAI-78-638-WA, 1977.

016104-1-F SECTION II MODELS, MEASUREMENTS AND- DATA 2.1 MODELS Two scale models of the C-130 were acquired, the first coming in the form of a plastic kit (MPC, No. 20552) 1/72 in scale, and the other being a solid plastic model (Precise Model Co., Elyrio, OH) 1/144 in scale. Figure 1 is a photograph of the models as C-130's. Note that the smaller model in the background has stretched strings that were eventually replaced by metallic wires to simulate the HF antenna. To convert the models into their EC-130 counterparts, VLF antenna drogues were added at the bottom of the fuselage and tail and wires were added to represent the HF antenna. The wires were 0.02 mm diameter beryllium copper, and pieces of plastic and nylon string were used for the insulators. For mounting the HF wire we followed the specifications given in [2]. However, after conferring with SAI personnel, it was determined that the HF 3 wire attachement at the fuselage should be at STA:F480T instead of F320. The models were prepared accordingly and Figure 2 shows the location of the HF wires. The HF 1, 2 and 3 wires were shorted at the fuselage but open-circuited at the vertical stabilizer. The so-called "dogleg" HF 4 and 5 wires were left open-circuit at both the vertical and horizontal stabilizers, and Figure-3 is a photograph of the installed wires on the models. Inspection of a C-130 commercial aircraft showed that the weather radar in the nose extends almost to the tip of the radome, suggesting that

016104-1-F for the purposes of this study the nose can be treated as metallic. The radome portions of our models were therefore left in place and metallized like the rest of the surface. However, after about 50 percent of our measurements had been completed, we were informed that on the EC-130, the instrumentation under the radome extends only inches beyond the bulkhead. It would therefore have been more realistic to have left the radome off, but because of the advanced state of our program, we continued with the metallized radome through the rest of the measurements. After construction and modification as indicated above, the models were given at least three coats of silver paint to make them conducting. The lengths and wingspans were then measured to determine the actual scale factors. Because neither model was an exact replica of the EC-130, the scale factors deduced from the fuselage and wingspan differed slightly, as indicated in Table 1. The actual factor used in converting a measured result to the full scale frequency was that appropriate to the location of the test point and the excitation.

016104-1-F 2.2 MEASUREMENTS The measurements were made in the Radiation Laboratory's anechoic chamber, a facility specially designed, constructed and instrumented for surface field measurements. A block diagram of the facility is shown in Figure 4. The measurement procedures were similar to those used in previous programs [3, 4, 5], apart from changes resulting from the continued upgrading of the facility and the measurement techniques. In particular, for this program a new broadband transmitting antenna was installed which reduced the lower end of the frequency range from 450 to 225 MHz, thereby providing coverage in the three overlapping frequency ranges 225-1100, 950-2200 and 2000-4400 MHz. The currents and charges on the models were measured using miniature sensors 2-3 mm in dimension constructed from 0.05 cm diameter semirigid coax. Most of the current data were obtained using a surface mounted half-loop probe (SP) whose signal lead was taken from the model at a place remote from the test point and chosen to produce least interaction with the model. A few current measurements were made using an external or 3. Valdis V. Liepa, "Sweep Frequency Surface Field Measurements," University of Michigan Radiation Laboratory Report No. 013378-1-F; AFWL-TR-75-217; Sensor and Simulation Notes, Note 210; 1975. 4. Valdis V. Liepa, "Surface Field Measurements on Scale Model EC-135 Aircraft," University of Michigan Radiation Laboratory Report No. 014182-1-F; AFWL-TR-77-101; Interaction Application Memos, Memo 15'; 1978. 5. Valdis V. Liepa, "Surface Field Measurements on Scale Model E-4 Aircraft," University of Michigan Radiation Laboratory Report No. 014182 -2-F; AFWL-TR-77-111; 1978.

016104-1-F free space probe (FSP), but these were confined to situations where the interaction of the model and the probe lead is negligible, e.g. the measurement of Jc at STA:F345T for top illumination with E parallel to the wings, the case when only the antisymmetric modes are excited which do not couple to the probe lead. For the charge measurements only surface mounted probes were available, and with these the mounting procedures were the same as for the surface mounted current probes. Figure 5 shows the typical taping required for installing a surface mounted probe. Figure 6 illustrates how the use of more than one scale model can increase the range of full scale frequencies for which data can be obtained. With the measured frequency range 225-4400 MHz (approximately a 20:1 bandwidth), a 1/144 scale model will provide coverage from 1.56 to 30.6 MHZ, and a 1/72 model covers 3.1 to 61.1 MHz, yielding the overall coverage 1.56 to 61.1 MHz, corresponding to a 40.1 bandwidth.

016104-,1-F 2.3 DATA For each measurement situation the data obtained from the two models over the three frequency ranges results in six data files for the transfer function. At the request of SAI, the three bands of data for each model were combined into a single data set in which the sampling was uniform in frequency. These sampled data were obtained by linear interpolation between adjacent measured values, and in regions where two bands overlap, a single curve was produced by application of a linearly increasing weighting to one data set relative to the other. In the final format, the data measured using the 1/144 scale model are presented at increments of 0.065 MHz in frequency, and the data for the 1/72 model at 0.13 MHz increments. Figure 7 shows the directions of excitation used and the convention adopted in specifying the circumferential and axial components, Jc and J respectively, of the surface current. Because the wings and stabilizers of the EC-130 are all essentially perpendicular to fuselage axis, the components Ja on the wings and stabilizers was in all cases measured perpendicular to the axis. The component Jc is perpendicular to Ja The data presented are all normalized relative to the incident field: J/Ho and En/Eo for the current and charge amplitudes respectively. The phase reference is that of the incident field at the station where the measurement was made, based on the eiWt time convention. Tables 2 and 3 summarize the situations for which data have been obtained, and give the Figure numbers where the data for each case can be

016104-1-F found. Each Figure number is followed by a letter L (large model, scale 1/72) or S (small model, scale 1/144) specifying the model used in the measurements. The presence of other numbers indicate that the measurement was repeated, usually for a different HF wire configuration (open or short-circuited condition) or made with a different probe. Table 4 details the conditions under which the measurements were made. In measurements with the actual aircraft, it had been observed that a high energy pulse produced arcing across the insulators of the HF wire antennas, thereby shorting them. Our initial instructions were to short the HF 1, 2 and 3 antennas at the vertical stabilizer, as well as the "dogleg" antennas, HF 4 and 5, at the horizontal and vertical stabilizers, and data sets 1 through 18 were all obtained under these short-circuited conditions. For sets 19 through 66, however, the conditions were changed: the insulators shown in Figure 2 were now left open-circuited except in the case of top illumination with E parallel to the fuselage for which the HF 1, 2 and 3 antennas were shorted at the vertical stabilizer. In addition to the above intentional change in the condition of the HF wire antennas during the course of the program, there may have been an unintentional change. When most of the 54 measurements had been completed, it was discovered that the short-circuit condition of the HF 1, 2 and 3 wires at the top of the (forward) fuselage was questionable on the 1/144 scale model. Cracks were observed in the silver paint bonding the wires to the model, and when the contact resistance

016104-1-F was measured with an ohm meter, the reading varied from zero (short circuit) to infinity (open circuit). The wires were then checked on the 1/72 scale model, but these were still shorted to the fuselage, as required. To see what effect the questionable short could have on the data, some of the measurements were repeated with the wires reattached and checked for a proper short circuit. These repeat measurements, plus others made under different conditions, are contained in sets 55 through 66: see Table 4 for details of the measurement configuration. Plots of the measured current and charge data are given on the following pages. In addition, the data has been furnished to SAI in digital form on punched cards. The format is Line 1 FILENAME (4A4) 2 Comments (18A4) 3 Comments (18A4) 4 TITLE used in plotting (18A4) 5 FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN (4F8.3, 2F8.2, I5) 6 F(1) AMP(l) PHASE(1) F(2) AMP(2) PHASE(2) F(3) AMP(3) PHASE(3) (3(2F8.3, F8.2).......... F(NN) AMP(NN) PHASE(NN) where NN is the number of data points in the set. Table 5 is an example of a typical data file.

ii ii? ' i,.... Figure 1. C-130 models similar to these were modified into EC-130 versions used in measurements.

VLF antenna drogue dielectric links dielectric links HF 5 - HF 4 dielectric links STA: F677 \ no radome no radome onil models on models| o ' HF 3 STA':F480 HF 2 STA:F280 HF 1 STA:F30.4 Figure 2. Implementation of HF antennas on scale models.

Figure 3. Attachment of the HF wires at the stabilizers. The upper photo shows the insulated attachment at the vertical stabilizer. The HF 1, 2 and 3 wires are embedded in plastic and isolated from each other, while the "dogleg" wires are isolated with strings at the vertical and horizontal (see lower photo) stabilizers. The photographs have been re-touched to emphasize the wires. 11

SWEEP POWER F-I GENERATOR AMPLIFIER -20 dB RAFIERENCE _ S..NAL... m | I~w: I ID,1. I. I SIGNAL LOW CRT...- ____DIGITAL FLOW |r.d MULTiPLEXER ] MBUS..ILE *SOLID STATE.22-1.1 GHZ I I TWT.94-4.4 0HZ I I I ' - A/D CONVERTER l 11/ 1ll~ ~ IPOST PROCESSING I I DIGITAL DII SPLOTTER |IP 9830A ---- - I UNIV. OF MICH. HP7203A [CON~~~~~~i,\O-LOMUTRPNCH CARDS MC(?NTROTT| _I | AMDAHL 470 V/6.. LBDATA STO'AGE TERMINAL A2-A... ERM ~I NA ---~I.rG TAPE [ DEC LA36 Figure 4. Block diagram of the measurement facility.

.z:Z.... hZ:: Z..;-::;:::::::Z:: z::............- =........Figure 5. 1/72 scale model with a probe mounted to measure the charge at STA:F870B, top illumination, with E parallel to the wings. The probe lead is taped along the fuselage and leaves the model at the nose. For top illumination with E parallel to the fuselage, the lead would be taped along a wing and leave the model at the wing tip. 13

.and 1 _BSta1Rand.9 2000 - 4400 950 2200 225 - 1100 l l_ l~ ~I _ i I 1000 2000 3000 4000 4400 MEASUREMENT FREQUENCY (MHz) 1/72 SCALE.. 1/144 SCALE 3. - 127.8 - 61.1 3.l-15.3 -/13.2 - 3.06 ---. 13.9 - 30.6 156 -7. 6.6 - 15.3 1. 56 -7 6 I I I i I I I 0 10 20 30 40 50 60 FULL SCALE PREQUENCY (MHz) Figure 6. EC-130 measurement frequency coverage.

- H k J E H k 22.6H E 22.6~ k H Figure 7. Convention for illumination and the measured current components. 15

016104-1-F TABLE 1: MODEL SCALE FACTORS Fuselage Wingspan Fuselage Wingspan Model Length* scale scale (cm) (cm) 1/72 42.70 55.68 1/71.15 1/72.58 1/144 20.81 28.54 1/146.00 1/141.62 (20.41)** (1/148.79)** Full scale length with drogue: 30.38 m Full scale wingspanwithout wing tip radomes: 40.41 m *Including the drogue **The length of the 1/144 scale model originally measured was slightly in error, leading to the use of the incorrect scale factors shown in parentheses in the conversion of the model frequencies to the full scale ones. The data affected are those for the 1/144 model in orientations 1, 3, 4 and 5, and can be corrected by multiplying the frequency by a factor 1.019. 16

TABLE 2: VPD/HPD MODE DATA EXCITATION 1 EXCITATION 2 EXCITATION 3 TEST STATION _ E// Fus. E// Wi ngs Nose - On LOCATIONS POINT1 NO. j I J J~3 E 3 3 E 3 3 E POINT NO. ia c n a c n a c n O1L,S 03LS 04LS 101 F345T Fwd Fus. Top 55LS 02LS 5 _7 __ 56LIS 57L$S 10L,S 103 F345B Fwd Fus. Bottom 60L 11LS 12LS 6,S6L 63L,S 64LS 121 HS158T Mid Horiz. Stab. (R) 33LS 39L,S 34LS 40L2S 35LS 4 62S 123 VS140 Mid Vert. Stab. (R) 44L,S 49L3,S 45LS 50LS 140 W90T Mid Wing Top (R) 29LS 31LS 141 F870B Rear Fus. Bottom 19LS 24LS 23LS 20LS 25LS More than one entry per box indicates repeated measurements.

TABLE 3: FLY-BY MODE DATA EXCITATION 4 EXCITATION 5 EXCITATION 6 TEST STATION _ E// Fus._ E/ Wings Nose - On LOCATIONS POINT NO. I 3 E 3 3 E 3 3 E a c n a c n a C n O5L3,S 06L9S 101 F345T Fwd Fus. Top 08LS 09L6L 58LS ' 59LS 103 F345B Fwd Fus. Bottom 14LS 17LL S 18LL 65LS ' 66L,S 121 HS158T Mid Horiz. Stab. (R) 36L,S 42LS 37L,S 43L,S 38L,S 123 VS140 Mid Vert. Stab. (R) 46LS 51LS 47L,S 52L,S 48L,S 53LS 140 W90T Mid Wing Top (R) 30LS 32LS 141 F870B Rear Fus. Bottom 21LS 26LS 22LS 27L,S 54L,S 28LS More than one entry per box indicates repeated measurements.

016104-1-F TABLE 4: CONDITION OF HF ANTENNAS WHEN MEASUREMENTS WERE MADE DATA SET PROBE USED HF 1, 2, 3 at HF 1, 2, 3 at HF 4, 5 at Vert Fwd Fus. Vert. Stab. & Horz. Stab. 1-18 SP(J, Q) | Shorted Shorted 19 FSP(J) Shorted Open 20-23 FSP(J) Open 24 SP(Q) Shorted 25-28 SP(Q) Open 29-30 FSP(J) Open 31-32 SP(J) Open 33 SP(J) ' Shorted 34 FSP(J) Open 35-37 SP(J) 4 Open 38 FSP(J) Open VI 39 SP(Q) | - Shorted 40-43 SP(Q) Open a44-j 44 SP(J) | Shorted |t 45-47 SP(J) Open 48 FSP(J) Open 49 SP(Q) I Shorted 50-54 SP(J, Q) Open 55-59 FSP(J) Open 60L FSP(J) --- Open 61 FSP(J) Shorted Shorted 62S SP(Q) Shorted Shorted 63 FSP(J) Shorted Shorted 64-66 FSP(J) Shorted Open Open SP(J, Q) = Surface Probe (Current, Charge) FSP(J) = Free Space Probe (Current) 19

TABLE 5'. LISTING OF A TYPICAL DATA FILE I T00 2 iEC-130, 144 s 1, QL10 Br 8/28/78 1 DS 3 SCALE FACTOR=148.15 4 TACAMO SAMPLE rDATA 5 1.305 29.604 0.042 7.019 -1;'8.23 179.80 82 6 1.305 2.151 133.05 1.605 1.678 149.38 1.705. 491 169.11 7 1.805 2,169 1 12.88 1.905:2.189 15) 93.005 2. 6'9 138. 11 8 2 105 2.657 144.33 2.205 3.104 1 10, 71 2305 4.362' 1.',74 9 2.405 4.206 97.25 2505 4,604 34,.t2.605 5.402 72 88 10 2.705 4.940 46.08 2 805 4.337 36. '7 2 905,' 358 27 68 11 3.005 3.864 9 02 3.105;3.461 -3.15 3. 205 3.163 -:2 23 12 3.305 2.593 -19.80 3.405 2,206 -3.10 3..505 1.391 -3.17 13 3i605 1,160 -31.60 3.705 0.732 -2.29 3.805 1.295 -- 4.0 14 3.905 1.428 3.54 4.005 1.624 -83.34 4,.05:,555 -0, 0,o9 15 4,205.764 -12.60 4.305 t.877 -13. 90 045.957 - -8 16 4.505 2.273 -21 45 4.605 2 473 -_'5 0 + 7 0 5 522 ' -_3 25 17 4.805 2.729 -24.29 4.905 3.231 3-2881.O005 3.924 -$314. 18 5.105 4.907 -40 2 2 5.205 6.180 '- 02 5 305 6.53 -3. 7 19 5,405 6.761 -89.02 5.505 7,013 -106.74 5,605 7.019 -12;3.04 20 5.705 6.605 -140.21 5.8035 -885 -154.75 95. 5 5,345 - 13 2. 3 21 6.005 4.117 -170.71 6.105 4,3 72 — 175. 8 6,205 -. 396 166 S3 22 6.305 3,574, 163. 21 6.405 3.3550 155. 7$6 6.5.258 i, '3 a 23 6.605 2.955 136.37 6.705 2.729 -'4.:L3 6,-305S 2.,430 i 1:L9,75 24 6.905 2.130 110.43 7.005 1,997 98. 2 7, 1:.,80 91,92 25 7.205 1.438 ~ 81.60 7.305 1.239 78.01 7.405.1,52 6 9+C02 80 23.704 0.184 21.39 23.804 0.166 16.16 23,904 0 162 15,92 81 24.004 0.165 1758 24,104 70 17.130 24 204 4 ') 4 "t ~ 82 24.304 0.130 11.25 24.404 0. 193 9.,45 24.04 402 0 1,'4 83 24. 604 0. 194 -3.13 24.704 0. 205 - 6.83 24.80 4 '0 -- 1:34 24.904 0.203 -19.09 25.004 0.19'7 — 21.2 25.14 0.!97 -S, 8 85 25.204 0.205 -16,03 25.304 0. 229 -21.0 25.4 04 0o. 86 _ 25 504 0,239 -32,63 25.604 0,20.- 37 '. 25,704.2 -_, i; 37 25.304 0.233 -46.91 25. 904- 0,236 -5 iI 260. 0 4i 0 239 -.. z2 88 26. 10 4 0.250 -58.73 26.204 0 245 — 66. 5 2;6 01` 89 26.404 0.248 -67.67 26.504 0.26S -, 25', -79. _6 90 26.704 0. 263 -83.53 26 804 0. 267 -85.36 25, '?4 0. '7 -88s 33 91 27.004 0.279 -89.92 27.104 0. 290 9-94,09 g7.o29 4 0 98 1-7 92 27.304 O.30S -101.04 27.404. 309 - 04,9- 27,."54 0'.304 -10S,34: 93 27.604 0,304 -109,08 27,704 0.308 - 109. 87 273 0 9 1 94 27.904 0.313 -117.06 28.004 0.320 -116.34 2. 104 0.325 - lo. ' 95 28.204 0.336 -120.14 28,304 0,356 -123.21 28.404 0.3;71 -].1'?21 96 28.504 0.366 -134.42 28,604 0. 3J1 -135.3 28. 204 0.365 -i 33.0 97 28.304 0.383 -138.93 28.904 0.383 — 141.23 29 004 0.399 -145.17 98 29.104 0.414 -149.32 29.204 0.414 -153. 2 29.304 0.409 -15 3',73 99 29.404 0.398 -161.20 29,504 0.394 -156084 29,604 0,4:;3 -.164,4;::.END OF FiLE 20

D A T A - 21

32.0,,, EC-130 F345T JR 1 1/'72 TOIL 2q.O 1.I LJ ~- 5.0. I 0.0 05 R P 78 U 0.0 1S.O 30 u. 00.O EC-130 F345T JR 1: 1/72 TOIL loo.o III I e a, 1 0oo 1S.: 0ao S s.a~ 6C3,O F RE gU'.NC. H H Figure O1L. Axial Current at STA:F345T, Excitation 1, 1/72 Model. 22

32..,.. 2EC-130 F3L5T JR 1t If/t44 TOtS t j IS~~~~I ~ i. I =r3,,.,~ o0 1.0 3 S.0 60.0 200.0 EC-130 F345T JR ts 1/144l TOIS 100.0( I 0.0 -100 t e ' -2 0o.0.. _...................-_...,_.e. e-,-u. 0.0 15.0 300 U, s5: 80.3 Figure OlS. Axial Current at STA:F345T, Excitation 1, 1/144 Model. 23

80.0 6 0.0 0 20.0 i _P"~~~~~~~~~~~ I 200.0\ I \JX. I I I I i 2 7,oo.o i - I - 2QOC.rOe a STA.T 2E.t1 7, U/7 o o0.0 15.0 30.0 45.C 60. F.E2U=NCT rMHZ1 Figure 02L. Charge at STA:F345T, Excitation 1, 1/72 Model. 24

6 I0. -~ --- —--- EC-130 F345T 1; 1/144 T02S 60.0 ' 1 0.0 0.0 15.0 30.a 45.0 60.0 EC-130 F34ST a 1; 1 /144 T02S o.o L 200.0 Figure 02S. Charge at STA:F345T, Excitation 1, 1/144 Model. 25

LapoW Z//L 'Z UOL.e.LDX3 'ISiJ:'1IS.e?ua,,ln3 LeLuaaLwna.LD3 'gO aLn.Lj 0'09 0'S0 F'O2 O'S! 0'0 L 9 I6 O '00I Wfl 8L Ur t 1 Z i7 0. 09 -Ii O'00I 0 *O9 O ' t O ' O 0 'SI 0 '0! ttI _ i t. NED1 Z' YI sZ Dr 1 Sh~S OEI-4a f~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" ' t.... B. s -! o s g~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I@apoh bbL/L '2 UOLqP)LOX3 '`Sj J:ViS;e;uaw~n3 le~ualajnsaLD SEQ aLnL4U 009 Og o O Oo O'Sl 0'0 WflPOW VL/L cua00T-', '.... O Onn,- 6-i t- oz C I 0- oi, -.t Jl!

E 0.0 h4 U_ c: _= 10.0 F 1 ~~o~~~~oi~~ c;_~ |~~ ~2 JUNE 78 UM. 0.0 iS,. 30.0 aS.0 50.0 00.0 EC-130 F3S5T JR 3; 1/72 TO4L 300,0 200.0 100.0 0.0 150o 30.0 '5.0 80.0 FREQUENCT 1MHZ3 Figure 04L. Axial Current at STA:F345T, Excitation 3, 1/72 Model. 28

LapoW VittL/L '6 UOL;.;PLX3 'jSE J:V 4LS; - quaJAn3 Le.LXV SbO anbLj C0 * O'S, 0'08 O'SI 0'0 Wri -L |Nnrf O Ii ~~~~~i S002 EC>1 ~ `DE O'ff 0- c.. _. -'l..-. -.O'0Otl,r- t 0'0Z ~j~~~~~~~~~~~~~00

EC-130 F34ST JR 4; 1/72 TO51 20.0 k 6.0. k J I I I 12. 0 4 i 128.0.o L -- - 0.0 1.0 30.0. 5.0 80.0 200.0 EC-130 F34ST JR 4, 1/72 TOSL 2 0 0... - 0.S0 fa.a 45,t Bo~I FfE;UEMJY tMMH1 Figure 05L. Axial Current at STA:F345T, Excitation 4, 1/72 Model. 30

2UIa It &.C-o-130 F345T JR 4I 1/1144 TOSS 1 7 I | E 18.0. I z 8.0 h F) O.O, 21 RP 7 UM7 j 0.0 1S. 0 30.0 us.O 80.0 200.0 o.... EC-130 F34ST JR 4 1/1t44 TOSS5 100.0 I o0 t -200.0,21 RP 78,UM o0..0 30.0 Us.o 80.0 'REgUENCT tM!Z] Figure 05S. Axial Current at STA:F345T, Excitation 4, 1/144 Mlodel. 31

20.0 EC-130 F34ST JR 5; 1/72 TO6L t5.0 =u 5.0 o.oL a/29 JUN 7X UM 0.0 15.0 30.0 c5.0 8. 0O 4U 0 0...__........ 0._......._, EC-L30 F34LST JR 5s 1/72 TOSL 300.O I \ 32

20. 0 EC-130 F345T JR 5s 1/144 TOSS 5W ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ WE 0.0.......,........................_____._ — 25 JUN 78 UM 0. a-._... 0 0 15.0 30.0 U5.0 80.0 400.0 *...................-.-.-.-.- --- - EC-130 F345T JR 5: 1/144 TO6S 300.0! 200.0 l~~~ l~~~~~~~r~~~ I 6 JUL 78 J:,: O. o L __ —,~~-~ --- L~-L~-. --— ~ —~-~L-'......., 0.0 15.0 30..0 605.0.0' FREQUENCY (MHHt Figure 065. Axial Current at STA:F345T, Excitation 5, 1/144 Model. 33

48.0 - EC-130 F345T a 3is 1/72 TO7L 32.0 -w LJ 0 10.0 200. 0 EC-130 F3t45T; 3; 1/72 T77L -1 00.0 -200.0. I..........,,.., 0.0 15.0 30.0 L5.0 800 FRtEU'NCT (HHtZl Figure 07L. Charge at STA:F345T, Excitation 3, 1/72 Model. 34

EC-130 F345T a 3s 1/l14U T07S 32.0 al21:PR 78 UM 0.0 s15.0 30.0 a 5.O 60.0 200.0 - EC-130 F345ST =3 1/!44 T07S - 0.0 I D21 RL 2 ai. 76 U!' 0.0 15.0 30,0 45.0 60. f|1Ro0UCCY MtI1 Figure 07S. Charge at STA:F345T, Excitation 3, 1/144 Model. 35

4dU. -. EC-130 F34ST 9 4s 1/72 TO8L 3.... ~ E 32.0 k: 0.0 0.0 1s.0 30.0 s5.0 60.0 200.0 _ t. -, -, -. -. -.-.. 2000 EC.-130 F345T C 4#s 1/72 TOSL I0~~~~~~~~~~~ Lii~~~~~~~~~~~ 0.0L -loo.o i _ 2 7 - i ' a 20. a0! _,, 21 ~PF, 79 'IM! 0,0 1.5.0 30.0,5.0 ~0. FRE;UENCT (MH!Figure 08L. Charge at STA:F345T, Excitation 4, 1/72 Model.

48.0.. EC-130 F3S45T Q t 14/Il TOSS 32.0 L5.E 01 ut; 0.0 0.0 15.0 30.0 45.0 80.0 200.0.:EC-130 F34ST aI 1/'144l TOSS -200.0 1 21 9 7 0.0 5,0 30.0 45.0 60.0 F!EgU ENCT (.MH:) Figure 08S. Charge at STA:F345T, Excitation 4, 1/144 Model. 37

32. EC-130 F345T Q 5 1/72 T09L 2UJ _a' E =_ 8. 0 0.0 00. 0..30.0 a..0 80.0 200.0 EC-130 F345T Q St 1/72 TOSL 100.0 L. 1 -1 0.0 C -20.0.... -....._......,............ __ 0.0.S. O 0 30.0 LLS.o &0. % FRflgUENC~ [MMH 3 Figure 09L. Charge at STA:F345T, Excitation 5, 1/72 Model. 38

32.0 EC-130 F3UST Q S5 1/144 TOSS.0 0 2.0 24 RPM 7 UM.o 8.0 0.0 15.0 30.0 45.0 80.0 200.0 EC-130 F34ST 0 5s; 1/144 TOSS 100.01 1 2'4 RP9 79 UH -200. 0 -...... __' _...... _ _ o.0 iS.O 30.o l5.O 60.0 FRE{QUENCTr HH]l Figure 09S. Charge at STA:F345T, Excitation 5, 1/144 Model. 39

EC-130 FS45B JR 1; 1172 T1OL E I 78 U 5.0.100 L= 0 I.0 15.0 30.0 ts5.0 0. 0 200 a _, -. - P - -7 -20.0......,0 0.0 15.0 30.0 o 5.0 80.0 FREQUENCY tM!1! Figure IOL. Axial Current at STA:F345B, Excitation 1, 1/72 Mlodel. 40

7. - -, -. -. EC-130 F3&45B JR 1; 1t/1+4 TIos 2. _,4 0 j Ul I~1I 0.O L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___.,, 19 JUNE 78 U 0.0 s5o0 30.0 -5.0 60.0 EC-130 F3'458 JR 1,s 1/f4 TIOS i i -100.0 -200.0 ______________________________________________________ r JUNE 78 U3 -I00. O0 '.. 0.0 15.O 30.0 t45.Q 60.0 Figure 10. Axial Current at STA:F345B, Excitation 1, 1/72 Model. 41

EC-130 F345a a 1i 1/72 TIL| 10.0. I: uj Q: 5.0 0.0 0.0 15.0 30.0 S.. O 80.0 200.0 EC-30 F3458 i 1; 1/72 Tl1L o.ol 9 JUNE 78 UM -200. I,,......0... 0.0 15.0 30.0 45.0 a FREQUENCY [MeZs Figure IlL. Charge at STA:F345B, Excitation 1, 1/72 Model. ui~~~~~~~~~4

EC-130 F353B Q 1; 1/144 TIIS 10.0 L JUNE 78. X0 9 JUNE 75 UM 0o.0 15.0 30.0 5.sO o00 Fiure. Charge at STAF345 E-30, Excitation Q, 1/144 Model. S 413

'iapoW 3Z/L '" uo$L;;LDox 'Sq~tJ:VjS he 4ua~un3 Le[uaPa manel3 ' L [an65j O'D9 0' 0'0 0'S 0'o0 I L iAgdt SO 0'0 rZl ZL/t rZ Cr,Sh~i 41-3 0 'Oe 0o o Os? 0'o6 0st o0' wn SL ______ _0' OE0I

'L-POW ttL/L 'Z UoL4P;LDX3 '4Sqqt:VjS qp;uawni LeL;ua.a~a-n3L3 *SZL aBnbLj 0'09 O'Sh 0O'O O'St 0'0 IOOZ * '001 0 0OO m I 00'0 0 Q O *Sh O 0c 0 -l 0 '0 Wn.;. e so 0- O C'C C_ j

EC-t30 F3458 JR 3s 1/72 T13L.. 3.00. 2.0 1.0 0.0 26 AIr 78 UH 0o.0 S.o 30.0 8U.0 60.0 200.0 EC-130 F34SB JR 3, 1/72 rl3L 0.0 1S.0 30.0 4S.O 60.0 FREUENCT tMt1) Figure 13L. Axial Current at STA:F345B, Excitation 3, 1/72 Model. 46

4. -0 E..-L30 F345a JR 3s 1/144 T!3S 3. u. 1 0 a. o 26 RAPM 78 unM j o.0 5.o0 30.0 45,.0 80.0 200.0 FC-130 F3453B JR 3t 1/144 T1SS100.0 0.0 A.~ 1 MRY a78 UN 0.0 15.0 30.0 U5.0 80.0 Figure 13S. Axial Current at STA:F345B, Excitation 3, 1/144 Model. 47

8.0 EC-1SO F3t458 JR 4, 1/72 T1L&L 4W. 300.0 0 1, \S I 0.0- -. 0.0 15.0 30,0 45.0 60a.0 Figu~re AxialCurrenC-130 F345B JR 4:, t/72 TMiLL 300.0 - 200.0 100.0 23 HA'( 76 o.o 15.0 30.0 s5.0 60.0 FREgUENCT (MHZ~ Figure 14L. Axial Current at STA:F345B, Excitation 4, 1/72 Model. 48

EC-130 F345B JR 4, 1/144 T14S 4,0 -. 2.0 0........_,__:___....-__::_~_.......,.-11 MAY 78 UI 0.0 15. 0 30.0 45.0 80.0 400.. EC-130 F3458 JR 4t 1/144 T14S S 200.0 100.0 0.0 n nh 7 0.0 15s0o 30.0a US.o 60.a FREQUENCY I'MH] Figure 14S. Axial Current at STA:F345B, Excitation 4, 1/144 Model. 49

IC-130 F3U58 JR 5S 1/72 TiSL 3. 0 C= 2:. 1.0 0.0. _ 26 RPA 78 UM 0.0 s1.0 30.0 Us.o 60.0 200.0 - EC-130 F3Y58 JR 5t 1/72 TiSL 00.0. -200.0 [... ~..... _ ~...........L~ 26 FPR 78 U0.0 1.0: 30.0,5.0 60.0 FAEgUENCT (MH1) Figure 15L. Axial Current at STA:F345B, Excitation 5, 1/72 Model. 50

. EC-130 F34&53 JR 5 t/1l&, T15S 3.0, tU 2.0,, Ion!I. 0 0 ~~0 150,~~ 3,00~~ ~26 RPM 78 UM 0.0 o.0 15.0 3o'O 5.0 80.o 200.0 EC-130 F3458 JR 5; 1/144 TIS 1 100.0 '0.0 -200.0...0 30.0 ts.. 80.0 FRE;UENCr fie!} Figure 15S. Axial Current at STA:F345B, Excitation 5, 1/144 Model. 51

IC`-~SO F3~SEI 8 311/72 TLIS 2.0 Ca o uJ z 1.0 26 MR' 78 UM 3. OoX 0.0 15.0 30,0 15.O 80.0 400'. 0,, EC-130 F345B Q0 3 1/72 T1SL 300.0 zoo.o 1,, 0. 2 M9Y 78 UMj 0.0 15.0 30.0 45.O 60.0 FtE.U.NCT (HMM. Figure 16L. Charge at STA:F345B, Excitation 3, 1/72 Model. 52

EC-130 F3458 a 3:s /IlU, T1S 2.0 21 -_.g 1.0: f I 0,0.............. 0.0 15.0 30.0 45.0 60.0 00.. -,, EC-130 F3458 0 3; 1/l14 T185 300.0 200.0 100.. w3 ENt 7a ut I Figure 16S. Charge at STA:F345B3,E 3, 1/144 Model.

EC-130 F353 Q 4l 1/72 T17L 8. 0 EC-130 F3455 Q 4; 1/72 T17L 300.0 _= a c. a 2.00. 29 JUN 7.8 UM 0.0 15.0 30.0,5 60.0 Figure 17L Charge at STA:F345B, Excitation 4, 1/72 Model

8.0 EC-130 F3,45B Q 4 1/14 T17S 200.0 U-S xm LU0 2.0 ___________o.o____________ L_______,_______,_ _ _ _ 29 JUN 78 UM 0.0 15.0 30.0 tS.O 80.0 EC-l O F3t458 a L, 1/IL4 Fl75 300.0 1 - 200.0 I 100.0 1 29 JUN 78 U1 0.0 ~,0. 0.0 15.0 so0.0 SO 30.0 FREQUENCY IMHZ3 Figure 17S. Charge at STA:F345B, Excitation 4, 1/144 Model. 55

EC-130 F34585 5: t/72 TISL 3.0 2.0 I 0 0. 0 -,, 29 JUN 78 UM. o l. o - -'o o30... - o:'7 L 2 00.0.3 E C-130 F3453 0 3: '. 72 T!aL 100.0 0. _ __ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _ __ _ _ __ _ _6 JUL. 78 UM O....... _... O.O 15.0 30.0 qs.0 60.0 FREQUENCY (Sff Figure 18L. Charge at STA:F345B, Excitation 5, 1/72 Model. 56

EC-130 FsY458 Q 55 1/1144 T18S L4.0 3.0 u0 2.0 1.0 o0v0o,___ __ __ __ __ __ __ __ __ __ ___ E, 29 JUN 78 UH 0.0 15.0 30.0 45.0 80.0 400.0... EC-130 F3453 a 5;: 1/144 T18S 300.0 L oo.oi 6 JUL 76 U o.0 15.o 30.0 U5.0 60.0 FMEUENCT Y MM!] Figure 18S. Charge at STA:F345B, Excitation 5, 1/144 Model. 57

12.0,. EC-130 F8708 JR 1; 1/72 TI1L,2n 3.0 0.0 15.0 30.0 5.0 80.0 200.0 __-__,.,; -. - EC-130 F870B JR 1 1/72 rTIL 100.0 0.0 -100.0 0.0 15.0 30.0 45o 0.0 FREQUENCY tMH1I1 Figure l9L. Axial Current at STA:F8708, Excitation 1, 1/72 Model. 58

12.0,. EC-130 F9708 JR 1; 1/144 T19S 9.0 4.I 3.0 0.0 25 HRY 78 UM 0.0 15.0 30.0,5.O 80.0 EC.-130 F870A JR Il 1/144 TISS - 0.0 a. -100.0

5.0 w,, _, _ _ _..... _ _ _ _ _ - -,........ ~ f EC-130 F870B JR 3; 1/72 TZOL ==0 2,0 1.0 o.o0.... 25 MAT 78 uM i 0.0 1,.0 30.0 t5.o 0o 2000... -, EC-130 F870B JR 3S 1/72 T20L 100.0 0.0.-200 0 25 HRT 78 UM -200. 0.0 15.o 30o.o0 U5,0 80.o0 F7EUENCT CMH!3 Figure 20L. Axial Current at STA:F870B, Excitation 3, 1/72 Model. 60

EC-130 F8708 JR 3. 1/144 T205 2. 0 I, 0.0, 25 MAY 78 UM 0.0 15.0 30.0 4L5.a so.0 200.0 - '- - — 1 EC-130 F8705 JR 3; 1/144 T2OS a. 2.0 100. 0 -Figure 20S. Axial Current at STA:F870B, Excitation 3, 1/144 Mode. -1o0,0 ~ ~ ~ ~ ~6. 61

10.0 EC-130 F8708 JR 4, 1/72 T21L 7EC-130 F5a7o5 JR: 1/72 T21L ti4 2.5 0,0,5,M"RT 78 UW o0.o 15.0 30.0.5.0 8O0. EC-.30 F8708 JR 4; 1/72 T2IL 300.0 200.0 100.0 0.0~~ O __...................... _ ___ __ _,25 MRFT 78 UH I 0.o 15.O 30.0 45.0 60o0 FRE:UENCT th t!Z Figure 21L. Axial Current at STA:F870B, Excitation 4, 1/72 rlodel. 62

10.0.. EC-130 F8708 JR 4U 1/144 - T21 7. 5 E,,. 0Q~~~~~~.0~~ o - - --., 25 PRY 78 UM..01 0.0 15.0 30.0 C50 80.0 EC-130 F8705B JR 4 1 / t44 T215S 200.0 10020. 0.0X~~~~~~~~~~~~.25 MRT 78 UR o.o0 1s. 30.0o s5' 80.0 FPEQUENCT tIt1X! Figure 21S. Axial Current at STA:F870B, Excitation 4, 1/144 Model. 63

EC.-130 F870B JR 5 1'/72 T22L 7.5 5.0 EC-130 F8708 JR 5B 1/72 T22L.oo.o o Io 25 MRT 78 UM -O. 0 FREQUENCT (MHIZ Figure 22L. Axial Current at STA:F8708, Excitation 5, 1/72 Model. 64

I0. 0 EC-130 F8708 JR 51 1/144- T22S 7. 5 Cl~ sl ~ o5.0 cc 25 MR9 78 un 0.0 s15.0 30.0 U5.0 80.0 200,0 EC-130 F8708 JR 51 1/144 T22S 100.0 0.0 -100.0 -200.0 25MRT78UM 0.0 15.0 30.0 L5.0 60.0 PRIQUENCT [NHZ3 Figure 22S. Axial Current at STA:F870B, Excitation 5, 1/144 Model. 65

EC- 30 F8706 JC 2: 1/77 T23L 1.5 0 ' —4 O.0. 25 MAT 78 UM 0.0 30.0 0 5.0 60.0 200.0 EC-130 F8708 JC 2s 1/72 T23L 100.0 0.0 -IO 00 S.DO 300 0.0 FPIRE0UENCT MHne Figure 23L. Circumferential Current at STA:F870B, Excitation 2, 1/72 Model. 66

2.0, EC-130 F?70B JC 2 1/14-* T23S k 1.0 rr 0 a. 0.5 25,T 7 8UM 0.0 15..O 3.0 5..0 0o.0 200.0 EC-130- F870B JC 2; 1/144 T235 100. 0 0.0 -100.0 0.0 15. 0 30.0,,.60, 0 FREgUENC~ (itlZ3 Figure 23S. Circumferential Current at STA:F870B, Excitation 2, 1/144 Model. 67'

EC.-130 F870B' Q 1I 1/72 T2tL 4. 0,. /7 2.. 1.0 ~~~0.0.........,...... ~~25 HRY 78 um 0.0 15.0 30.0 U5.0 80.0 200.0 - _ __......... _.......... -- --............... -....'.........__ --- EC-130 F870.3 t 1/72 T2qL 100.0 0.0 I-200.0...J 5 X Y 78 UM P2EtUENCT rte — Figure 24L. Charge at STA:F870B, Excitation 1, 1/'72 Model. 68

EC-130 F870 Q Is, 1/144 T2S43 4. 0 3.0 2 0 01,0 S. 25 HRT 78 UH 0.0 15 0 300 U:.O 60.Q EC-igr FB70B C Ia I/1E i TZ1S Figure 24S. Charge at STA'F870B, Excitation 1, 1/144 Model.

S'. EC-130 FS708 g S3 1/72 T25L 2.0 l1E -a lib 0.0 25 MRT 78 US 0.0 15.0 30.0 45.0 6.0 EC-130 FT8708 3t 1/72 T25L Big 0. O 200.0 I 1l00. o 25!RT 78 UNH 0. 0 - *-, _......... o.o 15.0 30.0 05.0 60.a Ff~IEUENCT n1lt! Figure 25L. Charge at STA:F870B, Excitation 3, 1/72 Model. 70

EC-130 F870B a 3S 1/144 T253 i ' E k 2.0 0.0., 25 HRT 78 UM L00.o. 0 EC-130 F870B a 3, 1/144 T25S 300.0 -8~~~~~~~~~~~~~~2 Y 8 U.2 7 0.0 15.0 30.0 1S.O 60.0 Figure 25$. Charge at STA'F870, Excitation 3, 21/144 Model. 71

3.0. EC-130 F8705B Q0 1/72 T26L 2.0.-a o eU A. EC-130 F8708 0 4i 1/72 T26L 300.0 0.0o~~~~~~~~~~~~ o L _25?~RT 78 UH 0.0 IS.0 30.0 45.0 80.0 -0Figure 26L. Charge at STA:F87087, Excitation 4, 1/7 2 Model. P300072 200.0 792

EC-130 F8708 Us L/ 144 T26S 2. 0 k 0. 1o 30.a i5.a 60.0 400.0 I, - EC-130 F8705 a 4s 1/144 T26S 300.0 120.0 0.01k ___ ___ ___ ___ ___ ___ ___ ____ I -25 MRT 78 UM 0.0 15.0 30.0 US.0 60.0 Figure 26. Charge at STA:F870, Excitation 4, 1/144 T2SModel. 73

EC-130 FS70B i5 1/72 T27L LU A. 2.0 1.0 25 MRT 76 Un 0.0 15.0 30. 5 60. a IO00. 0. _I__ * _. _, - _. _. _.. _. _ _ _ EC-130 F870 a 5 1/72 T27L 300. 0 200.0 u. 00. 0 0.0 15.0 30.0 45.0 6800 FREQUENCT (HHlM Figure 27L. Charge at STA:F870B, Excitation 5, 1/72 Model. 74

EC-130 F8708 5t 1/144- T27S 3,0 0. O0 25 MRT 78 UM l 0.0 1S.0 30.0 4S.o 60.0 300.0.200. 0 100., o~o S.O so.' US,O 60.o Figure 27S. Charge at STA:F345B, Excitation 5, 1/144 Model. 75

2,0 EC130 F8708 3 6r 1/72 T28L L. 0.o0 0.0 5s.0 30.0 45.0 30.0 F e -L ChEC-i30 F8708E 1 S 1/72 T2dL _, 7 300.0 2,00. 25 MR~ 78 UM

EC.-13 F870B 0 St L/144 T28S 2,.0 - 4 U.1 1.0.. 25 MAY 78 UH 0.0. 30. a a..0 EC-130 F87OB QG St 1/144 T28S 300.0 100. 25!'!R~ '78 UI'I i 0.0 15.0 30.,0S 80. FRE~UENCT fHHZ) Figure 28$. Charge at STA:F8708, Excitation 6, 1/144 Model. 77

1 0.0 I EC-130 W9OT JR 2; 1/144 Tr2S 8.0, 0 o.o 1, 7 JUNE 78 UH 0.0 15.O 30..0 ES.O 80.0 200.0 EC-130 Ag90T JR 2; 1/144 T29S 100.0 7 -100.0 -200.0 L 7 JUNE 78 ULII 0.0 5,.0 30.0 US.0 60.0 Figure 29S. Axial Current at STA:W90T, Excitation 2, 1/72 Model. 78

0..., I0 EC-130 WSOT JR 2; 1t/2 T2SL 8.0 ' 8.0 I t. 0 2.0 0.0 L 7 JUNE 78 UH 1 0.0 15.0 30 0.50 0O 200.0 0m.,, -,,~ -, EC-130 190T JFR 2: '17'2 T29L 0.0 ~~~~~~~~~~~~1 ~~~7 JUNE 78 UM -200.0 L - ---- '-'- --- - '' —.. 0.0 15.0 30S.O 5.0 80.0 FREQUENCY (MH!Z Figure 29L. Axial Current at STA:W90T, Excitation 2, 1/72 Model. 79

5.0 EC-130 O90T JA 8t 1/72 T3QL LS. 0 c= 2. 0 00.0 -100.0 29 JUN 78 U_ -200,0 0.0 1.0 301o 'S0O 80.0 PREQUENC~ [HHZ! Figure 30L. Axial Current at STA:W9OT, Excitation 6, 1/72 Model. 80

o t~~~~~~~~~~~o I- a a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1~~~~~ I~~~~~~~~~~~~~~~~~~ m1 ~ IL., i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 ~~o 0 0) t In~~~~~~~~~~~~~~~~~~~~~ In L (NI'11 aonitqa~~~~~~~~~~~~~~~~~~~~e I~:~.J a~~~~~~~~~~~~~~~e~~~a

EC-13O Wt90rT 2 1/72 T31L 2.0 0.0 15.0 300 0.0 EC-130 9.0T G 2: 1/72 T3tL! I 0.0 -, 0.0 15.0 30.L0 S.0 60.0,~oo~~o l! l, ~ tEUNC (MH Figure 31L. Charge at STA:W9OT, Excitation 2, 1/72 Model. 82

8.0 EC-130 WgOT a 2: 1/144 t3S1 2.0 0. 0 15.0 30.C0 S. 0 80.0 20 0.0 -. K EC-130 W0oT a 2; i/144 T31S 100. 0X 11 2.0 -20~ 0.0 ___________ _ - 8 JUNE 78 UM 0. 15 30.3 ts.O 80 0 Figure 3LS. Charge at STA:W9OT, Excitato0n 2, 1/144 Model. )~~~~~~~8

3' l EC —130 W90T a 8t 1/72 T32L 0.,0........_.i....... - 8 JUNE '78 UM 2o ~ o,.s~15o030.0 5. 80.0 200.0 E'C-130 NSOT Q 8 1/72 T32L c- s= 100.0 0.0. -20,0. 8 JUNE 78 UM. 0.0 1s.O 30.o.5.0 s. Figure 32L. Charge at STA:W9OT, Excitation 6, 1/72 Model. 84

'C-130 WSOT 0 S1 1/144 T32S 2.0 8. I 8 JUNE 78 UM 0.0. 0.0!So.0 30.0 045.0 O.O EC-130 N90T Q Sg 1/144 T32S 100.O 0 - 0 0. 0 iI - JUNE 78 UM 0.0 15.0 30.0 45.O 80.0 FREQUENCT (MH!] Figure 32S. Charge at STA:W90T, Excitation 6, 1/144 Model. 85

EC-130 HS158T JR 1; 1/72 T33L 2. O r2.0 0. JUN 78 UM ~.0 5 9.0 30.0 US.0 80.0 200.0, EC-130 HSt58T JR 1: 1/72 T33L 0.0 -100.0 -~~~~~2OQ~~~~~~. O29 JUN 7 U.H o.0 15.0 30.0 5.O 60.0 FREQUENCY (HMZ) Figure 33L. Axial Current at STA:HS158T, Excitation 1, 1/72 Model. 86

LapoW bbL/L 'L UOL;.eLOX3 'I8SLSH:V~S:P quauJnD LLXV 'SESC aen6L_ 0 '0 O'S 0 'E 0'S 0 '0,r~~~~~ "-......~~ 0'00I0 'ooI 0'09 o's o'o0 O'S 0'0 wI n PL Nnr sz ' ' - 0 ' I - o r ' ~ ~~ -

10. 0 EC-130 HSlS8T JR 2; If 72 T31L I 000. j, -3 0 ' o to j 8 JUNE 78 U' iX 0.0 15. 0 30.0 45.0 80.0 Figure 34L. Axial Current at STAH 158 T, ExcitationR 2, 72 T3L Figure 34L. Axial Current at STA:HS158T, Excitation 2, 1/72 Model.

EC-130 H158T.JR 21 1/144 T3Sq 6.0 J 8.0 8 JUNE 78 UN -100.O Li af~~~~i ~ owa JUNE?a UM -200.,.... 8........ 0.0 15.0 30.0 4s.O 80.0 FRE1UENCT (MHZ] Figure 34S. Axial Current at STA:HS158T, Excitation 2, 1/144 Model. 89

2..0 8-0 0.EC-130 HS18T JR 3, 1/72 T35L 4*0. 2.0 0,0 15.0 30.0 &5.0 80.0 2 O,0. O.. _._. _7 FEC-g3 HS A C8T J 3: ', /72 T35 oe 90 'i i"? i~~~/ 9O

EC-130 HS158T JR 3; 1/1lt1 T355 a. 2.0 xI 29 JUN 78 UM 0.0 tS.0 30.0 4S.0 80.0 2 000 --.0 =C-t30 HSIS8T JR 3: i/L4 -T355 I21 ~~~~~~ i \!00.0 4 0.0 6 JUL 78 UHM -200. O............-..__;... 0 5.230.0 s5.0 30...O?FEQUENCY (MMIHZ Figure 35S. Axial Current at STA:HS158T, Excitation 3, 1/144 Model. 91

'LapoW Z/L 'bL UOL;,LDX3 '13SLSH:VlS:; tua~n3 LeLXV *19C ajn6Lj C WC) k N 2n,3t n. O' OE O_.C'ht O"OE O'SI 0' ' 2< ' \ ~ -I-... COOEi\~ ~ I illl, 0'00 -I. Ii 'SE1 Z,.ty'I:ll bF'.L S.ISH OS1 -D3 " Io-O ' O Z 0'O - O OSh O0 St 0 0 r,, N" Co'o 1" 0'9 i/ I 9.1 Z/.t tl Br lBSISH OC: -: |

8a0 EC-130 HS158T JR u4 1/144 T38S 6.0.2.0 0. 0 \Er r I -I, 1 29 JUN 78 um 0.0 15.0 30.,0 38.0 50.0 200.0 _._ j v' i EC-130 HS.S6T JR 4: /.:- 4 T35S 0.0 -0 0 \. _ 8 'UL 78 UMI -200.0...._..._... O.:s5.o 30.0 U5.0 60.0 FRE2UENCT (MHtZ Figure 36S. Axial Current at STA:HS158T, Excitation 4, 1/144 Model. 93

EC-130 HSi58T JR 5, 1/72 T37L 6.0 2.0 0. O 0.0 15.0 3[0.0 ~ I 1C.0O30.0,5.0 80.0 EC-130 H5158T JR 5; 1/72!37L!00.0 t -200.0 K_______ _______ __________________ _ 3 iJL,, 'M 0.0:O 15.0 30. O. o 60.0 94 94

a -, EC-130 HS158T JR 5 1t/1,44 T37S i0 0 2.0 O.c 0, 29 JUN 78 UM1 0.0 15.0 30.0 45.0 80.0 200.0 EC-130 HS158T JR 5: 1t/14LL T37S loo.o i \ 9 J0. I -200.0 0.0 15.O 30.0 LS.O 80.0 FRE2UENC- (Mt't] Figure 37S. Axial Current at STA:HS158T, Excitation 5, 1/144 Model. 95

a0.0...... _....... _. EC-130 HS158T JR St, 1/72 T38L 8.0.0 2.0 X 0.0.,,............ [15 JUNE78 U. 0.0 15.0 30.0 s5,. 60.0 200.0 9C-130 S5158T JR 6: 1/72 T38L 100.0 h II o.o Fiue3L xalCreta\T'HS5T Exiain6 /2Mdl - ~ ~ 1 '.. 96

10.0 r - EC-130 HS138T JR 6; 1/1141 T38S e k = a.o. r,,. o o -&J 0 0 2.0[ 0.0 4. -20.0 L *-, 15 JUNE 78 U 0.0 15.0 30.0 U5.0 80 O 2 003.0 I o EC-130 HS158T jiR 8 1/l44 T38S 0oo.0 i -00 0.. o~ 1oSo 30 o ~.o 80.O FREQUENCY,HH Z Figure 38S. Axial Current at STA:HS158T, Excitation 6, 1/144 Model. 97

20.0 C-130 HS158T Q II 1/72 T39L 15.0L o 0 a * 0 -z O.0 1 5.0. ] i~o~ I -1 L. o....... _ _ _ _ _ _ _ _ _ _ _ _ _ 00 15.0O 30.0 &5.0 60.0 20. 0 L _ 8 Figure 39. Charge at STA:HS158T, Excitation.30 1 /72 Model. 0.OL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t J 98

20.0, EC-130 HS158T a li 1/144 T39S 15. 0 JL 0 10. i Ec- Hn isaT a li 1/f'44 T3.4! W= w - - 10.0 -2~0: ~~~~.0 1,,, S ~~15 JUNE 78 U' 0.0 iS.0 300.5.0 80.0. iigure 39S. Charge at STA:HS15,EC-i30 HSta 8T 1,3 1/.U~ T3M e ~0,~0 ' ~I~~9 o200.o i!5 JUNE 78 J 0.0 15.0 30.0 45.0 00O

25..0 - EC-130 HS15ST Q 2, 1/72 /T4OL 20.0 toa. L0. OW I I. EC-130 HSLS8T Q 2: 1/72 T40L -20o.oQ,, 15 JUNE I' ui 30.0 15 JUNE 78 U o2 00. 30'0 1s5 60.0 FRE~UENCT [.MH! Figure 40L. Charge at STA:HS158T, Excitation 2, 1/72 Model. 100

25.0 EC-130 HSS15T a 2; 1/14'4 TtOSi 20.0 1 S.0O O.O W 10.0 5.0 o.01 I V s_ _, JUNE 7. u. 0.0 1S.O 30.0 S.0 850.0 200.0 EC-130 HS1S8T C 2; 1/1'4 T40S 0.0 ~~~-200.0~. ___ ___ ___ ____ ___ ___ ___ __15 JUNE 78 U 0.0 *5.0 30.0 45.0 80.0 FRECUENCT (HHM) Figure 40S. Charge at STA:HS158T, Excitation 2, 1/144 Model. 101

S. -- - I -- - EC-130 HSIS8T S 3: 1/72 T41L E 2.0 t.,0 0..0. 0 _, 18 JUNE 78 U 0.0 15.0 30.0 S5.0 80.0 200.0....0. -.... EC-130 HS158T C 3o 1/72 T41L 100.0 i 0.0 -100.0 1 J-200.0 __ _ __ _ _ _._ __ _ _ _,___ _ _,_ _ 18 JUNE 78 U 0.0:S.O 30.0 l5.0 80.0 FRECUENCT tHHf)] Figure 41L. Charge at STA:HS158T, Excitation 3, 1/72 Model. 102

EC-130 HS158T a 3 1/1U4. T41Si z 3,0 9 0o -, ICC 2.0 0.0. t 0.0 15.0 30.0 5.0 860.0 200.. 0... |i~~~~ ~~EC-130 HSlS8T a 3; 1/U4, TL S 0.0 -200.0................ 6 JUNE 78 U 0.0 '5.0 30.0 45.0 80.0 FR~EUENC~ (MHZ] Figure 41S. Charge at STA:HS158T, Excitation 3, 1/144 Model. 103

80. a - EC-130 HS158T 2 4l 1/72 T42L L =11 I0.0. 0.0 15.0 30.0 45.0 6.0 Figure 42ag a SAHS8EC-130 HS15iT Qi 4, 1/ 2 T42L 100.0. 1 o.oa. Figu 0 4. 30. Sa. 104

EC-130 HS158T 2 til 1/144 T42S t-,.0 E r O. 18. JUNE. "8 U 0.0 15.0 30.0 U 5. 80.0 200. 0 Xi~~~~ ~~EC-130 HSIS8T Q 4 1/!144 T4 2S O0.0 0.0 0.0o 15.0 30.0 LS.O 800 F~E0UENCYr MtI!] Figure 42S. Charge at STA:HS158T, Excitation 4, 1/144 Model. 105

1.0.0,,...., EC-130 HS158T a 5s 1/72 T43L 8.0 2. 0 tU o ir0, 18 JUNE 78 'U 0.0 15.0 30.0 4S.0 S0.0 200.0 EC-tO HS.5ST 5; '72 T43L oo.o 5 JU'L 8 UM -200, 0.........,_..-..... 0.0 1.5.0 00 US.0 80.0 F'REQUNCY [MMZ] Figure 43L. Charge at STA:HS158T, Excitation 5, 1/72 Model. 106

10..0 EC-130 HS1S8T Q 5: 1/144 T43S 8.0 L LU S. 0 UJ LU L&.0 0 2. 0 0.0, a, 18 JUNE 78 U 0.0 1S.O 30.0.S.0 60.0 200 0 LU, Figure 43S. harge at STA:HS1 T, E0C-x30 HSLSBT n 5 1 I!44 Tod S 107

80L 'LapoW ZL/L 'L UOLe24LD3 'OtLSA:V.LS qe.ual.nD LeLXV ~ 1Wt Bn tcWWi a.N3nf3UJ 0'09 O 'Sh 0 O O'St O ' wr 8L inr sO o'X OO Ii.,.. -- oo3 0'0 i L4 |h. ZL/I:t tlr Ohl:t OIt -33:

8.0 - 2.0 29 JUN 78 UM 0.O 15.0 30.0 4S.0 80.0 200.0 | EC-130 YS140 JR 1i 1/144 T'4i4S 100.0 o.oL -200.0 i 29 JUN 78 UM 0.0 15.0 30.0.s. 0. o0 FMEQUENCT (MHZ] Figure 445. Axial Current at STA:VS140, Excitation 1, 1/144 Model. 109

EC-130 VS140 JR 3; 1/72 T45L 2.0 200. a _. 0.0 150 300 0 600 -1 0 0. 1 110

EC-130 V5140 JR 3 I/t4i4 7455 k, 0 C 0 = =: 2.0 15.030.0. 30 JUN 78 UM O 0. I,,.0 ~.0 ~'. 15.0 30.0 o5,. 80.s 200.0 EC-130 VS140 JR 3; 1/14 T5SS 100.0. - 0.0 0.0 15.0 30. 8.0 FREQUENCY (MHIZ] Figure 45S. Axial Current at STA:VS140, Excitation 3, 1/144 Model. 111

EC-130 YS140 JR 4s 1/72 T48L k 2.0 u 0 O.O 20 JUN is UM 0.0 15s.o 30.0 45.0 80.0 200.0........ __-_ _ —,_ _... EC-130 VS140 JR 4l 1/72 T4SL 100.0 0.0 -20 0. 00.0O J0 JUN 78 UM| FREgUENCT 1HZ] Figure 46L. Axial Current at STA:VS140, Excitation 4, 1/72 Mlodel. 112

EC-130 YS140 JR 4i 1/A144 T68S t&,l U._ cc 2.0 j 0 L 0.0 15.0, 1/;:;0T~5 30 JUN 78 UM 0.0 15.0 30.0,5.0 0.O EC-130 YA1O JR 4, I/144, T48S 100. 0 0.. 0 -100.0 0.0 15.0 30..0...... FalUENCT (HCKZ Figure 46S. Axial Current at STA:VS14O, Excitation 4, 1/144 Model. 113

~LL 'Lapo ZZ/L 'S uoL;e;Lx3 'O0LSA:V' S;e;ua;n3D LefLX 'Ly aJn6jL ~'09 O'S0 0 's OOsI 0. w1, L -I r S O' 0 0 -I X0' 00 V I t iL.J Z 'I S 8r OthISA OS-03 0,, 09_ 05?7_ 0 05 Ot o i0'08~~~~ O"Sh ~ ~~~ ~ ~ ~ O 'OC~~~~o h 0'0,. * —0'8

a,..I EC-130 VS140 JR S 1/1l4l T47S 8.0 E _1 Cl 4. 2. 0 Z0..O..... 30 JUN 78 UM 0.0 15.0 30.0 US 80. 0 200.0 EC-130 VS140 JR 5:!/'144 T47S i" 100.O. j I! r I 0 6 JUL 78 UM -200 0, __._............. _ _...... 0 0 15.0 30.0 45.0 60 0 FfEQUENCY MYMHZ Figure 47S. Axial Current at STA:VS140, Excitation 5, 1/144 Mlodel. 115

9LL LapoW ZL/L '9 uo0L;e;LX3 'O0LSA:V' S Obe ua.An 3 LeLXV '18t aenl6L o'09 'Sb O'O E O'S 0'0!n 8L - Nnf 9 i i i0'0j t0 A - 0'0 I I o_'09 oosn O'0S1 0'0 ~fl ) )i! 9g~J ZLll 9 Lsl Obi OES Ol-3 0 1

10. 0 EC-130 VS140 JR Si 1/150 TU SS 8.0 6. 0. -L 0.. 3 1 JUNE 7e UX. 200.0. __-............. 0.0 15.0 30.0 45.0 80.O 200.0.. EC-130 VSLO JR 8 1/150 T48S ii I- ~~~~-200zoo~~~~~~~.0 K. 6 JUNE 76 uM 0.0 15.0 30.0 t5.0 0~ F$EQUENCY (UH71 Figure 48S. Axial Current at STA:VS140, Excitation 6, 1/144 Model. 117

8LL 'LapoW Z/L ' L UOL.; L3X3 'O7LSA:V~S;e a6eq3 '*16t a.n65j C-09 OS 0 '0 'I 0 '0 j__ __ __ ___ _ TJ: T- - O --- O To -! _i _ G QL inr S i 11 0 o0s 0 'Sl O'OE DST 'I' vo -Y /l.,,,,,.-,.,,,- '~' ~ ~, _I.... — ' O'-q 0rn j 16t11.g ZLI Jt s rl Ohl, S OC1-33i......... O~~~~~~~~'OZ

20.0.___ EC-130 VSL { 1, Is l/144 T49SS 15.0 5. o I 5.oLI 0. 0, 18 JUNE 78 U 0.0 15.0 30.0 U5.0 80.0 200.0 EC-130 VS14O0 1: 1/l144 T9SS 10 0. 0 i _ I _ -loo.o L -OO 1 30. 4 0.0 FR53UENCT (MHZ] Figure 49S. Charge at STA:VS140, Excitation 1, 1/144 Model. 119

EC-130 VS14O0 3, 1/72 T5OL I 2. 0 4,.0L 00 15.0 30.00 U.O aQ 0 -00.0 EC-130 VS14O Q 3c 1/72 TSOL..,I 2:.0 2 e8 JUNE 78 U _2oO O t, _..,. ~.0 5.0 30.0 US.: 80.0 Figure 50L. Charge at STA:VS140, Excitation.. l/72 Model.

EC-130 VS14O 3S 1/1I44 Tr0o 0.0 18 JUNE 78 U 4,, U..01.18 JUNE 78 U 200.0 EC0.0 11.0 30 VS4.O o 3i 1/144 T 0S Figure 50$7. Charge at STA:VS14, Excitation 3, 1/144 Model. 121 121

10.0 EC-130 VS1140 t4 t1/72 T5IL 8.0 - 8.0 1~~~~~... 0.0 0.0 15.0 30.0 - 0.0. 4 0.0 15.0 30.0 45. 0 50.0 Figure 51L. Charge at SA:VS14, Excitation V1, 1/72 Model. 122

10.0~~~~ ~EC-130 VSI,0 g Us L/14& TIS a.oL 60 L S-O LU0 Luc L& 0. 2 0 15.0 30.0 18 JUNE 78 U o'o 0_5.0 30.o, 4~s. a80. 0 200.0F EC-130 VS1k0' 48 I/t14 TSIS t~~~~~ 100.0 F Lu 0.0 1~~~~~~~~ a. -i 00.O 0 w~~ I~~~~~~~~~~~~~~~~~~~~~~~~~~~ Is JUNE 76 U 200 15.0 30.0.5.Q 60.0 FREQUENCY ICMH!3 Figure 51$. Charge at STA'VS14O, Excitation 4, 1/144 Model. 123

l........,.... -.-. -. EC-t30 VS140 a 5 1/72 T52L 8.0 8.0 2.0. 200.0 EC-150 VS1[4O 5: 1/72 T52L oo. 0 -100.0k I i 0 S0S.O ~0.0 ~5.0 80.0 FREQUENCT CMHZ3 Figure 52L. Charge at STA:VSi40, Excitation 5, 1/72 Model. 124

I...., 0l a 8.0 rLuo -L 4. 2.0 L 0.0, 18 JUNE 78 U 0.0 15.0 30.0 5.0 60.0 200.. 0. EC-130 V/140 G 5 1/144 T52S I I 100.0 8 JUL 78 UM. 2 t.o o 5.o I_... 0.0 15.0 30.0 '450 60.0 FREQUENCT {HHI] Figure 52S. Charge at STA:VS140, Excitation 5, 1/144 Miodel. 125

6.0 L0 2.0 0.0 1.0 30.0 45. 80.0 200.0. EC-130 VS140 Q 86 1/72 T53L 100.0 -1 0.OL o.o L -loo.oL -200.0_....... 5 JUL _ _ UM 0.0 15.0 30.0 US.: BJ.. FREQUENCY CMHI] Figure 53L. Charge at STA:VS140, Excitation 6, 1/72 Mlodel. 126

0 _ EC-130 VS14&0 a 68 1I!44 r53S | OI -AU. w-0,-4 I 00.0 X8 JUNE 78 U 0.0 1S. O 30.0.S.. 80.0 200.0 1Fi gue. CareatS:Ex C-130 YSL.0 C 86 1/14 T53S 0.0 15.0 30.0 U5.Q 80.0

'LapoW.~ gL/L '9 UO.Le.LDX3B 'Oa_8L:VI1S -e 4ua.in3 Le2LXV "i7S a~.n.Lj 0'09 OlS, 0'O0 O'S 0'0; ~n BL nr s 0 OO:0 09 o 0s or 0 'St 0 0 ii V~~~~~~~~~~~~~~~~~~ 0'09 o Q0O0 0ST 00 0' Iwn~~~~~~I O rm Is r 0'8 t — ~O '8

8.O,,_....,- ' i.. 1 EC-L30 F8708 JR t 1/1l44 T54S,.0 2. 0 E 110 F8708 Jw. S 1/144 T54S 0~~~~-~~~. 0 ~ ~ -......L.. ~5 JUL 78 UM - 0.0 5.0 30,0 5.o 60 FREQUENCY IM5!I Figure 54S. Axial Current at STA:F870B, Excitation 6, 1/144 Model. 129

80.0 - I..,. EC-1 30 F34S5T JR 1; 1/72 T55L t40. 0 80.0 =,I 20.0 0.0 15.0 30.0 45.o 80O0 2 O C. 0 __ ________________ EC-130 F3lST JR 1; 1/72 TSSL II! 0.) \ U i i160.' i l x. I B 0. 0 -200,0 8 JUL 78 -8 0,.0.........80 0 FRE5UENCY rMHZ] Figure 55L. Axial Current at STA:F345T, Excitation 1, 1/72 Model. (Repeated r~leasurement, see Table 4) 130

(b aLqgl aas '~uasaJnsuaH pawndas) LiaPo~ bbL/L 'L uOLq4Le:)X 'JSb~.:VJS;P;uun J LeLXV SqS aLnXL 0 09 0 S' 0G ' O '0S 0 '0.......... '...................~- ',,Q'00Zwn &L Nnr o0 0 0 0 1 0 '00M IScS5 'hltIlt:I YT ~I1h:- OE T -~3 0 09 0 'S O'e 0'St 0'0 wn GL Nnr oc 0 0 O ' 0'0 rt

8.0 EC-130 F34ST JC 2s 1/72 TSSL a-" 2: o.. o 2.0 SO JUN 78 UM 0.. 0. 0.0 15.0 30.0 tS,O 80.0 200.0 EC-130 F345T JC 2, 1/72 T58L 100.0 0.0 -1oo0.o o30 JUN 78 UM -200.0,. - - 0.0 15.0 30.0 q5,0 80.0 FREQUENCT tHH!) Figure 56L. Circumferential Current at STA:F345T, Excitation 2, 1/72 Model. (Repeated Measurement, see Table 4) 132

8a. __ _ _ __ *I EC-30 F3145T JC 2, 1/141 TS6S -J 8 0 a2. 0.01 30so JUN 78 UM 0.0 15.0 30.0 tU5.0 80.0 200.0 0 EC-130 F34ST JC 2; 1/144 T56SS I -100.0 i S- JUN 78 UM -2O.. O - - _ ~, FREQUENCT (MHH) Figure 56S. Circumferential Current at STA:F345T, Excitation 2, 1/144 Model. (Repeated Measurement, see Table 4) 133

?.IRSE (DEG) AMPLITUDE1 [MLI' l~~~~~~~~~~~~l ~~~~~~~~~~J/H CD C3 0 0 0t 00 (D Ul 0 0 0 ( D. o[ oo I'-5 - c-.. (D - IG C'D (A) "5:30 i- m --- n '"w-" - CDOJ C A.. CD — ~ / I ~ ~ -................. o~~~~~~~~~~~~~~~~~~~ CD lfi[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C C: 1'1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C Ca0

1 S. 0 I- - EC-130 F345T JR 3 1/144 T575 12.0 9.0 -i a.. 0 3.0 _; _ _:, ~30. JUN 78 Um 0.0 15.O 30. O4_50 _ - 4 00 0 EC-130 F345T JR 3: 1/'144 T575 300.0 h Figure i8 JUL 76 U'M~-o ~1. 30.0 45.0 6!{~ eetdMauemnseTbe4 '~~'~ {- ~ ~ ~~3

'.- PHISE IDEG) A"PLITUDE ILIN) C::,., 0i, -$ o o C) o C C) 0 0 0 {D* * * * C 5 * 0) C o 0 0 0 t 0 0 0 0 0 ~ I I I I O0e~~~~ o! A 1 ~t t~~~~~~~ CD X 9__ _ CD. C0 CDU CD — I CD w C CZI Icn c CD~ 4_~ ---~ ~0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 C-+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 CD-" N' CD 4 -CD I_ - - _ ----------------—. —*I IIC CDn' 'U................................................................. ~...... oA

(b a Lqe. l es ': uawmnseea pqeqadae ) 'LapoN tI/IL 'p uoL;:;:L3X3 ' 1SqtJ:V.S; -ueaJn3 LPLxV S8S a.n6Lj PDWWP l3Nn'._0 0O 0o S 0'O O'St 0'0 r ' ~ 0 '0 0?.ir a ~ Nnrr 0o 0 '00 I0 '0 |Ss hI h/T th Br sbhe OEi-o 0 'og 0Snhd 'S1~ ~3 0 '0~ 0 'S 08 O OE Ot o 0'0 wn.L Nnrf06 oc - o,t 0'9 S2.1 71t/t 'h Br ~Sb~C O1-33 ~~~~~~~~~~~~~~~~~~~'

20.0 EC-130 F34ST JA 5s 1/72 T59L 15. 0 30 JUN 78 UM 0.0 5.0 O.0 15.0 30.0 ~5.o 8O. 0 00.0 I O2. Co.... 0 ~ 1. - 30.0 U5.0 60.0 Figure 59L. Axial Current at STA:F345T, Excitation 5, 1/72 Model. ( Repeated Measurement, see Table 4) 13

20.0.r EC-130 F34ST JR 5S I /1U'4 T59S S.0 t5.0 0.0-7~..................,,..... 30 JUN 78 UM 0.0 0.0 15.0 30.0 t5.0 80.0 EC-!30 F34ST JR S i/1 4L T595 50. 0 i t i t! i _ I __ _ 8 JUL 7 UM 0.0 15.0 0. S.O 80.0 Fue 9S. Axial Current at STA:F345T, Excitation 5, 1/144 Model. 139 134

-l PthqS~ ECIDG RNPLITUDE ILIN) (C) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J/H0 "-'" 00000 0 0 0 0; LiC CD O~~~~~) - -- I -I - -- 0 - I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- J(Dr CDf0 -'-' X CD4 CD u... Ci mw g CL c-t(D) — A CD-S 4 Cii C.D cn c: CD CU Cf fl)c1- /RC r —Ho CD jj CD 0) 0 C): -.- - "D 0 —. CZo o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C..~~~~~~~~~~~~~~~~~~ LID~~~~~~~~~~~~~~~~~~~~~~~~ cc'

-Il PUt5E IDEG) fANPLITUDE ILIN) cQ f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J/Ha 0 0 0~ 0D 0 0 0o )C C) _~~~~~~~~~~~~~~~~~~~~~~~~~~~.......I i --- (D -~ u] -0 CD CD = 00 CDi -O (D CD-'S o! CD 0 C~_ (CD -It (D -I~ c C) 0 CD 1 A I — ~~~~~~~~~~r CD L F~~~~~~ C: ~~~~~~~~~~~~~~~~~~~CI - - - —.- -.-.-1-.~~~~.... ----. --- —----— I - -. --- —---—. ~................. - 1..-......................-. 0 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ZtL (& a Lqi &as ';uaLamnsaW pa;eadal) 'LaPONW tL/L 'L L UO;LL3X3 ']S9E _:j LS X uaJln 3 LPLXV 'SL9 a.nbLl 0O39 O-~ OOE OS1 OC gn -i. n r m;, D nZ. 0 '00 /1i 1~ oi Ii r ~~~~~~~~~~~~~~~~~~~i ~~~~~~0 02 -jlI - OR '0II Wls; L.1 r "Sh6 OE' ' " 'ODZ' I U 0I; i 3~~~~~ i 1 7

L ( aLq'. as 'auewaL nspa / paeqada ) *Lapo 1 ttL/L L UOL1;l3X3 'i1SLSH:V1S Le aaeg 3 'LSZ9 aan5Sj. Z P ) A'2NS3 n 3V U2 0'D9 C'S,, O'O O'S: oo W'.r. 6L '! Z t T pr\ o\I - SEB1 DI?h 1 / It I 'SI tr~~~~~~~~I 0'09 O'S, O'Sl O'Sf 0 0 r-4

5.0. * -- --- - --- - - --- EC-130 F3U45 JR ls 1 /72 T83L u. 0 /: i 71. 3.0 2.0 r I I I 0.0:O 12 JUL 78 UM 0.0 00o a. 30.0.s.0 80. 200.0,,, __ EC-130 F3453 JR I: 1/72 TS3L U., HI oo.oF. \ I! 0.0 -5.0 30.0 45.0 80.0 Figure 63L. Axial Current at STA:F345B, Excitation 1, 1/72 Mlodel. (Repeated Measurement, see Table 4) 144

EC-130 F3455 JR Ii 1/44 T53S 2!.0 i. o 0o.o0..,......... 12 JUL 78 UH M 0.0 15.0 30.0 U5.o 80.0 200.0 EC-130 F3'5S3 JR Is 1/144 T563 1 0. 0 i A i I - 0.;__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _12 JUL 78 UM o0.0 15.0 3o. Us.O o0.0o FBEQU5NC~ tMHMZ Figure 635. Axial Current at STA:F3453, Excitation 1, 1/144 Mlodel. (Repeated Measurement, see Table 4) 145

..1 PHiASE iDEG) AMPLITUDE (LI[) (0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C_ I, --- C~~~~~~~~~~~~~~~~~~- -0 CD (D 1 P re C+ /H J(D 0 1 -LI -5~ o o o o ---'- o-~~'I- o-1 Ul -~ —7'`-'~-~ CF X ~CD 20 '5 ir -5 0 (hf r,1 I (D c+ CD L c-In) ---- C: "T1 -" -' ~ 7 Ch)~~~~~~~~~~~~~~~~~~~~ CD c12) l C C w ~~~~~~~~~~~~~~~~~~~~~~~~o -~J,, Z I IT 1 0 u, n z Iiu -I III t3J — ~. l_ (_ cI i D fl tn ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~co.:; C- j II ~ C -. " —,. ct 0L!-r r- r 1t 0- - 0' 0 *-~~~~~~~,.-'.........1........ u\ i (c= ul I t J=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;F=~~~~~~~~~~2

-'1 PiS~E (DEG) f'PLITIUDE ILIN);70 ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~JI c-+ a a 0 0 00 ~ 0O <___,"-' C(D -A CD -I (D Di PILA C/L r+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~p -0 — 0 I~~~~~~~~~~~~~~~~~~~~~t ~ ~ ~ ~ ~ ~ ~ ~ ~ L - C: 0~0 CD "3 "3 co ~~~~~~~~~~~~~~~. U) ~ U (") C)-O * ~~~~~~~~~~~~~~~~~~~~r -J CD C -bc;~,.a, ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C

EC-130 F3L453 JR L4 1/72 TSL 0Lo o I 0.0 30.0 5. 0 80.0 EC-130 FS458 JR 4U;'/72 TS5L 300.0 20 0o. O I i 0 0........____________________ 12 JUL 78 JM 0.0 s.o 30.0 s.o 80.0 Figure 65L. Axial Current at STA:F345-, Excitation 4,,/72 Model. ]48

OV L ( q uL~ as ';uawaenspal pqe deda~) La[PO Z/L/L U7 OLP1L;3x 'St9 J:VIS P 4ua knlJ LPixV S99 aJnf5j O'Og O'S0 O'OE O'S 0'0 ] c'oo0, -. O 0008h o o0 O9S 0 0 s OSI 0o 0!f I; i!I! - -., -- ~ - -, - - - - - -, - - t I'

EC-130 F345B JR 5 1/72 TS6L 4. 0 II~-rJ 3.0 2.0 1.0 0.0 K 12 JUL 78 UM 0.0 15.0 30.o0 45.o o.0 200.0,, EC-130 F345B JR 5: 1/72 `66L -100.0 -ii -2o0.0L. _________ _....___________________________:12 JUL 78 UH 0.0 5. 0 30.0 o.0 60.o FREgUENCT (MHZI Figure 66L. Axial Current at STA:F345B, Excitation 5, 1/72 Model. (Repeated Measurement, see Table 4) 150

EC-130 F345B JRj 5s 1/144 TSSS.O0:3 2.0. /L 0.0 L 12 JUL 78 UM 0.0 15o 30.0 80s.o 200o.. o '.0...... -- - _ EC-13SO F345B JR S 1/144 T6SS 100.0 F -zoo.0o L -I00.0 L 0.0 lS.O 3o.0 45.O 80.0 FAF~UENCY (MH!) Figure 66S. Axial Current at STA:F345B, Excitation 5, 1/144 Model. (Repeated Measurement, see Table 4) 151

UNIVERSITY OF MICHIGAN 3 901 5 03483 73051111111 3 9015 03483 7305