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ABSTRACT

Electromagnetic scattering behavior by a metallic sphere loaded with a
circumferential slot in the plane normal to the direction of incidence is investigated.
The slot is assumed to be of small but non-zero width with electric field constant
across it, and under this assumption the analysis of external field is exact. The
field scattered in any direction is obtained by superposition of the field diffracted
by an unloaded sphere and that radiated by an excited slot at the position of the
load, with the radiation strength of the slot related to the loading characteristics
in the combined problem. Thus, there are two parameters that determine the
scattering behavior of this object: the loading admittance and the position of the
slot.

Numerical results are presented primarily for the case of back scattering
and these are compared with experimental measurements made using a metallic

| sphere with an equatorial slot backed by a radial cavity of adjustable depth.
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INTROII)UCTION

A major problem in scattering theory is the development of ways for
controlling the scattering behavior of an object through modifications to its surface.
It has long been recognized that minor shape changes can be effective in reducing
(or even enhancing) the scattering cross section, primarily at high frequencies, and
with the development of high performance absorbers during the past decade, the
application of these materials has now become one of the most potent tools for cross
section reduction, As the frequency is decreased, however, absorbers lose much
of their utility, At wavelengths comparable to, or larger than, the overall dimen-
sions of the scatterer, the thickness of any good non-resonant absorber is liable
to be intolerable, and to achieve a reasonable degree of absorption the properties
of the material must also be tailored to the individual shape parameters of the
surface. This last severely complicates the problem of designing the material.

It is therefore desirable to investigate other means of cross section cnntrol,
particularly ones which are effective in the resonance region, and of these new
techniques the most promising is that known as reactive loading.

In essence, the technique is to change the impedance '"'seen' by the incident
field over a restricted portion of the surface using a cavity-backed slot, lumped
network, or other type of microwave circuit, and as such is only a special case of
the general theory of surface impedance effects. Mathematically at least, it is
akin to the application of absorbers, but in practice differs both in the localized
nature of the region where the loading is employed and in the greater variety of
impedances that can be achieved either to enhance or decrease the scattered field.

The first reported application of this technique for cross section reduction
was by Iams (1950), who used it to decrease the scattering from metallic posts in a
parallel plate pillbox structure. King (1956) investigated the change in current on a
thin cylindrical rod when a central load was introduced, and Hu (1958) and Xs and

Schmitt (1958) later showed that loading can appreciably affect the scattering
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behavior of such a rod. However, it was not until the recent study by Chen and
Liepa (1964) that the ultimate capability of loading for cross section reduction was
fully demonstrated. For normal incidence on a thin cylinder of length £,0< (<22,
the induced current was calculated as a function of an arbitrary central load, and
the results confirmed by detailed current measurements on a model. The back
scattering cross section was then determined, and it was found that for every value
of f/)\ within the chosen range, a loading exists for which the cross section is
zero. The real and imaginary parts of the corresponding optimum impedances were
obtained as functions of /¢ / A, and whereas the required loading was passive when
£ <, that for x <A< 2x was primarily active.

Chen and Liepa also considered the scattering in directions other than
normal to the surface, and in two later papers Chen (1964a and b) has extended the
analysis to oblique incidence and to the case of two identical symmetrically-placed
loads. Valuable as this work is, however, its usefulness for most applications is
limited by the requirement that the cylinder be thin (radius much less than the wave-
length), and though Sletten et al (1964) have shown experimentally that reactive
loading is still effective when the cylinder is thick (radius comparable with the
length), no theoretical treatment of this problem is yet available.

A somewhat different and more abstract approach to reactive loading is to
represent the body as a one-port (Harrington, 1963; Green, 1963) or n-port
(Weinberg, 1963; Harrington, 1964) device, which leads to the expression of the
scattered field in terms of commonly-defined antenna parameters. However, to
use the method to obtain quantitative results it is necessary to determine the trans-
mitting and receiving properties of the body, and for an accurate treatment this
again involves the solution of the boundary value problems.

The most simple example of a ""thick' body is the sphere, and this is the
shape that we shall consider here. A plane wave is assumed to impinge on a
perfectly conducting sphere loaded in a narrow azimuthal region whose plane is

normal to the direction of incidence. The field scattered in any direction can then
3
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be obtained by superposition of the field diffracted by an unloaded sphere and that
radiated by an excited slot at the position of the load, with the radiation strength of
the slot related to the loading characteristics in the combined problem. The con-
cept of distributed admittances is introduced, and by varying the admittance Yy of
the slot, a wide degree of control over the scattering behavior can be exercised.
Even if attention is confined to passive loads (admittances whose real parts are
non-negative), substantial increases or decreases in the scattered amplitude in
almost any specified direction can be achieved by appropriate choice of Y.
Numerical results are presented, primarily for the case of back scattering, and
these are compared with measurements made using a model with an equatorial

slot backed by a cavity of adjustable depth. The agreement is excellent.
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II
FIELD EXPRESSIONS

Consider first an unslotted perfectly conducting sphere of radius a whose
center is at the origin of a Cartesian coordinate system (x,y,z). A plane electro-
magnetic wave is assumed incident in the direction of the negative z axis, and,
since there is no loss of generality in taking its electric vector to lie in the
x direction, we choose

ikz

e and ikz

E =% gl=-§er

iwt
where Y is the intrinsic admittance of free space and a time factor elw has been

suppressed.

If we also introduce the spherical polar coordinates (r,8, @) such that

x = rsinf cosP, y=rsind sinf), z =rcosh

with 6 =0 representing the back scattering direction and 6 =7 the forward one,

the above expressions for the incident field can be expanded in terms of the vector

(1)

(Stratton, 1941), where

(1)

wn(kr) P;n(cos )

M(l)

mn
0

=Tm
+ kr

sin@

cos

m¢ kr

. d/n(kr)

9
36

w

Pm(cos
n

cos
6) sinm¢ 6

wave functions M " and N in the form
i n 2n+1 (1) . (1)
E i ! n(n+ 1) \™oln -Neln (1)
n=1
o))
i, n 2n+1 (1) .. (1)
H =iy Co n(n+ 1)<—01n_ ' eln (2)
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Y (kr) ¢! (kr)
1) m COS 4A, R 9 m cos A
- + =
E(e n(n+1) 5 P (cos0) Smmybr = 50 Pn (cosB) Sinm.y) 2]
mn (kr)
0
m
1
- wn(kr) Pn (cos ) Sinm¢ 6
kr sinf coSs

and

wn(kr) = kr jn(kr) ,

where jn(kr) is the spherical Bessel function of order n. P;n(cos 9) is the
Legendre function of degree n and order m as defined, for example, by Stratton
(1941).

At the surface of the perfectly conducting sphere the scattered field (Es,gs)

satisfies the boundary condition
fx (§1+ES) =0,

and from the requirement that the scattered field represent an outgoing wave at

infinity, we are led to write

[00)
s (3) . . (3)
E = Z GnMoln-l_anEeln ’ (3)
n=1
implying
[00)
iy O (a4 (3)
S 1 éﬂgoln+anMeln ) (4)
n:

The _l\_/I_(3) and §(3) differ from the 1\_/[_(1) and Ij(l) in having (pn(kr) replaced by

Cn(kr) = kr h(2)

o (kr)

2
where hﬁl )(kr) is the spherical Hankel function of the second kind. Application of

the boundary condition at r=a now gives
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y (ka)
_.n 2Z2n+1 n
An - n(n+1) fn(ka) ’ (5)

!
n 2n+1 l/jn(ka)

B ¢ (k) (6)

and by substitution of (5) and (6) into (3) and (4) the scattered field is then deter-
mined.

The total field is the sum of (_Ei, ﬂi) and (ES, LIS), and at the surface r=a
the only non-zero components are Er’ H_. and H¢ The last two are directly

0
related to the components of the induced current J via the equation

feq
4
|

so that

and if we define

Hy = Y sin @ Tl(e) -
H¢ = Ycosf TZ(E)) , (8
we have
1
& P (cos®)
1 nt+l 2n+1 1 " 5
ka 9
' (6 ka Z;; 1 n(n+1) §’;1(ka) sin6 +§ (ka) 20 p (COSG) (9)
Pl(cosG)

1 n+tl  2ntl 1 9 l ; N

50 . o1 — P (cosH) + '
2 als n(n+1) (ka) 96 'n ¢ (ka)  sin® o)

The interpretation of these in terms of creeping waves is discussed in Kazarinoff
and Senior (1962).

In the far zone the scattered field behaves as an outgoing spherical wave
whose properties can be obtained by replacing fn(kr) and its derivative by the

leading terms of their asymptotic expansions for large kr, viz.
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€' (kr)~ i€ (kr)~i® o KT
n n

Since E_S and gs now satisfy the equation

(11)

it is sufficient to confine our attention to the former, and following the notation*

in Senior and Goodrich (1964), the components of the scattered electric vector are

written as
S e-ikr S
E, = icosf " 81(9)
< e-ikr 5
E¢ = -i sinf — 5, ()
where
i
! P
so) = fi‘(—l)n 2nt 1 (//n(ka) 9 Pl(cose) - ¢n(ka) n'e2?)
1 ] n(n+1) C;l(ka) 90 n Cn(ka) sin® ’

1
® ' (ka) P (cosB) ¢ (ka)
S,y nn+l n n n d 1
S2(6) B nZ——l:(_l) n(n+1){?§r'1(ka) sin6 fn(ka) o6 Pn(cose}

We note that

S oS
Sl (0) = 82(0)
and

S,y 8
Sl (ﬂ) - _Sz(ﬂ) K

implying that, for back and forward scattering, the field has the same linear

polarization as the incident field. In all other directions, however, the field is

elliptically polarized and the component cross sections are

2

2
_ A S 2
Op = — lSl(G)l cos § |,

*Note the change in time convention.

(12)

(13)

(14)

(15)

(16)




THE UNIVERSITY OF MICHIGAN
0548-2-T

2
A s, |2 2
= —7T- 52(9) Sin Q) . (17)

°p
The complete scattering cross section is, of course,

030'9+O“¢.

Let us now consider the separate but related problem of a perfectly conduct-
ing sphere with a narrow slot symmetrically placed with respect to the z direction
(and hence, with respect to the incident field direction in the problem just dis-
cussed). The slot occupies the region 6, -6/2< 6 <6 + /2 (see Figure 1) and its
angular width 6 is such that kaé << 1. Within the gap the tangential electric field
is specified, and in view of our intention to regard the slot as semi-active by
coupling the solution for this problem to the one already derived, the excitation
must be chosen in accordance with the surface field behavior shown in equations (7)

through (10). It is therefore assumed that for )G-GOI < §/2

il

.
Ey=-— cos (18)

E, =0, 19
¢ (19)

corresponding to a constant (but asymmetrical) voltage vcos @ across the gap. Over
the rest of the sphere, EG and E¢ are both zero, as is appropriate to a perfectly
conducting surface.

To determine the field (_P:‘r, Er) radiated by the slot, we again postulate
a field of the form shown in equations (3) and (4), but with An and Bn replaced

by new constants Cn and Dn respectively, so that

n=1
a
B 3) . (3)
H =iY ), C N(1n+ 1DnMeln> (21)
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FIGURE 1: SPHERE GEOMETRY

10
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When these are substituted into the boundary conditions at r = a, we obtain

© Pl(cose)
Z {C ¢ (ka) —=———— +iD ¢ (ka) 9 Pl(cose)}
£~ n’n sin 6 n’n 90 n

_I_EX’ '6—90|<%

=0, otherwise,
(22)
from the 6 component, and
1
© 5 1 Pn(cosE))
— P i ! ————— =
nZ=l: C_¢ (ka) == P, (cos6) + 1D &' (ka) —— 0, allé, (23)

from the § component. Moreover, from Bailin and Silver (1956)

(1 5 1 1 31
{Pn(cose) E—)EPm(cos 0) + Pm(cose) 59—Pn(cos 9} d =0

0
and
s 1 5 .1 11 1
{an(cos 0) 0 Pm(cos6)+ — Pn(cos G)Pm(cose} sin do :Anm
o) sin 6
where
0 n#m
N = ,
nm 2n2(n+l)2 —
2n+1

and hence, by application of these relations to (22) and (23),

6+ 6/2
c_ = - glzl‘ia) 22‘1“2 % Pl(cos)ds
n 2n" (n+1) 0, - §/2
_ kv 2n+1 Pn(+) - Pn( ) (24)
§’n(ka) 2n2(n+ 1)2 5

and

11
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. i1 1 0 .+ 6/2
+
Dy 1 C'(Za) 2 - R sin6 :—9 Prll(cose)de
n 2n (n+1) 90-5/2
1 1
~ . kvsinf, on+1 Pn(+) - Pn(-)

(25)

-1 ¢ (ka) 5

2n2(n+l)2

where, for brevity, we have written

P::l(i) = an Gos {eot g})

In evaluating Dn it was assumed that the variation of sinf over the slot can be

neglected, and consequently the position of the slot is now limited by the condition

with €>> 6. It is also observed that in the limit 6=0

P () - P ()
6

S -
> Pn(cos 00)

and

1 1
Pn(+) _ Pn(-) > O Pl(cose )
6 “9 "n o’
o
The expressions for the components of the radiated field follow from
equations (20) and (21) on inserting the above formulae for Cn and Dn. Two

particular cases are of interest. On the surface r=a we have, analogously to

(7) and (8),

H, = Yvsinf T, (6) (26)
6 1
and
H; = Yv cosf T,(6), (27)
where

12
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1 1
) ¢ (ka) sin® P (+) - P(-)
1y i 2n+1 n 0] n n 1
T (0) = o— , . ( > P (cos6)
1 2a — n2(n+1)2{§n(ka) sinf 6 n
¢! (ka) P (+) -P (-)
n
r i 2+l € (k) Pr11(+) } Prll( N o 1
T2(6) = 2—a Z—: D) D) {§' (ka) sinGO <—-——————-—6 'a—GPn(COS 6)
n=1 n (n+1) n

f;l(ka) ! Pn(+) - Pn( -) )
¥ §n(ka) sin@ < s > Pn(cose) (29)

The rates at which the above series converge are functions of 6 and 6 as
well as ka. If & #0, the series for T;(G) converges for all 6, but for TT(G)
the convergence decreases rapidly as 6 approaches Got 6/2, and in the limit the
series actually diverges. This behavior can be attributed to the step discontinuity
in the surface field introduced by (18). The two series also diverge if 6 =0, and to
effect a numerical evaluation it is therefore necessary to keep 6 non-zero and to
retain a number N of terms which is, in fact, inversely proportional to 6.

In the far zone, on the other hand, the expressions for the field components
are convergent even for 6 =0, corresponding to an infinitesimal slot across which
the voltage vcos fis applied. For simplicity we shall therefore proceeddirectly to

the limit, in which case

r ¢ kT 4

Ej = iv cos ) — 81(6) ) (30)
T o T

E¢ = -iv sinf) e 8,(6) (31)

(cf equations (12) and (13)) with

13
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®

r k . n+l 2n+1 1 o .1 2 _1

sl(e) = gsmeo Z i 5 Z{C' a) 567 Pn(cose)aF Pn(coseo)
n=1 n (nt+l) n o

i

1 1
Pn (cos0) Pn(cos 60)}

+
¢ (ka) sin@ sin6 (32)
n 0
1
Sr(G) _k sin@ ZOO in+l 2ot 1 1 Pn(cose) 9 P1(0056 )
- = ' :
2 2 0 & n2(n+1)2 §’n(ka) sin6 860 n 0
Pl(cose )
i 0 1 n o)
¢ T 56 'Y ";5‘5;——} (33)

and from these the components of the magnetic vector can be obtained as before.
The final problem to be considered is a combination of the preceding two in

which the plane wave given in equations (1) and (2) is incident on the slotted sphere.
If it is assumed that the same voltage is excited across the gap, the expressions
for the resulting fields can be found by superposition of those associated with each
individual problem. We therefore have

E=E+E+E (39
and

H-H +H +H", (35)

where (ES, gs) and (Er, gr) are as given above. In particular, in the far zone,

the components of the total scattered electric field are

-ikr
E, - 1cos¢ekr 5,0) (36)
e—ikr
EV) = -isinf = 82(9) (37)
with
5,(6) = 57(0) + vs;(e) , (38)

14
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_ oS r
sz(e) = sz(e) + vsz(e) . (39)

The expressions for Sf and S; are, of course, independent of v, and if
this voltage is induced by a loading applied to the slot (using, for example, a cavity
at its back), the voltage can be related to the loading admittance. The derivation of

this equation is our next task.

15
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III
RADIATION AND LOADING ADMITTANCES

In antenna theory it is customary to define the admittance of a slot as the
ratio of the current flowing away from the gap to the applied voltage, where the
latter is the line integral of the electric field across the gap. In the present
problem, however, the total instantaneous current is zero, due to the cos¢
variation of the slot excitation; some other definition of admittance is therefore
necessary, and it is natural to introduce the concept of admittance density, where
this is the ratio of the current density to the applied voltage at a point specified by
the azimuthal variable §.

The implications of such a definition can be seen by considering the radiation
admittance of the slot in the second of the three problems discussed in Section II.

Since the current flowing from the slot is

R
Je - H¢ y
the radiation admittance density is
- Je
Ve vcosﬁ
T
= -Y TZ(G) ,

and hence the (total) radiation admittance is

27
Y = ) v, a sm@o dg

- o 3 r
= =27 asmeo Y T2(6) . (40)

As written above, however, Yr does not provide a unique specification of

the admittance. Since the slot width 6 must be non-zero in order to compute T;(G)

16
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it would be possible to give 6 any value between 60— 6/2 and 90+ /2, and though
the numerical effect on Yr may be insignificant under most practical circum-
stances, it is undesirable that the expression for Yr should have that degree of
arbitrariness.

In an attempt to overcome the disadvantage, we note that an alternative,
but equally acceptable, definition of admittance is twice the ratio of the complex
power flow across the aperture to the square of the voltage, and for the case in
which the voltage is a function of position along the slot, the concept of admittance

density is once again appropriate. The complex power radiated per unit length of

the slot is
+
90 ” 1, r =~r
W= =(E xH) - radf

60—6/2
6 +6/2
o

1 vcosf ~T

-= H. d
2.8 60—6/2 p

where ~ denotes the complex conjugate. The radiation admittance density is

therefore
y -2
r 2
(vcos @)
6 +¢/2
_ 6VC10 ° H;de , (41)
° o -2

and using the expression for H¢ given in equation (27), together with the evaluation
of the Legendre function integrals employed in the determination of Cn and Dn’

we have

' ' 2 1 1 9
y, = iYs—lfl—G-o- S~ onv1 [ G Pn(+)'Pn(—)> Stk /P ) P )
r 2a ;nz(n+1)2 ¢ (ka) 6sinf_ ¢(ka) 3

17
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Hence

Ly ol W2
© o ¢'(ka) /P (+) -P ( > ¢ (ka) (pn(ﬂ -Pn(—)>}
Y =iY7sin 9 § T
0 n=1n2(n+1) ¢ (ka) 6sm9 fn(ka) 6

(42)

and in contrast to the expression for Yr originally derived, this new result has no
ambiguity. The computation of equation (42) is discussed in Section IV.

Let us now apply this same technique to the determination of the loading
admittance in the case of a semi-active slot (third problem in Section II). As before,
the complex power per unit length of the slot is obtained by integrating the Poynting
vector, and for power entering into the slot

6+ 6/2

=)
e
IR
]
&

=

"

1
Do| —

6,- 6/2

where (E, H) are as given in equations (34) and (35). Thus

6 +6/2
1 vcosf ° ~
W = 5 5 H¢ do
6 -¢/2
0
and the slot admittance density is
_.|..
1 Ot ¥ i s ._r
= —— +H, +
Ve 6vcosf (H¢ HQ) H¢ ) o,
0 -2
o
which can be written as
+
. 0 6/2
A/ = T (6) do (43)
T ov 60— 6/2 2

by using equations (41), (8), and (10). For 6 sufficiently small, the variation of
T2(6) across the slot can be neglected, giving

_ Y
Yo =V, * 7T2(60) ’

18
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and the total loading admittance of the slot is therefore

Y )
Y,= —Yr+ r 2ra s1n60T2(60) , (44)

where Yr and T2(60) are as shown in equations (42) and (10) respectively.
Yj is the significant parameter for control of the scattering behavior.

Solving for v,

vV = ——Y—— 2T a sinGOT

Y, +Y (90) ? (45)
g T

2

which can be substituted into the expressions for Si(@) and S;(G) to give the total

scattering amplitudes

oS Y s

5,(0) = 57(0) + e erm sing_T,(0 ) srl(e) (46)
oS Y . r

S2(6) = 52(9) + ?}T_Y—; 2ma 81n60T2(90) 82(9) (4:7)

(see equations (38) and (39)). The right hand sides of (46) and (47) are functions only
of ka,é, 60 and 6, and in particular, are independent of v.
To make the scattering amplitude Sl(O) zero in the direction 6=6', the

loading required is
T

Sl(G')
Y1=—Y -Y 27a sin6 T_(6 ) (48)
T 0 2 0 _s
S. (6"
1
This differs from the loading necessary to make 82(9) zero for 6 =0' unless
s7(0) 5,0
= , (49)

s 1 5 !
sl(e) 82(9 )

and thus in general the complete scattering cross section o = % + 0¢ cannot be

reduced to zero with a loading of the form discussed here. This does not, however,
rule out the possibility of significant reductions in ¢ by suitable choice of Yr'

Moreover, in many cases of bistatic scattering only S.(0) or 82(6) is of interest,

1

19
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and a zero (component) cross section can then be achieved.
The obvious exceptions to the above are back and forward scattering. The

back scattering direction is 6 =0, and here

1
P (cosb)
[—Esme—} - M [z?e P ‘°°S‘”} :
6=0 6=0

from which we have

s s
Sl(O) = SZ(O) ,

r r
Sl(o) = SZ(O) .

Furthermore,
s%(0) = Xxa sing T_(0 ) (50)
{0 = 7ka sinf To(6

and hence the loading for zero S l(0) and SZ(O) is

-1

-¥_-v 2 {kasing 1,0} {50}

-1
yi(ka) g (ka)
-Y - Y7 {kasm@ T (9 )} {Z( -1)"(2 +1)<§ (ka) (ka))}

Yy

(51)

This corresponds to either an active or passive load depending on the values of ka

and 60. Similarly, for the forward scattering direction (6 =)

1
Pn(cose) n+l n(n+1) 9 1
b = (-1) 5 = - | —P (cosH) s
0=7 06 n 0=m

sf(w) - —S;(vr) ,

so that

r T
Sl(7r) = -8,(m ,
and these also satisfy the conditions (49), Moreover,

20
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o . P (cosB )
r, ., k | Wn+tl 2n+l 1 o 1 1 n 0
Sl(Tr) == 7sinf_ ;(—1) n(arl) {gll’l(ka) %_ Pn(cos 60) B §n(ka) sin6 }

(52)
=l£-—kasin60T2(7r-90) ,
and consequently for zero Sl(ﬂ') and Sz(w)
Y, = -Y -Y Z(kasi 9)2T(6)T -6 ) {S5(m B
g T TR glkasmey L o{lﬂ
® P! (ka) ¢ (ka)
_ . 2 n n
= -Y_-Yr(kasin6 ) Tz(eo)T2(mo)iz_(zn+1)< ST " (ka)>
n=1 n n
(53)

The fact that for a passive object zero scattering in the forward direction implies
zero total scattering and zero absorption (Schiff, 1954) indicates that the above
loading corresponds to an active slot for all ka and 90.

If 6 #+ 7 the characteristics of the loading admittance for zero Sl(G) or
82(9) can in general be determined only by numerical computation of the functions
involved. An exception is the case of small ka. Using the small argument expan-
sions for z,&n(ka), fn(ka) and their derivatives, it is found that the admittance

necessary to make sl(e) Z€ero is

qul) YL {1 Y, + 7, ke +O(ka 2)} (54)
(see equation (48)), where
' 2
oo gty o 35 (GE W)
n=1 n(nt+1)
7 1l+cos6

T e ————— sin26 cosb
1772 1¥2c0s0 o o °

similarly, to make S2(6) Zero
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(2) 7\ — 2
=Y — + +
Y, Yka 7y, 'ylzka o(ka ) (55)
where 9 9

sin @ cosf s P (+)-P (-)
v = __9_ 0 + 2n+1 ( n n >
02 4 2+cos6 =i n(n+1)2 6

_ 1 (1+cosB) (2+5cosH) sin29 cos 6

Y273 9+ cos 0 0%%Y% -

As expected, the two admittances are identical for 6 =0 and 7, but to the order
shown the expansions give no applicable information about the real part of the
admittance in the forward direction. For 6 #m, however, the dominant contribu-

tions to Re.Yl are provided by Un and vy and these show a significant change

12’
of character as 6 passegotél;lé‘ough a critical value. Thus, for example, Re.qul)

has the same sign as corresponding to an active or passive load

1+2cosf6’
according as this ratio is negative or positive respectively, and to reduce the back
scattering cross section of a small sphere to zero with a passive load it is therefore

necessary that 6 < 2
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Iv
COMPUTED RESULTS

The six functions S?(G), S;(G), Si(@), S;(O), T2(90) and Yr involved
in the expressions for Sl(G) and 82(9) (see equations (46) and (47)) were
programmed for calculation on the University of Michigan IBM 7090 computer, and
because of the practical significance which each of these functions has, it is of
interest to examine their individual values before discussing the loading necessary
for particular cross section modifications. Except in the case of Yr’ all of the
computations were straightforward. The number N of terms retained in any one
series was essentially a machine variable, and was the largest possible consistent
with the machine capacity not being exceeded in any of the subsidiary calculations
associated with that term. In practice it turned out that N was of order 5+4ka,
and to judge from the results obtained using a somewhat smaller number of terms,
it would appear that this was sufficient for four digit accuracy.

ST(G) and SZ(G) are the complex far field amplitudes for the solid (unloaded)
sphere, and the corresponding component scattering cross sections are given by
equations (16) and (17). The case of back scattering (0 =0) is of most concern.
The two functions are then equal, and since adequate tabulations are available in

the literature (Bechtel, 1962), no further computations were performed. For

reference purposes, however, the back scattering cross section

2

Az S
o(0) = — Sl(O) (56)

normalized to the physical optics value 7ra2, is plotted as a function of ka for
0 <ka <10 in Figure 2.

T2(6) is proportional to that component of the current on the solid sphere
which, in the shadow region, gives rise to the major creeping wave (Kazarinoff and
Senior, 1962). The component is also normal to the slot and, as such, will excite
the slot and be altered by the presence of an annular perturbation at the surface. To

illustrate the variation as a function of 0, T2(6) has been computed for 03051800
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in increments of 5° with ka=4.28, and the results are shown in Figure 3. The
oscillatory behavior within the shadow is apparent. Computations were also made
for ka=0(0.1)10.0 with 6 = 600, 90° and 1200, and the moduli are presented in
Figure 4. On passing from the lit region to the shadow there is a fairly systematic
reduction in magnitude which is most evident for the larger values of ka. As

ka — 0, however, the amplitude tends to 1.5 regardless of 6.

In the back scattering direction Sf(@) and S;(G) are equal and proportional
to T2(90) (see equation (50)), so that separate computation of these functions is
not necessary as long as 6=0. For other directions, however, the procedure is
quite straightforward and is mentioned briefly later on.

The evaluation of the series for the radiation admittance Yr is complicated
by the slow convergence of its imaginary part for all non-zero &. This is a conse-
quence of the local capacitance in the vicinity of the gap and, indeed, in the limit as
the gap width tends to zero, the series for the imaginary part fails to converge. In
contrast, the series for the real part is rapidly convergent even for 6 =0.

To facilitate the computations, the first N terms of the series are treated
exactly and the subsequent terms are replaced by their asymptotic forms for large
n (Plonus, to be published). Since

¢, (ka)
W ~ Ta (57)

P (cos6)~ l cos{(n+ )6 ——}
p (cos6)~ ’ g oS {(n+—)0+—}

for n>> cosec 6, substitution of these expressions into the higher order terms of

for n>>ka, and

(42) gives
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EE- i sin26 3 2n+1 fn(ka) Pn(+) - Pn( -)> - fn(ka) p n(+) - Pn( -)> }
Y 0 &= n2(n+ 1)2 Cn(ka) 6 sin 60 ¢ 1'1 (ka) 5

+
+i 2n 1 < > [ka sinf< 1+ sm(2n+1)9} _k——l_e— 1-sin(2n+1)6 }jl
n= N+1 n (m—l) % ’

(58)

In all of the computations, N was given the largest value consistent with machine
capacity, and 1000 terms were retained in the second series. This last is certainly
more than sufficient for our purposes, and the only possible source of error then
lies in the use of asymptotic formulae. To get some feeling for the probable
magnitude of these errors, Yr/Y was computed for ka=5.0, 6=0.0392 and

60 =90° using four different values for the upper limit of the summation variable

in the first series, and the results are summarized below:

N = 10, Yr/Y = 15, 255+ 29. 686,
N = 15, Yr/Y = 15. 255+1i 30. 385,
N = 20, Yr/Y = 15. 255+130. 676,
N = 24, Yr/Y = 15. 255+1 30. 748.

(N=24 is the maximum attainable by the machine for ka=5.0). The rapid conver-
gence of the series for Re. Yr is reflected in the constancy of the real parts above,
and if the trend of the imaginary parts remains the same as N is increased still
further, the computed magnitude of Im. Yr with N =24 should be within one per
cent of the correct value.

Since the expression for Yr is symmetrical about 90 = 900, it is sufficient
to restrict attention to 605 900, and the values that were chosen for computation
were = 60° and 90° with &=0.0392 (approximately 2.25°). The real and
imaginary parts of Yr/ Y for the two cases are plotted as functions of ka,

0 <ka <10, in Figures 5 and 6 respectively, and from these it would appear that a
change of slot position does not affect the general character of the curves. The real
parts are zero for ka =0, and rise through positive values with a small but regular
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oscillation as ka increases. The imaginary parts, on the other hand, have a
negative singularity for ka=0, but as a consequence of the asymmetric excitation
of the slot, their signs change from negative to positive at a value of ka near to
unity. For larger ka, the curves for the imaginary parts lie almost parallel to
and above those for the real parts.

The value of & used in the above computations was determined by the
equivalent slot width in the experimental model discussed in Section V, but to
investigate the effect which a change of slot width has on the radiation admittance,
Y /Y was computed for 6 =0.02(0.02)0.24 with ka=4.28 and eo=90°. As can be
seen from Figure 7, the real part is essentially constant for the full range of &
considered, but the imaginary part shows a significant variation. Because of the
increasing local capacitance in the region of the gap as 6 approaches zero, the
imaginary part has a positive singularity at 6 =0, and is monotonically decreasing
as ¢ increases.

Having computed or available ST(O), TZ(eo) and Yr/ Y it is now possible
to determine the loading admittance necessary for zero back scattering, and in
Figures 8 through 10 the real and imaginary parts of Yl/ Y based on equation (51)
are plotted as functions of ka for 90 =60°, 90° and 1200 respectively. Taking,
for example, Figure 8, we observe that the curves for both the real and imaginary
parts are quite irregular in structure and, as ka — 0, Im. Yl /Y= 0. Of the
two curves, however, the one for the real part is the more interesting because of
its greater practical significance. Bearing in mind that all non-negative values of
Re. YI correspond to passive loads, it is apparent that zero back scattering is
achievable using only a passive load for all ka less than (about) 2.9. At this
value of ka the curve for Re. Yy crosses the zero line and stays negative until
ka reaches 6. 6(approx.), at which time it becomes positive again. This oscilla-
tory pattern continues out to the largest ka computed, and for every ka such that
Re. Y, > 0, passive loading is sufficient to annul the back scattered field. In view
of the later experimental study, it is remarked that the loading is purely susceptive

whenever Re. Yl = 0.
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Since passive loading is of most practical interest, let us consider the
maximum and minimum back scattering cross sections that are obtainable in this
manner. From equations (16), (46) and (50), the cross section o(0) of the loaded

sphere, relative to the cross section 00(0) of the unloaded body, can be written as

iy
a(0) _ Ty
—(0)- = + —-—_T_‘;—X— ) (59)
O-o X1 ! 2
where
ﬂ{kasinG T (0 )}2
. 02 0
'yl+172 = S (60)
287 (0)
1
and Y:Q Yr
XX 5 Ty (61)

with ’Yl’ 72, X, and X, real. The minimum and maximum values of the above

cross section ratio for
Y
X, =Re. — =1>0
1 Y T

are now given by the formulae in Appendix A, and with a passive slot at 90 = 60°

the results are as shown in Figures 11 and 12. Taking first the minima, the return
is zero for ka < 2.9; then, as Re. Yf in Figure 8 swings from positive to negative,
the minimum return increases from zero and rises rapidly to a peak value only
infinitesimally less than the return from the unloaded sphere, before falling back

to zero again. The pattern is repeated, apparently without end. If, on the other
hand, we aim for a maximum return (Figure 12), an arbitrarily large enhancement
can be achieved by taking ka sufficiently small, but as this is a consequence of the
higher order zero of the normalizing function 00(0) at ka=0 the result is some-
what misleading. For ka greater than (say) 0.5, however, the enhancement is
genuine, and Figure 12 shows that an increase of as much as 19. 4db can be obtained
for a particular value of ka, with an average enhancement of more than 10db for

the range 1.0<ka <10.0.
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The analogous data for slots at 90° and 120° is presented in Figures 13
through 16, and though the qualitative behavior is similar to that described above,
the displacement of the slot towards and into the shadow region decreases markedly
the control that can be had with passive loading. Thus, for example, with the slot
at 120° a zero cross section is possible only for very limited ranges of ka, with
the first range not commencing until ka=1.99. The maximum enhancement is also
decreased, and averages a mere 4. 7db for 1.0<ka <10.0.

To illustrate the bistatic performance of a loaded sphere, the case ka=4.28
and 90 =90° has been investigated, with a loading Yz/Y = -i63. 45 (purely suscep-
tive) necessary to give zero back scattering. The radiated far field amplitudes
Si(@) and S;(G) were evaluated at 5° intervals from 0 =00 to 180°, and the total
scattering amplitudes obtained from equations (46) and (47). To simplify the

computations, the bistatic cross sections were normalized relative to the back

scattering cross section 00(0) of the unloaded sphere, and for ease of presentation,
attention will be confined to E-plane (#=0) and H-plane (@=7/2) scattering. The
results are given in Figures 17 and 18 respectively.

Because of the choice of loading there is complete cancellation of the return
for 6=0, and the null widths (between 3 db points) in the E- and H-planes are 36°
and 60° respectively. Beyond the nulls there is, on average, a slight enhancement
of order 1db in the scattered field, and it is tempting to conclude from this that any
power removed from directions near 6 =0 must be redistributed amongst the other
angles. Such a redistribution, however, is by no means essential. For different
values of ka and 90 it is possible that the loading for zero back scattering would
also produce a reduction in most other directions as well, but if the real aim is to
decrease the overall pattern, the choice of loading should be based on a criterion
specifically developed for the reduction of the total (i. e. integrated) scattering
cross section. To judge from the results found for a thin cylinder (Chen and Liepa,
1964), it is possible that some decrease in the total scattering could be achieved

with passive loading at least for the smaller values of Kka.
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EXPER;IMENT

To confirm the above predictions of the back scattering behavior, a series of
measurements were performed using a sphere with a circumferential cavity-backed
slot. A photograph and sketch of the model are given in Figures 19 and 20 respec-
tively. The model consisted of two identical solid aluminum caps joined together
by means of a partially-threaded shaft at the center. The spacing or gap between
the caps formed a radial cavity with input at the outer (sphere) radius and a short
at the inner radius. Whereas the outer radius of the cavity was identical to that of
the sphere itself, the inner radius was determined by the size of the shorting disc
used. In all, a total of 21 discs were available, and with these the inner diameters
could be varied from 0. 3125 (the diameter of the shaft joining the caps) to 3.133
inches. The discs were made from 1/16 inch sheet aluminum. With the exception
of an outer rim, each had a slight undercut in thickness to give better electrical
contact, and when in place the two caps conformed to a spherical surface of
diameter 3. 133 inches everywhere except for the equatorial slot. The surface width
of the slot subtended an angle of approximately 2. 259 at the center of the sphere.

The back scattering measurements were made at frequencies 2. 808, 3. 605,
3.709, 3.838 and 5. 136 Gce, corresponding to which ka =2.340, 3.004, 3.090, 3.198
and 4. 280 respectively. The equipment was that generally used in cw scattering
experiments except that the conventional azimuth-amplitude recorder was replaced
by a HP 415 B meter for greater accuracy of reading. A block diagram of the equip-
ment is given in Figure 21. The distance from the antenna to the pedestal was
approximately 25 feet, and the sphere was placed on the pedestal with the plane of
the slot perpendicular to the direction of the incident, horizontally polarized, wave.

At each frequency the back scattering cross section was measured for a
series of shorting discs, with calibration relative to the return from the unloaded
sphere. The resulting normalized cross sections are listed in Table 1, and in

Figures 22 through 26 the data is plotted as functions of the imaginary part of YI /Y.
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TABLE 1: EXPERIMENTAL DATA

Sho.rtlng dise Relative Return.” db
diameter
2b, inches 2. 808 Ge 3.605Gc 3.709 Ge 3.838Gc 5.136Gc

.3125 -0.7 -1.5 -0.7 -0.8

. 500 -0.8 -1.7 ~-1.7 -1.1

. 625 -0.7 -1.9 -1.8

.750 -0.7 -2.3 -1.

. 875 -0.6 -2.5 -2.5 -1.
1.000 0.0 -3.3 -2.5
1.125 2.3 -3.8 -3.0 -2.0
1.250 7.5 -5.6 -3.5 -2.4 1.3
1. 375 6.1 -8.0 -5.6 -3.4
1.500 3.2 -13. 4 -9. 4 -4.6 1.9
1.625 2.2 -0.8 -14.7 -9.6 2.3
1.750 1.6 10.4 6.4 -5. 4 2.8
1. 875 1.3 7.0 7.0 7.0 3.7
2.000 1.0 4.5 4.4 4.3 5.3
2.125 8.2
2. 250 -2.5
2,375 -11.7
2. 500 0.5 1.4 1.0 1.1 -4.8
2.625 -2.8
2.750 -1.8
2.875 -1.0
3.133 0.0 0.0 0.0 0.0 0.0

*relative to the unslotted sphere
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For this purpose, the disc diameters were converted to equivalent susceptive
loadings using the formula in Appendix B. Also shown for comparison in Figures
22 through 26 are the theoretical curves computed from equation (46) with 6 =0
and 90 =90°, and the agreement between theory and experiment is extremely
gratifying.

The frequencies used in the above study were chosen to provide a reasonable
sampling of the effects obtainable with susceptive loading only. Thus, for example,
when ka =2.340 zero back scattering would require a loading with large negative
real part (see Figure 9) and this is, of course, unrealizable with a passive slot.

In consequence, Figure 22 indicates no substantial cross section reduction (0. 6 db
at most), but an increase of 8.7 db is achieved for a particular Im. SQ , and since
the maximum possible enhancement for this ka demands a susceptive loading, the
peak level in Figure 22 is in agreement with Figure 14. Figures 23 through 25 show
the results of 3 per cent changes in ka and span a range of ka within which a com-
plete suppression of the back scattered field with susceptive loading occurs. In
Figure 24 (ka = 3. 090, corresponding to the second crossing of the zero line in
Figure 9) the theoretical cross section for some small positive Im. Y,( goes to
zero. Experimentally, this particular loading was not obtainable with the available
shorting discs, but for the disc which was nearest to this, the observed reduction

in cross section was 14.7db. With a loading slightly less than this, the normalized
cross section rose to a peak value of 10. 3db, and a similar peaking before the
minimum is also apparent in Figure 23. On the other hand, at a frequency just
greater than that for which a zero cross section can be obtained, the peak return
occurs for a loading larger than that appropriate to the minimum (see Figure 25).

The final set of data in this group is presented in Figure 26 and is for
ka =4.280. This is yet another value for which susceptive loading gives complete
cancellation, and the results are similar to those shown in Figure 24 except for the
presence of the peak on the opposite side of the null. The changeover is attribut-
able to the fact that the corresponding zero crossing in Figure 9 is now negative to

positive as ka increases.
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Although the analysis in Sections II and III was limited to the case of a field
incident in a direction perpendicular to the plane of the slot, no such constraint
existed in the experimental study, and it therefore seemed worthwhile to carry out
a sample measurement of the back scattering cross section as a function of the
rotation of the slotted sphere. The frequency selected was 5.136Ge, corresponding
to ka=4.280, and to obtain the loading appropriate to the null in Figure 26 a new
shorting disc of the requisite diameter was cut. The sphere was again mounted on
the pedestal with the slot in a vertical plane, and measurements were made for both
horizontal and vertical polarizations. The results are presented in Figures 27 and
28 along with the curves for the unloaded sphere. The large cross section reduc-
tion for incidence in the direction normal to the slot is clearly evident. For both
polarizations the reduction is of order 20 db and though theoretically it should be
infinite, the minor peaking at the center of each minimum could be due to the short-
ing disc being fractionally smaller than required. However, in view of the slightly
differing magnitudes of the cross sections for zero rotation, a more likely source

of the residual contribution is a sphere-pedestal interaction or a room effect.
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VI
CONCLUSIONS

In the preceding sections we have considered the scattering behavior of a
metallic sphere loaded with a slot in the plane normal to the direction of incidence.
The slot was assumed to be of small but finite width, with the electric field constant
across it, and under this assumption the analysis for the external fields is exact.
Expressions for the scattered far field components were derived, which can then be
used to investigate the modification to the scattering cross section produced by
various types of loading.

The loading admittance necessary for some particular modification is in
general complex, with positive or negative real part corresponding to an active or
passive load respectively. If attention is confined to the back or forward scattering
direction or, for 6 #£0 or 7, to a single” component of the scattered field, it is,
perhaps, obvious that there is no limit to the amount by which the cross section in
some specified directions can be varied when active slots are allowed. The
effectiveness of passive slots, however, may come as more of a surprise, and
because of the immediate practical application of passive loading, emphasis has
been placed on this case.

For slots at 600, 90° or 120° the loading required to produce a zero back
scattering cross section was computed for 0 <ka <10 at intervals of 0.1. The
variations of the real and imaginary parts are quite complex, but taking just the
real part of the loading admittance, we observe that ranges of ka in which Re. Yy
is positive (passive slot) or negative (active slot) alternate with one another. Thus,
with a given slot position, passive loading can nullify the return only for certain
ranges of ka, but since their limits are functions of 60, it is feasible that two
(or more) slots could be used to cover much larger ranges within which a null can be
achieved. Even outside such a range a passive loading may still provide a signifi-

cant reduction in cross section. The maximum and minimum cross sections

*With the chosen type of slot there is, in general, no loading either active or
passive which will reduce o(0) to zero for 6+ 0 or .
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obtainable with single passive load have been computed for the above values of 60
and ka, and enhancements by as much as 20db are not uncommon.

To verify some of these conclusions, a model was constructed with a
circumferential slot at 90 =90° backed by a cavity whose depth could be varied.
Since the corresponding loading is susceptive, attention was concentrated on those
frequencies at which a change in susceptive loading would produce a marked varia-
tion in the back scattering cross section, and for each such frequency the cross
section was measured for a series of different shorting discs. Using the theory for
an asymmetrically-excited radial cavity, the disc size was related to the loading,
and when the resulting values for the modified cross section were compared with
the theoretical curves for cross section versus susceptance, excellent agreement
was found.

In addition to the choice of loading, we also have at our disposal the location
of the slot, and the "optimum" in this regard depends on the type of cross section
modification desired. If, for example, it is required to reduce the back scattered
returns from small spheres to zero, a displacement of the slot from 90° to 60°
increases the upper limit of the ka range which can be continuously covered with
passive loading, and it seems probable that further reductions in 90 would increase
the range still more. One of the intriguing questions yet unanswered is the value of
60 at which this improvement in control ceases.

In any application of reactive loading, some of the parameters of practical
importance are the bandwidth, the sensitivity of the cross section modification to
small changes in the loading, and the angular width in either back scattering or
bistatic operation over which the desired reduction or enhancement is achieved. All
of these are, of course, functions of ka, 60 and 6. An indication of the loading
sensitivity can be obtained from the afore-mentioned curves of cross section versus
susceptive loading, and some estimates of the beamwidth have been determined for
the particular case ka= 4.280 and 90 =90°. With a loading such as to give zero

back scattering, the calculated width (between 3 db points) of the minimum under
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bistatic operation was 36° in the E-plane and 60° in the H-plane, and for back
scattering (which involves a rotation of the direction of incidence) the corresponding
measured widths were 20° and 36° respectively. It is almost certain, however, that
these widths could be substantially increased if the loading were selected for maxi-
mum beamwidth rather than for a null at 6 =0.

To provide more information about the above parameters, and to obtain more
complete bounds on the cross section modifications that are possible, it is neces-
sary to pursue further the computations based on the theoretical solution derived in
this report. As part of this continuing study it is our intention to investigate the
maximum reduction and enhancement of the total scattering cross section, as well
as giving increased attention to modifications in directions other than 6=0. The

solution for arbitrary angles of incidence will also be considered.
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APPENDIX A
AN EXTREMUM PROBLEM

In Section IV the following extremum problem arises: given

i
’Y1 172 2

+ ——4—:_——
X]. 1X2

=1 (A-1)

where 'Yl’ 72, xl and X, are real, find the maximum and minimum values of r'

subject to the condition x. >b> 0.

1
From Equation (A-1)
2 2
(7, +%)% + (1 %)
= (A-2)

+
17X

and since there is no restriction on the allowed Xg5 we can obtain one condition

connecting the X and X, for which [ is a maximum or a minimum by equating

a["/ax2 to zero. Hence

2 2 2, 2
X, {(’yl+x1) + (72+x2) }— (x1+x2)(72+ x2) s (A-3)
and the extreme values of F are therefore given by
Y
I—' = 1+ —;2— M (A-4)
2

If x. is unrestricted it is obvious that

1
Pmin i
corresponding to
Xp =Yy
and, from (A-3),
St

Similarly,
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[ =
max

corresponding to

X, 7 X | =0

On the other hand, if it is required that xlzb, the above extremes may not

be achievable. This is true of the minimum if -'yl <b, and of the maximum if
0 <b. To investigate these cases, equation (A-3) is solved for X, asa function of

X and the solution inserted into (A-4) to give

2x

1 2 2 2 2 5 2 2
pu— +— - -
[Min = 1 —3 {71+72+271x1 /(71+72+271X1) +4"szl} » (A-D)
{

1 2 2 2 2 2 2 2
= 1+ — +v + + + v+ + ) -
rlmax =3 {71 Yo+ 20X \/ (V) + 7y + 2vx) 472"1}‘ (A-6)
2x
1.
Note that as x, — + 0,
1 —
Y ’Yz‘*' ’Y2
1 2 -1
T S PO L R B
min X X 1
1 1
’Y2+’Y
B —rir Loy L2 =1+O(|x|_1).
max X X 1
1 1
Also, for x1 =0, 9
I
min 2+ 2’
7T
r‘max:oo’

and for x1 = -'Yl,
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X, is as shown in Figure A.1, and since r' max is monotonically

Tnax max
_______________ S
...
Imin /////1;:7
-}" 0 —eX,

FIGURE A.1: MAXIMUM AND MINIMUM VALUES OF r' AS FUNCTIONS OF x1

(DRAWN FOR " > 0).
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decreasing as leI increases, whilst r min is monotonically increasing as

1 1! increases, it is now a straightforward matter to specify the extreme

values of r' for x

[

12 b. Thus, if V2 b,

M. =0 (A-T)

min

for x1 = —71, x2 = —72, but if —'yl <b

)

[l (a-8)
2

where xl =b and
1 2 2 2 2 2 2.2
= o —_— + -
X, 272 {y1+72+2'ylb\/('yl+'y2+ 2'ylb) +472b } (A-9)

Similarly, if 0> b,

Pmax = (A-10)
for x1:x2=0, but if 0<b,
7y
=1+ = (A-11)
max X
2
where x1=b and
1 2 2 2 2 2 2 2
X, = —2_7é {'yl+72+2'ylb —\/('yl+')/2+2’}’1b) T 4v,b } (A-12)
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APPENDIX B
THE INPUT ADMITTANCE OF AN ASYMMETRICALLY EXCITED RADIAL CAVITY

In order to use the experimental model of Section V to verify the theoreti-
cally predicted scattering behavior of the slotted sphere, it is necessary to relate
the input admittance of the cavity to its dimensions and, in particular, to the radius
b of the inner conductor. Bearing in mind that the slot is of small width centered
on 90 =7/2, it would appear sufficient to regard the cavity as a radial one, and in

terms of the cylindrical polar coordinates (r, ¢, z) where
x = rcos f, y = rsinf, z=z,

the situation is now as shown in Figure B. 1.

The cavity is of width d=aé and is shorted at r=b. At the outer edge r=a
it is excited by a voltage -vcosf (the sign difference with respect to the voltage
implied by equation (18) is a consequence of the fact that %=9 at 6= 7/2) and
since it is assumed that d << A, the components Er and E ¢ of the electrical
field within the cavity can for all practical purposes be neglected. The only remain-
ing E component is then Ez, and this must satisfy the wave equation which, in
cylindrical coordinates, is

2
9 2 1 8%,
a‘(r EZ) +(k + ) _Z)EZ =0.

r- of

The general solution for 0<b< r< a is

1
r

o)
_ inf) )
E = D, Ean(kr)+FnNn(kr)} e (B-1)
n=-o
where Jn(kr) and Nn(kr) are cylindrical Bessel functions of the first and second
kinds respectively, and En and Fn are constants to be determined. The boundary
conditions on the sides of the cavity are satisfied automatically by (B-1). At the

inner and outer surfaces, however, the conditions are
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» N

FIGURE B.1: GEOMETRY OF THE RADIAL CAVITY
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E =0 for r=b
z
=£—cos¢ for r=a,

and on applying these to (B-1), we obtain

J_(kr) N.(kb) - N_(kr)J_(kb)
E - Y 1 1 1 1
z d Jl(ka)Nl(kb) - Nl(ka) Jl(kb)

cos § . (B-2)

The corresponding circumferential component of the magnetic field can be found

from Maxwell's equations, and is

cos § . (B-3)

J'(kr) N (kb) - N!(kr) J_(kb)
Ho-gy Y L 1 1 1
) d J,(ka)N, (kb) - N, (ka) J, (kh)

Since both EZ and H¢ are functions of @, we shall again employ the

concept of admittance density. The power flow across the aperture and into the

cavity is
d/2
w=—S %(E_xﬁ)-f‘dz
_qlg
1 vcosf 92
= 'é_ d H¢ dZ
d/2
Ly cosP H
= 5 g

from which we have

(%)
_ r=a
Y4 = Vcos g
The total input admittance YL follows on integrating this around the circumference

of the cavity, and hence
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iy g J‘l(ka)Nl(kb) - N‘l(ka) Jl(kb)
y = - a

(B-4)
d Jl(ka)Nl(kb) - Nl(ka) Jl(kb)

As b-sa

a 1

Yl-"—’ -iY 27rd -—-———-—k(a_b) s

and the admittance therefore approaches -io with decreasing cavity depth. We
also remark that if the cavity were filled with a medium of refractive index u, the
expression for the admittance would follow immediately from equation (B-4) on
replacing k by uk and Y by the intrinsic admittance of the medium. Thus for
real u, numerical values can be obtained by scaling those for an air-filled cavity.
The expression for Y, has been programmed for an IBM 7090 computer
to give data for any ka and a/d as a function of kb. For the sphere used in the
experimental study the diameter was 3. 133 inches, the gap width 0. 0625 inches,
and the spacing discs enabled 2b to be varied in 22 steps from a minimum of 0. 3125
inches to 3.133 inches. In order to have the computed data directly applicable to

the experimental model, kb was written in the form

X
kb = ka 3133 °

and the data was printed out for the first 22 values of the inner diameter x (in
inches) appropriate to the shorting discs. Because of the infinity when b=a, the
largest x computed was 3.0. Typical values of the relative admittance Yl / Y
are shown in Table B.1 for ka=2.340, 3.198 and 4. 280, corresponding to model
frequencies 2.808, 3.838 and 5. 136 Ge respectively.
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TABLE B. 1
Im. Y,/Y

X ka=2. 340 ka=3. 198 ka=4. 280
0.3125 5.11660 x 10 2.11267 x 10° _4.54191 x 10°
0.5 4.27339 x 10 1.78511 x 102 -9. 35062 x 102
0. 625 3.56367 x 10 1. 56155 x 102 ~3.99939 x 103
0.175 2. 75690 x 10 1.34651 x 102 1. 66094 x 103
0. 875 1. 86384 x 10 1. 14320 x 102 6. 68595 x 102
1.0 8. 89309 9.51331 x 10 4.07230 x 102
1.125 -1. 67804 7.68998 x 10 2.83760 x 102
1.25 ~1.31419 x 10 5.93523 x 10 2.09659 x 102
1.375 -2.56254 x 10 4.21876 x 10 1. 58491 x 102
1.5 -3.93243 x 10 2.50748 x 10 1. 19542 x 102
1. 625 -5. 45215 x 10 7. 64651 8.75723 x 10
1.75 ~7.16175 x 10 -1.05244 x 10 5.96227 x 10
1.875 -9.11829 x 10 ~2. 99670 x 10 3.37720 x 10
2.0 ~1.14047 x 102 -5.13812 x 10 8. 55957
2.125 -1. 41456 x 102 -7.57552 x 10 -1.73586 x 10
2.25 ~1.75359 x 102 ~1.04581 x 102 -4.55074 x 10
2. 375 -2.18995 x 102 ~1. 40283 x 102 ~7.79833 x 10
2.5 ~2. 78155 x 102 -1. 87146 x 102 -1,18196 x 102
2. 625 -3. 64329 x 102 -2.53616 X 102 -1.72612 x 102
2.75 -5. 03990 x 103 -3. 59103 x 102 ~2. 55854 x 102
2. 875 ~7.74912 x 10 _5. 60545 x 102 -4,10564 x 102
3.0 ~1.54720 x 103 -1.12879 x 103 -8. 39197 x 10°
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