
more axisymmetric. Also, the magnetic field that penetrates the
conducting solid inner core can only vary on the much longer
magnetic diffusion timescale rather than the shorter timescale of
fluid motions in the outer core. This effectively anchors the
magnetic field and stabilizes it against the rapid fluctuations in
the outer core, allowing the field to maintain a more stable dipole.

If the region interior to the convecting shell is fluid instead of
solid, then it can respond to electromagnetic stress through fluid
motion and is not constrained by the stabilizing effects of a solid
conducting core. As the fluid inner region is not in solid-body
rotation, the axisymmetrizing effect of strong differential rotation is
suppressed. Also, the magnetic field that penetrates the inner region
can vary by moving the fluid instead of only through magnetic
diffusion. This reduction in stability, combined with the smaller
length scales of the thin shell, promote the creation of higher-
degree, non-axisymmetric structure in our numerical models with
stably stratified fluid interiors.

As the stabilizing effects of the inner core are a result of its solid
state and conductivity, our theory predicts that a dynamo operating
in a thin shell surrounding an electrically insulating solid inner core
would also produce non-dipolar, non-axisymmetric fields. We have
created numerical dynamos operating in a thin shell (similar radius
to our convecting shell surrounding the stably stratified interior)
surrounding a large solid inner core with a much smaller electrical
conductivity than the outer core (inner to outer core conductivity
ratios of 0.1–0.0001), and found that they do produce non-dipolar,
non-axisymmetric magnetic fields, as predicted.

Future missions to Uranus and Neptune to study further these
planets’ magnetic fields and internal properties could determine the
validity of our model. More accurate surface power spectra extend-
ing out to higher degree and order could be produced with
magnetic-field measurements acquired closer to the planets with
more global spatial distribution. These spectra could then be
compared to our numerical model to assess the model’s validity.
The evolution in time of the magnetic fields could also be compared
to our numerical model by examining the changes in the fields
since the Voyager II observations. Although no missions to Uranus
and Neptune are currently planned, the upcoming data from
MESSENGER and Cassini (on the magnetic fields of Mercury and
Saturn, respectively) will provide tests of the implication of our
results: convective-region geometry is an important factor in
determining magnetic-field morphology, albeit in a different con-
text from this study. A
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An outstanding goal in quantum information science is the
faithful mapping of quantum information between a stable
quantum memory and a reliable quantum communication chan-
nel1. This would allow, for example, quantum communication
over remote distances2, quantum teleportation3 of matter and
distributed quantum computing over a ‘quantum internet’.
Because quantum states cannot in general be copied, quantum
information can only be distributed in these and other appli-
cations by entangling the quantum memory with the communi-
cation channel. Here we report quantum entanglement between
an ideal quantum memory—represented by a single trapped
111Cd1 ion—and an ideal quantum communication channel,
provided by a single photon that is emitted spontaneously
from the ion. Appropriate coincidence measurements between
the quantum states of the photon polarization and the trapped
ion memory are used to verify their entanglement directly. Our
direct observation of entanglement between stationary and ‘fly-
ing’ qubits4 is accomplished without using cavity quantum
electrodynamic techniques5–7 or prepared non-classical light
sources3. We envision that this source of entanglement may be
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used for a variety of quantum communication protocols2,8 and for
seeding large-scale entangled states of trapped ion qubits for
scalable quantum computing9.

Atom–photon entanglement has been implicit in many previous
experimental systems, from early measurements of Bell inequality
violations in atomic cascade systems10,11 to fluorescence studies in
trapped atomic ions12,13. A prime example of current interest is
strongly coupled cavity quantum electrodynamics, where individ-
ual atoms interact with photons in single-mode cavities5–7. Another
example is the continuous-variable entanglement between ensem-
bles of atoms and light fields observed in systems containing
macroscopic numbers of atoms and photons14–17. However, atom–
photon entanglement has not been directly observed in previous
experiments, as the individual atoms and photons have not been
under sufficient control. Here we report the explicit demonstration
of qubit entanglement between an individual stationary atom and a
‘flying’ optical single photon.

In the experiment, a photon is spontaneously emitted from a
single trapped atomic 111Cdþ ion, which is initially excited to a state
that has multiple decay channels. Along a certain emission direction
selected by an aperture, the photon’s polarization is entangled with
particular hyperfine ground states in the de-excited atom. The
entanglement is directly verified through subsequent polarization
analysis of the photon and state detection of the trapped ion. Given
the small acceptance angle of the aperture and other losses, the
probability P of detecting a photon in a given trial is small. This is

reminiscent of the production of entangled photon pairs through
spontaneous optical parametric down-conversion3, but in the
current system one of the two daughter qubits resides within a
trapped atomic ion—perhaps the most reliable of all qubit mem-
ories18. When accompanied by conventional quantum gates
between local trapped ions19–21, this probabilistic entanglement
protocol can form the basis for a scalable architecture for quantum
communication2 and computation9.

A diagram of the experimental apparatus is shown in Fig. 1. We
trap and laser cool a single 111Cdþ ion in an asymmetric-quadru-
pole radio frequency trap with a characteristic size of about 0.7 mm.
(In this experiment, it is not necessary to laser cool the ion to the
Lamb–Dicke limit.) Several laser pulses tuned near the 2S1/2–2P3/2

atomic resonance at 214.5 nm (1) initialize the internal atomic qubit
state, (2) excite the atom for the subsequent spontaneous emission
of a photon, and (3) detect the internal state of the atom. An applied
magnetic field of B < 0.7 G provides a quantization axis for defin-
ition of the photon polarization and the internal atomic qubit levels,
stored in 2S1/2 hyperfine ground states denoted by quantum
numbers jF, mFl, where F is the total angular momentum and mF

is its projection along the quantization axis.
Figure 2 shows a diagram of the relevant energy levels of a 111Cdþ

atomic ion, along with the step-by-step description of the experi-
mental procedure. A short p-polarized laser pulse followed by a
resonant microwave transfer pulse initializes the ion in the j1,0l
state (Fig. 2a). A 50-ns pulse of jþ-polarized laser light weakly
excites the ion to the 2P3/2 j2,1l state, which has a radiative lifetime
of t e < 3 ns. The ion then spontaneously decays to either the 2S1/2

j1,1l ground state (defined as j # l) while emitting a p-polarized
photon, or the 2S1/2 j1,0l ground state (defined as j " l) while
emitting a jþ-polarized photon (Fig. 2b). The single photon pulses
are collected with an f/2.1 imaging lens whose axis is perpendicular
to the quantization axis. Along this direction, the states of polariz-
ation of the jþ and the p photons are orthogonal: the former
(defined as jH l) is polarized perpendicular to the quantization axis,

Figure 1 The experimental apparatus. The p-polarized initialization beam propagates

perpendicular to the quantization axis defined by a magnetic field B, while the

jþ-polarized excitation and detection beams propagate along the quantization axis. The

scattered photons are collected by an imaging lens and directed to a polarizing

beamsplitter (PBS), and two photon-counting detectors D1 and D2 register the V- and

H-polarized photons, respectively. The l/2-waveplate is used to rotate the photon

polarization for photonic qubit measurements in different bases. A microwave horn is

located near the trap to drive coherent transitions between the hyperfine levels of the

atomic ground state, at a frequency near 14.5 GHz.

Figure 2 The experimental procedure (time axis not to scale). a, The atomic qubit is

initialized to the j " l hyperfine ground state, following a 30-ms p-polarized optical

pumping pulse and a 15-ms microwave (mw) rotation. b, The atom is weakly excited with a

50-ns jþ-polarized optical pulse, resulting in spontaneous emission to either state j " l or

state j # l (separated by frequency d < 2p(1.0 MHz)), accompanied by emission and

detection of a photon polarized in state jH l or state jV l, respectively. c, After a delay of

t < 1 ms, a 15-ms microwave rotation pulse prepares the atomic qubit for measurement

in any basis, and finally a 200-ms jþ-polarized optical detection pulse provides efficient

measurement of the atomic qubit.
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while the latter (defined as jV l) is polarized along the quantization
axis, as described in the Methods section. The collected light passes
through a polarization rotator (a l/2 waveplate) followed by a
polarizing beamsplitter. The two polarization components are then
directed to photon-counting photomultiplier tubes (PMTs), each of
quantum efficiency h < 20%. Following a single photon detection
on either PMT, a microwave rotation is applied to the atom, which
prepares the atomic qubit to be measured in any basis. This
measurement is performed with a jþ-polarized detection pulse
following standard trapped ion fluorescence techniques22 (Fig. 2c),
with an atomic qubit detection efficiency greater than 95%.

The atomic and photonic qubits are entangled following the
spontaneous emission because there are two decay channels from
the 2P3/2 j2,1l excited state, each resulting in distinct photon
polarizations. In the experiment, these decay channels are equally
likely, but the entanglement is not perfect, as the intensity of the
radiation patterns for the p-polarized photons and for the jþ-
polarized photons differ by a factor of two along the viewing axis.
Thus, the resulting state created upon a photon emission in this
direction is

ffiffi
1
3

p
jH " lþ

ffiffi
2
3

p
jV # l; which exhibits an entanglement

fidelity of 0.97 under ideal conditions. This entanglement fidelity
can (in principle) be made perfect by simply inserting a polariza-
tion-selective lossy element into the path of the photons, at the cost
of a somewhat lower efficiency23. Unit fidelity can also be achieved
by detecting the scattered photons along the quantization axis, with
the initial atom excitation to a jmF ¼ 0l excited state, such that only
jþ- and j2-polarized photons are collected. We avoid this option,
however, as it would require placement of PMTs in a direct line-of-
sight with the atomic qubit detection laser beam.

We first measure the conditional probabilities of detecting a
certain atomic qubit state given the photonic qubit state after
,1,000 successful trials. These probabilities are plotted in Fig. 3,
with Pð" jHÞ ¼ 0:97^ 0:01; Pð# jHÞ ¼ 0:03^ 0:01; Pð" jVÞ ¼ 0:06^
0:01 and Pð# jVÞ ¼ 0:94^ 0:01; where the errors are statistical. To
verify entanglement, we repeat the correlation measurement in a
different basis of both photonic and atomic qubits. The photon
polarization is rotated by 458 using the l/2 waveplate, and the
atomic qubit is rotated by applying microwaves driving the
j10l–j00l and the j11l–j00l transitions as indicated in Fig. 2c.
Both qubit rotations are through a Bloch polar angle of p/2, and
the relative phase of the photonic versus atomic qubit rotations is
given by f¼ dtþfm, where d < 2p(1.0 MHz) is the Zeeman
splitting between the j1,0l and the j1,1l levels, and t < 1 ms is the

time delay between the photon emission and the application of the
microwave pulse of phase fm. Varying the relative phase of the two
qubit rotations by adjusting fm produces the correlation fringes
shown in Fig. 4a. Figure 4b shows the values of conditional
probabilities at the point of maximum correlation; these probabil-
ities are Pð" jHÞ ¼ 0:89^ 0:01; Pð# jHÞ ¼ 0:11^ 0:01; Pð" jVÞ ¼
0:06^ 0:01 and Pð# jVÞ ¼ 0:94^ 0:01: If the atomic and photonic
qubits were not entangled but instead prepared in a statistical
mixture, then all of these conditional probabilities would have
been 0.5.

From these measured correlations, we calculate a bound on the
entanglement fidelity to be F $ 0.87 (described in the Methods
section), somewhat lower than the potential 0.97 fidelity described
above, but still significantly larger than the entanglement threshold
of F . 0.5 (ref. 24). Several factors contribute to this decrease in
fidelity, including: multiple excitations of the atom during the
pump pulse (2.5%), mixing of the photon polarizations owing to
the nonzero solid angle (0.5%), imperfect rotations of the atomic
qubit, mainly due to a 50-ns jitter in the delay t (1.5%), background
counts and dark counts on the PMTs leading to false positives
(5–10%), and imperfections in the polarizing beamsplitter (3%).
We estimate that magnetic field fluctuations affecting the atomic
qubit reduce the fidelity by ,, 1%. All sources of errors combine to
give a ,9% reduction of entanglement fidelity, consistent with the
observation.

The success probability P of creating an entangled state in a given
trial depends on the efficiency of generating a single photon and

Figure 3 Measured conditional probabilities in the original basis (no atomic or photonic

qubit rotation before measurement). The bars indicate the probabilities P(SjP ) of

detecting atomic qubit states S ¼ " or # conditioned upon detecting photon qubit

states P ¼ H or V.

Figure 4 Conditional probabilities after both atomic and photonic qubits are rotated by a

polar angle of p/2 in the Bloch sphere. a, Measured conditional probabilities P ( # jH ) and

P ( # jV ) as the relative phase f between the atomic and photonic rotations is varied.

b, Measured conditional probabilities P (SjP ) at the point of highest correlation, defined

as f ¼ 0. If the atomic and photonic qubits were not entangled but instead prepared in a

statistically mixed state, then all conditional probabilities in the figure would have been

0.5.
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then detecting the emitted photon. In our excitation scheme the
probability of emitting a single photon in each trial is Pexc < 0.1 to
suppress the multiple-excitation rate. The efficiency of a single
photon detection in turn depends on the light collection solid angle
DQ, the transmission efficiency T of the optical elements, and the
quantum efficiency of the detectors themselves. The success prob-
ability is P ¼ hTPexcðDQ=4pÞ< ð0:2Þð0:4Þð0:1Þð0:02Þ< 1:6£ 1024:
The experiment repetition rate is R < 2£ 103 s21; resulting in an
entanglement generation rate R1 ¼ PR < 0:3 s21:

Several improvements could significantly increase this yield. The
repetition rate R could approach the excited-state spontaneous
emission rate of 1=te < 108 s21: Using a fast, tailored laser pulse
for the excitation could push Pexc towards unity, while eliminating
multiple excitations. In addition, an imaging lens with a larger
numerical aperture would improve the collection solid angle. A
trade-off here is that higher collection efficiency comes at the cost of
lower fidelity of the entangled state, which can be shown to vary as
F ¼ 0:972 0:24ðDQ=4pÞ for DQ ,, 4p. An alternative is to sur-
round the ion with an optical cavity25,26 that would allow the
collection of most of the photons scattered in each experiment
and effectively make DQ/4p approach unity without sacrificing
fidelity. It is important to note that this cavity need not be in the
strong-coupling regime, as it affects only the entanglement effi-
ciency, not the fidelity.

The atom–photon entanglement observed here may allow the
generation of entangled states of remotely located trapped ion
qubits, as follows. Consider two distant trapped ion qubits, each
of which becomes entangled with their respective photons in the
above fashion. When the emitted photons are mode-selected and
combined on a beam splitter, appropriate coincidence measure-
ments of the photons ensure the entanglement of the two trapped
ion memories27–29. The success probability for this twin event may
be small (of order P 2), but when the entanglement eventually occurs
after many trials, success is known, and this entanglement can be
used for further scalable quantum information processing9. Given
the low success probability P per trial in the current set-up, the rate
of generating the two-ion entanglement would be R2 ¼ P2R <
1024 s21: However, with the improvements of fast excitation dis-
cussed above, and employing better optics, this rate could approach
R2 < 103 s21 (assuming a 100-MHz experiment repetition rate).
Finally, if reasonable-quality cavities were to be installed around
each atomic qubit, this rate could approach R2 < 106 s21: A

Methods
Polarization state of spontaneous emission along arbitrary axis
The polarization state of photons spontaneously emitted from an atomic dipole depends
upon the change in angular momentum Dm of the atom along the dipole axis, and the
direction of the emission, following the appropriate dipole radiation pattern. For Dm ¼ 0,
the (unnormalized) polarization state of a spontaneously emitted photon is jP0l¼
2sinvjv̂l and for Dm ¼ ^1, the states are jP^1l¼ e^iJffiffi

2
p cosvjv̂l^ ijĴl

� �
; where v and J are

the spherical polar and azimuthal angles of the emitted photon with respect to the dipole
axis, and v̂ and Ĵ are their associated spherical coordinate unit vectors. Note that when a
photon is emitted perpendicular to the dipole axis (v ¼ p/2), the Dm ¼ ^1 radiation is
linearly polarized and orthogonal to the Dm ¼ 0 radiation. For multiple decay channels of
spontaneous emission to different states of atomic angular momentum jSDmi

l; the
resulting (unnormalized) state of photon and atom is W ¼

Dmi

P
CDmi

jPDmi
ljSDmi

l; where
CDmi

are atomic Clebsch–Gordon (CG) coefficients.
In the current experiment, spontaneous emission occurs via a Dm ¼ 21 transition to

atomic state jS21l ; j # l and via a Dm ¼ 0 transition to atomic state jS0l ; j " l; with
identical CG coefficients, resulting in the final (normalized) state of the emitted photon
and atom:

W ¼
2

ffiffiffi
2

p
sinvjv̂lj " lþ e2iJ cosvjv̂lj # l2 ie2iJjĴlj # l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ sin2v

p

Along a viewing axis orthogonal to the dipole (v ¼ p/2), this state is highly entangled.
In addition to this example, there are many other configurations that result in atom–
photon entanglement.

Determining entanglement fidelity
The entanglement fidelity of an arbitrary two-qubit quantum state can be written as its

overlap with an appropriate maximally entangled two-qubit state30. In the current
experiment, the two qubits are represented by a 4 £ 4 density matrix r with photon/
atomic basis states jH " l; jH # l; jV " l and jV # l: The entanglement fidelity with respect to
the particular maximally entangled state jWMEl¼ 1ffiffi

2
p jH " lþ jV # l
� �

is given by:

F ¼ kWMEjrjWMEl¼
1

2
ðrH";H" þ rV#;V # þ rH";V# þ rV#;H"Þ

where rPS;P 0 S 0 ¼ kPSjrjP 0 S 0 l with P ¼ H or V and S ¼ " or # . (This expression also
holds for any maximally entangled target state by appropriately redefining the basis states.)
The first two terms in this expression are the measured correlation probabilities of
detecting state jHl with j " l and state jVl with j # l. The last two coherence terms can be
determined by repeating the experiment while independently rotating each qubit through
a polar angle of p/2 in the Bloch sphere before measurement. The rotated quantum state is
then given by ~r¼ Rp=2ðfÞ r R†

p=2ðfÞ; where Rp/2(f) is a p/2 polar rotation operator for
both qubits with relative phase f. We find that:

e2ifrH";V# þ eifrV #;H" ¼ r~H";H" þ r~V #;V# 2 r~H#;H# 2 r~V ";V " 2 ðe2ifrV ";H# þ eifrH#;V"Þ

$ r~H";H" þ r~V#;V # 2 r~H#;H# 2 r~V";V" 2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rH#;H#rV ";V "

p

so that a lower bound on the entanglement fidelity can be expressed in terms of diagonal
density matrix elements in the original and rotated basis (with f set to zero):

F $
1

2
rH";H" þ rV #;V# 2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rH#;H#rV";V"

p
þ r~H";H" þ r~V #;V# 2 r~H#;H# 2 r~V ";V "

� �

These diagonals are expressed in terms of the measured probabilities as:

rPS;PS ¼ PðSjPÞPðPÞ and r~PS;PS ¼ P~ðSjPÞP~ðPÞ

For fidelities F . 0.5, the underlying quantum state is entangled24.
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A large number of synthetic and natural compounds self-
organize into bulk phases exhibiting periodicities on the 1028–
1026 metre scale1 as a consequence of their molecular shape,
degree of amphiphilic character and, often, the presence of
additional non-covalent interactions. Such phases are found in
lyotropic systems2 (for example, lipid–water, soap–water), in a
range of block copolymers3 and in thermotropic (solvent-free)
liquid crystals4. The resulting periodicity can be one-dimensional
(lamellar phases), two-dimensional (columnar phases) or three
dimensional (‘micellar’ or ‘bicontinuous’ phases). All such two-
and three-dimensional structures identified to date obey the
rules of crystallography and their symmetry can be described,
respectively, by one of the 17 plane groups or 230 space
groups. The ‘micellar’ phases have crystallographic counterparts
in transition-metal alloys, where just one metal atom is equiva-
lent to a 103 2 104-atom micelle. However, some metal alloys are
known to defy the rules of crystallography and form so-called
quasicrystals, which have rotational symmetry other than the
allowed two-, three-, four- or six-fold symmetry5. Here we show
that such quasiperiodic structures can also exist in the scaled-up
micellar phases, representing a new mode of organization in soft
matter.

Research on bulk nanoscale self-assembly of organic matter is
partly motivated by the fact that such complex structures may serve
as scaffolds for photonic materials6 and other nanoarrays, or as
precursors for mesoporous ceramics or elements for molecular
electronics. Larger biological objects, such as cylinder-like or
sphere-like viruses, also pack on similar macrolattices7.

Dendrons and dendrimers (tree-like molecules8) are proving
particularly versatile in generating periodic nanostructures
(Fig. 1). Two micellar lattices, with space groups Im3̄m (body-
centred cubic, b.c.c.)9, and Pm3̄n (refs 10, 11), have been estab-
lished. An analogue of the Im3̄m phase has also been observed in
block copolymers12, and that of the Pm3̄n phase in lyotropic liquid
crystals13. Recently, a complex three-dimensional (3D) tetragonal

lattice (space group P42/mnm) was found, having 30 self-assembled
micelles in the unit cell (Fig. 1f)14.

In many dendron systems, thermal transitions between the
phases in Fig. 1 occur. The master sequence Colh ! Pm�3n!
P42=mnm! Im�3m is obeyed with increasing temperature; in only
a handful of cases are all these phases displayed in the same material.
In a number of compounds, however, an additional unidentified
phase has been observed below any other 3D phase but above Colh.
A small-angle X-ray powder diffractogram of this phase, recorded
on dendron I (Fig. 1g), is shown in Fig. 2a. The synthesis of I is
described in ref. 15 and Supplementary Information, where
this compound is labelled [3,4,5-(3,5)2]12G3CH2OH. Other
compounds that show the X-ray signature of this phase include
(4-3,4,5-3,5)12G2CH2OH, [4-(3,4,5)2]12G2COOH, [3,4-(3,5)2]
12G3COOH, [3,4-(3,5)2]12G3CH2OH, [3,4-(3,4,5)2]12G3CH2OH
(ref. 15), polyoxazolines with tapered side groups containing alkyl
chains of different lengths16, as well as certain salts of 3,4,5-tris-(n-
alkoxy)benzoic acid17.

On heating, compound I shows the following phase sequence:
room temperature !X! 71 8C! P42=mnm! 72 8C! isotropic
liquid, while on cooling phase X forms directly from the liquid
(Supplementary Information). This allowed us to grow mono-
domains of the unknown phase. That phase X is a quasicrystal is
revealed by the distinctive but crystallographically forbidden
12-fold symmetry of the small-angle X-ray single-crystal pattern
(Fig. 2b). When the sample is rotated around the 12-fold axis with
the incident beam perpendicular to the axis, the diffraction pattern
repeats every 308. One such pattern is shown in Fig. 2c, where
the Ewald sphere cuts through a pair of strong reflections in Fig. 2b.
The structure of this liquid quasicrystal (LQC) is periodic in the
direction of the 12-fold axis, but quasiperiodic in the plane
perpendicular to it.

In contrast to normal 3D periodic structures, five instead of three
basis vectors are needed for indexing the diffraction peaks of a
dodecagonal quasicrystal18. Four of the vectors, q 1, q 2, q 3 and q 4,

Figure 1 Self-assembly of wedge-shaped molecules. a, Dendrons with fewer tethered

chains adopt a flat slice-like shape (X is a weakly binding group). b, The slices stack up

and form cylindrical columns, which assemble on a two-dimensional hexagonal columnar

(Colh) lattice (c). d, Dendrons with more end-chains assume a conical shape. e, The cones

assemble into spheres, which pack on three different 3D lattices (f) with symmetries

Im3̄m, Pm3̄n and P42/mnm. g, Structure of compound I studied in this work.
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