Valdis V. Liepa University of Michigan November 1980 Interaction Application Memos Memo 35 Scale Model Measurements of the F-16A ABSTRACT Frequency domain data are presented for the surface currents and charges measured in an anechoic chamber on F-16A models to simulate the aircraft response in free space environment. Models 1/48 and 1/32 in scale were measured over the frequency range 118 to 4400 MHz, simulating 2.46 to 91.7 MHz full scale. A total of 78 measurements are presented. These include eight test ponts measured on the 1/48 and 1/32 scale models and three excitations chosen to correspond to those used in the ATHAMAS I (HPD) and ATHAMAS rI (VPD) full scale measurements. CONTENTS Section Page No. I INTRODUCTION 3 II MODELS 4 III MEASUREMENTS AND DATA 7 3.1 Facility and Instrumentation 7 3.2 Measurements 8 3.3 Data 10 FIGURES 15 DATA 21

PREFACE The author is indebted to C. Bickley, D. Brown and R. Wang who assisted with the measurements, J. Travis who supervised the measurements and was responsible for the scheduling, W. Rasey who typed the manuscript and, last but not least, W. Prather of AFWL/ NTMOP for his support and encouragement.

SECTION I INTRODUCTION The data presented here were obtained for the Air Force Weapons Laboratory and TRW Systems to determine the surface response extrapolation function [1] for the F-16A aircraft. The test points and excitation conditions were therefore chosen to correspond to those of the full scale measurements made in the ATHAMAS I (Horizontally Polarized Dipole) and ATHAMAS II (Vertically Polarized Dipole) simulators at Kirtland AFB. Data are presented for eight locations or test points on the aircraft under three different excitation conditions: (i) top incidence, E parallel to the fuselage; (ii) top incidence, E perpendicular to the fuselage; and (iii) nose-on incidence, E vertical. The measured quantities are the axial surface current density component Ja the circumferential surface density component Jc' and the normal electric field component En. Of the 72 measurement situations possible, 39 were selected, and since the measurements were made on two different size scale models, a total of 78 data sets were generated. The results are presented in the form of amplitude and phase plots as functions of the full scale frequency, and have been furnished to the AFWL and TRW in digital form on punched cards for further analysis. 1. Carl E. Baum, "Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in Terms of EMP Criteria," AFWL Sensor and Simulation Note 222, 1977.

SECTION II MODELS The two scale models of the F-16A aircraft that were selected were 1/48 scale (Scalecraft SC-4010) and 1/32 scale (Minicraft 100). Each came in the form of a plastic kit with a complement of armament that was full apart from the B-61 weapon. The models were good scale replicas of the F-16A, but did require some modification to make them electrically equivalent to the aircraft used in the full scale tests at AFWL. These modifications included cutting back the nose to STA:F60 to simulate the non-metallic radome, adding a metallic pitot tube, and modelling the radar antenna on the smaller model (the larger one had the radar antenna included in the kit). The cockpit canopies were also removed, since this is non-conducting on the actual aircraft. Both models had Sidewinder missiles (included in the kits) on each wing tip, but from the sketches and photographs supplied by AFWL it was necessary to construct models of the B-61 weapon and pylon that were attached under the right wings only. After the models were assembled and the above modifications made, the joins and any surface imperfections were filled in with auto body putty, which was then filed and sanded to a smooth surface. Apart from the radome and canopy, the entire aircraft was regarded as metallic, and several coats of silver paint (Dupont No. 4817) were applied to the models to make them conductive. Finally, the lengths

and wingspans of the models were very carefully measured to determine the scale factors to be used in translating the measured frequencies to the full scale ones. The scale factors are listed in Table 1. Figure 1 gives pertinent aircraft dimensions used in preparation of the models. Table 1 F-16 Model Scale Factors Length Wing Span Fuselage Wing Span Model (cm) (cm) Scale* Scale* Large (L) 46.14 31.39 1/32.70 1/31.89 Small (S) 30.78 20.82 1/49.01 1/48.09 The scale factors are based on full scale dimensions of overall length 15.085 m and width 10.008 m, including Sidewinder missiles. Models such as those used here are seldom perfect replicas of the full scale aircraft. As seen from Table 1, the scale factors derived from the fuselage length and the wingspan differ slightly, and though we could use the average to process the data, it is possible to obtain more accurate results by using the scale factor for that portion of the structure which supports the measured field. Thus, for the axial current on top of the fuselage (top incidence, E parallel to fuselage), the fuselage scale factor was used in processing the data, whereas for the circumferential current on top of the fuselage (top incidence, E perpendicular to fuselage) the scale factor derived from the wingspan is appropriate.

Figure 2 is a photograph of the large (1/32) model, and Figure 3 is a closeup showing the bulkhead, radar and pitot tube. The diameter of the pitot tube is not to scale. We initially used a wire that did have the right diameter, but it was so fragile that it kept getting bent when the model was handled. It is not felt that the larger diameter has a measurable effect on the electromagnetic response of the aircraft.

SECTION III MEASUREMENTS AND DATA 3.1 Facility and Instrumentation The measurements were made in the Radiation Laboratory's anechoic chamber, a facility especially designed, constructed, and instrumented for this type of surface field measurement. The measurement procedures were similar to those used in previous programs [2 through 7] apart from changes resulting from the continued upgrading of the facility and the measurement techniques. 2. Valdis V. Liepa, "Sweep Frequency Surface Field Measurements," University of Michigan Radiation Laboratory Report No. 013378-1-F; Sensor and Simulation Note 210, 1975. 3. Valdis V. Liepa, "Surface Field Measurements on Scale Model EC-135 Aircraft," University of Michi-gan Radiation Laboratory Report No. 014182-1-F; Interaction Application Memo 15, 1978. 4. Valdis V. Liepa, "Surface Field Measurements on Scale Model E-4 Aircraft," University of Michigan Radiation Laboratory Report No. 014182-2-F; Interaction Application Memo 17, 1978. 5. Valdis V. Liepa, "Surface Field Measurements on Scale Model F-lll Aircraft," University of Michigan Radiation Laboratory Report No. 014449-1-T; Interaction Application Memo 13, 1977. 6. Valdis V. Liepa, "Current and Charge Measurements on Scale Model E-3A Aircraft," University of Michigan Radiation Laboratory Report No. 015814-1-F; Interaction Application Memo 29, 1978. 7. Valdis V. Liepa, D. M. Brown, F. E. Lenning, R. L. Turcotte, "Measurements of Surface Fields on Scale Model E-4B Aircraft," University of Michigan Radiation Laboratory Report No. 016708-1-F, Interaction Application Memo 33, 1979.

Figure 4 shows a block diagram of the facility as it exists now. When these measurements started the instrumentation and procedures were as described in [7], but as the program progressed, numerous changes were made. These include extending the low frequency operation from 125 MHz to 118 MHz, increasing the number of frequency bands from 3 to 4, and incorporating a calculator-controlled switching of the power amplifiers and low pass filters. The last two changes reduced the "between band" jumps evident in previously obtained data [5,6]. We have also experimented with rectangular data recording instead of the standard phase/log recording which produces ambiguities near ~180 degrees, but this change was not made because of the limited dynamic range of the amplitude recording that this new procedure has. 3.2 Measurements Current and charge measurements were made at eight locations on the model as indicated in Fig. 5. On the fuselage the locations are identified by a station number given in terms of the full scale distance in inches from the bulkhead (STA:F60). Thus, F239T is 179 inches from the bulkhead. The wing stations were located on the line bisecting the wing at a distance (in inches) given by the station number measured perpendicularly from the center line of the fuselage. Table 2 lists the station numbers of the test points and describes their locations. The measurements were made for three different illuminations each having a prescribed polarization referenced to the fuselage of the aircraft (see Fig. 6). In our measurements the directions of

TABLE 2 DESCRIPTION OF MEASUREMENT LOCATIONS Test Point Stations Location 1 F76T Upper Surface, Forward of Canopy FS = 76 WL = Top Surface BL = 0 (centerline) 2 F239T Upper Surface, Behind Canopy FS = 239 WL = Top Surface BL = 0 (centerline) 3 W352R Upper Surface, Right Wing FS = 352 WL = Top Surface BL = 96 (right) 4 F488B AFT Fuselage, Bottom FS = 488 WL = Bottom Surface BL = 0 (centerline) 6 F76RS FWD Avionics Bay, Right Side FS = 76 WL = 88 BL = Right Surface 7 F1OOB FWD Fuselage, Bottom Surface FS = 100 WL = Bottom Surface BL = 0 (centerline) 8 W352B Lower Surface, Left Wing FS = 352 WL = Lower Surface BL = 96 (left) 9 F257B Mid-Fuselage, Bottom Surface FS = 257 WL = Bottom Surface BL = 0 (centerline) 9... - -...r~-. -, ~_ -...

illumination and polarization are often referred to as orientations since these are fixed relative to the chamber and can be changed only by suitably orienting the model. Figure 6 also shows the direction of the measured current on the top and bottom of the aircraft. In all cases the component Jc is perpendicular to Ja. The data presented are normalized relative to the incident field, i.e., J/Ho for the surface current data and En/Eo for the charge data. The phase is referenced to that of the incident field at the station where the measurement was made, based on the eiwt time convention. All of the current and charge measurements were made using miniature surface-mounted probes [8]. To mount the probes, holes were drilled in the model and the probe lead passed through to the other side. When not in use a hole was taped over with conductive adhesive copper tape (see Figs. 2 and 3) and as far as we can ascertain, the taping had no effect on the measurements. 3.3 Data The data presented were measured in the anechoic chamber with the model supported by a styrofoam pedestal using specially prepared styrofoam supports to orient the model appropriately in relation to the incident field. For each measurement situation the data were obtained using both models over either three or four bands of frequencies, depending on the system in use at the time. The bands of data were then combined to give single data sets for the large (L) and small (S) scale models. Because different numbers of sampling points were used 8. Valdis V. Liepa, D. L. Sengupta, J. E. Ferris, and T.B.A. Senior, "Surface Field Measurements with Image and Ground Planes," University of Michigan Radiation Laboratory Report No. 014449-1-F; Sensor and Simulation Notes, Note 224, 1977.

in each frequency band, and because the measured frequencies were divided by the model scale factors to obtain the full scale frequencies, the sampling rate is not uniform throughout the data plots, nor was it uniform in the data delivered to AFWL and TRW. For the data recorded over three frequency bands, 187 points were used in Band 1 (118 to 1100 MHz), 122 in Band 2 (950 to 2200 MHz), and 144 in Band 3 (2000 to 4400 MHz). For the four band recording, 90 points were used in Band 1 (118 to 546 MHz), 95 in Band 2 (550 to 1000), 116 in Band 3 (1000 to 2100 MHz) and 138 in Band 4 (3100 to 4400 MHz). Thus, with some overlap, 453 data points were recorded with the three band system, and 439 with the four band system. However, due to the occasional failure of the network analyzer to properly lock onto the signal, a few (perhaps half a dozen) points were sometimes omitted from a data set. The result is that a data set generally contains about 430 data points regardless of the system. For any particular data set the exact number of points and the frequency range covered are given, with other information, in line 5 of a data file (see Table 4). Typically, the full scale frequency range for the F-16A obtained using the small (1/48) model is 2.46 to 91.7 MHz, and using the large (1/32) model, 3.7 to 137.5 MHz. Table 3 summarizes the cases for which data have been obtained and gives the figure numbers where the plots for each case can be found. The figure numbers are the same as those of the data files with the letter 'S' (small model) or 'L' (large model) specifying the particular model used for the measurement. The (digital) data files are also identified in the first line of the data set.

TABLE 3 F-16A SCALE MODEL MEASUREMENT MATRIX 1 2 3 EXCITATION OVERHEAD OVERHEAD NOSE-ON E| I FFUS ELFUS E-VERT Test mponent Pt. stati JA C | Q | A C A 1 F76T FO1 F02 F03 F04 F05 F06 2 F239T F07 F08 F09 F10 Fl 1 F12 3 W352T F13 F14 F15 F16 F17 4 F488B F33 F34 F35 F36 F37 F38 6 F76RB F39 7 FlOOB F28 F29 F30 F31 F32 8 W352B F24 F25 F26 F27 9 F257B F18 F19 F20 F21 F22 F23 Note: Each measurement has two data sets, one measured on the small model (S) and one on the large model (L). *Data set FllL is inconsistent with that of FllS and is believed to be inaccurate. Do not use FllL.

Plots of the data are given in the following section. In addition to the plots the data has also been furnished to AFWL and TRW in digital form on punched cards and is stored on IBM compatible magnetic tape at the University of Michigan. The format used for the data is as follows: Line 1 FILENAME (4A4) 2 Comments (18A4) 3 Comments (18A4) 4 TITLE used in plotting (18A4) 5 FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN (4F8.3, 2F8.2, 15) 6 F(1) AMP(1) PHASE(1) F(2) AMP(2) PHASE(2) F(3) AMP(3) PHASE(3) 3(2F8.3, F8.2) +................. F(NN) AMP(NN) PHASE(NN) where NN is the number of data points in the set. Table 4 is an example of a typical data file for the F-16A. 13

TABLE 4 SAMPLE DATA FILE 1..L <A'S' F:' --- 1. 6 A 2: ': F:'.16 4: rc; F:-2.39 T y 3,.JAr J,.J 4 BI 1,,02/.13/ BOY0,J T:::':3 ~SC,<!;C.l! F'ACTR= T:.-.4 9.0.1.:::..4 S~t~iI:'I..E' ATA FOR F'.-:1'.A HEAOSIUF;E-ENTS::: ',] 2 ~,~~~~~~6.6:'2 819,7.. 0452 2..626.... 186. 76.1.76.53 4 35:::. 4, ' 2,. 6.~~~~~121.. 1., 8 1'2. 0.65 2.o7.1.0.1.. 80'2 2...4.1 2 8 0 27..64::.7 '2..906 -1 ~ a88l8...2..75: 3.0013 1.t 82 ':5.5 1. 3..01 1.~784 -0.57::: 3!:,.1. 99. 1., 89-20 3 2 97 1.,806... 2 3 0Z.,395 I,75 -'1.37::'9 J 4 9:3:1..690.-..5:3 3~ 159 1.668 0.11,3. 689 1.727 0,95 ]::~~~ ~ ~~~~~ 70 J.7 7 I. 756!.79 13,88-5 1.777 ' 2.53 13,985 1,8,37...1.1 3:::. 1:1. 4.01!t:~~~81. 1..'. 7813..;,(9 4.179 1.6,39...1..15 4. `277 1 761. ---. " 1. "2 4,:~ 7','."i 1 7 7.'. 1.9:5 4.47,3 1. 791:. 0~i.2.7 4. ',57 0.~79:3 1.:32 ".1.:3 4 ~ 66 1 I,7'77 1.06 Of.)4~766., 8:37 0 80 4,1!ff.4 I ~ 05 0.~7,5:-1.4,4 -, 9)62. o.1.0( 0,79 5~060 1.,!1:1.l...0 -—. 06 5~ 150 I o. -' "2 2 ':. 1.5 5,::.?',:~/~.~~~~1., 7['1..-I 7 535.1.,82I9...'24,4,52 1 665 -':3, 68.1.6 5.. 55 6~475'...~: 5 6.413 1..66,.8 2.5,',5.? 5.7.46...74I.8 " ~~~~~~~~~~.1.7344: 1.8"25 13.11 594C2 1.761 (,.0':)A 6.0.40 1.791..04 ".1. I!: 6. 3:0 1.:.~ll ~78. O...1.. 34 6. 235.1..735.0 ~79 6.J333 1. 700.-0.2.4 '. 1. 6 J.4:.:. 1.7:. 0 1.20 65. 5'2)9:1.. 7 0;II '2. o15 6.62,7 1.7:34 4.20 "~~~~~~~~~~ 1:( 6,/!::] 1. ~ 12'2 5.0!5 6 o 8'2 3.I.. 86'1 4.60 6.929:] 1 1.92,,? ' 4.25 " 21?, 019 1 +:?'21 2.90 7 ~ ~~~~~~~~~~~~~~~....7193.~7. 1.6 )5 7, 215 1..o:S9 I, 30 2.:.).. 2 ' 7.:'3 1:'.1..96()0 2 0 ' 74.1.. 1.9613::.)X. ~ 7.509 2:.022~0:? 1.15 "- 1:.).:3 ' 7,/.,<)7 '2,04q ~~~~~~~ ---0.1.0 7, 705,- 2,095 0...086 7 E802 2,069 -L: o 01 "' 90() "~ 054....4 06 7 9 I9811..5 '71 806 18., -5.77,... 1il,19.4 I 849.-2~ 92 8.29 1,.918 1,'.8 1390 1.960 - 7.:-i:6 lil.. 4l!l~ ': 2,, )0'.). -.1.,89 8.586 2.020 I 1,,26 El.o 684 '2.03.'8....4.30 " 2 ~ ~ ~~~~~~~~~7 J 0l 7.I:: '2,5 7....5,.1. 6 B. o 880 2. 052 "-6.,42 S.,978 2 ~037 — 6,79 28 ~~~~~9.,076 2:) 005 '-['l6,1 ' 14 2:) 33''9 5 l'O 9 - 0. 9.:33:.' /,9 9. 370 1,,950..E.:3 9. 467 2. 3,56 9.50 9. 565 '2,159 9.44:'1'~ O 9,, 663:; 2: 1. 05., 12...9-7 9.~761. 1 o8.1.7 -1. 0.90 9o89 2.o044.1 9.83:: 3'1:. 9.9 r..'i '7 I ~'.'. Wl! ''79 0. 10.05 ~''. 1.:,:.? 27...JJ J. 2 1. 0.~153 1.8 J ~6 6 — 9,5 0 335 10,4 "~::. 82 -...... ':.2 0;64.29 ~ ( 27.0.07 1 2 15 33 1:' 34: 1. 0, 8 '. 9 ';.~19.1. 35, O'2 10,93is7.1.7'26..14,07 11..0,34 1,680..14. 26:: 3','. 11...:2:1.~640 —.1... 4). 11.6 1:..230. 1..60 7...1 ~ ) 1.1. o 328 J.. [7(,,' - 13.66 ~~~~~~~~~~~.'::A..:.6 7:.7.41.5 17 1' 7,, 1.9.9:1 168. 1'2 74.401 1.966> 166.48:::.~~~~~~~~7 i:6 ';4 744.1.,.9:1.9.16.6',.i"/ 3 7,5 0117. 1.974 J.6:1.685 7 7,5. 429 2.044:1. 65 7.72-:::'!.37 " ~"'.' ':.-'7:~!:~1. 989 1.64:36 76. J 11702041662:::- 7! 6i 7,.. 80:1. '2. 047.1.613. 41: 77.1J.43. 1.98 1 6.4.' 4,6 /77486 ':2.040 164.21::.1.39 77, I~? 2. (:3:3.1. '53. 6 7 8 7 2. 078 1.6,3.94 7 o51 ':20.. 1. 6'2.11!::" 14 0;'El. El7 '2., 52:1641.69,,< 79.'200 2. O051!:1:. 013: 79.543 2.03,6 1 5:9.5::,,0....:1.498 0 7....8 Mr:.- 2 159 60 2051- )00 5 o 1~~~~~~~c,1. c7 (:),~ 8.5 8l 57 '2. 2"00 159")" ',.32..::: 4 '2 8022:J1 l,?11.,5,9! ~ 56 El. O. 25'W?8 2 (?5:'" 1. 5,.0ll16 0 20 9 19:::~~~~~~~~~~~~~~~~~~.1:1 '~,9]:.56 < 'J:1.. 97257,7. i:.. 28 2. (,009 1579:1 2642:~.8::. 14,!'. 1.:i. 9,5:3:1. 5,8.1. 0 E8:3..31. 4 I54.908 157:.11 [8.~.656 1,'4.1.,57.-64 ~~~~~~~~~1::'145I,3 ~ 99 1,..J2. 2 1. 58.3:~7 8:4.:342 I.11.:. 13 I9.:: (3,) 5 I 60 161.28 06, ~~~~~~~~~~~~~~~~~~~~~~..72::.:1.4?!i.6.</::..'7,:' 1.60,1.0 t1:6,:399 I,7'5' 1 1.61,00 i6, '7.411.,71 1.62,10::':.,I8 87 ~ 1 (,:.4:1..'? 71. 1 63:.~.72 87. 42"'7 I. 781. 1.6: '. '73 J l7.770. 1. 2?7 1. 64,26::-149 9.~t: 1.:.;:.: 4.'?:1 65,5 + l 89 ':':":: 1. ' 77 3.1.664) ~ 1. I] 8,7 98a 1., 77-7.6 1.~.[5 0 ~ ~~~ 9i('.~-:.:1. "CIf J. Jl. ff.6.)? 6!~ 139.'4 1. li80):1. 1. 6.. (9( B!O 9~ H....)7 1.. 78J. 1.67.8'2

539 STA:60 394 Dimensions in inches (full scale) Notes: (1) Radome and plastic canopy removed. (2) Radar and pitot tube simulated. (3) Sidewinder missiles at each wing tip. (4) B-61 plus pylon, right wing only. Fig. 1: Pertinent Aircraft Specifications. 15

Fig. 2: Photograph of the Large Model (1/32 Scale). Fig. 3: Closeup of the Bulkhead Showing Radar and Pitot Tube. 16

Sweep [ Power Low-Pass Genterator A /p I i f i e r Fi l ter 30 dB r (see Note 1) (see Note 2) (see Note 3) h /N | F'l MSource-Locking 10 dB Input Freluency Reference 6 dB,,20 dBmi Directi or, xt Counter Signal (Matched) Coupler ALC t Line.20 d Power Input Stretcher Splitter i j~I I |I~_ -| (see Note 4) |- Ttten. W 14 d~in -29. Net-,qo rk 6 I~~~~~~~~~~~Aaye 6in LdB b dn iildlyzer I I 1 z~~~~~~~~~~~~-8 d13iii (Matched) 1 ~ 1 re- m Power~ (see Note 4) 1 -~ (see Note 7) l Splitter Test J - A =Signal yz e 8 d' Swreep Linear y data Linear x data Vol tage CRT Test Di.s )Iy 150 Object t~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~' —~, (Mt ed) lao iga l t~~~~~~~~~~~ ( see Note 6) il ~~~~~~~~see Note 7) \r Ext. Sweep Input pl gnau Arter nna i E~~~~~~~~~~~~~~~~~~~~ jj~~~ " I ~ L ----- -(,,,L- g 40V23; |nechoic Chamdber (SiSoe view) |l ||alo Signal flow Sweep --- —-~ Lille.y digital __ Datea Ntea JIFo Interface B3us -------- ---— I 1 Diy~~~~~~~~~~iital Voltmnleter L Cl~~~~~~~~~~of E~~~~~~~~~ictl. ~~~~~~~~~~~~unch L HP 9330A Calculator Cards Data Transmission CT 1...dah 1 470 V/8 Tekt roni...j I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l, I01 CR Instrum~ent Conitrol 1 — I Termi inal' H I J1,'<Magnetic Datd Storag1/e i Ter nal q j JTape D.E.C. LA-36 Digital Plotter IIP 7203A See note -f Fig. 4: Block Diagram of the Present Facility.

Fig. 5: Location of Measurement Stations. (See Table 2 for details.)

H k O1 E C E J~~~a a H~ k 0( E parallel to fuselage, top incidence. (i E perpendicular to fuselage, top incidence. O E vertical, nose-on. Note: Dashed lines indicate bottom surface current components. Fig. 6: Illumination Directions (Orientations) and the Measured Current Components. 19

CD TD

SECTION IV DATA

a8 0 - - r!.... - - 1 F-16,S.F76T. 1. JRFO1S 6.0 uJ o 2. 0 ~~~~0. ~~~0 _____ ~~~~JAN 02/80 UM O. i I...... _ _ 0o. 0 30.0 60.0 0. 0 120.0 150.0 200. 1 F-16. S,F76T. 1. JA1FOlS 1 0 0.0 -100.0 4 -200.0 _-_-. __ _ _1 __ _ JAN 02/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure OlS. Axial Current at STA:F76T, Excitation 1, 1/48 Model,. 22

~i F I o.,.. F 'FT, 1,JRs FO l l 6.0 c o 2.0 JR.N 02/80 UM 20.0 -----..- - -- - t r___ II~~~~~~~ 0 0. 0.~~~~~~~~~~~~~-I 100.0 - 0 0. 0 L........................... U M JAN 02/80_UM o o 30. 0 6 0. 90.0 120. 0 150.0 FF f, t-F!. Y (MHZ) Figure 01L. Axial Current at STA:F76T, Excitation 1, 1/32 Model. 23

LpoW 8b/L 'L uo.Le4LX3 '19L':ViS We PLaLH O.Ia4 L3 LPeJON SZO aJn6fL;AHW) k0Nno3UJ 0 'OS 0- 01 0'Oe0 0'09 O o0 0'0 r..-........ -.r.... -.... T.... —. —.-.......1-...0' O0-. wn oB/iT g3 2 I I2 \'00I.\1l-1 SZOtO'1'i9LSJ'S'9T4 OdSt a0.OI 0o08 0'09 ooe0 0 _I, la I O --- -1 ---I.__- -. -— * O wn oo/tI t ~3 I, 0' i 0'91 I ---....... -.-. -.... -.-......- O.Z........ t..I........... 0 '00

20,0 20 * r — -_ r r - - _ _- - K F 16, L. t-76T. 1Q, Q 02L. 18.0 K 2 0I 8.0 D.0 90.0 80.0 80.0 120.0 150.i 200.0 - - - t F 6L. F76T.1,t F02Lt "~ \I\J1~~~~~~~~~~~~~~~~ 10.01 ' i 200.Oi 0,0. o 0___ L... _ _____ 14/80UM. 0O- 30.0 60.0 90.0 120.0 150., kiRlElaCENC' t t MH Figure 02L. Normal Electric Field at STA;F76T, Excitation 1, 1/32 Model. ~~~~2

2. - F 16. 3,F,6T. 2, JR. FO3 0 0 80.0 860.0 80.0 120.0 150.0 0.0 -100-. O nfl -1 0.0 30.0 80.0 90.0 120.0 10.0 FRE2UENCY (MH'H~ Figure 03S. Axial Current at STA:F76T, Excitation 2, 1/48 Model. 26

2.0 - - - _ FI 16 t., F76T, 2, JR, F '0Q L 1. V.' Ci::_______ _ _ _RPR 18/80 UM 0.0 0.0 80.0 90.0 120.0 150.0 200.0 - -I T 23/8O U Fig e 0L AilF16.LaF78T.. JR.FOSL 100.0 J 1 RPR 2'i/80 UWi 0.0 30.0 80.0 90.0 120.0 150.0 Figure 03L. Axial Current at STA:F76T, Excitation 2, 1/32 Model. 27

LapoW 8t/ L 'Z UOL l L3X3 '.9LZ:VIS We PLa.L_:)L-A; )L3J LW:O.N *StO LAn6 Lj LtZNW A 14 W. 4!L: - J O0Ot o'oIt 0'-0 o' 0 o'0 s 0'0 w.. 1 - 8:t... 'd --- - -- I I f( w: I;.i w d i~ gs~ h~ 'I~ j Z' ^'' J lj O i I;.,,,.ooEm, j~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~ ~!. j '~~~~~~~~~~~~ k~~~~~~~~~~~~~~~~~~~~~~~~~~;,

F16.L.F76T.2.Q.FO4L 2.0 1 0 0. 0 -30.0 60.0 90.0 120.0 150.0 200,0 F16,L, F76T,2,GFO4L I 0; W -200. 0 A PR 16/80 UM 0.0 30.0 600 90.0 120.0 150.0 FREQUENCY (MHEZ Figure 04L. Normal Electric Field at STA:F76T, Excitation 2, 1/32 Model. 29

F- 16. S.76T, S. JRI F0 5 3.0 2.0 cd 1.0 0.0 0 i_____ ____, L JAN 02/80 UHM 0.0 30.0 60.0 90.0 120.0 150.0 4000 I.O, F-16., S F76T. S.JR F05S 300.0 200.0 k I.0 I. _ L.._J1AN02/80 UM JRN 02/80 UM 0. 0 ---- ___ 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY CMHZ) Figure 05S. Axial Current at STA:F76T, Excitation 3, 1/48 Model. 30

~ --- —---— '-t — ~ ---- -...........T...... 141., —.__ A__ ___1n7~-L-L-. F_16.L.F76T.3S JRIFOSL 0 3.0 1.01 JRN 02/80 UM i 2 O. 120.0 0.O- 9a.o 60.0.9o. 0.0........... ---........-. — y~~ ~ L W F-16,L.F7 6T3SJRFO05L 300.0 I 200.0\I 1 0 0..\ 0.0 21 —.JRN 02/80 U _j 0.0 O.O 60.0 0.0 o FREQ9UENC-Y tM)o Figure 05L. Axial Current at STA:F76T, Excitation 3, 1/32 Model 31

54.0 i- - r `- -T-....... —1- -... (.. -! F16. L. F76'r,. QIFO6L 1 0 1.0v J 0.0 1 FEB 1U/80 UM 0.0 80.0 60.0 90.0 120.0 150.0 200.0 F1,8L.F76T3,.QsFOBL 100.0 0.0 -100.0. FEB i1U/80UM ~0 0.~. ~ a~ - n....!~. ~ ' 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY CMHE) Figure 06L. Normal Electric Field at STA:F76T, Excitation 3, 1/32 Model. 32

'L8poW 8t7/L '~ UOL4.4PX33 'i18L':VI S We p'LaH.L; 'L,%aL3 L2euJON S90 a B 9L (ZHW) l:Naneb'3,S O'S O'OZD0 0'08 0'09 0'06 O00 Wn 0oe/ti e3 0001 --- o.QOt0'0 Hn OB/T. 0 * 0 0o. 0'.s -"4 tI. 0'9 |~~~~~~.......... ~ - ' — a*9

16.0 -- i F16.S.F239T.1.JR.FO7S 12.0 4.0 W 0.0 _ t AS &uRPR 09/80 UM 0,0 so.0 60.0 80.0 120.0 150.0 200.0 F16,S.F239T,1.JRA.F07 1 00.0 i -100. 0 -200,0. I I - __ IAIRPR 03/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 07S. Axial Current at STA:F239T, Excitation 1, 1/48 Model. 34

8.0 I F168.L.F23T. 1.JR.FOL 12. O. C Cd 0 0 4.0 JUN 26/80 UM 0.0 I I! ' 0.0 30.0 60.0 90.0 120.0 15 0. 0 200.0 F16 L.F239T,. 1tJRFO7L 100.0 0.0 -'100.0 JUN 26/80 UN -200.0 0.0 30.0 60.0 9o0.0 120.0 1500 FREQUENCY CMHZ) Figure 07L. Axial Current at STA:F239T, Excitation 1, 1/32 Model. 35

8.0 F16.L.F239T.1,GFO8L 2.0 2.0 0-20. I. 0./80 UM 0. 0 30.0 60.0 0.0 120.0 150.0 200.0 1 - r --- F16,LF239 T 1E,,FOML 100.kO4 0.0. ~100.0 -200.01 _____L _____ 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY MH Z) Figure 08L. Normal Electric Field at STA:F239T, Excitation 1, 1/32 Model. 36

8.0 F16.SF239T. 1.Q.FOBS =. oX arr 2.0 o0.0l 30 o 12 0. FEB 08/80 uM 9.0 30.0 60.0.0.0 1200 150.0 200.0 F16. SF239T. 1. F08S 100.0 0.0 -100.0 FEB 08/80 UM -200.0 _ I _ 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY CMHZ) Figure 08S. Normal Electric Field at STA:F239T, Excitation 1, 1/48 Model 37

2!! FB. S.F239T, 2.JR, FS ==jS 0 1.0- - J 0.0 APR 17/80 UM 0.0 S0.0 80.0 S0.0 120.0 150 0 200.0 F16.S,F2S9T.2.JRFOSs LU 0.0k 100.0r -200 I * 0 _ _ RPR 17/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 09S. Axial Current at STA:F239T, Excitation 2, 1/48 Model. 38

F16.,L.F2ST. 2.JR FO9L I APR 09/80 UH 0.0 30.0 60.0 80.0 120.0 150.0 100.0 0.0 RPR 09/80 UM 0.0 30.0 60.0 90.0 120,0 150.0 FREQUENCY (MHZ1 Figure 09L. Axial Current at STAFF239T, Excitation 2, 2/32 Model. 39 _iO

O7 LapoW 8t/L 'z UoL44L3X3 '16EZ:V1iS e 4uaJln3 L[L1uaeaJJnD.LJ3 'SOL aJn6LJ 0'OS O'-0?I 0 '06 0 09 0'06 0'0 Hf 08.'; iU,A 0'00 - 0'00; it ___ _._ _._ 1.-.... __ _______..._ _...., -----..-.-. — o o-.0 O oo 00 0o'0 o '.009 o'0 o'0 4 wn oBai- d>1 _.... __T ~__ 1.1 iit~~~~ FW~i. / I~~~~~~~~~~~~~~t ' oo " \ 0,, '3~~~~~~~~~~~~~~~~~~ SQ~'f~'~E~/'i i -- -. --- —-— L~~~~~~~~~~~~~~~.~~~~.~~~-I —~~~~~-~~. ~~~~_.~~~-~~~-~~...____L ~ ~ ~ ~ ~:,

3.,0 F6, L.F239T.2.JCF1OL. / 1. MAR 21/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 2000. F16. L, F'39sT. 2, JC.F10L 100.0 -100.0 MARR 2!/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure lOL. Circumferential Current at STA:F239T, Excitation 2, 1/32 Model 41

v.v 'LapoW 897/L 'E UOL~eLX3 'i8CZ_-VI' S We ua,,n3 LPLXV 'SLL aJn6Lj (ZHW 14 3 N',3n3. 0"0 Ot _'_OZ 0'06 0'09. 0'0.: 0 Hn OB/S9z Ud N 0. l i j.,,v,,,,.X0 00 _ _, - X _ 4 wn oiusa wit j t-..........~ i O ' h0~ t -t 3 io~oo z

8.0 r F16.L,F239T. 3. JR.Fll L I07 I. L4, Oq. 0 Data inconsistent with the small mo el measurement. DO NOT USE THIS DATA. o.o[, FEB 28/80 UM | 0.0 30.0 60.0 90.0 120.0 150.0 200. 0 -, F16. L, 239T.3.J. F11LL i o.0[. 4 Incorrect phase, it sh 1 be near zero degrees. See ig. llS. -200.0. _ I 1 FEB 28/80 UM 0.0 30.0 60.0 90.0 12.0 150s 0 FREQUEij~Y (MHZI Figure 11L. Axial Current at STA:F239T, Excitation 3, 1/32 Model. 43

16,.SF2S3T.SQ.F12S S,... 1-11 1.0 _ _ 30_0 -_ So_._ SO_._ 12 FEB 13/ B0. U -00.0 0. 3O. 0 60.0 90.0 T120.0 150.2 0.0 $0,0 60.0 90,o 120.0 lSO FREQUENCY (MHZ) Figure 12S. Normal Electric Field at STA:F239T, Excitation 3, 1/48 Model 44

F16, L, F2SST.S..F12L p... S.0 w 0 n L 1.'0 0.0...FEB 1/.80 UH 0 0 30. 0 80.0 90.0 120,0 1 o0 200.0 i F16. L.F239T. O.F12L 100.0 0.0. FEB 08/80 UH -200.0 I _ I 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 12L. Normal Electric Field at STA:F239T, Excitation 3, 1/32 Model. 45

F16.S.W352T 1.JR. FSS K.0 0. 0 30.0 60.0 90.0 120.0 150.0 200.0 F16.S. S5.2T.1.JS. FIS I 0 00 0.0 -100.0 E! -20 0. 0l _________________________________ _!!APR 03/80 UM 0.0 30.0 60.0 90,.0 120.0 150.0 FREQUENCY (MHZ) Figure 13S. Axial Current at STA:W352T, Excitation 1, 1/48 Model. 46

2. 0 1 I I F16.L.WS52T,1,JR.F1SL Kt 0 1. 0 C1; I o ',,~~~oL~~~~~~~ RPR 03/80 UM 0.0 30,0 60.0 90.0 120.0 150.0 200.0 F16,L.W352T,1.JR.FlS3L ioo.ok -100.0 RPR 05/80 UM -200.0 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY CMHZ) Figure 13L. Axial Current at STA:W352T, Excitation 1, 1/32 Model. 47

4.0, l F16.S'352T,1.JC.F1US 3.0 o 2.0 k 1.0 RPR 07/80 UM O... I 0.0 30.0 60.0 90.0 120. 0 150.0 200.0 - _ F16. S.W352T. 1.JC. FI4S 1 00.0_ -100. 0 RPR 07/80 UM -200 0! [! O.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY CMHZ) Figure 14S. Circumferential Current at STA:W352T, Excitation 1, 1/48 Model. 48

F16.L.W352T.1.JC.F14LL 00.0 K -00 1 B Lj _ 4Y0/ UM X0lI. ___ APR 03/80 UM 0.0 30.0 60.0 90.0 120.0 150,0 Figure 14L. Circumferential Current at STAW352T, Excitation 1, 1/32 Model RPR 03/80 UM 0.0 30.0 60.0 90,0 120.0 150.0 FREQUENCY CMHZI 49

F1S S. SS2T,. F155 'o 1. 0 APR 03/80 UM 0.0 0.0 0.0 30.0 60.0 90.0 120.0 150.0 100.0 0.0.In O.Op- \ I ' -100.0 RPR 08/80 UM -200. 0 - I_ I IO0.0 30.0 60. 0 90.0 120.0 150.0 FREQUENCY (MHZE Figure 15S. Normal Electric Field at STA:W352T, Excitation 1, 1/48 Model. 50

F16. L.W352T.. QF15L K 0. P -I _______________________.0__ _ _ IAI. _ __ I PR 03/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 200.0 F16.L.N352T.1. FI5L I 0.0 -100.0 L APR 03/80 UM -200.0 L I - 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 15L. Normal Electric Field at STA:W352T, Excitatio ( 1, 1/32 Model. 51

6. 0 F16,. S.WS52T. 2,JR F6S1S 4. 0 i" K M.R 21/80 UM 0.0 0. 0 60.0 80.0 12 0. 0 200.0 I F16.S,N352T,2,JR.F16S 100.0. 0. MtRR 21/80 UM -200.0 I 0. 0 30.0 800.0.!20.0 150. O FREQUENUCY CMHH] Figure 16S. Axial Current at STA:W352T, Excitation 2, 1/48 Model. 52

6.0 F 16, L W3S52T, 2. JF, F18L 2t 0~~~~~ 0~~~~~~~t.MRR 21/80 UH 0. r 0.0 30.0 60.0 90.0 120.0 150.0 F 16,L. L, b352. 2, R F 6L 100.0 in wI.0.0. MRR 21/,80 UM -2 0 0., 0.0 30.0 80.0 90.0 120.0 150.0 FE QU F:cRY (M!/) Figure 16L. Axial Current at STA:W352T, Excitation 2, 1/32 Model. 53

L 0 ~ —.. 1.of_.0 * 0 ____ __I_ I L-/8U_ l M RPR 09/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 200.0 RPR 09/80 UM -2 0 0. 0 0.0 30.0 80.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 17S. Axial Current at STA:W352T, Excitation 3, 1/48 Model 54

F 16.L, W352T.,JR F17L E ^ -T K -j 0 W o O. 0 _ -_IAPR 18/80 UM o o. 30. 0 0. 0 90.0 1 20.0 15.0O -200.0 F16.L.WNS52T.S.o F17L 100.1 ' 0 00 i -200.0 i -2000 __.0.. I...... I — _ APR 180 UM 0o0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 17L. Axial Current at STA:W352T, Excitation 3, 1/32 Model. 55

8 0...... F 16, 63, F25 f'7. 1. J Fl.' I 6.0 ' d 4.0 iOI - JAN 2U/80 UIM o: ' o - 3 ~.0 60.o 9 0. 0 120.0 150.0 200.0 Figure 18S. Axial Current at STA:F257B, Excitation, 1/48 Model: I 0 \ 100.0I 0.0 30.0 60. 0 90.0 120.0 150. 0 FRF.QUENCY CMHZ) 56

8.0..... -........ L. - - -!.. T............. F 16., 1., f57B, 1, JRs F18L a_2 0.02L /80 UM 6 0.0 30.0 0. 0 90o. 120.0 150.0 200.0 F 16, i.., F257B, 1.JRgF18L 100.0 ' I 0 0 0 a -200 o..._...._._...,... _ 0.0 30.0 60.0 90.0 120.0 150.0 FREQs Nll. ' (tMiI ) Figure 18L. Axial Current at STA:F257B, Excitation 1, 1/32 Model. 57

4, 0 - I T- __ *.......r _ - FI. S.F257B. 1. F19S 20 l [ ~~~~~~~~0.0,:,,,a I RPR 08/80 UM 0.0 30.0 60.0 90.0 120.0 150.o 200.0 F16. S.F257B QTF19S I 00.08 V-|.. 0 APR 08/80 UM -200. ~ ~ [ I, I 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY CMHZM Figure 19S. Normal Electric Field at STA:F257B, Excitation 1, 1/48 Model. 58

4.0 - F16.L. F_57B,1.Q. F19L 3.0 LU 0 1.0 APR 08/80 UM 0.0 30.0 60.0 90.0 120o.a 150.( 200. 0 F16,L.FL257B,1.Q.F1 L 1 00.0 ~ I0 0 -100.0.0o _____ ______ _ARPR 08/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCYT MHZ) Figure 19L. Normal Electric Field at STA:F257B, Excitation 1, 1/32 Model. 59

09 'LaPOLW 81b/L ' uo LO,.L3L X3 'BLSgZj'VI S;-,uaJn3 LeLXV *SOZ a.Jn6Lj OOHN').' I.! ll..-., 0'09 0'3; 0 '0 6.0 0O' _An 0/-9S J: Ii Vu~~~~. 'I 0 0 _ K — ~~~. o i' -'Q~f O'O — -— 6 a~a" 0''O. Ot 0 'OGI 0'0~[ 0'08 0 '09 O~~~ ~ ~~~~~~~~~~~~'Og0'

2:. 0 __ _ _ _ _ -_ _ _ -- F 16. L F257B. 2 JR. F20L -J=- T.1 o. L _ 1818 U1O_ p I O.o 30.0 o0.0 9o.O 120.: 5'o'o Flf. O5'7B. 2_. JR, rL I ILJ 'F IIl III1 2 LLJ -0.t 0,I _. 41~ 61 61

F16.S.F257B.2.J C.F21S 0=D 1.0h L.g1.0. ~ j APR 25/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 -100.0 00.0 ~ '.....I -.. __ L....-.. L.........P. 5 8 — " F16,SF25B,2.JC.F21S RPR 25/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FBREQUENC~ {MHE) Figure 21S. Circumferential Current at STA:F257B, Excitation 2, 1/48 Model. 62

2.0 F16.L.F257B.2.JC.F21L JA A.40 0. _0 A ~! RPR 16/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 Fi6,LF257B,2,JC.F21L -1000 2PR 16/80 UM -200.0oL _ 1 I t - 1 - 0.0 30.0 60.0 90.0 120.0 150.0 F REQUUEN L tMhZ) Figure 21L. Circumferential Current at STA:F257B, Excitation 2, 1/32 Model. 63

4.0 --— `. ~.- -—. ____,___ _________ _" -I -.'.... -'-.. I.F16.S.F257?B 1.,JRsF22S 3.0 1.0_ 0.0 I __ _ ' JRN 24/80 UN 0.0 30.0 60.0 90.0 120.0 150.0 200.0 F16. S.F257B. 3. JRF225 i -100. 0 I.200. O L..... — -— I-~ — -—..~ --- -. IL ----~.~-~- - I- I JRN 24/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 22S. Axial Current at STA:F257B, Excitation 3, 1/48 Model. 64

4.0 I X -0tI F16.L.F257B.3.JR:F22L 3.0 0 2. 0 cd t.O 0. 4!_____________ ______ _!-____JRN 2 4/8 0 UM 0.0 30.0 60.0 9o.0 120.0 150 0 200.0 r --- F16. L,F257B,3, JRF22L ~~.1 1 — ioo. oL. JRN 2L/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 22L. Axial Current at STA:F257B, Excitation 3, 1/32 Model. 65

[|~~~ F16.,S'F.F2575.CF2S 2.0 2,0 FEB 1S/80 U 0,0 30.0 80.0 90.0 120.0 150.0 200.0 ' - - _ FiS, S.F257B. S.Q.F2SS 100.0. -!. aI -ioo.oL. -100. 0 - FEB 08/80 UM 0.0 30.0 60.0 80.0 120.0 150.0 FREQUENCY (MHZ) Figure 23S. Normal Electric Field at STA:F257B, Excitation 3, 1/48 Model 66

. 0 -0. -..... -.- - -... _...... F16.L,F257B,.Q,,F23L so 0 1. 0 0.0 30.0 60.0 90.0 120.0 50.0 200.0 F16.L.F257B.S.Q.F2SL!,.. 100.0 O0 _ — 10~0i.~~.. FFB 08/80 UM -2 000. 0 - zoa oL _ ____ ___ ___ __ _ I __ 0.00 3,0 600 60.0 120.0 150.0 FRFLIFENCY (MHZ) Figure 23L. Normal Electric Field at STA:F257B, Excitation 3, 1/32 Model. 67

F16. SFS52B. IJR.F28S -.. Q 00!. 00 200 200. 0 P168.SF52B. 1.JAF24 I I -100a~~ * 0o~~~~~~ L4 FEB 1 80 4 0. S.0 00.0 80.0 120.0 150. Figure 24S. Axial Current at STA:F352B, Excitation 1, 1/48 Model.2S Figure~ '4. AilCreta T:32B xiain1 /8Mdl l\! \.~~6

6.o0 -- -- -- r ~ -- -- --- -- - F16.L.F352B.1.JA.F24L 2.O 2.0 a. 0.. l... E/8O UM | 0.0 30.0 80.0 90.0 120.0 t50.0 200.0 F F16. LF352B, 1,JR,F24L I 1 -13~~~~0.vOi hh j i. 100.0' -2o0L. O-. 1.. t. 1 J.... X u F * /8 SU 0.0 30.0 60.0 00.0 120.0 150.0 FREQUENCY tMHZ) Figure 24L. Axial Current at STA:F352B, Excitation 1, 1/32 Model. 69 \~~~~~~~~u s. 0 06. 0. 2. 5. i~~~~~~~~RQEC MT

OL 'LDPOW 8t/L 'L UOL 2e1x3 'Z)S.VAS We 4uajnJf L4ualaJf4WflL4 SSZ a3JnBL (ZNW) )3NgnalUw O'OS09 0'OI 0'a6 0'09 O'Og 0'0.n og/so I 0. I IO*OOO'S O' o t OO8 'O 0'09 06 ' 00~ 0 0 Hn 08/60 Us8 ' 'd 0'00 -0~I 0 '0.~1 O'OB. O'Og O 'OC. 0 ' 0' N.N Og/BO Yd8 i i ~. 'i.. 0'0 ~..

2.0 F16,L,FSS2B,1.JC.F25L za~~~~~~~~~~~~ ~ 0 0 -0.0 APR 09 /80 UM 0.0 30,0 60.0 80.0 120.0 150.0 200.0 F16,LF352B.1,JC.F25L 100.0 0.0 -100.0k -200.0a ________________________________APR 03/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 25L. Circumferential Current at STA:F352B, Excitation 1, 1/32 Model. 71

2~0 --- ------- F6,SFi.S.F52B.2.JR.F26 z 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~8 I6(0U,0 001............ _ RPR 16/80 UN 0.0 30.0 60.0 90.0 120.0 150.0 200.0 F 16. S.F 528.2. JS. F268 -100.0 ~~-2~~~~~00,0 Ai.!! R~~PR 16/80 UM O'. 0 30.0 60.0 90. 0 120.0 1 50. 0 FFIF-GUENCY MHZI Figure 26S. Axial Current at STA:F352B, Excitation 2, 1/48 Model 72

F 16.LF352B. 2.JR, F2L 1.0 r.=F16.L, F52B, 2JR.F26L j0.0 * -200.0.]......................... U o.0 30.0 60.0 90.0 120.0 150.0 FREQUFHiC t HlI) Figure 26L. Axial Current at STA:F352B, Excitation 2, 1/32 Model. 73

1.. 0 - r-.r- A.......... F16.S.F352B.3,JR.F27S tu 3.0 1.0 C. __0._......_, FEB.28/80 UH 0 0 30.0 -60.0 O0.0 120.0.150.0 20 00 o.~o i *...... ~ -- — T...... -T F 16, S. F352B, B., JR, F27S R 0 II -100.0. I -'200.0 -.... _ i_. FEB 28/80 UM | 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MH V Figure 27S. Axial Current at STA:F352B, Excitation 3, 1/48 Model. 74

F16. L. F352B. S3JR. F27L 3.0 L - irz4 12.0 0. 0 I __ I___I I FEB 28/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 200.0 F16. L F352B, 3JR.F27L 1 0. -.00.0 I 0 -2I00.0[ i I FEB 28/80 UH 0.0 30.0 60.0 90.0 120.0 150.0 FREGUrIly. (MHlL Figure 27L. Axial Current at STA:F352B, Excitation 3, 1/32 Model. 75

8. _ F 16. FlOOB. 1. JRF28S 6.0 at: 2.0 0.0 30.0 60.0 90.0 120.0 150.0 r2 — _ _r_- - _ F -- 1 —__ _ F16,SFO1 B. 1,JAiF28 ~~ 0.0 -100.0 JRN 24/80 UM -200. 0 I. --..._ *.. -. _ _ 0.0 30.0 60.0 90.0 120.0 150.0 FRFrIFNfC~Y (MHZ]7 Figure 28S. Axial Current at STA:FlOOB, Excitation 1, 1/48 Model. 76

8.0 3 0 4. 0 0.0 0.0 _. i _. I 1 ___.. 1 I 0.0 s0.0 60.0 90.0 120.0 150.0 200.0....__ _._ F16.LF OOB, I. JRF28L I000 lO0.0 -200. 0 _.-..L1._.I.i JRN 24/80 UM O 0 30.O 60.0 90.0 120.0 150.0 FREQ!JENCY [MHZ] Figure 28L. Axial Current at STA:F1OOB, Excitation l, 1/32 Model. 77

18.0 F16, 3.F 100,IQF29S 0.0 I I, 200.0 ______________________________ __________go.o 120.0!50.0 F*16,,SF1\00.B,1AF25 100.0 _ 12. 0 o. o. I -200..! - x 0 0 0. FS.0 0. 0 30. 0 60.0 90.0 120.0 150.O FREQUENCY tHHZ Figure 29S. Normal Electric Field at STA:FlOOB, Excitation 1, 1/48 Model. 78

F 16.L. FlOB. 1.. F29L 0 4.0 o.o0_ - _ __ = /80= U'.O 60.0 30.0 90.0 120.0 150.0 200.0 - t F16, LFlOO 1,, F29L -10 0. 0 _oo._o __,_ __ -- __, FtB 28/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 29L. Normal Electric Field at STA:F1OOB, Excitation 1, 1/32 Model 79

2. 0 -Ad F' — I16. 3. FI OB. 2, JR. FSOS 2.0 F I 0.0 RPR 18/80 UM 0.0 $0.0 60.0 'g.o 120.0 150. 200.0. F18.SFl00B,2.2JRFSOS!00'0 o0.r ~~~~~~~~~~~-200.01 ___8RPR 23/80 UM 0.0 930.0 60.0 0.0 120.0 150.0 FREQUENCY (MHg) Figure 30S. Axial Current at STA:FlOOB, Excitation 2, 1/48 Model. 80

2 * 0 1 o f 2.0 F 18. L FOO B2. JR. FSOL 0.0 AP~_,,~~ 'I;~L RR 16/80 UM a100~~~~ ~~~.8 010 -100.0 II RPR 16/80 UM o 0 30.0 60.0 o.o0 120.0 150. FREQUENCY (MXlZ) Figure 30L. Axial Current at STA:F1OOB, Excitation 2, 1/32 Model. 81

F16.S.F1 OB.3, JR: F315 3.0 o=0 -3 1.0 0.0 3 0 _0 I - _ - I. I JRN 24/80 UM 0.0 3 0.0 60.0 90.0 120.0 150.0 F16,S. F100B,3,J 3 Jh: F31 S 100.0A 0.'0 -100. 0 JRN 2U/80 UM -200.0 I - - I - 0.0 30.0 60.0 90.0 120.0 150.0 FRIEQUENCY (MHZ) Figure 31S. Axial Current at STA:F1OOB, Excitation 3; 1/48 Model. 82

F16, L.F1008.3 S. JAr F31L..0 -J JRN 24/80 UM 0.0 S0.0 60.0 90.0 120.0 150.0 20 0.0 I F16,L.FlOOP. 3.. JRF31L 0 0. 0 -t O -100.0JAN 280 U -200.0 _______- ___ ____I_ JRN 214/80 UN 0.0 30.0 60.0 80.0 120.O 150.0 FREQUENCY (MHZ) Figure 31L. Axial Current at STA:F1OOB, Excitation 3, 1/32 Model. 83

FB16. S,FOOB. 3. a. F32S tE _21 _ ~ 1. K 0 0.c0. HIMR 05/80 UM 0.0 30.0 80.0 80.0 120.0 150.0 _0OO.O Lloo. i i,. F16, S.FlOOB.3.,F32S 300.0 r'x 100.0 00 3~~~~~~~~~~0.0 — ___ _MARR 13/80 UM o.0 I I. 0.0 30.0 60.0 90.0 120.0 150.0 FHEQUENCI (MMO: Figure 32S. Normal Electric Field at STA:F1OOB, Excitation 3, 1/48 Model. 84

8,04.~~~~~~~~~ 1 0. 0 - - 0.0 30.0 60.0 90.0 120.0 150.0.00.0 300.0 [ 100.0 FEB 28/80 UM 0.0 30.0 80.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 32L. Normal Electric Field at STA:FlOOB, Excitation 3, 1/32 Model 85

3.0 -- S'~~ —r ----!r............... -"f........ F 16,8..F488B..JRA.FSSS 0. j 3 0 '0 0 MR 05/80 UM 0.0 30.0 80.0 90.0 120.0 150.0 200.0 O.......... --....... F16.S.Ft88B, t.JR.F 3S5 100.0 -100,0 - | XI ~~~~~~~~~~~ HMRR 05/80 UM I -Ioo. 0................. _.............L.._. 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 33S. Axial Current at STA:F488B, Excitation 1, 1/48 Model. 86

F16.. FL88B,. 1.JR.F3L:2.:: 1.0 0.0 _ _ 05/ UM 0.0 30.0 60.0 90.0 120.0 s50.0 200.0 fL A C a 16, F4 88 B. 1, iR, F 33 l 87 -'100.0 -200.0 O _ t _R _ ____ I _ 0.0 30.0 60.0 90.0 120.0 1150.0 F.9iEUl EC T (:H I) Figure 33L. Axial Current at STA:F488B, Excitation 1, 1/32 Model 87

8.0 F 16. SF. F488B.,. F349 K4 [.0 2.0 0.0 OI__ ____ ___ ____ ____ ___ ____, FEB 28/80 UH 0.0 80.0 60.0 90.0 120.0 150 o 200.0 F 16.. F488B, ~,. F34S 0.0K 00.0 30.0 60.0 90.0 120.0 150.0 I M1 O.0 sO,0 60.o go.0!20.0 I50 FREQUENCY (HMZ) Figure 34S. Normal Electric Field at STA:F488B, Excitation 1, 1/48 Model. 88

F16.L.FtIUB8B 1,Q.,FSIL 8.0 l ~-e 4.0 2.0 FEB 28/80 UM 0. 0 0.0 30.0 60.0 90.0 120.0 150.0 200.0 - --- F16, L.F88B, 1,Q,F34L I, -100.0 cn-s~Y'I I > MRR 05/80 UK 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZI Figure 34L. Normal Electric Field at STA:F488B, Excitation 1, 1/32 Model. 89

3.0 F16.S SF88B.2, JC.F5S 2.0, MRMR 0S;80 UN 200.0 F16.SF48SB,2.JCF35S I100.0 0.0 z MPH 05/80 UH -100.0 0.0 30. 0 60.0 90.0 120.0 150. 0 FREQUENCY (HtHi) Figure 35S. Circumferential Current at STA:F488B, Excitation 2, 1/48 Model 90

3. 0F-............. F15,L,F4885,.2,JCF5L 2.0:Z -- h ~.! VI 0. 0 I _MARA 05/80 UN 200. 0 -......... F16 L. F888, 2.JCF35L 100.0 - 0.0 -200.0 _1 I..R,. 05/0I U. 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 35L. Circumferential Current at STA:488B, Excitation 2, 1/32 Model 91

2. 2-1 * 0 -0 o. p ---~ 1.0 el; 0o.0. ______________________________ _ RPR 16/ 80 UM 0._ 0.0 30.0 80.0 90.0 1-20.0 150.0 200.0 - F16.3S. F'888B, 2.Q. FS38 -100.0 o ~~~~~~-200.0 —~....-~. ~~!APR 16/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 36S. Normal Electric Field at STA:F488B, Excitation 2, 1/48 Model. 92

2. 0 T -... -.T F 16,L, FB8B,2,, FS6L ill o 0. o 0 _ _ _ _ -.. F - - ~ -.... - _ _ 1 /80 UH 0.0 30.0 80.0 80.0 120.0 150.0 200.0 F16,L.F88B,.2,QF38L 100.0 0.0 -200.0[ -- l. __ - _ __L_. _ A R 17/80 0.0 S0.0 60.0 90.0 120.0 150.0 FEUFUENCY (MHYI Figure 36L. Normal Electric Field at STA:F488B, Excitation 2, 1/32 Model. 93

F16,S.F488B.. JR.F7 2 I K 0o l- o I i M0R D05/ 0 U I 0.0 L~_____.0. _ - Ll. - - _. —__ -_..... _.... ] M / 0 0 30.0 B0.0 90.0 120.0 150.0 200.0 I.. -................ --- —T-. — —. — -t. — — r. —..T.t....... F 16.S. F88B. J. F37S 100.0 -1 0oo.o MRR 05/80 UM -200. 0....... L................. L............................................ 0.0 30.0 60.0 90.0 120.0 150.0 FfREQUENCY (MHZ) Figure 37S. Axial Current at STA:F488B, Excitation 3, 1/48 Model 94

LapOW I[/L 'C UOLI4. L X3 '888t87:VLS 42e uaaJn 3 LPLXV ILE a3n Lj 00SI 0 0;I O ' O0 0'09 00' o a Hn onSo~ Ad TI X — -- - oOi.... J _ _... _ S _-d-......................... -......1 - *- O O ~-, ____ oo__ 008 009 0'G 0, 0 0 ' 00~ tz99vgwx!j, s~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F16,S.F4BBBS.,QFSBS 3.02 0 1.0 0o0 oL.~. FEb 14/80 UM 0 0. ___ -- 0Fee /o 0.0 S0.0 60.0 90,0 120.0 150. 400.o r - t F16.3S, F488B, Q. F3 3000 2 200.0 -. 100,0. 0.0 '_........l...._.FEt....U..M.... 1.j... 0.0 30.0 60.0 80.0 120.0 150.0 FREQUENCY (MHz) Figure 38S. Normal Electric Field at STA:F488B, Excitation 3, 1/48 Model. 96

F 16. L.,F4888,. FSeL 2~~~~~~~~~.1~~! K! 1. I 0.0k....__ ~.. -F~. 1S/80 tin 0.0 30.0 BO.0 80.0 120.0 150.0O 400.0 — ^ --- -- -- - r -- Fi6.LF~488.83.,F38L 200.0 100.0 i0.0 _____..~.~~.....~.~~L.~~-.___.___ A FEB 14/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY I.MHZ) Figure 38L. Normal Electric Field at STA:F488B, Excitation 3, 1/32 Model. 97

24. 0 _-,. _. - F16, 5.F6RS,!.Q.F3S9 l 0 12,0 0.0 0.0 O - tIRRo 0'8o 0 U0 0.0 30.0 60.0 90.0 120.0 150.0 200.0 F16,S.F*76RS.1.Q.FS9S -100.0. I FoiE.UE.AY IMtZI MAR 05/80 UM -200.0 M, _ 0 0 30.0 60.0 90.0 120.0 150.0 FREQUE..vT (MHz) Figure 39S. Normal Electric Field at STA:F76RS, Excitation 1, 1/48 Model. 98

LapoN ZE/L 'L UOL424LDX3 'SH9LJ:ViS 4P PLa.LJ 4L,4DL3 LWlON -16 aJn6LJ (ZHW) k3Nf3nl-WA o0GI 0' 0T 0 "08 0 '09 '_ 00 G 00..,-... I.,.. ll O * 6'0 Zwn os.so uuw - 0 HA~ OBS BU ' _,, f I _!o 0'00I wn oi r, _ _ I 0 O0g9 oM I"5 Z I-I o M-00 ' '61t~t~...,. _ _ o 9,'ZS ~ L~1"~ C=:d~~~~~~~~~~~~~~~~~~~~~~~~~~Ot~

UNIVERSITY OF MICHIGAN 3 9011111111111111115 03483 7271 3 9015 03483 7271