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The methods of fractal geometry allow the classification of non-equilibrium growth processes according
to their scaling properties. This classification and computer simulations give insight into a great variety

of complex structures.

ALMOST every theoretical tool of the condensed-matter scientist
uses the assumption that the system considered is of high sym-
metry and is in equilibrium. These assumptions have led to
enormous progress; however, to much, if not most, of the natural
world such tools cannot be applied. Many systems that we would
like to understand are very far indeed from perfectly ordered
symmetry and are not even in local equilibrium. Perhaps the
most extreme example is disorderly irreversible growth. We
mean by this the sort of process which is very familiar in the
formation of dust, soot, colloids, cell colonies and many other
examples; roughly speaking, things often stick together and do
not become unstuck. For example, a particle of soot grows by
adding bits of carbon and coagulating with other particles in a
random way. A possible result is shown in Fig. 1. We are thinking
about cases which are, in some sense, as far from equilibrium
as possible, and which have no obvious order.

It is remarkable that the introduction of simplified models
has led to quite a good understanding of the morphology of
such growth, despite the inapplicability of our usual modes of
thinking. Here I will discuss this progress, drawing examples
mostly from subjects which have traditionally interested physi-
cists and chemists. However, disorderly growth is ubiquitous in
the world around us, and is certainly not limited to inanimate
matter. For example, some of the ideas which I will discuss,
such as anomalous scaling in kinetic processes, will be useful
to biologists. The purpose of the review is to introduce ideas
from the area which may be of general use.

The key to our recent progress is the recognition that the most
‘interesting’ non-equilibrium structures (say, from a visual point
of view) are not merely amorphous blobs; they still have a
symmetry, despite their random growth habit, albeit a different
one than they might have had, had they grown near equilibrium.
For example, consider the soot of Fig. 1, or the electrolytic
deposit of zinc shown in Fig. 2. Many people will be familiar
with branched deposits such as this, and with similar looking
objects which form on automobile windshields on cold morn-
ings. In all these cases the structure is disordered, but it is not
random. A manifestation of this is that each section of the
picture contains holes in the structure comparable in size with
that of the section itself. This can only occur if there are long-
range correlations in the pattern; particles ‘know’ about each
other over distances far in excess of the range of the forces
between them. A truly random pattern, such as that of salt
scattered on a table top, shows no such scaling of holes, and
correlations are of short range only.

Studies of fractal growth have focused on two questions: how
can we characterize and quantify the hidden order in complex
patterns of this type, and when and how do such correlations
arise? The answer to the first question is now relatively clear,
and lies in an application of the fractal geometry of Mandelbrot'.
The next section gives a brief review of relevant aspects of this
subject. The second question has received a partial answer in
the formulation and analysis of models suitable for computer

Fig. 1 Electron micrograph of soot. (Supplied by G. Smith,
General Motors.)

simulation, which will also be reviewed. For more extensive
treatments see refs 2-4.

Fractals and scale invariance

In pure mathematics, it has long been common to study certain
‘pathological’ geometric shapes that elude ordinary notions such
as those of length and area. Figure 3 shows a famous example,
which has, in some sense, infinite length, but zero area. It falls
between our usual notions of line and solid. Mandelbrot' sys-
tematized and organized mathematical ideas concerning such
objects due to Hausdorff, Besicovitch and others. But, more
importantly, he pointed out that such patterns share a central
property with complex natural objects such as trees, coastlines,
patterns of stars and (as was later discovered) the non-equili-
brium growths of Figs 1 and 2. This property is a symmetry
which may be called scale invariance. These objects are invariant
under a transformation which replaces a small part by a bigger
part, that is, under a change in scale of the picture. Scale-
invariant structures are called fractals.

There are a number of related properties which follow from
the assumption of scale invariance. Consider, for example, the
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Fig.2 Zincelectrodeposit produced in a thin cell under conditions

of low ZnSO, conceatration {0.01 moll™'}. The outer electrode

(not shown) is in the form of a ring 6.3 cm in radius. {Suppiied
by D. Grier, University of Michigan.)

density correlation function c(r), of a fractal. This is defined as
the average density of the object at distance r from a point on
the object, and is a measure of the average environment of a
particle. Clearly, ¢{r} must reflect the scale invariance. It is easy
to show that the only way that ¢ may vary is 2s a power [aw in
r; any other function would have an intrinsic scale. It is con-
venient 1o write ¢ in the following form:

e{r) = k4D (1)

Here, k is a constant, and the exponent is written in terms of
the dimension of space, 4, and a new quantity, D, the fractal
dimension. The reason for this terminology will become evident
i & moment. As the objects we are dealing with are tenuous,
¢(r} is a decreasing function of r; the average density decreases
as the object becomes larger. Now consider how the total mass
of the object, M, scales with the mean radius, R. We can estimate
this by multiplying a typical density, from above, by the volume:

M(R)=KRP“R%=KRP ()

Here, K is another constant. We can now see why D is called
a dimension. For an ordinary curve, D =1: twice the length
gives twice the mass. For a digsk, D =2. For simple objects D
coincides with the usuai notion of dimension. But in the cases
we are discussing D is not an integer; it has been measured to
be ~1.7 for the deposit in Fig. 2, and is 1.26 for the fractal of
Fig. 3.

This anomalous scaling with radius, measured by D, is a very
useful means of characterization because the fractal dimension
is a ‘robust’ quantity. Like the famous scaling e¢xponents of
phase-transition physics, it has to do with long-range properties,
indeed, with the relationship between properties at different
scales. Thus we can expect it to be universal in the sense that
it should be independent of the details of the interactions
between the objects which stick together during the growth, of
their detailed composition, and so forth. But, as we will see, the
mechanism of growth does affect D.

Growth models

How might one visvalize the growth of an object such as the
electrolytic deposit in Fig. 27 As we are interested in long-range
properties we can ignore the complications of electrochemistry
and simply imagine that ions wander randomly in solution (in
many cases the electric field is screened out so that this is a
good approximation) and stick to the deposit when they happen
to get near it.
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Fig. 3 Four stages in the growth of an exact fractal, the Koch

curve. This and many other examples are discussed in ref. 1. The

fractal dimension may be deduced by thinking of each picture as

a part of the picture above, with a change of scale. For each scale

change by three, we need four such parts. Thus, according to
equation {2}, D =log 4/log 3 =1.26.

To make a computer model which is a literal translation of
this process we start with a centre. Then we liberate a diffusing
particle, a ‘random walker’, and let it wander freely until it is
within a fixed distance of the centre, where it sticks. Then we
liberate another particle and let it walk until it sticks to the
centre or the first particle, and so on. We may, for our purposes
here, idealize the process of formation as being completely
irreversible: we ignore the possibility that the particles rearrange
after sticking to find a more energetically favourablie [ocation.
This is the diffusion-limited aggregation {DLA} model of Witten
and Sander™®. The application of DLA to electrodeposition is
due to Brady and Ball’ and Matsushita et at®,

Figure 4 shows the result of an extensive simulation according
to the DLA rules; s resemblance to Fig. 2 is evident. Measure-
ments of DLA clusters have shown them to scale according to
the relations quoted above, with D=17 for d =2, and D =24
for d = 3. Note that the structure is tenuous and open because
holes are formed and not filled up. Filling up the holes would
require wandering down one of the channels in the cluster
without getting stuck on the sides; a random walker cannot do
this.

There are several features of the DLA model which should
be mentioned. Although it is simple to describe, no progress
has been made towards ‘solving’ it. That is, although we suspect,
on the basis of simulations, that DLA clusters are fractals, we
cannot prove it. And we have no method of calculating D {or
any other property): we must measure it. There are several
reasons for this (I will mention a rather technical one below),
the primary one being that DLA presents us with z situation in
which our experience in equilibrium systems doesn’t seem (o
help. Note that D, along with other scaling properties, arises in
a non-trivial way from the kinetics of growth: there is no simple
geometric argument with which to predict them.

The DLA model can be generalized in various ways, for
example, to describe deposition on a surface” rather than a
point. A more profound generalization is to use the model to
describe systems which apparently have nothing to do with
particle aggregation, but which share the same universal proper-
ties. We may see how one is led to do this by observing”'® that
the probability, w, of finding a random walker at some point on
its way to the agpregate has the following well-known properties:
the fiux of walkers; v, is proportional to the gradient of u, and,
because walkers are absorbed only on the aggregate, this fiux
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Fig.4 A large DLA cluster {~ 50,000 particles) grown on a square

lattice. Note the resemblance to Fig. 2, and the beginning of

distortion towards a dendritic outline, as discussed in the text.
{Supplied by P. Meakin, Dupont.)

has no divergence:
veeVu (3)
Vov=Vu=0 (4)

As walkers are not allowed to escape from the aggregate, we
set u ={ on the surface. The growth of the aggregate is given
by the flux at its surface, that is, by Yu.

As Niemeyer et al.'” pointed out, a set of equations of identical
form govern dielectric breakdown of a solid if we ignore many
short-range details. As we are looking for universal features,
making such simple, indeed, crude approximations is justified.
If we think of u as the clectrostatic potential in a solid about
to be destroyed by a discharge, its negative gradient is, of course,
the electric figld. But u« then obeys the Laplace equation of
electrostatics, which is of the same form as the steady-state
diffusion equation, equation {4}, above. The breakdown channel
will grow in a way determined by the electric field, that is, the
gradient of u, on its surface. If the growth rate is linear in the
field, we expect 10 have exactly the same situation as in DLA,
and indeed, direct sotutions of the equations, as well as measure-
ments of photographs of real discharges, give the same fractal
dimension as DLA, Non-linear breakdowns {lightning in the
atmosphere is probably an example} give rise to patterns with
different values of D.

Paterson'' noticed an even more remarkable manifestation of
the wide applicability of the model. When a fluid flows under
conditions of large friction, inertia) effects are negligible and
the flow rate can be 1aken 10 be proporiional to the hydrostatic
force, that is, to the gradient of the pressure: this is known as
D’Arcy’s law. The sitvation is commonly realized in the labora-
tory by letting fluid low between thinly spaced plates, a so-called
Heie-Shaw celt. In nature, the flow of crude oil through the
porous rock in which it is found is an example of quite serious
interest. Suppose we try to force such flow by blowing a bubble
of air or another low-viscosity substance into the cell (or by
pumping water into an oil field—a scheme known as enhanced
recovery). It has long been known that the air will not uniformly
displace the fluid; instead it will break up into a complex

— —————REVEWARTICE—— — — ——— ——————

Fig. 8 Columnar microstructure in ballistic aggregation. Particles

stick to the substrate and to each other after raining onto the

structure in parallel trajectaries at an angle to the vertical somewhat

smaller than that of the columns. The Auctuations of the upper

surface scale with the height for small height, and with the total

width for large height. (Simulation performed by P. Ramanlal,
University ol Michigan.)

structure with many arms'?, which are called ‘viscous fingers’,
This phenomenon has an obvious detrimental effect on enhanced
TeEcovery.

Paterson’s'' speculation was that the pattern of the viscous
fingering would scale like DLA. His reasoning was as above:
the pressure in an incompressible fluid obeys equation (4), with
u now standing for pressure, because fluid, like particles, is
conserved. D'Arcy's law is of the same form as equation (3).
Once more, many details have been ignored. In particular, the
role of surface tension in this and simifar situations will be
discussed below.

The reasoning has been verified most directly by Chen and
Wilkinson'*, who introduced discrete randomness into 2 Hele-
Shaw cell—the effect should be that of the random arrivals of
pariicles. Their patterns look almost exactly like Figs 2 and 4.
Another experiment, by Nittmann ef al', used the clever trick
of eliminating surface effects by taking for the two fluids water
and an aqueous polymer solution; the fluids are miscible but
mix slowly. Once more the pattern of fingering resembied the
simulations. There seems to be a source of randomness in this
experiment, probably arising from the non-newtonian flow
characteristics of the polymer solution; such shear thinning
could amptify noise. Even more startling is the experiment of
Ben-Jacob et al'®, who used a smooth Hele-Shaw cell, and one
with a periodic pattern, with newtonian fluids. [n some condi-
tions they observed DLA-like scaling without an evident source
of randomness, and without discrete ‘particles’.

Experts will notice that equations {3) and (4) are of the same
form (except for surface effects) as the description of
solidification when the limiting factor in growth is diffusion of
latent heat away from the surface of the growing crystallite.
Why, then, does a snowflake {unlike the crystalline deposit of
Fig. 2) not look like DLA, but is instead dominated by the
crystal symmetry? I will return to this aspect of growth in the
fina! section.

If particle aggregation doesn’t need particles, what does it
necd? More generally, we can ask what different types of model
give rise to scaling objects. For example, it is often the case that
aggregates are formed by adding particles with a long mean free
path, for example, in the formation of thin films by vapour-phase
deposition'®, [n this case we may assume that the paths of the
particles are straight lines. This model has become known as
ballistic aggregation, and it has a number of very curious
features. It is now known that the deposit itself is not a tenuous
object but achieves a coostant density”'*. (In contrast,
diffusion-limited growth on a surface® yields an open deposit
whose average density decreases with height.) It is of great
interest to understand the upper surface of the film, which is 2
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model of a random rough surface. It has been shown numeri-
cally" that for normal incidence of the depositing particles this
surface also has scaling properties: for example, the fluctuation
of the height scales with a non-integral power of the height, for
small height. This surface is probably not an ordinary fractal
curve, like Fig. 2, but is probably an example of a self-affine
fractal'?°. ‘Self-affine’ means that the scaling in two different
directions (width and height in this example) is different.

For non-normal incidence another effect appears, which is
well-known in thin-film technology'®. This is the columnar
microstructure: the film spontaneously forms as a set of nearly
parallel columns as it grows (see Fig. 5). The beginnings of a
theory of this effect exist’', but it is not known what, if any,
relationship these giant fluctuations have with the scaling fluctu-
ations at normal incidence.

The simplest aggregation process of all was introduced into
mathematical biology by Eden®?. This is a model for the growth
of a cell colony: a cluster is grown by adding particles at random
to perimeter sites. Once again the object is compact, but the
surface has interesting scaling properties which seem to be the
same as for ballistic aggregates with normal incidence®>. Scaling
is ubiquitous, and tends to have common features despite widely
different details of growth.

We still have not described how soot forms. The structure of
Fig. 1 is far more open than a DLA cluster: its fractal dimension
is ~1.8 (DLA in three dimensions has D =24). Extensive
measurements of soot?*, colloids®® and other similar objects
leads one to suspect that a different class of clusters is involved.
In fact, we have omitted a central feature of the formation
process of clusters which can coagulate, namely the aggregation
of clusters with each other’®?’. Figure 6 shows two stages of a
simulation of this process in two dimensions. We start with a
vapour of freely moving particles which stick together whenever
they come into contact, and then allow the clusters to continue
to move with, perhaps, a smaller diffusion constant. The large
fractals which are eventually formed have D =1.4. The corre-
sponding simulations in three dimensions give D = 1.8 and yield
the open structure of real colloids and aerosols. At each stage
of the process almost all of the clusters are of roughly the same
size.

The open structure and low fractal dimension which charac-
terize cluster-cluster aggregation are relatively easy to under-
stand. It is difficult for a random-walking particle to penetrate
a significant fraction of the radius of a growing cluster for
particle aggregation; it is even more difficult for an aggregate
of comparable size to do so. Thus, as aggregation proceeds,
open, fluffy structures are produced.

One variant of this mode! which is worth mentioning is
reaction-limited (chemically limited) aggregation?®. In many
cases, because of the details of the growth process, the sticking
is inefficient, and many attempts are required to form a new
cluster. In the limit of a very large number of attempts, the
fractal dimension increases from 1.8 to ~2. Reaction-limited
aggregation was probably discovered experimentally?®, before
the simulations were done. Later experiments®® have carefully

controlled the growth conditions and shown both growth
mechanisms, and both types of geometry, in the same system
for difterent growth rates. The encoding of kinetics in the scaling
in a form independent of details should be a powerful tool for
identifying growth mechanisms.

Attempts at theory

There is no general theory of irreversible growth. The descrip-
tions given in the previous section must be regarded as a kind
of phenomenology, albeit a useful one. We can point to situ-
ations in which there is scaling, but we are compelled to do
experiments, either in the laboratory or on the computer to
calculate anything. We do have a few analytical results, but they
give only partial information.

The best understood type of aggregation is the cluster-cluster
process. Suppose we assume, as stated above, that the dominant
cluster-cluster collision is between clusters of similar mass. If
we make the masses strictly equal we have a hierarchical model®'.
It is easy to believe then that we do have a fractal: agglomerating
parts in this way is exactly how the artificial fractal of Fig. 2
was made. (Note that particle aggregation is not hierarchical,
but it seems to be fractal nonetheless.) The specification of the
size distribution of clusters in the vapour, and the verification
of the hierarchical assumption, have been the objects of detailed
studies® which have shown that, indeed, the most common
collision is between clusters of nearly equal mass. Some of these
investigations use the techniques of colloid chemistry, in par-
ticular the Schmoluchowski kinetic equations, as well as com-
puter simulations.

There remains the problem of finding the geometry of the
clusters formed. Some progress has been made here because of
a detail which allows one of the favourite tricks of the theoretical
physicist to be applied. The real difficulty in visualizing the
process is excluded volume, that is, the tendency of clusters to
get in each other’s way because they can attach to each other
only on the outside. If they could attach anywhere it would be
much simpler to sort out what is going on. It is quite obvious
that excluded volume problems become less serious in high
spatial dimensions: there are more ways into a three-dimensional
cluster than into a two-dimensional one. Often, in equilibrium
studies, it is found that for sufficiently large dimension of space,
d, excluded volume is no problem at all: essentially any part of
a cluster is accessible from outside. The dimension at which this
starts to happen is called the upper critical dimension.

Above the upper critical dimension, calculations are simple,
anomalous scaling is independent of d, and there exist methods
(for equilibrium problems) which allow us to extrapolate to the
physical world of d =3. For cluster-cluster processes, this is
exactly what happens®>. The fractal dimension, D, for a cluster-
cluster aggregate cannot grow above ~3.4 and it attains this
value at about d = 7. This is rather far from the real world, of
course, and no one has yet figured out how to extrapolate.

The situation for particle aggregation is very different. Sup-
pose that the entire cluster were to become accessible to added
particles for a large enough value of d. Then the mass in the
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interior would grow without adding to the volume. The cluster
would quickly become so dense that it would no longer be
accessible. Thus, there is no upper critical dimension for DLA.
In fact, careful considerations of this sort can be turned into a
bound** on D:

d-1<D=<d (5)
The fractal dimension is never independent of the spatial
dimension, and the standard technique cannot be applied.

Some progress has been made in the study of particle aggrega-
tion by exploiting the similarity of the process to the famous
‘snowflake® problem, that is, the study of dendritic crystalliz-
ation®®. We can see, for example, why tenuous structures are
likely to arise in DLA and not in ballistic aggregation by noting
that in the DLA case we have a growth instability of exactly
the same form as the well-known Mullins-Sekerka*® instability
of crystal growth. The reasoning®*® goes as follows: suppose
we start with a smooth aggregate and ask why it grows sharp
tips. If we start with a tiny bump on the surface it will be
magnified into a tip by the fact that the bump will grow faster
than the rest of the surface: it will catch random walkers more
efficiently than the flat portions of the surface, and certainly
much more efficiently than the holes in the aggregate. The
analogous dielectric breakdown case will make this even clearer:
recall that the growth rate of any point on the surface of the
structure is proportional to the electric field there. Sharp tips
have large electric fields (the lightning rod effect). They grow
ever sharper and dominate the growth. In the viscous fingering
problem the same instability arises because it is easy for viscous
fluid to flow away from a growing tip. It is even possible to
specify a relationship between D and the characteristic opening
angle of the tips®® by using the mathematical theory of lightning
rods. Unfortunately, no one knows how to calculate these angles.
In fact, recent work indicates that there is an array of sharp tips
on the surface of the fractal DLA cluster whose distribution is
itself fractal®’.

For ballistic aggregates or for the Eden model there is no
growth instability: it is easy to see that a bump on the surface
neither grows or shrinks, but just adds a uniform skin, and tips
do not grow. The bulk of the material remains compact.

Fractals and snowflakes

In the last section we noted the usefulness of the analogy of
DLA with the kind of solidification most familiar (at least to
those in cold climates) in the formation of snowflakes, that is,
branched (dendritic) crystals. But particle aggregates do not
look like snowflakes. To be precise, in a typical dendrite, a
growing tip forms by the Mullins-Sekerka instability but then
stabilizes. It retains its shape and continues in a definite direc-
tion, although it may spawn side-branches as it grows. In DLA
(and in, for example, the zinc deposit of Fig. 2) the tips
repeatedly split and wander.
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There are three obvious differences between DLA clusters
and dendritic crystals: DLA has essentially zero surface tension,
it has a significant source of noise in the discrete arrivals of the
particles, and it has (at least in some versions of the model) no
analogue of crystal anisotropy. Sorting out how these affect the
process is a subject of current controversy and great intrinsic
interest.

Surface effects can be added in various ways to DLA simula-
tions***%; the result is to thicken the branches of the aggregate,
but the scaling is unaffected for large sizes. Nor do surface
effects, by themselves, make the equations of crystallization give
rise to snowflakes***'. Instead, something unexpected happens:
a growing tip with surface tension does not stabilize, but under-
goes repeated splittings, which are caused by the surface tension
itself. This is because surface tension slows the growth of sharply
curved surfaces and the end of the tip is the most sharply curved.
In order to make real dendrites, anisotropy arising from the
crystal structure must be introduced. The relationship of
anisotropy to tip-splitting was verified experimentally'® using
fluid flow in a Hele-Shaw cell with a lattice of grooves.

How does this relate to DLA? It is common to do DLA
simulations on a lattice (for convenience). Will the same thing
happen here as in the noise-free case; that is, will stable tips
form because of lattice anisotropy? It seems that the answer is
yes*>**: sufficiently large clusters on a lattice have the outline
of a crystallite, with tip splitting only on a small scale. But why,
without surface tension, do we ever get tip splitting? This is
because noise due to the discreteness of the arriving particles
can split the tips. This can be verified in various ways, for
example, by experiments and calculations which vary the noise"?
at fixed anisotropy. In cases where tip splitting is mainly due
to surface tension rather than noise, will we get an object which
scales? The answer to this question is not yet clear, but there
are indications'*>** that there is scaling, and that it is close to
that of DLA.

These considerations are of more than technical interest,
because they show how small effects (such as anisotropy) can
make qualitative changes in growth habit. A series of recent
experiments***® have shown, for example, how changes in
growth conditions, such as an increase in voltage in electrodepo-
sition, can change a fractal pattern like Fig. 2 into an ordered
dendritic crystal by increasing the effective anisotropy. This is
a fascinating example of the competition between scaling sym-
metry and ordinary spatial symmetry.

This work was supported in part by NSF grant DMR 85-05474.
I thank M. Sander and R. Merlin for comments on the manu-
script, P. Meakin, G. Smith, D. Grier and P. Ramanlal for
illustrations.

Note added in proof: There have been two interesting recent

attempts®”*® to explicate the competition between anisotropy

and noise.
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