015414-1-T SURFACE FIELD MEASUREMENTS ON SCALE MODEL EC-135 AIRCRAFT FOR VPD AND SRF DATA INTERPRETATION Valdis V. Liepa The Radiation Laboratory Department of Electrical and Computer Engineering University of Michigan Ann Arbor, Michigan 48109 July 1977

01 5414-1-T ABSTRACT Data have been obtained for the current and charge induced on a scale model EC-135 aircraft when illuminated by a plane electromagnetic wave in a simulated free space environment. The measurements were made on a 1/216 scale model over the frequency range 450 - 4250 MHz, simulating 2.1 - 19.7 MHz full scale. The test points and directions of excitation and polarization were chosen to correspond to those used in the full scale measurements at the VPD and SRF facilities at Kirtland AFB.

015414-1-T PREFACE It is a pleasure to acknowledge the enthusiasm given by Messrs. K. Powers, R. Stoddard, J. Tedesco, and K. Young in performing the measurements, computer programming, data processing, and other tasks related to obtaining these data. Special thanks go to Mr. I. LaHaie who spent many frustrating hours in the process of interfacing the HP9830A calculator with the University of Michigan computer. The assistance provided by the Computing Center personnel, especially Mr. Dave Flower, is also acknowledged. i

01 5414-1 -T TABLE OF CONTENTS Section Page Preface Illustrations iii I Introduction 1 II Measurements 2 III Data 8 ii

015414-1-T ILLUSTRATIONS Figure Page 1. An EC-135 mounted on a styrofoam pedestal in the anechoic 4 chamber for topside incidence, E parallel to the fuselage 2. A loop sensor placed for current measurement at TP:F520T, 5 top incidence, E parallel to the fuselage 3. A current measurement is made in front of a 6-inch diameter 6 sphere to calibrate the system 4. To minimize the lead interaction with the model in the charge 7 measurements, the coax is removed perpendicular to the fuselage 5. Directions of measured surface current components 10 6-65. Data plots, refer to Table 1 (page 15) for figure 15-75 identification iii

015414-1-T SECTION I INTRODUCTION The data presented here were obtained for the Autonetics Group of Rockwell International to assist in extrapolating [1] the results of tests made in EMP simulators, and the test points and excitation conditions were chosen to correspond to those used in measurements made in the VPD and SRF facilities at Kirtland AFB. The data were recorded, reduced and plotted digitally, and have also been furnished to Rockwell in digital form on computer cards, as well as stored on (IBM compatible) magnetic tape. It should be emphasized that the data are in raw form. So as not to lose information that may be relevant to the development of analytical techniques such as SEM, no smoothing has been carried out to remove the minor perturbations attributable to measurement noise, nor have any corrections been applied to account for probe integration. Based on previous measurements performed using clean cylindrical and spherical bodies, probe correction factors have been developed [2] which could be applied to the data in digital form were it found desirable to do so. 1. Carl E. Baum, "Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in Terms of EMP Criteria", AFWL Sensors and Simulation Notes, Note 222, 1977. 2. Valdis V. Liepa, "Sweep Frequency Surface Field Measurements", University of Michigan Radiation Radiation Laboratory Report No. 013378-1-F, AFWL-TR-75-217, 1975. 1

015414-1-T SECTION II MEASUREMENTS The measurements were made using a single 1/216 scale model 707 aircraft modified by the addition of HF wires and a refueling boom to simulate the EC-135. Based on the dimensions of the EC-135, the actual scaling factors for the model are 1/215.11 for the length and 1/225.29 for the wingspan and for measurements on the fuselage and wings the corresponding scale factor was used to convert a measurement frequency to a full scale one. For the most part the measurement techniques are the same as previously used [31, but two changes that were made are the use of a new and larger anechoic chamber [4] and the direct digitization and recording of the data. The measurements were performed over three overlapping bands 450 - 1100, 1000 - 2200 and 2000 - 4250 MHz with the model and sensor held fixed while data was obtained for all three bands. In contrast to previous studies where the probe was moved from one test point to another to complete the data gathering in each frequency band before moving to the next, the new procedure avoids the possibility of probe positioning error that can lead to discrepancies in the overlapping portions of the bands. On the other hand, the use of only a single model no longer enables us to employ the data spread to estimate the sensitivity to model differences and sensor positioning. 3. Valdis V. Liepa, "Surface Field Measurements on Scale Model EC-135 Aircraft", University of Michigan Radiation Laboratory Report No. 014182-1-F, AFWL-TR-77-101, 1977. 4. Valdis V. Liepa, "Surface Field Measurements on Scale Model E-4 Aircraft", University of Michigan Radiation Laboratory Report No. 014182-2-F, AFWL-TR-77-111, 1977. 2

015414-1-T The currents were measured using loops 0.31 cm in outside diameter made from 0.76 cm diameter 50 ohm semi-rigid coax, and the charge (or normal electric field) using a 0.2 cm long monopole made by extending the center conductor of the coax. Various views of the model with current and charge probes in position are shown in Figures 1 through 4 and details of the particular measurement situation are given below each figure.

0.15414-1-T Figure 1. An EC-135 mounted on a styrofoam pedestal in the anechoic chamber for topside incidence, E parallel to the fuselage. The vertical wire in the upper part of the photograph is a magnetic sensor. The photograph was taken from the transmitting antenna direction.

015414b1 -T Figure 2. Ao loop sensor placed for current measurement at TP1:FS2OT, top incid.ence, E parallel to the fuselage. For thais view the incidence is from the left. 5..............

015414-1-T Figure 3. A current measurement is made in front of a 6-inch diameter sphere to calibrate the system. In case of charge measurements, a 3-inch diameter sphere which can be split in two halves to insert the sensor is used. The calibration measurement is then made with the monopole placed at the shadow boundary of the sphere. ~.~~~~~~~

015414-1-T Figure 4. To minimize the lead interaction with the model in the charge measurements, the coax is removed perpendicular to the fuselage. In this particular situation the charge would be measured at TP:F1350T, E perpendicular to the fuselage. 7-0

015414-1-T SECTION III DATA Results are presented for 36 current and 24 charge measurements, and the cases considered are summarized in Table 1, which can also serve as a guide in locating a particular data set. The abbreviations used in the Table and in the subsequent plots are as follows: PARF - electric field parallel to the fuselage PERPF - electric field perpendicular to the fuselage PARV - electric field paralled to the vertical stabilizer TOP - top incidence NOSE - nose-on or forward incidence SIDEL - broadside incidence, left side In the identification of the test points, letter references are: F - fuselage HL - horizontal stabilizer, left WL - wing, left VL - vertical stabilizer, left side and the letter T or B following a test point number indicates a top or bottom measurement respectively. The particular measurement situation is also described in the title printed on each figure. As an example, consider Figure 6. The title at the top gives the test point location (TP:F520T), the polarization (PARF), the illumination (TOP), the quantity measured (JA), and the file names where the data is stored (E1207, E1209, E1211). As a futher aid, a sketch of the aircraft is included showing the measurement point and the directions of excita8

015414-1-T tion and polarization. The current amplitudes are normalized to the incident magnetic field H and the charge amplitudes to the incident electric field Eo. The incident field phase reference (or origin) is TP:F520T. A time convention eimt is employed, corresponding to a phase decrease on moving away from the source. Figure 5 shows the components of the skin currents measured at the various test locations. The words "axial" (JA) and "circumferential" (JC) used in describing these components are somewhat arbitrary. Thus, on the wings and horizontal and vertical stabilizers, the components JA and JC are actually perpendicular and parallel to the fuselage, respectively. If the component in any other direction is required, this can be obtained from j JAcos a + Jcsin a where a is the angle between the directions of JA and Ja measured positively towards JC' In this equation, all currents are complex quantities, reconstructed from amplitude and phase data. Due to the symmetric shape of the model one would expect that for certain excitations some of the fields measured on the fuselage should be zero. These cases are indicated by an asterisk (*) in Table 1 and also noted on the appropriate figures. However, due to the presence of the HF wires, the model is not really symmetric and many data that should be null show evidence of coupling from the wires to the fuselage (see Figures 22, 50). The measurements away from these wires, such as those near the nose and on the bottom of the fuselage, show less coupling and hence should be (theoretically) zero. The amplitudes of the order of 0.2 that are measured (see Figures 21, 26) are then indicative of the typical noise or background signal level present in the data. 9

015414-1-T JA' C 900Ax ~ A TOP \AAtJA C BOTTOM Figure 5: Directions of Measured Surface Current Components. 10

015414-1-T For those who may need the data in digital form, an illustration of a typical data set is provided by Table 2 showing the data used to generate Figure 30. It consists of three separate files, recorded in different bands and each stored in the format: 1. FILENAME (4A4) 2. Comments (18A4) 3. Comments (18A4) 4. TITLE for plotting (18A4) 5. FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN (4F8.3, 2F8.2, I5) data 6. F(1) AMP(l) PHASE(1) F(2) AMP(2) PHASE(2) F(3) AMP(3) PHASE (3) (3(2F8.3, F8.2).. F(NN) AMP(NN) PHASE(NN) The data is stored on magnetic tape and can be provided to any authorized user. 11

01 5414-1-T 1 E1211 2 EC135/216,F520T,PARF TOPJA, 1,A, 6/23/77 3 4 5 2.104 5.151 3.214 9.144 -28.59 50,09 138 6 2.104 4.804 50.09 2.126 4.511 47.75 2.14,8 4.634 48.90 7 2.170 4.673 47.64 2.193 4.854 47.17 2.215 4.837 47.99 8 2.'237 4.841 47.19 2.259 5.015 49.19 2.282 5.146 49.08 9 2.304 5.4'27 47.96 2.326 5.567 47.93 2.348 5.579 46.19 10 2.371 5.854 44.85 2.393 5.904 45.49 2.415 5.953 43.54 11 2.437 6.157 43.67 2.460 6.093 44.90 2.482 6.415 43.72 12 2.504 6.783 44.45 2 526 6.864 43 26 2. 548 7.205 40.28 13 2.571 7.388 38.89 2.593 7.334 35.90 2.615 7.483 36.01 14 2.637 7.511 35.92 2.660 7.624 32.32 2.682 7.899 32.63 15 2.704 7.959 31.34 2.726 8.129 28.45 2.749 8.358 27.36 16 2.771 8.224 24.97 2.793 8.375 22.39 2 815 8.350 21.81 17 2.838 8.268 19.83 2.860 8.589 18.96 2.882 8.619 17.59 18 2.904 8.626 13.73 2.927 8.834 12.57 2.949 8.656 10.22 19 2.971 8.461 6.58 2.993 8.364 5.84 3.016 8.080 4.21 20 3.038 8.021 2.09 3.060 7.980 1.67 3.082 7.847 -0.53 21 3.105 7.895 -2.83 3.127 7.672 -4.02 3.149 7.437 -6.49 22 3.171 7.309 -8.06 3.194 6.922 -9.72 3.216 6.692 -11.97 23 3.238 6.468 -12.01 3.260 6.096 -13.04 3.283 5.904 -14.45 24 3.305 5.601 -14.96 3.327 5.289 -15.96 3.349 4.993 -15.94 25 3.372 4.554 -14.81 3.394 4.134 -13.78 3.416 3.787 -10.02 26 3.438 3.359 -3.27 3.461 3.214 7.71 3.483 3.647 21.70 27 3.505 4.774 25.40 3.527 5.645 16.50 3.550 5.439 8.03 28 3.572 4.857 4.86 3.594 4.469 7.11 3.616 4.266 12.37 29 3.639 4.235 17.54 3.661 4.433 22.92 3.683 4.706 26.51 30 3.705 5.111 28.42 3.728 5.551 30.43 3.750 5.975 30.96 31 3.772 6.446 30.30 3.794 6.955 29.15 3.817 7.401 27.21 32 3.839 7.841 24.98 3.861 8.137 22.56 3.883 8.406 19.66 33 3.906 8.665 16.96 3.928 8.812 14.37 3.950 8.940 11.59 34 3.972 9.093 8.93 3.995 9.018 6.36 4.017 9.091 4.51 35 4.039 9.144 2.67 4.061 9.073 0.43 4.083 9.066 -1.80 36 4.106 9.040 -3.32 4.128 8.953 -5.44 4.150 8.910 -7.45 37 4.172 8.768 -9.16 4.195 8.589 -11.06 4.217 8.396 -12.46 38 4.239 8.209 -13.35 4.261 8.065 -14.04 4.284 7.980 -14.23 39 4.306 7.861 -14.72 4.328 7.798 -15.20 4.350 7.792 -15.99 40 4.373 7.805 -17.27 4.395 7.731 -18.15 4.417 7.640 -18.84 41 4.439 7.518 -19.52 4.462 7.415 -20.11 4.484 7.316 -21.10 42 4.506 7.252 -21.69 4.528 7.142 - 2.29 4.551 7.033 -22.89 43 4.573 6.928 -23.39 4.595 6.841 -23.50 4.617 6.757 -23.71 44 4.640 6.720 -23.73 4.662 6.685 -23.76 4.684 6.651 -24.39 45 4.706 6.603 -25.23 4.729 6.526 -26.17 4.751 6.465 -26.72 46 4.773 6.391 -26.78 4.795 6.246 -26.55 4.818 6.205 -26.22 47 4.840 6.192 -26.41 4.862 6.166 -26.60 4.884 6.126 -27.10 48 4.907 6.073 -27.61 4.929 6.007 -27.92 4.951 5.915 -28.05 49 4.973 5.865 -28.09 4.996 5.815 -28.03 5.018 5.753 -27.98 50 5.040 5.744 -28.05 5.062 5.695 -28.12 5.085 5.674 -28.30 51 5.107 5.639 -28.28 5.129 5.566 -28.58 5.151 5.544 -28.59 Table 2. Data used for Figure 8 (3 files) 12

015414-1-T I E1209 2 EC135/216,F520TPARF TOPJA,2,A,6/23/77 4 5 4.651 10.256 1.395 6.772 -61.67 12.74 127 6 4.651 6.772 -23.94 4.695 6.719 -24.60 4.740 6.488 -26.09 7 4.764 6.282 -26.31 4.829 6.184 -25.66 4.873 6,175 -26.35 8 4.918 6.040 -27.67 4.962 5.856 -27.2 5.007 5.744 -27.01 9 5.051 5.713 -26.93 5.096 5.643 -27,29 5.140 5.498 -27.99 10 5.185 5.468 -27.11 5.229 5.513 -27.47 5.274 5.443 -30.76 11 5.318 5.263 -30.08 5.363 5.158 -29.62 5.407 5.160 -29.19 12 5.452 5.160 -29.19 5*496 5 122 -29.70 5.541 5.083 -30.34 13 5.585 5.031 -30.89 5.630 4.920 -31.45 5.674 4.777 -30.73 14 5.719 4.689 -29.31 5.763 4.643 -29.51 5.808 4.575 -28.00 15 5.852 4.663 -25,21 5.896 4.807 -25.41 5.941 4.896 -29.01 16 5.985 4.871 -28*40 6.030 4.856 -29.20 6.074 4.905 -34.58 17 6.119 4.753 -30.46 6.163 4.699 -32.62 6,208 4.731 -31.97 18 6.252 4.740 -31.31 6.297 4.769 -32.03 6.341 4.775 -33.14 19 6.386 4.736 -34.03 6.430 4.707 -34.20 6.475 4.764 -35.45 20 6.519 4.810 -37.88 6.564 4.659 -37.89 6.608 4.564 -39,58 21 6.653 4 501 -40.05 6.697 4.470 -40 69 6 742 4. 429 -41.41 22 6.786 4.328 -41.71 6.831 4.329 -42.48 6.875 4.250 -41.63 23 6.920 4.232 -45.16 6.964 4.109 -45.27 7.009 4.055 -45.26 24 7.053 4.030 -46.33 7.098 3.907 -47.78 7,142 3.805 -47.72 S? 7.187 3.751 -45.84 7.231 3.724 -47.45 7.276 3.656 -50.15 26 7.320 3.566 -48.84 7.365 3.660 -48.72 7.409 3.622 -55.90 27 7.454 3.393 -61.67 7.498 3.100 -56.84 7.542 2.940 -61.01 28 7.587 2.707 -56.89 7.631 2.558 -56.97 7.676 2.485 -54.86 29 7.720 2.432 -54.06 7.765 2.310 -54.57 7.809 2.216 -54.09 30 7.854 2.102 -52 52 7.898 2.035 -50,67 7.943 2.004 -51.84 31 7.987 1.803 -52.72 8,032 1.576 -47.52 8.076 1.534 -38.54 32 8.121 1.653 -36.08 8.165 1.636 -37.54 8.210 1.476 -34.81 33 8.254 1.468 -28.31 8.299 1.452 -25,.92 8.343 1.395 -19.74 34 8.388 1.499 -12.69 8.432 1.687 -11.35 8.477 1.747 -12.83 35 8.521 1.697 -12.22 8.566 1.689 -10.32 8,610 1.709 -10.04 36 8.655 1.647 -7.86 8.699 1.646 -1.90 8.744 1.751 3.56 37 8.788 1.914 3.80 8.833 2.111 -0.95 8.877 2.108 1.98 38 8.922 2.100 -1.98 8.966 2.039 2 65 9.011 2.068 0.88 39 9.055 2,054 4.31 9.100 2.155 8.34 9.144 2.372 9.08 40 9.188 2,448 5.62 9.233 2.434 4.96 9.277 2.437 6.01 41 9.322 2,.507 7.57 9.366 2.486 3.54 9.411 2.408 7,01 42 9.455 2.534 10.10 9.500 2.666 9.89 9.544 2.679 8.80 43 9.589 2.741 11.12 9.633 2.870 12.15 9.678 3.011 9.49 44 9.722 2.996 8.95 9.767 3.058 9.42 9.811 3.164 8.20 45 9.856 3.199 7.70 9.900 3.325 6.91 9.945 3.363 4.33 46 9.989 3.416 -0.03 10.034 3.158 -4.08 10.078 2.808 -1.32 47 10.123 2,694 5*26 10.167 2.751 10.54 10 212 2.955 12.74 48 10.256 3.075 12.54 Table 2. Data used for Figure 8 (cont.) 13

015414-1-T 1 E1207 2 EC135/216,F5'20TPARF TOPJA3,,A,6/23/77 3 4 EC-135 TP:F520T PARF TOP JA;E1207v1209,1211 5 9.298 19.773 1.056 5.369 -45.41 12.54 135 6 9.298 2.402 3.05 9.376 2.341 6.01 9.454 2.552 8.60 7 9.532 2.638 8.92 9.610 2.827 9.08 9.688 2.961 7.08 8 9.767 3.065 6.72 9.845 3.253 4.60 9.923 3.298 0.52 9 10.001 3.022 -5.82 10.079 6.608 1.58 10.158 2.797 9.02 10 10.236 3.028 10.99 10.314 3.280 10.89 10.392 3.364 11.51 11 10.470 3.666 12.54 10,548 3.951 9.99 10.627 4.080 7.93 12 10.705 4.167 6.27 10.783 4.278 5.30 10.861 4.540 4.42 13 10.939 4.732 1.31 11.017 4.745 -1.33 11.096 4.826 -3.20 14 11.174 5.001 -5.30 11.252 5.008 -7.63 11.330 5.096 -8.50 15 11'.408 5.369 -11.60 11.487 5.351' -15.64 11.565 5.320 -18.91 16 11.643 5.275 -21.40 11.721 5.181 -25.13 11.799 4.892 -27.17 17 11.877 4.812 -28.13 11.956 4.666 -28.21 12.034 4.628 -29.70 18 12.112 4.401 -30.79 12.190 4.330 -29.88 12.268 4.318 -31.56 19 12.346 4.167 -31.54 12.425 4.218 -31.71 12.503 4.162 -34.16 20 12.581 3,956 -34.59 12.659 3,865 -36.20 12.737 3.899 -36.68 21 12.816 3.764 -37.84 12.894 3.692 -36.97 12.972 3.664 -37.77 22 13.050 3.586 -38.05 13.128 3.551 -37.70 13.206 3.516 -37.92 23 13.285 3.508 -38.22 13.363 3.436 -38.50 13.441 3.470 -38.06 24 13.519 3.433 -39.71 13.597 3.391 -40.26 13.676 3.281 -40,99 25 13.754 3.236 -39.63 13.832 3.275 -40.27 13.910 3.248 -40,72 26 13.988 3.200 -41.48 14.066 3.104 -41.55 14.145 3.138 -41.05 27 14.223 3.124 -42.36 14.301 3.060 -42.99 14.379 3.004 -43.85 28 14.457 2.937 -43.83 14.535 2.864 -44.34 14.614 2.805 -43.27 29 14,692 2,831 -43,62 14*770 2.766 -44.29 14.848 2.727 -44*68 30 14.926 2.645 -44.78 15.005 2.624 -42.99 15.083 2.615 -43.51 31 15.161 2.580 -44.04 15.239 2.522 -44.67 15.317 2.487 -43.51 32 15.395 2.481 -44.14 15.474 2.395 -44.16 15.552 2.364 -43.17 33 15.630 2.318 -42.97 15.708 2.298 -42.66 15,.786 2*242 -42.64 34 15.864 2.197 -41.09 15.943 2.197 -40.13 16.021 2.192 -39.84 35 16.099 2.172 -39.34 16.177 2.143 -37.82 16.255 2.163 -36.98 36 16.334 2.159 -36.42 16.412 2.155 -34.95 16.490 2.228 -34*46 37 16.568 2.298 -35,.06 16.646 2.328 -37.16 16.724 2*289 -38.04 38 16.803 2.289 -39.33 16.881 2.221 -40.41 16.959 2.197 -39.60 39 17.037 2.193 -39.89 17.115 2.200 -40.59 17.193 2.163 -42.31 40 17.272 2.078 -43.03 17.350 2.052 -42.47 17.428 2.056 -42.93 41 17.506 2.045 -44.00 17.584 1.966 -45.29 17.663 1.894 -44.69 42 17.741 1.876 -45.31 17.819 1.778 -45.15 17.897 1.728 -44.80 43 17.975 1.683 -43.27 18.053 1,.712 -43.24 18.132 1.644 -43.82 44 18.210 1.612 -44.71 18.288 1.533 -45.41 18,366 1.444 -44.40 45 18*444 1.369 -42.60 18.523 1.353 -39.79 18.601 1.346 -40.18 46 18.679 1.270 -41.27 18.757 1.170 -40.04 18.835 1.064 -35.20 47 18.913 1.057 -28.95 18.992 1.056 -25.49 19.070 1.059 -21.52 48 19.148 1.072 -19.03 19.226 1.070 -16.13 19.304 1.086 -13571 49 19.382 1.094 -9.38 19.461 1.150 -6.63 19.539 1.194 -5.28 50 19,617 1.209 -3.91 19.695 1.197 -2.04 19.773 1.238 1.64 Table 2. Data used for Figure 8 (cont.) 14

Table 1: DATA IDENTIFICATION Measurement Orientation 1 Orientation 2 Orientation 3 Orientation 4 Point PARF; TOP PERPF; TOP PARV; NOSE PARV; SIDEL Rockwell U of Mich JA JC E JA JC E JA J 02x006 F520T Fig. 6 18* 42 Fig. 21* 29 49* 04x016 F1350T 7 43 22* 30 50* 05x049 HL184T 8 23 Fig. 37 06x049 HL184B 9 10x045 WL900T 10 44 51 Fig. 56 62 11x040 WL450T 11 45 24 31 52 32 57 38 12x037 WL227T 12 46 53 33 58 63 13x006 F520B 13 19* 47 25* 54* 34 59 39 64 16x022 F1631B 14 20x005 F460B 35 60 25x021 F1608B 15 26* 26x016 F1350B 16 20* 48 27* 55* 61 40 65 07x052 VL149 17 28 41 21x042 WL560T 36 Footnotes:HF Antenna Connected-all data SIDEL - left side incidence - Airborne-all data TOP - top incidence PARF - E parallel to fuselage NOSE nose-on incidence PERPF - E perpendicular to fuselage PARV - E parallel to vertical stabilizer *except for the presence of HF wires these are zero field measurements

015414-1 -T 12.0 E EC-125 TPtF52CO PRF TOP OF E1207. 1209, 2' l /7 -/7 O.j~~~~ O — ~~~ ~27 JUN 77 Um FREgUENCY:MHZI EC-!35 TPtf520T PARF TOP JAt E1207, 1209, 121 TOP,L / 1 27 JUNI -7 Um 0.0 4.3 8.0:2.0 18.o 20.0 FRE2UE."Y:1M.H- Figure 6: Axial Current at TP:F520T, Orientation 1. 16

015414-1-T 4 0. a............ EC-135 TPtFI350T PRBF TOP JR Ell4l.1139,11 7 E 32.0 TOP 24,.0 16.0 8.0 0. o_ 27 0. 0. O 8.0 12,0 18.0 20.0 FREQUENCY HMHZ] 200.0 EC-135 TPIF1350T PRRF TOP JRiE1l411,138g11 7 E 100.0 TOP 0.0 -100.0 0 ~-200. ~0.........:..___..~~ 27 JUN 77 UM 0.0 4.0 8.0 12.0 8.,0 20.0 FRbEUNC~ tMHZ] Figure 7: Axial Current at TP:F1350T, Orientation 1. 17

015414-1-T 2. 0 EC-135 TP KHLt84T PARF TOP JRA E1107,1109, l 1 1 A KI E /7 i. JUt. 77 US ~-0 4.O 8 0 t2.0 16.0 20.0 FREQUEN:C IHHIJ 200.0 EC 1 3S TP HL 184T PRRF TOP JR E 1 107. 1 1 09. 11 I -200.0..........., ~ JUL 7, | 0 0 4.. 8.0 12.0 16.0 20.0 FREQUENCY rMHZ] Figure 8: Axial Current at TP:HL184T, Orientation 1. 18

015414-1-T U. O EC-13S TPtHLl84B PRRF TOP JAIElI7,1115.11 3 K E -7 -J 3.0 1.0 0. 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _2 35 JU N 7'7 U M 0.0 U14. 8.0 12.0 16.0 20.0 FREgUENCT tIMHZ 200.0 EC-135 TPtHL184B PRRF TOP JREl11t7.111. 3 100.0 0.0 E 23 JUN 77 U, -200.0..._, _._-_,_.._,.............. 0.0 4.0 8.0 12.0 16.0 20.0 FREQUENCT;HH!] Figure 9: Axial Current at TP:HL184B, Orientation 1. 19

015414-1 -T 4. 0... EC-13S TP,NL900T PRRF TOP JRt EII 1121, t 13 K c 3.0 2.0 /0. 0________~ 18 JUL 77 UM 0. 4.0 8.0 12.0 16.0 20.0 PREQUENCY CHH(t 200.0 EC-135 TPNtL9OOT PARF TOP JRE119,112,113 100.0 0.0 0 00.0 G-200.0 _ ___ 18 J2L 77 U 0.0 4.0 8.0 12.0 18.0 20.O FRElUENCY fMHflt Figure 10: Axial Current at TP:WL900T, Orientation 1. 20

015414-1-T L&. 0 I EC-135 TPIWL450T PARF TOP JRtE1129.1127,1115 E 3.0 J0r —=J 2.0 1,0 0. 0,:....::. 2.2 N 77 UM 0.0 4.0 8.0 12.0 18.0 20.0 FREaUENC~Y fMHZ1 200. 0 EC-t35 TPtNLL450T PRRF TOP JQREI129,1127.1 t5 0. 0 -100,0 -200.0 ___________ __________ ______________ 27 JUN 77 UM I 0.0 4.0 8.0 12.0 18.0 20.0 FREQUENCT MHHZ] Figure 11: Axial Current at TP:WL450T, Orientation 1. 21

015414-1-T I EC-135 TPNWL227T PRRF TOP JR!E1131.1133.,11 5 E 3. 0 TOP F= 2,0 I, 0 0. 0 27 JUN 77 U Hm| 0.0.0 8.0 12.0 18.0 20.0 FREQUENCYT HHZI 200.0 EC-135 T tNL227T PRAF TOP J~rEl3t.1133,11 5 E 1. 0 I /_ -100.0 ~~-200. 0 ________________ ______,27 JUN 77 UM 0.0 0.O 8.0 12.0 18.0 20.0 FREQUENCY fMHH!] Figure 12: Axial Current at TP:WL227T, Orientation 1. 22

015414-1-T 8. 0 EC-135 TPF5208 PARF TOP JREI1205,1203.120i K E 6t.0 2. 0 27 JUN 77 UM 0.0.0 8.o0 12.0 18.0 20.0 FREQUENCY (HHlI EC-t35 TP F520B PRRF TOP JARE'205, 1203.120 -200. 0 L................ - 27 jUN 77 UM i 0. 0.0 8,0 12.o 18.0 20.a FRE:UENCY tHHZl Figure 13: Axial Current at TP:F520B, Orientation 1. 23

015414-1-T 4. 0...... EC-135 TPtF1831B PRiF TOP JARElll3,114 5.11, 7 E 3. 03 * BOTTOM 2.0 I o0.0o ______________ ___ _..... __.......27 JUN 77 UM 0.0 2.0 8.0 12.0 18.0 20.0 FfREgUENCT fHHZ] 2 0 0. 0... /, EC- 35 TPtF B31B PARF TOP JAR E1U3, 115.11 t7 E 100.0, BOTTOM 0. 0 -100.0 -200......_... * * 27 JUN]77_ UM a,0. U4.0 8.0 12.0 18.0 20.0 FREQUENCY IMHZ! Figure 14: Axial Current at TP:F1631B, Orientation 1. 24

015414-1-T.C-135 TPiFtBO8 PRRF TOP JRsE1153.15l. 1. K E 2.0 a \ 27 JUN 77 UM 0.0 4.0 8.0 12.0 18.0 20.0 FR0EQUENCY MHH!L1 200.._. _._. _. _.. _._. _. 200.0 E-r35 1: CFumern PFialF TOP JC rEr a53,'Otion 11, BOTTOM 0,0 Figure 15: Circumferential Current at TP: F16088, Orientation 1. 25

01 5414-1 -T 168.-0... EC-135 TP*F1350B PARF TOP JRtE1155,1157, 19s K E 12.0 1 8CTTSM F 8.0 a.0 i 0.0 O...4.. 0.0 4.0 8.0 12.0 18.0 20.0 FREQUENCY IHHZ) 200., EC-35 TPtFI350B PFRF TOP JRsEl155, 1157.113g 100.0 0.0,BATOM -2_000...____.. 27 JUN 77 UM: 0.0 4.O 6.0 12.0 8!6.0 20.0 FfRQUENCT [HtMHZ] Figurel6: Axial Current at TP:F1350B, Orientation 1. 26

01 5414-1-T 4. 0, -.... EC-135 TPtVL1U9 PARF TOP JRtE1105.t103,11t 3.0 2.0 23 JUN 77 UM 0.0o. U. 8. 12. 0 1 6.0 20. 0 FREQUENCTr (MHH 200.0 C-135 TPYtLt49 PARF TOP JREI105l.103.110 100.0 U 0.0 -zoo...................... 19 i 0.0 4.0 8.0 12.0 16.0 20.0 FREQUENCT HHM!1 Figure 17: Axial Current at TP:VL149, Orientation 1. 27

01 5414-1-T EC 1 35 TPtiFS20T PARF C:E831,.833.835 A A~ K( E. 7IP 0.8'7. IA] T0P - 0.6 0.2-~ o. _______.__,_l_._-_-_. 19 JUL 77 UM 0.0 4.0 8.0 12.0 18.0 20.n FREQUENCT MHHZ) EC 135 TPtF520T PRRF7C:E831.833.835 Tu z 100. 0 0.0 K E -1 00. 0 70P -200.0. __!8JUL77 uM 0.0 4.0 8.0 12.0 16.0 20.0 FRE2UENCT (MK!1 Figure 18; Circumferential Current at TP:F520T, Orientation 1. (see *, page 15) 28

015414-1-T 2....... EC-135 TPtF520B PRRFJCtE8S41.839.837 ^ A K E TOP.0 I JUN 77 UM 0.0 4.0 8.0 12.0 16.0 20.0 FREQUENCY (nMH1 200.0 EC-135 TPtF5208 PRRfJC&E841,839.837'OP I100.0 -I0... _ - 0._ A K E 0.0..0 8L. 12.0 16.0 20.0 FREQUENCY IMH!1 Figurel 19: Circumferential Current at TP:F520B, Orientation 1. (see *, page 15) 29

01 541 4-1 -T 2.0 EC-135 TPtF13508 PRRFJC 8.ES438,45.847.5 0.o0 4,, JUN 77 UM 0.0 4.0 8.0 12.0 16.0 20.0 FREQUENCYr MHTZ 200. 0 EC-135 TP2 F350 PCRrJC E43. 845. 8ti147 100.0 0.0 -10a0.0 7........... -200.0 ______ _____ _ ______ ______ _________ 0 1 JUN 77 U 0.0O 8.0 12.0 16.0 20.0 30 3 pRJE315)

015414-1-T EC-135 TPtF520T PEPF TOP JR E911,909,907 K 0.8 I o. 2, ~~~~~~~0. ~~~~0 L ~ ~16 JUN 77 UH 0.0 4.0 8.0 12.0 16.0 20.0 FREPQUENCY I(HZI 200.0 -200.0 1 EC 3Figr T520T E TopPF JR 91.9.Orientat n 2. 1l0.3 C.3 8.0 12.. 20.0

015414-1-T 8,0 EC-135 TPtF1350T PERPFJRsE901,903.905 A TOP 6.0. 0 2.0 0.0o 4,0 8. 0 12.0 16.0 20.0 FREQUENCY WMtZl 20 0. 0 EC-135 TPtF1350T PERPFJRtES01,903, 905 A 100.0 0.o -2000.0.... 5 JUN 77 UM 0.0 tS.0 8.0 t2.0 15.0 20.0 FREQUENCY (MM1~ Figure 22: Axial Current at TP:F1350T, Orientation 2. 32 (see *, page 15)

015414-1-T 8.0 EC-135 TPtHL184T PERPF TOP JRIE1229.1227.1 25 q,.O 2.0 29 JUN 77 UM 0O. 4.0 8.0 12.0 18.0 20.0 FREQUENCT tMHtl 200.0 EC-135 TPiHL184T PERPF TOP JR:EI229.1227,. 25 100.0 TOP 0.0 -100.0 ~~~-200.0..................29 JUN 77 UM -200:. 0 -o. i 0.0 ILO 8.0 12.0 16.0 20.0 FR~gUENCT tMHZ: Figure 23: Axial Current at TP:HL184T, Orientation 2. 33

015414-1-T EC-135 TPtNL450T PERPF TOP JR E1241. 1239S. 37 8.0. TOP 6.0 2.0 0.0.....,-............,, 27 JUN 77 Um 0.0 4.O 8.0 12.0 18.0 20.0 FREQUENCYY (HZ! 200.0 EC-135 TPtNL450T PERPF TOP JRsE12t41,1239, 1S37 K TOP -100.0 -o 0. o a 0.0 4 8.0 12.0 18.0 20.0 FREgUENCT INHH! Figure 24: Axial Current at TP:WL450T, Orientation 2. 34

015414-1 -T EC-135 T 5 F520 PERPF TOP JRlE9t3.915.91l7 1. 1 0.8 O.1 0.2 0. __L- _is __________,_________,____ 18 JUN 77 UM.O0.0 8.a 12.0 16.0 20. 0 FREQUENCY (Hl1 200.0 -15 TP OB0 PERP, TOP ( *,13,91a, 917 0.0,. 0.0 4.0 8.0 12.0 16.0 20.0 FRaQUENCT HZ1 Figure 25: Axial Current at TP:F520B, Orientation 2. (see *, page 15) 35

015414-1-T' 0- - 1 -I EC-135 TP:F16088 PERPF TOP JRFE12t3.. 221,1223 0.8.a 0. I 0. 42 o.,~_________ o.8e Jut 77 UM - ~ o u~o 8*0 lZ.0 lE.0.020. -10.0 JU.77 U. 0.0 UO 8.0 12.0 I8.0 20.0 FREQUENCT!HMH!1 Figure 26: Axial Current at TP:F1608B, Orientation 2. (see *, page 15) cc0. a- ~ ~ ~ i I~ ~..........77U

015414-1-T. -..,............ EC-135 TPtFt350B PERPF TOP JRaE937,939.941 0.8 0.4 0.2 200.0 Q....pP........N.,J/kj..............., 18 JUN 77 UM 0.0 4.0 8.0 12.0 16.0 20.0 FREgUENCY [MHZI EC-135 TPtF1350B PERPF TOP JOAE937.939,941 OT( O 1 u: - 0.0 0.0'4. 8.0 2.0 16.0 20.0 FPEU ENCT'MHZ1 Figure 27: Axial Current at TP:F1350B, Orientation 2, 37 (see *, page 15)

015414-1-T EC-135 TPtVL149 PERPF TOP JASE!231.t233,1235 E 8.0 2.0 0.0.0....._,.., 27 JUN 77 UH,0.,0 8.0 12.0 18.0 20.0 FMRQUENCY tMHH2 200.0 EC-l35 TPXVL149 PERPF TOP RE123,123,312 5 tO0.O 0.0 E -to0.O _ -200.0..27 JUN 77. 0.0 4*O 8.0 12.0 16.0 20 0 FEQUENCY fHHZ)] Figure 28: Axial Current at TP:VL149, Orientation 2. 38

01 5414-1 -T 4...'.......T EC-135 TPtF520T PERPF TOP JC;E923.921., 13 3.0 TOP z 1 _b. 2.0 1.0 |0. 18 JUN 77 U lI 0.0.0o 8.0 12.0 16.0 20.0 FREQUENCY MHIZI 20 0...,,.. EC-135 TPtFS20T PERPF TOP JCtE923,921.919 ~- 0.0 -100.0. 18 J1UN 77?UM } -200.0.____... 1 J 77 i 0.0 4.o 8.0 12.0 18.0 20.0 FREQUENCT IHHZI Figure 29: Circumferential Current at TP:F520T, Orientation 2. 39

015414-1-T EC-135 TPIFI35OT PERPF TOP JC:E925.927.929 3.0 0 TOP 2.0 1. 0 L0.0 __________.-..~. 12.0,18 JUN 77 UM o.........! _.00 4.0 8.0 12.0 18.0 20.0 FREGUENC [HYHZI 200.0.._... E -1 TPF SO3T PERPF TOP JC;E925.927,929 TOP 0.0 -100.0 -200.0 1~ JU0 77 UH 0.0 4.0 8,.0 12.0 18.0 20.0 FREQUENCY [MHZI Figure 30: Circumferential Current at TP:F1350T, Orientation 2. 40

015414-1-T u., O EC-13S TP.UW450T PERPF TOP JCtE935,933.931 T OP \ 2.0 1u 0.0 lS_____________________________________ 18 JUN 77 UM 0.0 a.0 8.0 12.0 18.0 20.0 FREQUENCT (MHZIl 200. 0 -...... -' *........... -' -.'. - EC-t3S TP:W. SOT PERPF TOP JC~E935.333.931 100.0 2 i 0. ~0 18 UN 7* -200 ~..0'_.....__ _ _ _ __....... 0.0 I.0 8.0 12.0 16.0 20.0 FREQUENCT (HHZ] Figure 31: Circumferential Current at TP:WL450T, Orientation 2. 41

015414-1 -T 1.0 EC-135 TPtL45OT PRRV NOSE JRsE1II.Ea03t9 j 0.8 2 0.6 I II I O.2[.o!....8,,, JULY 77 UM 0,0 4.0 8.0 12.0 16.0 20.0 FRt2UENCT (HHZ! 200.0 EC-135 TPtNL450T PRRV NOSE JAIElltEI0.1t D E. K 100., -100.0 t a.X,'8JY7V -200.0 i JULT "7 UM 0.0 L0.O 8.0 O12.0 16.0 20.0 FRE0UE1lCT CMHH! Figure 32: Axial Current at TP:WL450T, Orientation 3. 42

01 5414-1-T EC-135 TPi*tL227T PRRV NOSE JREIOt.103.105 E K 1.0 XI~~~~~~~~~~~~n i 0.5 lO!~~~~~~~~~~i.l JUtLY 77 UM 0.0 ____________. ____________________..... I..7.U i 0.0 4.0 8.0 12.0 18.0 20.0 FRE2UENCY tHHZ] 200.0 i, EC-135 TPt4L227T PRV NOSE -JRAEIO0,103. 05 E K 100.0 TOP -200. 0.0,.I JULY 7 JM 0.0 4.0 8.0 12.0 18.0 20.0 F:E UEJCTr tH.!] Figure 33: Axial Current at TP:WL227T, Orientation 3. 43

015414-1-T EC-135 TPt F5250 PRYV NOSE JR E9g9 95t, 953 3.0 I.0, a:0..0 8.0, 7 JULY 77 UM20 ~ ~.O 8.0 12.0 1 8.0 2.0 FPREUENCtYr fHit 200.0 EC-135 tPtF5208 PARY NOSE JRtE949,951.953 _200, ~o |,,, oL~~~~~7?JULY 77 UH 0.0 4.0 8.0!2.0. 20 F PREUENCY (tHH]) Figure 34: Axial Current at TP:F520B, Orientation 3. 44 -:c.

015414-1-T 4. 0 EC-'35 TePF460B PRAV NOSE JRE959.957,955 _ K 3.0 / BOTTOM ii 1.0ft I' O 3 8 JULY 77 U. 0.0 UO 8.0 12.0 16.0 20.0 200.0 EC-135 TPtFI80B PRRV NOSE JRE959,957,955 0. 0 E -1 0.0 / _.r- BOTTOM \ -.... -....._.0.0 t4* 8.0 20 18. 20.0 FRE2UENCY MHHZ] Figure 35: Axial Current at TP:F460B, Orientation 3. 45

015414-1-T EC-135 TPtWL5GOT PARV IOSE JRAE13,115, 1 17i E K /7 0.8. // 7/ 7 TOP 0- a In t!A''I 0. L 0 L i \,\ 0.0..... ~............. ~...... B,JULY 77 UH 0.0 80 1.0 8.a 12.0 16.0 20.0 f RE3EN Y CXMHZ! 200. 0...i l EC-135 TPtWL560T PRRV NOSE JR:E1I3,115,.t11 100.0 ~i I. o. a I.O'2. 6 Figure 36: Axial Current at TP:WL560T, Orientation 3. 46 46

01 5414-1-T 6.0, EC-135 TPtHL184T PRRV SIDEL JRtE125.127.12; E?K,' 2.0 0.0 -.............22 JUN 77 UM 0.0 4.0 80 12.0 18.0 20.0 F REQUENCT IrMHZ1 200.0 EC-135 TPtHL185T PRRV SIGEL JRaE125.127.,12 E K 100.0 - 0.0 -200.0, 0.0 4.0 8.0 12.0 18.0 20.0 FREQUENCY tHZI] Figure 37: Axial Current at TP:HL184T, Orientation 4. 47

015414-1-T 2. 0 EC-135 TPiWL45OT PRRV SIDEL J9RE135.133.13 E K TOP 1a r.0 22 JUN 77 U, 9.0. 0 8.0 12.0 16.0 20.0 FREIQUENCY NHH! 200.0,. EC-135 TPiNLLTSOT PRRY SIDEL JE135. 133.13 100.0 E -100.0 roe ~-20~0.0, _____________ ________ _ _,__, 22 JUN 77 UN j 0.0 U.O 8.0 12.o0 18.0 20o.0 FREQUENCY (NHZ! Figure 38: Axial Current at TP:WL450T, Orientation 4. 48

015414-1-T EC-135 TPF520B PRAV SIDEL JRtE!49.151,153 3.0 BOTTOM 2.0. 1.0 22 JUN 77 uM 0.0 U.0 8.0 12.0 18.0 20.0 FREQUENCY CMHHI 200.0 EC-135'TP 5208 PRV SIDEL JAt EI,.151.1 53 E 100.0 - BOTTOM 0.0 -100.0 -200.0 -......._...... 22 JUN4 77 UM 0.0 8.0 12.0 16.0 20.0 FBEDUENC~ )H-1H Figure 39: Axial Current at TP:F520B, Orientation 4. 49

015414-1 -T 4.., -.. EC-135 TPt1350B PRRV SIDEL JRsE147.145.143 3.0 07TOMM 2.0 1.0 22 JUN 77 U 0.0....... __,_ _ ___ _.................._,............_ 22 JUN 77 U_; 0.0 4.O 8.0 12.0 16.0 20.0 FREQUENCY [IHHZ) F EC-S5 TP 13508B PRRV SIDEL JRE17..145, t43 - 0.0 - 0 0.0 BOTTOM ~0 4. 0 8.0 12.0 16.0 20.0 FR~EUENCY fMHZ) Figure 40: Axial Current at TP:F1350B, Orientation 4. 50

015414-1-T 8.0. I..._ _ EC-135 TPiVLI49 PRRV SIDEL JRtE137,139,14l E 6.0. 2.0 22 JUN 77 UH 0.0 U.o 8.0 12.0 16.0 20.0 FRE2UENCY (MHZ! 200.0 EC-135 TPtYLIl49 PRRV SIDEL J~AE137,t39,141 100. 0 -200.0 0. _... 22 JUN 77 U'JM 0.0 4.0 8.0 12.0 18.0 20.0 fREQUENCT (MHMl Figure 41: Axial Current at TP:VL149, Orientation 4. 51

015414-1-T 8.0 EC135 TPtFS20T PARF TOP gE1307.1309.1311 6.0 2.0 0 29 JUN 77 UM 0.0 I.0 82.0 120 8.0 20.0 FREQUENCY (MHHI 200.0 EC135 TPtF520T PRRF TOP OE1307,1309.1311 100.0 E -200.0,., 1 JUL 77 UM 0.0 U.O 8.0 12.0 16.0 20.0 FREQU ENC fMHZI ] Figure 42: Charge at TP:F520T, Orientation 1. 52

015414-1-T 50 |0 EC-135 TPtFt350T PRRF TOP iEl3t7.,13t5,131 I0.0 30.0 20.0 tO. 0 29 JUN 77 uM 0.0 4.a0 8.0 t2.0 18.0 20.0 FMEUECY~ (MHHI) 200. 0 EC-135 TPtFI350T PRRF TOP 0tE1317,1315.131 100. 0 0.0 -1 00 a0 -200. 0 _ 18 JUL 77 UH 0.0 t.0 8.0 12.0 16.0 20.0 FR;EUENCT CMH!] Figure 43: Charge at TP:F1350T, Orientation 1. 53

01 5414-1-T S2.0 EC-135 TPt LSOOT PRRF TOP s E1361 1358,1353 8.0 4.0 a0.0 1.8 JULY 77 UM 0,.0 4.0 8.0 12.0 16.O 20.0 FREQUENCy fMHzl 200.0,,._.EC-I3S TPtHLSOOT PRRF TOP a E1381,.1359s.1357 100.0 0.0 -to0.ot a -200.0 12 18 JUL 77 UM 0.0 4, 0 12.0 16.0 20.0 FREQUENCT MHHZ) Figure 44: Charge at TP:WL900T, Orientation 1. 54

015414-1-T.o. EC-135 TPtWLtSO0T PARF TOP OE134lS1, 339.133,.O0 F 2.0 0.0 I JULY 77 UM 0.0 4.O 8.0 12.0 16.0 20.0 FRERQUENCY tMH!l 200..0..... EC-35S TPWtL45OT PARF TOP gtE134l,3133t3 100. 0 0.0 -200.0 18 JUL 77 U o.o 4,. 8.0 12.0 16.0 20.0 FREDUENCT MHB2l Figure 45: Charge at TP:WL450T, Orientation 1. 55

015414-1-T. Or EC-135 TPiNL227T.PRIRF TOP OtElI13,1, 15,l413. E 2.0 1.0 aO~~~~~~~. 0~.....__ 18 JULY 77 UM 0,0 8.0 8.0 12.0 18.0 20.0 FMEtUENCYT (tMHZ 200.0 - _ I _ I,..' _.... _.. _ _ _ EC-I35 TPtWL227T.PRRF TOP QOEEI413,1l15.14rt 1 00. 0 0,0 -100.0 -200.0 ~.... _________________________________________________,,,18 JUL 77 UM 0.0 t.0 8.0 12.0 18.0 20.0 FPEUENCT tMHHZl] Figure 46: Charge at TP:WL227T, Orientation 1. 56

015414-1 -T 10.0 EC-135 TPiF520B PARF TOP 2sE1'437, t439.1441 i 1 8.0 2.0 -0~..0. — i L __ i............,~.............. Jl ~18 JULT 77 UtM 0.0 i 0 8.0 12.0 16.0 20.0 FREOUENCTY MH!I EC-ISS TPtFS20B PRRF TOP QEIU7,1439Sg,.l4t I 00. 0 0.0 -lOO. o -2Io0 0....I.,.. 18 JUL 77 UM | ~0.~0 U ~.a 8,.O 12.0 16.0 20. FREQUENCT C"HZ] Figure 47: Charge at TP:FS20B, Orientation 1. 57

015414-1 - 8..,, -, EC-135 TPtF1350B P.RF TOP QsE 50.O 150,150f 8.0 2.0 Z0.0.....1..86 JULY 77 Ut.... o0.0,.0 8.0 12.0 16.0 20.0 FREQUENCY (IMHZ 200.0... EC-135 TPiF3ISOB PPRF TOP tEtS01,S10o3.50'i 100.0 -1 00. 0 -200.0 a.,.18 JUL 77 U M 0.0 6.0 8.0 12.0 16.0 20.0 FRiEQUENCT (MH!3 Figure 48: Charge at TP:F1350B, Orientation 1. 58

01 5414-1-T 1.0.... EC-135 TPtF520T PERPF TOP QsE1305.1303,1301 0.8 0.6P 0.23, -, ^29 JUN 77 UH 0.0 4.0 8.0 12.0 18.0 20.0 FREQUENCT (MH!) 200.0. EC-135 TPiF520T PERPF TOP O$E1305,I1303.30 E -1 00. 0 000UL 7 U -200. i.. JUL. 77.. 0.0 4.0 8.o0 12.0 18.0 20.o0 FREgUENCT (Mtl) Figure 49: Charge at TP:F520T, Orientation 2. 59 (See *, page 15)

015414-1-T 6.0 ECIS5 TPiFl350T PERPF: TOP gE1329,1327,1325 I2,0 0,0 0.0 i.O0 8.0 12.0 18.0 20.0 FREQUENCY MHZIl 200.0 ECtS5 TPtFtSSOT PERPF TOP t QE1329,1327.132 100.0 0.0 -100. 0 ~~~~~~~~~-200,.~0.. a............,18 JUL 77 UH -200.a 0.0 u.o 8.:2.00 18.0 20o. FREQUENCY tHHI) Figure 50: Charge at TP:F1350T, Orientation 2. (see *, page 15) 60

015414-1-T 20.0 EC-195 TPtNLSOOT PERPF TOP QE1351,1353.13 5 t2.0 8.0 0.0.'7. UM 0.0 4.0 8.0 12.0 18.0 20,0 FRE2UENCY tMH!l 200.0 EC-135 TPtNLSOOT PERPF TOP OES1351,1353,13 5s I 00.0 0.0 O. O -100.0 -20oo.o I_._ I,8 JUL 77 UM 0.0 ~4O 8.0 12.0 16.0 20.0 FREgUENCT (MZ3) Figure 51: Charge at TP:WL900T, Orientation 2. 61

015414-1-T EC-135 TPtWL4SOT PERPF TOP 1E1331,.1333 S A 2.0 8S JUL 77 UN 0.0 4.0 8.0 12.0 a1 0 20., FREQUENCY t I7.1 200.0 EC-135 TPNLtiSOT PERPF TOP OQEISF3.1333,1335 100. -0 0,0 -100.0 18 JUL 77 UX 0.0 U4.0 8. o 12.0!6.0 20.0 FP~8UENCT (HtZ] Figure 52: Charge at TP:WL450T, Orientation 2. 62

015414-1-T 2.0 EC-IS5 TPNL227T PERPF TOP OsE1123, 1l, 1. l&,9 A 1.5 il~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ui 200 0 lra 00... _. a 12.0,8, 20.0 EC-135 TP:NL227T PERPF TOP:IEt123,1421.,19q 0,0 100.0 u-200.0 18 s JUL 77 U 0.a t.O 8.0 12.o0 1S. 20.0 F9EgJUE'NCT CMHZi Figure 53: Charge at TP:WL227T, Orientation 2.

015414-1-T 1,0 EC-tS5 TPtF520B PERPF TOP Q;E7.7, LtS.1$. X l.0 o 4.0 8.0 12.0 16.0 20.0 FMFlQUE.4CT U1MHZ EC-135 TPFFS208 PERPF TOP OCEh447. 1405. 144 6 ( -200. a I,.,'!8 JUL 77 UM j Figure 54: Charge at TP:F520B, Orientation 2. (see *, page 15)

015414-1-T EC-135 TPtF I3508 PERPF TOP Q E151 [.15Og. 1597 E 0.6 0. 0.0__........___..18 JULY 77 UH 00 t4.O 8.0 12.0 18.0 20.0 FREQUENCYT HHZI 2000.0 EC-135 TPFiSS50B PERPF TOP giES111.1508,15 7 100,0 0LS a. -200,0 t... JB UL 77 UN 0.0 L.0 8.0 12.0 16.0 20.0 FfE2UENCT tfMM! Figure 55: Charge at TP:F1350B, Orientation 2. 65 (see *, page 15) 65

01 5414-1-T A. EC-135 TPiRL9OOT PARV NOSE I:E:401.L,143.14q5 3.0 0.0 1.. 8.0.......t... 9 JULY 77 UM O.O!.0 8.0 12.0 18.0 20,0 FMEQUENC [fMHI] EC-135 TPtWL9OOT PRRV NOSE Qt.Eti t,1403, I,5 -100.0 * i't, -IOO..0 t8 JUL 7 LU i 0.0 4,0 5.0 12.0 15.0 20.0 FvREU.N rMHT.] Figure 56: Charge at TP:WL900T, Orientation 3. 66

015414-1-T EC-135 TPtWL450T PARV NOSE -sE34S5.13U7.1S39 0.5 0,5 1 JULT 77 UH 0.0 U.O 8.0 12.0 16.0 2n.o FREQUENCT IMHHII 200.0 a.,.. EC-1.35 TPtWL~450T PR!V NOSE t[ES1345.134113t' 9 -100.0 t ~-20 0L___...o__.. ___ _ 18 JUL 77 UH.0 UO. 8.0 1t2.0 16.0 20.0 FREOUENCT tM'HZ1 Figure 57: Charge at TP:WL450T, Orientation 3. 67

015414-1-T EC-1S5 TPtNL227T PRR~ NOSE GiE1l25,1'427.1t9 1.5L 1.0 0.5 18 JULT 77 Un 0a0 4.0 8.0 12.0 16.0 20. 0 F REU ENCT IMH ZI 200.0 EC- 135 TPINL227T PARV NOSFt E 1425,.1 t27,1t 4 10O.L0 0.0 -400.0 1 -200.0 a - - - i JU........... &......... 18 JUL 7?7 UM o.o u.O 8.0 12.0 186.0 20. FREQUENCT fH!1 Figure 58: Charge at TP:WL227T, Orientation 3. 68

015414-1-T 4.0 - EC-135 TPtF520 PRRV {3SE sEIq, 9,I,45' 145 3.0 L CW 2.0 1'i -"i E 18 JULT 77 UK 0.0 40 8.0 12.0 18.0 20.0 FREQUENCT IHHZI 200.0 EC-135 TPtF5205 PRRV NOSE mtEl 4.1, Sll.45 1 00. i0 1 0.0 -too.o - -200.0 i 18 JUL 77 UM i 0.0 4.0 8.0 12.0 18.0 20.0 REQU}ENZT 11H1! Figure 59: Charge at TP:F520B, Orientation 3. 69

015414-1-T ~. — _ EC- 35 TPtFLBOB PRAfV IJOSE tE15537,1539.1541 3.0 r- 2,0 LiI tr, 2.0 E 0.0........., 5 JULT 77 UK 0.0 U.O 8.0 12.0 18,0 20.0 F EQUE.NCT (MHZI 200.0 EC-135 TPtF4608 PRRV NOSE GQ E1537,I 539. 15t o. 0 -10o0.O -200. it.0 t 8 JUL 77 u'J1 0.0 4.0 8.0 12.0 16.0 20.0 FE3UEN.CT (Ht]) Figure 60: Charge at TP:F460B, Orientation 3. 70

015414-1-T EC-135 TPtF3S50 PRRV NOSE:tELS25.1527.1519 2.0, a.0 4fA 4. 0.0 _....._.....___....._................B JULY 77 UM 0.0 4.0 8.0 12.0 16.0 20.0 FREgUENCT tHHI1 200.,.,.0... EC-135 TPIF1350B PRRV N0SE zE15 25,1527.15 S 1 00. O 0 0.0 -10o0. 0 -200.0 L 18 JUL 77 UM i 0.0 4.0 8.0 12.0 I8.0 20.0 FREgUENCT MH!) Figure 61: Charge at TP:F1350B, Orientation 3. 71

015414-1-T 4. 0 EC-135 TP WLSOOT PRRV SIDEL E 411.1409g 1 07 3A. 2.0 i 1,0 0.0O.....,..............,................,................i I8 1JULY 77 UM O. O,,..... 0.0 4.0 8.0 12.0 16.0 20.0 FRE2UENCY [CHHIl 200.0, EC-135 TPtL900OT PPRV SI DEL gtE14tI1.140.t'07 100.0 0.0 itv I -20a.O'._,.,, l8 JUL 77 U.! 0.0 as 8.0 12.0 8.0 20.0 FREaUENCT'HHT1 Figure 62: Charge at TP:WL900T, Orientation 4. 72

015414-1 -T 4. a EC- 135 TP tL227T,PRAV SIDEL OIE1435. 1433,. St 3.0 I k 2.0 a.0 18 Jut. 77 UM 0.0 4.0 8.0 12. 18.0 20.0 FREOUENCY fMHtZ[ 200.0 EC- t 35 PtWt.227T PRRV SIDEL glEl 425, 1 43,t I31 tO0.0 0.0 - -100.0 i -200.. t,. 1t8 JUL 77 UM 0.0 U.O 8.0 12.0 18.0 20.0 F..E.UENCT MHHZ] Figure 63: Charge at TP:WL227T, Orientation 4. 73

015414-1-T 4.0 EC-135 TPtF5208 PARV SIDEL sE1453,'S7.I 145 2.0 1.0 00. O,,,5 JULY 77 UX 0.0 U.0 8.0 12.0 a5.0 20.0 FRE2UENCYT tMHZ 200O.. 0 EC-135 TPiFS20B PFRV SIDEL t 1E 45,.1457. 1 t in. 00.0 0 0.0 -20.0.:..........~......... 8 JUL 77 uJM 0.0 4.0 8.0 12.0 16.0 20.0 FREgUENCT OHM=)] Figure 64: Charge at TP:F520B, Orientation 4. 74

015414-1-T EC-135 TPtFI35UB PRVFY SIDEL 3tE1535,.1533.153 K; I0......::____............... _____......... __ 5 JULY 77 UM 0.0 4.0 8.0 12.0 16.0 20.0 FREQUENCY (MHZI 2 0 0. 0I T EC-t35 TPtFl350B PARV SIDEL El$S35,.1 533. I31 100. 0 e 0.0 -100.0 -200,0 3,,, 18 JUL 77 U?~ D.0 U.0 8.0 12.0!6.0 20.0 FRE1UENCT [HH.] Figure 65: Charge at TP:F1350B, Orientation 4. 75

UNIVERSITY OF MICHIGAN 3 9111 0111115 03483 20 091111111 3 9015 03483 2009