REFERENCES

Pediatric Duodenal Cancer and Biallelic Mismatch Repair Gene Mutations

Sumita Roy, MD,* Leon Raskin, PhD, Victoria M. Raymond, MD, Stephen N. Thibodeau, PhD, Rajen J. Mody, MD, and Stephen B. Gruber, MD, PhD, MPH

Gastrointestinal malignancies are extremely rare in the pediatric population, and duodenal cancers represent an even more unusual entity. Intestinal cancers in young adults and children have been observed to be associated with functional deficiencies of the mismatch repair (MMR) system causing a cancer-predisposition syndrome. We report the case of a 16-year-old female with duodenal adenocarcinoma and past history of medulloblastoma found to have a novel germline biallelic truncating mutation (c.[949C>T]+[949C>T]) of the PMS2 gene. Pediatr Blood Cancer 2009;53:116–120. © 2009 Wiley-Liss, Inc.

Key words: biallelic; children and young adults; duodenal adenocarcinoma; mismatch repair

INTRODUCTION

Gastrointestinal malignancies in children present challenging management issues and are often suggestive of inherited susceptibility to cancer. DNA mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2 maintain genome integrity by correcting DNA replication errors [1]. Defective MMR causes microsatellite instability (MSI) (errors in length of microsatellites or repeated sequences of DNA), a hallmark of MMR deficiency. Germline heterozygous mutations in MMR genes results in Lynch syndrome or Hereditary Non-Polyposis Colorectal Cancer (HNPPC), an autosomal dominant cancer susceptibility syndrome with increased risk for developing colorectal and endometrial malignancies. Within the last decade there has been mounting evidence for an inherited cancer syndrome resulting from germline biallelic mutations in MMR genes which has been alternately referred to

Additional Supporting Information may be found in the online version of this article.

© 2009 Wiley-Liss, Inc.
DOI 10.1002/pbc.21957
Published online 12 March 2009 in Wiley InterScience (www.interscience.wiley.com)
as childhood cancer syndrome (CCS), MMR-deficiency syndrome (MMR-D) and constitutional MMR deficiency (CMMR-D) [2–4]. This syndrome results from complete deficiency of MMR function and differs from HNPCC in the tumor spectrum, age of onset and presence of café-au-lait macules (CALM).

CASE

A 16-year-old female of Syrian descent, with multiple CALM was diagnosed with a moderately differentiated adenocarcinoma arising in the ampulla and invading the pancreas, with metastases to 6/39 lymph nodes. She underwent a Whipple procedure and received adjuvant radiation therapy along with continuous 5-FU (5-fluoro-uracil) infusion for 6 weeks, followed by eight cycles of modified FOLFOX 6 (85 mg/m^2 of oxaliplatin and 400 mg/m^2 Leucovorin, followed by 400 mg/m^2 5-FU bolus and 2,400 mg/m^2 5-FU infusion for 46 hr). At the conclusion of chemotherapy, imaging showed a new 2 cm sigmoid mass. Laparoscopic sigmoid resection revealed an adenoma.

Her past history is significant for medulloblastoma diagnosed at age 8, treated with surgery and radiation. Family history is significant for parental consanguinity (Fig. 1A) and diagnosis of precursor T-cell acute lymphoblastic leukemia (ALL) in younger brother (IV.3) at age 5, who died at age 6. The history of consanguinity in siblings with medulloblastoma and leukemia had prompted a cancer genetics consultation 7 years ago in IV.3, who also had CALM (largest measuring 4.5 cm) and several dysmorphic features. His workup included evaluation for mutations in MLH1 and MSH2 based on reports in the literature documenting hematologic malignancies as a feature of MMR deficiency [5,6]. No mutations in MLH1 and MSH2 were identified and tissue was insufficient for immunohistochemistry (IHC) and MSI analysis. The second diagnosis of duodenal cancer in the patient (IV.1) led to further suspicion of MMR-D, and genetic counseling, molecular diagnostic workup and enrollment in an IRB-approved cancer genetics registry was offered.

MOLECULAR ANALYSIS

Duodenal carcinoma tissue analysis demonstrated high degree of MSI in 10/10 markers tested and IHC demonstrated absent PMS2 expression in tumor and normal tissue, with intact expression of MLH1, MSH2, and MSH6 [7]. Blood samples of IV.1 and her parents were tested for PMS2 mutations on a research protocol [8]. After initial identification of the mutation, confirmatory testing was performed in research and clinical laboratories at the University of Michigan. PMS2 exon 9 was amplified using PCR primers 5'-GGCTGGGAACATTTGTCATT-3' and 5'-TGCCAATGGAACT-TACCTGA-3', purified and genotyped by direct sequencing on an ABI 3730 sequencer. DNA sequence analysis (GenBank RefSeq-NM_000535.5) using Mutation Surveyor software, revealed a unique cytosine to thymine transition at coding nucleotide position 949 (949C>T) in the PMS2 exon 9 resulting in a codon change from glutamine to a premature stop codon at amino acid position 317 (Q317X) (Fig. 1C). Consistent with the expectation from a consanguineous family, IV.1 was homozygous for the mutation and both parents were heterozygous for the same mutant allele. Analysis of IV.3's normal and tumor tissue was hindered due to poor tissue quality, but clearly demonstrated at least one mutant allele. The family declined genetic testing of the other siblings.

Fig. 1. Autosomal recessive susceptibility to cancer in a consanguineous Syrian family due to a homozygous mutation of PMS2. A: Pedigree showing medulloblastoma at age 8 and duodenal carcinoma at age 16 in IV.1 and Pre T-cell ALL at age 5 in IV.3, whose parents are first cousins. B: Immunohistochemistry showing intact expression of MLH1 (top) and absent expression of PMS2 (bottom). C: Sequencing chromatograms show a heterozygous mutation of PMS2 949C>T (Q317X) within exon 9 in both parents (who are unaffected), and a homozygous mutation in the affected 16-year-old female. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
TABLE I. Duodenal Cancer in Children and Young Adults

<table>
<thead>
<tr>
<th>Family</th>
<th>Sex</th>
<th>Tumors in proband (age of diagnosis in years)</th>
<th>Tumors in siblings (age of diagnosis in years)</th>
<th>Tumors in other relatives (age of diagnosis in years)</th>
<th>MSI</th>
<th>IHC</th>
<th>Gene</th>
<th>Biallelic mutation</th>
<th>Cons.</th>
<th>CALM</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>Met. Duod. adenocCa (11)</td>
<td>Sister: intestinal adenocCa, Co adenoma, Co Ca (9), sister-plexiform neurofibroma, hairy nevi (6)</td>
<td>Pat. GF: lung (62); pat. GGF: Co Ca (60s), mat.GF: stomach (58)</td>
<td>MSI high</td>
<td>Weak MLH1 present</td>
<td>MLH1</td>
<td>c.[2059C>T]+[2059C>T], p.[Arg687Trp]+[Arg687Trp]</td>
<td>Yes</td>
<td>Present</td>
<td>Gallinger et al. [9]</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>Met. Duod. adenocCa (17)</td>
<td>None</td>
<td>Mother: Co adenoma (44), mat.GF: jejunal adenocCa (52), father: lung (55)</td>
<td>MSI high</td>
<td>PMS2 absent in tumor and normal tissue</td>
<td>PMS2 (CH)</td>
<td>c.[137G>T (+)] 1927C>T, p.[Ser46Ile (+)] Gln643X</td>
<td>No</td>
<td>Present</td>
<td>Agostini et al. [10]</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Giant cell GBM (18)</td>
<td>Brother: brain tumor (23)</td>
<td>None</td>
<td>MSS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Murphy et al. [11]</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>Duod adenocCa (18)</td>
<td>None</td>
<td>None</td>
<td>MSI high</td>
<td>PMS2 absent in tumor and normal tissue</td>
<td>PMS2</td>
<td>c.[906-?_2589+?del]+[906-?_2589+?del], p.[Val302_X863del]+[Val302_X863del] deletion involves PMS2 exons 9–15, oncomodulin, TRIAD3, and FSCN1</td>
<td>Yes</td>
<td>Present</td>
<td>Will et al. [12]</td>
</tr>
<tr>
<td>5</td>
<td>NA</td>
<td>Duod adenocCa (25)</td>
<td>Brother: brain tumor (38), sister: brain tumor (31)</td>
<td>NA</td>
<td>MSI high</td>
<td>NA</td>
<td>NA</td>
<td>PMS2 absent in tumor and normal tissue</td>
<td>PMS2</td>
<td>(5' truncation)</td>
<td>Senier et al. [8]</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>Medulloblastoma (8)</td>
<td>Brother: T-ALL (6)</td>
<td>None</td>
<td>MSI high</td>
<td>PMS2 absent in tumor and normal tissue</td>
<td>PMS2</td>
<td>c.[949C>T]+[949C>T], p.[Gln317X]+[Gln317X]</td>
<td>Yes</td>
<td>Present</td>
<td>Present case</td>
</tr>
</tbody>
</table>

Tumors: adenocCa, adenocarcinoma; Met, metastatic; Duod, duodenal; Co Ca, colon cancer; GBM, glioblastoma multiforme; NHL, non-Hodgkin lymphoma; T-ALL, T-cell acute lymphoblastic leukemia

Relatives: pat, paternal; mat, maternal; GF, grandfather; GGF, great grandfather; MSI, microsatellite instability (of tumors in proband); IHC, immunohistochemistry; CH, compound heterozygous; Cons, consanguinity; CALM, café au lait macules; NA, not available

DISCUSSION

Duodenal cancers are extremely rare with median age of diagnosis in the sixth decade of life. A systematic literature search for early onset duodenal cancers revealed five other cases (Table I), four of which had germline biallelic MMR mutations [8–12]. A comprehensive literature review through PubMed revealed 50 families with germline biallelic MMR mutations (Supplemental Tables I and II). The present case is cited in two other reviews [4,8], and here we present the full clinical details of this case and review the implications of a diagnosis of MMR-D.

MMR-D phenotype is seen in homozygotes or compound heterozygotes and absence of a family history of cancer does not diminish its likelihood. Biallelic mutations in PMS2 accounted for majority of cases in families with MMR-D (25/50 families, 50%), while MLH1 and MSH6 each accounted for 20% of families, and MSH2 accounted for 10% of families. Onset of tumors is as early as the first decade of life and the tumor spectrum primarily comprises of gastrointestinal (colorectal and small intestinal tumors), brain (glioblastoma, astrocytoma, medulloblastoma, PNET), and hematological malignancies (ALL and non-Hodgkin lymphoma, T-cell type). Colorectal cancers were reported in 37 individuals in 27/50 (54%) families (median age: 17 years); small intestinal cancers in 7 individuals in 5/50 (10%) families (median age: 17 years); brain tumors in 40 individuals in 29/50 (58%) families (median age: 8 years) and hematological malignancies in 29 individuals in 19/50 (38%) families (median age: 5 years). Other malignancies reported were: 5 cases of endometrial cancer (median age: 24 years), one case of ureter/renal pelvis cancer at age 15, two cases of rhabdomyosarcoma (ages 4 and 18), one case of Wilms tumor (age 4), one case of infantile myofibromatosis (age 1), one case of neuroblastoma (age 13), one case of breast cancer (age 35), one case of ovarian neuroectodermal tumor (age 21) and one case of sarcoma (age 65). Thirty two of the 84 (34.2%) patients developed more than one primary tumor. Survival data reported in 64 patients revealed that 38 patients (59.3%) died of their disease at median age of 10 years.

Multiple CALM have been reported in 35/50 (70%) families, with only one patient having a germline NF-1 mutation [13]. However, NF1 may be a mutational target of MMR-deficiency [5,13,14]. Hypopigmentation, immunodeficiencies and autoimmune diseases have been reported with biallelic MSH6 mutations [15–18]. CALM have not been reported in any heterozygous carriers. Although the chromatogram of IV.3 suggests that he is heterozygous, his phenotype is more consistent with homozygosity. The pseudogene PMS2CL sequence corresponds to exons 9 and 11–15 of the PMS2 gene [19]; and may be amplified by primers used for amplification of PMS2 exon 9. Therefore it is likely that IV.3’s chromatogram illustrates sequence data from both PMS2 and PMS2CL.

Patients with MMR-D and their families need heightened surveillance and we have recommended National Comprehensive Cancer Network practice guidelines for HNPCC/Lynch syndrome for IV.1 and her parents with the addition of annual upper endoscopy for IV.1. Since HNPCC or MMR-D cannot be excluded in the other siblings (IV.2, IV.4) similar surveillance was recommended for them as well until further information can be gained. Therapeutically it is important to develop chemotherapeutic agents that are relevant for these cancers since several in vitro studies have shown resistance of MMR-deficient cell lines to commonly used agents [20]. In conclusion, this case documents a novel mutation of PMS2, underscores the clinical traits of the pediatric cancer syndrome of MMR-D, emphasizes the clinical value of genetic testing, and highlights pediatric duodenal carcinoma as a sentinel cancer of MMR-D.

ACKNOWLEDGMENT

This work is supported (in part) by the National Institutes of Health through the University of Michigan’s Cancer Center Support Grant (5 P30 CA46592), NCI R01 CA1488 (SBG), the University of Michigan Cancer Genetics Registry, and NRSA [5 T32 HD007513-11] (SR). We are grateful to the patient and her parents for participating in this study, and to Drs. James D. Geiger and Mark Zalupski for their help in her clinical management.

REFERENCES

INTRODUCTION

Little progress has been made in the survival of children with metastatic and refractory solid tumors [1]. Allogeneic hematopoietic stem cell transplantation (HSCT) has been proposed as a potential curative alternative in patients with refractory malignancies [2]. A possible graft-versus-tumor (GVT) effect has been documented in children with metastatic and relapsed Ewing sarcoma [3], neuroblastoma [4], melanoma [5], and hepatoblastoma [6]. However, the immunological mechanisms that mediate the GVT effect have not been elucidated. Early immune reconstitution after a conditioning regimen is led by natural killer (NK) cells, and cytotoxicity may be further enhanced by a Th1 cytokine response. NK cell alloreactivity in vitro may be predicted by the presence of inhibitory KIR–HLA mismatch. These preliminary results suggest a possible association between disease control and NK cell alloreactivity. Pediatr Blood Cancer 2009;53:120–124.

KIR–HLA Receptor-Ligand Mismatch Associated With a Graft-Versus-Tumor Effect in Haploidentical Stem Cell Transplantation for Pediatric Metastatic Solid Tumors

Antonio Pérez-Martínez, MD, PhD, 1* Wing Leung, MD, PhD, 2 Evangelina Muñoz, 1 Rekha Iyengar, PhD, 2 Manuel Ramírez, MD, PhD, 1 José Luis Vicario, PhD, 3 Álvaro Lassaletta, MD, 1 Julián Sevilla, MD, PhD, 1 Marta González-Vicent, MD, PhD, 1 Luis Madero, MD, PhD, 1 and Miguel Ángel Díaz-Pérez, MD, PhD 1

Killer immunoglobulin-like receptors (KIRs) on natural killer cells (NKs) recognize groups of human leukocyte antigen (HLA) class I alleles. Cells without an inhibitory HLA ligand may trigger NK activation. Reduced risk of relapse has been reported in malignant hematologic diseases after haploidentical transplantation when HLA ligands against the inhibitory KIRs present in the donor were absent in the recipient. We performed haploidentical transplant in three children with refractory solid tumors. Our results showed that beneficial antitumor effects could be observed in the presence of inhibitory KIR–HLA mismatch. These preliminary results suggest a possible association between disease control and NK cell alloreactivity. Pediatr Blood Cancer 2009;53:120–124.

© 2009 Wiley-Liss, Inc.

Key words: haploidentical stem cell transplantation; KIR-HLA mismatch; NK cells; pediatric solid tumors

INTRODUCTION

Little progress has been made in the survival of children with metastatic and refractory solid tumors [1]. Allogeneic hematopoietic stem cell transplantation (HSCT) has been proposed as a potential curative alternative in patients with refractory malignancies [2]. A possible graft-versus-tumor (GVT) effect has been documented in children with metastatic and relapsed Ewing sarcoma [3], neuroblastoma [4], melanoma [5], and hepatoblastoma [6]. However, the immunological mechanisms that mediate the GVT effect have not been elucidated. Early immune reconstitution after a conditioning regimen is led by natural killer (NK) cells, and for several weeks, they represent the only detectable lymphoid population. NK cell alloreactivity in vitro may be predicted by the lack of ligands for inhibitory killer immunoglobulin-like receptors (KIRs) [7]. Inhibitory KIRs bind with four specificities for polymorphic human leukocyte antigen (HLA) class I molecules. NK cell reactivity may be further enhanced by a Th1 cytokine environment and by T-cell lymphopenia [8,9].

To evaluate the potential of NK cell-mediated GVT effect and its immunological mechanisms, we performed a pilot study of haploidentical HSCT in three children with refractory tumors with no known cure.

METHODS

Patients and Transplantation

The study involved three patients with metastatic solid tumors that were refractory to chemotherapy (Table I). This study was approved by the Ethical Committee of Hospital Niño Jesús. Informed consent was obtained in accordance with the Helsinki Declaration. HSCT was performed using parental CD3/CD19 depleted G-CSF mobilized peripheral blood. Reduced-intensity conditioning consisted of busulfan (4 mg/kg/day, 2 days), fludarabine (30 mg/m²/day, 5 days), thiopeta (5 mg/kg/day, 2 days), and methylprednisolone (4 mg/kg/day, 5 days). Methotrexate (15 mg/m²/day, day +1, and 10 mg/m²/day, days +3 and +6) and cyclosporine (3 mg/kg/day, day –1 until 1 month after the infusion) were also administered. Immune reconstitution and hematopoietic chimerism were assessed monthly after HSCT. Computed tomography and magnetic resonance imaging were performed before and 3 months after HSCT.

HLA Typing and KIR Genotyping, Phenotyping, and Cytotoxicity

HLA-C allotypes (C1 and C2) and HLA-B allotypes (Bw4) were determined using high-resolution polymerase chain reaction-