Minimum Diameter Stalagmites
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ABSTRACT

The theory of Franke setting forth the factors controlling equilibrium stalag-
mite diameter at high drip rates is extended to the low-flow situation in which a
minimum diameter is obtained. It is shown that the minimum cross-sectional area
for a stalagmite must be determined by the ratio of incident drop volume to the
thickness of the water film at the apex. Reasonable values for these quantities
predict a minimum diameter of about 3 cm, close to that observed. An approxi-
mate model, the primary feature of which is the repetitive transient relaxation
of the tip-growth of a stalagmite between drop impacts, is used to bridge
between the high and the low flow regimes. The importance of presently little-
known factors involving drop impact, mixing, crystallization from solution, and
film flow in determining equilibrium stalagmite morphology are brought out.

INTRODUCTION

In a previous paper (Curl, 1972) the
question of the smallest possible stalactite
diameter was discussed and its answer was
shown to involve the forces of surface ten-
sion and gravity. It is apparent that the
identical factors cannot be operable in the
complementary speleothem, the stalagmite,
if only because of the absence of the phe-
nomenon of the pendant drop. In addition,
the normal range of diameters of stalagmites
never includes any below about an inch—
considerably larger than the 5 mm or so
diameter of soda-straw stalactites. What,
then, determines the lower limit on the size
of a stalagmite?

Interest in stalagmite size goes back many
years and has revolved primarily around
the possibility of using such information for
dating cave deposits and artifacts. The
early observations are mentioned by Allison
(1923), who attempted an ambitious classi-
fication of stalagmites into 32 “types” ac-
cording to the formative factors of drip rate,
air circulation, relative humidity, tempera-
ture, and solution concentration. This was
all based on the observation of five stalag-
mites deposited from water that had leached
lime from concrete. Some of Allison’s con-
clusions seem reasonable, but his complete
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theory has little physical or chemical basis
and has not been fruitful. The smallest of
his study stalagmites had a diameter of 3.5
cm. His smallest theoretical type would
have a diameter of 5 millimeters, but this
has not been observed in nature. Allison’s
most useful conclusion (actually, a hypo-
thesis) was that symmetry (meaning uni-
form diameter) in a stalagmite indicates
constant growth conditions, and that such
stalagmites are growing vertically without
an attendant increase in diameter (as shown
in Figure 3).

Hendrix (1950), writing about caves for
a general audience, attempted to present
Allison’s theory. He introduced the better

term “equilibrium diameter” to describe the

growth of stalagmites with a constant di-
ameter. Through an obscure argument he
concluded that

q
d=1<\‘_ (1)
E

where d is the equilibrium diameter, K a
constant, g the flow rate (“drip rate”) of
depositing solution, and E the “evaporation
rate”. As will be seen, this is similar to the
“modern” theory for one regime of stalag-
mite growth.

Figure 1 shows examples of near-equi-
librium stalagmite growth. Because the di-
ameters of several adjacent nearly constant
diameter stalagmites do differ, the conclu-
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Figure 2. Center-right; Stalagmite in Le
Grotte Rouchambou, Belgium, the vari-
ation in diameter of which is reported

in text.

o~

.

sion seems inescapable that constant diam-
eter implies constant (if different) growth
conditions. This theme, and its consequences,
has been most thoroughly developed by
Franke (1961 ff), who derived his interest
primarily from studies of paleo-chronology
and climatology.

It should be noted that, although the
stalagmites in Figure 1 are individually of
maoderately constant diameter, there is some
variation. Figure 2 shows a 70 cm high
stalagmite in Le Grotte Rouchambou (Bel-
gium) the diameter of which varies as fol-
lows: base, 89 em; 20 em up. 7.0 cm;
30 cm, 4.9 cm; 40 em, 6.4 cm; 50 cm, 5.8
cm; and at the top, 4.8 em. This represents
more than a two-fold variation in cross-
sectional area, despite the relatively uniform
appearance. Nevertheless, the concept of a
uniform, equilibrium stalagmite is a useful
abstraction.

FRANKE'S THEORY
Figure 3 (after Franke, 1965) shows suc-

cessive stages in the growth of an equi-
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Figure 3. Successive stages in the develop-
ment of an equilibrium stalagmite, shown
in vertical section. The dotted line indi-
cates a cross section that would show
“growth rings” narrower near the outside.
The equilibrium stalagmite grows upward
at velocity %

librium-diameter stalagmite. As Franke has
pointed out, cross sections show “growth”
rings that are more closely spaced at greater
distances from the axis simply because of
the orientation of the developing “caps”.
Vertical sectioning of mnatural stalagmites
has disclosed that there develop a succession
of “caps” (often demarked by impurity lay-
ers) that taper to nothing as they descend
down the side. This means, first, that all
of the solute in drops falling on the stalag-
mite, in excess of saturation, can be depos-
ited before the residual water runs off (or
evaporates) and second, that the rate of
vertical growth is the same at every radius
from the axis of the stalagmite. (For this
to bz true, of course, the rate of crystal
deposition must decrease as the slope of the
surface becomes greater.) It then follows
(Franke, 1962, 1963) that
xd2
4

where Z is the rate of growth in height, A
the cross-sectional area, and ¢, the available

A = 2
A =2

= 4 (2)
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(supersaturation) solute content of the de-
positing solution in cm3 solid per cm3
solution. This is the amount of solid that
will be precipitated after equilibrium with
the cave atmosphere is attained. Rearrang-
ing these, we obtain

c,q

d=2 (3)

2

which is equivalent to Hendrix’s relation
(Equation [1]) if the rate of growth can
be taken as equivalent to the “evaporation
rate” E. Franke (1962, 1963) has attempted
to relate z to the compositions of the solu-
tion, of the cave atmosphere, and of other
physical-chemical quantities, using assumed
mechanisms of deposition of calcite. For
“large” q, z should be a constant and, there-
fore, the cross-sectional area of the equilib-
rium stalagmite should increase linearly with
increasing flow.

What happens at low flows? Equation
(3) says that d becomes zero when q goes
to zero, all other things being constant.
Since this is not observed in mature (there
seems to exist a minimum diameter for
equilibrium stalagmites) “other things” must
not remain constant. In particular, z must
become proportional to c,g as g becomes
small in order for a minimum diameter to
exist. The reasons for this may now be
developed to give a theory for minimum
diameter stalagmites. As was the case with
stalactites, an exploration of the limiting
case should simplify the general “stalagmite”
problem and thus help to clarify some of the
factors at work.

MinmMuM DIAMETER

At the time that the data on the stalagmite
shown in Figure 2 were obtained, the di-
ameters of a number of others of small
diameter (and usually of relatively small
height, also) in the same cave were also
measured. The values from a “random”
sampling were 3.1, 3.7, 4.4, 4.9, 5.1, 56
and 5.9 cm. Three centimeters, thus, is
about the minimum observed diameter, at
least under the conditions in that cave.

The flow upon a stalagmite is, of course,
not continuous but in t)be form of drops and,

as g becomes small, these drops fall at
longer and longer intervals. When the time
interval becomes great enough, the initial
solute in excess of saturation will be totally
precipitated on the stalagmite before another
drop arrives. In order to develop a simple
concept of what would then happen, let us
assume that when a drop of volume v falls
upon the top of the stalagmite, it locally
replaces the depleted solution there with
solution of source supersaturation ¢,. In
addition, assume that the thickness of the
thin water layer on the stalagmite top, §,
is moderately constant after the “splash” is
over. The actual structure of the “water
layer” is quite complicated as stalagmite
surfaces are not perfectly smooth (Franke,
1968), but let us overlook this complexity.

With these assumptions, the growth in
height per drop will be &c,. This can be
seen by realizing that, per unit area at the
stalagmite apex, this is the volume of solid
that will be precipitated—on this same unit
area. Since equilibrium growth is being
assumed, this will also be the vertical height
grown at every radius on the stalagmite top.
Because the volume of dissolved minerals
that arrives in one drop is vc,, and the
volume finally deposited must be ac,Ap,
where A is the minimum equilibrium cross-

sectional area, there results v = 84, or
Td2 v

Ay = — == (4)
4 5

Subject to the assumptions that have been
made, the minimum cross-sectional area of
a stalagmite is just the incident drop volume
divided by the thickness of the water film
on the stalagmite top, and does not depend
upon the composition of the solution or
other factors! In terms of diameter,

v
d=2 V— (5)
o]

The simplicity of this is astonishing. Look-
ing more closely, we see that & is itself not
simple, as it depends on the aforementioned
surface roughness and, hence, upon micro-
scopic details of crystallization, and also
upon the mechanics of the impact and drain-
age of a drop falling on such a surface.
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For a 3 cm stalagmite (about the ob-
served minimum diameter) and drops of
volume v = 0.075 cc (the volume of a drop
falling from a minimum diameter stalactite
developed at 10°C, using the drop-weight
method of Harkins and Brown [1919]; see
also Curl [1972]), Equation (5) gives a
value of 8 of 0.011 cm (.004 inches). This
is not unreasonable, but no experimental or
other theoretical values for it are available.
With this degree of “success”, it will be
worthwhile to investigate extensions of the
model and, in particular, to relax some of
the assumptions and to extend the model.to
intermediate flows where neither Equation
(3) nor (5) should apply.

It should be noted, that in both of the
above cases it was necessary to consider
only what happened on the apex of the
stalagmite where drops fall; the assumption
of equilibrium size (and shape) then, in
effect, carried the rest of the stalagmite
along. Morphological details of stalagmite
“caps” would require a consideration of
radial effects of flow and deposition which
is beyond the scope of this paper. It will
be worthwhile later, however, to consider
how “splash cups” affect our results as these
obviously increase & considerably and might
appear to negate Equation (5). If =1 cm
and v = .05 cm3, d = 0.8 cm, which is
somewhat incompatible.

TraNnsiTION—THEORY

When a drop falls upon a stalagmite top,
it splashes and some portion of the drop
volume, plus some portion of the liquid
already present, may splash off the stalag-
mite and not fall back upon it. This repre-
sents a partial loss in the solid available for
deposition on the stalagmite. Let the frac-
tion of the incident drop that remains on
the stalagmite be ¢,, which will be called
the first splash function. It must depend on,
at least, d, 8, h (the height from which the
drop fell), gravity, and fluid properties (in-
cluding surface tension. The first splash
function has not been previously measured,
but it probably increases with increasing
d or & and decreases with increasing h. The
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actual solid that is available to the stalag-
mite from each drop is, then, ¢,v c,.

When a drop falls into a liquid layer,
a mixing process occurs and the resulting
solution, at the point of impact, will attain
some average supersaturation composition
between that of the incident drop (c,) and
that of the solution present there at the time
of impact, ¢. Defining ¢,, which will be
called the second splash function, as the
fractional contribution of the incident drop
to the final concentration after mixing, c’,
we may write

¢ = (l-¢,)c + ¢,c, (6)
The parameter ¢, must be a function of,
at least, v, 3, h, and fluid properties. It has
never been measured, but it would presum-
ably increase with increasing v or decreas-
ing o.

Between drops, the deposition of solid
depletes the solution of solute and ¢ falls.
It was the rate of this deposition process
that Franke (1962, 1963, 1965) attempted
to model. He considered processes controlled
by disequilibrium either of dissolved carbon
dioxide or of calcium ion, but the process
has not been studied experimentally. For
the present purposes, it will be sufficient to
make several approximations in order to help
bridge between the high flow and low flow
limits.

First, assume that the rate of growth, z,
is proportional to the remaining supersatur-
ation, c.

2 = ke (7)
This “linearizes” the problem. The constant
k may be defined as the maximum rate
of growth (at ¢,) divided by ¢, ie,
k = Z,.+/¢,- This assumption is most likely
to be allowable if carbon dioxide equilibrium
with the ambient atmosphere is attained by
a drop prior to its falling upon the stalag-
mite. That is, the drop is initially at the
maximum supersaturation with respect to
calcite deposition. It is possible, however,
for the solution to be initially aggressive
because of the presence of excessive carbon
dioxide in solution. Equation (7) clearly
would not apply in such a situation, which
would permit some initial dissolution prior
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to final deposition. In effect, a one solute
system is being assumed; the complexities
of the rates of simultaneous gaseous ex-
change with the atmosphere and of the
dissolution and crystallization of calcite, in-
volving a two-solute system, are not under-
stood and are beyond an adequate treatment
at this time.

Second, assume that the liquid layer on
the top of the stalagmite is well mired in
depth, that is to say, that it is of uniform
composition throughout its thickness &, but is
not necessarily so radially. A material bal-
ance on the solute in solution in the liquid
layer at the stalagmite apex, in excess of
saturation, then gives

F2 . = e
dt

Writing an equation of this type or,
equivalently, making the assumptions lead-
ing to it, is the same as assuming that the
supersaturation falls in an exponential man-
ner (the form of the solution for Equation
[8]) between the arrival of drops, with a
“time constant” r = §/k. Either r or k
may be taken as the characteristic rate
parameter for this approximation to the

supersaturation-relaxation process.

(8)

If drops of volume v and supersaturation
c, arrive at intervals of ¢ (in which case
the average flow rate would be q = v/t'),
we may apply Equation (8) in the interval.
The general solution to this is

¢ = a exp (—k—t) =a exp (—t/T (9)
)

where a is a constant of integration. The
concentration pattern for the liquid at the
stalagmite apex resulting from the arrival
of consecutive drops is shown in Figure 4.
If we assume that a drop arrives at t = 0,
it then mixes with the solution already
present according to Equation (6). That
mixture, however, is the result of the con-
centration relaxation over the interval ¢ fol-
lowing the arrival of the previous drop.
Therefore, for the terms in Equation (6)
we may write, at ¢ = ¢,

(10)
and at ¢ = 0, but after arrival of a new drop,

¢ = aexp (/)
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Figure 4. Time histories of the supersatu-
ration at the apex of a stalagmite for dif-
ferent drop rates. ¢, about 0.6. The time
and concentration scales are arbitrary.
Top: ¢ much greater than r; ¢ relaxes to
zero and the minimum diameter results.
Middle: ¢ comparable to r. Transition
between high and low flow regimes. Bot-
tom: ¢ small compared to 7. ¢ approaches
¢, and maximum growth rate is ap-

proached in the “high flow” regime. The

dashed curves indicate the composition
relaxation in the absence of subsequent
drops.

¢ =a=(1-¢,) aexp (—t'r) + ¢,c, (11)
Solving these two relations for a, and in-
serting the result into Equation (9), and
that into Equation (8), there results

. ke, exp (—t'/7)

z =
(1 =(1—¢,) exp (/7))
which gives the transient rate of growth
between drop impacts. Averaging this over
the interval ¢/, we obtain the average rate
of growth
dp,c, (1 —exp (-t'/7))
2 1= (13)
t' (1 — (1-¢,) exp (/7))
Referring again to Figure 4, in which Equa-
tion (10) is shown graphically, the effect

(12)
, 0<e<t’
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of drip rate upon the composition pattern is
shown. At low flows, ¢ relaxes completely
to zero. At high flows, it approaches a
constant value of ¢,. These are the limits
of the simplified theories first discussed.
Since the average rate of growth must also
be proportional to the arrival rate of solute,
% = ¢,c,q/A, it follows that
LT P ed (- (-4 e (B))
4 3¢, (1L—exp (-8)) (14)
where 8 = ¢/ (= kt'/58 = v/q ) is the
dimensionless parameter controlling the tran-
sition from the “high” to the “low” flow
behavior. 1t is, of course, just the ratio of
the interval between drops to the character-
istic relaxation time of composition. Equa-
tion (14) has for high and low limits,

_ $.q  $,Cq
g—> oc: A=—-= (15)
zmax
and
¢,0
T>0: A, =—— (16)
9,0

which are just the original, simple relations
with the splash functions introduced.

In Figure 5 is plotted A/A,, versus ¢,/8
( = ¢,7G/v) for various ¢,. The choice of
variables is such that the two asymptotes
for high and for low § are a single pair of
straight lines. The intersection of the asymp-
totes at 8 = ¢, marks the transition between
the two regimes. It is, in fact, not a bad
approximation to use the asymptotes them-
selves, at least for ¢, near 1.0, when the
transition between the regimes is moderately
abrupt. For example, at 8 = ¢, A/A, =
1.58, which represents an increase in the
minimum diameter of only about 25%. One
implication is that when stalagmites get to
diameters over 6 cm (assuming the mini-
mum is about 3 cm), they probably are well
into the high flow regime.

It is also apparent that the theoretical
transition between the two regimes is rather
independent of the details of the model used.
Recognizing that the two asymptotes are rep-
resented by A/A,, equal to 1.0 at low ¢,/8
or by ¢,/8 itself at high values, an arbitrary
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Figure 5. Stalagmite cross-section area, rel-

ative to the minimum, versus flow rate
(nondimensionalized). The low and high
flow asymptotes intersect at (1,1). An
empirical transition relation, Equation
(17), with n = 1.5, is shown by the
dashed curve.

empirical transition equation, based on no
model whatsoever, might be chosen, such as

A 1
Z o1+ (pypmm (1)
Am
(where n is a “fitting” parameter) that is
correct both at the low and at the high
flow limits. It can be shown that when
#, = 0, Equation (14) gives this exactly
with n = 1.0, while with n = 1.5, Equation
(17) is a good approximation to ¢, = 1.0
(Figure 5). The point here is that the use
of more-correct non-linear models in place
of Equation (7) would change only the
details, not the general transition behavior,

of Equation (14). It remains, however, that
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there exist no confirmed predictive methods
for z as a function of ¢ or of 5.

If it were possible to estimate a value for
7, it would be possible to determine the drop
rate at which a stalagmite goes into its mini-
mum diameter mode. Whatever the com-
position relaxation time is, it is true that if
the time between drops much exceeds this,
the minimum diameter should result.

For drops falling short distances, ¢, may
approach 1.0 and ¢, will probably be some-
what less than 1.0. The original elementary
estimate for A, therefore, is itself a lower
limit on possible minima. For drops falling
from a great height, ¢, might be consider-
ably less than 1.0, while ¢, should not
change much. The result is to decrease the
effective size of the drop that would other-
wise fall from an equilibrium stalactite,
which should result in yet smaller stalag-
mites. That such do not occur below water
sources at a great height probably results
from the larger random spread of the
“impact points” for such drops, which would
broaden the resulting stalagmite. This has
not been studied.

SPLASH CcuPs

Some stalagmites have cup-shaped tops,
often referred to as splash-cups. Allison
(1923) said that the “depth of the splash
cup is increased by high evaporation, low
concentration and rapid drip.” There seem
to be no particular reasons why this should
be so. The falling drops could have excess
carbon dioxide in solution and be thereby
temporarily aggressive upon impact, thus
cutting a depression in the top of a stalag-
mite, but this alone does not explain splash-
cups; in the state of equilibrium growth, ihe
bottom of the splash cup must be growing
upward at the same rate as the rim of ihe
cup and therefore, both points must have
the same average supersaturation, or at
least the same deposition rate. To have an
equilibrium splash-cup, it is necessary only
that there be a local minimum in the depo-
sition rate at a radius lying between the
center and rim of the cup. This would be

a consequence of complex processes of mix-
ing and splashing, interacting with (and
ultimately forming) the shape of the top of
the stalagmite. This is all beyond the scope
of the present paper.

One point is relevant, however: as has
been mentioned, a splash cup increases &
and, therefore, would appear to decrease
the equilibrium minimum diameter. That
such does not occur naturally to a dramatic
degree must be related to the evident fact
that ¢,, the second (mixing) splash func-
tion, must also decrease as & increases. The
previous arguments can, in fact, be inverted
and the conclusion reached from the exist-
ence of a minimum stalagmite diameter of
about 3 cm that ¢, eventually must become
approximately inversely proportional to 3.
This would prevent the denominator of
Equation (16) from changing in the pres-
ence of a significant splash-cup.

CONCLUSIONS

In comparing the present study with the
conclusions previously deduced for mini-
mum diameter stalactites, we see how dif-
ferent are the mechanisms in the two cases.
The latter were controlled by the static
balance between gravity and surface tension,
while stalagmites apparently respond to dy-
namic processes of supply and drainage of
incident drops and crystallization kinetics.
It is stimulating to the imagination how
much physics, chemistry and physical-chem-
istry is encompassed by something as “sim-
ple” as a stalactite-stalagmite pair.

The present analysis raises a number of
questions—which may be its primary virtue.
The two splash functions, @, and ¢,. are
ripe subjects for experimental study, as are
the kinetics of calcite precipitation from thin
films and the film-drainage process of spe-
leothem surfaces. Clearly, all of these are
involved in the general problem of spe-
leothem morphology; that they appear im-
mediately when even the most simplified
situation is considered—the minimum diam-
eter stalagmite—suggests the important role
they will play in future studies.
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Errata

Curl, R. L., Minimum Diameter Stalagmites
Bull. Nat. Speleological Soc., 1973, 35(1): pp 1-9.

p- 6. eqn. 9. close brackets, viz. =g exp (-—t / 1')

p. 6. eqn.1l.  argument of exponential term is. exp(~t'/ 1)

~
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