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ABSTRACT

The electromagnetic scattering behavior of a metallic sphere loaded with
a circumferential slot in a plane perpendicular to the direction of incidence is
investigated. The slot is assumed of small but finite width with a constant elec-
tric field across it, and under this assumption, the analysis of external fields is
exact. The scattered field is obtained by superposition of the field diffracted by
an unloaded sphere and that radiated from the excited slot, with the radiation
strength and phase determined by the loading parameters. Thus the scattering
behavior is determined by the loading admittance and the position of this slot.

The numerical study is restricted to the frequency range corresponding
to 0 <ka<10.0, and the results presented are primarily for passive loading.
The maximum and minimum back scattering cross sections and the loading needed
to attain these are presented for different loading positions. The bistatic scat-
tering patterns are computed for a sphere loaded for zero back scattering and
from these the back scattering null widths are obtained. The extreme total scat-
tering cross sections are evaluated using the forward scattering theorem and, for
small values of ka, the result is compared with that obtained by direct integra-
tion of the differential cross sections.

Experimental data, obtained using a metallic sphere with an equatorial
slot backed by a radial cavity of adjustable depth, is presented for the surface
field and back scattering measurements. The results are compared with the

computed data.
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CHAPTER I
INTRODUCTION

When an electromagnetic wave encounters a conducting object, a current
is induced which, inturn, reradiates to produce a scattered field. At present, one
of the major problems in scattering theory is to develop ways to control this scat-
tering through modification of the shape of the object or by changing the current
distribution on its surface. It has long been recognized that minor shape changes
can be effective in decreasing (or even enhancing) the scattering cross section,
especially at high frequencies, and with the development of absorbing coatings during
the past decade, the application of these materials has become one of the most im-
portant tools for cross section reduction. However, it is desirable to investigate
other means of cross section control, particularly those which are effective in the
resonance region and can be used either to decrease or increase the radar crbss
section. One such method is surface or impedance (admittance) loading and in the
last few years it has received increased attention. An additional advantage of this
technique is that its application does not require alteration of the body shape or the
surface characteristics as do the shaping techniques and the application of micro-
wave absorbers, respectively.

In essence, the method is to introduce an impedance over a restricted por-
tion of the surface using a cavity-backed slot, lumped network, or some other type of
microwave circuit, and as such is only a special case of the general theory of sur-
face impedance effects. Mathematically at least, it is similar to the application of
absorbers, but in practice differs both in the localized nature of the region where
the loading is employed and in the greater variety of impedances that can be achieved
either to enhance or decrease the scattered field.

The idea of using loading to reduce the reradiated fields dates back to the
1920's (Meissner, 1929) when it was common practice to use lumped inductors and
capacitors to detune the broadcast transmitting antenna supporting structures when-

ever their :Iengths were near resonance and interfered with the antenna radiation
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patterns. The first reported application of the loading technique for scatterirg
reduction at microwave frequencies was by lams (1950), who used a coaxial load-
ing to decrease the scattering from the metallic posts in a parallel plate pillbox
structure. King (1956) investigated the change in the current distribution on a thin
cylindrical rod when a central load is introduced, and later Hu (1958) and As and
Schmitt (1958) showed that a high reactive impedance can appreciably affect the
scattering behavior of such a rod. However, it was not until the recent study by
Chen and Liepa (1964a) that the capability of loading for cross section reduction was
fully demonstrated. For normal incidence on a thin cylinder of length £,0 <4< 2,
the induced current was calculated as a function of an arbitrary central load, and
the results were confirmed by detailed current measurements on a model. The back
scattering cross section was then determined, and it was found that for every value
of 4/ within the chosen range, a loading exists for which the cross section is zero.
The real and imaginary parts of the corresponding optimum impedances were ob-
tained as functions of 4/X, and whereas the required loading was passive when
£<A, that for A <{£< 2\ was primarily active.

Chen and Liepa (1964b) also considered the scattering in directions other than
normal to the surface and extended the analysis to oblique incidence; later Chen
(1965a) showed that by using two symmetrically placed loads on a cylinder, its cross
section can be reduced with passive loading up to length 2A. Valuable as this work
is, however, its usefulness for most applications is limited by the requirement that
the cylinder be thin (radius much less than the wavelength). Although Sletten et al
(1964) have shown experimentally that reactive loading is still effective when the
cylinder is thick, a theoretical treatment of loading of moderately thick cylinders by
Chen (1965b) shows that in this case, different loading must be supplied for each
circumferential mode, which would be rather complicated to achieve even at a single
frequency.

A somewhat different and more abstract approach to reactive loading is to
represent the body as a one-port (Harrington, 1963; Green, 1963) or n-port
(Weinberg, 1963; Harrington, 1964) device, which leads to the expression of the
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scattered field in terms of commonly-defined antenna parameters. However, to use
this methedte obtain quantitative results it is necessary to determine the transmitting
and receiving properties of the body, and for an accurate treatment this again involves
the solution of the boundary value problems.

The most simple example of a "thick'" body is a sphere, which we shall con-
sider here. A plane wave is assumed to impinge on a perfectly conducting sphere
loaded with a narrow slot in the plane perpendicular to the direction of incidence,
and in this case only the asymmetric mode is excited. The field scattered in any
direction can then be expressed as a superposition of the field diffracted by an un-
loaded sphere and that radiated by an excited slot at the position of the load. The
radiation strength and its phase are determined by the loading characteristics of the
slot, and by varying the admittance YI of the slot, a wide degree of scattering con-
trol can be exercised. Even if attention is confined to passive loads (admittance
whose real parts are non-negative), substantial increases or decreases in the scat-
tered amplitude in almost any specified direction can be achieved by an appropriate
choice of Y f and the slot position 90. Numerical results are presented, primarily
for the case of back scattering and surface fields, and these are compared with the
measurements made using a model with an equatorial slot backed by a radial cavity

of adjustable depth. The agreement is excellent.
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CHAPTER II

THEORETICAL FORMULATION

2.1 Summary of Mie Series

2.1.1 Surface Fields

Consider first an unloaded perfectly conducting sphere of radius a, whose
center is located at the origin of a Cartesian coordinate system (x,y, z). A linearly
polarized plane electromagnetic wave is incident in the direction of the negative
z-axis, and since there is no loss of generality in taking its electric vector to lie

in the x-direction, we choose

_}_3_1 = 312 and _l_-Ii = -ereikz, (2.1)

where k is the propagation constant and Y the intrinsic admittance of free space.

For convenience, the electric field has been normalized to unity and the time fac-
fwt

tor e  suppressed.

If we also introduce spherical polar coordinates (r,6,#) such that
x = rsinfcosf, y = rsinfsinf, z = rcosf

with 6 = 0 representing the back scattering direction and 8 = 7 the forward one,
the incident field may be written in the form (Stratton, 1941)

®
2n+1 (1) (1)
nZ:1 n(n+1) Motn 1--eln) (2.28)
®
i_ n _2n+1 ( (1) (1)
L IYnzq:i n(i+1) HolnniMeln> ! (2.2b)

(1 (1

where M~ and N° are the spherical wave functions

- gl -sin m@ d. m cos mf
M =8 ()P cos6){ O }] 3[!1 (ler) = P "(cos 9){mm¢}J

mn
o)
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h (kr) [krh (kr)]
1) _ A n cos mf m cosm
N o= rEl(n+1) e Py e 89){ }‘J { 9 P, (cos 6){sinmﬂ5 :]

[krh (k)] sin m
+¢[ Tkrsnd  n 6){ o:m¢¢}_}

The prime refers to the derivative with respect to kr. From the requirement that
the scattered field represent an outgoing wave at infinity, we are led to assume

the scattered field to be of the form

It
[

(0]
8 (4)
Z;( n—oln n—eln (2.32)
)i iYZ(A N | +iB_M S)n , (2.3b)
n:

where _M_(4) and §(4)

(1) (1)

differ from M and N in having the spherical Bessel
function jn(kr) replaced by the spherical Hankel function hn(kr) of the second kind.

Application of the boundary condition

T (§1+ES) =0

at r=a then determines A and B
The total field is the sum of (E H ) and (E H ) and the only nonzero
0
of direct concern to us, and they can be expressed, in the notation of Kazarinoff

and Senior (1962), as

components (at the surface of the sphere) are Er' H_. and H¢ The last two are

H, = Ysin¢T1(6) (2. 4a)

H¢ = Ycosf T,(6) , (2. 4b)

where
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© Pl(cose)
1 E n+1 1 n i 3
Tl(e) ka o n(n+1){§£(ka) sin@ * ( (ka) %0 P (cose)} (2.5a)

0 Pl(cose
1 nt+l 2n+1 1 9 i n
T,0) = 1 Z b o+ {g T(ka) 96 ( 0s6) + ¢ (ka) sin6 ,} -(2.5b)

n=1

Here, § (x) = xh (x) and the prime denotes differentiation with respect to the
entire argument . P (cos 8) is the Legendre function of degree n and order unity
as defined, for example, by Stratton (1941).

2.1,2 Scattered Far Fields

In the far zone the expressions for the scattered field are obtained by
replacing hn(kr) and its derivatives in equations (2.3) by the leading terms of
their asymptotic expansions for large arguments. Using the notation™ of Senior
and Goodrich (1964), we write

8 e-lkr 8

E9 = icosf - sl(e) (2.6a)
8 e I g

E¢ = -isinf e sz(e) , (2.6b)

where S:(O) and SZ(O) are defined as the far field scattering amplitudes and are
given by

® 1
¥ (ka) Y (ka) P (cos®)
8, _ E n 2n+1 n a2 1 n n
8,6) = — Y ey {c ' (ka) 96 Fn'°°80) - ¢ (ka) sind } (2.7a)

1) 1
Y'(ka) P (cosH) w (ka)
8,0y _ E n 2n+l n n 9 1
S,10) = - 1) 2o+ D {(;I(ka) sinf §(ka) % F (°°89)} (2.70)

* Note the change in time convention.
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with wn(x) = xjn(x). In the back (9 = 0) and forward (6 = r) directions

Mol .

P (cos6) [ 1
n 0 1 n(n+1)

——— = | — P (cos6) = —— (2.8a)

| sin6 |, 7|96 n o0 2

PPl(cose)-

R [—E-’- Pl(coseil = (i plotl) o g
sin@ 960 n 2

L. _JO:'” O=7

respectively. Hence, from equations (2.7)

S, _ B
SI(O) = S2(O) (2.9a)

sf(w ) =-S;(1r) (2. 9b)

implying that for forward and back scattering the field has the same linear polar-
ization as the incident field. In other directions, however, the field is elliptically
polarized.

2.2 Radiation Problem

We now consider a separate but related problem of a perfectly conducting
sphere with a narrow slot symmetrically placed with respect to the z-axis (and
hence, with respect to the incident field direction in the problem just discussed).
L €6« 60+% (see Fig. 2-1) and its angular

2
width § is such that ka§ << 1. Within the gap, the tangential electric field is

The slot occupies the region 60-

specified, and in view of our intention to regard the slot as a passive or semi-
active* device excited by the incident field, the excitation must be chosen in accord-
ance with the surface field behavior shown in equation (2.4b). It is therefore
assumed that for | 9-601 < §/2

1
E, = - éavcosﬁ (2.10a)

E,=0. 2.10b
¢ ( )

* By a semi-active device it is implied here that the real part of the loading ad-
mittance (or impedance) is negative.
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FIG. 2-1: SPHERE GEOMETRY .
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This corresponds to & constant (but asymmetrical) voltage vcos § applied across

the gap. Over the rest of the sphere, E, and E¢ are both zero, as is appro-

6
priate for a perfectly conducting surface.

To calculate the field (_I‘_Jr, gr) radiated by the slot, we again postulate a
field of the form shown in equations (2. 3), but with An and Bn replaced by new
constants Cn and Dn respectively, so that

@
(4) (4)
Z ( n—e1n> (2.11a)

= O (4)
= 1Y nZ:( ln n—eln . (2.11b)

When these are substituted into the boundary conditions at r =a, we obtain

i lex(cos 6) 5 1
Cn Cn(ka) —me T i Dn §l!1(ka) % Pn(cos 6)

n=1

v [
-, ]e-eo|< 5

(2.12a)
=0 , otherwise

from the 6 component, and

0 P (cose)
Z C §(ka)""'P (cosf) +1iD ﬁ'(ka)-—;i-l-l-e-— =0 , allf K (2.12b)
n=1

from the ¢ component. Moreover, from Bailin and Silver (1956)

7
{Ptll(cos 8) 2 P1 {cos6) + P1 (cos 6) 2 lel(cos 8)>d =0

96 m m 00
0
and
3 1 9 1 11 1 _
S {89 Pn(cos 8) % Pm(cos 6)+ smze Pn(cos O)Pm(cos Bi} 8in06do _Anm ,
0
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0 n#m
Mom ~ 2 2
2n (n+1) _
2n+1 m

Hence, by application of these r~lations to (2.12)

0,5
+
Cn= gl((;a) 2nt] % Ptll(cose)de
2n ( +1) 6
6 - —
o 2
(2.13a)
. kil P -
C(ka) on ( +1) ;
and
0.+
+

D = glga) 2o+l % smeé% Prll(cose)de
n 2n (n+1) 5
0 -—=
o 2

kv 5in6 P 4+)- Pl
0 2n+1 n ' “n
< i ¢ (k) > 5 5 , (2.13b)
n 2n (n+1)

where, for brevity, we have written

=P <cos{001' %}) .

In the evaluation of Dn it was assumed that the variation of sin6 over the slot can
be neglected and, as a consequence, the position of the slot is now limited by the

condition

with € >>56.

10
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The expressions for the radiated field follow from equations (2.11) upon
inserting the above formulae for Cn and Dn’ and M(4) and §(4). The equations
are rather lengthy, by straightforward. Thus, we proceed directly to formulas
for the surface fields and the far fields.
2.2.1 Surface Fields

On the surface, r=a, only the magnetic field is of direct concern to us,

and for this we write, analogously to equations (2.4),

H; = stm¢Ti'(e,eo) (2. 14a)
H; = vYcosfTy6,6) (2. 14b)
where
(0] 1 1
g (ka) 8in6@ /P (+)-P (-)
(6,6 ) = = Zn+l { & 0< & = > P}(cosB)
1" "0 2a Zln (n+1) §n(ka) 8in@ 6 n
¢'(ka) /P (+)-P (-)
§(ka)< 2 - 2 >-8% Pl(cose}(z.wa)
® ¢ (ka) P (+)-P (-)
T;(G, 6) = Ei_ Z 2n+1 {C?(ka) sin@ <———————-—>-— P (cos6)
n=1 n ( +1) n

K;I(ka) 1 ,Pn(+) j I:‘n(") 1
+ §n(ka) e ( 5 ) Pn(cos ) 7.

(2.15b)

The convergence of the above series is determined by the gap width 6. For
non-zero values of § the series are convergent, but rather slowly, and the number
of terms that must be retained for numerical evaluation is in fact inversely propor-
tional to 6. In the limit as § — 0 the series for T;(B, 90) actually diverges every-
where, but for T;(O, 90) diverges only when 9—>60. More discussion on the con-

vergence and numerical computations of these series is given in Section 3.1.
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2.2.2. Radiated Far Fields
In the far zone, on the other hand, the expressions for the radiated field
components are convergent even for 6 =0, corresponding to an infinitesimal gap
across which a voltage vcosf is applied. We obtain the expressions from equa-
tion (2.11a) by replacing h (kr) and its derivatives by the leading terms of their
asymptotic expansion for large kr in the definitions for M( ) and N( ), and by re-
placing
1 1
P (+)-P (-) P (+)-P (-)
n n n n

5 and 5

in the expressions for Cn and Dn by the derivative forms

1 )
—Pn(coseo) and 86 Pn(cose )

respectively. Then, analogously to equations (2.6), we write

-ikr

r . e r

E6 = jvcos - sl(e, Go) (2.16a)
r -ikr r

E¢ = -jvsinf = sz(e,eo) , (2.16b)

where the radiated far field amplitudes are given by

st 16,8 )— —sine Z ot 2n+1 {! zka) :9 P ( osO)— Pn(cose )

n=1 ( +1)
i P:l(cos 8) Prll(cos 00)
* ¢ (ka) sin® sinf (2.17a)
n o
Pl(cos )
ntl 2n+1 1 n d 1
S (6 6) = sinO z : 5 {('(ka) 6 oa nlcos®)

n=1 n (n+1) n o

sm9

i 9 P (cos 6 )
+ Tk 26 F (cose) ——2 . (2.17b)
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In the back and forward directions

r —

5,(0,6) = s‘;(o, 6) (2.18a)
r S ¢

S)(r,6 ) = -S,(r,0). (2.18b)

2.3 Radiation Admittance of Asymmetrically Excited Slot

It is customary to define the admittance of a slot as the ratio of the current
flowing away from the slot to the gap voltage, where the latter is the line integral
of the electric field across the gap. This definition, however, is unique only for
TEM waves, and for other modes the admittance is usually defined to best suit the
particular situation. In this problem of an asymmetrically excited slot, the total
instantaneous current is in fact, zero, and we are led to introduce the concept of
admittance density, defined as admittance per unit length of the slot.

We define the admittance density as twice the ratio of the complex power
flow density to the modulus squared of the applied voltage. The complex power
radiated per unit length of the slot is

9+-§-
021 r ~r, A
w = -5(_1:3_ xH )-radf
o 5
o 2
ot
_ 1 vcos © ~r
= - H,db ,
2 5 )
5 5
o 2

where the tilde denotes the complex conjugate, and the radiation admittance density

is therefore

13
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y = 2w
TN,
T vcospvcosp

" §vcosf

The (total) radiation admittance is

2m
Y = yrasin60d¢ (2.19a)
0

and since yr is independent of §, we write

)
+—-
6o 2

Y = -2rsing Y2 T(6, 6 )do . (2.19b)
r o) 2 0

6
6 -
0

N o

Using the expression for T;(O, 60) given in equation (2.15b), together with the
evaluation of the Legendre function integrals used in the determination of Cn and

Dn’ we get

1 1, \2
Y = ivrsmls ) | s (k) (B =P N € (ka) /- ()
g °D n (n+1) (ka) ésineo g;l(ka) 5 ]

(2.20)

An equally acceptable definition for admittance density is the ratio of the
current density flowing away from the slot to the applied voltage at a point specified
by theazimuthal variable . In this case the resultant radiation admittance is of a

different form, but, as we shall next show, it is not as well suited for our purposes.

14
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The surface current density J is directly related to the tangential mag-
netic field by

J = TxH (2.21a)

so that on the surface of a sphere

J. = -H and J,=H_. 2.21b

The radiation admittance density is then

r
JG

vcos

yl
r =9

= -YT (6,6 )
2 0o

and the (total) radiation admittance

~2m
! = 6
Y y .asin od¢
0

~27rYsind aT (6",6 ) (2.22)
o 2 6)

The 6' denotes the edge of the slot and is given by either 6' = 90+-g- or 8' = 90-

Except for 90 = 7 /2 or when the gap width § =0, the two values give different

o o

results for Yr' and although the numerical effect may be insignificant under most
practical circumstances, it is undesirable that an expression should have that de-
gree of arbitrariness. Another difference between this result and the one previously
derived is that for Yr the surface field component T;(O, 60) is integrated across
the slot (equation 2.19b), and as a consequence the convergence of the infinite
series is accelerated by a factor O(1/n).

2.4 Complete Problem

The final problem to be considered is the combination of the scattering and

radiation problems in which the plane wave given in equation (2.1) is incident on

15
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the slotted sphere. It is assumed that the same voltage vcos  is excited across
the gap, and the expressions for the resulting total fields can be found by super-
position of those associated with each individual problem. We therefore have

E = i+§s+ r

|t
|t

(2.23a)
and

H=H++H , (2.23b)

I

where (_E_i,gi), (Es,_llls) and (_Ff,gr) are as defined before. In particular, in the
far zone the components of the total scattered electric field are written, similarly

to equations (2.6), as

e-—ikr

E, = icos§ - Sl(B) (2.24a)
e-ikr

E¢ = -isinf - 82(9) , (2. 24b)

where the total scattering amplitudes are now given by

S.(6) = s°(6) + vsT(6,6 ) (2.25a)
1 1 1 o)

B r
sz(e) = sz(e)+vsz(9,eo) . (2.25b)

The expressions for sf(e,eo) and S;(O, 60) are, of course, independent
of v, and if this voltage is excited across the slot by the currents induced by the
incident field, the voltage can be related to the loading admittance of the slot.

To calculate this voltage, we apply the same technique that was used for
determining Yr' As before, the complex power entering the slot per unit length
is obtained by integrating the Poynting vector over the slot. Hence,

(ExH) - radd |,

16
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where (E, H) are given by (2.23). But since

= VCOBQé\

— 6’a 1]
the slot admittance density is simply

6 +3

Y, = m (HI+H¢+H¢)

6
o

mIO»

which, by using equations (2.19), (2.17b), and (2.5b), can be written as

Y
. + —
¥, Yot v T2(9) a .

For 6 sufficiently small, the variation of T2(6) across the slot can be neglected,
giving
Y
= - + —
Yy yr \4 Tz(eo)
and the (total) loading admittance of the slot is therefore

Y =-Y +-Y—21rasin9 T.(O), (2.26)
1 r Vv 02 o

where T2(9) and Yr are given in equations (2.5b) and (2.20), respectively. Solving

for v from equation (2.26),

Y
v = Y1+Yr 21rasin90T2(00) (2.27)

and, when substituted in (2.25), the component scattering amplitudes for the loaded

sphere are

Y r
(e) S (e)+ 1 +Yr 27 smeoTz(eo)asl(e, eo) (2.28a)

17
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- B r
sz(e) = sz(e)+ 27 smeo 'rz(eo)asz(e, 60)w (2.28b)

Y
Yl * Yr
Each scattering amplitude is a sum of the scattering amplitude for an unloaded
sphere and the modification term accounting for the presence of the slot. This
term contains radiation and loading admittances, a term for the value of the sur-
face current at the position of the slot when the slot is not present, and the radia-
tion pattern from the slotted sphere when it is excited by an asymmetric (unit)
voltage across the gap.

In terms of these scattering functions, the bistatic radar cross section is

o6, p) = 09(9. #) + 0¢(9, . (2.29)

where the component cross sections are given by

2
0,(6,8) = %;- ]SI(G) |2 cosz¢
22 2 .2
o¢(6, P = = |s2(9)l sin“p .

In particular, for back scattering and forward scattering directions

2
) 2
ol0) = = [8,(0)] (2.30a)
2
= A 2
= = [s,(0)] (2.30b)
and
2
= A 2
ofr) = = |s1(7r)| (2.31a)
2
) 2
== |82(1r)| (2.31b)
respectively.
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To make the scattering amplitude sl(e) zero in the direction 6 = 6' the
required loading is

asf(e',e )
o) ——= (2.32a)

[Y;J = -Y _-Y2rsing T, -
0 r 0 5,(0")

Similarly, to make 82(6) zero in the same direction, the required loading is

as;(ev, 6
(Y =-Y -Y2rsing T (9 ) ——-—2 (2.32b)
1 r o 2

S 1
sz(e )
and unless
r
aSl(O s 00) _ a82(6', 00)

- = —= (2.33)
sl(ev) Sz(e')

the scattering cross section cannot be reduced to zero with a single slot loading
of the form discussed here. This does not, however, rule out the possibility of
significant reduction in scattering by a suitable choice of Y ¥ Moreover, in many
cases of bistatic scattering only SI(G) or sz(e) is of interest, and in such a case
zero scattering can be achieved.

The obvious exceptions to the above are back and forward scattering, in
which cases equation (2. 33) is satisfied. (See equations 2.9 and 2.18). Further-

more,

(ka)?

4

455(0,6 ) = sin T (6 ) (2. 34a)
1 0 o0 2 o

and hence the loading for zero Sl(O) and 52(0) is
g 2 r.8,.0-1
[Yl:lo =-Y -Y7 {kasineoTz(Oo)} {sl(og . (2.34b)

Similarly, in the forward direction we get
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r (ka)2
aSl(n,Go) = —Z—-sineo T2(1r .—60) (2.35a)

and consequently for zero Sl(7r) and Sz(w)
[:Y] = -Y -YZ (kasin )2’1‘ (6 )T (r-6 ){ss( )}-1 (2. 35b)
1 0 r 2 o 2 o 2 0 1\ . ’

The fact that for a passive scatterer, zero scattering in the forward direction im-
plies zero total scattering and absorption indicates that the above loading will have
a negative real part, corresponding to an active slot for all values of ka and 00.

The expressions for the total surface field components can be obtained
directly from the far field expressions. Since the technique used in the deriva-
tion of the far fields is quite general, the components of the total surface fields
are obtained by replacing the far field formulae in (2.28) by the corresponding

surface field expressions. Thus,

t Y r
TH0) = T,(6) + XA 27 5106 T,(6 )aT}(6,0 ) (2. 36a)
) = T.(6) + —2— 27 8in6 T.(0 )aT"(6,6 ) (2. 36b)
2 2 Y1+Yr 02 o0 27770 ’

and, analogously to(2.4), the total surface field components are given by

Hy = Ysin ) Ti(e) (2.37a)

H¢ = YcosﬂT;(G) . (2.37b)

2.5 Low Frequency Approximation

The characteristics of the above derived formulae can, in general, be
determined only by numerical computation of the functions involved. However,
an exception is the case of small ka. Taking the leading term of the series ex-
pansions of spherichl Bessel functions about ka =0 (see, for example, Stratton,

1941),
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(<1) 7 +m)
3 m (2n+2m+1)!

i (ka) = 2"(ka)” (ka) 2™

Q0
-1 Z F(2n-2m+1) . 2m
yn(ka) ~ .n, .o+l m'(n-m+1) (ka) ’

2" (ka) m=0
we get
J(ka)"’Z(ka) n +1), , ka << 1
- !
y (ka) ~ 1n+1 (i‘,‘)' . k<<l
2"(ka) '

and when these are substituted into equations (2.7), the scattered far field ampli-

tudes for an unloaded sphere reduce to

3
s‘;(e)w-i (k;) (2 cos0+1)+ (ka) S22 (1-4c0s6) (2.38a)
s (ka)> m )
82(6) —i—-——(2+ 08 6)+ (cos6-4) , (2. 38b)

and the radiated far field amplitudes, from equations (2.17), reduce to

25506 ) ~ -3 (ka)® sin6 (1+ika cos6cos 8 ) (2.39a)
1 o) 8 0 o)

aSr(O,G ) ~ _3 (ka)zsine (cos6+ikacos® ) . (2.39b)
2 o] 8 o o

Similarly, for the surface field component TZ(G), we obtain from equation (2. 5b)

3 . (3 5 sin20
T2(9)~-2 - ika 5 COB 86 + 12 s1n6> , (2. 40)

and for the real part of the radiation admittance we obtain from equation (2. 20)

Y

r 3 . 2 2
Re Y 2 7 sin O(ka) .
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Its counterpart, Im = ,» 18 not 80 easily expressible in closed form, however,
and since there is no need for it in our investigation, no attempt is made to re-

duce it.

The scattering amplitudes for a loaded sphere are obtained by substituting
the above small argument expansions into equations (2.28) and, in particular, with
a slot at 60 = 900, their magnitudes are

4
2 (ka)" 1 2
ISI(G)I 2 2 32 {‘.lcos 9+Azcose+A3} (2.41a)
X +y
|s (e)]2~i-k—‘—)-4- —L— (A cos’0+A cos0+A (2. 41b)
2 4 2,2 03 2 if '

where
A, = a(ka) 2% + a(ka) Py

A, = 4(ka) 22+ 4(ka) 252 + 97 (kaly

81 2

22 22 9
A3 = (ka)"x +(ka)'y +21r(ka)y+167r

ith x = Ra L = Im L
with x = Re Y (YI+Yr) and y = Im ¥ (Yl+ Yr).

The loading needed to make either ISI(G')I2 or ISZ(O') |2 zero in the direc-
tion 6 = 6' follows directly from equations (2.32). For 6 = 0, the two are identical,
and if 6= 90°, the loading is

Y Y
A, _r
Y Y

~ -{

Vg [

. -
ka
When substituted in equations (2. 41) this gives

|sl(e)]2 = [s, @) i

= (ka)(1 - cos6)®
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Since the moduli of the scattering components are equal, the scattering is inde-
pendent of §, which, for a vector problem, is rather surprising. However, a

further examination of equations (2.38) and (2.39) reveals that this is a special
case and occurs when the imaginary terms in (2.39) disappear, i.e. when 00 =90,
In other words, the radiation field is a "mirror image' in § of the scattered field
and when the two are combined, the result is independent of §.

For presentation purposes it is convenient to write the results in terms of
component cross sections (equation 2.29) and then normalize the resulting values
to the back scattering cross section oro of an unloaded sphere. Thus, for an un-
loaded sphere,

00(9, )]

—— % {32 cos 9+1)2cos2¢+(2 cos 9+1)zsin2¢} (2. 42a)
[0}

and,, for the sphere loaded for zero back scattering,

2%6’—@ N‘S (1-cos 9)2 . (2. 42b)

(0]

The results for §=0 and §= n/2 are plotted in Figs. 2-2 and 2-3 respectively.
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270 90

0°
I . lgi

FIG. 2-2: NORMALIZED SCATTERING PATTERNS FOR LOADED (—)
AND UNLOADED (- — -) SPHERES IN E-PLANE (§ =0) WITH
6,=90" AS ka—0.
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180
2. 04

90

270

FIG. 2-3: NORMALIZED SCATTERING PATTERNS FOR LOADED (—)
AND UNLOADED (- - —) SPHERES IN H-PLANE (f§ = 7 /2)
WITH 6 _=90" AS ka—0.
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CHAPTER III
NUMERICAL COMPUTATIONS

3.1 Computation of Pertinent Functions

The expressions of all pertinent functions derived in Chapter II were
programmed for computation on the University of Michigan IBM 7090 computer.
These included the surface and far field expressions (equations 2.5 and 2. 7 respec-
tively) for a solid sphere, radiated surface and far fields (equations 2.15 and 2.17
respectively) due to radiation from an excited slot, and the radiation admittance
(equation 2.20) of this slot. Except in the cases of the radiated surface flelds,
T;‘(B, Oo) and T;(e, 00), and the radiation admittance Yr’ the computations were
straightforward. The infinite series were approximated by the same, but trun-
cated series and the number N of terms retained in any given series was deter-
mined essentially by the machine. A criterion was set to terminate the series
whenever the magnitudes of successive terms fell below 10-7. On the average,
only about 4 terms were required for ka=0.1, but as many as 30 for ka=10.0.

The spherical Hankel and Legendre functions are contained in all the series
and their evaluation was carried out using external subroutines. The function ¢{'(ka)

was written in the form

N |
$'lx) = 53 {nhn.l(x)-(n+ l)hn+1(x)}+hn(x).

and hn(x) was itself broken up according to

hn(x) = jn(x) - iyn(x).

The spherical Bessel functions of the first kind, jn(x), were evaluated by numeri-
cal integration of the finite integral expression

r/2
n
J &)= -(5!{,—)— cos(x sin ¢)0082n+1 )
0

(see, for example, Adams and Hippisley, 1947). The range of integration was
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subdivided into 40+ 2n increments, and judging from spot checks, the resulting
evaluations were accurate to six significant figures for n < 20 and to five for

n< 44. The number n=44 was the largest value, consistent with machine capacity,
for which jn(x) could be evaluated. The spherical Bessel functions of the second

kind were evaluated from the finite series expansion

<nf2

| nt+l r '
yn(x) = (“1)1 GOS(X_,_M) y (-1) (n+2r)!

2 =/ (2r)'.(n-2r)'.(2x)zr
n-1
2

r 1
) sin(x+% ) (-1) (n+2r+1)! 21+1}
r=0 (2r+1)'(n-2r-1)'(2x)

<

(Watson, 1948), giving seven digit accuracy for n £ 20 and better than five for
< 4.

The Legendre functions were computed from the recurrence relations

_ 2n+1
Pnﬂ(cose) = 711 cos O P (cose)— +1 P (cose)
and
+1 +1
P +1(cos 0) = cosGP (cos 0)- —P (cos 8)
starting with Po(cos 8) =1, Pl(cos 6) = cos
1 1 3
and Pl(cos 8) = siné, Pz(cos 6) = 5 sin 20
respectively. The differential form 5% P (cos 6) was then obtained from the
relation
1 1
5 P (cos0) Pn- 1(cos 8)
—_— = ——— - (n+
% P (cose) ncosf In0 (n+1) oin

with the conditionals
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- n
2 Pl(coa 6) - notl)
[ 96 n Jg=0 2
(5 1, ] (n+1)
=P (cosf)| = (-1 F—
|00 n g-= 2
=7

The values of the Legendre functions computed in this manner are believed to be
accurate to seven significant figures for n 50, but the subroutine has been used
up to n =300 with no appreciable loss in accuracy.

For reference purposes, the back scattering cross section for an unloaded
(solid) sphere, normalized to the physical optics value 1ra2, is presented as a
function of ka in Fig. 3-1. The formula for computing these values is given either
by equation (2. 30a) or (2.30b), but since there are already adequate tabulations
of the back scattering cross sections in the literature (Bechtel, 1962; Hey et al,
1956), no direct computations were performed.

The evaluation of the series for the radiation admittance Yr is complicated
by the slow convergence of its imaginary part for all non-zero 6. This is a con-
sequence of the local capacitance in the vicinity of the gap and, indeed, in the limit
as the gap width tends to zero, the series for the imaginary part fails to converge.
In contrast, the series for the real part is rapidly convergent even for 6 =0.

The first N terms of the series are treated exactly, and to facilitate the
computations, the subsequent terms are replaced by their asymptotic forms for
large n. Since

K;l(ka)
™

for n >>ka, and

2 1 m
P (cos 6) ~ \’ —aing °°° {(n+ 510~ 4}
1 2n 1 T
Pn(cos 8)~ -\’ e °°° {(-n+ 2)9+ 4}
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for n >> cosec 6, substitution of these expressions into the higher order terms of
(2. 20) gives

X o e stao Z 2n+1 {Cn(k”(?n(ﬂ-Pn(-))_ ¢ (ka) <Pn(+)_pn(-)>}
¥ °'p=1 112(:1+1)2 Cn(ka) §sinf K;l(ka) 6

®

sinpé 2
E 2n+1 2 1
+1i <9_5_ > [ka sineo {1+sln(2n+1)6;}- kasineo {1 - 8in(2n+ 1)6‘3] v
2

n=N+1 (n+ 1)2

(3.1)

In all of the computations, N was given the largest value consistent with machine
capacity, and 1000 terms were retained in the second series. This last is cer-
tainly more than sufficient for our purposes, and the only possible source of error
then lies in the use of asymptotic formulae. To get some feeling for the probable
magnitude of these errors, Yr/ Y was computed for ka=5.0, §=0.0392 and

90 = 90° using four different values for the upper limit of the summation variable

in the first series, and the results are summarized below:

N=10, Yr/Y = 15.255+129, 686,
N=15, Yr/Y = 15.255+130, 385,
N =20, Yr/Y = 15.255+130.676,

N=24, Y /Y = 15.255+130.748.

(N = 24 is the maximum attain%ble by the machine for ka=5.0). The rapid con-
vergence of the series for Re ..; is reflected in the constancy of the real parts
above, and if the trend of the imaginary part% remains the same as N is increased
still further, the computed magnitude of Im _YE with N =24 should be within one
percent of the correct value.

Since Yr is symmetric about 8 = 7 /2, it is sufficient to restrict attention

to 90\< 900. The gap width chosen for computation was 6 = 0.0392 (approximately
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2. 250), and this was determined by the equivalent slot width of the experimental
model (Section 4.1). The sample computations of Yr/ Y for 0 <ka < 10.0 with
slot positions at 0_= 45° and 6 = 90° are shown in Figs. 3-2 and 3-3 respec-
tively, and from these it appears that the change of the slot position does not
affect the general character of the loading behavior. The real parts are zero for
ka = 0 and rise through positive values with a small but regular oscillation as ka
increases. The imaginary parts, on the other hand, have a negative singularity
at ka=0, but as a consequence of the asymmetric excitation, they become posi-
tive at ka around unity, and then remain as such.

To investigate the effect of the slot width on the radiation admittance, Y r/ Y
was computed as a function of 6 for ka = 4,28 with 00 = 90°, As shown in Fig. 3-4,
the real part is essentially constant for the full range of 6 considered, but the
imaginary part shows a significant variation due to local capacitance across the
gap. At §=0 the imaginary part has a positive singularity and then is monoton-
ically decreasing as 6 increases.

Computation of the radiated surface field components T;‘(e, 60) and T;(G, 80),
given by equations (2.15), is even more involved than that of the radiation admit-
tance Y /Y Whereas the terms in the series for Y /Y are O(l/n ) for n large,
for aT (9 ] ) and aT (9 0 ) they are O(1/n) and O(l/n ) respectively. For-
tunately, the terms in the series alternate in sign in groups of 27 /6 terms, and
therefore may be treated as an alternating series. The first 43 terms (or less,
whenever the machine capacity was exceeded) were computed exactly. From there
on, to facilitate the computation, the ratios of the Hankel functions were replaced
by their asymptotic form

£ 2@tDEn-1)-(-1x

1
+= , n>>x
$x) 2(2n~ 1)x+1r:3

X

¥ The factor a has been incorporated to make equations (2. 15) functions of ka
rather than ka and k.
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and the Legendre functions by their corresponding asymptotic forms, but only
when n > 100, As such, the terms for both series contained the same factor

sin Bzé, and approached zero as

Ezé—>m1r, m=1,23...

A comparison of partial sums terminated at

2mmn
5

n~

showed that for m >3 the results, for all practical purposes, were identical. To
ensure good accuracy for the numerical evaluation, the series were terminated

at m=6, and with 6 = 0.0392 this corresponded to 962 terms. A sample com-
putation for the amplitude of T;(O, 7 [6) with ka= 1,03 and 00 = 30° is shown in
Fig. 3-5. The amplitude at the front (6 =0) is rather large, as compared to that

at the back, and becomes even larger (but finite) in the region near the slot. A
similar computation for T;(B, 7 /2) was also performed for ka = 4.28 with 90= 90°.
The field, as one would expect, is symmetric about 900, but its amplitude is more

uniformly distributed over the surface of the sphere.

3.2 Loading for Zero Back Scattering

Once the numerical results for Si(O), Tz(GO) and Y _/Y are available, it

is a simple matter to determine the loading admittance [:Y for zero back scat-

tering from equation (2.34b). In Figs. 3-6 through 3-10 tée real and imaginary
parts of the loading admittance are presented for 0 < ka 10, with 00 = 300, 450,
600, 900 and 120° respectively. All the curves are quite irregular and, as ka—0,
the imaginary part becomes infinite. The real part is, however, of more impor-
tance. Bearing in mind that the non-negative values of the real part correspond

to a passive load and the negative values to an active load, it is apparent that zero
back scattering can be obtained with a passive load only when Re [:Yll) 20. Aswe

see from the graphs, the loading is quite dependent on the slot position 60, with
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increasing irregularity as 60 increases. For instance, with 9 —30 the real

part is non-negative for almost the entire range of ka considered, but as 90 goes
to 900, or even 1200, both the real and imaginary parts become rapidly varying
about the zero axis. This variation can be directly associated with the spacial
separation betwsen the slot and the equivalent phase center for the returned signal
from an unslotted sphere. This phase center is located somewhere near the front
of the sphere. An increase in separation makes the load more frequency sensitive,
while a decrease has the opposite effect. Unfortunately, as the slot is moved
towards the front, its total circumferential length decreases, and the amount of
energy available for '""reradiation' is not sufficient to cancel out the far field. In
such a case an active load is required. In Fig. 3-6, for 6 = 30° , we see the
cross-over appearing at about ka = 1.5 with the values of Re[ / Y] being just
slightly negative. When the slot was moved to 6 = 25 an explorato?'y calculation

showed that the real part is even more negative.

3.3 Optimum Passive Loading

Since passive loading is of most interest, let us now consider the maximum
and minimum values of back scattering cross sections that are attainable with such
a loading. From equations (2.28), (2.30) and (2.34) we can write the back scatter-
ing cross section o(0) for a loaded sphere, relative to the back scattering cross

section Go for an unloaded sphere, as

2
A _ |4 2tid l (3.2a)
g x+iy
o
2 .2
=1+ a2+b2 + .;ax2+ 22by2 ) (3.2b)
x +y X ty x ty
where
2
w{kasinGOTz(Oo)} .
at+ib = . Y +Y
281(0) 1 r
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YI
xtiy = Y +

_Y_’_l:

Y

with a, b, x and y being real quantities. The maximum and minimum values of
the above cross section ratio, as well as the passive loading that is required to
attain them, are determined in Appendix A. By passive loading we here mean only
that Re XYL 20 and, by no means, that the resultant loading admittance is always
physically realizable. A discussion of synthesis methods is presented in Section 6.1

The computed results for the extreme cross sections and for the correspond-
ing passive load are presented for various slot positions, 60, in Figs. 3-11 through
3-19. First, taking the minima, we observe that there is a complete reduction in
the cross section wherever Re [Yll Y]O 20, For example, with 90 =30° (Fig. 3-11)
the cross section is zero for almost all ka, 0 <ka <10.0. (At ka=1.5, the real
part does cross the zero axis, but even then the reduction is over 40db.) Next, let
us consider the result with 0 =45° 1n Fig. 3-12. Here the return is zero for
ka < 4.25, but as Re l:Y l/ Y] in Fig. 3-7 swings from a positive to a negative value,
the minimum return increases from zero and rises to a peak value at ka ~8.0
which is only infinitesimally less than for an unloaded sphere. It then appears to fall
back to zero somewhere around ka = 12,0. The pattern apparently is repeated
without end. Any further displacement of the slot towards and into the shadow re-
gion (00 > 900) compresses this '"gtop and pass band" pattern and decreases the
total ka range over which the scattering can be appreciably reduced. For instance,
with 90 = 30o almost the entire band 0 < ka < 10 is covered, whereas with 60 = 600
the coverage has decreased to 53 percent and with 90 =120° to only 33 percent.

If, on the other hand, we aim for the maximum return, an arbitrarly large
enhancement can be achieved in all cases by taking ka sufficiently small, but since
this is only a consequence of a higher order zero in the normalized function o
the result is somewhat misleading. To consider an enhancement that is more

realistic, we shall confine our attention values of ka 3 1.0. The maximum return,
in such a case, appears to be close to 20db for a particular value of ka and with
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FIG. 3-11: MAXIMUM AND MINIMUM RELATIVE BACK SgATTERING CROSS
SECTIONS FOR PASSIVE LOADING AT 90 =30,
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FIG. 3-12: MAXIMUM AND MINIMUM RELATIVE BACK S%ATTERING CROSS
SECTIONS FOR PASSIVE LOADING AT 60 =45".
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FIG. 3-15: MAXIMUM AND MINIMUM RELATIVE BACK SgATTERING CROSS
SECTIONS FOR PASSIVE LOADING AT 60 =60".
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FIG. 3-18: MAXIMUM AND MINIMUM RELATIVE BACK gCATTERING CROSS
SECTION FOR PASSIVE LOADING AT 90 =90".
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6 somewhere in the neighborhood of 60°. As 90 is changed to 300, this value
decreases to 15 db and, for 6 = 120 it is a mere 12.8db. The maximum
average enhancement for the range 1 < ka <10 also appears to take a similar
pattern. With 6_= 60° it 18 11.2db, but with 0, = 30° and 120° it decreases to
7.8 and 4.7 db respectively.
Figures 3-13, 3-14 and 3-16, 3-17 show the passive loading admittance

required to attain the given extremum scattering with 9 =45° and 60° respectively.

In the case of a minimum return, the optimum passive loading [Y / Y] is given
by [Y/Y:l when Re [:Y'/Y] >0, but when the Re EII/YE‘ <0, the opthnum real

part is set zero and the corresponding imaginary part rapidly approaches a large
value (Figs. 3-13 and 3-16). For a maximum return the real part of the optimum

loading [Y / Y] is zero and the imaginary part is a slowly varying function
max
with a negative slope behavior (Figs. 3-14 and 3-17).

3.4 Surface Fields for a Loaded Sphere

The expressions for the surface fields on a loaded sphere are given by equa-

tions (2.36), and from these the numerical results were computed for ka = 1,03
and ka = 4.28 with Ooz 30° and 900, respectively, when the sphere was loaded
for zero back scattering. The amplitudes are presented in Figs. 3-20 through 3-23,
along with those for the unloaded body.

The behavior of the surface fields on a loaded sphere is somewhat surprising.
In the light of the results by Chen and Liepa (1964a) on the loading of thin cylinders,
it was expected that for a sphere loaded for zero back scattering the amplitude of
the surface fields would also decrease when ka is unity or less, but as the com-
puted values indicate, this is not true. In fact, the fields are actually enhanced.
An examination of the equations for the total scattered fields for the cylinder and
the sphere show that they can be treated as a sum of the fields scattered by an un-
loaded body and the radiated fields whose strength and phase are determined by the
loading parameters. In the case of a cylinder with central loading and of length /2
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or less, the two fields are similar. When the loading is (say) chosen for zero
back scattering at broadside, an overall reduction of the far fields as well as the
surface fields results. For a sphere* loaded with a slot in a plane perpendicular
to the direction of incidence, the unloaded scattered field and the radiated field
are siddimilar, and when such a body is loaded for zero back scattering the total
surface field is modified, but not necessarily reduced. This is demonstrated by
the numerical computations presented here. For ka = 1.03 the loading at 60= 30°
increases the fields at the front of the sphere by a factor of two, and even more in
the region of a load. Over the remaining surface (say, 6> 600) the fields are
slightly reduced. In the other case, ka = 4.28 with 90 = 900, the loading does
not appreciably change the surface field amplitude, but induces in it periodically

varying oscillations.

3.5 Bistatic Scattering by a Loaded Sphere

The general expressions for the scattering by a loaded sphere were derived
in terms of the far field scattering amplitudes SI(G) and SZ(G) in section 2.4. We
normalize the bistatic cross section by the back scattering cross section of an un-
loaded sphere for suitability in computation, and for ease of presentation, restrict
our attention to the E-plane (§ = 0) and the H-plane (p = 7/2). Thus, from (2.29)
and (2.30), in the E-plane

ol8.0) _ s, @) (3.32)
o 1

and in the H-plane

3(—9—;—71@-) = |s2(e)l2 : (3.3Db)

o

To study the bistatic behavior, the two equations were programmed and

computed at 8 = 0(5)180o for ka = 4.28 and for those values of ka at which the

>.<3.S well as for a cylinder with central loading of length A or longer.
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oscillations in the back scattering cross section for an unloaded sphere (see Fig.
3-1) have the extremum values. These correspond to ka = 1.03, 2.33, 3.55, etc
for the maxima and ka = 1.75, 2.96, 4.16, etc. for the minima. Two slot posi-
tions 60 =30 and 60 =90° were considered and the loading for zero scattering in
the back direction (8 =0) was chosen. With 00 =30° the loading is always passive,
but with 90 =90° there are values of ka where active loading is required and such,
for example, is needed at ka = 2.33.

Sample calculations for ka = 1.03 with 90 =30° and 90° are shown in Figs.
3-24 through 3-27 and for ka = 4.28 with 6_ =90° in Figs. 3-28 and 3-29. Included,
for comparison purposes, are the scattering patterns for the corresponding un-
loaded cases.

From these patterns, and the others that were computed, we can now esti-
mate the beamwidths for the minima in the back scattering direction. For example,
for ka=1.03 and with 6_= 30° we find from Figs. 3-24 and 3-25 (dashed curves)
that the total beamwidths for 20 db reduction are about 55o and 560 in the E-plane
and H-plane respectively. Similarly, the values were estimated from the other
patterns and are presented for 0 <ka <10 with 90 = 30° and 90 = 90° in Figs.
3-30 through 3-33. The limiting value as ka —» 0 is obtained from the asymptotic
analysis in Section 2.5. The beamwidths are always maximum at ka = 0 and then
decrease in an oscillatory manner with an increasing ka. The maximum and min-
imum of these oscillations occur at the same values of ka as those in the back
scattering cross section for an unloaded sphere (Fig. 3-1). In general, the beam-
widths are wider in the H-plane than the E-plane and overall there is about a 50
percent improvement with the slot at 30° as compared to that at 90 =90°.

In the above discussion, there has been no reason to restrict the loading
to zero back scattering. For instance, if we choose a loading for zero scattering
in the direction 6 = 30° (in the E-plane) rather than 6 = OO, a wider beamwidth in
the back scattering direction can be obtained. As shown in Fig. 3-24 (long dashes)
there is almost a 30 percent improvement in the beamwidth in the E-plane, but the
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reduction at 6 = 0° 15 18db as compared with the previous value of -cdb. In the
H-plane there is no change in the beamwidth. If there is a need to increase the
beamwidth in the H-plane, rather than the E-plane, one simply must choose the

loading accordingly.
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CHAPTER IV
EXPERIMENTAL STUDIES

4.1 Experimental Model

To confirm the theoretical predictions, a series of measurements were
carried out on a sphere with a circumferential cavity backed slot. The model con-
sisted of two identical solid aluminum caps joined together by means of a partially
threaded shaft at the center (Figs. 4-1 and 4-2) but spaced 1/16 inch apart to form
a radial cavity of the same width. The cavity was shorted at the center and the
diameter of this short was determined by the size of the disc used. In all, there
were 21 such discs available, and with these the inner diameter could be varied
from 0.3125 inches (diameter of the ghaft) to 3.133 inches (diameter of the sphere).
The discs were cut from 1/16 inch aluminum sheet and except for the outer edge,
had a slight undercut in thickness for positive metallic contact. At the surface of

the sphere, the slot subtended an angle of approximately 2. 250 or 0.0392 radians.

4.2 Back Scattering vs. Loading

The back scattering measurements were made with the above model at
several S- and C-band frequencies corresponding to values of ka = 2.340, 3.004,
3.090, 3.198 and 4.280. Conventional cw equipment in an anechoic room was used,
except that the azimuth-amplitude recorder was replaced by a HP 415B meter for
greater accuracy in reading. At each frequency, the back scattering was deter-
mined for a number of shorting discs of different diameters and the values were
calibrated with respect to the back scattering from the unloaded sphere. The re-
sults are summarized in Table 4-1. The resulting normalized cross sections were
then related to the cavity loading by converting the disc diameters for a given fre-
quency to equivalent loading admittances using the formula derived in Appendix B.
The results were then compared with the theoretical values computed from equa-
tion (2.28) with 90 =90° and 0= OO. The agreement was extremely gratifying.

Two sets of results are plotted in Figs. 4-3 and 4-4 for ka= 2.34 and
ka = 4.28 respectively. The choice of ka is such as to present a reasonable des-

cription of the susceptive loading. When ka = 2.34, zero back scattering requires

71



W N NDNMNNDNNNDNNDNF -2 2220000

THE

2b

.500
.625
. 750
. 875
.000
.125
. 250
L3715
.200
.625
.750
. 875
.000
125
.250
.375
.200
.625
. 750
. 875
.133

9548-5-T

3.433 -

UNIVERSITY OF MICHIGAN

4]
ol

FIG. 4-1: SECTORIAL VIEW OF MODEL

72

] I Materials:

Sphere - aluminum
Discs - aluminum
Shaft - steel

(Dimensions in inches)



THE UNIVERSITY OF MICHIGAN
5548-5-T

73

EXPERIMENTAL MODEL

FIG. 4-2



THE UNIVERSITY OF MICHIGAN
9548-5-T

TABLE 4-1: EXPERIMENTAL DATA

Sho-rtmg disc Relative Return, db
diameter
2b, inches 2.808Gce 3.605Ge 3.709 Ge 3.838Ge 5.136Ge

.3125 -0.7 -1.5 -0.7 -0.8

. 500 -0. 8 -1.7 -1.7 -1.1

.625 -0.7 -1.9 -1.8

. 150 -0.7 -2.3 -1.3

. 875 -0.6 -2.5 -2.5 -1.6
1. 000 0.0 -3.3 -2.5
1.125 2.3 -3.8 -3.0 -2.0
1.250 7.5 -5.6 -3.5 -2.4 1.3
1.375 6.1 -8.0 -5.6 -3.4
1.500 3.2 -13. 4 -9.4 -4.6 1.9
1.625 2.2 -0.8 -14.7 -9.6 2.3
1.750 1.6 10. 4 6.4 -5. 4 2.8
1. 875 1.3 7.0 7.0 7.0 3.7
2.000 1.0 4,5 4.4 4.3 5.3
2.125 8.2
2.250 -2.5
2,375 -11.7
2. 500 0.5 1.4 1.0 1.1 -4.8
2.625 -2.8
2.750 -1.8
2. 875 -1.0
3.133 0.0 0.0 0.0 0.0 0.0

*relative to the unslotted sphere
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a loading with a large negative real part (Fig. 3-9) but this, of course, is unat-
tainable with this or any other passive cavity or network. As Fig. 4-3 indicates,
there is no substantial cross section reduction (0.6 db at most), but an increase
of 8.7db is achievable for a particular value of Im E Since, according to the

Y
results of Section 3.3, maximum enhancement always demands a susceptive load

Y,
-—Y— (0) < 0, the

peak and the minimum measured here are the extreme values attainable with a

and maximum reduction requires a susceptive load whenever Re

passive load. They agree with those predicted in Fig. 3-18. When ka = 4,28,

the required loading for zero back scattering is susceptive (Fig. 3-9), and this

is attainable from the cavity. The theoretical results in Fig. 4-4 show a complete
cross section reduction, but since a disc for this particular susceptance was not
available, the one nearest to it gave 11.7 db reduction in cross section. (For the
experiment described in the next section, a shorting disc was especially made to
supply a susceptance for zero back scattering, and with this over 20 db reduction
in cross section resulted.) For maximum return, an enhancement of 8.8db was
expected for a particular value of susceptance and with a disc nearest to it, 8.0db
was attained.

Another value of ka for which a complete reduction in back scattering cross
section can be attained with a susceptive load is ka = 3.090. The results are simi-
lar to those for ka = 4,280 (Table 4-1) except for the reversal of the peak and a null
about Yl = 0. This reversal is attributed to the sign change of ST(O) in equation
(2.28) as ka changes from 3.090 to 4.280 while the values for T2(7r/2) and

aSi.(O, 7/2) remain essentially unchanged.

4.3 Back Scattering vs. Rotation

Although the analysis in Chapters II and III was limited to the case of a field
incident in a direction perpendicular to the plane of the slot, no such constraint
existed in the experimental study. Therefore it seems a worthwhile effort to carry
out a sample measurement of a back scattering cross section as a function of rota-
tion of a slotted sphere. For this a frequency corresponding to ka = 4.28 (5.136 Gc)
was chosen. To obtain the loading required for the null in Fig. 4-4, a new shorting
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disc of the requisite diameter was cut. The sphere was mounted on a pedestal
with the slot in the vertical plane, and back scattering measurements were made
for both horizontal and vertical polarizations. The results, along with the mea-
sured values for the unloaded sphere are presented in Figs. 4-5 and 4-6. The
large cross section reductions are clearly evident. For both polarizations, the
reduction is on the order of 22 db and although theoretically it should be infinite,
the minor peaking at the center of the minimum could be caused by a small devia-
tion in the optimum dimension of the shorting disc. However, in view of the slightly
different magnitudes of cross sections for zero rotation, a more likely source of
the residual contribution could be sphere-pedestal interaction, room effect, or both.

Within, say, 30°0f zero rotation there are obvious similarities between the
back scattering patterns measured here and the bistatic patterns computed in Sec-
tion 3.4. The horizontal polarization pattern (Fig. 4-3) is similar to the bistatic
E-plane plot (Fig. 3-24) and the vertical polarization pattern (Fig. 4-4), to the
bistatic H-plane plot (Fig. 3-25). The measured null widths are in good agreement
with the corresponding bistatic values and the 5db enhancement that was measured

for the horizontal polarization is also evident in the E-plane bistatic plot.

4.4 Surface Field Measurements

To supplement the back scattering data, the surface fields were measured
on a loaded, as well as an unloaded, sphere. The facility and equipment required
to perform such measurements are not as common as those generally encountered
in routine back scattering work and therefore a short discussion of the current
measurement facility is in order.

4.4.1 Development of the Surface Field Measurement Facility

About three years ago, a limited program to study the feasibility of mea-
suring surface fields on three dimensional objects was initiated at the Radiation
Laboratory. The primary purpose of this project was to establish the basic re-
quirements for designing a surface field measurement facility and to gain exper-

ience in the measurement techniques involved. Up to that time, there was little
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information on surface field measurements available in the literature and any
research that had been reported dealt, for the most part, with current measure-
ments on radiating elements rather than bodies illuminated by plane electromag-
netic waves. (See, for example, Reynolds, 1948; Wetzel and Brick, 1955; or Row,
1953.)

For our study, a rather crude setup, shown in Fig. 4-7, was constructed.
The facility was housed in a large room, but the entire operation was confined to
a region 25 by 14 feet. The experimental apparatus consisted of a signal source,
an absorbing screen, and a probe with its traversing mechanism. Their arrange-
ment is shown in Fig. 4-7.

To make measurements, the model was placed on a styrofoam pedestal
located directly in front of the absorbing screen, which served to shield the tra-
versing mechanism for the probe. The model was illuminated by a signal from the
horn antenna located some 10 feet from it. The choice of frequencies was influenced
by two main factors: the desire to measure models whose dimensions are comparable
to or longer than a wavelength, and the necessity of having probes very small in
comparison with wavelength if they are not to disturb the field unduly. The first
of these forces one to higher frequencies if the models are to be of reasonable
dimensions, but this in turn requires the use of extremely small probes and more
accurate positioning equipment if the measurement accuracy is to be retained.
Ultimately, the limit is determined by the difficulties in construction and handling
of probes only a few millimeters in dimension, as well as accurate positioning of
them along the required path along the surface of the body. For this reason, all
the measurements were carried out in the 1 to 4 Ge frequency range.

The type of probe used depends in part on the field component to be mea-
sured. A number of different types was investigated, including a self-rectifying
dipole, a two-diode balanced loop, and a simple shielded loop. The last proved
most convenient for our measurements, and several versions of it, differing only

in size, were constructed from miniature 50 ohm rigid coaxial line. The top
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photograph in Fig. 4-8 shows some loop probes at different stages of construction.
The first representation shows a rigid coaxial line bent in a coil of several turns

10 ensure a circular bend. In the second and third, the excess turns have been cut
off and the end, including the center conductor, soldered to form a closed, sym-
metric loop. The last is a completed loop in which a gap in the outer conductor

has been cut and a bead of dielectric (epoxy) applied at the outer edge of this gap.
This serves to keep the gap width constant and prevents the loop from "shorting"
when placed against a metallic or conducting surface. Unfortunately, the repro-
duction is too small to show the gap or the dielectric bead. A detailed drawing of

a typical loop is given in the center and in the bottom illustration are shown two dif-
ferent loop probes with slip-on miniature connectors. The upper probe has been bent
about 5 mm from the end so that the plane of the loop is perpendicular to the lead.

Because of the relatively high loss and the flexibility in a line of such small
dimensions, only about a 6-inch length of miniature coax is used. This is then
connected to a larger diameter cable which together with a styrofoam beam con-
stitutes the support for the probe. The mechanism for positioning the probe con-
sists of two cross-coupled, horizontal motion lead-screw carriages and an asso-
ciated elevating device. The coverage in the horizontal plane is about 15 by 36 cm,
and the probe can be located within 0.2 mm of its intended horizontal position. The
vertical adjustment or motion, however, is not as accurate due to the oscillations
of the beam, and it is therefore usual to place the probe in physical contact with
the model.

For detection of the signal, either a heterodyne receiver or a tuned crystal
detector together with a VSWR meter was available. The receiver, naturally, gave
a better sensitivity,but because of its varying gain and frequency drift, the con-
ventional crystal detector was generally used.

While this setup was in operation, the current distribution on a number of
different models was investigated. These models included thin cylinders, long
wires measured for near end-on incidence, spheres, cone-spheres, and cylinders

with impedance loading at the center for cross section reduction. For these
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i - 0.5-0.75 mm

g gy ¢ B

508 Coax. Cable

FIG. 4-8: CONSTRUCTION OF CURRENT PROBES.
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loaded cylinders especially, the current measurements were extremely helpful.
In a theoretical study, Chen and Liepa (1364a, b) used approximate techniques as
is done for all cylinders of finite length, and therefore it was essential to verify
experimentally the accuracy of these results as well as to predict the frequency
range over which the solutions are valid. The current measurements did exactly
that. In addition, they were helpful in determining the equivalent shunt capaci-
tance of the gap which was to be added in parallel with the input impedance of the
cavity.

4.4,2 The New Facility

As mentioned earlier, the main purpose of the above study was to gather in-
formation for the construction of a permanent, large scale surface field measure-
ment facility. Such has now been constructed and is being used for measuring the
amplitude and phase (when required) on bodies of various shapes. The anechoic
chamber is 45 feet in length and 10 feet in height. It is of a tapered design with
the illuminating antenna placed at the small aperture and the model near the other
end of the chamber. A remotely controllable mechanism for positioning the probe
is mounted above the chamber and the probe, with its coaxial lead and wooden sup-
port tower, extends vertically through the ceiling. The motion of the probe is con-
trolled from the console by the range operator; the probe can be moved in a direc-
tion specified by either rectangular or cylindrical coordinates. A detailed descrip-
tion of this surface field measurement facility has been given by Knott et al (1965).

The surface field measurements for the loaded and unloaded spheres were
performed in the new chamber. The model was the same as that used for back
scattering measurements, and the frequency was 5.136 Ge, corresponding to
ka = 4.28. For the unloaded case, the model was merely loaded with a disc of the
same diameter as the sphere, while for the loaded case, the disc which gave over
20 db reduction in cross section was used.

The photographs in Fig. 4-9 show the model in position for measurements.
In (a) is shown the overall view from the incident signal direction, and in (b) a
close-up, detailed view of the loading slot and the probe. The loop of the probe is
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in the horizontal plane and 18 in physical contact with the surface, spaced only
by a small epoxy bead to prevent any conduction current flow. The incident wave
is horizontally polarized and the loaded model is oriented with the slot normal to
the direction of incidence.

The data was taken at 10-degree intervals as the probe was traversed
along the horizontal great circle. The measurements, normalized to coincide with
the theoretical value at § =0° for an unloaded sphere, are presented in Figs. 4-10
and 4-11 for the unloaded and loaded case respectively. The theoretical values
from Chapter III are presented here for comparison.

There were two reasons for measuring the fields on the solid sphere. One
was to obtain the reference level for the recorded relative data and the other to
determine the performance of the chamber and associated equipment. A sphere
rather than some other three dimensional body was chosen because, at present, it
is the only body for which the fields are known exactly and numerical data have
been extensively tabulated. When the experimental results from a sphere are in
good agreement with the theoretical values, it is a not a guarantee, but rather a
good indication of the accuracy of measurements for other shapes. For example,
if we compare the two sets of data presented here, we see that the errors or dis-
crepancies in one are of the same order as in the other, and in both caseg the mea-
sured values are slightly lower in the shadow region. This difference, which is
about 0.5db, can be attributed to the interaction of the model with the styrofoam
support pedestal.
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CHAPTER V
STUDY OF TOTAL SCATTERING

5.1 Exact Theory

The total scattering cross section is a measure of the total energy scat-

tered by a target and is usually defined as (Jackson, 1962)

=L
o =% o6, f)d (5.1)
S

where S is a surface enclosing the object, d2 an element of solid angle, and
o(9, §) the bistatic radar cross section for the object. An equivalent expression
is the ratio of the total power scattered by an object to the incident power density
(King and Wu, 1959), viz.,

o= PB/Pi . (5.2a)

Similarly, the total absorption cross section is defined as

o =P/P , (5.2b)

where Pa is the power absorbed by the object, and the sum 0"5+aa is known as
extinction cross section (van de Hulst, 1957).

A useful relation between the extinction cross section and the scattering
amplitudes in the forward direction (6 = 7) is given by the forward scattering
theorem. This was first discovered in quantum mechanics and since then its
equivalent in electromagnetic theory has received a number of different proofs, as,

for example, Schiff (1954) and Bolljahn and Lucke (1956). In the latter reference
the theorem has been derived for the case of a plane wave incidence and in terms

of our notation it may be written as

4n

o = —

8
2 Re Sl(1r)
k

for an unloaded body and
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4n
+0 = —
oa os 2

Re Sl(ﬂ)
k

for a loaded body. S:(vr) and Sl(1r) are the scattering amplitudes defined by
equations (2.6a) and (2. 24a) for the unloaded and loaded spheres respectively.

There are two methods of evaluating the total scattering cross section.
One involves integration of the differential cross section o(6, ), and the other,
computation of the forward scattering amplitude and calculation of the power ab-
sorbed by the object. For a loaded sphere, this is then the power absorbed by
the load. Due to the complexity of o{6, §) for a loaded sphere, we proceed to
evaluate the total cross section by the second method, which is relatively straight-
forward.

For forward scattering (8 = 7), just as for back scattering, there is no
cross-polarized component and the field can be represented by a single scattering
amplitude

8 r
Sl(w) = Sl(7r)+ 27 sinOoTz(GO)aSI(w,Oo) )

Y
Y1+ Yr
To find oa, or the power absorbed by the object, we employ the definition
of input admittance introduced in Section 2.4, It is assumed that the surface of
the sphere is lossless and that the power is absorbed only by the cavity-backed
slot. For an asymmetrically excited slot, the average complex power input per

unit length of the slot is

Y
1 TN,
w = irasing_ vcosfvcosp , (5.3)

where YI is the input admittance of the slot and the tilde denotes the complex

conjugate. The peak voltage that is excited across the slot is, from equation
(2.27),

Y
v = Y1+Yr 27rasin90T2(90)

a1
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and when it is substituted in (5.3), the total absorbed power becomes

27
P =Re |\ wasing d¢
a 0
0
Y

4+
Yl Yr

= (ra sm29)2

2
TZ(OO)] ReY f

and the absorption cross section

2 Y
Y 1
Y1+Yr TZ(OO)! Re T

o = 2(rasin® )2
a 0

The total scattering cross section, normalized to its physical optics value 1ra2,

is then
] 2 Y
8 4 2 Y 1
~ = 2ReSl(1r)-21r sin 80 T +Y T2(60) Re Y- (5.4)
ra (ka) L r

“g'? now want t{; find the extremum value of (5. 4) subject to passive loading,
i.e. Re. ! 20. Im £ , on the other hand, has no restriction and may take any

Y Y
value. For simplicity, we now introduce the following definitions:

=t, +
TZ(OO) t +it

1 2
Y +Y
- x+iy
Y
=g +
Y /Y =g +ig,
=1 _+
Y, /Y=t +iL,
Ss(1r) = g_+is
1 1 2
aSr(7r 6 )=r +ir (5.5)
) R 1 72° )
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When these are substituted in equation (5.4) we find

(o] B B_x By
s _ 2 3 4
s =Bt 2t 2t 2 2 (5.6a)
Ta x ty x ty X ty
where
B, = 8
! (ka)2 1
2 2 2
= +
B2 27 sin é)o(t1 t2)g1
B_ = 27 sind -—2-4 (t.r.-t.r_)-sin@ (t2+t2)
3 o) 11 272 ol 2
(ka)
B = " sing (t.r. +t.r.) (5. 6b)
4 2 o012 21" .

(ka)

The extremum values of (5.6), for g1 >0, are given in Appendix A. The maximum

value is
os Bi 1
max. —, = Bl+_§— 5% (5.7a)
- + + +
and the minimum value,
9 Bi 1
min. —12 =B+ — (5.7b)
-(B_+ - + +
Ta (32 B3g1) (B2 B3g1) B,&
for g1 mem.
452
= - < .
B1 4B2 , for g $x . (5.7¢)
where
2
BZB3
Xmin, =~ .2 2
' +
B3 B4
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The results simplify considerably when 00 = 90°. From equation (2. 35a)

2
r _ (ka)
aSl(1r,1r/2) = = T2(1r/2)
or
2
(ka)
+ = =
r, 1r2 3 (t1+it2)
and with this condition we have
4
B, = ——S8
1 2 1
(ka)
2 2
32 = 27r(t1+t2 )g1
2
B3 = --411"c2
B4 = 41rt1t2 (5.8)

The numerical calculations of (5.7) with Go =90° and the constants defined
by (5.8) are presented in Fig. 5-1. To emphasize the enhancement or reduction,
the values are normalized relative to the total cross section of an unloaded sphere,

namely

so _ _4
1ra2 (ka)2 1
=Bl

Let us consider first the maximum total scattering. If we allow an active
slot, it is obvious that there is no limit to the maximum scattering attainable. Of
more practical interest is the maximum scattering attainable with passive loading.
As shown in Fig. 5-1, a large enhancement occurs for small values of ka, but
decreases rapidly as ka is increased. Whereas at ka = 0.5 the enhancement is
20db, at ka = 1.0 it is 8db and at ka = 5,0 it is already less than 1db.
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The lower curve in Fig. 5-1 gives the minimum total scattering for a
passive load. As we see, there is practically no reduction for large values of ka,
and even when ka {8 around unity, the maximum reduction is a mere 0.5db.
From this we deduce that the loading of the sphere does not reduce its scattering,
but rather redirects it from one direction to another. And this, of course, is
evident in the bistatic scattering patterns in Figs. 324 through 3-29. The question
now arises as to whether an improvement can be achieved if active loading is

allowed. In such a case there would be no restriction on 11, the condition

+1 =
€171 T *min.

would always be satisfied, and the total cross section would then be given by equa-
tion (5.7c). However, when the results for Fig. 5-1 were calculated, the condition
g ] < X in was met for all values of ka, implying that the same minimum total

cross section is achieved with active or passive loading.

5.2 Low Frequency Approximation

In Section 2.5 the expressions for the low frequency scattering behavior of
a loaded sphere were obtained. They are rather simple, and we can easily find
the total cross section by direct integration of the differential cross sections.
Substitution of equation (2.29) into (5.1) leads to a normalized total scattering cross

section

T (2n
o
s . 1 (]Sl(e)lzcosz¢+]Sz(e)lzsinzﬁ) sin6dpde ,

2 2
Ta 7(ka) 0 Jo

where, for low frequencies, the scattering amplitudes are given by equations (2.41).

Upon integration, we get

o
8 10, 4 271 2 2 1 3_y
5 3 (ka) "+ g 7 (ka) R + 37 (ka) 5 5

Ta ; x ty x ty

(5.9)

’

where x and y are the loading parameters defined in equation (5.5). The first
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term on the right hand side represents the scattering by an unloaded sphere, and

the other two are direct consequences of the loading and disappear when the cavity

is shorted (y — -00).

It is of interest to compare this result with the formula previously obtained

from the forward scattering theorem. For small values of ka, and using the ex-

pressions derived in Section 2.5, the constants for 60 = 7 /2 in equation (5.8)

reduce to

and the total scattering,

10 . 4
5 (ka)

27 2
-

2
3 (ka)

—1r(ka)6
3 (ka)3

from (5.6a), becomes

()

s 27 2, 2 1
2

10 4
3(ka)+87r(ka) 7 3
X ty

X +37r(k.a)3 T

24y? N

- 1r(ka)6
Ta
Except for the third term on the right hand side, this expression is identical to
equation (5.9). The absence of this term in (5. 9) is due to the assumption (in
Section 2.5) that x << 1 and theretore its presence or absence, for all practical
purposes, has not effect on numerical results.
The extremum values for (5.9) are given again in Appendix A, and upon

substitution of the corresponding values we find

o
max. —-% N-lgq(ka)4+ —§‘§
Ta (ka)
s 10, 4 6(ka)t
min. — N—é-(ka) -‘—'——'6 ,
Ta 9+ (ka)
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or, when normalized to the total scattering cross section of an unloaded sphere,

os 9 1
max, == ~ 1+ 5 6 (5.10a)
80 (ka)
o
9 1
min.;—s— ~l-g —— (5. 10b)
S0 9+ (ka)

Numerical comparison of this result with the exact computed values in Fig. 5-1

indicates that the above equations are accurate within 10 percent up to ka=1.0.
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CHAPTER VI
DISCUSSION

6.1 Some Practical Considerations for Obtaining the Desired Loading

We have seen in the chapter on experimental studies that when the optimum
loading is purely susceptive, it can be supplied by a simple radial cavity of vari-
able depth. For zero back scattering there are only a few values of ka where the
optimum loading is susceptive, and these depend on the slot position 90. For
instance, with the slot at 90 = 450, there is only one value of ka (in the range
0 < ka <10 considered) where the real part of the optimum loading for zero back
scattering crosses the zero value, but with 90 = 90° there are six such frequencies.
For maximum return, however, the optimum loading is susceptive for all ka (cf.
Figs. 3-14 and 3-17) and the loading requirement can be met with a lossless radial
cavity at any value of ka.

Unfortunately the variation of susceptance with frequency for the radial
cavity (or any other lossless network) is the direct opposite of that required to re-
duce or enhance the back scattering cross section. As a result, the loading can be
satisfied only where the two loading curves intersect, and narrow bandwidths are
therefore to be expected. To determine the actual bandwidths encountered with
susceptive loading, we examine the case when the sphere is loaded for zero back
scattering with ka = 4,28 and 60 =90°. The required optimum loading and that
supplied by the radial cavity, such as used in the experimental model, are shown
in Fig. 6-1. The depth for the cavity was chosen so as to satisfy the optimum load-
ing at ka = 4,28, It is evident that the corresponding curves, especially for the
real part, have completely different behaviors and, as a result, a minute deviation
in frequency from the critical value results in a large difference between the de-
sired and the supplied loading. The cross section corresponding to the cavity
loading is shown in Fig. 6-2. As expected, a complete reduction is achieved at
ka = 4.28 and this reduction is highly frequency sensitive. For example, for a 10db
reduction in the cross section the bandwidth is 6.5 percent and decreases to only

2 percent when a 20 db reduction in the cross section is desired.
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For wider bandwidths and increased scattering control, it is clear that such
simple susceptive loading alone will not suffice and that more sophisticated load-
ing techniques must be developed. From a prattical viewpoint there appear to be
two different methods of approach. One method would be to use a number of
lumped two-port networks, whose frequency response is determined by the optimum
loading, and distribute these around a sphere to simulate a distributed loading. The

resultant admittance Yl in such a case would be

= '
Yl nYL+Yl

where n is the number of loading points or elements used, YL the admittance of
each element, and Y} the inherent admittance of the slot and the back-up cavity.
This cavity could be simflar to the one used in the experimental model. The num-
ber of loading points will depend on the accuracy to which the optimum loading
must be attained. A rough estimate is that this number may be as high as 10ka,
whare ka is the maximum value in the frequency range considered. Once n and
Y' are known, Y

J L
problem is strictly one of network synthesis. It would involve the study of the

can be found from the above equation and from then on the

realizability conditions and synthesis procedures for functions such as YL when
both the real and imaginary parts are specified over a finite frequency range. In
addition, a network to generate this function would need to be determined.

The other method would be to consider the cavity as a distributed network
or a non-uniform transmission line loaded in a prescribed manner to achieve the
requisite loading. For small bandwidths, of order 5 to 10 percent for 20db reduc-
tion, a cavity such as used in the experimental model could be filled with a lossy
dielectric, or even ferrite materials, to supply the required complex loading for
certain frequencies. The formula for the input admittance derived in Appendix B
still applies, but it must be modified slightly to accept the complex values of k
and Y. For wider bandwidths, however, the loading of the cavity must be consi-
dered as a synthesis problem. The work by Sharpe (1962) and Youla (1964) on the
analysis and synthesis of non-uniform transmission lines could probably be ex-

tended and applied to the synthesis of radial transmission lines and cavities.

101



THE UNIVERSITY OF MICHIGAN
0048-5-T
Perhaps a loading that is easier to realize physically may result from

either of two related problems that should be considered in a future study. One
problem would be to examine the effect of coplanar multiple slot loading with the
slots perpendicular to the direction of incidence, and the other would be to solve
the boundary value problem for a single slot loading, but with the slot located arbi-
trarily with respect to the direction of incidence.

In the case of multiple slot loading the analysis would he an extension of
the results for a single slot presented here. A cursory study has shown that
double loading does have certain advantages. For example, by using two slots
we could make either SI(O) or 82(6) zero for two adjacent values of 6 (as com-
pared to one value for a single load), or make both SI(G) and sz(e) zero for a
single value of 8. Correspondingly,ilt is expected that with the proper choice of the
slot positions, loading admittances whose frequency characteristics are more
suited for physical realizability would be obtained. Overall, it appears that with
double loading, twice as much controllability is obtained as with a single load, but
the use of multiple loading adds to the difficulty of adequate numerical treatment.

Encouraging as it may be, the slots would still be excited by an asym-
metric voltage requiring a distributed (or lumped distributed) loading which is
rather cambersometoachieve. However, this is not the case in the problem of
loading a sphere with a single slot arbitrarily located with respect tathe direction
of incidence. Whereas in the problem that we have considered only a single
asymmetric mode was excited in the slot, now the slot would be, in general, ex-
cited by an infinite set of modes. In particular, when the direction of the inci-
dent wave is such that its electric vector is perpendicular to the plane of the slot,
a zeroth mode would predominate and by independently controlling this mode it
should be possible to control the scattering behavior of the sphere. For such a
loading, the slot should be backed by a radial cavity of the type used in our exper-
imental model, but with a lumped load at the center. Such a load would affect only
the zeroth mode and would appear nonexistent to all the higher modes. It is ex-
pected that the frequency characteristics for this loading would be similar to those
for a thin cylinder, and that the scattering control would be less effective than that
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for an asymmetrically excited single slot loading. Nevertheless a possibility of
using a single lumped load would alone justify an investigation of a single slot load-

ing with arbitrary illumination,

6.2 Conclusions

In the preceding sections we have considered the scattering behavior of a
metallic sphere loaded with a slot in a plane perpendicular to the direction of inci-
dence. The slot was assumed to be of small but finite width with a constant elec-
tric field across it, and under this assumption, the analysis for the external fields
is exact. Expressions for the scattered far field components, as well as the total
surface field components, were derived and then used to investigate the modifica-
tion to the scattering cross section produced by various admittances of the slot.

All investigation was limited to the frequency range 0 <ka <10,

The loading admittance necessary for a particular modification is in gen-
eral complex, with negative or positive real part, corresponding to an active or
passive load respectively. The loading required to reduce the back scattering
cross section to zero has been examinedin some detail. For any given slot position
60, the ranges of ka in which the real part of the loading admittance is positive or
negative alternate with one another, and the location of these active or passive
bands are functions of the slot position. For example, with the slot at the shadow
boundary (60 = 900), there are three different active bands, but as the slot is moved
toward the front, these bands appear to move towards increasing ka. With 90 =450,
the first band does not commence until ka = 4.25, and with 90 = 300, it appears
somewhere beyond ka = 10.0. However, any further movement of the slot towards
the front introduces a new active band at ka = 1.5 and due to this, it seems that
for back scattering reduction with passive loading, the load should be somewhere
between 90 = 30° and 90 = 600. The exact position of the slot will depend on the
limitations imposed by the realizability and synthesis requirements of the loading.

In contrast, an increase of almost 20db in back scattering cross section

can be achieved for a particular value of ka with passive loading, and maximum

103



THE UNIVERSITY OF MICHIGAN
9548-5-T

enhancement occurs when the loading slot is near 600. When a sphere is loaded
for zero back scattering, the angular beamwidth for 20db reduction in bistatic
operation i8 maximum (64%) as ka—> 0. It is then independent of the loading posi-
tion 60 and has the same value in either the E-plane or the H-plane. At ka = 2,0,
the beamwidth is about 50 percent of the initial value and at ka = 10.0 it has de-
creased to only about 25 percent. Quantitatively the beamwidths are wider with
60 = 30o than 60 = 90° and also wider in the H-plane as compared to the E-plane.
An improvement in the beamwidth can be obtained by selecting a loading for maxi-
mum width (with a null between 15° and 30%) rather than for a null at 8 = 0°. The
bistatic scattering patterns indicate, in addition to the beamwidths, that whenever
the sphere is loaded for back scattering reduction there i8s enhancement in the
forward direction. It appears that the loading, such as studied here, does not in
general reduce the total cross section, but rather modifies the scattering pattern
by redirecting the scattered energy from one direction to another. Studies of the
total scattering behavior do indeed confirm this.

To verify some of the theoretical conclusions, a spherical model was con-
structed. The model had a circumferential slot at 00 = 90° backed by a radial
cavity whose depth could be varied by using shorting discs of various diameters.
Since the loading was purely susceptive, emphasis was placed on the frequency
where complete reduction in back scattering can be obtained, namely ka = 4.28..
The back scattering from this model was measured for different loading discs
which, in turn, were related to the corresponding loading admittance by an input
admittance formula for the asymmetrically excited radial cavity. Agreement be-
tween the measured and computed back scattering cross sections was excellent,
and with the loading disc corresponding to the optimum loading for zero back scat-
tering, over 20db in cross section reduction was achieved. The theory was fur-
ther verified by measuring the surface fields on the same model loaded for zero
back scattering and comparing the data with the computed values. Again the agree-

ment was excellent.
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APPENDIX A
AN EXTREMUM PROBLEM

In Chapters Il and V, the following extremum problem arises: given

[= A+B 21 S +C 2x S+D 2y >
X ty x ty x ty

(A.1)

where A, B, C and D are real constants, find the maximum and minimum values
of [ subject to the condition x > g1 >0. In addition, A and B are positive.

From equation (A.1)

- Ax2+Ay2+B+Cx+QY

x2+y

(A.2)

and since there is no restrictionon y, we can obtain an extremum of (A.2) by

setting the derivative of [” with respect to y equal to zero. Thus

Ax2+Ay2+B+Cx+Dy _ 2Ay+D

(A.3)
2
X2 +y 2y
and when substituted in (A.2), the extremum values are given by
D
= + — .
Fe ot A 2y (A.4)

The variables x and y are not independent now, but are related by equation (A. 3).

Solving explicitly for y in (A.3)

and then substituting it in equation (A.4), we find

2

r =AA+%% = 5 (A.5a)
max _(B+Cx)+ |(B+Cx)°+ D
2
_ LD 1
r‘min = A- 5 55 (A.5Db)

(B+Cx)+\/(B+Cx)2+D x
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Investigating the behavior of these two equations as functions of x, we observe

that as x—0
Pmax—)m
r m—»A-%—;
and as x— T o0
r __’A+_29}_{+ sz+D2
r o c CZ+D

>A+o- - i

We can obtain the least value of /‘ by setting its derivative with respect to x
equal to zero. However, the same result is obtained much more easily if we min-

imize the denominator in equation (A.5b). Thus,

2B
x o= - 2302 (A.6)
m D°+C

and the corresponding minimum value is

2 2

c“+D
me-A- B ) (A.7)

A sketch for the extremum values of I" with C <0 is shown in Fig. A-1. In case
C >0, the curves are similar, but reversed about the [-axis. The X in then is
on the negative axis, but g remains on the positive side. Recalling the restric-
tion. x 2 g >0 placed on x, it is easily seen from the diagram that the maximum

value is given by

D2 1

r = A+ — (A.8)
max 2 -(B+Cgl)+ \/(B+Cg1)2+D2gf
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r‘l
A
rmax
________ A
0 1 | > x
Xmin &1

FIG. A-1: EXTREMUM VALUES OF " WITH C <0.

and the minimum value by

F . =A-= = (A.9a)
mia 2 (13+c,;1)+Q(mcgl)zﬂ)zg1

when x < g

min
2 2
C +D .
= A- B , when X in >g1 (A.9Db)

A.6),
where x  1s given by equation (A. 6)
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APPENDIX B
THE INPUT ADMITTANCE OF AN ASYMMETRICALLY EXCITED
RADIAL CAVITY
In order to use the experimental model of Chapter IV to verify the theo-
retically predicted scattering behavior of the slotted sphere, it is necessary to
relate the input admittance of the cavity to its dimensions, frequency, and, in
particular, to the radius b of the inner conductor. Bearing in mind that the slot
is of small width centered on 60 = /2, it would appear sufficient to regard the
cavity as a radial one, and in terms of the cylindrical polar coordinates (r, §, z)

where
X = rcos §, y = rsin§, z =1z,

the situation is now as shown in Fig. B-1.

The cavity is of width d=aé and is shorted at r=b. At the outer edge
r=a it is excited by a voltage -vcos (the sign difference with respect to the
voltage implied by equation (2.10a) is a consequence of the fact that z=-§ at
6 = n/2) and since it is assumed that d <<, the components Er and E¢ of the
electrical field within the cavity can, for all practical purposes, be neglected.

The only E component remaining is then Ez’ and this must satisfy the wave equa-

tion which, in cylindrical coordinates, is

2
10 (85 ) (18+Ll &g -0,
r or or z 2 2 z
r of

The general solution for 0 <bg<r<a is

Q0

ing
E = Z {E 5 (k)+F N (0} o™ (B.1)

n=-o

where Jn(kr) and Nn(kr) are cylindrical Bessel functions of the first and second
kinds respectively, and En and Fn are constants to be determined. The boundary
conditions on the sides of the cavity are satisfied automatically by (B.1). At the
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FIG. B-1: GEOMETRY OF THE RADIAL CAVITY.
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inner and outer surfaces, however, the conditions are

E =0 for r=b
z

v
Ecos¢ for r=a ,

and on substituting in (B. 1), we obtain

o 300N (b) - N, (kr) 3 (ib)
z  d 3,(a) N (kb) - N (ka) J (kb)

E cosf . (B.2)

The corresponding circumferential component of the magnetic field can be found

from Maxwell's equations, and is

J' (kr) N, (kb) - N! (kr) J (kb)
Hy = iy ¥ 1 Ll osp . (B.3)

d Jl(ka) Nl(kb) - Nl(ka) Jl(kb)

Since both Ez and H¢ are functions of §§, we shall again employ the con-
cept of admittance density , as for the radiation admittance in Section 2.3. The

power flow across the aperture and into the cavity is

d/2
(ExH) - rdz

€

i

I
Do

-d/2

d/2
_ 1 vcosp
5 d H¢dz
-d/2
-1 vcos¢H
2 g’

from which we have

[#)

Y1~ "Vecosf
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The total input admittance Y_ follows on integrating this around the circumference

L
of the cavity, and hence

a J ’l(ka) Nl(kb) - N'l(ka) J 1(kb)

Y, = -i¥r g 3, Ga) N () - N, (a) T (b) (B.4)
As b—>a
Y, - -iyor &.—1
1 d k(a-b)

and the admittance therefore approaches -i with decreasing cavity depth. On
the other hand, as b—0 (a condition which is equivalent to an asymmetrically
excited radial cavity open at the center)

J' (ka)

a 1
Yl — -iY2n p Jl(ka)

(B.5)
We also remark that if the cavity were filled with a medium of refractive index n,
the expression for the admittance would follow immediately from equation (B. 4)
on replacing k by nk and Y by the intrinsic admittance of the medium. Thus for
real n, numerical values can be obtained by scaling those for an air-filled cavity.
The expression for Yl has been programmed for an IBM 7090 computer
to give data for any ka and a/d as a function of kb. For the sphere used in the
experimental study the diameter was 3.133 inches, the gap width 0.0625 inches,
and the spacing discs enabled 2b to be varied in 22 steps from a minimum of
0.3125 inches to 3.133 inches. In order to have the computed data directly appli-
cable to the experimental model, kb was written in the form

X
3.133 '’

kb = ka

and the data was printed out for the first 22 values of the inner diameter x (in
inches) appropriate to the shorting discs. Because of the infinity when b=a, the
largest x computed was 3.0. Typical values of the relative admittance Y [/ Y are
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shown in Fig. B-2. The value 2b=0.3125 inches corresponds to the diameter of
the center screw in the experimental model, and 2b= 2,322 inches is the diameter
of the loading disc which supplies the optimum loading for zero back scattering at

ka = 4.28.
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