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ABSTRACT: Microfluidic cell culture systems offer a con-
venient way to measure cell biophysical parameters in con-
ditions close to the physiological environment. We
demonstrate the application of a mathematical model
describing the spatial distribution of nutrient and growth
factor concentrations in inferring cellular oxygen uptake
rates from experimental measurements. We use experimen-
tal measurements of oxygen concentrations in a poly(di-
methylsiloxane) (PDMS) microreactor culturing human
hepatocellular liver carcinoma cells (HepG2) to infer quan-
titative information on cellular oxygen uptake rates. We use
a novel microchannel design to avoid the parameter correla-
tion problem associated with simultaneous cellular uptake
and diffusion of oxygen through the PDMS surface. We find
that the cellular uptake of oxygen is dependent on the cell
density and can be modeled using a logistic term in the
Michaelis–Menten equation. Our results are significant not
only for the development of novel assays to quantitatively
infer cell response to stimuli, but also for the development,
design, and optimization of novel in vitro systems for drug
discovery and tissue engineering.
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Introduction

Microfluidics-based cell culture systems offer an inexpensive
and attractive option for culturing cells in conditions closer
to physiological than static cultures (e.g., small ratio of fluid
volume to cell volume, fluid flow) and hence are favored for
various applications in biomedicine (Andersson and van
Correspondence to: J. Linderman

Contract grant sponsor: US Army Research Laboratories and Research Office

Contract grant number: DAAD 19-03-1-0168

966 Biotechnology and Bioengineering, Vol. 103, No. 5, August 1, 2009
den Berg, 2004; Fisher and Peattie, 2007; Mehta et al., 2008;
Puleo et al., 2007). Recent advances in microchannel cell
culture bioreactors have increased our ability to accurately
characterize the microenvironment in such systems by
enabling control over the perfusion rate and measurement
of molecular concentrations in small samples (Gu et al.,
2004; Situma et al., 2006). These advances have resulted in
application of microfluidics-based systems to, for example,
liver tissue engineering and drug discovery (Kang et al.,
2008; Nahmias et al., 2007; Viravaidya et al., 2004).
However, the use of such systems for quantitative
characterization of cellular responses remains limited. An
inference procedure that can combine the mathematical
description (model) of processes occurring in microchan-
nels with relevant experimental measurements and subse-
quently extract quantitative information on key cellular
parameters would be of great significance in deciphering
signaling pathways, optimizing microfluidic devices for
tissue engineering applications, and designing assays for
pharmacological applications. In this work, we focus on
obtaining cellular parameters describing oxygen uptake.

Oxygen is a metabolic and signaling molecule in cell
culture systems, and the oxygen consumption rate is an
important metric to ascertain culture viability (Hynes et al.,
2006). Information on the oxygen uptake rate of a cell
culture is useful for designing microchannel cell culture
systems and also in development of various biomedical
devices including Bio-artificial liver (Balis et al., 1999;
Ostrovidov et al., 2004; Park et al., 2005). Typically, oxygen
consumption rates in static cell cultures are measured by
tracking the oxygen concentration in the culture media for a
regulated external oxygen partial pressure (Foy et al., 1994;
Guarino et al., 2004; Rotem et al., 1992). The applicability of
the uptake rates measured in standard static cultures to
physiological conditions remains unknown. Recently,
experimental techniques have been developed to measure
oxygen concentrations within microfluidic devices (Mehta
et al., 2007; Sin et al., 2004; Sud et al., 2006). Mathematical
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models have also been constructed to analyze the oxygen
transfer and requirements for such perfusion based cell
culture systems (Ghanem and Shuler 2000; Mehta and
Linderman 2006; Roy et al., 2001). However, there has been
little effort in using these models in their inverse form and
developing quantitative inference strategies to allow
determination of cellular oxygen uptake parameters from
experimental data. In this work, we demonstrate model-
based inference of cellular uptake parameters; in the future
the pairing of quantitative assays with inference may allow
the study of other cellular responses.

Microfluidics-based cell culture systems are typically
made from poly(dimethylsiloxane) (PDMS) in part due to
its high oxygen permeability. However, the inference of
oxygen uptake rates from the experimental measurements in
PDMS devices is made difficult due to the intrinsic
correlation of the model parameters characterizing the
diffusion of oxygen from PDMS surface and uptake of
oxygen by cells. Here we have developed a simple
experimental and computational procedure to determine
the oxygen uptake rate of a cellular culture in PDMS
microchannels. We demonstrate the performance of our
method using measurements of oxygen uptake rate in a
PDMS microchannel culturing HepG2 liver cells.
Figure 1. Microfabricated PDMS microreactor. A: Photograph of the device,

with food dye in the channels. B: Device schematic with rectangles indicating regions

for oxygen measurement. Filled circles indicate the location of the Braille valve pumps.

Cells are present only in the portion of the channel highlighted. This channel is 200 mm

high and 300 mm wide; other regions of channel without cells are 30 mm high and

300 mm wide. C: Model geometry for the PDMS device (side view). The device is

divided into two sections, Section A where the cells are cultured and (downstream)

Section B where there are no cells. The empty rectangles indicate the oxygen

measurement points. The length LA is 17.5 mm, LB is 5 mm and the height HA is

200 mm and HB is 30 mm.
Methods

Experimental Methods

Microdevice Fabrication and Assembly

Themicrobioreactor was comprised of two compartments, a
channel layer and a PDMS-parylene C-PDMS membrane.
The device was fabricated as previously described (Mehta
et al., 2007). The microdevice design used for the
experiments is shown in Figure 1 and has a slanted channel
connecting two parallel channels at the center of the device.
The cells are seeded in the slanted channel region, which is
200 mm high and 300 mm wide, while the remaining
microchannels measure 30 mm high and 300 mm wide.
Fluid Flow by Braille Actuation

An array of 48 pin actuators adapted from a Braille display
module (SC9, KGS, Saitama, Japan) was used for fluid
actuation (Futai et al., 2006). The pin actuator module was
controlled with a computer via Universal Serial Bus (USB)
through a finger-sized stand alone custom controller circuit
board (Olimex, Plovdiv, Bulgaria; Futai et al., 2006). The
microfluidic bioreactor chip interfaces with the pin actuator
module by simply holding the chip in place such that the
channels align with pins which push upward closing the
channel. The pin movements for valving and pumping were
controlled with a custom computer program written in C
sharp. The average flow rates used for these experiments
were in the range of 0.09–31.5 mm/s. The flow rates were
measured by tracking 6 mm diameter fluorescent beads
(Carnine, polystyrene microspheres, Molecular Probes,
Eugene, OR) using a digital CCD camera (Orca-ER,
Hamamatsu Photonics, Hamamatsu, Japan) and a fluores-
cence stereomicroscope (Nikon SMZ1500), as described in
Mehta et al. (2007). The image sequences were acquired at
�18 frames/s to determine the velocity of the microspheres
at the center of the microchannels, which are representative
of the fluid velocity, and were used to determine the average
fluid flow rate. An entire pumping cycle was used to measure
each flow rate in order to compensate for backflow during
certain steps of a pumping cycle.
Cell Culture

HepG2 cells (human hepatocellular carcinoma, ATCC, HB-
8065) were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM, 11960, Gibco, Grand Island, NY) with
15% Fetal bovine serum (FBS, 10082, Gibco), 1% (v/v)
antibiotic–antimicotic (15240, Gibco) and 1% (v/v)
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GlutaMAX2-I Supplement (35050, Gibco) in a humidified
5% CO2 incubator.
Cell Seeding in Microdevices

Fibronectin (100 mg/mL, F2006, Sigma, St. Louis, MO) was
pipetted into the microdevices to increase cell attachment
and followed by a 30 min absorption period. Media was then
introduced to the device and the chip was placed on an array
of pin actuators adapted from Braille displays for at least 1 h
to peristaltically pump fluid through the channels. Cells (in
DMEM) were seeded onto the chip through the cell seeding
ports and directed into the desired location by using Braille
pumping and valving as previously described (Mehta et al.,
2007). Cells were given 2–4 h to attach under a no flow
condition and then the chip was perfused withmedia for 12–
14 h. The device was maintained at 378C and 5% CO2.
Oxygen Measurement

Dissolved oxygen concentration in microdevices was
measured in real time using an optics-based lifetime
detection technique (Mehta et al., 2007). An oxygen
sensitive dye, ruthenium tris(2,20-dipyridyl) dichloride
hexahydrate (RTDP) dissolved in the media was excited
by a blue LED in frequency domain by square waves
generated by a function generator. The emission signal was
captured by a silicon PIN photodiode with preamplifier and
the data was acquired on a LabVIEW graphic user interface.

Oxygen concentration was determined at four points in
the reactor as indicated in Figure 1B. We refer to the region
where cells are cultured as Section A of the channel (three
oxygen measurement points) and the region downstream of
the cell as Section B (one oxygen measurement point).
Oxygen measurements made in Section B are used to
estimate the mass transfer coefficient for oxygen diffusion
through PDMS.
Mathematical Model Formulation

Figure 1C shows the simplified rectangular geometry used
for the model. The steady state concentration of oxygen (c)
in the media in the microchannel is described by the
reaction–diffusion equation

ux
@c

@x
¼ De

@2c

@x2
þ @2c

@y2

� �
(1)

where De is the effective diffusivity of oxygen in the media
and ux is the velocity. We assume a low Reynolds number
laminar unidirectional flow approximation, and the velocity
profile is estimated as (Bird et al., 2001)

uxðyÞ ¼ 6 uh i yH 1� y
H

� �
(2)
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where hui is the average velocity and H is the microchannel
height. We restrict the problem to two dimensions by
neglecting the variation of oxygen concentration along the
width. We include the diffusive term in the direction of the
flow (axial diffusion) because we consider low media flow
rates, although it can be neglected for relatively large flow
rates (hui�De/L). The inclusion of axial diffusion in the
model improves the fit to experimental data and is a
significant addition to our previous model (Mehta and
Linderman, 2006).

The boundary conditions for Equation (1) in Section A of
the device (cell region) are

cð0; yÞ ¼ cin (3)

@c

@x
ðL; yÞ ¼ 0 (4)

� De

@c

@y
ðx; 0Þ ¼ F (5)

� De

@c

@y
ðx;HÞ ¼ klaðc� � cÞ (6)

where cin is the inlet oxygen concentration and c� is the
saturation oxygen concentration at the solid (PDMS)—
liquid (media) interface(assumed to be equal to 8.2 mg/L).
We use a simple filmmodel for the diffusion process and the
supply of oxygen from the top PDMS surface is modeled
based on an overall mass transfer coefficient denoted by kla.
We assume that there is negligible diffusion from the bottom
surface due to the presence of impermeable layer of parylene
C. F is the flux of oxygen (mol/m2 s) corresponding to the
cellular uptake and is be given by

F ¼ OURSf (7)

where OURS is the specific oxygen uptake rate (uptake rate
per cell) and f represents the cell density (cells/m2).

In Section B there are no cells at the bottom of the
microchannel, and hence that boundary condition (Eq. 5) is
modified to the no flux condition

� De

@c

@y
ðx; 0Þ ¼ 0 (8)

All other boundary and initial conditions (Eqs 3, 4, and 6)
remain as in Section A, with the corresponding inlet
concentration for Section B equal to the concentration at the
outlet of the Section A. The partial differential equation with
nonlinear boundary conditions was solved using FEMLAB1

(v3.3 & v3.4, COMSOL, Inc., Burlington, MA), finite
element-based software.

Two possible relationships for the specific oxygen uptake
rate (OURS) are considered here. First, we consider the usual
assumption that the specific uptake rate of oxygen follows



Michaelis–Menten kinetics with parameters Vmax and Km

and is independent of cell density (Jorjani and Ozturk 1999;
Mehta and Linderman 2006). The total uptake flux of
oxygen for the cell culture is assumed to be a sum of the
individual uptake rates, for example, a linear function of the
total cell density f (number of cells per unit area of the
channel bottom). This simplest relationship we consider is

OURS ¼ Vmaxc

Km þ c

� �
(9a)

We also consider the following alternative relationship.
Because the uptake of oxygen by cells is directly related to
their growth and cell growth in spatially limited conditions
can be affected by the total cell density, the specific uptake
rate of oxygen may also depend on cell culture density. To
describe this case, we incorporate a logistic term to model
the changes in the overall oxygen consumption based on the
changes in the growth rate via the total cell density. We
hence propose a modified, cell density-dependent specific
uptake rate of oxygen as given by

OURS ¼
Vmaxc

Km þ c

� �
1� f

fmax

� �
(9b)

The parameter fmax represents the maximal cell density that
can be cultured in the reactor assuming no nutrient
limitations. The inclusion of the logistic growth term was
motivated in part by the observed dependence of oxygen
consumption on cell density (Cho et al., 2007; Rotem et al.,
1992). We use the Bayesian information criteria (BIC) to
justify the additional parameter in the model

BIC ¼ n ln
RSS

n

� �
þ k lnðnÞ (10)

where n represents the number of observations and RSS is
the residual sum of squares (Burnham and Anderson, 2002).
Inferring Parameter Values From Experimental Data

As described above, we measured oxygen concentrations in
the media at four locations inside the bioreactor. The
cellular uptake parameters and the mass transfer coefficient
(Vmax, Km, fmax, and kla) are parameters to be learned from
this data. The parameter estimation is formulated in terms
of a nonlinear least square problem with the objective
function f defined as

f ¼
X
i

wiðci;pred � ci; expÞ2 (11)

where ci,exp and ci,pred are the measured values of
concentration of oxygen and the model predicted values
of corresponding concentrations for the ith measurement,
respectively. The weight parameter wi for each data point
can be used to incorporate the relative confidence on the
measurement i. Parameters values are learned based on
minimization of the objective function using a nonlinear
least square optimization technique using the Levenberg–
Marquardt technique in a MATLAB1 (v. 7.4, 2007,
Mathworks, Inc., Natick, MA) platform.

In principle the measurements of oxygen concentrations
in Section A are sufficient to learn the parameters (Vmax, Km,
fmax, and kla) characterizing the system. However, these
parameters are usually highly correlated and it would
require modification of the inference procedure and a large
number of measurements to learn these parameters with
a significant degree of confidence. It is hence advisable
to have an independent estimate of at least one of the two
parameters Vmax and kla, as they have highest degree of
correlation. Thus we designed our reactor and experiments
to allow measurement of oxygen concentrations in a region
containing no cells (Section B). We use the concentration
measurements in Section B of the reactor to determine kla
and then use this value and the concentration measurements
in Section A to learn Vmax, Km, and fmax.

The goodness of the fit was computed using the standard
regression coefficient method calculated as

R2 ¼ 1�

P
i

ðci;pred � ci;expÞ2

P
i

ðc � ci;expÞ2
(12)

where c is the mean experimental concentration, and the
summation in Equation (12) is on the experimental dataset
under consideration. The correlation matrix (Cor) is used to
identify parameter values and its elements are computed
from the covariance matrix (Cov) given by

Cov ¼ s2
eðJTJÞ

�1 (13)

Cori;j ¼
Covi;j

ðCovi;iCovj;jÞ1=2
(14)

where n is the total number of data points (Bates and Watts
1988; Sadegh Zadeh et al., 2006). se is the standard deviation
in the residual normalized by the total degrees of freedom
of the regression calculated as n minus the number of
parameters regressed (n� p) (Donaldson and Schnabel
1987).
Inferring Confidence Intervals for Parameter Values

The standard errors for this regression problem can be
computed using the covariance of parameters in the Cov
matrix (Eq. 13); however, considering that we have errors in
measurement in both dependent (c) and independent
variables (chiefly hui and f), such a calculation can be
inaccurate. Because the functional dependence is not
explicit, a Monte Carlo approach should be used to
compute the standard errors in regression (Alper and Gelb,
Mehta et al.: Inference From Microfluidic Systems 969
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1991; Donaldson and Schnabel, 1987). The procedure for
the simulations is followed as per Alper and Gelb (1991).
Briefly, new datasets are constructed by sampling the
independent variables from their individual distributions
constructed from their measured variance, and each of these
datasets is used for regression to infer the parameters. The
inferred set of parameters can be used to estimate their
distributions and also their confidence intervals. Here, we
sample the velocity values from a normal distribution with
means and the standard deviations estimated from our data.
The value of the mass transfer coefficient (kla) is estimated
for each case using the measured oxygen concentrations in
Section B, and subsequently the remaining parameters
(Vmax, Km, and/or fmax) are inferred for each case of velocity
and the kla value. The confidence interval of the inferred
parameters is reported as the standard deviations of the
estimates.
Results and Discussion

Experimental Measurements

Our experimental data on oxygen concentrations in the
microdevice culturing HepG2 cells are shown in Figure 2.
There is a drop in the oxygen concentration as we move
downstream, corresponding to the uptake of oxygen by cells,
and this drop increases with increasing cell density.
Increasing the media flow rate (hui) increases the overall
concentration of oxygen inside the channel as expected.

The increase in oxygen concentration in Section B of the
device (measurement at x¼ 22.5 mm), a region in which
cells are absent, provides direct evidence of the diffusive
flux of oxygen due to the permeability of the PDMS.
Interestingly, the diffusion of oxygen from the ambient air
through the highly permeable PDMS devices, although
significant, is not sufficient to avoid gradients inside the
microchannel.
Figure 2. Oxygen concentrations in the microdevice during culture of HepG2

cells. The plots show the experimentally measured oxygen concentration in mg/L as a

function of distance from the inlet. Experiments were performed at three cell densities:

high (1.67� 105 cells/cm2), medium (5.2� 104 cells/cm2), and low (9.9� 103 cells/cm2).

Four flow rates were tested and the average fluid velocity hui is indicated. The origin

or inlet is defined as the point at which the media first contacts cells as seen in

Figure 1.
Quantification of Diffusion

Cells inside the microchannel are supplied oxygen by
two modes—continuous circulation of fresh media and
diffusion from the ambient air via the PDMS surface.
Quantification of the specific oxygen uptake parameters
(Vmax, Km, and possibly fmax) by the cells will entail the
characterization of both these modes. The convective supply
of oxygen by the media can be calculated from the measured
media flow rate and the oxygen solubility, while the
diffusion of oxygen from air is calculated based on the
estimation of the overall mass transfer coefficient kla. If
one attempts to simultaneously infer values ofVmax,Km, and
kla, the inferred values can be inaccurate due to a high degree
of correlation in the parameters. For example, the
correlation index (Cori,j in Eq. 14) between Vmax and kla
970 Biotechnology and Bioengineering, Vol. 103, No. 5, August 1, 2009
for the dataset of Figure 2 is �88%. Hence, we need an
independent estimate of at least one of the parameters.

The measurement of the oxygen concentration in Section
B (Fig. 1C) can give an independent estimate of the diffusive
flux in the device as in that section there is no uptake of



Figure 3. Determination of the mass transfer coefficient kla from oxygen con-

centration measurements and the model. This figure shows the comparison of model

and experimental data for three levels of cell density as indicated earlier. The

experimentally measured scaled concentration of oxygen at the outlet of the reactor

(x¼ 22.5 mm; scaled w.r.t inlet concentration) is plotted as a function of the predicted

values for three cell densities circles—high (1.67� 105 cells/cm2), squares—medium

(5.2� 104 cells/cm2), and stars—low (9.9� 103 cells/cm2). The experimental and the

predicted values for all velocities are plotted with the agreement line (y¼ x). The best

fit value for kla was 5.98� 10�8 m/s. Three sets of 50 Monte-Carlo simulations was

performed to ascertain the variation of kla for measurement uncertainty in the velocity

assuming normally distributed errors with standard deviation equal to 30% of the

mean. The standard deviation of the best fit kla values was found to be 1.5� 10�8 m/s.

Inset shows the cumulative probability distribution for the best fit kla values for all

simulations. Note that the mean value of kla is centered, that is, has a probability of

50%. The mean regression coefficient for all the runs was 88%. All the experimental

data taken in Section B were used for the regression, with the inlet concentration as

the concentration measured at x¼ 17.5 mm.

Figure 4. Comparison of predicted and observed oxygen concentrations for

oxygen uptake model independent of cell density. A: Comparison of model and

experimental data for three levels of cell density (circles, squares, and stars for

high, medium, and low cell densities, respectively) and for both locations (filled

markers for x¼ 10 mm and hollow markers for x¼ 17.5 mm). The experimentally

measured scaled concentration (scaled w.r.t inlet concentration) of oxygen at is

plotted as a function of the predicted values. The experimental and the predicted

values for all velocities are plotted with the agreement line (y¼ x). B and C:

Comparison of the model predicted (lines) and experimental (points) scaled oxygen

concentrations in the device as a function of the media velocity at locations x¼ 10 mm

and x¼ 17.5 mm, respectively. The experimental data in Section A at three locations,

x¼ 10 mm and x¼ 17.5 mm and the inlet, was used for the regression. The data for

each cell density were fitted individually, hence a total of eight points were used to

infer two parameters. Inferred values of Vmax and Km along with the statistics for

regression can be found in Table I.
oxygen by cells. Hence, we used the partial differential
equation model and the experimental data and formulated
the optimization problem to estimate the overall mass
transfer coefficient (kla) from the experimental measure-
ments from Section B. Figure 3 shows the results of the
optimization and the model fit to the experimental data. The
good fit of the model predictions and experimental data
shows that the single parameter (kla) film model of diffusive
mass transfer of oxygen from PDMS surface is sufficient to
explain the diffusion process in the microdevice.

The mean value of the overall mass transfer coefficient
was found to be 5.98� 10�8 m/s with standard deviation of
1.59� 10�8. The standard deviation for the measurement
was estimated using the Monte Carlo procedure outlined
earlier. Assuming normally distributed errors in the
measured variable (the velocity hui), the fitting procedure
was repeated to estimate the standard deviation in kla and a
plot of the probability distribution of kla from the results of
these runs is shown in the inset (Fig. 3). We saw that the
probability distribution for kla is similar to the imposed
distribution of hui, and the measurement uncertainty of hui
is directly reflected in the variation of inferred values of
Mehta et al.: Inference From Microfluidic Systems 971
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kla. Interestingly, this approach can be used to develop
experimental protocols where the measurement accuracy for
particular variable is designed to achieve desired accuracy in
the inferred parameter.

The estimated value of kla is lower than from what one
would expect from virgin PDMS, and we attribute it to the
fact that the PDMS used for our experiments is plasma-
treated, which is known to lower the oxygen permeability
(Houston et al., 2002; Shiku et al., 2006). The dataset
consists of multiple measurements with different devices
and cell cultures of different cell densities and hence the
standard deviation is also indicative of the reproducibility of
the device-making process.
Quantification of Cellular Uptake Rates for
Experimental Cell Densities

We inferred the oxygen uptake rate parameters (Vmax and
Km) for three different values of cell density individually as
per the uptake model described by Equation (9a) using
measured data (Fig. 2) from Section A of the device. The
goodness of the fit, as indicated by the comparison of model
and experimental results, is shown in Figure 4. The model is
in good agreement of the experimental data (regression
coefficients >92%).

Table I shows the inferred values of Km and Vmax for the
three different cell densities. The standard deviations in Km

and Vmax for each of the three cell densities are determined
by the Monte Carlo procedure. We found that the values of
Vmax vary systematically with cell density. While the values
of Km also vary with the cell density, but the large standard
deviations for this parameter suggest uncertainty in its
values. However, for the current experimental data, the
concentrations of oxygen are much larger than theKm values
(Km< c), and hence the specific oxygen uptake rate is largely
determined by Vmax (Eq. 9a).

We found that the OURS for HepG2 cells varies between 1
and 9� 10�17 mol/cell/s depending on the cell density. This
rate is similar to that found by other researchers for HepG2
cells via other measurement methods (Chin et al., 2008; Liu
et al., 1991). Furthermore, we found that the dependence of
Vmax and hence the specific oxygen uptake of cells on the cell
Table I. Inferred parameter values and regression statistics.a

Cell density, f

(�103 cells/cm2)

Vmax

(�1017 mol/cell/s)

167 1.12

[0.32]

Model I 52 1.83

[0.57]

9.9 5.74

[1.6]

Model II ALL 6.62

[1.2]

aThe values inside the brackets [ ] below the reported value indicate the stand
three sets of 50 simulations each.
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density is in qualitative agreement with observations of
other researchers for other cell types (Cho et al., 2007;
Rotem et al., 1992).
Quantification of Cellular Uptake Rates for Unified
Model of Oxygen Uptake

The results in the previous section indicated that the specific
oxygen uptake rate is a function of cell culture density. At
higher cell densities, cells tend to grow more slowly and thus
have lower metabolic activity; we found a lower specific
oxygen consumption rate. A logistic term, which is generally
used to model the dependence of the cell proliferation/
growth rate on the instantaneous cell density, hence may
explain the dependence of our inferred cell uptake
parameter on the cell culture density. We, therefore,
repeated the inference procedure with the unified model
described by Equation (9b).

The results for the fit with the new model are shown in
Figure 5. The inferred values for the parameters are shown in
Table I. Again, the value of Vmax, which dominates the
specific oxygen uptake rate (as Km< c) is in accordance with
the range of values reported previously in literature (Chin
et al., 2008; Liu et al., 1991). The value of maximum cell
density fmax is in agreement with our experimentally
observed maximum cell density in the microchannel.

While there is an additional parameter (fmax) for the
model, we now simultaneously fit the data for all three cell
densities (Fig. 5). The regression coefficient for the new
model is lower than the earlier model; however a direct
comparison of the two models is not possible by just
considering the regression coefficient, as they fit different
numbers of datapoints, and also have different numbers of
parameters. Hence to verify if the addition of a new
parameter is justified, we used the Bayesian information
criterion and found the BIC score for our model (�55) is
lower than the scores of the model for three individual cell
densities (�20, �27, and �25) justifying the addition of
the new parameter. The results of this analysis indicate that
indeed, the cellular uptake of oxygen is dependent on the
total cell density, and hence it should be considered while
designing the oxygen supply for the microfluidic device.
Km

(mol/m3)

R2

(%) BIC

fmax

(�103 cells/cm2)

0.12

[0.10]

95 �20 —

0.07

[0.09]

98 �27 —

0.11

[0.11]

94 �25 —

0.154

[0.087]

87 �55 254

[3.4]

ard deviation in the base value ascertained by Monte Carlo simulations with



Figure 5. Model results with logistic growth factor densities for the proposed

oxygen uptake model. Figure shows the comparison of model and experimental data

for three levels of cell density; High (circles), Medium (squares), and Low (stars) and

for both locations (filled markers for x¼ 10 mm and hollow markers for x¼ 17.5 mm).

The experimental data in Section A at three locations, x¼ 10 mm and x¼ 17.5 mm and

the inlet, was used for the regression. The data for all cell density was fitted

simultaneously, hence a total of 32 points were used to infer three parameters.

Inferred values of Vmax and Km along with the statistics for regression can be found in

Table I.
Conclusion

The motivation of this work was to develop a methodology
to quantitatively measure key cellular parameters in a
specified media environment. We developed a microfluidic
device-based assay and accompanying model and inference
procedure to determine the cellular uptake rate of oxygen.
By avoiding the simultaneous inference of both the uptake
and the diffusion parameters, the method used here
minimizes errors arising due to the correlation of the
parameters. The independent inference of the mass transfer
coefficient is critical to the accurate inference of the cellular
uptake parameters. We also demonstrated a dependence of
oxygen uptake on cell density and characterized a new
uptake model that accounts for this. Our model and
associated parameter values can be used for the design or
optimization of microfluidic cell culture reactors. The
method and the device can be readily adapted to measure
uptake rates of other soluble factors (e.g., nutrients, cell
secreted signaling molecules) and also can be extended to
other systems/geometries. Furthermore, the use of model-
based sensitivity studies as the Monte Carlo simulations
described here can enable the identification of variables that
need to be measured with specified accuracy to target a
particular accuracy of an inferred parameter of interest.
We believe that the combination of models with new
experimental devices can help us develop novel, more
accurate assays to measure cellular properties of interest.
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