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Abstract

In this paper we present an infeasible start path following predictor corrector
method for semidefinite linear programming problem. This method does not assume
that the dual pair of semidefinite programs have feasible solutions, and, in at most
O(|log(m)|n) iterations of the predictor corrector method, finds either an ap-.
proximate solution to the dual pair or shows that there is no optimal solution with
duality gap zero in a well defined bounded region. The nonexistence of optimal solu-
tions is detected in a finite number of iterations. Here € is a measure of non-optimality
and infeasibility of the pair of solutions found, and is generally chosen to be small;
0(A,b,C)is a function of the data of the problem and p is a measure of the size of the
region searched, and is generally large. The method we present generalizes a method
for linear programming developed by Mizuno. We give some preliminary computa-
tional experience for this method, and compare its performance ( measured by the

number of iterations ) with that of the code SP of Vandenberghe and Boyd which is
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based on a potential reduction strategy, and the code SDPA of Fujisawa and Kojima

which is based on a path following and potential reduction strategy.

Key words: Linear programming, Semidefinite programming, Interior point methods,
Path following, Predictor corrector method, Infeasible start.

Abbreviated title: . Semi-definite linear programming



1 Introduction

This paper considers the dual pair of semidefinite linear programs:

minimize C o X

A;e X = b foreveryi=1,---,m (1)
X >0
and,
minimize Y..-; by
i Ay + S = C (2)
S>0
where A; for ¢ = 1,---,m and C are n x n symmetric matrices, A @ B = trace(ATB)

and X > 0 means that X is a symmetric and positive semidefinite matrix while X > 0
means that it is a symmetric and positive definite matrix. We assume that the matrices
A;,i=1,...,m are linearly independent.

The relationship between these pair of dual problems is now well understood. In case
both the primal and the dual have interior feasible solutions, there exist optimal solutions
to each problem which satisfy the strong duality theorem and thus the duality gap for such
solutions is zero, Alizadeh [1]. Otherwise there are examples where the duality gap is not
Z€ero énd the primal or the dual problem may not attain its respective optimal solution, see
for example Alizadeh [1], Freund [5]. In this paper we consider an infeasible start predictor
correc‘p(')r method which will ﬁ\nd, if one exists, an optimal solution with duality gap zero,
within the set

{(X,8): 0= X <pl,0=85 < pl}, (3)

when the method is started with the initial matrices X; = pI, y* = 0 and S; = pI. We do not
assume that the primal and dual have feasible solutions and detect the non-existence of such
an optimal solution, in the set (3), in a finite number of iterations. The method we present
here is a generalization of the method for linear programming presented by Mizuno [14] (
we generalize algorithm 2 of his paper ). See also section 5.10 of the book Saigal [21]. We
show that in at most O(llog(m)ln) iterations of the predictor corrector method, where

6(A, b, c) is a function of the data A;,7 =1,...,m,b, and C, either the method will discover
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that there is no optimal solution with duality gap zero in the set (3) or find a solution X (e),
y(€), S(€) to the dual pair for which the duality gap X () ¢ S(¢) < ne, and the infeasibility
measures (Y7, (A;0 X (e)—b;)2)7 < 8(A,b,C)eand || 8, Aigi(e)+S(e)—C||r < 8(A, b, C)e.
In this method, the corrector step solves a linear system of equations that differs from that
of the predictor only in the right hand side.

Our method is similar to the one presented by Potra and Sheng [19], but differs in the
predictor and the corrector directions used. The predictor direction used by Potra and

Sheng is determined by the equation
X“3(XAS+AXS)X? + X3(ASX + SAX)X™% = —2X25X3

which generates, in the case of a feasible start method, one of the directions from a class
introduced by Kojima, Shindo and Hara [10] and analyzed by Monteiro [16]. We use the

direction generated by the equation
AXS + XAS =otl — XS,

where 0 < 0 < 1, and use the symmetric part of AX in the method. The corrector direction
in [19] is determined by solving a similar system as ours, but requires a solution of a new
linear system, while we solve the same linear system as the predictor, but with a different
right hand side. Under the assumption that the primal and the dual have optimal solutions
with no duality gap, thf;y prove a similar polynomial bound as ours on the number of
preaictor and corrector steps required by their method.

The predictor corrector strategy is designed to keep the iterates of the method in the

following neighborhood of the central trajectory :
N(t,8) = {(X,5,8): X = 0,5 = 0,t < t,,||STX ST ~ tI||p < ft} (4)

where || Bl = ¥, 7%, B}, is the Forbenius norm of the matrix B and 8 > 0 is a constant.
This same neighborhood has been used in establishing polynomial convergence results for
feasible start methods by Lin and Saigal [11], Monteiro [16] and Zhang [26].

There are several primal-dual algorithms based on the potential reduction strategy, see

for example [1, 8, 10, 23], and codes based on some of these are available in the public



domain, for example Fujisawa and Kojima [6] and Vanderberghe and Boyd [24]. Using a
MATLAB based code of the method of this paper, we call INPC, we present some prelimi-
nary computational results on the number of iterations taken by the three codes INPC, SP
[24] and SDPA [6] to solve six different problems. One of these test problems has problem
instances for which the primal-dual pair has no optimal solution. All three codes were able
to detect these instances. Just as in the case of linear programming where the predictor
corrector path following methods are seen to be the most effective, our results lend support
to the statement that a similar situation may hold for the semidefinite linear programming
as well.

Besides the introduction this paper has 5 other sections. In section 2 we present the
method investigated in this paper, in section 3 some basic results are presented. In section
4 we analyze the method and in section 5 we prove its global convergence. In section 6 we
present the algorithm we implement, the six problems we solve, the numerical results and

discuss some implementation issues. Finally in section 7 we present our conclusions.

2 The Method

We now present the predictor corrector method we will discuss in this paper.

Step 0 Let p > 0 be large, A > 1,0 < a < % and 1 > oy > o > 0 be given constants;
01:1,X1=pl,y1:0,‘51:plandti=&;—‘gl=p2. Set k= 1.

Step 1 Predictor Step: Solve

A,‘OA)(}c = —-)\(AiOXk—bi) i=1,--~,m
2ini AZ-Ayf + AS = =ML Aiyf + 5= C)
A XS + XpAS, = otpl — XSy



for (AXy, Ay¥, ASy), and define

Xi X + %a(AXk—%-AX,?)
gk yk + aAyk
S’k Sk + aASy (6)
{k Xie5,
0k+1 (1 - a/\)Hk.
Step 2 Corrector Step: Solve
A; o AX; = 0 foralli=1,---,m
mOAATE + 0 AS, = 0 (7)

AXkSk + XkAgk = t_kI—XkS'k

for (AXy, Aj*, ASy), and define

Xiy1 = Xi+3(AXe+ AXT)
Seq1 = Sk +AS

Xiki10S
j— k41 k+1
tk+1 - n .

Step 3 Set k = k+1. If 3X; 05, < pbi(|| Xk||F+|Sk||F), stop. There is no optimal solution
with duality gap zero in the set {(X,S) : pI = X > 0,pI > S > 0}. Otherwise, go to
Step 1.

Both the systems (5) and (7) have a unique solution, and differ only in the right hand side.
Also, the solutions AS; and ASy are symmetric ( a consequence of our assumption on the
matrices of the problem ), but AX} or AX; may not be symmetric. We use the symmetric

part of these directions in the predictor or corrector steps.

3 Basic Results

We present here the basic results we need about matrices and norms. Given an n X n matrix

B we define its 2 - norm as || B||2 = max|jg)=1 | Bz||2, and it is easily seen that if the matrix



B is symmetric, then || B||; = max|\;| where A; for 2 = 1,---,n are the n real eigenvalues
of B. For a given n x n matrix B, we define vec(B) = (BY, B%,..., BT)T and note that
|vec(B)||2 = ||B||F, where B is the jth column of the matrix B.

Given an m x m matrix A and an n x n matrix B, we define the Kronecker product,

A ® B, as the matrix .
ApB -+ AymB

Ap1B -+ ApmB
and the following are some well known properties of the Kronecker product, see for example

Bellman [2] :
1. vec(AXB) = (BT ® A)vec(X).
2. (A®B)" = AT® B.
3. (A B)'= A"'® B~
4. (A® B)(C ® D) :'AC’ ® BD.

5 MA® B) = {a;f; : @i € A(A), B; € A(B)} where A(A) is the set of all eigenvalues of
A.

and the following are well known properties of trace:
1. A> 0. Then trace(A) > 0.
2. A > B. Then trace(A) > trace(B).
3. C = A+ B. Then trace(C) = trace(A)+ trace(B).
4. trace(A) = 3. Mi(A) where A\;(A) are the eigenvalues of A.
5. det(A) = [TXi(A) where X\;(A) are the eigenvalues of A.

We state some lemmas needed in this paper. The proofs can be found in the cited references.

Lemma 1 Let A and B be arbitrary n x n matrices, with B nonsingular. Then ||AB||% <

IAIFIIBT Bll2 and |AB|% < || AT Al B



Proof: Lemma 1, [11]. n

For a given n X n matrix B which has all eigenvalues real, we define A;(B) for: =1,---,n

the n real eigenvalues of B, and Apax(B) = max;A;(B) and similarly Apin(B). We can prove

Lemma 2 Let A, B and C be n x n symmetric matrices with A= B+ C. Then Apin(A) >
Mmin(B) = [CllF and Amax(A) < Amax(B) + ||C]|F.

Proof: Lemma 2, [11]. |

Lemma 3 Let A and B be n x n matrices with A symmetric and B nonsingular. Then
1
IAlr < SI1BAB™ + (BAB™)"|r.

Proof: Lemma 3.3, Monteiro [16]. [

Another technical lemma follows:

Lemma 4 Let A, B and C be n x n matrices such that A= B+ C, and tmce(BTC) > 0.
Then ||B||r < ||AllF and ||C||F < || A]lF.

Proof: Lemma 4, [11]. |

4 Analysis and Convergence of Method

In this section we will prove that the method generates a sequence of points such that ¢ goes

1

to zero at a linear rate (1 — a(l — 0y)) and a = O(3).

We now prove a basic lemma which shows that the infeasibility decreases after each

predictor and corrector step.
Lemma 5 For each k=1,2,---
1. A,' [ Xk — b2 = Hk(Ai OX1 - bi)

2. T, ATyE + e — C = 07, ATyl 4 51 - C).



Proof: We will show part 1. The proof of part 2 is similar. Now

Ao Xy —bi = Aie(Xi+ g(AXk +AXT) + %(AXk +AXTY)) - b
= Ao Xi+adie AXp+ Ao AX, — b
= (1—a))(A; e Xx—b)

(1— a))0s(A;i o Xy — b))

Il

and the result follows by an induction argument. [ |

Define the m x n? matrix A whose ith row is the vector vec(A;)7. Then the solution to

the system (5) and (7) can be computed by solving the equivalent linear system

A 0 0 vec(AXy) —\(Avec(X}) — b)
0 AT 1 AyF = | =M(ATy" 4 vec(Sk) — vec(C)) (9)
F. 0 Gy vec(ASk) vec(Ry)

where Fy, = S, ® I, G, =-1 ® Xy and an appropriate matrix Ry.
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Lemma 6 Let X; and Sy be symmetric and positive definite, and define D, = F, *G}.
Then

1. DZ = Fk_le'
2. Dy is symmetric.

1 1 1 1
Proof: Since X and Sy, are symmetric and positive definite, F? = SZ ® and G} = IQ X}
are well defined, and thus, by property (3) of Kronecker product, Dy, is well defined . Now
part (1) follows from property (4), and, part (2) from property (2) of the Kronecker product.
|

Lemma 7 There exists U, (v, W) with U, W symmetric, such that A;eU = b;,1=1,...,m,
" A+ W =C. Let P, = DyAT(AD}AT) ' ADy with Dy, in Lemma 6. Then, for each



Ayt = —(AD2ATY ' AF; vec(— Xy Sk + otid) — Ay(ADEAT) " AD2 vec(Sy — W)
M (ADIAT) T AF (Frvee( Xy — W) — Mk (y* — v),
Divec(ASy) = PuGy?F 7 vec(—XySy + otil) — Mu(I — Pi)Divec(Sy — W)
AP D vee( X1 — U),
Dilvec(AXy) = (I- Pk)G;%FJ:%WC(—XkSk + oted) + A0k(I — Pi) Dyvec(Sy — W)
A0, P.D; M vee(X; — U).
Proof: It is readily confirmed that there exist (v, W) such that y3i~, A;v;+W = C and, since

A;,1=1,...,m are linearly independent there exists U such that A; ¢ U =b;,1=1,...,m.

Using simple algebra and the definition of U, v, W, system (9) can be re-written as:

A 0 0 veco(AXy + Mi(X, — U)) 0
0 AT I AyF + Mi(y' — ) =] 0
F, 0 Gy || vec(ASy+ Mi(Sy —W)) R
where
R* = vec(—=X}.Si + oty I) 4+ M Fevec(Xy — U) + A0y Gyvec(S; — W).
Then
Ay*

= (AF7'GLAT) Y (=A)F'RF — M (y' — v)
= —(AF;'GyAT) T AF veo(— Xi.Sk + oti]) — Mp(AF; Gy AT) ™ ADjvec(S; — W)
—AOk(AF,;leAT)"IAFk_I(Fkvec(Xl -U)) - )\0k(y1 —v),

Dyvec(ASy)
= Di(—AT(Ay* + M(y' —v)) — Myvec(S, — W))
= Di(AT(AF7'GLAT) P AF  vec(—Xi Sk + ot ) + M AT (AF1GLAT) ' AD}
vec(Sy — W) + MR AT(AFT G AT) Y AR (Fyvee( Xy — U)) — Mgvec(Sy — W))
= PG F; Tvec(—XiSk + otil) — My(I — Py)Dyvec(S; — W)
+X0, P, Dy M vec( Xy — U),



Dj 'vec(AXy)
= D7 (=Myvec(X; — U) + F7H(RF — Gyrvec(ASy + My (S1 — W))))
= D;'(=Mgvec(X; — U)) + D;' Fy (vec(—= Xy Sk + ot ) + My Frvec( X, — U)
00, Givec(Sy — W)) — DI F Gy (vec(ASy) + Myvec(S; — W)
= D;'F;'vec(= XSy + otpl) — Dyvec(ASy)
= DpFvec(—XiSh + othl) — PuG? Fo vec(— Xy Sk + otel)
+M0x(I — Po)Dyvec(Sy — W) — A, P Dy veo(X; — U)
= (I = PG F, *vec(= XSk + oti]) + \s(I — Pi) Dyvec(Si — W)
— M0y Py D vec( X, — U),

and we are done. ]

We now prove two important propositions.

Proposition 8 Let U and W be as in Lemma 7, with —pl < U < pI and —pI < W < pl.
1 1

For some k, (Xk,Sk) € N(tk,ﬂ), Ey = S XpSE —tel, and akP(”XkHF‘i‘”Sk“F) < 3Xe5;.

Then

1X7 2 AXSE I < Bn)Vi
X2 ASS; ¥ lr < B(n)Vi;

Co1 1 1+
X5 AXESH e <[5 BV
where B(n) = —2=(B+ (1 — 0)\/n + 6An) is an increasing function of n.

Vi
Proof: We obtain the following results by using the lemmas 1 and 2 and the fact S; — W >
0,X; -U > 0.

| PG, 2 F, 2vec(— XSk + oti D)2 < ||G, 2 F, *vec(—XpSk + otil)]|2
1 _1
= |[X (= XiSk + otil)S, * ||

= |IX; %S, 2(=SEXkSE + tx) + (0 — Dtk X, 2S; 2 |r
o il

——t (1 ~0) :
ik = || Exl|F Ve = [ EkllF

10
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Lol YT

[Devec(Sy =Wl = [[XE(S1—W)S, I

-

1 L 1 _1
I XE(S1 = W)X X, * 5, *[lr

Il

1

< 1S EXE S E I XS - W)
< 1S XS, RISy = Wl Xl
< 257 XS; 111 X,

|7 vec(Xs = D)l = 1|G; Fivec(X: = Ul
= |I(5 ® X; *)vec(Xy - D)
= X720 - 0)S
< 20lSulell S X S

Therefore,

I1S; *ASk X2 |lF = || Divec(ASy)|l2

< 1GE 2 F  vec(= XSk + otil)|la + M| Divec(S: — W)l
+A0,|| D tvec( Xy — U))l2
1 2/\0kp
< - % ix S
< m(ﬂ + (1= o))Vt + T HEk”F(” kllF + || SkllF)
< —1—([3 + (1= 0)v/n + 6An)V/1,

Vi-8
X T AXSE e = N(SE © X7 2 vec(AXL),

= || Di vec(AXy)ll2

< “G;EF]:iVGC(—'XkSk + Utk.[)“? + )\HkHDkvec(Sl - W)”2
+/\0kHD;1VGC(X1 - U)||2
o1
< (B+ (1= a)v/n+6In)Viy,

]

1—
-1 1 -1 11 L 11
IX FAXCSE P = (X7 5, %) SEAXL X, 2 (X SE)le
1 110 1 1 -1 -11
1XE XeSENZ I X, * AXESE (RIS, X5, 2 13

tr + || Ex|F
< th AR

< %f—gB(n)\/tI.

IN
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Corollary 9 For some k let t, > 0,(Xy, Sk) € N(tk, 3), and Okp(|| Xk||lF + ||SkllF) < 3X) @
Si. Then

B(n)? _ B(n)?
(1—a+afy— (:) Aty <t < (1—a+aa+—(n—n)——a2)tk.
That 1s,
2 B B 2
aa—wa2 < b _14a <ca+ (n) a?, (10)
n b n
2 ) 2
_ B(n) o < i—i——l—i—a—aa < B(n) a?. (11)
n n

Proof: Note that nf; = X @ S, and AS, ¢ AX; = AS; 0 AXT = AX, e AS; ( since AS;

is symmetric ). Using (6), we see that
nt_k = Xk ° Sk =X, 05, + Ol(AXk oS, +ASie Xk) + aZAXk o AS;.

Also, from (5), AXy o S; + ASy @ Xi = noty — nty. Now AX; e AS; = trace(AXIASy) =
trace(SéAXkTXk_%Xk%ASkSk_%) and the result follows from Proposition 8. ]

Proposition 10 For some k let (X, Sk) € N(tk, ), Ex = SEXkSE—tk], and Orp(|| X || F+
|SkllF) < 3Xi 0 S. Then

| X PAXLSE P <
IXEASS 2 lr < M(e,n)Vi,

ISEAXEX, I

IN
=
L
S
B
>

where M(a,n) = ikﬁ\/%ﬂ@ + 2B 4 %) + ﬁ%—%(l + =+ 22 s an increasing

function of a.

Proof: We will only show this for ||.X, %A)—(kSé— |F. The first inequality below follows from

Lemma 4, and using the same arguments as those of Proposition 8, and inequalities (10),

12



(11), we obtain the other inequalities below :

-1 - 1 - =Ll 1 -1 - -1
1Xy *AXSE P < ||thk25k2_Xk2XkSk I
= ||szsk GO - SIS + X HGHXS - XS0
1

< | |||E |lpP———+ HXT((—)XkSk -
t — || Exl|F f

T 1
BXet BN ) 84+ ab80)S e

(Xk-i—a 5

Now, the second term in the above expression is the same as:

_1t
[| X5 2(iXkSk — XSk — a(AX Sk + X ASy) — g(AXkT — AX})Sk -
2

S (AXi+ AXD)AS)S,r

_1 1 t
= |IX; 2((t—’i — 1 +.a)(XkSk — ti]) + (t—k —1+a—ao)t] - g(AX{f — AX})Sk
k k
2

_%_(AX;C +AX])AS)S I

N L Y

t
+a?B(n)? 1 - i

We obtain the result by substituting the above, and the definitions of & and M(a,n). R

IN

Lemma 11 If o*, 0y satisfy the following
M(o*,w)B(n) . B(n)?

c—2 -« > 0,
n n
" 2
M B | By
n n

then for every a such thdt 0 < o < o*, and k with (X, Sk) € N(t, 3), and Ocp(|| Xkl F +
1SkllF) < 3Xi 0 g,

(1 - a)Xk [ ] Sk S Xk+1 [ ] Sk+1 S (1 - 01(1 - 0'1))Xk [ ] Sk.
Proof:

Xk+1 o Sk+1

13



- AXk-l—AXE

= (Xk+ 5
o AX.+AXT
= Xpe i+ AX o (Se+aASy) + (X + a——k—;——k) o A,

) ° (S’k + Agk)

= X,05 + a(AXk o AS, +AXy 0 Agk) (Note : AXy o Sp + X; 0 AS, = 0)
= (1 —a+ O'CY)Xk o SL+ a2AXk o AS; + Ol(AXk o AS, +AX; e ASk)

Since
AXi e AS, = vec(AXy)Tvec(AS)
= vec(AXy)T D7 Dyvec(ASy)
< || D vec(AXy)||2|| Divec(ASk)l2
= ||X; *AX,SE || rlIXZ ASKS, 2 ||r
< M(a,n)B(n)t,
AXk [ AS”,C S M(Ot, n)B(n)tk,
AX, e AS, < B(n)*t,
we have

M(a,n)B(n) B(n

2
+0.’2 ) )Xk .Sk)

Xit10S1 <(1—a+oa+2a

' n n
M B B(n)?
Xkt10Sk41 2 (1 —a+0a—2a (a,n) B(n) —o? (n) ) Xk o Sk.
n n

Since M(a,n) is an increasing function of «, we have
(1—a)XreSp < Xiy1 05k < (L—a(l —01)) Xk 0S5k

for 0 < a < a™.

We now obtain a condition that guarantees that X4y and Siy1 are symmetric and positive

definite.

Lemma 12 For some k let (Xk,Sk) € N(tk,ﬂ), k. = S,é—XkSE—tkI, 9kﬂ(l|Xk||F+l|Sk“F) <

3X. 0S5, and
1—(B++/B+ 1(aB(n)+ M(a,n))) > 0.

14



Then Xy41 and Skyq are symmetric and positive definite.

Proof: We now show this for Xy4;. It is symmetric by construction, and is positive definite

1 1
if and only if 5% X;4157 is. We note that

1 1 1 1 _ 1
S? X1 S? = S7 (X + g(Axk + AX]) + S(AK+AXD))SE.

Then
1 1 1,1 - - 1
Amin(S{ Xe1SE) 2 te = || Billr = 51ISE (e AXi + AX) + (AXk + AX{)SE | p.
Using the result of Propositions 8 and 10 we obtain

Mmin(SE Xp41S2) > (1= B = /14 B(aB(n) + M(a,n)))ts

1 1
and our result follows. To show Siy; is positive definite, consider X7 Sx41 X2 . Using the
same argument as above, the lemma follows. ]

We will now obtain a lemma used for showing that Xy, and Si4; are in the neighborhood
N(te4, B).

Lemma 13 Let the conditions of Lemma 12 be satisfied. Then

“SE+1Xk+ISk5+1 - tk+11“F
< = ! (1+ 1—-lhé)(QaB(n)M(a n) + M(a,n) )t +
= 2(1 — a) 1— B 3 ) +

Proof: By simple algebra we see that

2aB(n)M(a,n) "
(I—a)yn =

o . AXT-AX e
XinSin = KiSi+ (AKS, + XuASy) + =E==E5, + Z(AX] + AX,)AS,

A+ AXT
— k

+g(AXk+AX,{)ASk+ L2

_ AXT _ AX
= tl+ —Xk—-z—ﬂﬁsk+ﬂk,

where Hy = 2(AXT + AXp)ASk + 2(AXk + AXT)AS, + g—"i;—A—X—LTAS'k, and using the
symmetry of Sy and ASj, we see that
ntgr1 = Xpp1 @ Spy1 = Xk05k+AXkOSk+XkOASk
= Xkng+AXkOSk+XkOA§k+a(AXkOASk+AXkOASk)
= n{k+a(AXk0ASk+AXkOASk).

15



Then, from Lemma 3

1(Ska1) X1 (Skar)? = tisa ||

-

< ISHSki) H (S X (Ser)t = tun ) (Sean) 15

87 (S (k1) Xier (Sin)} = tasa I)(Sen) 2 SE 1
B %”S’“%(Xk“‘g"“ - t’“+11)5k_% + Sk_%(sk-HXk-i-l - tk+1I)Sk%“F
- -;—HS,?H;CS,;% +STEATSE - gnﬁ(AXk o A, + AXy 0 ASI
<

”SEH]CSi-EHF + \/ih_IAXk o AS, +AX, 0 AS’kt.

Now, for AX = AX; or AX; and AS = AS; or AS; we note that AX ¢ AS = AXT e
AS =trace(AXTAS) =trace(S: AXTASS, ?) < |52 AXT X ?||#|| X2 ASS; ?|p. Also
ISeEAXASS;Flr = ||SE XX, FAXSES, I ASXEX, S, |
1+8
S

and the lemma follows from Propositions 8 and 10, and Lemma 11. ]

IX, * AX SE|IFIIS) ? ASXE ||

5 Main Convergence Theorem

We now show that the infeasible start method presented in Section 2 converges to an optimal
solution or discovers that there is no optimal solution with duality gap zero in a predefined

region. We first show the later in the next theorem.

Theorem 14 Let o* be as in Lemma 11, and a < o*. Also, for some k, let || Xi||r +
| Sk|lF > y—iﬁg“ but for I < k, || Xi||r + ||Si||F < ‘%ﬁﬁ". Then there is no optimal solution

with duality gap zero in the set {(X,S) | pl = X = 0,pI = S > 0}.
Proof: From Lemmas 5, 11 and mathematical induction, for [ < k we have

Oi1p*n = (1 —a)\)p’n

< (1-ad)X 05
< (I—a)X; e85 (Note: X >1)
< Xip 0 S
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Now, assume the contrary, and let optimal solution p/ = X*, pI > 5* exist with X*eS5* = (.
Also, for X =0,X,+ (1—6;)X* and § = Oy’ + (1 — 6;)y* and S =65, + (1 —60)S™* using
Lemma 5, it can be seen that

A

Aio (X, —X) = Oforeveryi=1,---,m,
Z '_yzA+Sk—S = 0

and thus we have (X — X;) o (S — ;) = 0.
Note that

||Xk||F—\/trace Xk Z)\2<Zx\,’=IOXk
=1

1=1

and we have

Oep([| Xl 7 + || SellF)
Orp(I 0 X+ 10S;) (Note: X; =pl, S; = pl)

IN

IN

(Hle 0 Sk + (1 - Hk)X* 0 Sk) + (HkSI o X; + (1 — ﬂk)S* OXk)
X L] Sk + SO Xk

]

Il

XOS-{-X;COS]C
02X, 051 +0,(1 —0) (X105 + S0 X*) + Xi 05,

IN

02np* + 20(1 — 0;)np* + Xy 0 Sy

IN

20inp* + X; 0 S

IN

3Xk [ ] Sk.

This causes contradiction. ]

We are now ready to prove the main convergence theorem.

Theorem 15 Let a < R)'l()? p =0.005 A=1, 0 =0.>5and oy = 0.9. Then for every
k= 1,2+, (Xi,v",Sk) € N(te,B). Thus, if X; = pl,y* = 0,5, = pl,p > 1, for
every € > 0, after at most O(| log(m)—)ln) iterations of the predictor-corrector method
either the method stops by detecting | Xk||F + ||SkllF > %ﬁi and the problem has no

optimal solution with duality gap zero in the set {(X,S)|pl = X = 0,p] = S = 0}; or, a
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solution (X (€),y(€),S(¢€)) is found with X () o S(€) < ne, \/Z?;I(Ai o X(€) - b,)? < ¢, and
| n, y(e)iA; + S(e) = Cllr < e.

Proof Let o* = Z(i)— in Lemma 11. It’s readily confirmed that this lemma holds and the

Theorem 14 follows.

Now assume the method continues without detecting infeasibility. It is readily confirmed
that the- above choice satisfies the properties required in the hypothesié of the Lemma
12, || EgallF < Btisr, teer < (1 — a(l — o01))tk, and thus the sequence belongs to the
neighborhood N(t, 8).

Now let € > 0 be arbitrary, k sufficiently large and 6(A, b, C) so that (1—a(l—0y))*t; =
(1 - a(l - 01))Fo? < (1= a(l — 01))¥p*6(A,b,C) < €, (1 — @l /T, (A; 0 Xy — bi)? <

(1—al) kp\/ZVL (A; 01 — é‘1)2 < (1= aX)Fpé(A,b,C)e, and (1 — aA)*|| SR, Ayl + 51 —
Cllr < (1= a)Fp|lI - ||F (1 = ar)*p8(A,b,C)e. With a(l — 01) < &5 and @) < 5,
log(sz57577) > klog(1- a(l 01)) > —k¥U-2) and log( 57) > klog(1—a)) > —k22,

Thus, for k > max{5;7= 01) log(z57a327)> 3an 10g(p6(AbC )} +1, Xk 0 Sk < ne,
\E (A; 0 Xy —b,)? < ¢ and |20, yFA; + Sk — C||F < ¢, and the required result is ob-
tained. N

6 An Implementation

6.1 Introduction

In this section we will present some preliminary results of an implementation of a path
following predictor corrector method presented in this paper. In a linear programming situ-
ation, nearly all efficient codes ( for example, [12, 13, 25, 27]) implement a predictor corrector
path following method, and these have been found to be very effective. For semidefinite
linear programming, due to the nonlinear nature of the problem, the numerical behavior of
these methods may be different from that for linear programming. We implement a variant
of the method presented in the section 2 within the MATLAB environment and compare

the number of its iterations with those attained by the two codes, SP of Vandenberghe and
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Boyd [24] and SDPA of Fujisawa and Kojima [6]. Our results indicate that for small size
problems, this strategy may be good for semidefinite linear programming as well.
Semidefinite programrping is used for solving some specific problems, for example [7, 9].
In [7], a version of a path following method is used to solve some semidefinite linear programs
that arise as bounding problems in a branch and bound strategy for some combinatorial
optimization problems. To date, no systematic tests on predictor corrector path follow--
ing method for semidefinite pfogramming have been performed. In this section we report
numerical tests on 6 different types of problems and compare them with two semidefinite
programming solvers SDPA [6] and SP [24]. These solvers use a potential reduction strategy,
with SDPA basically a path-following method which utilizes the logarithmic barrier function

as a merit function when a corrector step is performed.

6.2 Algorithm

We now present the specific algorithm we will implement. For a given matrix A, we define

'AI = maxi,lei,jl.

Step 0 p = 1000 max{[A;],---,[An], 8, |C]}. X1 = pl,y" = 0,5, = pI. €> 0, t; = X125t
B=1,A=1.0,0, =1 and o0 = 0.

Step 1 Predictor Step: Solve

ZAiO(Sk_lAij)Ay;F = —A; OSk (O'tk] S Xk + A ZykA -I-Sk—C)Xk)
j=1 j=1
—/\(A'OXk~b') izl,...,m
AS, = —ZAykA —A ZykA + 5 —C)

AXD = S l(atkl — Sk X — ASiXx)

Step 2 Step Selection:
Set [ =1 and g = max{a : Xi + §(AX) + AXT) = 0,5+ aASy = 0,a < 1}. If

o = 1 a feasible solution has been found. Set a; = 0.99¢;.

Step 3 Set

1
Xp = Xk+§a1(AXk+AXkT)
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Y
Ski = Sk + Sy

kl yk+aszk

1

Step 4 Corrector Step: Set X = Xk,ls gt =gkl S = Skay te = X%& and solve

m

J=1

Step 5 Set

S Ao (STIAXOATE = —A;e S (BI — 5 Xe)

ASy = =Y AjtA
=1

AXT = S7MEI - Si X — ASLXy)

1 - _
Xpp1y = Xk+§(AXk+AX,f)

Sps1) = Si+ AS

X1 0 Sk
n

Step 6 If (Xer1,0, ™™, Ski11) € N(tesry, B), then set Xiry = Xppry, y** = y*+1 and

Sk+1 = Skt1ds tet1 = tktrgy Okp1 = (1 — )b, and go to Step 7. Otherwise, if

1 <2, set apyq = %al, B =28,1 =141, and go to step 3. If [ > 2, select
Qe = 0.99max{a : Xk-{-%(AXk +AX£+AX1§+AX;{) >0, Sk-}-Oz(ASk-I-AS’k) > 0},

and set

X1
k+1

Yy

Sk+1

ki1

Ok+1

X + 9-;—1(Axk +AXT + AX, + AXT)

¥ + arpr (Aye + Agi)

Sk + a1 (ASk + ASy)
Xk+1 o Sk+1
n

(1 — al+1)0k

Step 7 k=k+ 1. If 3X) o Si, < pbi(|| Xk|lF + ||Skl|F), stop. There is no optimal solution
with duality gap zero in the set {(X,S):pl = X = 0,p] = S > 0}. Otherwise, go to

step 1.
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6.3 Implementation Issues

The method presented in the Section 2 implements a step size that is too small to be
practical. A practical algorithm is presented in the subsection 6.2. In step 2 of the algorithm
presented there, step size ‘chosen during the predictor step is .99 of the largest step size that
preserves the positive definiteness of the resulting matrices. If, after the corrector step the
resulting iterates lie in the required neighborhood, this step size is accepted. Otherwise,
it is reduced to half its previous value and used again in a predictor step. This process is
continued until the iterate after the corrector step lies in the required neighborhood. As
can be confirmed, it follows from Theorem 15, that after at most O(log(n)) such reductions
in the step size, the resulting iterate will necessarily lie in the required neighborhood. Also,
for each corrector step after an adjustment in the step size, a linear system with a different
right hand side is solved, and is thus relatively inexpensive. In this implementation we only
allow [ = 1,2, 3, and our computational experience suggests that this number for the small
problems we tested, on the average, is very close to 1 and never greater than 2. This is one
aspect of this implementation that needs further investigation for large scale problems.

We choose the value of f = 1. Since HSI%XlSl% -t I||F = 0, (Xi,51) belongs to the
required neighborhood, N(ty, ).

In Step 6, when | < 2 and (Xj41,, yF+U Sii11) € N(tre14, B) then the predictor step size
is reduced to a4y = %al. To maintain a larger step size, we implemented a “two corrector
step” strategy, in which we apply another corrector step, hoping that this will bring the

resulting iterate into the required neighborhood, by solving:

Y Ao (STTAX)AG = —A; e S (tearg] — SkeriXkt1y)
7=1
ASp = =Y AAg
1=1

AX{ = St i(tesrd = Sk Xigry — ASKXk)

and then checking to see if (Xk+1,1+%(AXk+AXkT), yFH UL AGE Sy +ASE) € N(tks14,B)-
In our tests we discovered that almost always (X411, "0, Skg11) € N(trry, B), and we

seldom resorted to the use of a second corrector step.
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We have implemented the algorithm using MATLAB version 4.2, and all our test runs
are on SUN SPARC 20 platform.

6.4 Test Problems

1. SLP(Randomly generated semidefinite programming problems) :

minC ¢ X
st. A;e X =b,1=1,....m

X =0

For this problem, we randomly generate X > 0,5 > 0 and then use them to generate

A;, b, and C. The generated problems have feasible pairs of duals.
2. MNORM(Matrix norm minimization) :
min ||A() +zA1 4+ + mkAk”2

where A; is a p X g matrix.
This problem appears in section 3.1 of [23]. For this problem, we randomly generate

matrices Ag, ..., Ax.
3. MCUT(Max_cut problem) :

max—L e X
diag(X) = ¢
X*>0

where

(a) L, X are n by n matrices.

(b) L = Diag(Ae) — A, where A is the weighted adjacency matrix.

22



The max_cut problem is to maximize the total weight of edges cut by the partition of
the nodes of an edge-weighted undirected graph. This formulation is a relaxation of
the max_cut problem and the details of this can be found in section 3.1 of [7]. Here,

we randomly generate A and restrict the problem to be a connected graph.
. ETP(Education testing problem) :
max y . d;
A-— diag(d) =0
d>0

where A is a symmetric positive definite. This is a statistics problem which appears

in section 2 of [23]. We randomly generate a symmetric positive definite matrix A.
. MCN(Minimizing condition number of symmetric positive-definite matrix) :

minr

st u>0,ul X M(z) Lrul

where M (z) = Mo+ Y7, z;M;, and, for each 1, M; are n X n symmetric matrices. This
problem appears on page 38 of [3]. It can be seen that if My > 0, the resulting semi-
definite formulation has dual pairs with feasible interior solutions. Here we randomly

generate Mo > 0, My,..., M.
. LTI(Linear time-invariant systems) :
minr
~ATP - PA >0
I<P=<rl
where A and P are n x n matrices. The problem we test here is a special linear time
invariant system in control theory. This problem appears on page 65 of [3]. Note that

the semidefinite formulation (1) and (2) for this problem has m = O(n?) > n. This

makes it different from the five other test problems we have considered here.
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In summary, MNORM, MCUT and ETP are feasible problems. We guarantee feasibil-
ity of SLP and MCN by generating data appropriately. However, for LTI, guaranteeing
feasibility is difficult, thus 11 of 25 generated problems turned out to be infeasible.

6.5 Numerical Results

1. In Table 1 the stopping criteria for SDPA and INPC (INfeasible Predictor Corrector
algorithm), a code implementing the algorithm presented in this section, is :
X, — bTyk
CoXi —b " jpes.
L+ |67y
For SP, the stopping criteria is :

Co X —bTyk <107°C o Xy, if C 0 X > 0,67yk >0
or

CeoX,—bTyF < —107%7y*, if C e X; < 0,67y* <0

The row of the table labeled “original size” describes the problem size by the pa-
rameters of original problem described in previous subsection and the row labeled
“semidefinite size” reports parameters m,n for the resulting semidefinite formulation

(1) and (2).

2. From Table 1 we note that the solver SP takes the fewest iterations for the problems
SLP, MNORM, MCUT, ETP and the number of iterations taken by INPC are close
to this number. For MCN and LTI the solver INPC takes the fewest iterations. We
believe that this is so since a phase 1 is not needed in infeasible start methods like

INPC.

3. In Table 2, we use relative error 108 to attain higher accuracy for these same problems.
Similar to Table 1, INPC takes fewest iteration on the three problems for which SP
needs phase 1 iterations. We note that INPC takes fewer extra iterations then SP
and SDPC to increase the accuracy. This suggests that INPC exhibits good local

convergence in the final iterations of the method. As an example of this, consider the
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following output showing iterations 10 through 15 of the algorithm :

Bl 1 o YR (Ao X —b)? || TR yFA+ S~ Cllp
12 0.00889525 1 0.79691863 0.00543080 0.00085869
13 0.00076522 1 0.91367733 0.00046880 0.00007412
14 0.00001792 ,1 0.97655447 0.00001099 0.00000174
15 0.00000022 1 0.98780850 0.00000013 0.00000002
16 0.00000001 1 0.97607478 0.00000001 0.00000000

We note that, for this output, we move along the predictor direction up to 0.99 of the
step to the boundary. To obtain a higher asymptotic convergence rate, we need to

gradually increase this fraction to 1.

4. In both tables, the average [ is very close to 1, and we observed that it was never

greater than 2 for any of the 75 problems we solved.

6.6 Some Observations

1. When m =~ n, O(m?n?) + O(mn?®) = O(n*) multiplications are needed to calculate
AF7'GLAT. In this case, the computational bottleneck is not the inversion of the
matrix AF; "G, AT which requires O(m®) multiplications, but is the number of multi-

plications required to generate it.

Sometimes we encountered numerical difficulty while solving the predictor and correc- -
tor directions in Step 1 and 4 of the algorithm. During Step 4 we solve the following

system of linear equations :

ST Ao (STTAX)ATE = —A; 0 ST (BT — SiXk)

7=1
AS, = — Z A:l]zkA,
1=1

AXE = Sk_l({k] - Ska - ASka).

The computed direction AX,Ajj, AS acceptably satisfied the second equality above

but the computation of A;® AX,i = 1,...,m was sometimes unacceptably large. We
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TABLE 1.

relative error =10~°

SLP | MNORM | MCUT ETP | MCN LTI
Original || m =30 k=30 n=50| n=25|m=20| n=10
Size | n =40 p=20 n = 40
qg=20
Semidefinite || m =30 | m=31|m=50 | m=25m=22|m=>56
Size | n =40 n=40| n=50| n=50| n=80| n=30

Problem tested 10 10 10 10 10 25?
SP(phasel) 1 1.2 5.36
SP(phase2) 16.1 16.1 | 15.07

SP(total) 17.1 121 11.9| 209| 17.3| 2044
SDPA | 19.7 23| 215| 217|254 24.93
INPC 17.9 15.1 | 14.7| 242 159 | 17.36
Average [ || 1.02 .07 1.01] 1.08| 1.03| 102

1. 11 of the 25 problems are discovered infeasible by all solvers. This reports only the

iterations of the 14 feasible problems.
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TABLE 2.

relative error = 1078.

SLP | MNORM | MCUT ETP | MCN LTI
Original | m = 30 k=30 n=50| n=25|m=20| n=10

Size || n =40 p =20 n =40

qg=20

Semidefinite [ m=30| m=31 | m=50 | m=25|m=22|m=256
Size || n =40 n=40| n=50 | n=50| n=80| n=30
Problem tested 10 10 10 10 10 25!
SP(phasel) 1 1.2 5.36
SP(phase2) 19.5 19.8 | 18.07
SP(total) |  20.5 154 152|253 91 | 23.43
SDPA 22.1 25.7 24.6 2002 28.2 28
INPC 19.1 16.4 16.2 26.1 17.1 18.78
SP diff 3.4 3.3 3.3 4.4 3.7 2.99
SDPA diff 2.4 2.7 3.1 2.8 3.07
INPC diff 1.2 1.3 1.5 1.9 1.2 1.42
Average [ 1.02 1.06 1.01 1.15 1.02 1.04

1. Same as Table 1. 11 of 25 problems are infeasible and this reports iteration for the 14

feasible problems.

2. SDPA exceeds its maximal iteration number of 200.

27



7

S

noticed that sometimes calculating A; e (S;'4;X%), 4,7 = 1,...,m by first computing
B; = (5;'A;)X) and then A; e B; gave a larger error then first computing S; ' A;,
A; Xy and then (S;1A;) o (4;Xk).

Different values of p gave different results for INPC. In Table 2 the average INPC
iterations for the MNORM reduced from 16.4 to 11 when using

p= max(|A1|, B IAm|7 |b|? |CD

For this test we choose a large number p = 1000 max(|A;],- -, |An|,]0],|C]) to cor-
rectly detect infeasibility. For feasible problems like MNORM, MCUT, ETP, a smaller

p can be used and we expect INPC to solve the problems with fewer iterations.

For some feasible problems, like ETP, where an initial feasible solution is readily
available, the path following strategy may fail to converge unless the given solution
is “close” to the central trajectory. The ability to exploit this may be important
for infeasible start algorithms, like INPC, which start with a large p and the initial
solution X; = pl,y' = 0,S5; = pI, which is on the central trajectory, thus resulting in
larger iterations than might be required if they were able to use effectively the given

initial solution.

In Step 7, we use 3X; @ Sp < pfi(|| Xk||F + ||Skl|F) to detect infeasibility. For LTI,
11 of the 25 problems instances were detected as infeasible by all three codes. SDPA
took an average of 8.64 iterations while INPC took an average of 9.09 iterations to

detect this infeasibility for the 11 problems.

Conclusions and Future Work

In this paper we have presented an infeasible start predictor corrector path following method

for semidefinite programming, which is a generalization of the method of Mizuno [14]. We

do not assume that the dual pair of semidefinite linear programs have feasible solutions,

and show that in time that is a low order polynomial of n, the data, and |log(<)|, the

p

method either detects that there is no optimal solution with duality gap zero, in the set
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{(X,S8):0 =X < pI,0 XS =< pl}, or an approximate solution X (), y(e), S(e) is found
such that X(€) o S(¢) < ne, (X7, Ai ¢ X(€) — b;)2)"2 < §(A,b,C)e and ||, Asy(e) —
S(e)+Cllr < 8(A,b,C)e where 6(A, b, C) is at most an exponential function of the data A;,
i=1,---,m,band C.

We also implement an algorithm based on this method in an MATLAB environment
and show the potential of this approach by comparing the number of iterations taken by
this method to solve six different type of problems with the number of iterations taken by
the codes SP [24] and SDPA [6]. In the future, we will combine the MATLAB code with
C subroutines and generate a front end like [4]. Also, we will consider special methods
needed to exploit the sparse and block diagonal matrix structure of the many matrices of
this problem, and investigate how these methods can effectively exploit these properties
when solving the linear systems encountered during the predictor and corrector steps. We

will also investigate the potential use of iterative methods presented in Saigal [22].
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