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Abstract

In this paper we present a generalization of the predictor corrector method of lin-
ear programming problem to semidefinite linear programming problem. We consider a
direction which, we show, belongs to a family of directions presented by Kojima, Shin-
doh and Hara, and, ohe of the directions analyzed by Monteiro. We show that starting
with the initial complementary slackness violation of ¢, in O(|log(;£)|y/n) iterations
of the predictor corrector method, the complementary slackness violation can be re-
duced to less than or equal to € > 0. We also analyze a modified corrector direction
in which the linear system to be solved differs from that of the predictor in only the
right hand side, and obtain a similar bound. We then use this modified corrector step
in an implementable method which is shown to take a total of O(|log(;%)|y/nlog(n))

predictor and corrector steps.
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Path following, Predictor corrector method.
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1 Introduction

This paper considers the dual pair of semidefinite linear programs:

minimize C e X

A;e X = b foreveryt=1,---,m (1)
X=0
and,
‘minimize Y -, b;y;
YAy o+ S = C (2)
Sx0
where A; for i = 1,---,m and C are n x n symmetric matrices, A @ B = trace(AT B) and

X > 0 means that X is a symmetric and positive semidefinite matrix while X > 0 means
that it is a symmetric and positive definite matrix.

There is considerable interest in generating algorithms, and, understanding the duality,
optimality conditions and the facial structure of the feasible region of the semidefinite linear
programming problem. The landmark work in the former area is the paper of Nesterov
and Nemirovskii [12] and their book [13], where they present a general theory based on self
concordant barrier functions, and their relation to interior point methods for convex pro-
grams. Some references for the later are Alizadeh, Haeberly and Overton [2], Pataki[15] and
Ramana, Tungel and Wolkowicz [17]. Also, several extensions of the primal-dual potential
reduction methods to semidefinite programming have been made ahd some notable papers
in this regard are [1, 6, 7, 21].

There is also recent success in extending the primal-dual path following algorithms of
linear programming to semidefinite linear programming. In the linear programming situ-
ation, the scaling matrices involved are diagonal, and can thus commute. The matrices
involved in semidefinite programming do not necessary commute and thus the computed di-
rection may not be symmetric. One of the main variations in these algorithms is the process
adapted to achieve symmetry. Nesterov and Todd [14] and Kojima, Shindoh and Hara [8]
have developed some of the earlier ones. Recently Monteiro [11] has presented algorithms,

that follow a neighborhood of the central path, and, which differ in the direction adapted.



He considered the two directions determined by the equations

X"3(XAS + AXS)X7 + X7(ASX + SAX)X™% = 2(oul — X35X7)  (3)

D=

SHXAS +AXS)S7F + STH(ASX + SAX)ST = 2oul - SEXSE)  (4)

from a family presented by Kojima, Shindoh and Hara [8]. The direction determined from
these systems is unique and symmetric. He analyzed algorithms using these two directions.
Based on his analysis, Zhang[22] subsequently analyzed algorithms based on the direction
(4). For this direction, Zhang also presented a result on the generalization of the predictor
corrector method of Mizuno, Todd and Ye [10].

In this paper we present a feasible start predictor-corrector method based on the talk of
Saigal [18] which presented a similar result for the linear programming problem ( see also
section 5.10 of the book Saigal[19] ). Here we assume that the primal and the dual problems
have interior feasible points, and thus the strong duality theorem holds, see for example,
Alizadeh [1]. Freund [3] has presented an algorithm without such an assumption. Recently,
Potra and Sheng [16] and Kojima, Shida, and Shindoh [9] have presented an infeasible start
predictor corrector method with some local convergence analysis.

The direction we use is determined by the equation
XAS+AXS =opl — XS (5)

and the direction used in the method is (2(AX + AXT),Ay,AS) (it can be shown that
AS is symmetric ). A direction computed by such a symmetrization has been used by
Helmberg, Rendl, Vanderbei and Wolkowicz [6]. We can show that the direction given by
(5) also solves (4). Substituting this direction into (4), we obtain the identity below
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and we see that (4) is satisfied. We use the same neighborhood of the central trajectory as

one used by many papers, including Monteiro [11] and Zhang [22]. This is
N(to,B) = {(X,9,8): X = 0,5 = 0,1 <to, |SXST ~tl|p < Bt} (6)

where || B||% = ¥, 0~ B?; is the Forbenius norm of the matrix B and 8 > 0 is a constant.
We obtain the result that. starting with initial complementary slackness violation of tq > 0,
it can be reduced to € > 0 in O(|log(;)[+/n) iterations of the predictor corrector method as
considered by Saigal [18].. Such a result is also asserted in Zhang [22] for the generalization
of the Mizuno, Todd and Ye [10] method. In another direction, we extend this result to
a modified algorithm in which the corrector step solves a system of linear equations that
differs from that of the predictor only in the right hand side. In addition, we present a
variant of this method that achieves larger step sizes and solves the problem in at most
O([log()|v/nlog(n)) sum total of iterations of the predictor and fhe corrector steps.

This paper is organized as follows. In section 2 we present the method. In section 3 we
present some basic lemmas. In section 4 we analyze the predictor and corrector steps and
obtain the main result. In section 5 we present the modified corrector step and analyze it.

In section 6 we discuss some implementation issues.

2 The Method

We now present the predfctor corrector method we will discuss in this paper.

Step 0 Let 0 < @ < 1and 0 < 3 < 1 be given constants and Xy > 0, y° and Sp = 0 satisfy
the dual systems (1) and (2) respectively. Also, assume they belong to N(to,3) for

to = %25 Get k = 0.

Step 1 Predictor Step: Solve

A; o AX; = 0 forallz =1,---,m
mOAAYE + 0 AS, = 0 (7)
AX Sk + XiASy = —=XiSk



for (AXk, Ay*, AS), and define

X, = X+ %a(AXk + AXE)
Sy = Sp+alAS;

t—k — Xk‘s’k‘
Step 2 Corrector Step: Solve
Ao AX, = 0 foralle=1,---,m
SR AAGE + ASy = 0 (9)

AXkSk -+ XkAS'k = t_kI - ngk
for (AXy, Ay*, ASy), and define

Xepn = X+ 2AXe+ AXT).
yk+1 — gk+Agk

- _ (10)
Sitr = Sk +AS
b1 = Xi4105k41 )

Step 3 Set £k =k + 1, and go to step 1

Some comments are in order here. Both the systems (7) and (9) have a unique solution.
Also, the solution AS) and ASj are readily seen as symmetric ( a consequence of our
assumptions on the matrices of the problem ), but AXy or A X}, need not be symmetric.

Thus we use the symmetric part of these directions in the predictor or corrector steps.

3 Basic Results

We present here the basic results we need about matrices and norms. Given an n X n matrix
B we define its 2 - norm as || B||; = max|jg=1 | Bz||2, and it is easily seen that if the matrix
B is symmetric, then ||B||; = max|\;| where ); for ¢ = 1,--- n are the n real eigenvalues
of B. For a given n x n matrix B, we define vec(B) = (B, BL,..., BT)T and note that

||vec(B)||2 = || B||F, where B is the jth column of the matrix B.



Lemma 1 Let A and B be arbitrary n X n matrices, with B nonsingular. Then ||AB||% <

1A% BT Bl and | AB|} < || AT AJl2|| Bll%-

Proof: Note that AB = (ABj,---,AB,) where B is the jth column of B. Thus
IABIF = - 1AB 115 < [[AlIZ Z5= 1B, = IAIRIBIF < IIATA|l2||BI%. The last in-
equality follows from Theorem 2.3.1 of Golub and Van Loan [5)]. Té see the other inequality,
note that AB = ((A1.B)T,---,(A,.B)T)T where A; is the jth row of A, and ||AB|% =

j= 145 BII3 < (E5=1 45 1D)1BTNZ = I|AlF) BT Bllz- ( Note, we have used here the fact
that for non-singular B, || BY||? = Amax(BBT) = Anax(BF BBTB~T) = \uar(BTB) = || B||2).

For a given n X n matrix B which has all eigenvalues real, we define X;(B) for¢ = 1,---,n

the n real eigenvalues of B, and Apax(B) = max;\;(B) and similarly Apin(B). We can prove

Lemma 2 Let A, B and C be n x n symmetric matrices with A = B+ C. Then Agin(A) >
Amin(B) = |Cl|F and Amax(A4) < Amax(B) + [|C| -

Proof: Follows readily by noting that ||C]|% = trace(C?) = =%, M(C)? > Amin(C)? and

i=1
A€ < [C2 .
The following result was proved by Monteiro [11].

Lemma 3 Let A and B be n X n matrices with A symmetric and B nonsingular. Then
1
IAllr < 5| BAB™ + (BAB™)"||F.
Another technical lemma follows:

Lemma 4 Let A, B and C be n x n matrices such that A= B+ C, and trace(BTC) > 0.
Then ||Bl|r < |AllF and [|Cllr < [|AllF.

Proof: First note that ||Al|r = ||vec(A)||2. Then, as trace(BTC) = vec(B)Tvec(C) > 0,

the result follows from the fact that the largest side of a triangle is opposite its largest angle.l



4 Analysis and Convergence of Method

In this section we will prove that the method generates a sequence of points such that ¢ goes

to zero linearly at the rate (1 — @), and o = O(\/iﬁ)

We now prove two simple propositions about the solutions of the systems (7) and (9).

Proposition 5 For every k =0,1,--- with AX = AX} or AX = AX} and AS = AS}, or
AS = AS; it follows that
Ao AX = A0 AXT =0
AX e AS=ASe AX =0.
Proof: The first identity is readily confirmed by simple algebra and the symmetry of A;,

and the second identity is readily confirmed by using the first two equations of the systems

(7) and (9). u

Proposition 6 For each k = 0,1, -, t; = (1 — @)ty and tx41 = k.

Proof: Note that %(AX;C +AXF) o Sy + Xy 0 ASy = %((AX;c S+ Xy o ASE) + (Sk @
AXT +ASy 0 Xy)) = —L(X, 0 Sk + Sy 0 Xy) = —nty. Now, f, = X628 = Ko 1 Lo(AX e
Sp+AXF oS, +2X;,0AS;) = (1 —a)ty. The remaining part follows by a similar argument.
|

We now prove an important proposition.
L L
Proposition 7 For each k =0,1,---, let By = S XS? — til. Then
-1 L
1. ”Xk QAXka ”F S ntk.
L -1
2. llezASkSk 2”1:' < V/nty.
-1 1
8. | Xi FAXTSE |Ir </ 1EHEHE V.

Proof: [From the third equation of the system (7) we can derive

X;EAXkSE + XEAS}CSIZE = —XESZ



11 11
and, using Lemma 4, Proposition 5 along with the fact that || X2 SZ||% = trace(S? XyS7) =

nty, we thus obtain the first two results. To see the third, we note that from 1,

-1 T ok
1Xe * AX Selle

1052 X)X, * AXeSE (S, 2 X, )l

< ISEXLSEIFIXG F AXLSE IS, X5, 7 5.

The result follows from the definition of Ej and part 1. [ ]

4.1 Analysis of Predictor Step

We now investigate the predictor step and the resulting iterate (X, #*, Sk, k). For every k,

let

We can show that

Lemma 8 If ||Ex|lr < Btx and 1

definite.
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_an 0, then X; and Sy are symmetric and positive

o

Proof: We will show the result for X;. The same argument Will apply to S’k as well. Since

AXp+AXT )X"
k

_ 1
X}, is symmetric, and is positive definite if and only if X, Xka = I+aX, ? (——“—

is, we note that from the Lemma 2,

Amin(I + X, % (

1 AXy + AXT

2

AXk + AXk

2 X/:E“F

)X, %) > 1—alX; 2

Using the result of Lemma 1, 4 and Proposition 7 in the inequalities that follow
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we obtain our result.

We are now ready to establish a bound on the error after the predictor step.

Lemma 9 If || Exl|r < Btk,1 — a,/1%5 > 0, then

a’n 1+4

| Ex|lF < ﬁ((l —a)f+ T(1 + I_:_B_))t-k..

Proof: Note that

Ao

7 (XS — LI)S

: AX; + AXT AX; + AXT Y
= SHXS+ a=ELETE S b aXyASy + 0P ST ST AS, RS

. XAS, + AX X AS, + AXT 2 I
= SP(XiSk+of ’“J; Kk | oKk ’“; kSk)+a—(AXk+AXkT)ASk—tkI)S 2

2

= SkE(XkSk — ngSk + g—(

1 1 1 ' 1 1 1
= (1—a)(SEXeSE — tu]) + 25 (AXT — AXy)SE + 92—5,5 (AXy + AXT)AS,S; 2,

2| R

— XSk + (AX]? — AXk)Sk) %—(AXk + AXk )ASk — tkI)S :

From Lemma 8, Sy is symmetric and positive definite and hence its square root exists. The

inequalities below follow from the Lemma 3 and the above identity.

_ _1_ _1
[ ExllF = 152 Xk S¢ = tll[r
1. 1__r _1r_ _1 _ 1.1 _1_ _1

< §|ts,:sk F(SEXeSE ~Te)SES, T + 5,75 (SE XS] — BD)S 7 SE |

= —”Sk(XkSk—tk])S -I—Sk (Ska—{kI.)SE”F
AX X 1 _1
__’ELA_E_ASkSkz + S5 7AS,

2 2
1o 1 CAX 4+ AXT
N

= ~|[2(1 — )(SF Xk SE — til) + o(5}

AX
’“—;AﬁAgk

IN

(1 — o)l ExllF + _”(Sk
Note that, from Proposition 7, we obtain

1 1 1 -1 1 -1
ISEAXTASKS 2|l < I1SEAXTX, 2Pl XE ASS, 2 ||F < nta,

-1 1 1 _1
19 2ASKAXESE |l = ||SEAXTASLS, ?||F < nty,
ISEAXLASKS 2 |lF = 1S X2 Xy ? AXkSE S, " ASk XE X, 2 S ||

te + || Ex||F
< ——nt
= Nt Elr "

AXy + AXE i



Hence

- o te + || Bl F
E < (1-a)|l|lF + —(1+4 ,| ——————)nt
1Ellr < (1= a)llBillr+ = tk—”Ek”F) k
1 a’n 1448, -
< — —_ "
< 1_a((1 a)f + 5 (1+\/1_ﬂ))tk
and we are done. [ |

4.2 Analysis of Corrector Step
We now prove two important lemmas about the corrector step.

Lemma 10 If ”Ek”}:‘ < Bt and ;—f_—ﬁ < 1, then Xiy1 and Skyq are symmetric and positive
definite.

Proof:

By a similar argument to that of Proposition 7, we obtain

= ([t = X 5eX8)(X, 25, 2l (11)
X A% e < 18X S - XESE e
= (@ - X2 5X)(X 50 e (12)
Then this lemma follows by an argument identical to that of Lemma 8. [ |

The next Lemma provides the error after the corrector step.

Lemma 11 If | Ex||r < Btk = B(1 — a)tx , and 125 <1 then

[Busalie < 501+ | 7o) =570 - ate

Proof: The following relations follow from Lemma 3, and by an analysis similar to that

in Lemma 9,

1EksllF = 11(Sks1) Xapr (Skan)? — Tl ||

10



M'b—-
[N

1. &i 1 1 — —_1
5115% (Sk41) 72 ((Sk1) 2 Xi1(Skt1)? — 8d)(Sk41)2 Sy 2

+&<&H>«&H>Xﬂxaﬂﬁ—t>wun-

1,1
= _“Sk(Xk+ISk+l—tk])S F 4 573 (ke Xns — BeD)SE v

g AX
AXk+AXk ASkSk k+AXk Sk

IN

(NI

|F

L T Y

+ 5. 2AS, |7

= 513}

Then, using arguments similar to the proof of Lemma 9 and inequalities (11), (12), it follows

that
_1 _ -1 _1 - =1 _1 - -_1

ISZAXTASS 2 ||lp < |ISZAXTX, 2I|1f~“||Xx?ASlc5k *lF
< J(Ed - X;?’Ska)(Xk 2Sk )||F
< el - XES;CXEII%IIS,:EX;ISfllz

1 _

< —_—een. E 2,
>~ tk _ ||EkHF'“ k“F

1 _  _ _1 _1 - 1

15, 2ASAXLSE |7 = ||SFAXTASLS, : Ir < __W” Ei||%,

and, using Lemma 1 and Lemma 2,

[
—

I L R
|SEAXASKS, 2 |lF = ||S,§X,§Xk2AXkS,§Sk2ASk

1__

< ||S XkSk ||21|Xk2AXkSI?S AS X |FlISe 2 XSy 7113
t+ || E _ 1 _ 1 1 1
< Bt UBle ) ook g, 525 AR e
\ & — || ExllF
t + || Ex|lF 1 = 12
< _ 1L Ll — Ells.
= N\t — | Exllr e - ||Ek||F|| Hlr
Thus
te + || EillF 1 2
E < (144 = — _ _
H k'HHF 2( \ iy — ”Ek”F)tk _ ”Ek”F” k”F
1 1+8. 1
< Sty 21—
< S0 T -
and we are done. ]

11



4.3 The Main Result

We are now ready to prove the main convergence theorem.

Theorem 12 Leta < 817 and B = 0.4. Then for everyk =1,2,---, (Xi,y*, Sx) € N(tx, B)
and tiy1 = (1 — @)tk Thus, for every € > 0, after at most O(|log(;5)|y/n) iterations of the

predictor-corrector method, a solution (X (€),y(€), S(€)) will be found with X(e) e S(e) < ne.

Proof: It is readily confirmed that the above choice satisfies the properties required in
the hypothesis of the Lemmas 8, 9, 10, 11, and that || E¢||r = ||.§,§Xk§,§ ~tI||F < By, and
|Exs1]|lF < Btx = Btiy1, and thus the sequence belongs to the neighborhood N(tx, ). The
required property on ¢ follows from Proposition 6.

Now let € > 0 be arbitrary, and define k sufficiently large so that (1 — )¢, < e. With
a < i, then log(%) > klog(l — @) > —k%. Thus, for k£ > ;—ﬂog(z‘g), tr < e. So for

k = O(|log()|v/n), the value of t; is less than equal to €. Thus the required solution is
obtained. |

5 Modified Corrector Step

The predictor corrector method presented in Section 2 requires that a new system of equa-
tions be solved during the corrector step. Implementations generally use the same linear
system during both the steps. In this section, we will analyze the resulting method. Thus,

we replace Step 2 of the method of Section 2 by the following:

Step 2’ : Corrector Step: Solve

A; e AX; = 0 foralle=1,---,m
L AAGE + 0 AS = 0 (13)
AXkSk + XkAgk = {]J — ngk

12



for (AXy, Ag*, ASy), and define

Xenn = X+ 2(AXe + AXT)
yk-i-l — gk+Ay—k
Sks1 = Sk +AS,

Xky10S
. k+199k41
tk+1 - n .

(14)

Note that the matrix of the system of equations to be solved in (13) is the same as in

(7). We now prove the convergence of this method. Before we do this we establish some

needed lemmas.
Lemma 13 For each k =1,2,---, tyy1 = (1 — @)ti.

Proof: Follows by a straightforward calculation.

Proposition 14 For each k =1,2,---,

IX, ?AXSEllF < M(a)Vi,
IXZ ASkS; |1

< M)V,
1 — _L 1 1 1 _1 — 1 _1 11
I1SEAXe X, ?lr < )ISEXeSENZ X 2 AXRSE||F||Se 2 XS, 2 13
< TgMaVE

where

Mie) = (1-a)Ziss G oA+ Tl (DL

Proof: We will only show this for || X, EA)—(;CSE |F. The inequalities that follow use the

same arguments as those of Proposition 7.
S
Xy * AX,S5¢ ||
R G i R
< X, 25,7 — X, *XiSkSy P lr

1X5 2S5 2 (1 = o) (tel — SEXkSE) + X; #((1 — @) Xe Sk — XSk)S; * ||

13



1 -1 AXy + AXT

< (1- a)HEkllF———— + | X 2 (1 = @) Xi Sk = (Xk + 5 )(Sk + aASK))S, 2 |IF
tk — || ExllF
AX, + AXT
< (1 \/'8[? + ”Xk ( (XkASk + AXkSk) —_ a—k—z—kSk — aXiAS
AX, + AXT 1
—a2——kz—kASk)Sk ?|lF
ﬁ\/t_k -1 AXk-—AXT AXk+AXT -1
< (1- a)m + || X (0—2—4& - 02———2——kA5k)5k *||r

BV e te + || EkllF o? tr + ”Ek“F niy
e A LU e A AU e 1ot iy ey
a 2 n

< (- )+ 0+ DA+ S0+ (D))

and we are done. |

We now establish the two required lemmas that show that the resulting matrices after

the modified corrector step are positive definite and that they belong to the neighborhood
N (tk+1a ﬁ )

Lemma 15 If || Ex||lr < Bti,1 — oy /7%5 = %\/ﬂl—%—% > 0, then Xiq1 and Sk are symmetric

and positive definite.

Proof: Using the identity X4 = Xi + $(AXyx + AXT) + 1(AX) + AX]), this lemma

follows by an argument identical to that of Lemma 8 and 10. |

Lemma 16 If || Ex||r < Bts,1 — o /755 —u > 0 then

1 1+0 1+8
[ ErsallF < - (a(1+ l—ﬂ) (@)Vn+5 ( W)M(ay)tm-
Proof: Note that
SZ(Xky1Sk41 — te)S, 2
1o_ AX, + AXT AX+AXT -
= SH(XuSk+ (—";——L)(sk +aASy) + (Xi + a——k—g———’?—)ASk

14



-1
2

AXk + AXgASk

= —5)S;
L shtg, 4 (KBS ;r MRS | XS ; AKTS: | A ; S
b Xy ng, 4 At AXe g gyt
= Sé(XkS”k + %(t’kl —XiSk) + %—(t‘kl — XSk + (AXT — AXy)Sk) + a_AXL’;A—X’?ASk
,aAXk 4; AX,{ASk N AX; J; AXTASk B t_kI)S,:%
_ shaAXet AKY ; AXE £, 4 o AKe+ AXE J; AXE £g, 4 A%+ AXE ; AXE agosch
+%5,§ (AXT — AXy)S?.
Then
Bunlr = (Ske1)2 Xiga (S )% = Tl |
< NISE(Sker) F(Sern) Xiwa (Sin) = B)(Sken) 2S5 1
ST (k)P ((Sen) Xia(Sen)F = BD)(Sin) 282 1
= %Hsk%(Xk+ISk+l - ka)Sk_% + Sk_%(SkHXkH - t—kI)Sk%”F
= SISt (aéX’“f;—A.X’?ASk po Xt AN o éﬁzf—;A—XkTASk)s;%
HH AT AN g (A AN g | MK AL 55T
< |s? (awa&g ¥ aé)—(%_A,—XkTAS’k + A—Xﬁ%éﬁzsgk)s;%”p
We have

1 — -1 1 — 1 1 -1
ISEAXeASKS, *[lr = ||S¢ AXe X * X ASkS, 2|
< [ISEAXLX, 2 |Ipl| XZASKS, ?|lF
< Vbl SE XRSEN X 2 AXESE RISy 2 XS, 23

t E
/iy iu_kuliM(a)\/g;,

\ bk — | Ee]|r

IS¢ AXEASS " Ip = |1SEAXE X P XEAS:S, 2|

< ISEAXE X, P |IPllXEASKS,  |1p

15



< VntM() Vi,

ISEAXASS 2 lF = [ISIAX X, X7 ASS, 2 ||F
< M(a)tlISEXkSEIZIXG 2 AXuSE 1P IISy 2 X781 13
< (R MR

IS:AXTASS Hlr = IS¢ AXTX, ¥ ||p|l X7 ASLS; e

< VatM(a) Vi,
PR A s e < ListaRASS e + 1SEARTASS H )
< SISEAKX Il XEASS; e
HISE AKX, ¥ 1el|XF A58, 1)
< %(H@)M(a)%k.
Hence

Theorem 17 Let o < ﬁ,ﬂ = 0.1. Then for every k = 1,2,--+, (Xx,y*,Sk) € N(tx, )
and ey = (1 — @)ty Thus, for every € > 0, after at most O(|log()[/n) iterations of the
predictor-corrector method, a solution (X (€),y(¢), S(€)) will be found with X (€) o S(e) < ne.

Proof: Using the Lemmas 15 and 16, the proof is identical to that of Theorem 12. ]

6 An Implementable Method

In this section we will present an implementable method that generates a larger step size
than the theoretical one determined by Theorems 12 and 17. And some numerical issues of

implementation will also be discussed.
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6.1 A Practical Method

The step size a obtained in Theorems 12 and 17 is generally too small for practical im-
plementation. We present below a practical predictor corrector method based on these

theorems.

Step 1’ Predictor Step: Solve

A; 0 AX, = 0 forallz=1,---,m
LAY+ AS, = 0 (15)
AX Sk + XiASy = —XiSk

for (AXy, Ay*, ASy).

Step 2” Step Selection:
Set { =0 and ap = max{a : Xy + §(AX; + AXT) = 0,8+ aASk = 0 and o < 1}.

If ap =1 stop, otherwise set ap = 0.99.

Step 3’ Set

,

1
Xky = Xi+ gal(AXk +AX])
N N
Skp = Sk + Sy
Step 4' Corrector Step: Set X = Xkls gt =y* 5 = Sty te = (1 — ag)ty, and solve
system (13).
Step 5’ Set
1 _ _
Xit1g = Xx+ §(AXk +AXD)
g = gF L AGF

Sk+1,l = Sk+ASk

Step 6' If (Xi41, 4", Sky1) € N((1 — ar)ty, B), then set Xpyr = Xigag, g™ = y*+,
and Skt1 = Skt1y, tet1 = (1 — ap)ty, k = k + 1 and go to Step 1. Otherwise, set

Q= %az, =141, and go to step 3'.
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We can show that:

Lemma 18 If ag = 1 in Step 2", then X}, + ,f—,(AXk + AXT), y* + Ay*, S + ASy solves

the semidefinite programming problem.

Proof: The result follows from Lemma 13. [ |

We are now ready to prove the main theorem.

Theorem 19 Let 3 =0.10. Then for every € > 0, after at most O(|log(;)|log(n)/n) total
predictor and corrector iterations of the above method, a solution (X(e),y(e), S(e)) will be
found with X (e) @ S(€) < ne.

Proof: We first observe that after at most [ = O(log(n)) corrector iterations of Step 2’ to
Step 6/, oy < 201—\/77’ and thus the resulting iterate will lie in N(tx41,8) by Theorem 17, and
the result follows. [ |

6.2 Some Implementation Issues

We discuss here the linear system to be solved in determining the directions, and a method
for exploiting the sparsity of the matrices involved.
Instead of the system (7) solved in section 2, we will solve AX{ by replacing the third

equation of the system with the following:
SkAXg + AS X, = =S X5,

Then similar to the system for linear programming, the corresponding linear systein can be

represented as follows :

A 0 0 vec(AXF) 0
0 .AT I Ayt = 0
F, 0 G vecA Sy vec(— Sk Xk)
where
vec(A;)T
A= e =195:,Gr=X,Q 1.

vec(An )T
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Note that A ® B = [A;;B] is Kronecker product.

We now show that F;'Gy is a symmetric and positive definite matrix.
Lemma 20 F['Gy is a symmetric and positive definite matriz.

Proof: Note that G = PGy PT where P is a permutation matrix and Gr = I ® Xj. Since
G} is symmetric and positive definite, Gy, is symmetric positive definite. F}- 1G = Xk ® S,‘:l
is symmetric. With the fact that Fj is symmetric and positive definite, since F;'G} has

L 1
the same eigenvalues as G F;'G2, the required property follows. |

Then the linear system can be solved by

Ayk = (f_le'lGkAT)'l(—A)Fk'lvec(—Ska) (16)
AS, = =Y AyfA
AXT = S7H=Si X\ — ASLX})

3) multiplications to compute GxAT,

As can be readily confirmed, it will require O(mn?)
O(mn®) multiplications to compute F; (G A), O(m*n?) multiplications to compute A(F ' G A),
and O(m®) multiplications to compute (AF;'GyAT)~*. A consequence of Theorem 19 is

the following

Corollary 21 Let f = 0.10. Then for every ¢ > 0, after at most |log(£)|(O(mn®® +
O(m?*n*®) +0(m3n® 5)) total multiplications, a solution (X(e),y(e),S(€)) will be found with
X(€) o S(e) < ne.

Proof: This multiplication count can be obtained by observing that in Step 4’, only the
right hand side changes between the predictor and corrector steps. Also, between the at most
O(log(n)) corrector steps, the only change in the right hand side is the value of «, and thus
the new solution can be found in O(n?) multiplication for each of the subsequent corrector
steps. Thus the total multiplications is at most [log(;£)|(O(mn®?®) +0(m*n?%) 4+ O(m®n°?))
for all the predictor steps, and, at most K;(mn®® 4+ m2n?® + m®n®%) + Kyn?Slog(n) multi-

plications for all the corrector steps. |
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The computational burden in above system is in the calculation of (AF;'GyAT)~!. The
matrix AF; 'GyAT is dense even when A, F;' and Gy are sparse. This then renders the
methods of sparse Cholesky factorization, George and Liu [4], ineffective. But the method
presented in Saigal [20] may be able to exploit this sparsity. We now show how this may
be so. Choose 6 > 0 sufficiently large so that I — %F 'Gi = 0. Also let L be the Cholesky
factor of A (i.e., AAT = LLT ). Then it is readily confirmed that (L7*A)(L'A)T = I.
In that case if Avec(X;) = b, the linear system of (1), is modified to the equivalent system
L' Avec(X}) = L™'b, the resulting matrix in the system (16) will be

LY AFGL(L7TA)T.
Let H, = L—IAFk_le(L_IA)T = Gk(I— Nk) where N, = L—lz‘i( - e—lk-Fk—le)(L—lA)T. We
can then show that

11
Lemma 22 For all § > Apax(F, 2GrF, ?), Ny is a symmetric and positive definite matriz

with spectral radius strictly less than 1.

Proof: The first part follows from the choice of . Since F;'G} is positive definite so is
Hy. Thus 327 Hyz = 1 — 2T Niz > 0 for every ||z]|2 = 1, and we have the second part of the

lemma since zT Nz > 0. [ |

The idea now is to solve the system by writing H;' = 0_1;(1 + Ne + N2 +-+) and
Saigal [20] shows how this infinite series can be summed iteratively. The application of this
methodology requires the multiplication of a vector q by the matrix Ni. To see how sparsity
is preserved by this technique, consider generically multiplying a vector ¢ by Ny to obtain

the vector p. Then the following is simple to generate:
Step 1 Solve LT = q.

Step 2 Define ¢ = A(I — %F,;le)ATq.

Step 3 Solve Lp = ¢

In steps 1 and 3, sparse triangular systems are solved ( provided the Cholesky factor of

A is sparse ), and in step 2 multiplication by the sparse matrices A, AT, G) and Flis
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involved. Note that in Step 1 and 3, O(m?) multiplications are required and in Step 2,

O(mn?) + O(n®) multiplications are required.
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