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ABSTRACT

This dissertation presents a theoretical analysis of the elastic behavior
of both the battened and laced structural member considering the effects of
axial load, shear deformation, and connection rigidity of sub-elements, and
the overall effects of axial load, moment gradient, and effective shear defor-
mation of the complete member. The analytical solution is used to obtain modi-
fied slope-deflection equations to generalize a relation between applied forces
and joint displacements.

Types of the structural members may be catalogued here according to three
different web configurations such as solid, battened, and laced. The arrange-
ments of web elements are assumed to be the same throughout the effective length
of the battened and laced structural members between end rigid stay plates.

A nondimensional parameter, the shear flexibility, is defined so as to
characterize the shear flexibility of the structural members and to take account
of the effects of axial force, local joint connections, and local connection
flexibility of the battened members.

The fundamental linear second-order differential equation for the deflec-
tion curve of the structural member which includes the effect of shear defor-
mation has been derived. The general solutions of this differential equation
are of a fundamentally different nature for the cases of no axial force, com-
pression, or tension axial force. By application of the natural boundary con-
ditions to the general solution of deflected shape of the structural member,

the solutions are set up in the forms of slope-deflection eguations. In the

xi



evaluation of the fixed end moments for a concentrated load, the reciprocal
theorem is applied so as to make use of the deflection curves of the members
which have been previously defined in the case of the homogeneous solution.
From this basic expression one can derive fixed end moments for any combination
of concentrated loads by simple summation or for continuously distributed

loads by integration.

Elastic buckling loads for structural members with rigid stay plates and
constant shear flexibility have been evaluated for the cases of a column with
hinged ends, a column with one end fixed and the other hinged, and a column
with both ends fixed.

Finally, numerical examples of beam and frame analyses are presented to
provide a comparison with the ordinary beam and frame theories which neglect

the effects of shear deformation and axial force.

xii



CHAPTER I

INTRODUCTION

Iz addition to the deflection due to elongation and compression of fibers
from bending moment, there is a further deformation due to shear and axial
force and consequent strains in a beam. This is not usually considered in the
analysis and design of frames made up of structural members of solid cross-
section for which the influence of shear deformation is usually very small.
This is due to the fact that the shear deformation is resisted in solid struc-
tural members by a continuous web which participates uniformly in the trans-
mission of the shearing forces. The distortion caused by the shearing stresses
in such a case is relatively small except for very short members. However,
the conditions are different in battened or laced built-up structural members,
in which case the contribution of shear deformation to the total deflection may
be appreciable. By neglecting the deformation due to shear, errors of consider-
able magnitude may be introduced in frame analysis.

Many studies have been made by different investigators, such as Engesser

(1,2) (3) 6) (L)

Miller-Breslau (1916), Timoshenko (1936 Amstutz and
(12)

{6) (9,14) (13)

Stussi (1941)," ' Pippard (1948),
(15)

Bleich (1952),

and Tomayo (1965)(22)

Takekazu (1951),

(16,23)

Jones (1952), Koenigsberger and Mohsin (1956),

to determine the critical loads as well as frame behaviors of built-up columns

(oh)

as affected by shear. More recently, Williamson and Margolin (1966)K have

studied the effect of shear deformation on shears and moments in laced guyed



towers. Glauser (1967) has studied the shear effect here at The University
of Michigan, but has not considered the effect of axial force or shear in the
local sub-element.

A nondimensional parameter of shear flexibility p will be introduced to
characterize the shear flexibility of battened and laced structural members.
The parameter p will be evaluated so as to take account of the effects of axial

(7,8,10)

force, local eccentric joint connections, and local connection flexibility
. (11)
of batten structural members. The effect of rigid stay plates at the ends
of the structural member will be considered in the evaluation of the deflection
curve for the member.
The purpose of this thesis is to develop a reasonably accurate yet com-
paratively simple evaluation of the shear flexibility p for a wide variety of

(5,8)

cases, and to generalize the modified slope-deflection equations and
elastic stapility for the battened and laced structural members.

The shear flexibility parameter p, limitation of the maximum local slen-
derness ratio, slope-deflection constants and carry-over factors, fixed-end
moments, and critical loads of the built-up structural members will be evaluated
fur structural design office use.

It is a further purpose to develop criteria(lS) to guide the designer to
a decision whereby he might with reasonable accuracy neglect the effect of

shear and axial force, either in a battened sub-element, or in an entire mem-

ber.



CHAPTER II

THE SHEAR FLEXIBILITY OF STRUCTURAL MEMBERS

2.1. DEFINITION OF THE SHEAR FLEXIBILITY

A nondimensional parameter p is introduced to characterize the shear flexi-
bility of structural members for a wide variety of particular battened or
lacing arrangement. Consider an idealized element of the structural member
whose length is defined by "a." An equilibrium state of the free element is
shown in Figure 2-1. In general, this element is acted on by the axial force P,
the shearing force V, and the bending moment M. The length of the uniform
cross-section of a structural member between rigid stay plates at the ends of
the member will be denoted as "£." As Figure 2-1 shows, we separate the state

of deformation into two parts: (a) bending, and (b) shear, and for each of these

the axial force will be considered simultaneously. The state of bending causes

ba

Figure 2-1. Element of length "a" of a structural member under
(a) bending, and (b) shear.



a rotation ¢a of the cross-section while the state of shear causes the defor-
mation y as shown. The shear flexibility is defined as the ratio of the
changes in slope in length "a" due to shear deformation and due to the bending

rotation, which is equal to 7/%a. Under bending alone the change in slope in

length "a" is

While under shear alone, the change in slope is

_ v
[

where
EI is the flexural rigidity of the structural member,
AG is the shear rigidity of the structural member,
n is the shear shape factor.

Thus the ratio

(2.1)

- JEL
alG

el B

s
og,

It is desirable to define a parameter which will be equal to the fore-
going ratio for a specific relationship between V and M and having the dimen-

sion l/L. In this study V/M will be taken as a/}.’2 which 1s the same as that

(5) (12) (8)

adopted by Washio, Takekazu, Glauser. Other investigators Maugh,

(21) (24)

Gere, Williamson and Margolin have used ratios of V/M differing only

by a numerical coefficient.



In evaluating the shear flexibility parameter p, the effects of shear
deformation as well as axial force on the behavior of the member sub-element
will be considered. It should be noted that, with shear deformation con-
sidered, the deformed cross-section of the member is no longer a plane perpen-

dicular to the tangent of the deflected axis.

2.2. THE SHEAR FLEXIBILITY OF LACED STRUCTURAL MEMBERS
Types of laced structural members may be catalogued according to five dif-
ferent lacing configurations as shown in Figure 2-2. They are parts of the

laced structural members which consist of two main longitudinal elements, lacing

b

|t

\

(a) (o) () (a) (e)

Figure 2-2. Five different lacing configurations

for the laced structural members.
(diagonal) elements, with or without strut (transverse) elements. The two
longitudinal elements are connected in one, two (or more) planes by the lacing

bars and strut elements which serve as the web of the member. The assumption



of an equivalent solid member not requiring a consideration of shear deforma-
tion can be made if the properties and geometric configuration of the sub-
elements are such as to make the shear parameter p relatively small. The ef-
fect of shear also depends greatly on the moment gradient, which is a measure
of the shear to moment ratio.

The two main longitudinal elements are assumed to form a symmetrical sec-
tion. AC is the cross-sectional area of one of the two longitudinal elements.
The properties of both the diagonal and strut elements, are the same throﬁgh-
out the length £ of the member. Ad is the total cross-sectional area of all
diagonal elements within one panel length "a." Ab is total cross-sectional
area in one unit of strut elements.

The force equilibrium condition of a typical panel is shown in Figure
2-3(b), assuming hinges at the ends of all strut and diagonal elements. Then

we can obtain forces in the elements in terms of shearing force, where

1+ ¢
V= V4 Vy = —— (2-2)
2
a
L- ¢
Vo=V (2-3)
a
V=-V1—V2=--\L (2-1)
b €
a
1 Eai)g
vy = E; L+ \—/ v (2-5)

The additional slope y of the deflection curve due to shear V will now

be determined. Firstly, consider the shear displacement A;, as shown in
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Figure 2-3(d), due to the lengthening and shortening of the lacing elements in

each panel. Then we obtain
3/2

£ Db £ §>2}
b a )
Ay = E—_ {; *\ EK; (2-6)

a
Secondly, consider the shear displacement Az, as shown in Figure 2-3(e),

due to the shortening of the strut elements in each panel. Then we have

(2-7)

A2=

vee | v
|

Vb_
EAb

)

where ga and gb are the connection eccentricity factors. They are dependent
on the local joint geometry. Ab is the total cross-sectional area in one unit
(panel) of strut elements.

Therefore, the total angular rotation y caused by the shearing force V

alone is

Al + A2
’)/ —
1/2 (1 + ga)a
2 3/2
26 v (b €2 v 4
YET1ve B \tal|l T Noo Ttan (2-8)
a 4 Ua a b

The state of bending causes a rotation ¢a of the cross-section due to
moment M, as shown in Figure 2-1(a), while the state of shear causes the shear

deformation y.

va = —— (2-9)

where I = moment of inertia of the member which is excluding web elements



/er 2)
I= i{; + \—~3> b2 A (2-10)
. J

r, and Ac are the radius of gyration and the cross-sectional area of one of
two longitudinal elements in a built-up structural member (half of total
cross-sectional area of longitudinal elements in a symmetrical section),
respectively. [ is the length of that portion of a member which has uniform
panel arrangements with the same repeating properties of the web elements
throughout.

For laced structural members in general,

ETC\Z
(2 s |
then
I=21v22 (2-11)
2 c
Then we get
Lo V .
va = 2(=)° — -
a = 2(;) oy (2-12)

From the definition (2-1), we can now obtain the following expression for

the shear flexibility parameter p of laced structural members as follows:

: a T e aet? Ay

b 5> ¢/ b | “\2 boal\
U Pl LA P Bt wt B )

a da - = a b {

If we change variables,
s = slope of the diagonal elements with respect to

strut elements.
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£,
s = —'}‘)— (2—]_1#)
b
m= - (2-15)
1
then the expression for p becomes
b bl 52)3/2 Ba 1l
2 _C :
p=T——m — | — = (2-16)
+ / : / s |
Lee = Ay s by S
Moreover, if we introduce a new variable n,
{
n = (2-17)

Then Equation (2-1%3) may be transformed to the expression:
et A r e (222 A
b c i / a> 1 d
mr e L ] (2-18)
a’"a d - - b |

Tt is noted that the last term of Equations (2-13), (2-16), and (2-18)
represent the contribution of the strut elements, Ab. This term should be
omitted whenever strut elements, as shown in Figures 2-2(c) and 2-2(e), are
missing, or whenever the strut elements, as shown in Figure 2-2(b) and 2-2(d),
do not take part in the transmission of the shearing force of the structural
members.

We observe in Equation (2-16) that the value of the shear flexibility
parameter p becomes infinite as the slope of diagonal elements approaches either
zero or infinity. Thus there are optimum values of s which will minimize the

shear flexibility parameter, pu. It is, therefore, important to know this geo-

metric arrangement of diagonal elements.
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Let Sq represent the value for which the correspondent value of shear

pt.

flexibility p becomes a minimum value. It implies that the first partial

derivative of p with respect to s is equal to zero. Therefore, the minimized

condition is:

=

(1 + sipt.)l/z(zsz -1 --2=0 (2-19)

opt.

o |
job

The optimum slope sopt of the diagonal elements is plotted in Figure
2-4 as a function of the area ratio Ad/Ab. It is noted that the minimum slope
isxﬁgyE, or 35.27 degrees for the case where strut elements are missing or

stress-free and thereafter increases with the ratio Ad/Ab.

1.2 /I

34 1.1 /f’///’)
o [ ] /
0
E 1.0 ///////*
O
a A
- .9 /////7 '
2
AR | Ny
A,
O //////
.7
0 .5 1 1.5 2 2.5 3
Bq

AREA RATIOS —
Ay,

Figure 2-4. The optimum arrangement of the diagonal elements.

If we substitute the value Ad/Ab from Equation (2-19) into (2-16), and
restrict the value s to Sopt , an expression for the minimum value of shear

flexibility is obtained for the laced structural members:



58, :MzAC
2 s (1+s% ) (2-20)

Mo, T nm —_
. 1+ t . A
min ga op opt 4

The values of the shear flexibility parameter u, or Mm'n of the laced
in.
structural members can be simply obtained from the Equations (2-13), (2-16),
(2-18), or (2-20). The effect of rigid stay plates at the ends of the members

will be introduced later.

2.5. THE SHFAR FLEXIBILITY OF BATTENED STRUCTURAL MEMBERS

Figure 2-5(a) shows the basic elements of the battened structural member,
which consist of two main longitudinal elements joined by batten elements.

The two longitudinal elements are assumed to form a symmetrical section and
connected, in one or two (or more) planes of batten elements, by means of
rigid or semi-rigid joint connections. The batten elements serve as the web
of the member, transmitting shear force in the member by virtue of their own
shear and moment resistance, in combination with the local bending of the lon-
gitudinal elements.

The geometric arrangement of the battened structural members is based on
the typical unit of length a, and width b. The properties of the battened
structural members are characterized by the moment of inertia of the batten and
longitudinal elements, and the semi-rigid connection constant which vanishes
fcr a perfectly rigid joint connection.

As we know, the battened structural members are highly redundant struc-
tures whose exact solution may be extremely laborious. We may assume, however,
that the points of inflection in the batten elements of a symmetric structural

system are at the midpoint, and that for the longitudinal elements with adequate
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shear resistance, this is also approximately true.

points of all elements are assumed the battened structural member becomes stat-

ically determinant.

1h

When hinges at the mid-

To determine the additional slope y of the deflection curve due to shear

force V, we first consider the lateral displacement Az, as shown in Figure

2-5(c).

Where

or

M
X

This is due to the shear force V/2 with the axial force Pi as follows:

3
v
. (e 2) .
3~ 48 EI a
(6]
M
R
172 %
o P x
272 b
tan k \
< . - 1} ...Amplification factor
(o]
22 l( 4 62 8
+ = k= + k* + — kx° +
1 5 o 105 ok5 “o
2
3
E&(;fig> o, /€ ay
k2="“"—‘-'———l 2 =—l—<-——-a)
o FI LE\ r
(¢] C
P,
- L
% T a
C

is the bending moment at a distance x from end of the member.

(2-21)

(2-22)

(2-23)

(2-2L)

(2-25)

(2-26)

(2-27)

Pi’ for i = 1, 2, are the axial forces of the longitudinal sub-elements



as shown in Figure 2-5(b). These axial forces will vary from panel
to panel along the length of the member and will be different on the
two sides.

I = the moment of inertia of one of the two longitudinal elements in a
battened structural member.

E = modulus of elasticity.

If P is tension, then

3 tanh ko\
a7 <l . (2-20)
o] (o] 4
or
_y_.2.2,11 .4 62 & )
¢d =1 5 ko + 105 k7 o5 ko + .. (2-29)

Second, consider the lateral displacement A;, as shown in Figure 2-5(c),
due to the angular rotation at the end of the batten elements as follows:
The angular of rotation ©, as shown in Figure 2-5(c), at each end of the

batten elements is:

abV
= ¢ 2-30
12 EI m (2-3 )
b
where
tan k
¢m = 2 ...Amplification factor (2-31)
o
or
6 =1+ 2k 4+ 2ty iLoye (2-32)
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Ib = the total moment of inertia in one unit panel

of the batten elements.

In case of tension P, then

tanh k
o)
¢ = ——— -3%
m ” (2-33)
o)
or
l. .o 2 4 17 .6
¢ =1 -=k + —k* - k- + ... 2-3l
m 3 0 15 o 315 ( 34)
Then we can obtain
a
Ay = — ©
172
2
ab V
Ay = ——— ¢ -35
Lo EL m (2-37)

Third, consider the lateral displacement Ag, as shown in Figure 2-5(c),

due to the shear deformation of the batten and longitudinal elements is

a £ 1
aVv < nb a c) (2-56)

o = — + ‘
2 \bGA 2GA
b c
where
[ and n, are shear shape factors of the individual
batten and longitudinal elements, respectively,
which depend on the shape of the individual
element cross-sections.

G = shear modulus

£ = connection factor
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Fourth, consider the lateral displacement A4, as shown in Figure 2-5(c),

due to a semi-rigid connection.
by =3 a2V 0 (2-37)

Equation (2-37) is restricted to small deformation due to connection non-

linearity and implies the condition:

aZPj
T <1 (2-38)
8,10
Z = semi-rigid connection constant,(7’ ,10)
i.e.: Z = 0 for rigid connection,
Z = « for hinged connection.

From these results, the overall shear deformation due to shear force V is

given by:

Ay + Do + Mg + Dy

7= a/2
3 2
= VE—-——ab o+ i + "ol + o ® o+ 2Ly (2-39)
7= (12 BT, m beA_  26A 24 EI_ 4 2 m
b b c c

From Equations (2-9) and (2-10) we have a moment rotation ¢a due to bending
alone. This leads again, according to the definition (2-1), to the following

expression for the shear flexibility parameter p of battened structural mem-

bers:
1 b b Ac a A 62
olia C ! 2
= + (=Pl — ¢ +5.2=n —+2. + = (=)% o + aAEZ o
K ( 2 G e e St P2 b 6, + 35 ()7 9y ¢
—-) b b b
L&rc .J'gk.
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Again if we introduce new variables n = f/a and m = b/{ we have a modified

expression for u:

A 5.2n A 3 1A
1 mollm I o ¢ nb c a { C
= + (=)= (=) — ¢ + — + 2.6 + —)2 + —EZ
(1_)2 2 én rb) Ab m mn Ab §anc 12n° (rc> <bd n £z ¢
r

(2-41)

It is noted that the last term of Equations (2-40) and (2-L41) represents
the contribution of the semi-rigid connections. This term will vanish in case
of perfectly rigid connection. Welded connections designed for full moment
and joint shear may be assumed to provide full continuity, i.e., they are then
termed "rigid."

We observe by Equation (2-41) that the value of the shear flexibility
parameter p becomes infinite either as the number of panels n approaches zero,
or as the semi-rigid constant Z approaches infinity, and the value of u ap-
proaches zero as n approaches infinity which leads to the case of the solid

structural member. Then from Equation (2-41) we have

p=2.67

= G (2-k2)
/

e | (L
lim n->o rc
The values of the shear flexibility parameter p of battened structural

members can be obtained from the Equations (2-40) and (2-41). The effect of

rigid stay plates at the ends of the members will be introduced later.
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In an actual situation, the axial forces Pi (for i = 1, 2, as expressed
in Equations (2-22) and (2-23)) of the longitudinal sub-elements, as shown in
Figure 2-5(b), will vary from panel to panel along the length of the member,
and will be different on the two sides of the longitudinal elements, due to
the bending moment M%. However, it is desired that the shear flexibility p as
a constant value for the entire length [ of the member in this analysis. To
permit the assumption of constant shear flexibility u, we should determine a
correct limit on the ratio of the local slenderness a/rc, so that the influence
of the axial forces Pi will be small. Pi (for i = 1, 2) are caused by the
axial force P, the bending moment Mk, or by these in combination, so as to
develop the maximum allowable axial stress, in any one of the longitudinal sub-
elements under any condition of external loading. The expressions for the am-
plification factors ¢, and © , in Equations (2-25), (2-29), (2-32), and (2-3L4),
respectively, are functions of the axial forces Pi or the axial stresses 0,5
and are approximately equal to 1 when the nondimensional parameter ko is less
than 1/5.- Therefore, the analysis is applicable and of sufficient accuracy in
the range of ko < 1/5, so that the shear flexibility parameter p will be nearly
a constant value through the entire length £ of the battened structural member.

Therefore, we have the condition:

S
1]
h=d
slis

1, for k <1/3 (2-13)

This approximation may cause maximum localized errors of the amplification

factors 05 s not more than L4.7%.
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From Equation (2-26) and the condition (2-43), we obtain the limiting ra-

tio of local slenderness to be:

2k
(2-LL)

a __9|E
rc éa, Q Gi
The maximum local slenderness ratio a./rc will be obtained from Equation
(2-44), by simply considering the factor of safety, F.S., which is defined by
the applicable specification. Then the limiting condition, for the battened

structural members, shall be such that the ratio of local slenderness is de-

fined by:

where
(F.S.)ci < Fy
Fy is specified minimum yield point of the type
of structural steel to be used.

This limitation of the maximum local slenderness ratio a/rC with different
connection factors ga is provided as shown in Figure 2-6.

It is noted that the upper bound value (for rigid connections) of the non-
dimensional parameter ko is n/2, for which the amplification factors ¢d and ¢m
become infinity. Then the battened structural member will collapse due to lo-
cal (premature) failure. Therefore, we can conclude that if the local slender-
ress ratio a/rc reaches n/ga‘E/(F.S.)oi, premature local failure will occur.
The proposed limitation provided by Equation (2-45) should provide an adequate

safety against this possibility.
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Figure 2-6. The limitation of the maximum local slenderness ratio a/rc
of the battened structural member with different connection factors ga.
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For the case of ko in the range of 1/3 < ko < /2, the effect of axial
load in the longitudinal panel elements should be considered. The shear flex-
ibility parameter p will vary from panel to panel along the length of the mem-
ber. A trial method may be used to obtain an average parameter u for the en-
tire length of member. Alternatively, each panel may be considered individually
and a numerical method utilized, but this is outside the scope of this dis-

sertation.



CHAPTER IIT
THE STIFFNESS PROPERTIES AND FIXED END MOMENTS OF STRUCTURAL MEMBERS
WITH RIGID STAY PILATES AND CONSTANT SHEAR FLEXIBILITY

3.1, THE SHEAR FLEXIBILITY OF SOLID-WEB STRUCTURAL MEMBERS

The shear flexibility parameters, p, for battened and laced structural
members have been established. Although the influence of shear deformations
on the properties of structural member with solid webs is usually small, ex-
cept for very short members, we need to relate the built-up structural member
to an equivalent continuous solid member as a function of the parameter u.
The relationship will be clear when the shear flexibility of a solid struc-
tural member (again characterized by the parameter p) is given by the follow-
ing expression:

The angular rotation y caused by shearing force V in a solid member is:

- (3-1)

where

n = shear shape factor of the solid structural member.

i

A = the cross-sectional area of the solid structural member.
The bending rotation ¢a caused by the bending moment (again Vi%/a) alone

is:

23
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where
I = the moment of inertia of the solid structural member.
According to definition (2-1), the shear flexibility parameter p of the solid

structural members is, therefore, obtained as follows:

where
E and G are the modulus of elasticity and the shear

modulus of the material, respectively, for struc-

tural steel, the value of the ratio E/G is equal

to 2.6.
It is noted that the parameter p of the solid structural members is identical
to the parameter p of battened structural members when the value n (number of
panels) approaches infinity in Equation (2-L42).

A relation for the shear flexibility of a structural member with rigid
stay plates will be developed. Let L be the total length of a structural mem-
ber with the length of rigid stay plates included. Then we have the geometric
relation as shown in Figure 3-1. The structural member which has constant
shear flexibility and bending stiffness is attached to supports A and B by

means of rigid stay plates of length &;L and &z:L at each end of the members.

A 777"

==
81L| ; 5oL
| el

L

.
-

Figure 3-1. The structural member with rigid stay
plates at the ends of the member.
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From Figure 3-1, we have

[
1

£+ 8L + 8L

=
i

(l - 81 - 62)L (5—&)

where
01 and d, are nondimensional factors relating the
length of the rigid stay plates to the total
length L of the member.

From Equations (3-3) and (3-4), we obtain

1 nEI
(1 - 8, - 82)° AGLZ

b= (3-5)

It should be remembered that the application of u by Equation (3-5) is only

applicable in the region {.

%3.2. FUNDAMENTAL DIFFERENTTAL EQUATIONS

The contribution of the bending moment Mk and the shear force VX to the
deformation of an infinitesimal element dx, cut out from the structural mem-
ber, is illustrated in Figure 3-2.

The unit angle change ¢ due to bending moment and the angular rotation vy
due to shear force, as shown in Figure 3-2, are given by the well-known formu-

las:
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yY

Figure 3-2. The deformation of infinitesimal element dx,
cut out from the structural member, due to shear force.

and

v (3-7)

The additional slope (the shear strain y) of the deflection curve due to the
shear force VX is seen from the detail of cut out section. Adding this shear
rotation y to the slope yé, due to bending moment M% only, gives the total

slope:

no_ H + 1 _
vi=y oy (3-9)
where
M
yn = ¢ = - _}_(_
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Equations (3-6), (3-7), and (3-9) lead immediately to the fundamental
linear second-order differential equation for the deflection curve of the struc-

tural member, i.e.,

M nv

n l____)_(xz. _
ye - ) =0 (5-10)

Consider now Figure 3-3 which presents the structural member A-B sub-

jected to an arbitrary external loading p(x) in a general condition.

VA |
Figure 3-3. The structural member A-B subjected to an

arbitrary external loading p(x) and joint displacement.

Let MS and V Dbe the moment and shear force due to an arbitrary external loading
s
p(x) on a simply supported beam of length L, when the axial load P is not acting.

Then the total bending moment MX’ and the total shear force VX, at a distance

x from the support A in the member A-B, are simply given by:

M =M +M + + -
N < . TV E TRy (3-11)
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V =V +V + Py’ -
N . , B (3-12)

where
M_a and Va are the end bending moment and shear
force, respectively.

From Equation (3-8) is derived

Substituting y& into Equation (3-12) which becomes

1
X 1+ P
GA

(Vo + Vv +PBy') (3-13)

Substituting the expressions for M.X and VX from Equations (3-11) and (3-13),

respectively, into Equation (3-10), we obtain

1 P 1 Vs ’ Va v
—— gyt =y == (M + + + | ——— -
Y TEY T e MM G (3-14)
1+ 4P
GA |

where

8L <x < (1 - 82)L

It is noted that Equation (3-14) illustrates a most important property of
this kind of the second-order theory. As long as the axial load P is kept con-
stant, then the effects of end moments, end-shear forces and the external
loading p(x) can be superimposed. The ordinary beam theory as modified to in-
clude shear can still be applied since the effect of axial load P appears here

only in a modification of the stiffness properties of the structural member.
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We now develop relations for the stiffness properties of the structural
member. For convenience we let the external loading p(x) be equal to zero.

Then from the equilibrium conditions we obtain:

MS = VS =0 (3-15)

Va =V (3-16)
M +

V= - Py - — (3-17)
b L

where ¥ is the member rotation.
Substitute these values of MS, VS, Va’ Vb from the above expressions into

Equations (3-11) and (3-13) for the bending moment and shear which becomes:

M= M- Pyx - (M Mb)%+ Py (3-18)
M + Mb
1 a
vV o= - Py ~ —— + Py') (3-19)
X l+_T]£( L
GA

Then the fundamental differential Equation (3-14), for the flexible part,

leads to:

l " _li_ __.]:_ }—{-_ -
1+-ﬂf—y+ y—EI[Perx+<Ma+Mb)L M_] (3-20)

EI
GA

The general solutions of this differential equation are of a fundamentally
different nature for the cases when the axial load P is greater than zero (com-
pression axial force), equal to zero, and less than zero (tension axial force).

The general solutions of the differential Equation (3-20), and their first

derivatives are of interest and are given by the following expressions:
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(1) Case P = 0 (No axial force)

3 2

L x L x
= (M + — -M —>=— + Ax + B -
y= (M + M) grem - M 7 or+ Ax + BL (3-21)
2
L x L x )
= (M4 p— -M ——-+A -
v M) o - M T (3-22)

(2) Case P> 0 (Compressive axial force)

M + M

X X
= + B i k= + + -
y = AL cos ki L sin T Yx 5 I >
M +
X X a
r = o Ak s — 4 Bk k_ + + — -
y sin kL cos kT ¥ L (3-2L4)
(3) Case P < 0O (Tension axial force)
< « Mé + Mb < Ma
= — + B inh k= + - = 4 — -
y = AL cosh kT L sin T ¥x 5 Lt T (3-25)
< < M + Mb
a
"= inh + B h k— + - -
y' = Ak sinh k k cosh kT ' = (3-26)
where
P P
= — + -
K L\IEI (1+ 3D (3-27)

A and B are integration constants.
Four boundary conditions are available for the evaluation of the integra-
tion constants A, B, and either the end-moments Mé, N%, or the end-rotation Qa’

@b of the structural members. The four boundary conditions are:

[}

(i) x = &L, y 9a51L (3-28)

Bl s T
(i1) x = &L, yh= (1 + GA) °, - m (Py + ——L——) (3-29)

I
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Similarly,
(iii) x = (1 - 82)L, ¥ = (V-0p82)L (3-30)
M + Mb
. _ (1 Vo il o a b )
(1v) x=(1-28)L, y'=QQ+5)6 - (BV+—F) (3-31)

3.3. THE MODIFIED SLOPE-DEFLECTICN EQUATIONS

By application of the four boundary conditions (3-28), (3-29), (3-30),
(3-31) to the general solution of deflected shape of the structural member, the
coefficients for the modified slope-deflection equations may be determined.

The equations are:

EI

Mﬁ =T [Cllga + Cl2@b - (C11 * Ci12) V] (3-32)
EI
M£ =T [C2l@a + szgb - (Co1 + Co2) V] (3-33)

Or, to show the relation to the moment-distribution procedure, they may be

written:

EI

Mé = C13 i [Qa + r12@b - (1 + r2) V] (3-34)
= Cop 25 [1210 + ©_ - (1 + r2y) ¥] (3-35)
Mb 22 T 216, Y 21

where Cy;, Ci1o, Coy1, and Cos are the well known slope-deflection constants
which depend upon the properties of the structural member and, in addition, are
functions of the axial load P. r;- and rs; are carry-over factors in the direc-
tion from point A to B and from point B to A, respectively, as shown in Figure

3-3, and therefore are defined by:



C

rip = Cii (3-36)
C

Yoy = Eii (3-37)

For convenience, the dimensionless axial load parameter « introduced as:

P
as=5 (3-38)

e

where Pe is the Euler load for a column without stay plates, i.e.,

(3-39)

The parameter k which has been defined in Equation (3-27), now can be
transformed in terms of nondimensional parameters u and @ in the Equations (3-5)

and (3-38), respectively. Thus we have

k% = fa(l + Fau*) (3-40)
where

u* = (1 - 81 - 82)%0 (3-41)
For convenience, let

k¥ = (1 -8 - 82)k (3-42)

Then, the four boundary conditions (3-28), (3-29), (3-30), and (3-31)
lead to a system of four simultaneous linear equations for the joint rotations

@a and @b; the member rotation V¥; the integration constants A, B; and the member
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end-moments Ma and Mb. Now it will also be transformed in terms of non-

dimensional parameters p, 3;, %2, @, and k as follows:
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To formulate the modified slope-deflection equations, the sets of four
linear nonhomogeneous equations (3-43), (3-4k4), and (3-45), in four unknowns
Mﬁ’ Mb, A, and B will be solved by Cramer's Rule in terms of Qa’ @b, and V.
Then, the solutions will be set up in the forms of Equations (3-32), (3-33),
(3-34), and (3-35).

Where

(1) Casea =0

Co e+ 8T 4 8 (1 - ) + (1 - 8,)3
‘11 = u[_ (1 -8 - 52)3(l§p + 1) - } (5-46)
oo = o oo (L= 82)%(1 + 285) - 8T(3 - 281) - 6(1 - By - 82)%
SR (L -8 - 82)*(12p + 1)
(3-L7)
3ux + (1 - 8;)% + (1 - 8;)85 + 85
o2 = “[ (L~ & - 5202 + D) 1 (5-48)

_ L1 - 52)3(1 + 285) - 87(3 - 28;) - 6(1 - By - B2)%
Tz = 5 (L - 81 - 82)(3p* + 87 + 81(1 - 82) + (L - 82)7)

(3-49)

oy = 5

) }[?l - 85)2(1 + 25p) - 83(3 - 281) - 6(1 - &) - 52>3p]

(1 - 81 - 82)(3px + (1 - 81)5 + (1 - 81)8p + 85)
(3-50)
(2) Case >0
1 - k* cot k* + [p* + 8,(1 - 85)]
0y = - (e + 8, ( 2)£* - (3-51)
- - —(1 + Pau*) tan — - 1
(1 - 81 - 8) k*(l Qu¥*) tan 5
. —
k csc k¥ - 1 - k(81 + 8p) cot k* + (8185 -~ p*) rfa
Ciz = Co1 = B o )
(1 - 8, - 8) E;(l + ©fou*) tan -1

(3-52)
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1 - k¥ cot k* + [u* + (1 - 81)8,] o ,
5 » - (3-53)
(1 -8, - 62){?;(1 + nQu*) tan > - %]

Cop =

_k ecsc k¥ = 1 - k(81 + 85) cot k¥ + (85185 - p*) o

12 1 - k¥ cot k¥ + [pu* + 51(1 - 85)] wa (5-54)
k csc k* - 1 - k(1 + 85) cot k* + (818, - u*) rfa
oy = =} (3-55)
1 - k* cot k* + [ux + (1 - 81)85] a0
(3) Case < 0
k* coth k¥ - 1 - [p* + 8:(1 - & o
Cyy = {H l( 2)] (5-56)

2 k*
(1 - %1 - 82)[1 - -l;-_;(l + rfap*) tanh 5"‘]

1 - k csch k* + k(81 + 85) coth k* + (u* - 815,) 2
2 ox
1-9; =81 - =(1 + ~fop*) tanh —
(1-8 2>[ 2 nmane]

Ciz = Coy =

(3-57)

k* coth k¥ - 1 - [u* + (1 - 81)82] 72
Coz = ; ( . 1)52) >, (3-58)
(1 -81 - 82)[ - }—;(l + mOop*) tanh 2—']

. 1-kcschkt+ k(81 + 85) coth k* + (u* - 8185) 7°Q
12 - k* coth k¥ - 1 - [p* + 851(1 - 85)] o

(3-59)

1 - k csch k¥ + k(81 + 85) coth k* + (u* - §185) ©Q
k* coth k¥ - 1 - [p* + (1 - 81)85] 0

(3-60)

Toy

The numerical values of the stiffness constant C;; and its corresponding

carry-over factor rip are presented in Figures 3-4 for the special (symmetrical)

case of 81 = 8> = B.
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3.4, FIXED END MOMENTS

In the evaluation of fixed end moments we can apply the reciprocal theorem
and use the deflection curves of the previous presentation. Consider the two
sets of force systems which are acting on the same structural member A-B as

shown in Figure 3-5.

Mg ‘W

Figure 3-5. Two sets of force systems acting
on the same structural member.

According to the reciprocal theorem, we have the relation:

O + Wy +M_:0=M:0+DM-0
Mfa a Wy + M a 0 Mb ’

fb
then
Y
M = - W -
- 5 (3-61)
a
where
M_ = the fixed end moment at left end, as shown in

fa

Figure 3-5(a).

W = an arbitrary concentrated force acting on a struc-
tural member, a distance pL from its left end.

y = deflection of the structural member, a distance

pL from its left end, caused by end moment Ma'
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nondimensional length factor which prescribes the

©
]

location of the concentrated load W.

o
a

end rotation caused by end moment Ma'

To determine the deflection curves of the structural members in terms of the
member properties and end moments M.a and Mb we again consider the sets of four
linear nonhomogeneous equations (3-43), (3-LL), (3-45) in four unknowns, two
integration constants A and B; two end rotations Qa, @b.
We apply Cramer's Rule again to solve for A, B in terms of Ma’ Mb’ and v,

thus obtain:

(1) Case a =0

A=’_—(5 +6)*+'(‘”];___§‘2‘23+8(l—6>+52(}‘-§}'>34—a'3
1 2/ H 3 2 2 1 5 3 EI
~ s\ ML
(L + 252) 2 081 |_b_
+ - (81 + 82) w¥ - =7 (1-82)° - s |zt '/ (3-62)
ML ML
r 1 8 r 83 | b
B = altl* - 81(3 - 3—)] é‘— + sll'u* + g{]ﬁ— (3-63)
v Mb = TlgMa and ¥ =0, then
MaL
Y P (5-6k)
MaL
= *m1o BT (3-65)
where
1-85)°
®a1p T T (1 + riz)(81 + 82) w* + 82(1 - 82) + i—‘“g‘gl_ E?(l - 82) - ria(l + 252)]

o

2

\N

. ﬁE S ):, (5-66)
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¢B12 = 81 gl + rip) p¥ - 51[% - ':,6)_1(1 + Tlai]} (3-67)

The deflection curve y and the rotation @a caused by end moment Ma are:

l+r 02 MaL2
Shrme 5 00, ‘ ]
y=(F—7Z"¢ -3 a12® T %m12) T (5-68)
ML
1 a
0 = — —— -
a cll ET (5 69)

Then, from Equation (3-61) we can obtain the fixed end moment Mfa’ as

shown in Figure 3-6 caused by concentrated load W:

M =-WLC]_1(—_—Q 'g_'+¢ pté ) (5'70)

Figure 3-6. Fixed end moment M, for
concentrated load W.

From this basic equation (5-70), we can derive fixed end moment for any
combination of concentrated loads by simple summation and for continuously
distributed loads by integration.

As examples, the fixed-end moments Mfa for uniformly distributed load w

and for moment loading Mo are determined as follows:
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(i) Uniformly distributed load w.

e
p1L W=wd(pL)

Mfa r———ﬁé————1w

la—RL —]|— a(pL)

Figure 3-7. Fixed end moment M

———

for

uniformly distributed loading w.a

P2 1 + r o=
M = -wl®C —2 8 -1
fa w 11 él < 6 e 2

For fully loading, p1 = 0, po = 1

Al2

P+ 05, 5)do (3-71)

1 1-8, 1+ rip
M = - = W(&lL)g - WL2 Ci1 f 2 ( Ll Ds - £ + 9 ot ¢ )dp + 0
fa 2 6 2
o1
N S TY o Sl 2t (1 - 8)% - 8%| - =
fa 112c,; ol 2 1 6

+

o
-—2\—13 [El - 82)2 - 5?] + oo (1 - 8y - 52)}

(ii) Moment loading MO:

(3-72)

- "153 o

Figure 3-8. TFixed end moment Mfa

the moment loading M .
o)

for
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Consider the condition as shown in Figure 3-8(a) and (b), they are iden-

tical if A(pL) is approaching to zero. Then

M = lim W A(pL) ,
° a(pL)»0
then
flp + dp) - £p)
M = - WL A(pL) C
fa (O ) 11 L Ao
1lim
Ap=+ 0
M =-M C ' -
™~ 5 G2 £'{p) (3-73)
where
o) s 2Tz a0 Ly o (3-74)
© 6 2 NG Bl2
Pr(p) = f(o) = 2212 2 L 5 h e (3-75)
ax 2 A12
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ML
1 a

0 = —
a Cll EI

(3-83)

Then, the fixed end moment Mfa for concentrated load W with compression

axial force P is expressed in the following equation (3-8L4), as shown in
Figure 3-9.

. 1+ Irio
M = - WL C ¢ cos kp - ¢ kp + —=—== -
fa ll( Al2 S 0 B12 Sin %o o ° 1

Mfa oL W
P P
SR S
Rigure 3-9. Fixed end moment Mf for

, a
concentrated load W with compression
axial force.

-

) (3-8h)

Similarly, the fixed-end moments Mfa for uniformly distributed load w and

for moment loading MO are determined as follows:

(1) Uniformly distributed load w (as shown in Figure 3-10):

L

F‘ P2
.
S S

Figure 3-10. Fixed end moment M . for uniformly
distributed load w with compression axial force.
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P2 1

2 . +
M =-wl® Ci1 [ (¢ cos kp - ¢ sin kp + —=5—= p

fa Al2 B12 T
P1

For fully loading, p1 = 0, p2 = 1, then

2 o
A
M, = - wl? Cll{;gil + —Elg [sin k(1 - 85) - sin k&;]

¢
Al2 lL+r = 1
= [cos k(1 - 8 ) - cos kB1] + __;Eaié [(1 - 85)° - 85] - ;ga(l - 81 - 625}

2

(ii) Moment loading MO (as shown in Figure 3-11):

Figure 3-11. Fixed end moment M o for the moment
loading MO with compression axiaﬁ force.

M =M C k(- ¢ sin kp - ¢ cos kp +
fa o 11 ( 1 p o

1+ rip
Al2 B12 =0k

(3-86)

) (3-87)
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Then the deflection curve y and end rotation @a caused by end moment M
a

are.
l1+r 1 MaL2
= (¢ cosh ko + ¢ inh kp + iz , . : -
y = (¢, cosh ko + o, sinh kp 2o ° ") E (3-9%)
ML
1 a
© =L (3-95)
Then
. 1+ rio 1
M = - WL Cyq(0 h ko - 6 h ko + —==22  _ —=
fa 12(%,,, cosh ko - ¢, sinh ko Za ° "2
(3-96)

Similarly, the fixed-end moments Mfa for uniformly distributed load w and
for moment loading Mb are determined as follows:

(i) Uniformly distributed load w:

M = - wIZ C fpg (6 cosh kp - ¢___ sinh kp + Sl L )d
fa 11 INE R P “a 7 P’
P1
(3-97)
For full loading, p1 = O, po = 1, then
M = -wl2 ¢ 81 ¢ Al [sinh k(1 - 85) - sinh k&1]
fa M2c; Tk 2 .
*p1o
- [cosh k(1 - 85) - cosh k5]
1+ r 2 2 1
+ - - - - - -
20 (1 -82)" - 87] - == (1 - 8 - &) (3-98)
(ii) Moment loading MO:
. 1L+ ro
M =-M Cyq k(0 h ko - ¢ h kp + —m—i2 -
o L Cn ( n1p Sinh ke - ¢ cosh ko _pn ) (3-99)
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Fixed end moment Mfa of structural members for a uniform load w over full-
length L with different rigid plates & (where & = &; = 85) and constant shear

flexibility u is presented in terms of wI® as shown in Figure 3-12.
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Figure 3-12. Fixed end moment M_ of structural members for a uniform

load w over full-length L, with g%fferent rigid stay plates 5, and con-
stant shear flexibility u.
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CHAPTER IV
ELASTIC BUCKLING OF BATTENED OR LACED STRUCTURAL MEMBERS
WITH RIGID STAY PLATES AND CONSTANT SHEAR FLEXIBILITY
The lowest elastic buckling loads will be evaluated for different end-
conditions of built up columns, as determined by the eigenvalues of certain

submatrices of the system of Equation (3-L4k).

4.1. COLUMN WITH HINGED ENDS

The critical load Pcr N of the column which is hinged at both ends causes

)

the matrix (3-4k4) with the unknowns @a’ G%, A, B to be singular, since the

natural boundary conditions give Ma = 0, Mb = 0, and ¥ = 0. Then

- i
cos kd, sin k&1 -93 O
cos k(1 - 32) sin k(1 - 85) 0 o -0
- k sin k3, k cos k&3 -1 - ngau* 0
- k sin k(1 - ) k cos k(1 - 85) 0 -1 - nQamL
Then we have the buckling condition:
tan k* + —5(01* B2) = 0 (4-1)
1+ o (p* - 8195) '
The lowest root of Equation (4-1) yields the critical load Pcr,h'
4.2. COLUMN WITH ONE END FIXED AND THE OTHER HINGED
The critical load P of a column which is fixed at one end and

cr,f-h

hinged at the other causes the matrix (3-44) with the unknowns Ma’ A, B, Qb

Th



™

to be singular, since the natural boundary conditions give Mb =0, 0 =0

a
and ¥ = O,
((1-8 cos k® sin k8 0 B
- 1
ﬂza o 1 1
O2 .

- 5 cos k(1 - 85) sin k(1 - 82) 5o

1 =0
p* + 25 - k sin k& k cos kd; 0

1
pr + = - k sin k(1 - &) k cos k(1 - &5) -1 - FPau*
- -

Then we have the buckling condition:

k*
1+ rafu* + (1 - 81)82]

tan k* -

0 (k-2)
The lowest root of Equation (4-2) yields the critical load P., ¢ y-
b

4.3, COLUMN WITH FIXED ENDS
The critical load P £ of the column, which is fixed at both ends, again
r,

causes the matrix (3-44) with the unknowns M, M, A, B to be singular, since

the natural boundary conditions give Oa =0, 6 =0, and ¥ = 0. Then

b
- 1 -8y 93 . B
- k sin k&
=0 ©a cos K01 .
52 1-3 .
- = —= cos k(1 - 35) sin k(1 - 85)
o o -
1 1 "0
u¥ + = u¥* + = - k sin k& k cos kd:
u* + —%— u* + —%— - k sin k(1 - 85) k cos k(1 - 521
- T e

Then we have the buckling condition:

. k% k* k* . k¥ I
sin 2 2(1 + 2o cos o~ - sin 5| = 0 (L-3)
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There are two solutions in Equation (M-B), one of them is the symmetrical
buckling condition, and the other corresponds to the antisymmetric buckling
pattern. We are interested here only in the symmetrical buckling shape, since
the critical value is always smaller than for the case of antisymmetry.

Therefore, we consider only the symmetrical buckling condition which is:
sin=— =0 (L-l)
For the lowest root of this equation gives:
k(1 - 81 - 82) - 21 = O (4-5)

Equation (L-5) yields the critical load Poy g

)

The critical loads of columns with different end conditions, constant

shear flexibility p, and rigid stay plates &, are provided in Figure L4-1.
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CHAPTER V

NUMERICAL EXAMPLES OF BEAM AND FRAME ANALYSES

5.1. A BEAM ANALYSIS

A structural member O-1-2, as shown in Figure 5-1(1), is composed of two
parts O-1 and 1-2 with fixed ends at O and 2. Part O-1 is solid-web member,
with assumed shear flexibility equal to zero. Part 1-2 is a battened struc-
tural member with rigid joint connections (Z = 0), and with appreciable shear
flexibility. However, parts O-1 and 1-2 are assumed to have the same nominal

flexural rigidity EI, and length L.

W
# /
ET ET /
\’/////////////7//////////////// [ 1 1 | ; ?
0 1

- L | I=na -

Figure 5-1(1). A structural member 0-1-2.

As shown in Figure 5-1(2), the battened structural member 1-2 is composed
of the following elements:
longitudinal elements: 1LWFL3
batten elements: 2-9[15

The geometrical arrangement of the battened structural member is:

®
1}

30 in.

o’
1l

20 in.
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r—-———

I e = T
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(

|

1L4WFL3
(a) (v)

Figure 5-1(2). The battened structural member 1-2;
(a) geometrical arrangement and (b) cross-section.
Four cases will be compared here for n = 2, 6, and 10 as follows:
Case 1. Results are obtained considering the effect of shear deformation.
Case 2. Results are obtained considering the effect of shear deformation but
neglecting the effect of the local comnection factor (i.e., £ = 1).
Case 3. Results are compiled from STRESS computer program by MIT.
Case L. Results are obtained from ordinary beam theory (neglecting the
effect of shear deformation).
The shear flexibility u, stiffness C;,, carry-over factor r;,, of the

structural member 1-2, and bending moments Mo’ M,, and M- due to concentrated

load W are tabulated as follows:
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M M

Case n " Cis r1o ﬁ% ﬁ% ﬁ%
2 1.030 1.22 -.63 -.553 .250 .053
1 6 114 2.26 11 -.323 .250 176
10 .0kl 3.00 334 -.279 .250 221
2 1.457 1.16 -.72 -.593 .250 .093
2 6 162 2.02 01 -.347 .250 .152
10 .058 2.76 27 -.290 .250 .209
2 1.46 -.56 -.50% .258 .021
3 6 2.54 .15 -.308 .251 .189
10 3,22 .35 -.272 .250 227
L 4.00 5 -.250 .250 .250

The bending moment diagrams are presented in

Figure 5-1(3).
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S CASE 1
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MEMBER 0-1-2
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n==~ao
.25
2
o 0
2 1 2
g | _CASE 2
S —CASE 1
— ~~CASE 3
T——CASE 4
-.50
MEMBER 0-1-2
(b)
050
n = 10
.25
g
<
B 0 \
E 1 2
o
= -.25
CASE 4
CASE 2, 1, and 3
-.50 1

MEMBER Q0-1-2

(c)

Figure 5-1(3). Moment diagrams for the Cases 1, 2, 3, and 4 for various
numbers of panels.
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5.2. A FRAME ANALYSIS

A two-bay symmetrical frame structure, as shown in Figure 5-2(1), is
composed of’:

Two-type 1, laced structural member DE and EF to be used as roof truss

beams. The two longitudinal elements (1OWFL5) are connected,
in two planes by the diagonal and strut elements (9[15).

Two-type 2, battened structural members AD and CF to be used as exterior

built-up columns.

One-type 3, battened structural member BE to be used as an interior built-

up column.

The type 2 and type 3 battened structural members which consist of two
main longitudinal elements (1lOWFLS) with batten elements (9[20). The two
longitudinal elements are connected in two planes of batten elements, by means
of perfectly rigid joint connection (Z = 0).

The geometrical arrangements and elements' properties of the frame struc-

ture are given in Table 5-2(1).



6 @ 3!_4n

83

_ /Rigid Stay Plates 1 QJ
Y ﬂ?
oy S |
| ] -
ol H )
E’)-‘ 2 2 M 2
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1'-8" 16 @ 6'-0" = 96'-0" KL L
~H- +—-
L Elevation of Frame Structure
10" 1'-8"
e Rigid Stay Plates =
=T I E F 'ifj
{ ™
NI S B i
98'-6" 98'-6"
)

(b) Idealization of the Frame Structure

10WF45

r_1

nl v
| -
= i
N lm

10WF45

Cross=-Section 1-1

Figure 5-2(1).

A two-bay symmetrical frame structure.

Cross-Section 2-2
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Consider three loading conditions as shown in Figure 5-2(2):

I‘iwﬂj [ 3 3K "] ilulilivivilii] L 32K A A ) IvrIvl Ly X
¥h N Ewh g&
7777 TTIT TT)T TT77 77T 77777 {%79: 7rr T
A B C A B C A B C

(a) () (c)
Figure 5-2(2). Loading conditions. (a) Loading 1, dead load (w_) only.
(b) Loading 2, dead load (w_) + wind load (wh). (¢) Loading 3, Jead 1load
(wv) + appreciable footing rotation 6, where W= 1.25 Kips per ft,
w, = .50 Kips per ft, and @a = .00l radians (.

The end moments will be determined simply by using the slope-deflection
equations, and the equilibrium conditions of each joint and the whole frame
structure in the following two cases.

Case 1. Considering the effects of shear deformation and axial force.

Case 2. Neglecting the effects of shear deformation and axial force
(ordinary frame analysis).

The solution of the end bending moments, and the moment diagrams of the
framed structure are presented in Table 5-2(2) and Figure 5-2(3), respectively.

The corresponding errors which result if the effects of shear deformation and

axial force are neglected, are also indicated in percentages.
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. —, C
(c) Loading 3, Dead Load + Bad Footing Rotation

Figure 5-2(3).

Moment diagrams of the frame structure for the loadings
1, 2, and 3.



CHAPTER VI

SUMMARY AND CONCLUSION

6.1. SUMMARY

This dissertation presents a theoretical analysis of the behavior of
battened and laced structural members for an ideal perfectly elastic material
and for small deformations. The analytical solution is made by application of
classical procedures and modified slope-deflection equations are developed to
generalize a relation between applied forces and joint displacements. If the
displacements of the joints in a structure are known, it is a comparatively
easy matter to obtain the bending moments and shear forces at any location of
the structure.

A nondimensional parameter p for the shear flexibility is defined as the
ratio of the change in slope in a unit panel length due to shear deformation
to the change in slope due to the bending rotation for a relationship between
shear and moment. The parameter p is calculated with consideration of the
effects of axial force, local shear deformation, local joint eccentricity, and
local connection flexibility of battened structural members.

Types of the structural members may be catalogued here according to three
different web configurations such as solid, battened, and laced structural
members. The battened and laced structural members are built up from two (or
more) main longitudinal elements which are assumed to form a symmetrical sec-
tion. The two longitudinal elements are connected in one, two (or more) planes

by the diagonal and strut elements or batten elements. The arrangements of web

88
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elements are assumed the same throughout the effective length of the flexible
portion of the structural member between end rigid stay plates. The shear
flexibility parameter is evaluated in terms of the properties of the composed
elements, the geometric arrangements, the local joint connection factors, and
the axial force.

The optimum slope of the diagonal element is evaluated for the laced
structural member to minimize the influence of shear deformation. In an actual
situation, the axial forces of the longitudinal sub-elements will vary from
panel to panel along the length of the members, and also will be different on
the two sides of the longitudinal elements due to the lateral external loadings.
However, ultimately the analysis assumes the shear flexibility u as a constant
value for the entire length of the structural member. To permit the assump-
tion of constant shear flexibility, a limit on the ratio of the local slender-
ness has been determined for the battened structural members, so that the in-
fluence of the actual axial forces will be relatively negligible. The upper
bound of the premature local failure is also investigated for the battened
structural members.

The fundamental linear second-order differential equation for the deflec-
tion curve of the structural member has been derived for which shear deforma-
tion is considered. As long as the axial load is kept constant, then the
effects of end moments, end-shear forces and external loading can be super-
imposed. The ordinary beam theory can still be applied since the effect of
axial force appears here only in a modification of the stiffness properties of

the structural members. The general solutions of this differential equation
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are of a fundamentally different nature for the cases when the axial force is
equal to zero, greater than zero (compression axial force), and less than zero
(tension axial force). By application of the natural boundary conditions to
the general solution of deflected shape of the structural member, the solutions
are set up in the forms of slope-deflection equations. Therefore the slope-
deflection constants are obtained in terms of the shear flexibility parameter,
the length factors of stay plates, and effect of axial force.

In the evaluation of the fixed end moments for a concentrated load, the
reciprocal theorem is applied so as to make use of the deflection curves of
structural members which have been previously defined for the homogeneous so-
lution (no external lateral loading). From this basic expression one can
derive fixed end moments for any combination of concentrated loads by simple
summation and for continuously distributed loads by integration.

Elastic buckling of the structural members with rigid stay plates and
constant shear flexibility have been evaluated for the cases of a column with
hinged ends, a column with one end fixed and the other hinged, and a column
with fixed ends.

Finally, numerical examples of beam and frame analyses are presented to
provide a comparison with analyses using the ordinary beam and frame theories

which neglect the effects of shear deformation and axial force.

6.2. CONCLUSIONS
1. The property of the shear flexibility parameter u

(a) For the laced structural members:
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(i) The parameter p becomes infinite as the slope of diagonal
elements approaches either zero or infinity.

(ii) The optimum slope of the diagonal elements is~f§72 when-
ever strut elements are missing, or whenever the strut
elements do not take part in the transmission of the shear-
ing force of the structural members. When stressed strut
elements are part of the system, the optimum slope increases
with the ratio of cross-sectional area of the diagonal
elements to the strut elements.

(iii) The parameter p increases with increase of the height-
length ratio of the member, and with the ratio of cross
section of the longitudinal elements to the diagonal ele-
ments.

(b) For the battened structural members:

(i) The parameter u becomes infinite either as the number of
panels approaches zero, or as the semi-rigid constant
approaches infinity (i.e., hinged connection). The param-
eter p approaches zero as the number of panels approaches
infinity.

(ii) The parameter p is inversely proportional to the ratio of
slenderness of the member, and proportional to the height-
length ratio.

2. If the local slenderness ratio a/rc reaches n/§a JED7§T§T7E;, premature
local failure will occur. The proposed limitation a/rc < 2/5§a~fﬁ7(575775;

should provide adequate safety against this possibility.
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For tension axial force, when

1
(1l -8, -5 )2
2

Ogu:-

then the equivalent flexural rigidity of the structural member becomes
infinite, and therefore leads to a trivial solution of the deflection
curve of a structural member. Beyond this condition, the general solu-
tion of the deflection curve is not applicable.
The slope-deflection constant C;; and carry-over factor are almost
linearly proportional to the axial load parameter a in the range of
|| < .15 and u < .10. Beyond this range, however,
(1) The constant C;; will decrease as the compression axial
force increases, and may either decrease or, for very
small values of u, increase as the tension force increases.
(ii) The carry-over factor will increase rapidly with increasing
compression axial force. The increase is approximately
proportional to the parameter o for small values of a.
For a structural member of normal design proportions with a certain
constant shear flexibility u there exists an axial load parameter o,
for which the carry-over factor is very nearly independent of the ef-
fect of the end rigid stay plates.
Effect of shear deformation varies with the magnitude of the axial
force, properties of the bracing systems, and the height-length ratio

of the member.
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For a symmetrical structural member with uniformly distributed
loading, the fixed-end moments are independent of the effect of the
shear flexibility when there is no axial force.

The influence of the end rigid stay plates is of considerable signi-
ficance since large increases in the carrying capacity can be achieved
by very short end rigid stay plates.

The influence of the shear deformation may be neglected in the range
of u< .00k, and |a| < .50, for which the errors of the stiffness
constant C,;, carry-over factor, and fixed-end moments will be not
more than 5%. However, beyond this range large errors will be intro-
duced in the analysis if account is not taken for the influence of

shear deformation.



APPENDIX

oL



95

TABLE 1

"THE CONSTANT SHEAR FLEXIBILITY PARAMETER M
FOR LACED STRUCTURAL MEMBERS

(i)'VNEUESHGF“u(l+Ea)/£b FOR THE CASE CF NGO STRUT ELEMENTS

ééa/b“”;” A o6 .8 1.0 1.2 1.4 1.6

%/b
4 «3904 <3304 .3282 .3536 3570 4547 .5248
6  o1735 1465 .1458 J1571 L1765 .20z1 2332
8 «0976 .082¢6 .082C .0684 +CS93 L1137 .1312
L0 . 0625 700525 L0528 .C566 <0E35 L0728 L0840
2 12 .0434 .0367 .03€5 .C393 .0441 .C5C5 .0583
14  .C319 .0270 .026€ .C289 <0324 .C371 .0428
16 .C244 .0207 .02C5 +C221 .0248 .C284 .0328
18 .0193 .0163 .0162 .Cl75 .0196 +C225 .0255
.20 .0156 .0132 .0131 .Cl41 .O0l55 .Cl€z ,0210

Ac/Ad

4 « 1808 .660& 6562 L7071 .7940 9054 1.0495
6 3470 2937 L2517 +3143 .3525 4042 .4665
8 «1952 1652 <1641 1768 .1985 42213 .2624
10 1249 .1057 L105C 1131 .1270 1455 .1675
4 12 .C868 .0734 ,0725 .0786 .0882 .101C .1lé6
T 77147 T.0€37 L0535 ,053¢ L0577 .0648 L0074 L0857
16 «0488 0413 ,0410 .C442 .049€6 .C5€8 0656
18 «C386 40326 .0324 .C249 .0392 .C44S .0518
20 .0212 ,0264 +0263 .C283 .0218 .C3€4 .0420

4 1.1713 .9913 .9€45 1.C607 1.1611 1.3641 1.5743
T L5206 .44C€ .4375 L4714 5254 LE0€3 T L6967
B <2928 42478 2461 .2€52 .2578 .3410 3936
10 .1874 .158€ L1575 .16S7 1506 .2183 .2519
6 12 1301 1101 .10S4 1179 .1323 .1516 .1749
14 .0956 .0809 .0804 .C8¢6 ,0672 .1114 .1285
16 .C732 .062C .0615 .C663 .0744 .08%53 .0984
18  .0578  .04SC .04E€ .C524 .0588 .0614 L0777
20 .0469 40397 L0354 .C424 .0476 0546 0630

"4 1.5617 1.3217 1.3126 1.4142 1.5881 1.81€€ 2.0991
6 .6S41 .5874 .5834 .€285 .7058 .80€3 .9329
.8 23904 .3304 .3282 .3536 .3970 4541 .5248
107 2499 L2115 .210C .2263 .2541 42910 3358
8 12 L1735 L1469 .145¢ .1571 .1765 .2021 .2322
14 1275 <1079 .1072 .1154 41256 1485 L1714
16 .0976 .0826 .082C .0884 L0993 1137 .1312
18 L0771 .0653 .0648 .0698 .0784 .C8S€ ,1037
20 40625 40525 .0525 (566 40635 .C728 .084C

bt

4 1.9521 1.6521 1.64CE 1.7678 1.9851 2.2735 2.6238
6 .8676 7343 .7292 .1857 .8823 1.01C4 1.1661
B .48B0 4130 .4102 .4419 4963 L5684 46560
10 23123 L2643 ,262%5 .2828 .317€ .3€28 ,4l158
10 12 2165 .1836 1823 1564 . .2206 2526 42915
14 .1594 1345 .133G L1443 ,162C .1856 .2142
16 .1220 .1033 .1026 .1105 .1241 .1421 .164C
18 .0964 L.081& .081C .C873 .0980 1122 .126¢
20 L0781 L0661 .065€ .0707 .C794 .C9CS .105C
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TABLE 1

~ THE CONSTANT SHEAR FLEXIBILITY PARAMETER u
 FOR LACED STRUCTURAL MEMEBERS =
(2) vALUES OF U(1+E_) /& FCR Aq/A = o5

S ga/b = 4 .8 .8 1.0 1.2 1.4 l.¢€

A /Ay 4/b
4 . o5467 <434€ 4063 .4161 .44S1  .49S3 .5638
6 42430 .1931 .1€C6 .1849 .1996 .221S .2506
8 <1367 1086 1Clé <1040 1123 .1248 1410
10 +C875 L0695 .C65C .C666 0718 .C1$S .0902
2 12 0607 .0483 .0451 0462 .04SS .C555 .0626
14  «C446 .0355 .C32Z .03240 .0367 .C4C8 L0460
16 +0342 .0272 .0254 .0260 .0281 .C312 .0352
18 +0270 .0215 .02C1 .C205 .0222 .0247 .0278
20  .0219 .0174 .01€3 .Clé6 .018C .02CC .0226

1.0933 .8652 .812€& 48321 .8582 .S9€7 1.1277
<4859 .3863 .3611 42658 .3992 .443S L5012
8 .2733 .2173 .2021 .2C80 .2246 2457 .2819
10 .1749 .1351 .13CC 1331 .1437 .15S5€ L1804
4 12 1215 40966 .09C2 .CS25 .0SS8 L1110 L1253
14  .C893 L.071C .06€3 .Ce79 .0733 .C815 .0921
16 .0683 .0543 ,0508 +C520 0561 +C6z4 40705
18  .0540 .0425 .C4Cl oC41l .C444 .C4S3 L0557
20 0437 .0348 .C325 .C333 .0359 .C3SS 0451

4 1.6400 1.303€ 1.2185 1,2482 1.3473 1.49€0 1,6915

6 «7289 .57S4 .5417 5547 .5988 .€6%58 .7518
8  +4100 43255 +3047 43120 43368 43745 .4229

10 2624 42086 .195C .1SST 42156 +23S7 L2706

6 12 .1822 .1445  .1354 L1387 .14S7 .1€€4 .1879
14 <1339 .1064 .0SS5 1019 .1100 .12z3 .1381
16 .1025 .08lE .C76Z +C780 .0842 .0926 .1057
18 .0810 .0644 .0602 .0616 .0665 .CT4C .0835

20  .0656 40522 .04EE .C499 .0539 .0559 L0677

4 2.1867 1.7383 1.6251 1.€642 1.7564 1.5973 2,25532
6 .9719 7726 7223 L7397 .7584 .8877 1.0024
B 45467 .4346 L4063 .4161 .44S1  .4553  .5638

10 3499 L2781 .26CC .2663 L2874 .315¢ .3608

8 12 42430 L1931 .18C€ 1849 .155€ .2215 .2506
14 <1785 .1419 1327 1259 .1466 .163C .184l1
16,1367 .1086 .1Clé L1040 .1123 .1248 .1410
18 .1080 .0858 .08C2 .0€22 .0887 .CSE€ L1114
20 L0875 40695 .065C .0666 0715 .C755 .0902

4 2.7334 2.1729 2.0314 24C803 242455 2.4S€7 2.8191

6 1.2148 49657 .5025 .5246 .9980 1.1056 1.2530
B 46833 .5432 .5C75 45201 .5614 46242 47048

10 «4373 .3477 43250 423228 .3593 43965 .4511
10 12 43037 42414 42257 2311 42455 42774 43132
14 L2231 1774 .1656 L1698 1633 L2078 L2301
16 1708 1358 .127C .1300 .1403 .156C .1762

18 .1350 L1073 .10€3 .1027 1105 .1223 .1392
20 .1093 .086S .0813 .C832 .0898 .C95S .1128
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TABLE I

- THE CONSTANT SHEAR FLEXIBILITY PARAMETER
. FOR LACED STRUCTURAL MEFBERS
(3) VALUES OF n(1+£_)/E FCR Ag/By = 1.0

é;é/bw'= b .6 .8 1.0 1.2 1.4 1.6

/b
4 47029 .5388 .4844 .4786 5012 .5440 .6029
6 <3124 .2394 L2183 L2127 2228 L2418 .2680
8 <1757 41347 1211 .1156 41253 .1360 .1507
10 TJ1125 L0862 L0715 .C166 L0802 .C8TC L0965
2 12 +C781 0595 +0538 4C532 .0557 .C6C4 0670
14 0574 .044C .036% LC391 .0409 .C444 .0452
16  .0439 .0337 ,0302 .C299 .0313 .034C .0377
18 «0247 .026€6 .023S .C236 .024& .C26S .02S58
20  .0281 .021¢ .01S4 .C1S1 .020C .0218 .0241

AC/Ad

4 1.4058 1.0775 .9688 9571 1.0024 1.C8€C 1.2058
6 26248 4789 .43C€ .4254 L4455 4835 ,535G
8 e3515 2694 <2422 2393 L.2506 42720 .3014
10 02249 .1724 .155C 41521 .1604 L1741 .1929°
4 12 1562 L1157 L1C7€¢€ L1063 .1114 .12CS .1340
B 14 «1148 .088C .0751 .C781 .08l8 .C8€c€ .0984
16 +C879 .0673 .06C€ +,0598 .0626 +C68C L0754
18 «0694 .0532 +0478 +C473 L0455 .C527 .0595

20 .0562 .0431 .C3EE .C383 .04C1 0435 .0482

S

4 2.1088 1.6163 1.4532 1.4357 1.5026 1.6319 1.8087

6 9372 7183 6455 €381 .6683 L7253 .8039

8  +5272 .4041 .3€32 ,3589 .3755 L4060 .4522
10 03374 .2586 .2325 .22S7 .2406 <2611 .2894

6 12 .2343 .179¢ 1615 41595 .1671 41812 .2010
14 1721 1315 .11€€ L1172 L1227 1322 1476

16 .1318 .101C .09CE .C897 0S40 .1020 .1130

18 1041 .0798 .071&¢ .C709 .0743 .08C¢ .0893
20 .0844 .0647 .0581 .0574 .06C1 L0653 ,0723

4 248117 2.155C 1.937€ 1.9142 2.0048 2.175S 2.4116

6 1l.2496 .S57€ 8612 .€508 .8910 .S€71 1.0718
8 « 7029 .5388 .4844 .4786 .5012 .5440 .€029

10 L4499 L3448 J31CC L3063 .32C8 L3461 L3858

8 12 03124 22364 <2152 L2127 .2228 2418 L2680
14 42295 L1756 L1582 41563 L1637 .177¢ .196G

16 «1757 1347 21211 1166 1253 .13€0 .1507

18  .13288 .1064 .0S57 .CS45 .0690 .1075 L1191

20 L1125 .0862 .0775 .C766 .0802 .081C .0965

4 3.5146 2.6938 2.4221 2.3528 2.5059 2.71SS 3.0145

6 145621 141972 1.07€5 1.0635 1.1138 1.2C€€ 1.3398

8 <8787 .6734 .6055 .5982 .6265 .68C0 .7536

©5623  .431C .3815 43828 .4C10 .4352 .4823

10 12 .3905 42993 .26S1 42659 .2784 .302Z +3349
14 02869 L2196 J1S77 1983 L2046 .2220 .2461

16 +2197 .1684 41514 .1495 .1566 .17CC .1884

18  .1736 .133C .115€ L1182 .1238 .1343 .148S

20 .1406 .1C78 .0S6S .0957 .1002 .1088 .1206
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TABLE 1

THE CONSTANT SHEAR FLEXIBILITY PARAMETER 1y
FOR LACED STRUCTURAL MEMBERS

(4) VALUES OF u(l+€a)/£b FCR ﬁd/Ab = 165
£ a/b b o o8 1.0 1.2 1.4 l.6
AJ/Ry & /b

4 8592 .6425 .5625 <5411 .5533 .585€ .6420

6 3819 42857 .25CC .2405 .2459 .2616 .2853

'8 .2148 .1607 .14C€ .1353 .1383 1472 .1605

10 «1375 1029 .0SCC .0866 .0885 .C942 L1027

2 12 .0955 .07l14 .0625 .C601 .0615 .0654 .OT13
14 0701 .0525 .045S .0442 .0452 .0481 .0524

16  .0537 .0402 .035Z .0338 .C346 0368 .0401

18 « 0424 L0317 L0278 .C2867 .0273 40251 .0317

. 20 0344 .0257 .0225 .0216 .0221 .0225 .Q257

4 1.7183 1.2858 1.1251 1.0821 1.1065 1.177z 1.2839
6  +7637 L5715 .500C .4809 .45918 .5222 ,.5706

8  .4296 43215 .2813 .2705 .2766 2943 .3210

10 e2749 .2057 .18CC 41731 .177C .1884 .2054

4 12 .1909 1425 .125C 1202 .1229 .13C8 .1427

14 1403 .,105C .0S518 .C883 .0503 .09€1 .1048

16 «1074 .0804 .0702 L0676 .06S2 .07326 L0802

18 .0849 .0635 .055¢ +0534 .0546 ,0581 L0634

20  .0687 L0514 .045C .C433 .0443 .0471 .0514

4 245775 149288 1.687€ 1.€232 1.6598 1.765G 1.9259

6 1.1456 .8572 L,750C .7214 .L.7371 .784& .8559

8 J6444. 44822 .421S 4058 4150 .4415 .4815

10 +4124 .3086 .27CC 42557 <2656 .282%5 L3081

6 12  .2864 .2143 1815 .1804 .1844 .1962 .2140

14 «2104 .1574 .1378 .1325 .1355 L1442 .1572

16 .1611 .1205 .1055 .1014 .1C37 .1104 .1204

18 «1273 .0952 .08322 ,C802 .0820 .0872 L0951

20 .1031 .0772 .067% .0649 .0664 .0706 .0770

4 3.4367 2.5717 2.2501 2.1642 2.2131 2.3545 2.561.

6 1.5274 1.143C 1.00C1 .S619 9836 1.04€4 1.1412

B .B592 46425 .5625 5411 .5533 .586€ .6420

10 e5499 4115 436CC .3463 43541 .37€7 .4108

8 12  .3819 .2857 .25CC 42405 2459 .2616 .2853

14 2805 42099 L1837 1767 L1807 <1922 .20S6

16 .2148 41607 .14C€  .1353 L1383 .1472 .1605

18 «1697 .1270 L1111 .1069 .1093 .1162 .12¢8

20 «1375 41029 .0SCC +CBé6 L0885 +C942 1027

4 4.2959 3.2146 2.8127 2.7053 2.7664 2.5421 3.2098
6 1.9093 1.4287 1.2501 1.2023 1.22S5 1.30€1 1.4266

8 1.0740 .B037 .7032 .€763 .6516 7358 .8024
10 «6873 5143 .45CC .4328 .4426 .47CS5 .513€¢

1C 12 24773 3572 .3125 43006 43074 .3270 L3566
14 #3507 .2624 +22S€ .22C8 .2258 L2403 ,2620

16 .2685 .2009 .1756 .1691 .1725 .1825 .2006

18 2121 1587 .138S .1336 .1366 .1452 .1585

20  .1718 .1286 .1125 .1082 .1107 .1177 .1284
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TABLE 1

THE CONSTANT SHEAR FLEXIBILITY PARAMETER 1y
~_FOR LACED STRUCTURAL MEMEERS 7
(5) VALUES OF u(1+ga)/gb FCK Ad/Ab = 2.0

g;a/b = .4 .6 .8 1.0 1.2 1.4 1.6

Ac/Ad 2/b
4 1.0154 47471 .64C7 .€036 .6€054 .£333 L6810

6  «4513 .3320 L2847 .2682 .2650 .2815 L3027

8 2539 .1868 .1602 .1509 .1513 .1583 .1703

100 J1€25 L1169 L1025 .(966 0969 L1013 .1090

2 12 .1128 .083C .0712 .C671 .0673 .07C4 L0757
14 .C829 .061C .0522 .C493 .04S4 .0517 .0556

16  +0635 .0467 .04CC .C377 .0378 .C356 .0426

18 .0501 .036S .0316 .0298 .0259 .0313 .,0326

20 40406 40295 .0256 .C241 .0242 .0253 .0272

4 240308 1.494¢ 1428132 1.2071 1.2107 1.26€% 1.3620

6 9026 6641 .56G5 .£365 5381 <5625 L6053

- 8 5077 +3735 .32C3 .3018 .3027 .316€& 3405

10 3249 .2351 .205C 1631 .1637 .2026 L2175

4 12 02256 41660 1424 1241 41345 .14C7 .1513
o 14 .1658 .122C .104¢ L0585 .0s88 .1074 1112
16 «1269 .0934 .08C1 .0754 .0757 .C7S2 .0851

18 1003 .0738 .C€22 ,LC556 .0598 0625 <0673

20 «08l2 .0598 .0512 .0483 .0484 .C5C7 .0545

4 3.0463 2.2413 1.622C 1.8107 1.8161 1.8958 2.0430
"6 1.3539 .9961 .8542 L8047 .8071 .8444 .S080

8 e 7616 5603 .48Ct .4527 .4540 .474S .5108

10 «48T4 3586 .3C7% 42897 42506 .3040 43269

6 12 3385 .2490 .213¢ .2C€12 .2C18 .cl1l1 .2270
14 02487 1830 ,156S .1478 .1483 .1551 .1668

16 «1604 .1401 .12C1 .1132 .1135 .1187 L1271

18 .1504 L1107 .0545 .C894 .0897 .C0SZ8 .1009

20 .1219 .0897 .076S .C724 .0726 .076C .0817

4 4.0617 2.9883 2.5626 2.4142 2.4214 2.53%1 2.7241

76 148052 1.3282 1.13SC 1.0730 1.0762 1.1258 1.2107

8 1.0154 .7471 .64C7 .6036 .6054 L6323 .6810

10 6499 4781 L41CC .3863 .3874 .4Cc2 ,4358

8 12 .4513 .332C .2847 42682 .2650 .2815 .3027
14 3316 .243S .2052 T |

«1971 L1677 .20€68 .2224
16 .2539 .1868 .1602 .1509 .1513 .15€3 .1703
18 L2006 1476 .12€€ 1192 .11S6 <1251 .1345
20 .1625 .1155 L1025 .CS66 .096$ .1013 .1090

4 5.0771 3.7354 2,2033 3.0178 3,0268 3.16€32 3.4051
6 242565 1.6602 1.4237 1.3412 1.3452 1.4073 1.5134

8 1.2693 .9335 .80C8 .7544 1567 .7916 .8513
10 <8123 5977 .512¢ .4828 .4843 .5066 .5448
10 12 5641 .4150 .3555 .2353 .3363 .3518 L3783
14 <4145 .3045 42615 42463 2471 .25€5 .2780

16  .3173 .2335 .2002 .1886 .1892 .1975 .2128

18  .2507 .1845 .1582 .1490 .1495 .15€4 .1682

20 2031 .14S4 1281 L1207 .1211 1267 .1362
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TABLE II

THE CONSTANT SHEAR FLEXTIBILITY PARAMETER U FOR BATTENED
STRUCTURAL MEMBERS. THE LONGITUDINAL AND BATTEN ELEMENTS

Akt WF SHAPES AND CHANNELS RESPECTIVELY.
THE VALUES OF u FOR nb=2.0, nb=l'5’ €d=.85, Z=0

,wm_&L)wxb[;CWE_ILQJmWAC[AbA?,-5 .

L/a = 6 8 L1012 14 16 18

—A/x /b
6 L2289 L1674 L1344 L1140 .1002 .0903 .0829

B L1212 .0884 LO710 L0603 .0531 L0480 .0442
10 7.0768 L0560 .0450 .0382 .0337 .0305 .0281
12 .0544 .0396 .0318 L0271 .0239 .0216 .0199
80 14 .0415 ,0302 .0243 .0206 .0182 .0165 .0151
16 0334  ,0244 .0196 L0166 .0146 .0132 L0122
18 .0280 .0204 .0l64 .Cl39 .0123 .0ll1l1 .0102

20 «0242 L0177 L,0142 L0120 .0106 .00S6 .0088

b _e3218 ‘ 1312 L1167 .1058
8 1650 L1175 .0924 L0771 .0669 .0596 .0542
10 .1015 .0720 .0566 .0472 .0410 .0366 .0333
12 .0498 .0495 .0385 .0324 .0282 .0251 .0229

100 14 .0518 .0367 .0288 L0240 .0209 .0186 .O0170
16  .0406 L0288 .022¢6 .0189 .0l64 .0l46 0133
.18 .0332  .0235 .,0185 .0154 .0134 .0119 .0109
20 .0280 .0198 .0156 L0130 .0113 .0101 .0092

.2304 ,1815 .1514

A +4357 43076 42394 L1975 L1693 .1491 .1340
.8 +2190  .1524 L1189 .0S80 .0840 .0740 .0666
10 1320 .,092C .0711 .0586 .0502 .0443 .0399
320891 L0619 ,0478 L0393 .0337 L0297 .0268
120 14 0649 .0450 .0347 .0286 .0245 .0216 L0195
16,0500 .0346 .0267 .0220 ,0188 L0166 .0150

18 .0401 ,0278 .0214 0176 .0151 .0133 ,0120

20 .0323 .0230 ,.0178 L0146 .0125 .O11l1 .0100

b oBT05 43991 307G 2520 L2144 L1876 L1675
B «2830 .1959 L1503 .1227 .1043 .0912 .0815
10 «1684 L1158 .,0485 L0721 .0612 .0535 .0478
12 21122 .0768 L,0585 .0N476 L0404 L0353 .0316
140 14 L0807 L0551 .0419 .,0340 .0289 .0253 .0226
16 .0613 .N418 .0318 ,0258 .0219 .0191 .0O171
.18 . 0486 ,0331 L0251 .0204 _.0173 .0151 .0135
20 .0398 .0271 .02C6 L0167 .0142 .0124 L0111

6 « 1261 5046 L3870 L3149 L2666 L,2320 L2061
B 3569 .2451 .1866 L1513 ,1278 L1111 .0987
10 «2104 ,1433 .1086 L0877 L0740 .0643 .0571
S 1 2_ e _9__1,3_89 . M“LQAS_{LQ___ - ,&97 1 O ] O 572 . O“P 8 .2 L) 04 1_,8,_&, 3‘9_3;!,42_;

160 14 L0990 L0667 0502 L0404 .0340 .0295 .0262
16 0746 .0501 .0377 .0303 ..0255 .0221 L0166

18 » 0586 .0393 ,L,0285 LC237 ,.0199 .0173 .0154
~ .20 0475  .0319 .0239 .0192 .0l61 .0140 .0124
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TABLE 11

THE CONSTANT SHEAR FLEXIBILITY PARAMETER W FOR BATTENED
STRUCTURAL MEMBERS. THE LCNGITUDINAL AND BATTEN ELEMENTS

ARE WF SHAPES AND CHANNELS RESPECTIVELY.

THE VALUES OF U FOR nc=2.0, nb=l.5, £d=.85, Z2=0

(2) ;t:'_b,/ILc =1.0, AC/ A‘b’ = 1.0 o

e Xfa = 68 10 12 14 16 18 _

L/r /b
C

6 «3618B L2671 .2141 .1804 .1572 .1401 .1272
8 .1874 1381 1108 .0935 .0815 .0729 .0662
10 <1177 0866 .0695 L0587 L.05%12 .0458 .0417
12 L0831 .0612 .0491 .C4l4 .0362 L0324 L0295
80 14 « 0636 0468 L0376 0317 0277 40247 .0225
16 « 0515 L0379 .03C04 L0257 ,0224 .0200 .0182

18 0434 0320 ,0257 L0216 ,0189 ,.0169 .0183
20,0378 .0279 .0224 .C189 .0l64 .0147 .0133

6 <5124 L3733 .2958 L2467 ,2128 .1881 L,1693
8 «2554 41853 L1467 L1223 ,1056 40935 .0843
10 e1545 ,1118 L0384 L0737 L.0637 .0564 .0509

1 .1054 L0762 .0602 .0502 .0434 .0385 ,0347

oo 140 .0780 0 L,0562 0445 L0371 L0321 ,0285 ,0257
16 40611 .0442 ,0349 .0291 .0252 .0223 .0202

18 0 .0501  .0362 .028¢ .C239 .0206 L0183 L0165
20 .0424 L0307 .0243 .0202 .0175 .0155 .0140

6  .6969 .5035 .3961 .3280 .2812 .2471 .2211
e 8 03391 ,2435 L1910 .1580 .1354 L1191 .1067
10 .2001 41431 L1120 .05926 .0794 .0698 .0626

e 12 w1333 .085C  L.0743 L0614 .0526 .0463 L0415
120 14 .0964 ,0686 L0536 ,0443 .0380 .0334 ,0300
16 .0739 L0526 .,0411 ,0339 .0291 .0256 0230
18 .0593 .0422 .032S .0272 .0233 .0205 .,0184%

2200 .0492  .0350 .0274 .C226 .0194 .0170 L0153

5 «9152 L6576 .51417 4243 ,3622 L3168 .2824

8 4382 .3124 .2435 ,2003 .1708 .1494 .1332

10 .2544 .1803 .1401 .1151 .0981 .0858 .0765

12 .1667 L1176 40912 .0748 .0637 .0558 .0498

140 14,1186 .0835 L0646 40530 L0451 .0395 ,0352

16  .0895 .0629 .0487 .C399 .0339 .0297 .0265

18  .0707 .0496 .0384 .C314 .0268 .0234 .0209
20,0578 L0406 .0314 .0257 .0219 .0191 .O171

6 141672 B354 ,6516 45355 .4556 43974 .3532
B 3527 .3920 ,3042 2492 .2117 .1845 .1640
10 .3172 .2234 L1726 1411 .1197 .1043 .0927
e X2 .2053 1439 L1108 L0804 L0767 .0668 0593
160 14,1443 .1007 L0775 .0631 .0535 .0465 .04l4
16  .1077 .0750 .0576 L0469 .0397 .0345 .0307
18 .0841 ,0584 .0448 .C365 .0309 .0269 ,0239

20 <0680 L0472 L0362 40294 .0249 0217 .0192
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TABLE II

THE CONSTANT SHEAR FLEXIBILITY PARAMETER u FCR BATTENED
STRUCTURAL MEMBERS. THE LCNGITUDINAL AND BATTEN ELEMENTS
ARE WF SHAPES AND CHANNELS RESPECTIVELY.

THE VALUES OF u FOR nb=2.0, nb=l.5, Ea=.85, z2=0

_A_/I
Aa_ = 6 8 10 12 14 16 18

0 Lo 0 /K
" e 6T <4947 3667 L2938 .2469 .2141 .1900 .1715
B B8 L.2537 L1878 L1505 .1266 .1099 .0977 .0883
10 .1585 L1173 .0S40 .0791 .0687 .0611 .0553
120 L1119 .0828 L0664 L0558 L0485 L,0432 ,0391
30 14 L0857 .0634 .0508 .0428 ,0372 .0330 .0299
16 0695 D515 40413 L0347 .03201 .0268 .0242
18 .0589 L,043% L0349 ,0294 .0255 .0227 .0205
20 .0514 .0381 .0305 L0257 .0223 .0198 L0179

A #7029 L5162 4102  .3420 .2945 .2596 .2328
B +2458 ,2531 42009 .1675 .1444 L1274 .1144
10 .2075 L1516 .1202 L1002 .0B64 .07£3 .0686

12 .1409 .1028 ,0Bl5 .0680 .0586 .0518 .0466

100 14 1041 .0759  .0602 .0502 .0433 .0383 .0344
16  .0817 .0596 .,0472 .0394 .0340 .0300 .0270

_.18 0670 .0489 .0388 .C323 .0279 .0246 .0222

29 «N569 L.D415 L0229 ,.,0275 .0237 .,0209 .0188

5  .9580 .6994 .5528 .4586 .3931 .3450 .3081
8 .4%92 ,3335 2630 L2180 41869 L1641 .1467
0
2

«2682 L1941 ,1529 .1266 .1086 L0954 .0853
120 W1775 L1282 .1)C8 L0835 L0716 .0629  .0563
120 14 «1278 .,0922 L0725 L0600 .0514 .0452 .0405
16 20979 0706 .0554 .0459 .0394 .0346 .0310
18 «N785 L0566 40444 L0368 L0315 .0277 .0248
20 40652 L0470 .036S L0306 .0262 ,0230 L0206

b 12598 49161 47215 5667 5099 L4461 .3972
8 «5935 .4288 43366 L2779 .2373 .2076 .1850
10 «3404 .2448 .1917 L1581 .1249 .,1181 L1052

12 «2211 L1585 41236 .,1021 .0871 .0762 .0679
140 14 L1564 L1119 L0873  .0719 .,0613 L0537 .0478
16 <1177 .084C L0656 L0540 .0460 .0403 ,0359
2B 40928 L0662 L0516 L0425 .0362 L0317 .0282
20 .0758 .0541 ,0422 .0347 ,0296 L0259 L0231

6 1.6082 1.1662 49163 .7560 L6446 .5628 .5002

.8 «7486 5389 L4217 3471 .2956 .2580 .2293
10 .4240 43035 42367 41945 .1655 .1443 .1283
oo...12 .2718  .1937 L1507 .1237 .1051 L0917 .0815
160 14  .1897 ,1348 L1047 .(858 .0729 .0636 .0565
16 21408 .,0998 .0774 0634 .0539 ,047C .0417
18 .1096 0775 .0601 40492 .0418 .0364 .0324

- 2D L0884 L0625 .0484 .0396 .0337 L0293 .0261
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TABLE 11

~ THE CONSTANT SHEAR FLEXIBILITY PARAMETER U FOR BATTENED
+STRUCTURAL MEMBERS, THE LONGITUDINAL AND BATTEN ELEMENTS

~ ARE WF SHAPES AND CHANNELS RESPECTIVELY.

THE VALUES OF U FOR nC—2 0, nb—l 5, Ea— 85, Z=0
(a) ry/r, = 1.0, A /A = 2.0 B
A/a = ¢ & 10 12 14 16 18
L/r 2/b
e 6 6275 L4664 ,3736 .3133 L,2711 .2398 L2157
B 43200 .2375 .1903 L,1597 .1383 .1225 L1104
10 .1994 L1480 .1185 .0995 L0863 .0765 .0689
B 12 L1407 1044 .0836 L0702 .0A09 .0540 .0486
89 14 L1078  .0800 .0641 .0538 L0466 L0413 .0373
14 <0876 .NAS50 ,0521 L0437 L0379 ,0336 ,0303
13 .0743 L0882 ,04%42 L0371 .0321 .0284 ,0256
20 <0651 .0483  ,.0387 0325 ,0281 .0245 .0224
) <8934 L6591 .5245 .4373 ,3762 3310 .2963
] e 4362  L,3209  ,2551 ,2127 .1831 .1613 .1445
10 « 2605 L1913 1820 1268 .1092 .0962 ,0863
1? L1765 41295 .1026 ,0858 .0739 .0651 L0584
100 14 «1303 .06856 .0755 L0633 ,0545 .0481 .0431
156 L1022 .075C L0596 L0497 .0428 L0377 .0338
18 .0839 ,0616 .0489 ,0408 ,0351 .0310 .,0278
20 L0713 ,0524 .0416 L0347 .0299 .0263 .0236
5 142192 48952 ,7085 45892 .5051 .4429 .3952
8 .5792 4736”7:33507”.2781  .2383 L2091 .1867
10 3363 L2452 1937 1607 .1377 .1209 .1080
- 12 .2216 1613 .1273 .;05@ .0905  .0794 L0710
129 14 .1593 1158 .0S13 L0757 .0649 L0570 .0509
14 .1219 L0885 L.0698 .0579 .0496 .0436 .0389
18 L0077 0710 .0560 L0464 .0398 ,0349 ,0312
20 «0812 L0590 L0465 .(386 .0331 ,0290 ,0259
6 1.6045 1,174€ ,9283 .7690 .6576 5753 .5121
8 s T4BT 5452 ,4297 2555 .3039 .2658 L2347
10 L4265 .3D93 L2433 ,2011 L1718 L1503 ,1339
12 2756 41994 L1566 L1293 ,1104 .0966 L0861
140 14 L1943 .,1402 1100 L0908 .0776 0679 .0605
16 .1459  ,1052 .0825% L0680 L0581 .0508 .0453
LE 1148 .0827 .0648 .0535 .0457 .0400 L0356
20 .0938 L0676 .0525 L0437 .0373 ,0326 .0291
6 2.0493 1.4970 1.1806 .9766 .B337 ,.7282 .6412
C B .9445 L6858 <5392 L4451 L3796 L3314 .2945
10 <5308  .3835 L3008  L,2479 L2112 .1844 L1639
o 12 .3382 L2435 ,1906 L1569 1336  .1166 L1036
1560 14 .2350 .1688 .1319 ,1085 .0923 ,0806 L0716
16 L1740 L1247 L0972 L0800 L0A81 ,0564 ,0528
18 «1381 L0967 .0754 LCA20 .0527 L0460 .0409
20 L1089 L,0778 L0607 L0499 .0424 L037C .0329
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TABLE I1

THE CONSTANT SHEAR FLEXIBILITY PARAMETER U FOR BATTENED

ARE WF SHAPES AND CHANNELS RESPECTIVELY.
THE VALUES OF U FOR nc=2.0, nb=l.5, £a=.85, Z=0

(5) ry/r_ = 1.5, A /A = .5

A/a_ = 6

= .8 10 12 14 16 18

L/r /b
“ A <1704 L1236 L0993 (848 .0752 .0684 L0634
B L0961 .0696 .D560 L0478 L0424 .0386 .0358

10 ¢ 0637 0462 .0371 L0317 .0281 .0255 .0237

12 .0466  .0338 .0272 L0232 .0205 .0187 .0173
14 0364 .0265 40213 LCl181 .0160 .0l46 .0135
16

80
«0299 L,0217 L0175 .01l49 .,01i31 ,0119 ,0110
i8 <0254 L,0185 L0149 ,.0127 .0112 .0101 .0093
20 0 .0223  L,0162 .0130 .C111 ,0098 .0088 ,0081
L6 42312 L1624 .1272  .1061 .0924 .0827 .0756
8 1264 L0886 L0693 .0578 .0503 ,0451 .0413
10 « 0814 .N570 .0446 L0372 .0324 ,0290 .0266
12 « 0580 L.040& ,.,0318 ,0255 .0231 ,.,0207 .0189
14 .0442 40310 .0243 .0203 .0176 .0158 .0l44
16 « 0354 L,0249 ,L,0195 ,0163 .014)1 ,L,0127 .D116
18,0294 ,0207 L0162 ,0135 .0118 .0105 .0096
20 «0N282 0177 .0136 ,.0116 ,0101 L0OO0SO .0082
6 « 3058 L2102 .1614 ,1325 .1136¢ L1004 .0907
B .1638  .1120 .0858 .0703 .0603 .0533 .0482
10 » 1025 L0706 0540 0443 L0380 ,0336 ,0304
.12 .0724 L0494 ,0378 .0309 .0265 .0235 ,0212
120 14 « 0543 .O37C .N283 ,0232 .0199 ,0176 L0159
16 20427 L0292 L0223 L0183 L0157 .0135 ,0126
18 . 0349 ,0239 ,0183 .,0150 ,0!29 ,L,0114 .,0103
20 .029% .0202 .0155 €127 .0109  .0096 .0087

5 #3042 L2668 ,2021 L1638 .1389 L1215 L1087
8 .2082 .1398 ,1054 .0853 .0722 .0632 .0566
10 .1298  .0B68 .0553 40528 0447 .0391 .0350
12 .0897 ,0599 .0450 L0363 .0307 .0269 .0241
140 14 L0664 L0443 ,0333 .0269 .0227 L0195 L0178
15 .0516 .0345 .0259 .0209 .0177 .0155 .0139
18 .0417  L,0279  .0210 L0169 .0143 .0125 .0112
20 .0347 .0232 L0175 .0141 .0120 .0105 .,0094

6 «4962 43322 L2491 L2000 .1680 .1458 .1295
B 2595 .1720 .1282 .1026 .0860 .0745 .0662
10 1603 .1057 .0785 L0626 .0525 .0455 .0404
12 L1097 L.0721 .0534 L0426 .0357  .0309 .0274
160 14,0805 ,0528 .0391 L0312 .0261 .0226 .0201
16 0620 .0407 .0302 L0240 .0201 0174 .0155
18 .0497 .0326 .0242 ,0193 .0161 .0140 ,0124
20 L0410 .0269  .020C .0159 .0132 L0115 L0102
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TABLE 11

"THE CONSTANT SHEAR FLEXIBILITY PARAMETER p FOR BATTENED
_STRUCTURAL MEMBERS. THE LCNGITUDINAL AND BATTEN ELEMENTS

‘ARE WF SHAPFS AND CHANNELS RESPECTIVELY.
THE VALUES GF p FOR n_=2.0, n,=1.5, £ _=.85, Z=0

(é),rb/rc,%_leSJWA /A _=1.0

<’ b e -
%/a = 6 8 10 12 14 16 18
L/ L/b
“ 4 « 2449 L1794 L1440 ,L,1220 ,1071 .0963 .0B82

8 L1373 .1005 ,0807 ,0684 .0600 .0540 .0495
10 «0914 L0670 .0538 ,0455 L0400 L0360 .0329
o 12 20676 20495 ,0398 L(337 ,0295 .0265 .0243
3n 14 .0535 ,N393 ,0315 L.C257 .0234 ,0210 .0192
16 0 0445 L0327 L0262 L0272 .0194 L0174 .0159
13 .0382  ,0282 .0226 L0191 ,0!'67 .0150 .0l136

29 0340 .025C ,0201 L0149 .0148 ,0132 ,0120

6 #3312 .2374 L1871 L1561 L1352 .1202 .1089
3§  .1781 .1274 L1003 .0837 .0725 .0645 .0585
10 1144  ,0817 .0643 .0537 .0465 .04l4 .0376
12 .0818 .0584 .0460 .0384 .0233 .0296 .0269

100 14 L0628 L0450 L0354 L0296 L0256 L0228 .0206
l6 0508 .0364 40287 40239 .0207 .0184 .0167
18,0426 ,0306 ,0241 .C201 .0174 L0155 ,0140
20 L0348 .0265 .02CS L0174 .0151 .0134 ,0121

& « 4371 + 3087 2402 41982 .1699 ,1496 ,1345
_ B .2287 .1606 .1247 .1028 .,0881 L0777 .0698
10 « 1430 L1003 L0777 L0640 .0549 L0484 ,0436
12,0999 L0700 .0542 .0447 .0283 ,0338 ,0304
14 0750 .0526 L0408 40336 ,0288 .,0254 0229
156 « 0594 D417 40324 L0267 .0229 L,0202 .0181
18 « 0489  ,0344 L0267 .0220 .0189 ,L,0166 L0150

20 L0415 .0292 L0227 - »C187  .0l61 L0l42 .0127

[

i
N
ol

6 5625 43931 L3031 ,2480 ,2110 L1846 .1648
8 « 2886 L,2002 L1537 .1255 .10D67 .0933 .0834
10 21772 L1224 .0S38 0755 ,0650 L0569 L0508
12 « 1216 ,0838 L,0642 0523 ,0444 L0389 L0347
140 14,0899 .0620 .0474 L0386 ,0328 ,0287 .0257
15 «0701 D483 L037C L.0302 .0256 .,0224 .0200
18 .0569 .0392 ,0301 .0245 .,0208 .0182 .0163
20 «0476 .0329 ,0252 L0206 L0175 L0153 ,.D137

b 7073 .4906 .3758 .32056 .2585 .2250 .1999
B _«3579 .2459 L1872 L1518 .1282 L1115 ,0990
10,2159 .14B81 1124 LCG10 L0767 L0667 .0592
R 12 1469 L100C .0758 L0612 .0516 .0448 L0398
160 14 41073  .0729 .0552 0446 .0376 .0326 .0290
16 0826 ,0562 .0425 L0343 ,0289 L0251 ,.0223
18  .0663 .0451 .0341 .0276 .0232 .0202 L0179
20,0549  ,0373  .0283 L0229 .0193 .0l47 .0145
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TABLE Il

THE CONSTANT SHEAR FLEXIBILITY PARAMETER M FOR BATTENED
STRUCTURAL MEMBERS. THE LCNGITUDINAL AND BATTEN ELEMENTS

ARE WF SHAPES AND CHANNELS RESPECTIVELY.
THE VALUES OF u FOR nb=2.0, nb=l.5, Ed=.85, Z=0

LA/a = 6 8 10 12 14 16 18

2/r 2/b
e & 3193 ,2352 L1886 41592 .1390 .1242 .1130
8 41785 L1314 L1054 L0890 L0777 +0695 L0632

10 .1192  ,N878 ,L,0704 L0594 .0519 .0464 ,0422
12 .08Re  L,D653 L0523 0442 .0385 L0344 L0313
80 14 LN706 L0521 L0417 .0352 .0307 .0274 .0248
16  .0590 ,0436 .0350 .,0295 ,0256 .0229 .0207

18 0512 .0379 ,0303 .0256 .0222 .0198 .0179
20 L.0457 L0338 L0271 L0228 .0198 L0176 .0159

b e4311 43123 22471 42061 1780 L1577 .1422
8 22299 1662 .1314 .1096 .0947 .0839 ,0758
10 «1473 L1064 .0841 L0702 .0606 .0538 .0485

12,1055 .0763 .0603 .0503 .0435 .0385 .0348

S 100 14 L0814 .0589 L0466 .0388 .0336 .0297 .0268
16 0661 .047S .0379 .0316 .0273 .0242 .0218

.18 .0558  .0405 ,0320 .0267 .0231 .0204 .0184

20  .0485 .0352 .027S .0233 .,0201 .,0178 .0160

6  +5684 4071 .3190 .2638 .2261 .1989 .1782
81,2935 ,2093 .1636 L1352 .1159 .1020 .0915
10 1826 41299 .1015 .C838 .0719 .0632 .0567
2 01273 L0906 L0707 .C584  .0501 .0441 L.0395
120 14 .0958 .0682 .0533 .0440 .0377 .0332 ,0298
16 0761 .0542 .0424 .0350 .0300 .0264 .0237
18  .0629 .0449 ,0351 ,0290 .0249 .0219 L0196
20,0536 .0383 .0300 .0248 .0213 .0187 .0168

B eT309 5193 4041 03322 2832 L2477 2209
8 «3690 L2605 .2020 L1657 .1411 ,1235 L1102
10 22247 o1580 .1223 L1002 .0853 L0746 L0666

12 <1536 .1078 .0833 ,0683 .0581 .0509 .0454

140 14 1134 0796 40615 .,0504 ,0429 L0375 ,0335
16 «0885 .0622 .0481 .,0394 .0335 ,0293 ,0262

218 0720 L0506 L0392 0321 .0273 .023S .0213

20 « 0605 ,0426 L0329 L0270 ,0230 .0201 .0180

6 «9185 .6489 .5025 .4111 3490 .3042 ,.2703
.. .8 4564 3197 .2463 L,2010 ,1704 .1484 ,1318
10 2735 .1906 L1464 L1193 .1010 .0879 ,0781
e 12 01841 21279 40981 L0798 L0676 .0588 .0522
1560 14 «1341 .0930 ,0713 .0580 .0491 .0427 .0379
16 «1032 L,0716 0549 .0446 ,0378 .0329 .0292
18 ° .0829 .0575 .0441 .0359 .0303 .0264 ,.0235

. .20 0687 .0478 ,0366 .0298 .0252 .0219 .0195
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TABLE 11

THE CONSTANT SHEAR FLEXIBILITY PARAMETER U FOR BATTENED

ARE WF SHAPES AND CHANNELS RESPECTIVELY.,
THE VALUES OF u FOR nc=2.0, qb?l.S, Ea=.85, Z=3

(8) 1, /T, = 1.5, A /R = 2.0

_%/a = & 8 10 12 14 16 18
L/x /b
d 6 .3938 .2911 .2333 ,1964 .1709 .1521 ,1378

8 .2197  .1623 .1301 .1096 .0954 .0849 .0770
10 .1469 .1086 .0871 .0733 .0638 .0568 .0514
12,1095 .0B1C .0649 .0546 .0475 .0423 .0383
80 14 0876 .0649 .0520 .0437 .0380 .0338 .0305
16  .0736  .0545 .0437 .0367 .0319 .0283 .0256

18  .0641 .0475 .0381 .0320 .0278 .0246 .0222
20,0574  .0425 .0341 ,0286 .0248 .0220 0198

6 5311 .3873 .3071 .2561 .2209 .1951 L1755
8 «2816 .2050 .1624 .135% .1169 ,1033 ,.0930
10 .1803 ,1311 ,1039 ,0866 .0748 L0661 .0595
12 e1293 .094) 0746 0622 .0537 .0474 .0427

100 14 .1000 .0728 .0577 0481 .0415 .0367 .0330
16 .0815 .,0594 ,0471 .,0393 ,0339 ,0299 ,.0269

18 .0690 .0504 .040C .,0333 ,0287 .0254 .0228
20 «0602 .0440 .0349 .0291 .0251 .0221 .0199

6 .6996 .5056 .3977 3294 .2824 .2481 .2220

8  .3584 .2579 42025 1676 .1437 .1263 .1131

10 .2221 .1596 .1252 .1036 .0888 .0781 .0699

R 12 .1548 .1111 .0872 .0721 .0618 .0544 .0487
120 14  +1166 .0838 .0657 .0544 .0466 .041C .0367
16 .0928  .0667 .0524 L0434 ,0372 ,0327 .0293

18 .0769 .0554 .0435 .C360 .0309 .0271 .0243

20 <0657 ,0474 L0373 .0309 .0264 L0232 L0208

6  +B992 L6456 .5051 .4163 .3553 .3108 L2770
8  .4495 .3208 .2502 .2059 .1756 L1536 L1370
10 2721 .1936 .1507 .1239 L1057 .0924 .0824
12 .1855 .1318 .1025 .C843 .0718 .0628 .0560
140 14 41370 L0973 .0757 .0622 .0530 .0464 .0414
16 .1070 .0760 .0591 .0486 .0414 .0363 ,0323
.18 .0872 .0620 .0483 L0397 .0338 .0296 L,0264

20 <0733 .,0522 .0407 L0335 .0285 .0250 .0223

6 141297 .8073 .6292 .5167 .4395 .3834 .3407
.8 5548 .3935 ,3054 ,2502 .2126 .1853 .1647
10 .3301 .2331 .1804 .1476 .1253 .1092 .0970
o 12 42213 L1555 .1204 .0S84 .0835 .0728 .0647
160 14  .1609 .1131 .0874 .0714 .0605 .0527 .0469
16 o1238  ,0871 .0672 .0549. 0466 .0406 .0361
18 . .0995 .0700 .0540 .0442 .0275 .0326 .0290

20  «0826 40582 0449 L0367 .0212 .0272 .0241
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TABLE 11

THE CONSTANT SHEAR FLEXIBILITY PARAMETER p FOR BATTENED
STRUCTURAL MEMBERS. THE LCNGITUDINAL AND BATTEN ELEMENTS

ARE WF SHAPES AND CHANNELS RESPECTIVELY.

THE VALUES OQF 4 FOR n =2.0, n,=1.5, & =.85, 2=0
C b a

20, A /A = .5

@) r/r_=2.0, A/A = . o

o A/a = 6 8 10 12 14 16 18

L/x /b
6 «1500 L1082 .0870 .0745 .0664 L0607 .0566
8 L0873 ,0631 .0507 .0434 .0386 ,0353 ,0329
10 0591 .0427 .0343 ,0294 .0261 .0238 .0221
N 12 0438 L.0317 L,0255 L0218 .0194 L0176 .0164
80 14 e 0347 L0251 L0202 L.0172 .01%53 L0139 ,0129
16 «0287 .0208 L0167 .C143 .0126 LOll5 L0105
18 « 0245 L0179 .,0143 ,0122 .0108 ,00S8 L0090

.20 0216 L0157 .0126 .0107 .0095 .0086 .0079

6 1995 ,.,1386 .1081 ,L,0903 .0788 L,0708 .0650

8 «1129 ,L,0784 L0611 L0511 .0445 L0400 ,0368

10 « 0744 L0517 .04046 L0337 ,0294 L.0264 0242

12 « 0539 ,0375 ,L,0293 ,L,0245 ,0213 .0191 .0176

100 14,0416 .0290 .0227 L0189 .0165 .0148 .0136 _
15 « 0336 ,L,0235 ,0184 L0154 ,0134 ,0120 ,0110

18,0281 L0197 .0154 .0129 .0112 .0100 .0092
20 « 0242 L0170 L0133 L0111 .0097 .0087 .0079

6  +2604 L1761 .1342 .1098 .0941 .0834 .0756
B 41445 L0975 .0742 L0607 .0520 .0461 .0418

10 .0925 ,0631 .0480 40393 ,0337 ,0298 .0271
12 .0665 L0450  .0343 L0280 .0240 .0213 L0193
14  ,0505 .0342 ,0261 .0213 .0183 .0162 .0147
16 0402 ,0273 .,0208 L0171 .0146 0129 .0117
18 .0331 .0225 .0172 .0l41 .0121 .0107 .0097
.20 0280  ,0191  .014¢ .0120 .0103 L0091 .0082

120

6 3325  .2205 L1651 1330 .1124 L.0983 ,.0881
3 .1820 .1202 .0897 .C0722 .0610 .0533 ,0478
10 L1163 0767 0572  .0460 .0389 .0340 .0305
12 .0818 .0540 .0403 L0324 .0274 .0239 .0215
140 14 L0613 ,0405 .0303 L0244 .0206 L0180 .0161
16 0482 .0319 .0239 .0192 .0163 0142 .0127
.18 0 .0393  L.0261 L.01S5 L0157 .0133 .0116 L0104

20 .0329 .0219 .0164 .0132 L0112 .00S8 ,0088

6 <4157 L.2718 .2008 L1598  .1336 1186 ,.1027

B 2254 L1465 L1077 ,0855 .0714 .0618 .0548
10 « 1427 .0G825 L0675 L0539 .0449 .0385 .0345
e 212 «0994 L0644 L0473 L0375 .0313 L.0271 .0240
160 14 « 0740 .0480 .0352 L0279  .0233 .0202 .0179
16 0577 0374 L0275 .,0218 ,0182 .0158 .0140
18 «0466 ,0303 ,0223 L0177 .0148 .0128 ,Oll4

20 0387 .0252 .0186 .0148 .0123 .01€67 L0095
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TABLE 11

THE CONSTANT SHEAR FLEXIBILITY PARAMETER M FOR BATTENED
STRUCTURAL MEMBERS. THE LCNGITUDINAL AND BATTEN ELEMENTS
ARE WF SHAPES AND CHANNELS RFESPECTIVELY.

THE VALUES OF U FOR nc=2.0, nb?l.S, £a=-85, z=0

(o) r/r, = 2,00 A /B = 1.0

2/a = & 8 10 12 14 16 18
L/ /b

= 3 2040 ,1487 .1194 L1015 .0R95 0810 .OT46
8 L1197 L0874 .0702 .0596 ,0525 L0475 .0437

19 .08722 ,L,0601 .0482 .0410 .0360 L0325 .0D299

12 L0621 0454 L0365 L0309 L0272 .0245 .0225

80 14 <0500 L0366 .0294 L0249 .0218 ,L,0196 L0180
16 «0420 L0308 ,0247 .0209 .0183 .0155 .0151

18 «N365 L0269 L0215 LC182 .0159 L0143 .0130

20 L0226 L024C L0162 L0163 .0l42 L0127 ,0116

6 2678 L1898 1491 .1244 .1080 .0964 L0878
3 L1511 L1071 .0841 .0792 .0609 .0544 .0495
10 1003 .0712 .0559 .0457 .0405 ,0361 .0329
12,0735 .0522 .0411 .0343 .0797 .0265 .0241

100 14 L0575 40410 L0322 ,0269 .0233 .0208 .0L89
16 0471 .0337 .0z65 .C221 .0192 .0l71 L0155

18 L0400 L0286 40226 .0188 .0l62 .0145 L0131
20 .0349 ,0250 .Q1S7 .0165 .0143 L0127 .0l15

5} o 3462 JZ2405 L1857 L1527 .13208 .1195% ,1042
B 21900 L1316 41015 .0834 L0715 .0632 .0570
10 « 1231 «.088%3 L0658 « 0541 + 04863 « 0409 ,L,0369
e 12,0882 L0612 L.0472 .0388 .0333 ,0294 .0265
120 14 s 0GTA D470 40363 « 0299 L0256 L0226 L0204
14 « 0543 0379 .0292 (241 L0207 LDO1B2 .01544
18 « 0453 sN317  .DZ245 L0202 L0173 L0153 L0137
20 L0388  L.0272 L0211 .C174 .0149 L.0131 ,0118

6 +42391  ,.3005 .2290 L1863 .1581 L1383 .1237
8 .2362 .1609 .1223 .0693 .0842 .0727 .0659
10,1502 .1022 0776 0630 0534 .0467 .0418
1 «1058  ,0720 .0547 40444 .0377 L0330 .0295
140 14,0799  .0544 L0414 ,0336 .0285 .0250 ,0223
16 L0632 ,0432 .0329 .0268 .0227 L0199 .0178
18,0520 .0356 ,0272  ,0221 .0i88 ,0164 L0147
20 .0440 ,0302 L0231 .0188 .0160 .0140 a0125

6 5464 ,3699 L2792 .2251 L1896 L1646 .1462
. B .2BS7 L1947 L1464 L1177 .0990 .085S5 .0763
10 .1818 .1218 .0914 .0734 .0617 .0535 .0475
e L2 w1264 L0847 .0635 .C510 .0429 .0372 .0330
160 14,0943 .0632 L0474 40381 .0320 .0278 .0247
16 .0739 .0496 .0372 .0299 .0252 .0218 .0194
18,0601 .0404 .0304 .C244 .0206 .0178 L0159

20 .0503 .0339 .0255 .C206 .0173 .0150 .0133
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TABLE II

THE CONSTANT SHEAR FLEXIBILITY PARAMETER H FOR BATTENED
STRUCTURAL MEMBERS. THE LONGITUDINAL AND BATTEN ELEMENTS

ARE WF SHAPES AND CHANNELS RESPECTIVELY.
THE VALUES OF ¥ FOR nc=2.0, nb=l.5, £a=.85, Z=0

(11) r /r = 2.0, A /A = 1.5
b C : v ¢ b -
A/a = ¢ 8 10 12 14 16 18

L/x %/b
6 .2580 .1892 .1518 L1285 .1127 .1012 .0926
8 L1521 L1117 .0896 .0758 .0664 .0596 .0545
10 .1054 L0775 .0621 .0525 .0460 .0412 .0376
12 .0804 .0591 ,0474 .0401 L0350 .0313 ,0285
80 14  .0653 .0481 .0386 .0325 .0284 .0254 .0231
16,0554  .0409 .0328 ,0276 .0241 .0215 .0195
18  .0485 .0359 ,0287 .0242 .0211 .0188 .O170
20 L0436  ,0323 .0259 L0218 .0189 .0169 .O153

Q

6 3360  .2410 1900 ,1585 .1373 .1220 .1105
8  .1893 .1357 .107C .0893 .0773 .0687 .0623
10 41262 0906 L0715 ,0596 .0516 .0459 .0415
12 .0931 .0670 .0525 .044l .0382 .0339 ,0307
14 0734 ,0526 .0418 .0349 .0302 .0267 .0242
16 0607 .0438 .0346 .0289 .0250 .0221 .0200
18,0519 0376 .0297 .0248 ,.0214 L,0190 .0171
20 .0456 .0330 .0261 .0218 .0188 .0167 .0150

6 <4320 .3048 .2371 .1956 L1677 .1477 .1328
8  .,2355 L1658 ,1288 .1062 .0910 .0802 .0721
10 .1526 .1074 .0835 ,0688 .0590 .0520 .0467
e 12,1098 .0774 .0602 .0496 .0425 ,0375 .0337
120 14 .0846 L0598 .0465 .C384 ,0329 .0290 .0260
16 .0685 .0485 .0378 .0312 .0267 .0236 .0211

18 .0575 .0408 ,0318 .C263 .0225 .0168 .0178

20 .0486 L0353 L,0276 .0228 .0195 .0172 .0l154

6 25457 43805 2930 L2396 .2038 .1783 .1592
8 « 2905 L2016 1548 L1264 1075 .0940 ,0840

10 «1842 L1276 ,0980 L.,0800 ,0680 .0595 L0531

12 «1299 .0901 .0692 .0565 .0480 .0420 .0375

140 14  .0984 L0683 L.0525 .C429 ,0365 L0319 .0285
16 «0783 .0545 L,0420 .0343 .,0292 .,.02%5 .0228

1B 0648 +0452 .0348 L0285 L0242 .0212 ,0189

20 .0551 .0385 ,0297 .0243 .0207 .0181 ,0162

6 <6771l .4679 .3576 .2904 .2456 .2136 .1898

8 3541 .?2430 L1850 L1499 .1265 L1100 .0977
10 .2208 .1511 .1148 .0929 .0784 .0682 .0606
o 12 L1534 ,1049 .0797 .0645 L0544 .0473  .0420
160 14 1146 .0784 .0596 L0482 .0407 .0354 .0314
156 +0901 L0617 .047C .0380 .0321 .0275 .0248
18 L0735 .0505 .0385 .C312 .0263 .0229 .0203

.20 L0619 .0426 .0325 L0264 .0223 L0194 L.O0172
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TABLE 11

THE CONSTANT SHEAR FLEXIBILITY PARAMETER Y FOR BATTENED
_ STRUCTURAL MEMBERS. THE LONGITUDINAL AND BATTEN ELEMENTS

ARE WF SHAPES AND CHANNELS RESPECTIVELY.
THE VALUES OF p FOR nc=2.0, n5=l-5. €a=.85, Z=0

. Afa =_ 8 8 10 12 14 16 18
L/x /b
c 6 .3120 .2297 .1842 .1555 .1358 .1215 ,1106

8 L1846 .1360 .1090 ,0920 .0803 .0718 .0653
10 « 1286 .06G48 .07KA0 L0641 .0559 .0499 .0453
12 .0986 L0728 L0584 0492 .0428 ,0382 ,0346
80 14 «0806 D596 L0477 0402 ,0350 ,0311 .0282
16 «.0687 0509 .,.0408 L0343 ,0298 .0265 .0240
18 «0A05 L,0449 ,0359 L.C302 .0262 .0233 ,0210
20,0547 .0405 .0325 0273 .0237 .0210 .0189

S h W4042 42922 L2310 L1927 L1665 L1476 .1332

8 2275 1644 .1299 .1084 .0937 .0830 .0750
i0 21522 431101 L,087C L0726 L0627 .0556 L0502
12 .1128 .0B17 L0646 L0539 .0466 .0412 .0372

00 14,0893 L0649 L0513 .0428 .0370 .0327 .0295
16  .0742 40540 0427 .0356 ,0308 .0272 .0245
18 .0638 .0465 ,0368 .C307 .0265 L0234 .0211

29 «0562 L0411 .0326 40271 .0234 .0207 .0186

6 .5178 .3692 .2386 42385 .2045 L1799 .1614
.8 _.2810 .1999 .1561 .1290 .1l106 .0973 .0873
10 .1822 .1296 .1012 .0836 .0717 .0631 .0566
12 .1314 .0936 .0731 .0604 .0518 .0456 .0409
14,1016 .0726 .0568 40469 .0402 .0354 .0317
16  .0826 .0591 .0463 .0383 .0328 ,0289 .0259
18,0696 .0499 .0391 .C324 .0278 .0244 ,0219

20,0603  .0434 .0340 .0282 .0241 ,0212 .Ol90

b 6524  .4604 ,3570 .2929 .2495 .2183 L1947
8 .3447 .2422 J1874 .1535 .1307 .11l44 .1021
10 .2181 .1531 L1183 .0969 .0825 0722 .0644
12 .1540 .1081 .0836 .0685 .0583 .0510 L0455
140 14  .1169  ,0822 .0636 .0521 .0444 ,0388 .0347
16 0934 L0658 L0510 .0418 .0356 ,0312 .J278&

18 L0775 .0547 L0425 .C348 ,0297 .0260 .0232
20 0662 0468 L0364 .0299 .0255 .0223 .0199

6 +BOT8 5659 .4360 .3558 .3016 .2626 2334
_ B .4184 .2913 ,223¢ ,.1820 .1541 1342 L1192
10 .2599 .1804 .1383 .1125 .0952 .0828 .0736
12,1804 .1252 .0959 .0780 .0660 .0574 .0510
160 14 .1349 .0936 .0718 .0584 .0494 ,0430 .0382
16  .1063 .0739 .0567 .0461 .0391 ,0340 .0302
18 .0BT70 .0606 .0466 .0379° .0321 .0280 .0248

20 L0734 .0513 L,0394 L0321 L,0272 .0237 L.,0211
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