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Increased Recombination Between Active tRNA Genes
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ABSTRACT

Transfer RNA genes are distributed throughout eukaryotic genomes, and are frequently found as multicopy
families. In Saccharomyces cerevisiae, tRNA gene transcription by RNA polymerase III suppresses nearby
transcription by RNA polymerase II, partially because the tRNA genes are clustered near the nucleolus. We
have tested whether active transcription of tRNA genes might also suppress recombination, since recombi-
nation between identical copies of the repetitive tRNA genes could delete intervening genes and be detrimen-
tal to survival. The opposite proved to be the case. Recombination between active tRNA genes was elevated,
but only when both genes are transcribed. We also tested the effects of tRNA genes on recombination between
the direct terminal repeats of a neighboring retrotransposon, since most Ty retrotransposons reside next to
tRNA genes, and the selective advantage of this arrangement is not known.

INTRODUCTION

MOST TRNA GENEs exist in multiple copies distributed
throughout the genome, and appear to have duplicated in
dispersed locations through RNA-mediated transposition (Hani
and Feldmann, 1998; Dujon e al., 2004). Little is known about
which predicted tRNA genes in multicellular eukaryotes are
transcribed, but there are indications from a limited number of
studies that there might be considerable developmental regula-
tion in the transcription of tRNA gene subclasses (Koski and
Clarkson, 1982; Wilson et al., 1985). In addition to tRNA genes,
vertebrates have highly repetitive DNA elements, termed SINEs
(short interspersed repetitive elements) that are derived from
small RNA genes with tRNA-class promoters for RNA poly-
merase III (pol III) (Jurka, 2004). The major SINE in humans,
the Alu elements, are originally derived from the 7SL RNA
found in signal recognition particles, and are found in more than
500,000 copies per haploid genome (Gilbert and Labuda, 1999).
Although few of these elements appear transcriptionally active
under normal conditions, extensive Alu expression can be ob-
served during viral infection or in response to cellular stress
(Fornace and Mitchell, 1986; Liu et al., 1995), and most cloned
Alu repeats can be transcribed by pol III in vitro (Elder et al.,
1981; Liu and Schmid, 1993).

The existence of such frequent, highly similar DNA se-
quences in the genome raises the question of whether there is

some mechanism to protect against frequent deletion of chro-
mosome segments between repeats by homologous recombina-
tion, since such deletions could lead to the death of single cells
or developmental abnormalities in complex organisms. In
adults, such deletions can lead to unregulated growth, such as
human mammary tumors with deletions between Alu elements
at the BRCAL1 loci (Rohlfs et al., 2000; Pavlicek et al., 2004;
Tournier et al., 2004).

Transcription of genes by RNA polymerase II (pol II) in-
creases their susceptibility to recombination (Smith et al.,
1996), but this has not been addressed for pol III transcription
units, which are very short and almost entirely covered by the
active transcription complex when present. Although transfer
of genetic information between identical pol III genes is possi-
ble (e.g., tRNA) (Munz et al., 1982), recombination that deletes
intervening material might be predicted to be suppressed as be-
ing counter to survival. Here we use a yeast model system to
address the effects of pol III transcriptional activity on recom-
bination between and near tRNA genes in the yeast chromo-
some. We examined the rate of recombination between two
nearly identical tRNA genes in the yeast Saccharomyces cere-
visiae that were either transcriptionally active or inactive. The
results were unexpected, in that recombination increased when
both tRNA genes were active.

In addition to testing the effect of pol III transcription on re-
combination between tRNA genes, there was reason to suspect
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that homologous recombination within a few hundred base pairs
of active tRNA genes might also be suppressed. Most of the Ty
retrotransposons in yeast (Ty1-Ty4) have evolved mechanisms
for preferential insertion and retention near tRNA genes
(Chalker and Sandmeyer, 1992; Hull et al., 1994; Kendall et
al., 2000; Bolton and Boeke, 2003). A rare fifth class, Ty5,
prefers transcriptionally silent regions such as telomeres and
silent mating type loci (Zou et al., 1995). Proximity to a tRNA
gene might have the selective advantage of conferring condi-
tional pol II transcriptional silencing (Hull ez al., 1994), but re-
duced recombination between the direct, long terminal repeats
(LTRs) of the Ty retrotransposons might also have provided the
selective advantage for the Ty elements to have developed this
insertion preference.

MATERIALS AND METHODS

Yeast strains

Strains were derived from Saccharomyces cerevisiae
W3031A (MAT a leu2-3, 112 his3-11, 15 ade2-1 trpl-1
ura3-1 canl-100) and BY4741 (MATa his3A1 leu2A0
met15A0 ura3A0). Growth was performed in YPD (Rose et al.,
1990) except where noted. For testing recombination between
identical tRNAL®" genes, constructs were made in W3031A, the
coding sequence of the LEU2 gene, on chromosome III, adja-
cent to the SUP53 tRNAU gene was precisely replaced with
the coding region of URA3. A second copy of the SUP53 gene
was introduced 200 bp downstream from the 3’ end of the URA3
coding region, 1.3 kb downstream from the first tRNA gene
and in the same orientation. The insertion contained SUP53 se-
quence from 59 bp upstream to 29 bp downstream of the tRNA
coding sequence. The strains contained either a wild-type
tRNASUP33 promoter at each site or a transcriptionally inactive
promoter containing previously characterized point mutations
in both the A box and B box (Newman et al., 1983; Hull et al.,
1994). The mutated gene is designated sup5S3AAB (Fig. 1A).

To test recombination rates near a tRNA gene, URA3 was
inserted at the Ty3-1 locus on chromosome VII in strain
BY4741, (YGRWTy3-1) replacing all but 100 bp of each end
of the central epsilon region. A second strain was created by
then mutating the neighboring tRNACYS gene promoter (triple
B box mutation G52A, T53A, C55G) by homologous recom-
bination of a PCR product with integration selected by G418
resistance and confirmed by sequencing genomic PCR frag-
ments from the strains. The Kan gene was inserted 152 bp
downstream of the tRNA gene in the opposite orientation in the
strain with and without mutations to the neighboring tRNACYs,

PCR fragments for deletions of RAD51 and RAD52 were pro-
duced by replacement of their coding regions with the KAN cas-
sette from the plasmid pFA6a—KanMX6 (Longtine et al., 1998).

Recombination assay

For each experiment three cultures were inoculated from in-
dividual colonies and were grown in SDC-Ura (Rose et al.,
1990) medium to ensure retention of the URA3 genes. These
cultures were used to inoculate 200 ml of YPD cultures to a
starting OD600 of 0.2 and grown for 7 h to allow loss of URA3.

PRATT-HYATT ET AL.

Cells were collected and resuspended in 10 ml of 10 mM Tris-
HCI pH 7.5, 1 mM EDTA. Cells are plated on SDC + 5-fluo-
rootic acid (5-FOA) medium, to select against URA3. The num-
ber of 5-FOA-resistant colonies is expressed relative to the
number of cells plated.

To test whether 5-FOA resistance arose from homologous
recombination to delete URA3, 24 to 32 5-FOA-resistant
colonies were tested in two or more separate experiments by
PCR of genomic DNA from flanking primers.

RESULTS

Recombination between identical tRNA genes

Since many tRNA genes in yeast are duplicated up to 15
times throughout the genome, suppression of recombination be-
tween duplicates could have survival value. The question ad-
dressed here is whether transcription of tRNA genes by RNA
polymerase III affects the recombination rate between identical
tRNA genes. We modified the LEU2 locus on chromosome I1I
as shown in Figure 1A. The tRNASUPS3 gene is normally lo-
cated upstream of the LEU2 gene, and its transcription has been
extensively characterized (Newman et al., 1983; Huibregtse and
Engelke, 1989). The coding sequence of LEU2 was precisely
replaced with that of URA3, along with inserting a second copy
of the tRNASUP33 gene (SUP53) 200 base pairs downstream
from URA3. Strains were produced containing either active
tRNA genes or tRNA genes inactivated by point mutations in
the internal promoters (G19C, Cs¢G; sup5S3AAB) that prevent
formation of any part of the RNA polymerase III complex
(Newman et al., 1983; Huibregtse et al., 1989). The four tested
constructs had either both tRNA genes active (SUP53/SUP53),
both inactive (supS3AAB/sup53AAB), or only one at a time ac-
tive.

Loss of URA3 function was selected on media containing the
5-FOA, and the normalized rate of number of 5-FOA-resistant
colonies is shown in Figure 1B. These data are averages from
five different experiments, each done in duplicate.

To determine if 5-FOA resistance arose through deletion be-
tween the tRNA genes, PCR was done on genomic DNA from
independent isolates using primers flanking the tRNA genes.
The starting strains produce a 1.8-kb product spanning both
tRNA genes and the URA3 gene, whereas precise homologous
recombination between the tRNA repeats produces a 175-bp
product. Sixteen 5-FOA resistant colonies from two separate
experiments on each strain all showed a 175-bp product, con-
sistent with a precise deletion between sequences in the tRNA
genes.

In contrast to our original hypothesis that recombination
would be repressed between transcribed tRNA genes, the high-
est homologous recombination rate was found to be the one
where both tRNASUP33 genes were active. This strain had a re-
combination rate averaging five times greater than the other
three strains in four separate experiments. It is particularly in-
teresting that inactivating either tRNA gene gave the same re-
combination as inactivating both. The failure of only a single
active tRNA transcription unit to stimulate recombination im-
plies that the increase in recombination between active tRNA
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FIG. 1. (A) Recombination between
tRNA genes. Four strains were modified
by replacing LEU2 coding sequence
with that of URA3J in strains containing
either an active or transcriptionally in-
active tRNA gene. An additional active
or inactive tRNASUP33 gene was then
placed 200 bp downstream of URA3 in
each strain. Deletion events between the
two tRNA genes was selected by growth
on plates containing 5-FOA media and
deletions were confirmed by PCR. (B)
The first four bars are average values of
five independent experiments. The fol-
lowing four values are an average from
three experiments. The number of viable
colonies on the 5-FOA plates was di-
vided by the number of cells plated and
normalized to recombination in the
SUP53/SUP53 strain. The frequency of
5-FOA resistance in the SUP53/SUP53
strain  was  (9.47 = 0.71 X 107 10),
RADS51 and RADS52 were deleted in the
strain constructs (Fig. 1) containing
either two active tRNA genes (SUP53/
SUP53) or two inactive tRNA genes
(sup53AAB/sup53AAB). Deletion of
RADS51 causes a significant increase in
5-FOA resistant colonies between inac-
tive tRNA genes, but only a modest, if
any, increase between active tRNA
genes. Deletion of RADS52 caused about

a 10-fold decrease in the amount of 5-FOA resistant colonies in the SUP53/SUP53 strain, but only a modest decrease in the

sup5S3AAB/sup53AAB strain.

genes is the result of some direct or indirect communication be-  responding to the sequence between the repeats, gap filling, and
tween components of active pol III complexes on both genes. ligation (Liu and Schmid, 1993; Prado et al., 2003; Tournier et
al., 2004; ). Deletions caused by recombination between direct

Recombination path

repeats of untranscribed regions have been shown to be reduced
10- to 100-fold in rad52 mutants consistent with the role of

Single-strand annealing (SSA) is one of the common mech-  Rad52p in SSA (Jackson and Fink, 1981; Prado and Aguilera,
anisms leading to deletions between direct repeats. When a  1995). In contrast, the rad52 mutation did not affect deletion
break occurs between the two repeats the 5" ends are resected.  rates of direct repeats in rDNA and high-copy CUPI tandem
This allows the 3’ strands to anneal within the repeated ele- arrays (Ozenberger and Roeder, 1991). Another participant in
ments, followed by removal of the nonhomologous 3 tails cor-  homologous recombination, Rad51p, acts by promoting pairing
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TaBLE 1. RATES oF HOMOLOGOUS RECOMBINATION

Rate of 5-FOA % Undergone

Resistance homologous

Strain (X 10719) recombination
SUP53/SUPS53 9.47 £ 0.71 100
supS3AAB/sup53AAB 1.76 = 0.75 100
SUP53/SUP53 rad52A 1.23 = 0.28 39
sup5S3AAB/sup53AAB rad52A 1.04 = 0.19 5
SUP53/SUP53 rad51A 10.17 = 2.61 ND#
sup53AAB/sup53AAB rad51A 5.68 £ 1.23 ND

AND = not determined.

and strand exchange with an intact homologous duplex. Rad51p
is required for most recombination but dispensable for SSA
(Ozenberger and Roeder, 1991). To examine whether recom-
bination between the tRNA genes was proceeding through a
SSA path, RAD52 and RAD51 were individually deleted from
our strains with either two active or two inactive tRNA genes
flanking the URA3 gene.

The rad52A strains consistently showed reduced 5-FOA re-
sistant colonies. In the SUP53/SUP53 strain there was a 20-fold
decrease, and in the sup53AAB/sup53AAB strain there was a
33-fold decrease in homologous recombination (Table 1). This
sensitivity to rad52 deletion distinguishes recombination be-
tween these direct repeats transcribed by pol III from the -DNA
and CUP] repeats transcribed by RNA polymerases I and II.
In contrast, rad51A caused little change in the number of 5-
FOA resistant colonies in the SUP53/SUP53 strain, and caused
a slight increase in 5-FOA resistance in sup5S3AAB/sup53AAB
strains (Fig. 1B). This is consistent with previous demonstra-
tions that recombination between direct repeats can occur in the
absence of strand exchange (McDonald and Rothstein, 1994;
Rattray and Symington, 1995; Ivanov et al., 1996). These re-
sults suggest that recombination between tRNA genes is oc-
curring in the absence of strand exchange regardless of their
transcriptional activity, with Rad52p facilitating SSA.

To test whether the residual 5-FOA resistant colonies arose
through recombination between the tRNA genes or some other
defect, we again tested genomic numerous 5-FOA isolates by
PCR. This analysis showed that only 39% of the SUP53/SUP53
and 5% of the sup53AAB/sup53AAB SFOA-resistant colonies

underwent deletion by homologous recombination in the
Arad52 strain, compared to 100% in RADS52 strains. In the
SUP53/SUP53—Arad52 strain 22% of the SFOA resistant
colonies came through a probable URA3 mutation, since dele-
tions were not detected, and 39% appear to have a large chro-
mosomal deletion in the region. In the sup53AAB/sup53AAB-
Arad52 strain most (95%) of the 5-FOA-resistant colonies
represented a probable small mutation in URA3 (Table 1).

Recombination between retrotransposon LTR elements

We also tested the effect of a nearby tRNA gene on the re-
combination between LTR elements of a well-characterized
yeast retrotransposon locus Ty3-1, in its native chromosomal
position on chromosome VII (Bilanchone et al., 1993). We re-
placed the interior epsilon region of the retrotransposon Ty3-1
with URA3. We then either left the neighboring tRNACYS gene
intact or mutated three base pairs in the B box internal promoter
(Fig. 2), which dramatically decreases pol III transcription (Al-
lison et al., 1983; Kinsey and Sandmeyer, 1991; Aguilera,
2002).

The strains with active versus inactive tRNA genes were
tested for their relative frequency of URA3 loss. The averages
from four separate experiments demonstrated that the frequen-
cies for the active tRNA gene and inactive gene were essen-
tially identical (9.5 X 107° and 9.0 X 107°, respectively)
within error for these experiments. Recombination between the
LTR direct repeats therefore appears to be unaffected by the
presence of a nearby active tRNA gene.

Ty3 Ty3 -
A < intemal intemal ' Recombination frequency
t Sigma > region | | URA3 region Sigma
- - . }— 95x10°8
/[ =
tRNA o8
/] i -6
1 N — 9.0 X 10

|

FIG. 2. Recombination between Ty3 sigma direct repeats. The URA3 gene was inserted at the Ty3-1 locus, replacing all but
100 bp of either end of the epsilon region. Multiple B box promoter mutations were then created in the neighboring
tRNACYS gene in a second strain, inactivating the transcription promoter. Recombination between the two sigma elements was
identified by section against the URA3 gene through growth on 5-FOA media and screening for precise recombination between
sigmas by PCR from genomic DNA. Recombination frequency is shown as number of recombinants divided by the total num-
ber of cells plated.
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DISCUSSION

Contrary to our original hypothesis, the work presented here
showed that the occurrences of recombination between two
identical tRNA genes is higher when both tRNA genes are be-
ing actively transcribed. In this respect, pol III transcription ap-
pears to behave similarly to pol II transcription in that tran-
scription stimulates recombination (Aguilera, 2002). However,
there are also distinct differences. It is unclear why both tRNA
genes needed to be actively transcribed in order for the increase
in homologous recombination to occur. One possibility is hav-
ing two active tRNA genes causes an increase in breakage, con-
sistent with tRNA genes causing replication fork pause (Desh-
pande and Newlon, 1996), which have been shown to cause
increased homologous recombination (Bilanchone et al., 1993;
Aguilera, 2002). If this is the case, it is not clear why a single
active tRNA gene might not give an intermediate level of re-
combination increase. A second possibility is that having two
active tRNA genes changes the type of repair that is used. If
this is the case, perhaps the spatial organization of these tRNA
genes is playing a part in their repair. However, the rad52A
data suggest that the path of this increased recombination is still
through SSA.

Recent findings showing spatial clustering of the linearly dis-
persed tRNA genes suggest a possible explanation for our re-
sults. Yeast tRNA genes are largely localized to the nucleolus
when actively transcribed, but not when inactivated by promoter
point mutations (Thompson et al., 2003). The mechanism of
this colocalization is not currently known, but it is conceivable
that tRNA transcription complexes associate with some sort of
framework that brings them into proximity, increasing the like-
lihood of physical interactions. This would be consistent with
evidence that the frequency of disease-specific chromosomal
translocations are nonrandom, and have been correlated to the
spatial proximity of the sites involved (Lukasova et al., 1997;
Neves et al., 1999; Roix et al., 2003).

The increased recombination between identical tRNA
genes when they are transcriptionally active could help ex-
plain why families of tRNA genes in yeast are not found
tandemly repeated, or even in close proximity. The closest
pair of identical tRNA genes occurs on chromosome IX,
where two tRNA genes Asp are about 12 kb apart from each
other. Studies using plasmid constructs and non-tRNA repeats
have shown that increasing the distance between repeats de-
creases the efficiency of SSA in competition with gene con-
version (Fishman-Lobell et al., 1992; Haber and Leung, 1996;
Puget et al., 1999).

The results presented here might be pertinent in considering
the occurrence of deletions, inversions, and duplications at Alu
elements throughout the human genome. Alu elements contain
tRNA-class internal promoters from the 7SL RNA genes
(Gilbert and Labuda, 1999). While this pol III promoter in
cloned Alu repeats is generally found to be transcriptionally
competent in vitro, most of the hundreds of thousands of Alu
repeats in human cells are inactive in cells, and little is known
as to which of the elements are activated in response to cellu-
lar insults (Fornace and Mitchell, 1986; Liu et al., 1995; Gilbert
and Labuda, 1999). An example of recombination between Alu
repeats has been studied is the human tumor suppressor gene,
BRCAL1. BRCA1 genomic sequence is composed of 41.5% Alu
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sequence, corresponding to an Alu element every 650-bp aver-
age (Smith et al., 1996). Alu recombination seems to be the
main source of genomic rearrangements in patients with a
hereditary predisposition to breast and ovarian cancers (Puget
et al., 1999; Rohlfs et al., 2000; Pavlicek et al., 2004). The data
in this report suggests that the transcriptional activation of these
Alu repeats, possibly through stress response or viral infection,
might increase their ability to recombine.
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