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ABSTRACT

The pathogenesis of acute graft versus host disease (GVHD) is multistep process. This review con-
siders acute GVHD in three sequential steps: conditioning regimen, donor T cell activation, and ef-
fector mechanisms. In step one, the conditioning regimen simultaneously damages and activates host
tissues, amplifying antigen presentation to allogeneic donor T cells. In step two, donor T cells, acti-
vated by host alloantigens, proliferate and secrete a variety of cytokines. Type 1 cytokines (inter-
leukin-2 and interferon- g ) are critical for acute GVHD, but several regulatory mechanisms of tis-
sue damage include inflammatory cytokines and cytolytic cellular effectors. The gastrointestinal (GI)
tract is a principal target organ because damage to the GI mucosa can release inflammatory medi-
ators such as endotoxin that amplify systemic disease. The inflammatory processes of acute GVHD
can be considered as a distortion of the cellular responses to viral and bacterial infections. Cell-me-
diated toxicity is critical to other GVHD target organs, particularly the liver, where Fas-mediated
injury predominates. The cytolytic pathways (e.g., perforin) clearly intensify acute GVHD, although
they are not necessary for systemic disease in several model systems. Many of these insights come
from animal models using mutant mouse strains that can clarify the role of individual proteins or
cell types in the disease process. These insights should allow the testing of new classes of drugs and
inhibitors in clinical bone marrow transplantation.
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INTRODUCTION

OUR U NDERSTAN DING O F TH E PA THOPH YSIO LOGY of
graft-versus-host disease (GVHD) has improved

greatly with recent advances in our understanding of the
cellular and humoral interactions that are intrinsic to all
inflammatory processes. In allogeneic bone marrow trans-
plantation (BMT), donor lymphocytes are infused into a
host that has been profoundly damaged. The pathophysi-
ology of acute GVHD may be considered to be a distor-
tion of the cellular response to viral and Gram-negative

bacterial infections. The principal target organs of GVHD
support suggest a close relationship between infection and
GVHD. The skin, gut, and liver all share an extensive ex-
posure to endotoxin and other bacterial products that can
trigger and amplify local inflammation. This exposure dis-
tinguishes them from organs like the heart and kidneys
that are not GVHD targets. Because of their situation as
primary barriers to infection, these target organs have
large populations of professional antigen-presenting cells
(APCs) such as macrophages and dendritic cells that may
enhance the graft-versus-host (GVH) reaction.
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PHASE ONE: HOST TISSUE DAMAGE
FROM CHEMORADIOTHERAPY

Recent findings implicate the excessive production of
cytokines, which are the central regulatory molecules of
the immune system, as well as cellular effectors in the
induction and maintenance of experimental and clinical
GVHD (l–3). The pathophysiolo gy of acute GVHD can
be considered in a framework of three sequential phases
(l,3). The first phase is not strictly part of GVHD because
it starts before the donor cells are infused. The transplant
conditioning regimen damages and activates host tissues,
including the intestinal mucosa, liver, and other tissues.
Activated host cells secrete inflammatory cytokines, such
as tumor necrosis factor (TNF)- a and interleukin (IL)-1
(4), and growth factors such as granulocyte-machrophage
colony-stimulating factor (GM-CSF) (5–7). The presence
of inflammatory cytokines during this phase may upreg-
ulate adhesion molecules (8) and major histocompatibil-
ity complex (MHC) antigens (9–13), thereby enhancing
the recognition of host MHC or minor histocompatibil-
ity antigens by mature donor T cells after the cellular
component of the graft is infused. Increased expression
of cell-surface adhesion molecules may also occur
(14–16). The relationship between conditioning intensity,
inflammatory cytokines, and GVHD severity was re-
cently further supported in animal models (17). More-
over, the risk of inducting severe acute GVHD appears
to be less if the lymphocytes  are infused well after the
primary tissue injury has resolved (18,19).

PHASE TWO: DONOR T-CELL RESPONSE
TO HOST ANTIGENS

The second phase of acute GVHD includes presenta-
tion of host antigens to donor T cells and the subsequent
proliferation and differentiation of these activated T cells.
When a CD4 1 cell enters the recipient bloodstream, it
will generally interact with the MHC class II molecules
of the APCs, whereas a CD8 1 cell will interact with MHC
class I antigens. Data suggest that host APCs are partic-
ularly important to the activation of donor T cells (20).

T cell activation requires two signals. The first signal
is provided by the TCR–peptide–MHC interaction
(21,22). The second, or costimulatory signal, requires
contact with APCs (23,24). The second signal determines
the outcome of the activation sequence, leading to either
complete activation, partial activation or to a long-last-
ing state of antigen-specific unresponsiveness, termed an-
ergy. Several ligands can provide costimulation for rest-
ing T cells; the best-characterized costimulatory
molecules are the B7 antigens, which bind to two T cell
surface receptors, CD28, and CTLA-4 (25,26).

T cells that secret IL-2 and interferon- g (IFN- g ) (Type
1 cytokines) are critical mediators of acute GVHD. The
importance of GVHD has been demonstrated in both ex-
perimental and clinical BMT. First, IL-2 is secreted by
donor CD4 1 T cells in the first days after experimental
allogeneic BMT (27). Second, the blockade of IL-2 with
antibodies to IL-2 or its receptor can inhibit the devel-
opment of experimental disease (27). Clinically, the pre-
cursor frequency of host-specific, IL-2-producing T cells
(precursor frequency of helper T cells) is predictive for
the risk of acute GVHD (28,29). In addition, soluble IL-
2 receptor levels may be a sensitive indicator of im-
pending GVHD onset, and they correlate with disease
severity (30).

Increased serum levels of IFN- g are associated with
acute GVHD, and lymphocytes  from animals with
GVHD secrete significantly greater amounts of IFN- g
than lymphocytes from non-GVHD controls (31–35).
Additional evidence of a role for IFN- g in experimental
acute GVHD includes: priming of macrophages by IFN-
g during acute GVHD to produce inflammatory cytokines
(36); induction of pathology in skin tissues and the gas-
trointestinal tract by IFN- g (37,38); suppression of T lym-
phocyte function characteristic of acute GVHD by IFN-
g (39,40); prevention of acute GVHD when CD8 1 cells
are incapable of IFN- g production (41); and inhibition of
acute GVHD by direct or indirect blockade of IFN- g
(37,42–44).

The preincubation of donor T cells in the presence of
the Th2 cytokine IL-4 can polarize these T cells toward
a Th2 cytokine phenotype (43). Transplantation of po-
larized Th2 T cell populations failed to induce acute
GVHD to MHC class I or class II antigens. These ex-
periments strongly supported the concept that the balance
in Th1 and Th2 cytokines is critical for the development
(or prevention) of acute GVHD. Further data show that
Th2 cells maintain some anti-leukemic efficacy, and can
support lymphohematopoietic engraftment (44,45). Pe-
ripheral blood hematopoietic cells collected after mobi-
lization with granulocyte  colony-stimulating factor (G-
CSF) suggest that Thl R Th2 polarization may occur,
albeit indirectly, resulting in less GVHD compared to
saline-treated controls (46–48). This effect also changes
the production of other inflammatory cytokines such as
TNF- a (49,50).

Regulatory cells may also help determine the ultimate
response of donor T cells to host antigens. CD4-CD8 dou-
ble-negative T cells (usually NK1.1 1 ) can suppress a T
cell response in a mixed lymphocyte reaction (MLR) and
can prevent GVHD in vivo. Presumably these regulatory
cells develop to control the intensity of the overall re-
sponse to a specific antigen. The balance between reac-
tive T cells and suppressor T cells could thus control the
intensity of GVHD. Other potential avenues for tolerance
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induction may occur at the cellular level. Groux et al.
demonstrated that CD4 1 T cells, grown ex vivo in the
prolonged presence of IL-10, suppressed inflammatory
bowel disease that was induced by pathogenic T cells
(51). These cells were termed “Tr1.” Moreover, Tr1 cells
have been isolated from the peripheral blood of severe
combined immunodeficiency (SCID) patients after allo-
geneic stem cell transplantation, in which high levels of
IL-10 in vivo are associated with donor/host tolerance
(52). These results suggest that prolonged exposure of
naive CD4 1 T cells to IL-10 may result in a population
of Tr1 cells that can regulate immune responses and mod-
ulate GVHD. 

PHASE THREE: INFLAMMATORY
EFFECTORS

The third phase of acute GVHD is complex, and the
precise relationship between cytokines induced during
the second phase and mediators of tissue damage during
this phase is an area of active investigation. Mononuclear
phagocytes, which have been primed with Th1 cytokines
during phase two, receive a second, triggering signal to
increase the secretion of the inflammatory cytokines
TNF- a and IL-1. This stimulus may be provided by
lipopolysaccharide (endotoxin, LPS), which can leak
through the intestinal mucosa damaged by the condi-
tioning regimen. LPS subsequently may stimulate gut-as-
sociated lymphocytes and macrophages (36). LPS reach-
ing skin tissues may also stimulate keratinocytes, dermal
fibroblasts, and macrophages to produce similar cy-
tokines in the dermis and epidermis (5–7). TNF- a can
cause direct tissue damage by inducing necrosis of tar-
get cells, or it may induce tissue destruction during
GVHD through apoptosis, or programmed cell death. The
induction of apoptosis commonly occurs after activation
of the TNF- a –Fas antigen pathway (53). Apoptosis is
probably critical to GVHD in the large intestine (54), skin
(55,56), and possibly in endothelial cells (57). In addi-
tion to these proinflammatory cytokines, excess nitric ox-
ide (NO) produced by activated macrophages may con-
tribute to the deleterious effects on GVHD target tissues,
particularly immunosuppression (40,58,59). Thus, the in-
duction of inflammatory cytokines may synergize with
the cellular damage caused by cytotoxic T lymphocytes
(CTLs) and natural killer (NK) cells (60,61), resulting in
the amplification of local tissue injury and further pro-
motion of an inflammatory response.

The gastrointestinal (GI) tract plays a critical role in
the amplification of experimental acute GVHD. Damage
to the intestinal mucosa in phase l and by cytolytic ef-
fectors activated in phase 2 allows translocation of LPS
from the intestinal lumen into the circulation. LPS sub-

sequently stimulates additional cytokine production by
gut-associated lymphocytes  and macrophages in the GI
tract and by keratinocytes, dermal fibroblasts, and
macrophages within the skin. This mechanism may am-
plify local tissue injury and further promote an inflam-
matory response which, together with the CTL and NK
component, leads to target tissue destruction in the BMT
host. Damage to the GI tract in phase 3 increases LPS
release, which stimulates further cytokine production
causing additional GI tract damage. Thus, the GI tract is
critical to propagating the “cytokine storm,” which is
characteristic of acute GVHD.

The histological features of GVHD of the GI tract in
clinical GVHD and experimental GVHD following mye-
loablative conditioning are characterized by villus blunt-
ing, lamina propria inflammation, crypt destruction (with
crypt stem cell loss), and mucosal atrophy. These fea-
tures can be induced in animals by the administration of
exogenous cytokines, including TNF- a (62) and IL-1
(63). Furthermore, the inhibition of IFN- g (37), TNF- a
(64), IL-1 (63), or NO (65) can reduce GI tract
histopathology in animals with GVHD. In contrast, CTL
effectors do not appear to play a dominant role in ex-
perimental GVHD of the GI tract (17,66–70), despite the
ability of intraepithelial lymphocytes to induce Fas-me-
diated apoptosis of host-type tumor cells (71).

The role of LPS and inflammatory cytokines in GVHD
explain a number of unique and seemingly unrelated as-
pects of GVHD. For example, a number of analyses of
clinical transplants noted increased risks of GVHD asso-
ciated with advanced-stage leukemia, certain intensive
conditioning regimens, and viral infections (14–16). Sim-
ilarly, the reduction in GVHD seen in gnotobiotic mice
(72,73) and in patients with aplastic anemia undergoing
transplantation in laminar airflow environments with gut
decontamination (74) may be explained by the reduction
of bacterial LPS on the skin and gut. The beneficial ef-
fect of protective environments may be less apparent in
patients receiving transplants for malignancies, because
prior therapy and associated infections may have resulted
in an environment that facilitates GVHD.

An alternative approach to prevent GI tract damage
during allogeneic BMT may permit the exploitation of
intensive conditioning as an antileukemic modality with-
out requiring T cell depletion. One possible approach in-
volves strengthening the GI mucosal barrier before BMT
conditioning to prevent entry of immunostimulatory mol-
ecules from the GI tract lumen into the circulation. Be-
cause direct shielding of the GI tract from total body ir-
radiation (TBI) is not feasible, this effort relies on
pharmacological agents that provide a “cytokine shield”
to reduce mucosal sensitivity to radiation and/or
chemotherapy, This approach is attractive because it
blocks inflammatory cytokine dysregulation before the
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initiation of the cascade. In addition, by acting as indi-
rect cytokine antagonists, these shields would not impede
the physiological functions of cytokines in cellular dif-
ferentiation (as might be the case with complete neutral-
ization of TNF- a and IL-1). Two growth factors, IL-11
and keratinocyte growth factor (17,75–77) have recently
shown particular promise as cytokine shields.

PHASE THREE: CYTOLYTIC EFFECTORS

Although cytokines clearly play important roles in the
morbidity and mortality of systemic GVHD, they may be
less important as mediators of damage in individual
GVHD target organs. The unusual cluster of GVHD tar-
get organs (skin, gut, and liver) is not adequately ex-
plained by the systemic release of cytokines. Further-
more, the absence of GVHD toxicity in other visceral
organs, such as the kidneys, argues against circulating
cytokines as the sole causation of tissue-specific damage.

Cell-mediated cytotoxicity is thought to contribute to
the destruction of GVHD target tissues. T cells can ef-
fect cytolysis by either direct contact or the release of
soluble mediators such as TNF- a . Contact-dependent
cell-mediated cytotoxicity can be effected through a se-
cretory pathway involving granule release or by effector
cell membrane ligand interaction with death receptors on
the membrane of the target cell (78,79). Following se-
cretion of granules by the effector cell, the polymeriza-
tion of perforin upon binding to the target membrane is
crucial to optimize penetration of granule contents, in-
cluding granzymes A and B, into the targeted cells. Apop-
tosis of target cells is then rapidly induced by granzyme
B activation of the caspase cascade. A common pathway
appears to operate in signaling through so-called death
receptors (DR). A number of ligands have been identi-
fied on T cells that possess the capability to trimerize
TNFR (TNF 1 receptor)-like DR molecules. In addition
to the well-characterized FasL (CD95L)–Fas(CD95) DR
ligand-receptor pair, additional molecules, including
TWEAK (DR3 li-gand) and TRAIL (DR4,5 ligand), have
recently been identified as capable of activating the cas-
pase system and subsequent apoptosis (80–83). Although
the physiologica l function(s) of DR3,4, and 5 are not
presently know, the expression of TRAIL and TWEAK
on T cells may be important contributors to this process.

During the past several years, a number of experi-
mental allogeneic BMT studies have used donor inocula
that are unable to mediate either perforin/granzyme or
FasL-Fas dependent killing (66,84–88). Transplantation
of perforin-deficient T cells results in a marked delay in
the onset of weight loss and mortality from GVHD to
MHC and minor H antigens (66,84). However, these stud-
ies also revealed that although greater numbers of per-

forin-deficient T cells were required to induce GVHD
with comparable kinetics to that caused by normal T cells,
weight loss and mortality could be induced in the absence
of perforin-dependent killing. Moreover, the clinical
signs of GVHD including kyphosis, alopecia, skin le-
sions, and diarrhea, as well as histopatholog ical changes
in the skin, liver, and lymphohematopoietic compart-
ment, were all eventually observed following transplant
of perforin-deficient T cells (66,84). Thus, it is now clear
that the perforin/granzyme pathway is not necessary to
generate tissue damage.

Perforin-deficient T cells retain the capacity to medi-
ate FasL-dependent killing. Accordingly, experiments
have been performed to examine the consequences of
transplanting donor cells unable to signal Fas-mediated
apoptosis. These studies have utilized T cells from mice
with a naturally occurring genetic mutation resulting in
a FasL protein (gld/gld) that cannot trimerize Fas, and
therefore fails to induce Fas signaling (89). Transplanta-
tion of donor T cells with functionally defective FasL
into lethally irradiated MHC-matched allogeneic recipi-
ents resulted in the induction of weight loss and lethal-
ity (66). In contrast to the findings using perforin-defi-
cient cells, transplantation of comparable numbers of
FasL-defective T cells versus wild-type T cells resulted
in only a modest delay in weight loss and a small increase
in median survival time (66). Thus, the presence of per-
forin and other potential effector pathways in the gld T
cells were capable of inducing cachexia and lethality of
GVHD (66,87).

FasL-mediated cytotoxity may be an important effec-
tor pathway in hepatic GVHD. First, hepatic GVHD has
been found to be markedly diminished following trans-
plant of FasL-defective T cells and normal marrow. In
the absence of donor-mediated FasL-dependent cytotox-
icity, minimal liver inflammation was observed in two
minor histocompatibility antigens (MiHA) disparate
BMT models (66). Compatible with this notion, a recent
study reported that administration of anti-FasL (but not
anti-TNF antibody) significantly blocked the hepatic in
a model of GVHD to MHL antigens (69).

In summary, recent investigations have begun to de-
fine the contributions  of cell-mediated cytotoxicity via
both perforin/granzyme and FasL-dependent pathways to
both systemic GVHD and to GVHD target organ dam-
age. The newly emerging molecular pathways of death
signals should provide more complete and precise defi-
nitions of requirements for GVHD-induced pathogene-
sis. Because CD4 1 and CD8 1 cells can mediate both
GVHD and GVL activity, assessing the relative contri-
butions of each of the cytotoxic pathways in individual
subsets may help in the potential dissociation of GVHD
from GVL. As our understanding of the relative contri-
bution of each of these pathways to GVHD pathology in
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individual GVHD target organs deepens, novel strategies
to optimize prophylaxis and therapy for individual host
tissues may emerge.
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