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ABSTRACT

A number of new predictive modeling techniques have emerged in the past several years. These methods can
be used independently or in combination with traditional modeling techniques to produce useful tools for the
management of prostate cancer. Investigators should be aware of these techniques and avail themselves of
their potentially useful properties. This review outlines selected predictive methods that can be used to de-
velop models that may be useful to patients and clinicians for prostate cancer management.

INTRODUCTION

PREDICTIVE MODELING IN MEDICINE involves the use of a
given data set, which is collected either retrospectively or

prospectively, to derive a mathematical model to predict out-
comes for future patients. A number of predictive models are
available to health care professionals engaged in the care of pa-
tients with cancer of the prostate (CaP). Perhaps the most widely
used of these are the tables developed by Partin et al.1 These
tables are nomograms for predicting pathologic stage from clin-
ical variables in men with clinically localized CaP. A number
of models also are available for predicting treatment outcomes
and survival in patients with various stages of CaP. These mod-
els can provide physicians and patients with a scaffold on which
to base their therapeutic decision-making.

The majority of predictive models currently used in CaP
management have been developed utilizing traditional statisti-
cal techniques such as multivariate logistic regression. New
techniques have emerged, such as artificial neural networks
(ANNs), that can be used to complement traditional techniques.
Investigators should be aware of these new techniques that can
be used independently or in combination with traditional sta-
tistical methods to develop accurate predictive models.2–14 This
review examines techniques that are available for developing
predictive models for use in CaP management.

PREDICTIVE MODELING TECHNIQUES

The goal of predictive modeling is a model that is both re-
producible and accurate in predicting the outcome of interest.
Traditionally, prediction of an event, y, from a circumstance,
x, has been accomplished by simple linear regression. How-
ever, biological systems often require multiple variables
(x1,x2,x3, . . . xn) to predict an outcome, y. For these tasks, more
sophisticated methods may be required. Some of these meth-
ods are described below.

Mechanistic Modeling

Mechanistic models are mathematical tools that describe the
cause and effect relationships of a proposed action in terms of
a mathematical function, such as the pull of gravity on an ob-
ject or the resistance to a current in a wire.15–18 Mathematical
models can come in all degrees of complexity, from simple
variations of mass balance equations to highly complex multi-
variate systems. However, purely mechanistic mathematical
functions may fail to describe fully systems that have strong
stochastic elements (random processes) contributing to the
model output. For these systems, including many biological sys-
tems, statistical routines have been developed that include an
estimation of the error associated with model output. Many such
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modeling methods have been adapted for computers. Some sta-
tistical models may not always be useful in medical predictions,
as biological systems are often quite complex, necessitating ap-
proximations and simplifying assumptions that may introduce
further uncertainty and error. However, even when there is sub-
stantial uncertainty about the true nature of the mechanisms and
the values of critical parameters, astute use of alternative mod-
els can provide valuable guidance in making medically in-
formed management decisions.

Stochastic Modeling

In statistical models, the dependent or effect variable, y, is
predictedby one or more independent or causal variables, x.19,20

Statistical models incorporate methods to determine how much
of the observed variability can be explained by the independent
variables, and how much is due to “chance”; i.e., is unexplained.
Inferential statistics, by definition, measure the reliability of
conclusions drawn about a population based on a population
sample.

There are five advantages of statistical methods. First, they
use actual observations, either random or imposed. Second,
more observations should lead to more reliable predictions in
a predictable and quantifiable manner. Third, the predictions
are on a continuous scale and allow for fine distinctions if there
are enough data. Fourth, there is a rich set of analytical meth-
ods available. Finally, each prediction comes with an estimate
of its reliability. The main disadvantages are as follows. First,
the form of the statistical relation is not obvious a priori and
several models may give similar results in terms of goodness-
of-fit. Second, assumptions about the distribution of the pre-
dictor and response variables are required and may be impos-
sible to verify. Third, unusual observations such as outliers may
cause problems with the model. Fourth, extrapolation to values
of the independent variable outside the domain of calibration
is not justified. Fifth, it is not obvious how to define the sam-
ple space, and errors here invalidate the inferences. Sixth, it is
not obvious which independent variables should be included in
the relation. Finally, the precision of the statistical relation may
not be useful enough for meaningful predictions, especially with
observational data.

Simple Linear Regression

Simple linear regression assumes a linear relation, within a
certain range, between a single independent predictor and the
dependent variable.3,21–24 Rarely, however, is a single predic-
tor enough to explain most of the observed response in a bio-
logical system. The process of fitting a regression equation to
observed data is called “calibration,” which yields a goodness-
of-fit measure, such as R2. If the sample is truly representative
of the desired sample space, we would expect to obtain the same
parameters, within experimental and observational error, in sim-
ilar repeated studies. These models are the most commonly used
predictive models.

Cox Proportional Hazards Model

If we were to plot survival against time, the result would be
a survival plot; i.e., the function S(t). This plot would describe
those patients who survive beyond a given time, t. An alterna-
tive way of looking at such data would be to look at the pop-

ulation who do not survive beyond time, t. This can be described
as a logarithmic function where h(t) is known as the hazard
function and can be represented as follows, h(t) 5 2d/dt (ln
S(t)). This equation essentially describes the negative slope of
the survival plot. When examining survival, it must be looked
at in reference to time and may be looked at in reference to
more than one variable. When this is the case, Cox’s propor-
tional hazards model can be used.3,21,25–29 Cox’s model as-
sumes that the independent variables are related to survival by
the hazard function (3). The hazard function—those not sur-
viving beyond time, t—is influenced by the independent vari-
able(s) and regression coefficients (b1, b2 . . . bn). The hazard
function and the relation to independent variables and regres-
sion coefficients can be expressed as h0(t) e ̂ (x1b1 1 x2b21 . . .
xnbn), where x1 is the first independent variable and b1 is the
first regression coefficient. The regression coefficients can be
estimated together with the standard errors. This will then al-
low an estimate of confidence intervals to be made for the rel-
ative risks described by Cox’s model. Cox’s model allows us
to compare the survival of two groups of patients in reference
to multiple independent variables. Logistic regression may also
be used to analyze survival data; however, while logistic re-
gression models estimate the effects of the independent vari-
ables over a constant time period, the Cox method models the
risk as a continuous function over time.

Nonlinear Regression

The basic purpose of regression is to predict an outcome from
a given set of observations. The regression model allows for a
best-fit line to be used to describe the data.3,21,25–29 If simple (lin-
ear) regression is used and the degree of correlation between the
dependent and independent variables is high, the residual vari-
ance (error of the residuals) will be low, resulting in a good pre-
dictor of outcome. Unfortunately, in biological systems, the re-
sponse or outcome may have a nonlinear relation to the variable.
In fact, quite often, there are experimental results or theoreti-
cal considerations suggesting that the response may be nonlin-
ear. Many nonlinear effects can be linearized; that is, new vari-
ables can be created by transforming the original variables, so
that the resulting regression on the new variables is linear. An
investigator may try any number of transformations in an at-
tempt to linearize the relations within the data at hand. Ideally,
these transformations should have some theoretical basis. If the
transformation succeeds, the predictor is said to be “intrinsically
linear” because we can now fit a linear equation (in the parame-
ters) to the transformed data. The need for a transformation may
be indicated if: (1) for significance testing in regression, it is re-
quired that experimental (observational) errors be independently
and normally distributed with a common variance. Often, we can
see that this is not the case; certain transformations will restore
these conditions; or (2) a plot of the residuals (fitted v observed
values of the dependent variable) show a pattern when plotted
against the predictor. Some common transformations include:

Logarithmic: This transformation equalizes the variances
when standard deviations are proportional to the mean;
Square root: When enumeration (small integer) data follow a
Poisson distribution where the mean and variance are equal,
taking the square root of the response variable restores nor-
mality. This is equivalent to squaring the predictor variable;
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Angular (inverse sine): This manipulation transforms per-
centile data to a normal distribution.

Multivariate Statistical Methods

In medical applications, several factors may influence out-
comes. Multiple regression integrates various input variables
and calculates a single equation by one of two methods: (1) try-
ing every possible combination of variables (all possible mul-
tiple regressions) or (2) picking the one with the best fit.3,21,25–29

Both approaches have inherent advantages and disadvantages.
A practical approach is to run a linear regression on each

variable and use the best single predictor. Predictors are then
added one at a time, always adding the next predictor that most
improves the fit, until the fit (R2) does not significantly im-
prove. This method is called “forward multiple regression.” An
advantage of this approach is that it uses the minimum number
of predictors, computation is relatively easy, and it uses the least
number of variables necessary to explain the result. In back-
ward multiple regression, the least-important variables are elim-
inated one at a time until the fit becomes significantly worse.
Stepwise multiple regression involves the reexamination of all
variables at each step.

There are several practical and theoretical problems with mul-
tiple linear regression including: (1) a poor understanding of
physical significance of predictors, i.e., does the equation have
any explanatory power?; (2) a conceptual conflict between us-
ing the most meaningful equation versus statistically significant
relation; and (3) uncertain accounting for interactions because
input variables will often interact either positively (synergisti-
cally) or negatively (compensatory). These interactions must be
determined for each case. Linear regression cannot account for
these, and the resulting equations are intrinsically nonlinear.

Principal Component Analysis

Principle component analysis,30 also called eigenvector de-
composition, is a method for transforming a multidimensional
space to another one of the same dimension (i.e., same number
of axes or variables) with two very interesting and important
properties. First, the first component (or synthetic variable) ex-
plains the highest proportion of the total variance, the second
variable the second-highest proportion, etc. Therefore, the less
significant variables (dimensions) can usually be discarded as
insignificant noise, thereby effectively reducing the dimension-
ality of the problem. Second, the axes are orthogonal (mutually
perpendicular) in multidimensional Euclidean space, so that the
principal components are completely uncorrelated. Mathemati-
cally, this is accomplished by finding the eigenvectors (synthetic
variables) and eigenvalues (their variances; i.e. importance) of
the variance-covariance matrix of the predictor variables.

This method is a theoretically satisfactory way to handle the
problem of correlated predictors. The first few components
should be sufficient for a stepwise regression. Also, in a step-
wise regression, additional synthetic predictor variables do not
change the coefficients of variables already in the equation, be-
cause the predictors are uncorrelated.

Dynamic Simulation Modeling

Statistical modeling attempts to describe a static relation. In
many situations, this may not give satisfactory results because

of the dynamic (time-dependent) nature of problem. One ap-
proach for solving this problem is simulation, which involves
building mathematical or computer models of a system and us-
ing these models to study the properties of the system.2,9,31–34

There are different types of models such as dynamic, explana-
tory, descriptive or realistic.

Dynamic models include time as an explicit element. In dy-
namic models, the state of the system at one time, plus the dri-
ving forces, follow definite transformation relations to reach the
next state, and so on till the end of the simulation. This is some-
times called the “state-variable approach.” Explanatory models
attempt to explain how a system works from some first princi-
ples. Descriptive models simply attempt to characterize a sys-
tem for predictive purposes, without pretending to explain it.
Statistical models are a subclass of these models. All realistic
models contain large doses of subjectivity, judgment, and em-
pirical parameters. Although it would seem that a dynamic sim-
ulation model, being more mechanistic and explanatory than a
statistical model, would be better able to extrapolate, this is not
always so and must be established by validation over the ex-
pected range of inputs, just as in a statistical model. There is
no assurance, except accumulated evidence, that the physical
basis of the model is correct. In fact, medical problems are very
complex and require immense computing power to model ba-
sic predictions. This field, however, is rapidly growing and
should provide promising results in the near future.

Bayesian Modeling

Classical inferential models do not take into account “prior
knowledge” in the calculations. For the purist, this is an ap-
propriate response to prevent the introduction of extraneous data
that might skew the experimental results. However, there are
times when the prior knowledge would be a useful contribution
to the evaluation process. Based on this philosophy, Bayes’ the-
orem was developed with its powerful tools, both for graphi-
cally representing the relations among a set of variables, and
for dealing with uncertainties in expert system.24,35–39 The ma-
jor benefit of Bayesian inference over classical statistical in-
ference (which deals with confidence levels rather than state-
ments of probability) is that it explicitly describes the fact that
observation alone cannot predict the probability of unobserved
events without some prior information about the latter. In the
Bayesian interpretation, a probability describes the strength of
the belief an observer can justifiably hold that a certain state-
ment is true (subjective probability). The subject, after observ-
ing the outcome of an “experiment” (i.e., collecting new data),
updates the belief held before the experiment (the “prior prob-
ability”), producing a “posterior probability.” The need to as-
sume prior beliefs is a key part of Bayesian inference.

In the field of CAP, these models have been tested by Tewari
and Ghosh (in press) and have shown promising results in the
pilot studies involving prediction of the pathologic stage of the
cancer.

Artificial Neural Networks

Artificial neural networks (ANNs) are another means of
modeling data to provide an outcome prediction based on a set
of given independent variables.6,39–50 They are nonlinear math-
ematical models that are characterized by a complex structure
of interconnected computational elements. These computational
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elements (nodes) aggregate a series of inputs (prognostic fac-
tors) using a summation operation and produce an output, such
as the probability of 10-year survival. Inputs to each neuron are
multiplied by a weight factor that reflects the excitatory or in-
hibitory strength of the connection from the input source to the
neuron. The sum of the weighted inputs plus a bias term then
goes through an activation function that behaves like a “switch”
to determine whether or not the neuron will “fire” and thus send
an output signal. The bias term may be viewed as the thresh-
old that the weighted sum of inputs must exceed before the neu-
ron sends an output signal. The information-processing capac-
ity of an ANN is a function of the type and quantity of nodes
in a given network and by the arrangement of interconnections
between nodes. The “knowledge” or the “processing capabil-
ity” of an ANN is made possible by the actual values of the in-
terconnection. The knowledge is acquired through a learning
phase, during which examples of data are repeatedly fed through
the ANN, and the connection weights in the ANN are adjusted
adaptively for the ANN as a whole to satisfy some predeter-
mined performance goals.

Existing ANNs are used primarily to evaluate outcome and
have been introduced as an alternative to classical statistical mod-
els. As a tool for predicting outcomes they can be judged against
classical statistical methods by comparing their performances on
a receiver operator characteristic (ROC) curve. In such compar-
isons, ANNs have performed comparably, and in some cases fa-
vorably, when predicting outcomes for CaP patients.

Genetic Adaptive Modeling

Genetic adaptive modeling is based on genetic mechanisms
of evolution.47,48,51–55 These mechanisms are known to result
in survival and genesis of intelligent, self-organizing, self-re-
pairing, self-motivating organisms—namely, those that are the
strongest among the pool of individuals and genetic patterns.
The Darwinian theory of evolution depicts biological systems
as products of the ongoing process of natural selection. Like-
wise, genetic algorithms allow scientists to use a computer to
evolve solutions over time, instead of designing them at the out-
set, without knowing the trend and final outcome. These algo-
rithms emulate the process of natural selection and survival of
the fittest by searching high-dimensional spaces for superior so-
lutions. The algorithms are simple, robust, and general; no
knowledge of the search space is usually assumed.

In genetic algorithms, selection operates on strings of binary
digits stored in the computer’s memory, and over time, the func-
tionality of these strings evolves in much the same way that
natural populations of individuals evolve. These algorithms
evolve individuals using principles of variation, selection, in-
heritance, crossover, and mutation. Once all individuals in the
population have been evaluated, their individual fits are used
as the basis for selection. Eliminating individuals with poor
goodness of fit in the population achieves selection, and inher-
itance is implemented by making multiple copies of individu-
als with high goodness of fit. Using mutation and crossover,
the model transforms the previous set of good individuals into
a new one, thus generating individuals of which some may be
better than those of previous generations. Conventional opti-
mization techniques are based on adjusting the parameters of a
model to produce a desired result. For example, training an

ANN involves modifying its weights so that it produces the de-
sired relation between inputs and outputs. Genetic algorithms,
on the other hand, optimize the performance on the basis of bi-
ological genetics and natural selection. This involves mainte-
nance and modification of the characteristics of a population of
solutions (individuals) over a large number of generations.

Genetic algorithms operate on coded parameters rather than
the raw parameters. This is quite like the strand of DNA, which
encodes all of the characteristics of a human in chains of amino
acids, so the parameters of the problem must be encoded in fi-
nite-length strings. Optimization is performed on a set of
strings, where each string is composed of a sequence of char-
acters. Given an initial population of strings, a genetic algo-
rithm produces a new population of strings according to a set
of genetic rules. This constitutes one generation. The rules are
devised so that the new generations tend to have strings that
are superior to those of previous generations, as measured by
some objective function. Thus, successive generations are bet-
ter than previous ones. These genetic adaptive models have been
used recently in the management of CaP.

Self-Organizing Models

A regression-based method for model self-organization is the
group method of data handling (GMDH).32,33,44,56 The GMDH
combines the principles of statistics and ANNs under the
framework of the principle of induction. The GMDH creates
models adaptively guided by this cybernetic principle from data
in the form of networks of optimized transfer functions (active
neurons). This is done in an evolutionary fashion of repetitive
generation of populations, such that alternative models of in-
creasing complexity are developed. Corresponding model val-
idation and survival-of-the-fittest selection is performed until
an optimal model has been created. Neither the number of neu-
rons and number of layers in the network nor the actual be-
havior of each created neuron (transfer function of active neu-
ron) are predefined. All this is adjusted during the process of
self-organization by the process itself. As a result, an explicit
analytical model representing relevant relations between input
and output variables is available immediately after modeling.
This model contains the extracted knowledge applicable for in-
terpretation, prediction, classification, or diagnosis problems.

Sometimes, we can also use principles of rule-based models
in the form of binary or fuzzy logic. This approach involves
rule induction from data using genetic algorithms where the
representation of models is in the familiar disjunctive normal
form.

Another approach is to perform symbolic modeling using
self-organizing structured modeling that generates symbols of
an appropriate model structure (algebraic formula or complex
process models) and optimizes by means of genetic algorithms.
This approach assumes that the elementary components are pre-
defined (model base) and suitably coded genetically.

Nonparametric Models

Nonparametric models include analog complexing and ob-
jective cluster analysis. Analog complexing selects nonpara-
metric prediction models from a given data set representing one
or more patterns of a trajectory of past behavior, which are anal-
ogous to a chosen reference pattern. The purpose of objective
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cluster analysis algorithms is to automatically subdivide a given
data set optimally into groups of data with similar characteris-
tics (classification). The algorithms automatically select the op-
timal number of clusters, their width, and their composition.

Predictive Model Validation

Model validation is the testing of a model with data from the
population under study that were not used to develop the model.
The validation data set should be drawn at random from the
study data and not used in any way during the development of
the model. A measure of a predictive model’s performance can
be derived from a ROC curve. The area under the ROC curve
generated on the validation set can be reported as an objective
measure of the model’s overall performance. In addition, sen-
sitivity, specificity, negative predictive value, and positive pre-
dictive value at a specific model output cut-off may be reported
to further describe the model’s performance.

CONCLUSIONS

Investigators should not limit themselves to traditional sta-
tistical techniques when developing predictive models for med-
ical applications. The use of a combination of techniques can
produce reproducible and accurate models. These models may
benefit patients and clinicians by providing additional infor-
mation to aid in the management of CAP.
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