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ABSTRACT

A set of key functions that are harmonic in
the semi-infinite strip are defined by their Fourier
series. Closed forms are obtained for these functions.
The solutions to Laplace's equation for the strip with
boundary conditions of Dirichlet, Neumann, or mixed type
are expressed in terms of these functions by using a
suitable finite Fourier transformation.
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LAPIACE'S EQUATION FOR THE STRIP

CHAPTER I

INTRODUCTION

1.1. General Introduction. This report is concerned with the
solution of spedial problems in elliptic partial differential equations.
The equations are solved for the semi-infinite strip in a manner similar to
that used by Jacobson [6]f when the region was a rectangle. The solutions
to Laplace's equation with boundary conditions of the three types, Dirichlet,
Neumann, or mixed, are obtained by making use of the finite Fourier trans-
formations in closed forms in terms of a limited number of prescribed
functions.

1.2. Finite Transforms Defined. The finite Fourier transforms
may be defined for a bounded integrable function by the following formulae,
as is done by Churchill in [2].

1

S{F(x)} = fs(n) = fF(x)sin nx dx for'rm=1, 2, .. (1)
o
‘ 7

C(F(x)} = f‘c(n) = fF(x)cos nx dx forn =0, 1, ... (2)
o

Since the transforms are, except for constant factors, just the coefficients
in the Fourier sine or cosine series respectively, the inverse transforms
are easily written in the series forms

F(x) = (E/ﬂ)i f.(n)sin nx (3)
n=1
F(x) = (1/m)f.(0) + (E/n')ifé(n)cos nx . (L)
n=1

* Numbers in square brackets refer to the bibliography.
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The conditions under which Equation 3 or L4 converge are numerous
(see [6]). One that will be used on occasions in the following work may be
stated: If the series Z|f.(n)] or Z|f.(n)] converge, then Equation 3
or 4 converges uniformly to a continuous function in the interval (0,m).
It should be noted that the conditions that must be placed on a function in
order that the Fourier series formed from its transform represent the func-
tion are much more restrictive than those that the function must satisfy to
have a finite transform. This will be illustrated in Chapter IT, Section 2.3.

The operational properties involving the transforms are easily
found by integration by parts. They are stated here as given in [2]. 1If
F(x) 1is continuous and F'(x) sectionally continuous for O € x < x, then

[0p]
)
x
<
1l

-n C{F(x)} forn =1, 2,
(5)

Q
=
b

(>~
il

n S{F(x)} - P(0) + (-1)2 F(x) forn =0, 1,

If F(x) and F'(x) are continuous and F"(x) 1is sectionally continuous for
O = x = 5w, then

S{?"(xﬁ
C{F"(x)}

The properties in Equation 5 are useful in obtaining transforms,
as will be seen in Chapter II, Section 2.2, while the formulae in Equation 6
are the ones that make the application of the finite transforms to boundary
value problems in partial differential equations useful. In the applications
of the finite transforms that will be made, the transforms of two functions,
one linear and the other quadratic, will be needed. These may be found in
[2], Pp. 277-8, and are

g (@~ f}
T

it

- 2s{F(x)} + n[F(0) = (=1)2 F(x)]

(6)
- 2c{F(x)} - F'(0) + (-1)R F'(x)

l/n forn=1, 2, ...

]

c {q(x)} = 0 ifn=0 (7)
= 1/m2 forn=1,2 ... ,
where q(x) = (x = x)%/2n - %/6 .
1.3, Convolution for Finite Transforms. In the application of

any integral transform, the idea of the convolution is an important one.

The reason for this is that very frequently it is necessary to determine a

function whose transform is the product of known transforms. This function
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is usually expressed as an integral involving the functions whose transforms
make up the product. As in the case of the Laplace transform, the asterisk,
*, will be used to denote convolution. The fact that there are two differ=-
ent types of finite Fourier transforms makes it necessary to consider four
possible forms of the convolution. They are given, together with the nota=
tion that will be used to distinguish them, in their generalized form.

The notation is slightly different from that used by Jacobson [6] in intro-
ducing the generalized convolution, for the sake of simplicity in the
applications.

Theorem: Let F(x,y) be a bounded integrable function over the square,
Q = i(x,y)l 0O<x<x, 0< y<1t}, and

X T
I; = fF(x - ¥,¥)dy I, = fF(y - x,y)dy
o] X
=X T
Iz = f F(x + y,y)dy I, = IF(Eﬂ - X = ¥,y)dy .
0 =X

Then, if S{C{F(x,y)}} denotes the cosine transform with respect to
y, followed by the sine transform with respect to x, the following
formulae are correct

S{C@‘(x,y)}}
In an analogous manner, the three remaining convolutions. are
S{S‘{F(x,y)ﬂ
C{CfF(x,yB}
C{S@'(x,ym

When the function F(x,y) has the special form F(x)G(y), the generalized
convolution reduces to the ordinary convolution as given in [2] . The sym-
bolism will now read

(1/2)S{F*sc(x)} , Fase(x) = Iy - I+ Iy - I, .

(1/2)Cff‘*ss(x8 , Fxss(x)

"Il"'Ig*’I}"Iu

(1/2)c{Fxce(x} , Fxee(x) I) + I + I3+ I

(l/E)S{F*cs(x)} , Fxes(x) Ip +Ip - Iz -1y .

F(x)xscG(x) = I - Ip+ Iz = I ,
where for example
=X
Iz = j‘ F(x + y)a(y)dy .
(0]

In the following work, the derivatives of the convolution function
will be needed, as many of the solutions will involve the convolution. Thus,
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the following differentiation formulae will be stated and proved.
Theorem: If F(x,y), FX(X,.Y) are continuous in Q, then

§%[F*SS(X)J = -Fx*cs(x) - 2 F(0,x) = 2 F(n,n = x) ,
where F(0,x) = 1lim F(uyx), F(sw,nx - x) = lim Flu,n - x) .
1.1"0+ u -

(Note: The notation as used above will be employed throughout the work.
The bar over a letter denotes the closure of the set and

FX(O,}") = lim FX(XJY) ’
x-+0%
where Fx(x,y) means the partial derivative with respect to the first
position of the function F(x,y).)

Proof: By writing out the convolution, the following formula is

obtained.
X ki
Sa;[F*ss(xg = - 53; JF(X - Y,¥)dy +a% {F(y - x,¥)dy
(=X T
r-3 .9 - % -
* 5% OJ‘F(x + ¥,y)dy Y ﬂf_i(Eﬂ x = y,y)dy

Under the assumptions of the theorem, the ordinary rules of differen-
tiation under the integral sign apply. Thus,

X T
a—a—X[F*ss(Xﬂ = -JFX(x-y;y)dy - F(0,x) - fox(y-x,y)dy - F(0,x)
=X T
+ F_(x+y,y)dy - F(x,n=-x) + Fo(2n-x-y,y)dy - F(n,n-x).
. g

Collecting the above and making use of the fact that the integrals form
a convolution, the formula of the theorem is obtained.

The next formulae may be seen to be true in a similar manner.

gax_ [F*cs(xn = =Fyxss(x)
é% [F*cc(xﬂ = F, xsc(x)
Sa}_c [F*sc(xﬂ = Fyxce(x) + 2 F(0,x) + 2 F(s,n - x)
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By a repeated application of some of the formulas just given, the following
corollary may be proved.

Corollary: If F, Fy, and Fy, are continuous functions of x and y
in -Q, then

a-b}; [F*ss( xﬂ

Fyyxss(x) - 2

a—é-x F(0,x) = 28% F(n,n - x)
and

b%; [F*cc(xﬂ

Fyxxce(x) + 2 Fy(0,x) + 2 F(n,n - x)
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CHAPTER II

SET OF KEY FUNCTIONS

2.1. Definition of the Set. The set of key functions will be
defined by means of their Fourier series in the present section. The series
all converge uniformly in any closed subset of the semi-infinite strip,

S = {Kx,y) | 0<x<m 0% j}, since their coefficients all contain e™™¥
in the numerator with a power of n in the denominator, and.}ie'ny is ab-
solutely convergent for y > O. The notation that is used for the functions
describes what their finite transforms are in the following manner. The
letter denotes the transform, while the subscript indicates the power of

n 1in the denominator of the transform. For example,

o0
S]_(X)y) = (g/ﬂ)Zn—le‘n}’sj_n nx , (x,y) in S,
n=1
and thus, S{%l(x,yﬁ- = e W/n , while C{;O(x,y} = e~ and
o0
colx,y) = (2/ﬂ):E:e‘nycos,nx.
n=1

(Note: All the ¢y have been taken so that the cosine transform is zero
for n = 0.)

Since these series may be differentiated term by term in S, the
resulting series being uniformly convergent, it may be shown that the fol-
lowing relations hold among the derivatives of ¢y and sg .

Sa'; col(x,y) = é% so(%,¥) é'a; sol%,¥y) = -"é% eolx,y) (8)

Also by examining the series forms for the key functions, the following re-
lations are seen to be true

SO(X)Y) = = a—a&_‘ sl(x,y) = a_yz 52(x>y)

S 3
colx,y) = & ci(x,y) = 55 cp(x,y)

X g (9)
so(x,7) = =57 calxny)  =-g%e s(xy)
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L

ooy) = & sy = s clny)

The work of the next section will be concerned with verifying that
the closed forms of the functions given in Tables I and II are correct, as
well as pointing out that some of these closed forms are valid on the edge
of S where the Fourier series may not even be convergent.

TABIE T

FINITE SINE TRANSFORMS

fs(n) s-1 fs(n)

(sin x)/[_:vt(cosh y - cos xi_.l , y>0

'—J
[}
2
<
n
P
3
S
]

2 e /n s1(x,¥) (2/x) arctan[(sin x)/(e¥ = cos xﬂ , ¥y 20

I

3 e-ny/n2 55(%,7) (-l/:t)fln[.?e‘y(cosh y - cos x'ﬂ dx', y >0
o

TABLE IT

FINITE COSINE TRANSFORMS

fc(n)
c-1 fa(n)
£.(0)=0
1 e~ co(x,y) = (cos x = e'y)/[ﬁ(cosh y - cos xﬂ , ¥y>0
2 e~ /n ci(x,y) = (-1/x) ln[Ee'y(cosh y - cos x)] , ¥y>0
e~y
3 e™1Y /n? colx,y) = (-l/ﬂZf\ r~1 1n(1 - 2rcos x + r2)dr , y 2 0
o
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2.2. Closed Forms for the Key Functions. The closed forms given
for Cq and s, 1n the tables may be obtained by taking the real and imag-
inary parts of (1 - z)"1 respectively, after setting z = exp(-y + ix) in
it and its power series expansion. Jacobson |5] has used the same method on
the formula,

00
In(l +z) = -Z (-z)%/n , |zl< 1,
n=1

in order to obtain the closed forms for ¢y and sq that have been given.
This same procedure may be carried out to get the alternate forms for so
and cop, given in Tables I and II, from the equation

z o
ft‘l In(l + t)at = -Z(-z)“/n2 , 1zl < 1,
1e) n=1

although the calculations get more laborious. It may be noted that since
the key functions are the real and imaginary parts of analytic functions,
iz| € 1, they are all harmonic for y > O since the identification

z = exp(-y + ix) 1is made in each case.

Two other methods of finding transforms will be illustrated in the
following work, that also produces closed forms for the functions s and
so. In obtaining the closed form for cl(x,y) by the method mentioned
above, Jacobson proved the following identity

(-]
(-1/7)1n(1 - 2rcos x + re) = (E/ﬂ):E:n-lrncos nx for r 1. (10)
n=1
Dividing by r and integrating between O and eV yields
e~y e~y
(-l/nJ r~1 1n(1 - 2rcos x + re)dr = (E/ﬂf in"lx‘n‘leos nx dr for y>O0.
9 c n=l

It is now permissible to interchange the order of summation and integration
on the right side above, since the resulting series is uniformly convergent.
Hence, the desired result is obtained for y > O

e~y 0o
co(x,y) = (-l/ﬂlf\ r~1 1n(1 - 2rcos x + r2)dr = (E/n):E:nfee'nycos nx .
o) n=1

It may also be noted at this time that c,(x,y) is bounded for (x,y) in S.
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The next work shows how the relations regarding derivatives of the
transforms may be used to obtain new transforms in addition to pointing out
an identity which will be used later regarding the cy function. The
starting point is the formula used above, Equation 10, which may be written

C{(-l/:t)ln(l - 2rcos x + r2)dr}

0 if n=20

r*/n for n # O.

I

By letting F'(x) = (-1/x)ln(l - 2rcos x + re), and hence,
a 2
F(x) = (-l/:'czf In(l - 2rcos x' + r)ax' ,
0

in the second formula of Equation 5, which is

off'(x)} = ws{R(x)} - F(0) + (-1)"F(x) ,

the closed form for s, may be obtained by replacing r by e , ¥y 20,
if the identity

T
F(n) = (-1/@[‘ 1n(1 - 2reos x + rf)dx = O (11)
(o]

may be shown to be true. Note that this is equivalent to showing that

2
fcl(x,y)dx = 0. This is done as follows. Let
o
T
G(r) = f In(l - 2rcos x + r°)ax.
o
Tt
G(r) is a contimuous function of r for f{r| < 1. G(0) = fln 1 dx = O.
o

The proof is completed by showing that G'(r) for r >0 is zero.

G'(r)

5
IQ(I‘ - cos x)/(1 - 2rcos x + r2)dx O <r<l
o

= fr'ldx + f(r - r'l)/[_(l,+ r?) - 2reos x|dx
o o

1/2

5 7
n/r + (r - r'l){-[(l * TQ)E] aresin['('ir:rgi f Zrigzsxx
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setting

2 P
n/r + (1/r) sin"l [- %%fii?%& - gin~t [%i : i%é]

n/r + (1/r)(- n/2 = n/2) = 0.

All the closed forms given in Tables I and II may be obtained by
p = exp(=-y) in those of Fletcher and Thorne [h , page 13, Num-

bers 47-49, and pages 20-21, Numbers 38-40.

The second entry in Table I and the third in Table II have been

listed as being true even when y = O. This may be shown by noticing
that the functions 81 and Co reduce to the linear and quadratic func=-
tions given in Equations 7. Thus,
i 21 ~ X M- X
s7(x,0 = 2/n)arctan —SX X - = =
1(x,0) (/x) 1 - cos x T 2 T

is the linear function whose sine transform is 1/n. While

1
co(x,0) = (—l/ﬂzf}"l In(l - 2reos x + rf)ar = g(x) (12)
o

is seen to be correct as follows. The relation 12 does hold when x = /2,

since
a(n/2) = («®/B)(1/2n) - n/6 = =(1/8 -~ 1/6) = -x/2k
and
1 leo
co(n/2,0) = (-l/nzf}“l (1l + ro)dr = (-l/ﬁyﬁjzi(-l)n+ln“lr2n'ldr
0 o b=

Q0
= L] - l .‘l Il+l -l 21’1 2
Lim, ( /ﬂ)gég( )t r=/en

o

= lim (-1/eﬂ)i(-1)n+la2n/n2 = -(1/2x)(x?/12) ;
a—»l n=1

the limit in the last line above being taken by Abel's theorem. To complete
the proof, it is shown that the derivative of both sides of Equation 12 are

the same.

q'(x) = =(x-x)/x

10
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d :J_.f_l =1 & 2rsin x
ax ﬂor In(1 - 2rcos x + r )ar| = 1(0 1 - 2rcos x + re 9
1 5 .
=(-2/1r)f—-—-arctan-—-—r-‘-s—m—x—dr = X=X
2 or 1l - recos x T

The differentiation of the improper integral above is permitted, since the
resulting integral is uniformly convergent. The formula that enabled the
integration to be carried out above is just another statement of the first
formula in the set (Equation 9).

2.%. Order Properties of Key Functions. In showing that the sol-
utions obtained for Laplace's equation in the strip S are valid, it is
convenient to know something of the order properties of the functions Co
and s,, and their derivatives. 1In this section these properties are found.
It is also pointed out that the function. 8, presents an unusual behavior
on the bottom edge of the strip.

Theorem: The functions Cq and s o’ and their derivatives are bounded
by Me™ for O< x5,<x =x,y >0, wvhere X, is an arbitrary posi-
tive number, and M 1is a comstant depending on xg.

Proof: The calculations for R and c, are

\(sin x)/[ﬂ(COSh y - cos XB\

lsolx,y)| =
< %r(cosh ¥)[L - leos x|/(cosh y)_]} -1
« 2eV[n(1 + e2Y)(1 - |cos x| )]‘1
< 2[x(l - |cos x| )]'l e~y
and
leo(x,3)| = |(cos x = e¥)/[x(cosh y - cos x]

E[ﬂ(cosh y = cos x)] -1
< )-I-E‘[(l - |cos x| )]-l e~y

for O<x,=x<mn, y=20.

For the first partial derivatives the next results are ob-
tained.

ga; so(x,y) = -a—% co(x,y) = [(cosh y)(cos x) - J;I/Er(cosh y - cos x)a:]

11
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-3 _ o _ 5
Yy colx,y) = 5y so(x,y) = =(sin x)(sinh .y)/[’n(cosh ¥y = cos X) ] .

From which it follows that

N

‘5% Sc(x,y)l h[ﬂ(l - lcos xg) )2] "Ly

N

a‘a‘x Co(x:Y)I 2[n(1 = feos x| )2]*le-y _

As a sample of the estimations employed here, the first result is ob-
tained.

|coix - (cosh y)'l‘
(ntcosh y)[l - (cos x)/(cosh.}’Tj2

)-#-[ﬂ(l - lcos x| )Ej-l e~y

(cosh y)(cos x) - 1
n(cosh y - cos x)2

13

for 0< x,€x<x, y>0.

The calculations may be carried out for the higher derivatives
and similar results obtained. The reason that all these bounds are valid
is that cosh y occurs to at least one power higher in the denominator
than it or sinh y does in the numerator.

Before leaving the set of key functions and going to scme of their
applications, it may be noted that for y = 0

so(x,0) = (sin x)/[n(l - cos x)] = (1/x)cot x/2

is a function whose sine transform consists entirely of ones. This may be
anticipated, since as y=»O0, S{so(x,y)} = e"BY—» 1. It should be remarked
that the limit function, (1/x)cot x/2, 1is not a function of bounded varia-
tion nor is it integrable, since it behaves like x*l as x—0. Thus,
(l/:r)cot x/2 is a function of a class that is not usually considered in
investigations of Fourier series. Its sine transform does exist and is the
set of ones as is now shown by induction.

For n = 1

S{Zl/ﬂ)cot X/E}

I

7
(l/n)f(sin x)(sin x)(1 = cos x)’ldx

S
T

(1/x) [ (L + cos x)ax = 1.
J

12
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Assuming it holds for n = k, then
T
(1/n)f‘cot x/2 sin kx dx = O
o
and it follows that

7
(l/ﬁ)brkcot x/2)|sin(k + 1)x - sin kx|dx =
S

s

(l/n)f(cot x/2)[(sin kx)(cos x = 1) = ( cos kx)(sin x)]dx =

(o)

The last line above is shown to yield zero by considering the two cases:

(a) k = 1, this is treated by remarking that the middle integral is
zero by the orthogonality of the functions cos nx over 0 to =, while
the first and last integrals may be combined to give zero

T b1
(~1/x) o=1(1 - cos 2x)dx + (1/x) 'th(l +cos 2x)dx = O .
J J

(b) k > 1, the orthogonality of the sines and cosines respectively over
the inerval O to = produces the result here. Thus, it is seen that

k1
(l/ﬂ)f(cot x/2) sinEk + l)x]d.x = 1
o

and the result has been shown.

The Fourier sine series for (1/n)cot x/2 does not converge in
the usual sense, because the coefficients do not tend to zero, hence an ex-
ample has been given of a function that has a finite sine transform even
though the inverse transform may not be written by means of the Fourier
series.

—

i 7T jut
(-l/:t)f(sin x)(stn kx)ax + (1/7) [1-cos kx ax + (l/ﬂ)f(cos kx)(cos x) dx .
(0] (o] O
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CHAPTER III

HARMONIC FUNCTIONS FOR THE SEMI~INFINITE STRIP WITH VARIOUS
BOUNDARY CONDITIONS

In this chapter the solutions to Laplace's equation in the semi-
infinite strip, S, with various boundary conditions will be given in terms
of the three functions si(x,y), co(x,y), and ci(x,y) that were intro-
duced in Chapter II. These problems may all be interpreted as problems in
steady temperatures in the semi-infinite slab.

3.1. Nonhomogeneous Condition on Bottom. The present section is
concerned with the derivation of the harmonic functions in S for the case
in which the only nonhomogeneous condition applies to the bottom of the
strip. The details of the derivation are worked out in full for the first
problem, in order to illustrate the methods used. The function J(x) is
assumed to be bounded and continuous in these problems.

PROBLEM 1: Vxx(x,y) + Vyy(x,y) = 0 in 8
v(o,y) = V(m,y) = O for O<y
V(x,0) = J(x), |V(x,y)\< M for0s2x<mx.

The solution to this problem is obtained quickly by letting
s{vie,y)} = wny), s{ix} = i),

thus forming the transformed problem,

2

v'(n,y) - n“v(n,y) = O
v(n,0) = j(n), |v(n,y)| < m .
The solution to this problem is
v(in,y) = e j(n) .

Hence, the solution to Problem 1 is now found by taking the inverse sine
tranform of v(n,y) with the aid of a convolution and the special function

co(X,y) that was defined in Chapter II. Thus,

V(x,y) = (1/2)eqy(x,y)xcsd(x) (13a)

1k
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is a short form for the solution of Problem 1. using the closed form that
was given for co(x,y) and writing out the convolution, the solution takes
the form

(l/En)Jﬁ[;COS(X'X - e Y - cos(x+x') - eV )] J(x)ax'  (13b)

osh y - cos(x-x') cosh y - cos(x+x'

Before going on to list the solutions to the other problems of
this section, it is interesting to note that the form of the solution just
obtained reduces to a known result for the case J(x) = 1. The problem
in this case was solved by conformal mapping by Churchill [1], p. 149.

The result given there is

T(u,v) = (E/H)arctan[(cos u)/(sinh vﬂ
for the solution of AT(u,v) = O with the boundary conditions
T(u,0) = 1, T(x/2,v) = T(-n/2,v) = 0.
By setting x = u + ﬁ/E, y = v, this solution is transformed to one

that fits the domain in the form treated here. The solution becomes

T(x,y) = (E/m)arctan[(sin x)/(sinh y)]
Now, recalling g%-sl(x,y) = c¢o(x,y) from Chapter II., Section 2.1, and
the closed form for =s; that was given in Table I, Equation 13b becomes
/ A -1 sin(x-x') 4 tan-1 sin(x+x")
= -1 dt + an”
V(x,y) ( ﬂ)gr e cos{x-x") ey - cos(x+x')
for the case J(x) = 1. Evaluation of the integrals yields the formula
_ -1 sin x -1 sin x
Vix,y) = (2/x) E:an T T T - eos % |

By employing the formula for the tangent of the sum of two angles, the form

2e¥sin x

Vix,y) = (2/xn) arctan oy _ T

is obtained, from which it is easily seen that the general case of Problem 1
has reduced to the known result when a constant temperature is maintained
along the bottom of the slab.

15
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The following problems are solved by methods exactly analogous to
that used to obtain the solution 13a to Problem 1.

PROBLEM 2: Vex(x,¥) + Vyy(x,y) = 0 in 8
V(0,y) = V(r,y) = O forO<y
Vy(x,o) = J(x), |V(x,y)| < M for0=x<gx.

The solution may be written in the forms

V(x,y) = (=1/2)cy(x,y)*csd(x)
(14)
_ .. cosh y = cos(x~x') \
Vix,y) = (1/2n)| 1n - (o) J(x')ax' .
Y cosh y « cos(x+x

PROBLEM 3: Vex(x,y) + Vyy(x,y) = 0 in S

Vx(0,¥) = Vx(m,y) = 0 for O<y

V(x,0) = J(x), |V(x,y)]< M foro=x=x .

The solutions may be written in the forms

T
V(ix,y) = (l/n)f J(x)dx + (l/2)co(x,y)*ch(x)
o
cos( - ey ' '
Vix,y) = (1/xn) fJ(x ax. + 1/2ﬂ)f pv— cos(x_x ) J(x")dx' (15)

- ey
+ (1/2n) J“ cos(x+x') - e I(x')ax' .
cosh y - cos(x+x')

Again, if J(x) = 1, the above reduces to the obvious result V = 1.
PROBLEM k4: Vex(x,y) + Vyy(x,y) = 0 in S
Vx(0,y) = Vx(m,y) = O foroO<y

"

Vy(x,O) J(x), |Vy(x,y)\ < M for0<x=qn.
The solution may be written in the forms

V(x,y) = k+ (1/2)ei(x,y)*ced(x) (16)

16
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7t
V(x,y) = k - (l/21t)fln{te’2y[cosh v - cos(x-x')]E:osh y - cos(x-x'zBJ(x')d.x'
!

T
where J(x) is such that J~J(x)dx = O.

The condition imposed on the last problem is apparent from physical consid-
erations, as well as being necessary in the process of obtaining the solution
by the methods used in this report. It simply states that if no heat is to
pass through the other boundaries of the slab and a steady temperature is
desired, then the average flow of heat through the remaining portion of the
boundary must be zero, since there are no sources or sinks present in the
body.

‘Before going into the verification of these solutions, the follow-
ing connections between the problems of the current section may be noted.
By partial differentiation with respect to y of the equation and the first
two boundary conditions of Problem 2, a problem that is exactly equivalent
to Problem 1 is obtained after Vy(x,y) is replaced by V(x,y) in the re-
sulting problem. This relationship is seen to be true for the soclutions
1%a and 14, since it may be recalled from Chapter II, Section 2.1 that

d
3y culxy) = =ceo(xy).
A similar relationship may be recognized to exist between Problems 3 and k4.

The connection between Problems 1 and 2 is also pointed out when
it is observed that for the special boundary condition, J(x) = (= - x)/=,
the solutions to Problems 1 and 2 reduce to the key functions s; and -sp,
respectively. The calculations involved in showing these reductions involve
integration by parts and are quite long, hence, they are omitted. That the
key functions are solutions is easily shown.

The closed form in Table I for 81 is
s1(x,y) = (E/n)arctan[(sin x)/(e¥ = cos xa
It may be seen from this that
s1(x,0) = (x-x)/n, s1(0,y) = s3(my) = 0 for y<o,

and thus, sq is a solution of the special case of Problem 1 where J(x) is
the linear function.

Similarly, from the closed form for s, and the relation

-g% 52(x,y) = s1(x,y) given in Chapter II, Section 2.1, it may be seen

17
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that -sz(x,y) is the solution to Problem 2 when J(x) is the linear
function.

5.2. Verification of Solutions. One procedure that may be used
to verify the solution obtained for the problems of Section 3.1 makes use
of the fact that some of the key functions are the solutions for special
boundary conditions as was Jjust pointed out in the case of Problems 1 and 2.
The procedure is illustrated now in showing that solution 15 does satisfy
all the conditions of Problem 3.

Consider the auxiliary problem

Wy (x,5) + Wyy(x,y) = 0 in 8
W (0,y) = W(my) = 0 forO<y (17)
W(x,0) = a(x), |W(x,y)| <M forO=x<nx,

where g(x) is the quadratic function defined in Equation 7. The solution
to problem 17 is found using the finite cosine transform. Thus, setting
c(W(x,y)} = w(n,y) and making use of

C {q(,X)}

L}

0 forn = O

n™2 forn £ O,

The equation in problem 17 becomes

n=0, wi(ny) = 0 n£0, w'(ny)-n%w(ny) = 0
w(n,0) = 0 w(n,0) = =2
Since the solution when n = 0 1is just w(O,y) = O and for n # 0
is w(n,y) = exp(-ny)/n®, the solution to problem 17 may be written using

- the key function cp(x,y) as

-y

[

Wix,y) = colx,y) = (-l/ar)f r=1 1n(1 - 2rcos x + r°)dr .
(o]

It is easy to show that the above satisfies problem 17 by making use of the
properties of the special functions. The nonhomogeneous condition is met,

since
W(x,0) = eo(x,0) = q(x)

making use of Equation 10. Next, the partial derivative of W with respect
to x 1s computed.

18
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9 B _ sin x
W(x,y) = g3 ce(xy) = =si(xy) = (-2/n) arctan | —w———r
From this it is seen that for y >0, W (0,y) = W,(x,y) = O. Since

cg(x.y) is a harmonic function in S, the differential equation is satis-
fied. It was pointed out in Section 2.2 that c,(x,y) 1is bounded in S.

Letting C{V(x,yﬂ' = v(n,y), C{b(xﬁ' = j(n), Problem 3 trans-

forms to

i} 2 A

v (n:y) - n V(HIY) = 0

V(n:O) = j(n): |V(n:'¥)l < m.
For n = 0 the solution to the above is

T

v(0,y) = 3(0) = J‘J(x)dx .
For n # 0, v(n,y) = exp(-ny)j(n) and this may be written in terms of
w(n,y), as v(n,y) = n2w(n,y)j(n). The solution to Problem 3 is found on

taking the inverse cosine transform to be

I -
Vix,y) = (l/n)éJ"J(x.)d_x - %[W(x,y)*cc(f(x)]

By making use of the differentiation property of the convolution, since
W, (0,y) = Wy(m,y) = O and Wxx(x,y) = =c,(x,¥), the solution becomes
Just that given in the previous section

bl

Vuy) = (/0 [ax)ax - (/200 (x,v)xce(x)
o]

Now using the differentiation property of the convolution once more, it is
seen that

) = (1/2) Sflorieettal] = (/2 .
But
00
Wexx(X,¥) = (E/ﬂ):z:ne’nycos nx
n=1

and writing out the last convolution above, the boundary conditions

UNIVERSITY OF MICHIGAN —
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Vx(0,y) = Vy(m,y) = O fory=>0

are seen to be met. The differential equation of Problem 3 is satisfied,
since

Tolow) = (-1/2) Sl lxy)xces(x]

Vy(oy) = (-1/2) Sy (xv)xees(x]
in S and adding the two above, recalling that AW = O, it is seen that
V(ix,y) = 0 in 8.

In showing that the nonhomogeneous condition is met, care must be
used in taking the limit as y-»0. A quick formal check is the following:

b1
V(x,0) = (l/:r)fJ(x)dx + (-1/2) aé;ﬁq(x,o)*ch(x)}
(o]
but
W(x,0) = a(x), ¢'(x) = -(x -x)/x, ¢"(x) = 1/x
thus,
k14
V(x,0) = (l/ﬂ)IJ(x)dx - (1/2) E_/ﬂ*CCJ(Xﬂ + X ; X o(x) + 2= 3(x - x)
(e} (o]
and hence T T
V(x,0) = (1) [ax)ax - (1/x) [a(x)ax + 3(x)
e} (o]

where use has been made of the differentiation property of the convolution.

The work necessary to justify the interchange of limit operations, taking

the second derivative and letting y-= 0, involves the actual evaluation of
)

lim co(x,y)*ced(x) = lim (l/2)on(x-x' ,¥) + co(x+x! ,y)] J(x')ax"' . (18)

y-0 y—=0 o

But taking this limit produces the rigorous verification of the nonhomogene-
ous condition. The work proceeds as follows. Since

cos x = exp(=y)
(cosh y = cos x)

1

CO(X)Y)

for O < x <« n, the limit of the second integral on the right-hand side of
expression 18 above may be taken by letting y O inside the integral, and

20
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7t
is found to be (-l/Qﬁ)fJ(x')d.x.
o

It is in taking the limit of the first integral that care must be used.
Hence, given % > 0, it may be written

T X=
(l/2)fco(x—x',y)J(x')dx' = (1/2 J‘ o) (x-x',y)d(x')dx"
0 o
X+ 7 b
+ (1/2) f colx=x",y) [J(X’) - J(x) + J(X)]dx' + (1/2)frco(x-X',y)J(x‘)dx
X=7 X+7

As y-»0 the first and last integrals on the right above tend toward

X=") I
(-1/2ﬂ>of sxax,  (-1/e0) [ oGenax

X+T)
respectively.
Now, making use of the fact that 5% c1(%,¥y) = colx,y) for
y > 0, the following equations are found to be true.
X+mM X x+7)
(1/2) [ colxx,ydaxt = (1/2)f eqlxmxtyiaxt + (1/2) [ eolx'-x,y)ax’
x=7 x—?) X
. x o X+7)
_ (-l/:t)tan-l sin(x=-x') + (1/x)tan"t sin(x'=-x)
ey - cos(x=x') x=7) e¥ - cos(x'-x) |4
= (2/n)arctan [(sin'r))/(ey - cos 77)] .
Hence,

T
V(x,y) - J(x)(2/x) arctan_.__ﬂ__ = (l/rr)fJ(x)dx

- COS")

+ (1/2)J‘ co(x-x Ly)I(xt)ax + (1/e)f e (x'=x,y)I(x" )ax"
x+‘f)

+ (1/e)fco(x+x-,y)J<x')dx' " (1/e)fco(x-x',y)[J(x') - 3(x)]axt
0 x=7)

Thus, given € > 0, there exists a & >0 such that |J(x') - J(X)‘< € for
|x-x'| < 8, taking 7) = & and such that
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X+7)

l(l/Ear)f J(x)d.xl < €,
x=7
it is seen that
Lin, V(x,y) - J(x)(2/x)tan"L eysfncos - - V(x,0) = J(x)(n - 7)/x
for all € > 0 and 7) > 0; hence the result, V(x,0) = J(x), follows.

To complete the verification of the solution obtained for Problem
3, it is noted that

Vx| = |(/n) fJ(x>dx|+(1/e)f[co(x-x',y)|+|co(x+x',y)[]|J(x'>|dx',
(0] (e]

since ]co(x,y)\ ¢ 2/[x(cosh y - l)] for y > § > 0, |V| is bounded. But
it was just shown that 1im V(x,y) = J(x) which is bounded, thus the
result follows. y=~0

The solution to Problem 4 may not be checked by the above tech-
nique, since the linear or quadratic variation may not be substituted for
the nonhomogeneous condition because of the added condition, xX
which must be applied in this problem. The verification JJ(x)dx =0,
in this case is now carried out. \

By differentiating the form of the solution given in Equation 16
and making use of the differentiation formulas given in Chapter I, Section
1.3, the following relations are obtained, for which the results are indi-

cated.
Vo (x,y) = (1/2)so(x,¥)xscI(x)
from which it is seen by writing out the convolution that

vV (0,y) = Vi (my) = 0 ify>0.

Vyx(%,¥) (-1/2)[§; so(x,yﬂ xced(x) + 2s,(0,y)I(x) + 2s4(m,y)I(n - x)

(-l/2)[§ so(x,yﬂ xced(x) for (x,y) in S,
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since sg(x

x,y) = (sin x)/ [ﬁ(cosh y = cos x)] is a continuous function of
X in O € x =

t for y > 0.

Vy(x,y) = (1/2) co(x,y)xccd(x),

and from the verification of Problem 3, the limit of the right-hand side of
the above as y==0 1is simply J(x), using the condition that =

which holds in this problem. ‘Vy(x,y)\< M Dby the result fJ(x)dx =
demonstrated in showing the similar condition for Problem 3. 0
Vyy(x,y) = (--l/2)[§y co(x,yﬂ xced(x) for (x,y) in S

and since, from Section 2.1
2 c(x,y) = - @ solxy) for (x,y) in S

the differential equation is seen to be satisfied on addition of the expres=-
sions that have been obtained for V., and V}’TY‘

3.3, Infinite Sine and Cosine Transforms. In obtaining the sol-
utions to Laplace's equation in the case where the nonhomogeneous condition
occurs on a side of the strip, the infinite sine and cosine transforms may
be used advantageously. Their definitions are given together with a few
of the important properties. The operational calculus based on them is so
similar to that of the finite transforms, that only the results are listed
here. Additional information as well as the proofs may be found in the
standard books such as Sneddon's [7]

DEFINITION: Let F(x) be absolutely integrable O = y < o0 and §F(x)dx

exist for each ¢ > 0, then
> a0
-J;IF(X)S]'.II ox dx (19)
0

Sw{F(x)} = fgla)
\E J‘;(X)cos oax dx . (20)

LI}

CQ{F(X)}

f.(a)

I
i

With the transforms defined as above, the inverse transforms are exactly the

same integrals with the position of the functions and their transforms inter-
changed, if the transforms meet the conditions of the definition.

The important operational formulae are:

Sef"(x)} = -0Pf4(a) +Ea}?(o) (21)

23



— ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

c..{"(x)} = —azfc(a) -EF'(O) s (22)

where F(x) and F'(x) are continuous x = 0, F'(x) is sectionally con=-
tinuous O € x £ x, for every x,> 0 and F and F' satisfy the con-
ditions in the definition of the infinite transforms. As in the case of
the finite transforms, there are four possible types of convolution, but
only two are given below, as they are all that are needed in the present
applications. The formulae are valid if F and G satisfy the conditions
given in the definition.

©0
C;l{fc(a)gc(a)} = 'v_]é_: J\EF( Ix-x'| ) +F(X+X'HG(X')G-X' (23)
T 0

San - {rc(@)eg(@) % JTF( x=x'] ) = Flbxt)] G(x)ax' (24)
(0]

The following transform that may also be found in the first chapter of [7]
will be needed in the subsequent work.

%{ge-ny} - n/(eP + 1)

The continuation of the treatment of Laplace's equation for the
semi-infinite strip by the methods that have been used thus far requires
that the solutions to the following boundary value problems in ordinary
differential equations be known. The problems may be stated as

u'(n,y) - n?u(n,y) = £(n,y), y>0

(25)
u(n,0) = 0, ju(n,y)le my y=20
u"(n,y) - nu(n,y) = f£(n,y), y>0

(26)
u'(n,O) = 0, ‘u(nJY)‘ < m,y 20,

where the function f(n,y) 1is assumed to be bounded and continuous y=0.
The solutions to these problems are easily found formally by using the in=-
finite transforms. The method i1s illustrated in getting the solution to
Equation 25. Setting S“{u(n,y)} = w(n,a), See {f(n,y)} = g(n,a), and
employing Equation 21, the problem becomes

-Pw(n,a) - n%w(n,a) = g(n,a) .

2L
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The solution to this equation may be written
win,@) = -1/(c® + n°)g(n,q) .

The inverse transform is now found by making use of the special transform
given above and the second convolution that was given. Thus

u(n,y) = f[(En)"le'n(y"'y') + (-Zn)-le‘nly'y"_]f‘(n,y‘)dx" (27)
o

has been obtained as a possible solution to Equation 25. In a similar man-
ner, the next formula is a formal solution to Equation 26.

wny) = Jfew )y (on) e sy day (28)
o

These solutions must be verified, as the methods used to derive
them were quite formal. For example, in order that the infinite transforms
and inverses exist, it is usually assumed that f(n,y) be absolutely in-
tegrable, while the conditions placed on f(n,y) here are boundedness and
continuity. These conditions may be shown to be sufficient by showing that
the solutions 27 and 28 do satisfy their equations by performing the differ=-
entiation under the integral sign.

3.4. Nonhomogeneous Condition on Side, Case I. The two problems
solved in this section correspond to Numbers 1 and 2 of Section 3.1. The
difference is that now the nonhomogeneous boundary condition is on the side
instead of the bottom of the strip. In this section the first problem is
written together with its solution, while the method used to obtain it is
illustrated in obtaining and verifying the solution to the other problem.
The function H(y) is assumed to be bounded and continuous for O < y in
each case.

PROBLEM 5: Ve (X,5) + V'yy(x,y) = 0 in S
v(o,y) = H(y), V(ny) = 0, 0<y
V(x,0) = 0, 0<x<un; |V(x,y)] <M for (x,y) in B.

The solution may be written

(- -]
V(x,y) = (l/E)IEso(x,|y-y'| ) - so(x,y+y')]H(y')dy’ . (29)
o
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In the special case that H(y) = 1, this reduces to
T - X sin x tanh (y/2)
= - 2 T t [ - ’ H
vV(x,y) (2/xn)arctan . —— (2/x)arctan tan (/2)

making use of the fact that gy s1(%,5) = =s4(%,y). This last result is
the same as that obtained by conformal mapping, [l] p. 162, after a trans-
formation of axes is made.

PROBLEM 6: Vex(x,5) + Vyy(x,y) = 0 in S
v(0,y) = H(y), V(m,y) = 0, 0<y
Vy(x,O) = 0, O<x<ux; |V(x,y)]< M, (x,y) in§ .

This problem is solved by setting S{V(x,y%f = v(n,y), thus obtaining the
transformed problem

v'(n,y) =« n°v(n,y) = -nH(y)
v'(n,0) = 0, |v(n,y) <« m.

The abave is a special case of the problem given in Equation 26 of the pre-
vious section, and using its solution, Equation 28, it is seen that

v(n,y) = (l/z)f[e"n(y'F}") + e"n'Y'Y'lj H(ys)dyl .
o}

The inverse transform now gives

V(X)Y)

(- -}
(1/2)f[so(x,ly~3f‘l ) + so(x,y+y‘ﬂH(y')dy' (30a)

0]

as a form of the solution to Problem 6. The solution reduces to (x = x)/=
in case H(y) = 1. This last result is just what is expected, since the
bottom of the slab is insulated, the left~hand side maintained at the con=-
stant temperature one, while the right side is held at zero.

The rigorous verification of the solution to Problems 5 and 6 may
be carried out as follows. The absolute value signs are removed by writing
Equation 30a in the form
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y
V(x,y) = (1/2)fso(x,y-y‘)H(y')dy‘ + (l/E)ﬁo(x,y'-y)H(y’)dy'
0 . y
+ (l/E)st(x,y+y')H(y‘)dy' . (30p)
(@)

Since |so(x,y)|< Me™Y for x 2 Xo > 0, these integrals converge at each
point of S, for H(y) was assumed to be bounded. The boundedness of the
solution follows from the fact that each of the three integrals that make
up Equation 30b may be shown to be bounded. Consider, for example, the
second one which may be written

lso(x,y“-y)H(y‘)dy' = ﬂo(x,y")H(y"er)dy"
y 0

by setting y'-y = y'. But

“ .
fso(x,y" JE(y"+y)ay"
(o]

€ ﬂso(x,y" ) | By +y)| ay" .
0

Now letting M' be the bound on ‘H(y)., y = 0, it follows from the fact
that sg(x,y) 1is positive for 0 < x £ x, and

fso(x,y)dy = J: -a% 5(x,7)dy = 5;(x,0) = (x-x)/n
o o]
that

(~ )
j‘so(x,y" )H(y"+y)d5'"\< M'(n - x)/n €M' for (x,y) in 3 .
(@]

In a similar manner, the remaining two integrals in Equation 30b may be
shown to have the same bound; thus the condition of boundedness is met.

The boundary condition V(m,y) = O is satisfied, since s4(x,y)
is continuous at x = = and sg(x,y) = O. The condition V(0,y) =
H(y) 1is seen to be met by the: next argument. By adding and subtracting
H(y), V(x,y) may be written as follows

V(x,y) = (l/e)y[so(x,ly-y’l ) + so(x,y+y'i|E{(y") - H(y)] dy’
(0]

00 (31)
+ H(y)(l/E)f[so(x,ly-y'l ) + so(x,y+y':)] dy' .
0o
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Since the last integral above is just that obtained by setting H(y) = 1
in Equation 30b and using the fact that it reduces to simply (x - x)}/x as
x =»0, the last summand in Equation 31 yields the desired result, H(y).
The first integral is seen to approach O as x-+=0 by the next work.
Assuming H(y) is continuous for € > 0, there exists a & > 0 such that

|E5(y) - 8(y")|< € 1if |y-y'1< B,
hence

|(l/2)’f[§o(x,ly?:>"l ) + so(x,y+y* |[E(y) - H(y)] dy"
(o]

-3
< (l/E)f [so(x,3-y") + so(x,y+y')]‘H(y') - H(y)‘ dy*
o

y+8
+ @5/2)\!;[%0(x,|yby'|) + so(x,y+y’ﬂ dy*
y—

+ (l/E)J\E»O(x,y'-y) + so(x,y+y'mH(y') - H(y)ldy' .
y+3

The first and last integrals on the right side of the above equation tend
to 0 as x -0, since sl(X;Y) is well behaved for the ranges of the
second argument that are involved. The middle integral is = €, since the
integrand is positive over the extended range of integration from O to ee,
and this integral equals (= = x)/n. But € was arbitrary, hence, the
first integral in Equation 31 does approach 0, and the nonhomogeneous con=
dition in Problem 6 is met.

To show that the last boundary condition and the differential
equation are satisfied, it is necessary to differentiate expression 30b for
V(x,y). In showing that the usual process is allowed, the order properties
of the functions s, and c¢, and their derivatives given in Chapter II,
Section 2.3 will be used. Ordinary differentiation yields

Vy(x,y) (l/E)f 5% solx,y=y" JH(y')ay" + s,(x,0)H(y)
O

(1/2)5‘”53;_ 8o(%,y'=y)H(y")ay* = 5,(x,0)H(y) (32)
y

+

a gt { 1 | 4
(1/2)65*‘3; so(X,y+y " )E(y")dy

and this will be correct if the infinite integrals converge uniformly with
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respect to y for each fixed x, O < Xy = x. That this is the case is now
shown for the first infinite integral,

it

-j:ﬁ 5o (v -y)H(y " )ay!
y

-f é% 8, (x,w)H(w+y)aw ,
o

f a% 8o (X,y'~y)H(y" )dy"
Y

L}

by setting y'-y = w. But this last integral is uniformly convergent for
all y 2 0, since

(-]
| ;so(x,w)H(w+y)dw]<.M' J\e'wdw = M
0 0

because |H(y)|< M, and laéw so(x,w)‘ < 2e™W(1 = |cos xg) )—2.
The other infinite integral may be treated in a similar manner.

Now from Bquation 32 as y —»0, it is seen that Vy(x,y)—-vo,

o = - m?_—y) sol(%,¥'=y) = - S?__,' So(x,y")

y=0

since

E) -
ay So(x:y ,Y) o

and similarly

L sler)| - 2 o) -

ly=0

The differentiation of the expression in Equation 32 may be con-
tinued by the usual process, since the resulting infinite integrals may be
shown to be uniformly convergent, making use of the order property,

l%a so(x,y)| <« M'e™ for O0< x,<x = X < 7,
that was noted earlier.
y _aa ! 1 ] a t t
Vyy(X,y) = (1/2)4\ Y so(%,y=y")H(y*)dy *Sy so(x,y=y" )E(y") ey
- (1/2)f 5%1 so(%,y'=y)H(y")dy! +§ so(%,y'=y)H(y")
y y'=y
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+ l/E)I o(xy+y )E(y )ay' .

The terms not in the integrals annihilate each other, since

= 5(_3%?—) So(x,vy".')")

The form %0b for V(X;Y) may be differentiated twice with respect
to x for 0<x, € x € X <n by the usual processes, since the result-
ing infinite integrals'may be shown to be uniformly convergent by making
use of the order properties as was done before. Thus,

£ colx,y-y") - & Soly'-y)

y'=y v'=y

vi=y

Y
Taloy) = (/2] S soleyy Ey ey
0O
+ 1/2)f §x2 So(x:¥'-y)H(y')dy
+ (1/2)5‘ 5%{-2 so(x,y+y" )H(y*)dy'
o
Now AV = O since s,(x,y) 1is a harmonic function in the strip S as

was mentioned in Chapter II, Section 2.1.

This completes the verification of Problem 6. The solution given
to Problem 5 may be checked in an analogous manner. The connection noted
in Section 3.1 between Problems 1 and 2 is also applicable here, although
it is not as obvious. The reason for this is that an integration by parts
on the solution is required to show that the result of taking the partial
derivative with respect to y of the equation and first two boundary con-
ditions of Problem 6 together with the remaining conditions, gives a prob-
lem equivalent to Number 5. This may be seen by integrating expression
32 for Vy(x,y) by parts and then replacing H(y) in Problem 5 by H'(y).

3.5. Nonhomogeneous Condition on Side, Case II. In all the prob-
lems dealt with so far, some condition of boundedness has been applied
ﬁhroughout the strip in order to obtain a definite solution. The two prob-
lems to be considered now do not have bounded solutions. Their solutiors
involve the same key functions, but there are additional terms that must be
added. To illustrate how the condition of boundedness reeds to be replaced
in order to obtain a definite solution, the followlng problem, a special
case of Problem T, is now treated.
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Wey(x,5) + w&y(x;y) = 0 in 8
We(0,y) = 1, Welw,y) = O for O<y (33)
W(x,0) = 0, 0<x <x; W(x,y) bounded on each compact

subset of S .

The finite cosine transform 1s applied to obtain a solution here. Thus,
letting CfW(x,yi} = w(n,y), the problem is transformed to

w'(n,y) - now(n,y) = 1
w(n,0) = 0, w(n,y) bounded for finite y .
If n = 0, then w'(0,y) = 1 and

w(0,y) = 32/2 +kiy + ko,
but w(0,0) = O implies that k, = O.
If n % 0, then the general solution may be written
w(n,y) = kg™ + ke - 1/n° .
The condition that w(n,y) be bounded for finite y implies that k; = O.

The other boundary condition, w(n,0) = O gives k), = 1/n°. Thus, the
solution to the problem in Equation 33 may be written

W(x,y) = yo/2x + ky + co(x,y) --a(x) . (34)

The constant k 1is actually the average quantity of heat flowing across
the bottom of the slab, since

Wolx,y) = y/n+k+ei(xy),
and hence
X 1
Jutona = yemes forteyax .
0 0o
X
Thus LLim.O W&(x,y)dx = xk, for it was shown in Chapter II, Section 2.2
y=0 g
that T
kJ.‘cl(x,y)d}‘: = 0.
S
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It may be noticed that solution 34 behaves like a quadratic ex-
pression as y 1increases; and hence is unbounded. From this example it is
seen that one condition that may be used to obtain a definite solution to
Problem 7 is as given in the statement of the problem.

PROBLEM T: Vex(x,y) + Vyy(x,y) = 0 in S
Vo (x,5) = Ky), Velx,y) = 0 fory>0
V(x,0) = 0, 0<x <mx; V(x,y) bounded on each compact
subset of S, lim fvy(x,y)dx = k,
y=*0 o

where H(y) 1is taken to be bounded and continuous for O < y.

This problem is also solved using the finite cosine transformation,
with the solution assuming the form

y-l
V(x,y) = (l/n)ffH(y")dy“dy' + ky/x
o 0O (35)

+ (1/2) [Ty (ormy") = ety ] EGr )ay'
(o]

The conditions V(x,0) = O and V(x,y) bounded for each com-
pact subset of S are seen to be met by inspection. The first two condi-
tions and the differential equation may be shown to be satisfied by work
very similar to that used in the previous section. Thus all that remains
in the verification of Equation 35 as the solution to Problem 7 is to show
that the additional condition is satisfied. By differentiating Equation 35
wlth respect to y, the expression

Vy(x,y) = (1/x)| H(y')dy' + kfx - (1/2)§ co (X, y+y" )E(y" )ay?
(o] (o]
y oo
+ (l/e)fco(x,y-y')H(y')dy' - (l/E)Sco(x,y'-y)H(y' )y
o J

is obtained for O < x < w. The process 1s legal, since the resulting inte-
grals are uniformly convergent. Thus,
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limf (x,y)ax = k + lim lim (~1/2)f f ol X, y+y" ) H(y")ax dy*
¥y+0 o ¥+0 e~0

J
+ lim 1im (l/E)fico(x,y-y')H(y;')dxdy' + lim lim ,Q-l/zszco(x,y'-y)H(y')dxdy'.
y+0 e*0 5 y+0 €0 y €

The condition will be seen to hold,once it 1s shown that each of the first
limits above is zero. As an example, the second one is considered now.
Let

[
L}

y X
3 -1/2 - ' v,
él-fo (-1/ )JJ;CC’(XJ y')E(y')dx dy

i

Since § sl(x,y) co(x,y), it is true that

7

H(y*)dy*
€

L = lim (-1/2)J‘s (%,¥=y")

e-»0

- um (1/2) Jsl<a-y-y')n(y'>dy

But s (e,y-y ) 1is positive when its second argument is greater than or
equal ’co zero, thus, since H(y) 1is bounded, the result will be shown,

once it is proved for H = 1. This is now done. Since
SO o (eyy) = ~eile, )
(y-y") Sol\€, ¥~y = =81(€,¥y~y
and
€
' -(y=y") ' _
Se(é,y—y ) = (-l/vt In{2e [COSh (y-y ) - COS }ad_x 5

o
the 1imit L may be written

y
dx
y'=0

Gl/ﬁzrin{Ee'(y'y') [cosh (y=y') = cos x]}

(¢}

€
= llm{(-l/EjQYln[E(l - coS8 \x)] dx +(l/21r}fln[2e'y(cosh y = cos x)] d.x} .
o

€e~*0 o

L= 1m(Q/9

For y > O the last limit above is zero, since the integrand is bounded.
The first limit is also zero, since the integral is a convergent one, as
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may be checked by integration by parts.

i

7 7
..(1/2:( (x/2)cot(x/2)dx/2
(0]

(1/2x)x ln[z(l ~ cos x)]

(l/EJ%fln[z(l - cos x)]ax

i

ln 2 = lim (1/27)x ln[E(l - cos x)] - (1/2)in 2 ,
X-0

where the last integral in the first line above has been evaluated by means
of Formula 1, Table 205 in the DeHaan Tables [5]. The limit in the last

equation may be seen to be zero using L'Hosipital's rule. Thus, the solu-
tion as given in Equation 35 to Problem 7 may be shown to check.

Problem 8 is also interesting, as it may have unbounded solutions
for certain boundary conditions.

PROBLEM 8: Vxx(x,y) + VW(x,y) = O in 8
VX(O,y) =  H(y), Vx(n,y) = 0 forOey

0, 0<x < 1; |Vy(x,y)\< M, (x,y) in S .

Vy(x,O)

The solution may be written in the form

y v
V(x,y) = k +(l/ﬂ)fbrﬂ(y")dy" dy*
© (36)

‘(1/2\)5\[01(1’{:3"*’37') + Cl(x:|Y'Y’| )]H(.Y‘)d)" ’
(¢]

where k 1is an arbitrary constant under the assumption that H(y) is con-
tinuous and absolutely integrable. This solution may be verified in a man=
ner similar to that used on Problems 6 and 7. Note that in this case, as
opposed to that of Problem 4, it is only necessary to assume that 0
exists in order to obtain a solution, while before it was |H(y)‘ dy
necessary that the average value of the nonhomogeneous bound- \ 0

ary condition be zero.

3.6. Remarks. In the previous work, the solutions that have been
obtained for the problems considered have been verified under the assump-
tion that the nonhomogeneous boundary condition is a continuous function.
With slight modifications, the same results may be shown to be correct when
the boundary condition is a sectionally continuous function. Here the
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solution will approach the mean value, (l/Q)E?(x-O) + f(x+oi], of the funce
tion at every point.

To show that the salutions to Problems 1 through 4 are still valid,
it is convenient to know that the differentiation formulas for the convolu=~
tion given in Chapter I, Section 1.3,hold with slight changes when the func-
tion F(x,y) is sectionally continuous in its second argument. These may
be shown by simply breaking up the path of integration, as was done before,
still further so that the integrand is a continuous function of both argu-
ments on the sub-intervals. The changes that occur are in the form of the
additional terms that now take into account the jump in the function at a
point of discontinuity.

If the integrals that were used in taking the limits in the demon-
stration that the nonhomogeneous conditions were met, are broken up in the
manner indicated in the previous paragraph, the verification of the solu-
tions may be completed for the case of the sectionally continuocus variation.

It should be mentioned that by the addition of some of the solu=
tions ta Problems 1 through 8, it is possible to obtain the solutions to
problems of a more general type; that is, problems where there is a non-
homogeneous condition on each of the edges of the semi~infinite strip.
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