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SUMMARY

Circuite for performing logic can be easily implemented using
diode circuitry on differential analyzers, Conventional "and", "or",
"negate" logical circuitry can be realized using three basic modes of
binary signal inputs and oubputs.

Logical expressions involving ordering relations can also be
conveniently implemented by using operational amplifiers, In particular,
it is possible to implement expressions involving both continuous inputs
for ordering relations and boolean variable inputs within a single amplifier
circult, Standard Boolean Algebra reduction techniques are available for
simplifying these logical expressions, in addition to set theory class
inclusing~exelusion prineciples.

It is also possible to implement a logical system, described
by a modified Boolean Algebra, which operates with the maximum and minimum
of a set of continuous input signals., A summery of rules for reduction of
logical expressions is given, and the circuitry for realizing any of the
valld boolean identities is shown to be derived from a basic operational
amplifier circuit,

Applications of the above ordering logic are made to an opti-

malizing control system and a duby ecyele optimizing controller,
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CHAPTER 1

INTRODUCTION

1.1 General

In the past, applications of differential analyzer equipment have in
general been restricted to systems involving continuous signals. It is the
purpose of this paper, however, to demonstrate that computer amplifiers,
with associated non-linear circuitry, possess very effective logical prop-
erties, This is particularly true when dealing with logical operations on
continuous signals, such as comparisons, maximization, or minimization,

Three basic logical operations on differential analyzer equipment

"or", "negate" logic, (2) ordering

are described: (1) Conventional "and",
relation logic, and (3) continuous signal logiec, In addition, applications
of the above logical operations to an optimalizing control system and a
duty cyecle optimizing system are described, including logical implementaw
tion and results,

1.2 Basic Logical Properties of Operational Amplifiers with Diode Input
Circulitry

Operational amplifiers as used on conventional differential analyzer
equipment are primarily used for linear operations upon computed variables,
They possess four basle characteristics, however, that allow effective
logical operations to be performed. These characteristics are:

(1) Power gain through system
(2) Linear input-output relationship

(3) High sensitivity to input polarity when operated
with no external feedback impedance

(4) Continuous signal inputs of either positive or
negative polarity

=]
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Because of their high gain, conventional operational amplifiers,
with no extemal feedback impedance, can be used as binary devices.

Figure 1~1 shows a conventional amplifier system used for binary output.

+e
+Sat ‘ °

-Sat

(2) (b)

Figure 1~1 (a) Conventional System for Binary Output
(b) Input-Output Voltage Relationships
The grid voltage point, €g) becomes highly sensitive to input polerity
and magnitude, Thus, with either binary or continuous input signals
having two possible polarities, a binary amplifier output can be obtained.
The amplifier binary output can be amplitude limited by using a

matched zener diode pair shunting circuit shown in Figure 1-2,

Vs | +eq

R
®1°7 AV e, 5 -

(a) (b)

Figure 1-2 ?a) Zener Diode Limited Amplifier
b) Input-Output Voltage Relationships.
V.| controlled by zener diode breakdown
voitage,



Assuming no grid current drawn and the existance of a virtual ground at
point ey for all time, the amplifier output will drive to either of its
zener diode saturating levels depending upon the polarity of the input
voltage,

Note that for the above type of element, the polarity of the input
signal represents the binary nature of the signal. Thus, input signals
may be continuous, multileveled discrete, or binary, The binary output
of the element will be controlled strictly by the polarity of the input.

Typical binary inputs then become as shown in Figure 1-3,

0 state A 1 state
e =
et | '
) | I -
S
| time | time
|
i |
1 state 0 state

Figure 1~3 Typical Notation for Binary Input Signals.

By placing a small bias signal on the input, the binary output may

be made sensitive to amplitudes of the input, as shown in Figure 1-k,

I
I
Ry |,
€40 /\/ [:> 0 €4 =, &= ey

R l

B -

) I 'Vs

Bias (a) (b) Bias point

Figure 1-4 (a) Amplitude sensitive binary element
(b) Input-output voltage relationships
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In this case, depending upon the polarity of the bias signal, only a
single polarity signal with two levels need be used., Note that the
response of the element, Figure 1-4(b), is equivalent to that of
Figure 1-2 with the switchlng point moved by the bias value, allowing
single polarity inputs to give a binary output depending upon their
magnitude,

By shunting the amplifier with a conventional diode, one of the
saturation levels may be reduced to near ground potential. Figure 1-5
shows two such cireuits and the binary outputs generated. Note that
the zero level voltage will have a slight bias due to the voltage drop

through the diode.

Zener Zener

N
+\s

Figure 1=5 Circuits for Generating Zero Voltage
Binary Output Level.



1.5 Operation Modes

In conventional switching systems using operational amplifiers,
three possible operating modes are available for binary input signals,

Figure 1l-6 shows these operating modes for a conventional binary output.

‘io ‘eo Eo
1 state 1 state
0 state
e C - €] o €
0 state
1 state 0 state
mode 1 mode 2 mode 3

Figure 1l-6 Typical Input Output Relations for Con-

ventional Binary Signal Operating Modes
Note that each of the modes of operation may have their O and 1 state
notation reversed, giving six possible combinations of binary signal

notation,



CHAPTER 2

CONVENTIONAL "AND", "OR" LOGICAL OPERATIONS

Using the three possible modes shown in Figure 1-6, conventional
"and", "or", "negate" logic may be implemented using operational amplifiers
with diode circuits. These logic circuits are directly analogous to con-
ventional active circuitry used for digital computer logic., When operating
in modes 1 and 2, however, additional bias inputs must be used to guarantee
proper circult performance for zero level signal inputs., Figure 2-1 shows

the inclusive "or", x or y or both, functiod implementation for the three

modes of inputs, Thus, in Figure 2~1 (a) for example, if the x input is

-—nZ..f:
0.1
X G““_ifiﬁu" '@ |:>““"_f €o (a) Mode 1 eou = «(x +y)
yC
0.1 1 NOTE: This notation implies
M a matched zener diode
- bias pair-see Figure 1-U4(a)

(b) Mode 2 e, = -(x +y)

NOTE: The top polarity indicates
amplifier output under in-
put controls. The bottom
polarity is output when
the bias controls.

(¢) Mode 3 eo_ = =(x + y)

Tfi bias

Figure 2-1 Inclusive "or" Cirecuits for Three Modes of
Operation,

B



positive or the y input positive or if they are both positive, the
amplifiler output is negative. Only when both inputs are negative are
both input diodes blocked, In this condition the negative bias takes
control, and the amplifier output becomes positive, Hence, the negative
amplifier output represents an input of x or y or both, the inclusive "or"
function, The operation of the two other circuits of Figure 2-1 are
directly analogous. Note that all three modes of operation require zener
shunting diodes to control the limiting saturation values. In addition,
a slight bias voltage is applied to insure the amplifier output going to
the opposite state when both diodes are cut off. In all three modes, it
is assumed that the 1 state volitage is of sufficient magnitude to avoid a
threshold effect from either the input diodes or bias input.

Because of the sign reversal in the operational amplifier, the out-
puts appear in the dual form of the mode being used, i.e., having opposite
polarity. This characteristic will later be shown to be a definite ad~
vantage in simplifying logic implementation.

Figure 2-2 shows the "and" circuit implementation for all 3 modes
of inputs, Thus, in Figure 2-2 (a) for example, if both the x input and
the y input are simultaneously positive, both diodes are blocked, In
this condition, the negative bias takes control and the output becomes
positive. The negative amplifier output then represents the input
of both x and y together, the logical "and" function. Again, the oper-

ation of the other two circuits of Figure 2-2 are directly analogous.
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€o (a) Mode 1 ey =-(x+y)
e (b) Mode 2 ey = =(xs7y)
ey (¢) Mode 3 eo_ = -(x°y)

Figure 2-2 "and" Circuit Implementation of 3 Operating Modes.

Note that for implementing the "and" operatlion in Figure 2-2, two bias
signals must be used, the first to comtrol the input grid when the
logical condition is met and the second to take control when the con-
dition fails. ' Mode 3 operation displays the simplest implementation

technique.



Figure 2-3 shows the implementation for complementation elements

in the three modes of operation,

M1

() Mode 1 e. =

+

(b) Mode 2 e

H
i

(C) Mode 3 € = X = =X

Figure 2-3 Complementation Circuits for 3 Operating Modes.

Complementation using modes 1 and 2 are directly analogous to signal
inversion except for the limiting effect upon the output. Again note
that mode % allows the simplest implementation - a simple inverter be-
comes the complemgntation device with no diodes required.

It is of interest to note the resemblence of the circuits of
Figures 2-1(a), 2-2(a) and 2-3(a) to the operational circuits of conven-

tional digital logic elements for binary inputs, as shown in Figure 2-k,
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5 Pulse 5 Pulse
Amplifier Amplifier

(a) (b)

Figure 2-4 Conventional Pulsed Signal Logical Circuitry
(&) Inclusive "or" (b) "and" Circuit,

The analogy between the two systems, pulse circult logic and operational
amplifier logic, carries over completely since the operational amplifier
acts only ap a power gain device for its logic. For binary input signals,
thé linear characteristics of the amplifier are not needed. However, for
ordering logic operations, and maximm-minimum signal logic to be deseribed
later, the linear characteristics of operational amplifier equipment pro-
vide convenient logical outputs.

Using binary input signals of mode 1, 2, and 3 operation, it has
been shown that logical elements ecan be constructed from operational
amplifier equipment in a very straightforward fashion. Hence, logical
expressions in canonical form (see Appendix 1) can be implemented gquite

quickly for experimentation on analog equipment.



CHAPTER 3

LOGICAL OPERATIONS INVOLVING ORDERING REIATIONS

5.1 Basic Circuits

The existance of a virtual ground at the input to an operational
amplifier allows effective ordering relation logical operations to be
performed. By means of diode circuitry, the complete loglcal system,
as derived in Appendix 1, can be implemented using operational amplifiers,

The previous chapter has shown that operational amplifier circuits
can operate effectively as binary logilcal elements, summarized in Figures
2-1, 2=2, and 2~3, If a modification is now made in the diode placement,
an interesting logical eslement involving ordering relations is created as

shown In Figure 3=l.

0.1 1 %

X,Y = Continuous 5
Signals

o——/\r‘m
t = Binary C}ugf\vﬁ“*“

Signal =Y
Og l i l
~bias

Figure 3~1 Basie lLogie Circultry for Ordering Relations.

Assuming the inpubs X, Y to be continuous variables such that
0 < X < B of

b <1 < E+ref

Then froam Figure 3=1, the following boolean expression can be written

w] L



for the outpuh:

t o= (X>7Y) (3-1)

=

Where : t = Binary outpubt of amplifier operating in mode 1, 2, or 3
depending upen validity of boolean expression on right
hand side of equation

() = Denotes a boolean expression involving ordering rela-
tions and continuous input variables,

Likewise, by elther reysrsing input variable polarities or diode direction,

the dusl operation may be generated, ag sghown in Figurs 3-2,

O‘Ol
1 7 X ' ’ — Z
\ mo-t ___O+ "b
/ + eg =
i oy .
O’l
= bilasg + bilas
(a) +_ = (X <) () t, = (X< Y)

Flgurs 3=2 Dual Ordering Relation Circuitry.
(a) by reversing input signal polarities
(b) by reversing diode direction and bias
Henoe, beeause of the virtusl ground existing at point e, (Figure
3-2)¢ the operational amplifier ecombinumously compares the two input
sigﬂais and ganerstes a binary oubput according to the larger of the
two Inputs. The action is a specilal case of the response of an open

feedback amplifier to multiple inputs, as shown in Figure 3=3,
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b= [(Xp + Xp + Xz + Xy) > 0]

NOTE: For this eircuit only,

o | + operation denotes cone
X, 0— V ventional arithmetic

summation,

Figure 3=3 Ordering Relation of Comventional Open Loop
Amplifier Operation With Multiple Imputs,
The action of the diodes in Figure 3-2 gerve to eliminate any coupling
between two or more pairs of inputs to the same amplifier.

The basic ordering relation logic may be implemented using the
principle of logiecal duality, As discussed in Appendix 1, for each
unique circuit configuration there are two possible outputs, each the
dual of the other, For the basic ordering relation, a summary of the

possible circuit configurations is presented in Figure 3-lL,

%,2 Canonical Forms

As discussed in Appendix 1, the canonical forms of ordering rela-
tionships may be implemented using a single operational amplifier,

First consider the disjunction normal form (Maxterm) given by Equation (3-2)

£t 0= (X>A)+ (Y>B)+ (Z2>C) =—wwew (3-2)



wl e

1 Z
=0t
+
1
= blas
(v)
— Z
Lot
5= (X>7Y) + bias t_ = (X<7Y) = bias
t, = (<) t, = (X>7)

(e) (4)

Figure 3-4 Circuit Duals for Basic Ordering Relation lLegic

Figure 3=-5 shows the implementation for the first three terms of Equation
(3-2). From Figure 3~5, if any one of the diodes conduct, the amplifier
output becomes negatively saturated. Hence, if the relations (X > A) or
(Y > B) or (Z> C) or any combination of them are true, the emplifier is
driven hard into negative saturation, limited by the zener diode break-
down voltage. This element then generates an inclusive "or" function

using ordering relations.
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t_=(X>A)+ (Y >B)+(2>C)

X o /\?'l

et

¥

.1
Y
© /\/ _\/\——O =~ blasg
B}

Figure 3~5 Implementation for Maxterm Form of Ordering
Relation Logical Expression.
Likewise consider the conjunctive normal form expression (Minterm)
glven by Equation (3-3) below:
t_ = (X>A)° (y>B)*(z>¢C) .... (3-3)
Figure 3-6 shows the implementation for the first three terms of Equation

(3-3).,

to = (X>A)* (Y>B)= (z>C) 0,1

j Q_____/\F_-k >‘%Ot

0.1
o /\f “ /}/ 7O bias
- C N/

Wl
Zz O

——
«o—\gx

Figure 3-6 Implementation for Minterm Form of Ordering
Relation Logical Expression,
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Examining Figure 3-6, only when all diodes are not conducting
does the oubtput become negatively saturated, due to the small bias
voltage present on the grid, Hence, (X > A) and (Y > B) and (Z > C)
are simultaneously required to be true in order to block the diodes
and give a negative output. This element then generates the logical

"and" function for ordering relations in minterm form,

3.3 Complementation

As was mentioned in Chapter 2, mode 3 operation of the above circuit
outputs (Figures 3-5, 3-6) allows complementation to be easily performed
by either one of the following two methods:

(a) Polarity reversal of inputs

(b) Diode direction reversal and reversal
of oubput notation and bias voltage

Treating the "or" circuit first, using Equation (3-2)
t = (X>A)+ (Y>B)+ (Z2>¢C) (3-2)
Theorem 7 of Appendix 1 (DeMorgan's laws) generates the following comple-

mentary function from Equation (3-2)

t, =t = (X>A)+ (Y>B)+ (2>0) (3-4)

I}

={X>A)» (Y>B) - (z>C) (3-5)

Now using Equation (A-4) from Appendix 1

TX>A) = (X<A4)
(v >B) = (Y <B) (3-6)
(z>¢) = (z<¢C)

Substituting the above expressions into Equation (3-5)

t, = (X <A)* (Y<B)* (z2<C)
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Hence, the positive output from the amplifier of Figure 3-5 generates
the conjunctive form for the complements of the individual relations,
For many cases, the disjunctive form involves the duel ordering relation
of Equation (3~2), as given in Equation (3=7).

t

bt

i}

(x<a)+ (Y<B)+ (z<C)
\ (3-17)
= (X>A)+ (¥Y>B)+(z>¢C)

This equation can be implemented in two forms: (l) By reversing the polaritby
of the continuous inputs or (2) reversing the diode direction, bias voltage,
and output notation. Figure 3m7(a) shows the implementation using the first

method while 3=7(b) shows the second method,

tﬁm(X<A)+(Y<B)+(Z<C) t+=(X<A)+(Y<B)+(Z<C)

(a) (p)

=A

° \'/ Xo—/\?'L
\s o A —
0—/\;‘4_‘, L—o-bias APl *———/\l/—ot-bias
C)—-/\\/"—-——

=B

0.1 0.1
oA 20—/ N\
o/ \foT™ 0o~/ \/o.1
Figure 3-7 Complementation Circuits for Ordering Relations

(a) Polarity reversal method
(b) Diode direction and notation reversal method
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In a similer fashion, the conjunctive normal form for the comple-
ments of the input relations may also be easily implemented as shown in
Figure 3-8,

Hence, following conventional Boolean Algebra rules ag outlimed in

Appendix 1, the dual structure of ordering relation logic is seen t© be

0.1 v 0.1

(=) (v)
t+:(X>A)°(Y>B)°(Z>C) t_=(X>A)°(¥Y>B)*(z2>¢C)
Figure 3-8 Tmplementdtion for Conjunctive Foérm of Ordering
Relations,
(a) Reversed input sigmal polarity method
(b) Reversed diode and notation method
analogous to the duwal form of convehtional "and", "or" logic. As expected,

the ordering relations, "<", ™" together with the "+", "-" operations

form a dual logic system as mbted in Table 3-1.



TABLE 3=1

DUAL FORM OF ORDERING REIATION LOGIC SYSTEM

Operation Dual
+ -«
° +
< >
> <

Following general Boolean Algebra techniques, if an ordering relation

expression S is given, its complement S may be found by the following set

(1),

of rules

(1) Substitute + for * and ¢ for + everywhere in the
original expression, keeping the same parenthesis
notation.

(2) Substitute > for < and < for > within each set
of ordering relation parentheses,

" 1" 1"

The dual nature of the two basic ecircuits, "or", "and" are summarized
in Figures 3-9(a) through 3~9(d),
It is interesting to note that mixtures of ordering relations may

also be used within expressions such as Equation (3-8).
t = (X>A)+ (Y<B)+ (2<¢0) (3-8)

Equation (3-8) is implemented by reversing the polarity of the input
signals for the second and third terms, as shown in Figure 3-10. The
rules of complementation previously discussed apply to mixed systems of

expressions also, as in Equation (3-8),
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A 4
XO_./\/__T i XO—/\/_1 N
, -Ao__/\/_.”' —_,_—O:GAO A 4 —O't
Yo—/\/——_» AL O-bias Y O\ r———'—"_ /\ 1 O +bias
- 4 P \V ' (NOTE: All Resistors
Z‘O—/\/—-—* . A L 0.1 unless noted)
,,Ce_‘/\/_—' —GO—/\/—_—.
(a) (b)
t_=(¥>A)+ (Y >B) + (Zz>¢C) t_=(X>4) - (Y>B)+ (Z>¢C)
t+:(X<A)-(Y<B)°(Z<C) t+=(X<A)+(Y<B)+(Z<C)
Z A
-X
=X ‘ ) .
R Dt >—T0tA He %

q\l/_(ﬁb ias
¢

UL

o—/"\/]
oA
o N— N
o—/\/—-— B
o—/\/_—’_»
(e) |

B

=2
=7 H{‘

c
C

(a) |

t_=(x<A)+(Y<B)+(z<c) ‘b+=(X>A)+(Y>B)+(Z>C)
t+=(X>A)'(Y>B)'(Z>C’) t_=(X<A)* (Y<B) - (z2<C)

Figure 3«9 Summary of Duslity Principle in Basie Cireults for
Ordering Relatlon Logic.
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e
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t =(X>A)+(Y<B)+(Z<c)

]

Miate

+(Dt
A
Y

~-C

—+'O't

—e—

CIT 7T 3

+bias
____/\va——<)

All resistors 0.1
meg unless noted

t = (X>A)+(Y<B)+(Z <)

Figure 3-~10 TImplementation for Mixtures of Ordering
Relatlons Within the Same Expression,

3.4 Mixed Expression Ceptaining Continuoys Variables and Boolean Functions

Ordering relation logic may also be used with conventional Boolean

functions in canomicel form. For expresslons of the form:

where: X,
W,
the circuit

may also be

The circuit

t =
A, Y, B, Z, C

Ty seadoe

1

i

1s shown in Figure 3=1L,

implemented of the form:

t =

(X>A)+ (Y>B)+ (2<C)] +w+r+ ..

Céntinuous variables

(3-9)

Boolean variables in mode 3

Similarly, conjunctive expressions

[(X>A)+ (Y>B)+ (z<xC)]ewer

(3-10)

8000

for this type of expression is shown in Figure 3=12,



DD

.\ O———/\/'_— All resistors 0.5
, "0+t meg unless noted
yo—\/] | +

(x>A)+ (¥>B)+ (z<C)]+vw+r

ct
1

-

[(X<A)» (Y<B)-(z>C)]-w-* T

Ci-
]

%

0.1

Figure 3-11 Circuit for Mixed Continuous-Boolean Inputs in
DisJjunctive Form.

“be Z All resistors 0.5
-A O /\/ | meg unless noted

Y O~ /\/ —_‘_—O t
QO -=bias

2
2
>

ct
il

-7 O—-—-—/\/-—-L»_

[(x>A)+{(y>B)+(z<C)]»w"°r

[(x<A) (Y<B) (z>C)]+w+w

Fa
+
il

o\t

Figure 3-12 Circuit for Mixed Continuous~Boolean Inpuisg in
Conjunctive Form,
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The one limitation of mixed expressions is that mixed "and", "or"
boolean funetions may not be used, Only single boolean variables
connected by the ¢ operator or the + operator, but not both, may be
mixed with continuous ordering relation expressions,

It should be noted at this point that the summing junction input
currents caused by the boolean functions should be larger than the maximum
possible input current from the ordering relations. This can be insured
by proper choice of the binary input resistor magnitudes, Note in
Figures 3-1l and 5-~12, the binary variable input resistors give a 5 to 1
current ratio for identical input amplitudes of the continuous and binary
signals, Hence, if the boolean signal inputs are gain boosted to the
maximum level of any of the continuous inputs, the resistor ratio will
insure proper operation,

Thus, it is possible to implement logical expressions involving
both binary and continuous inputs with a single operational amplifier,
The ecircult operation follows all the rules of Boolean Algebra applied

to ordering relations and binary funetions,

345 Simplification of Ordering Relatlion Loglcal Expressions

In addition to the normal operational rules of Boolean Algebra as
outlined in Appendix 1, an additional principle of set theory class
inclusion-exclusion may be applied to simplify ordering relation logiec
expressions, From consistency relations(g), the statements

X<Y, XY =X, X+Y¥=Y

are all equivalent, In addition, set theory operations may be utilized
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to reduce ordering relation expressions, For example,
if (Y > A) and (Y > B) where (A < B)
then (Y>B) ¢ (¥>4)
Hence, statement of (Y > B) automatically implies (Y > A). If both
expressions appear in an ordering expression, one may be eliminated since
it is automatically implied by the validity of the othee term.

Eganple 3-1: Given the expression:

t = [(Y<6)+ (Y>L)sw] (3-11)

note that (x<6) = (¥>6)g(v>1L) (3=12)
Hence, if [Y > 6) is true, then it must follow that (Y > 4) is also true,
The set (¥ > 6) may then be substituted for the set (Y > 4) providing the
subset (4 <Y < 6) is contained in some other set term in the expression.
Since (Y < 6) satisfies this condition, the following substitution may be
made:
(Y>6) » (v>1U) (3-13)
(The reader should be cautioned to carefully examine the conditions allow-
ing this substitution., This reduction technique is valid only when the
subset eliminated is contained in one of the sets of the bracketed portion
of the expression), Equation (3-13) then becomes:
t = (Y<6)+ (Y>6)sw (3-14)
The substitution can be made since the term (Y < 6) makes the expres-
sion true regardless of the validity of the second term for # <Y < 6,
Hence, the second term is of importance only for (Y > 6), Rewriting
Equation (3~14) by using complementation:

t = (Y<6)+ (Y<6)~°w , (3=15)
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This is of the form a + & ¢ w, and from theorem T8 of Appendix 1,
a+§'wéa+w (3-16)
Hence:
t=(Y<6)+(Y>6)*w = (Y<6)+w (3-17)
Example 3=2: Given the expression
t=(Y>0)+ (Y>4) »w (3-18)
note that (xr>4%) < (v>0) (3-19)
Since (Y > 0) is an independent term in the expression,
t=( >0+ (¥Y>4)ew=(Y>0)+ (¥Y>0)*w (3-20)
This is of the form a + a * w, and from theorem Tha of Appendix 1,
a+a e W'é‘a.
Hence [(x>0)+ (¥Y>0)*w] = (¥>0) (3-21)

Thus, in addition to the normal simplification techniques of Boolean
Algebra, ordering relation logical expressions can be further simplified
by using set theory relations, partieularly class inclusion-exclusion
together with the principle of logical implication.

The conventional mapping methods for binary funetion simplification
are all applicable to ordering loglc expressions or to mixed groups of
binary variables and ordering relations, In addition, it is anticipated
by the author that mapping methods using combined Boolean Algebra-set
theory relations can be developed to handle both binary variables and
continuous variables inputs to logic systems., At this stage of the

investigation, however, the exact form of these mappings is not indicated.



CHAPTER

LOGICAL OPERATIONS WITH CONTINUOUS SIGNAL INPUTS

An interesting application of Mullexr's work(6) can be made by using
operational amplifiers as logical summers. Using the derivations of
Appendix 2, the following operations are defined:

A* B = Mnimm [A, B]

AV B

i

Maximm [A, B]
Where: A, B, ..., X are continuous voltages such that:

I

e < X < +Ere

f
This condition is illustrated by the Venn diagrem of Figure 4.1 for two

voltages A, B where A < B,

A C B
B m——
<::::) & A s B=A
AV B=3B

Figure 4=1 Venn Diagram for Two Voltages in &
Continuous Signal Logic System,

From an examination of conventional digital cireunitry, analogeus
continuous input signal circuits may be feund for the above logical
operations, Figure 2.4 displays conventional digital circuitry for
the inclusive or operation and the "and" operation, Examining Figure
2.4, the junetion point, s will always assume the highest voltage of
any of the binary inputs., If the inputs vary between zero and some

small positive voltage, the output becomes the logical "or" function,

KoY
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This techniques can be used to implement a circuit for seleecting
the maximm continuous input signal(7), Figure 4-2 shows such a circuit
using diode inputs to an operational amplifier. Since a =100 volt bias
voltage will be impressed on polnt ey, any input magnitude between +100
and =100 volts is allowable, As the dlode conducts, the voltage of the
input signal is impressed on point s changing the current in resisteor
32 fraom the -200 volt bias, For proper circuit operation, it must be
assumed that the voltage inputs have a very low output impedance, or
essentially act as a constant voltage source, Hence, point ey will rise
to the maximum voltage available from the inputs, where the input mode
may be analogous to 1, 2, or 3, This e¢ircuit then becomes a continuous
"V" gate for use in the logic system described in Appendix 2,

-200
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= "’Min [Xl, Xg, XB) oo & Xn]

Figure 42 Circuit for Maximum Signal Selection,

In a similar fashion, a circult for selecting the minimum input
signal from a set continuous inputs may also be eagily implemented using

diode cireuwitry with operstional amplifiers, FExamining Figure 2~4(b),
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the jungtion point ey will always assume the lowest of the binary
voltages placed on the circuit, Again, if the inputs vary between

zero and some positive voltage, point e will assume the higher binary
voltage only if all three inputs are simultaneously positive, thus
creating the logical "and" operation, This technique can be adapted
for continuous inputs as shown in Figure 4.3, Again, using a +100 volt
bias at point ey, any input magnitude between +100 and -100 volts 1s
allowable, As the diode conducts, the voltage of the input is impressed
upon point e;. Hence, point e; will continue to fall until the minimm
input voltage is impressed on ejs As in the maximlzer circuit described
above, the same assumptions on voltage sources must be made, This

circuit then becomes a continuous "s" gate for use with the "V gate

previously discussed.

+200

- — — — (l) eO_,: -Mln [Xl) XE) 600 Xn]

)Lﬂc u‘ (2> eo+= ~Max [Xl) X2, 580 Xn]

Figure %3 Circuit for Minimum Signal Selection,

Tt is interesting to note the dual operation of the circults de=

pending upon the mode of input signals being used, Figures 42 and L3
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show that either configuration can be used as a maximizing circuit or
as a minimizing circuit, by the choice of operating modes 1 or 2, In
addition, mode 3 may also be used together with its dusl of operation
to form dual circuit respomses as above, Thus, any one of the three

operating modes allows use of the dvality principle in implementation,

Operation of the input signals analogous to mode 1 appears to offer
the greatest flexibility in logical implementation since the negative
values of input signals allow a dual logical function to be implemented
using opposite amplifier output polarity., This condition was also found
in Chapter 2 for binary operation. Thus the ability to handle both posi-
tive and negative input signals as circuit inputs considerably inereases
the number of logical functlons possible on a single amplifier,

The operation of complementation is quite simply performed using this
type of loglc., From Appendix 2, Equation (A~47), the complement is defined
as: A = (1 - 4)

Since the reference used for the circuits described in this chapter is
+Epop, the complement of any continuous variable is found from

(E

ref ~ X)

>

This can be Implemented by simply summing both =E,..p and +X in a conven-
tional summer as shown in Figure 4-4, Note again that mode 1 are assumed
for this complementation, Simple polarity changes modify this complemen~

tation unit for use in mode 2 operation,



X:Cr____J/\ikr——-—“{::::>~———{3eo = (+Epep = X)

Figure 4=4 Basic Circuit for Cemplementation.
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CHAPTER 5

PRACTICAL LIMITATIONS OF OPERATIONAL AMPLIFIER LOGICAL CIRCUITS

5.1 Conventional Switching

Two definite problems exist in attempting to implement logical expres-
sions using diode circuitry with operational amplifiers. First, solid state
diode operation with low voltage inputs create a type of threshold effect
which places a limit upon the accuracy of low level voltage comparison.
Figure 5-1 shows typical diode current-voltage forward conducting character=
igtics at room temperatureg» By placing the diodes in a constant temperature

environment of about 120°C, this threshold drop can be reduced to about O.1

100 ma 4

B

B

100 pa /

Current thru the diode (i)

10 pa Vi
W3 Wb .5 .6 .7 .8 ,9 1.0

Voltage across the diode (E)

Figure 5~1 Typical Currenj~Voltage Characteristic of a
Silicon Junction Diode at Room Temperature.

=31



or 0.2 volts., However, with higher operating temperatures, there is a
significant deterioration of the diode back resistance which may affect
circuit operation. Another solution to this problem lies in new semi-
conductor techniques which indicate that diodes applicable to this type
of switching will soon be available with threshold levels of 1 ma. at
less than 0.1 voltf' It is felt that this latter figure is sufficiently
low for switching applications, taking into account the inherent error
in the input signals to the operational amplifier logic circuits.

Second, it will be noted from Figures 3-1 through 3-12 that a small
bias signal input is required to insure correct amplifier output when
all diodes are blocked, The magnitude of bias voltage needed is less
than 0.1 volt, well within the accuracy limitation imposed by the
switching diodes. However, depending upon the magnitude of the D. C,
amplifier offset voltage referred to the input, the switching speed of
the operational amplifier may be slowed by such a low level input, and
hence, the amplifier may experience uneven switching rates for positive
and negative inputs,

For the frequencies of continuous signals operated upon by most
real-time analog computer elements, the switching speeds are entirely
adequate, This problem places a limitation, however, on the type of
inputs allowed. Because of threshold effects, slowly varying compari-
son signals cause a "soft switch" to occur, and hence, there are both
lower and upper limits on the frequencies of inputs not involving dis-

continuous changes.

* Personal communication with Mr., George MacRoberts, Semiconductor
Division, Texas Instruments Co,, Cleveland, Ohio.



The "soft switch" threshold effect can be reduced somewhat by
minimizing the signal dwell time in the threshold region as shown in

Figures 5-2(a) and (b). Since the comparison circuit need be linearly

voltage vol;cage I Ein

in threshold
region

DN

oo

| threshold
: | region
| | I
| | > ime { >t ime
r< >-
soft switch soft switch
region region

(a) (b)

Figure 5-2 Effect of Scaling of Input Variable Magnitude

Upon Threshold Effect.

(a) Slowly varying low level signal

(b) Same signal with incwyeased scaling
operating only in the region of the threshold, the input signal may be
scaled up in magnitude and the comparison made at a high level. This
serves to minimize the time during which the input signal lies within
the threshold band, Since binary outputs are desired, scaling problems
due to large magnitude input signals are not involved. Note, however
that this scaling technigue may be used only when the scaled inputs do

not exceed the limits of the analog reference voltages, as per conven=

tiocnal analog computer scaling, If both inputs to an ordering logic
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input are variables, it may be necessary to form the sum of the inputs
in a previous summing amplifier before gpplying to a logiec eirecuit.
Only when both scaled variables can be kept within linear operation

limits does the scaling method apply.

5.2 Continuous Signal Logic Circuits

In considering the logical operations of Chapter 4 and Appendix 2,
one important point must not be overlooked. The input voltages to maxi-
mum or minimum signal selection circuits should not be altered by loading
effects. Thus, a constant voltage source is demanded. If the voltage
source output impedance is high, significant loading errors will appear
in the output. Since it is assumed that most input voltages used will
be computer generated, the low output impedance of operational amplifiers
will essentilally eliminate loading effects, It sheuld also be noted that
a small input bias current to the amplifier summing junction can be used
to correct for the average dlode voltage drop.

When all binary inputs are being used, the bias signal may be increased
in magnitude to switch sharply the amplifier when the input logic fails.
Since the input signals are discontinuous binary voltages, the threshold

effect does not enter into the operation,



CHAPTER 6

AN APPLICATION OF ORDERING RELATION LOGIC TO AN OPTIMALIZING
AUTOMATIC CONTROL SYSTEM

6.1 Problem Description

Given a system to bz controlled with an output variable as a function

)

of a primary control variable as shown in Figure 6-1, For optimum system

Figure 6=1 System Output Variable With Optimum Peak

operation, %he control system ie to maximize the value of Cly) at all times,
Sines the yo valuse will shift with time and operating conditions, only the
C{yi value and 1ts derivative are available for control purposzs., Henece,
tre following logis system may be written to describe the action of +he
peak sesking control system. The contreller will be assumed o be a bang-

bang typz with the positive output increasing the valus of y and the nega-

tive output decreasing y.
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(¢ >0) and (¥ > 0) Drive +
(é < 0) and (% < 0) Drive +
(é > 0) and (% < 0): Drive -
(C <0) and (Y > 0): Drive -

The logical expression for the control system output can then be written as:

1= (€>0) (¥>0)+(C<0) (¥<0) (6-1)
Thus, any initial velocity displacement will return the system to the peak
of the C(y) relation.

However, there exists a hazard in the switching for Equation (6-1),
Since there are two control signals of two values each, there exist four
possible signal combinations for the logic ecircuit. The proper operation
of the control system depends upon how the changes of logic state are made
in going from one state to another. For example, assume that (y < yo)
initially, If (% > 0) and (C > 0), a positive drive signal moves the
system toward the peak. As the peak 1s passed, ¢ becomes negative, giving
(‘% > 0)° (C < 0). This results in a negative drive signal from the control
system., The physical system will lag the control signal by a certain
amount, resulting in the possibility of having i < 0 while é < 0. This
condition of dynamic lag is not shown by the functional relationship,
Figure 6-1, since it is only a static relationship curve.

Hence, at the time of switching from + to - control signals, there
will be a portion of time in which (Y < 0) (C < 0) will occur. This
condition will cause a + control signal, driving the system away from

the peak, The result is an oscillation about the switching point P5°



Note that the same condition is true when driving in the opposite
direction at point Pla Keeping this hazard point in mind, the logic

system can be easily implemented.

6.2 Bagic Logical Circuits

Since the basic control signals are ordering relations, the logic
is most easily implemented using direct ordering relation logic on an

operational amplifier, The circuit for Equation (6=1) is shown in

Figure 6-2.

Z R

to—/ I~
11/

A,
__;__ﬁ v A A
o—/ o1 W"J

°

s 0.1

=pbias

z\j/ N

I 0,1
o 4/\\/ _—'% jgias

T = (¥>0)°(E>0)+(Y<0) (¢<0)

Figure 6-2 Tmplementation of Logical Expression of 6-1,

The dual logic eircuit is shown in Figure 6-3, This implementation will

be shown to have advantages for eliminating the hazard switching condition,
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Figure 6-3 Duel Circuit for Implementation of Equation (6-1).

A time plét of the three amplifier outputs of Figure 6-3 versus
typical %, C inputs is given in Figure 6-4 to demonstrate the problem of
agynchronous switching, Note fhat amplifier 3 gives the correct output
signals with the exception of the short pulses occurring at times t, to t5
and t5 to tg. This is caused by the delay in the C switching signal.
What is desired then, is a circuit logic which delays the % switch point
until é has switched, The operation can be implemented rather simply in
ordering logic circuitry. Using the same logic circuit as shown in
Figure 6=~3, a modification is made to the & comparison input of amplifier
2, Instead of the % comparison reference being zero, a voltage K(T) is
fed back frem amplifier 3 and used as a reference. The value of K
(0 < K < 1) is adjusted to control the reference voltage. Figure 6-5

shows the modified circuit., Examining Figure 6-4, it is noted that the
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Figure 6-4 Time Plot of Typical Logic System Signals,

output of amplifier 3, +T or =T, will always be of opposite polarity to
that of the i input, JUST BEFORE THE HAZARD SWITCHING POINT OCCURS., Hence,

by feeding back voltage from amplifier 3 to amplifier 2, a variable bias
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L
voltage for the Y switching reference ls created whose polarity is
& L
always opposite ‘o Y, Hence, the Y switching point can be properly

biased in magnitude to mafeh the time lag in the 5 switeh,
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Figure 6~5 Modified Logic ¢ircuitry with Delay Factor to
Compensate for C Switching Delay,
Figure 6-6 displays the switching curves for the modified delay time
system., Notige that the delay in the Y switch tekes the form of & hysteresis
effect, That is, the lag is always opposite to the direction of switching,

elther Y> 0 or Y < 0O, Hence, using the normal logical expression

T, = (‘i>o)-(é>o)+(§<o)'(é<o) (6-2)

T, can be easily implemented if synchronized switching occurs, If the

logic must be asynchronous, delays can be implemented by changing the
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reference blas for one of the variables to be sensed, This creates an

ordering relation loglcal expression of the form:
o Ed & 3
(Y < <K T) * (C<0) + (Y > +KT) * (¢ > 0) (6-3)

where K; = K, 1f the switching curves are symetrical,
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Figure 6-6 Time Plot of Modified Switching System Response.
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All of the logic necessary to Implement such a nonlinear controlling
device can be achieved on conventional operational amplifiers with diode
input circuitry. It is interesting to note that the same logic as
implemented above may also be used for driving a system to a minimum
value of C(y). The only changes required are to reverse the polarity
notation for a positive y drive signal and readjustment for asynchronous

switching problems,



CHAPTER 7

AN APPLICATION OF ORDERING REIATION LOGIC TO A DUTY CYCLE OPTIMIZER

Given a set of N machines with different power requirements, all

connegted to a common power source bus as shown in Figure 7=l.

Power

Bus bar

Source

Figore =1 Duty Cycle System with Common Power Bus.

The power source capacity-is—insufficient to carry all machine loadings
in parallel, but it is desired to match the loading as closely as possible
to the maximum rated capacity of the source, The problem is complicated
by each machine having a different power requirement, on-line time, and
operation ecycle, Thus the total load pdwer required changes abruptly
and somewhat randomly as different machines are brought onto and dropped
off of the common bus line,

A logic system to allow optimum loading matching, under random
conditions, to a given source capacity can be implemented using combina-
tions of ordering relations and binary inputs to an operational amplifier

as follows.

w13
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Fach machine has four stable states of operation as listed below:
1, Off=line, not ready
2. Off-line, ready
3. Coming on~line
4, On-line
In order to allow a machine to come onto the bus line, the following three
statements must be simultaneously true:
(a) Machine off-line, ready

(b) Power required by the machine < power
remaining in the source

(¢c) No other machine has come on lines within
the previous 2 cycles,

Note that decisions (a) and (e¢) are binary in form while decision
(b) involves a comparison,

It 1s assumed that a continuous voltage is avallable for the value
of the remaining power in the source (vefore capacity is exceeded), de-
noted by P,.. Also, each machine presently has "off line, ready" binary
signal output circuits., Assuming a transient blocking signal is avail-
able for 2 ecycles after any machine comes on line, denoted as B, the
logical expression for a single machine can be written as

Wy = Iy '(Pi < Pr) * (i) * (§1) (7-1)

where: ith machine ready (mode 3 binary)

H
[N
i

8; = ith machine on line (mode 3 binary)

transient blocking signal (mode 3 binary)

o
i)

P, = ith machine power requirements (mode 1 continuous)

J
H

available source power remaining (mode 1 continuous)

w; = 1th machine on line (mode 3 binary)
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The logical implementation of Equation (7~l) is shown in Flgure 7=2,

NOTE: All resistors 1
meg. unless noted

Figure 7~2 Logical Implementation of Equation (7=1).

Note that by feeding back an input signal, Si, to the amplifier through
a 0,25 megohm resistor, once the machine is turned on Si controls the
amplifier output regardless of the other inpubs signals, Hence, the
logical circult acts as a special type of flip~flop cilrcuit, being reset
only when the machine goes off line, Because of the ry input, the cir-
cuit is capable of being "set” only when the machine is off line and
ready *o come on line, This latter condition will depend upon the
recovery time necessary aftsr each machine operation and the rate at

which material becomes available to the machine.



CHAPTER 8

MISCELLANEOUS APPLICATIONS

It is interesting to note that logical operations on operational

amplifiers may also be extended to flip-flop action. Specifically,

both minterm and maxterm form expressions may be used to "set" and
equivalent flip-flop, Figure 8=1 shows a flip-flop circuit with minterm
type input expression. Again, as in Appendix 2 and Chapter 3, note that
both ordering relations and binary inputs can be combined as inputs to
the same amplifier. Since a two amplifier circuit 1s used with feedback,
the oubput of amplifier 1 will be driven hard to its pesitive or negative
saturation valns, depending upon the gener dlods limiting. Amplifier 2
serves as an inverter-reset clrcuit. Exeamining Figure 8-1, the logical

expression noted must be met for all the diodes to be blocked. When

T = (X>A) - (Y>B)+w+v

NOTE: All resistors 1

v /\\/ O+bias meg, unless noted
Oﬂ

Figure 8-1 Implementation of a Flip-Flop Circuit
Using Ordering Relationship and Binary
Veriables,

.
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amplifier 1 has a positive output, the system will be denoted as in

the "set" mode., Whenever the logical expression is met, the output

is driven negative, The feedback from amplifier 2 reinforeces the

input, and amplifier 1 remains saturated in the negative polarity

state. If the input "set" conditions are removed, amplifier 1 will
return to the positive state whenever a positive reset pulse is applied
to amplifier 2, If the input conditions are still in effect when the
reset is applied, the circuit returns to the "set" state immediately
after removal of the reset pulse, Note that all binary inputs operate
in mode 3 while the continuous inputs operate analogously to mode 1. The
total expression shown in Figure 8-1 should include a term for the reset

value as follows:

T = [(X>A) e (Y>B)+w+v]sR (8-1)

3

Thus, the expression is dependent upon the reset signal remaining off

during the set phase of operation.



CHAPTER 9

EMPIRICAL RESULTS AND CONCLUSIONS

9.1 Threshold Switching Effects

As discussed in Chapter 5, the dwell time in the cemparison threshold
region determines the speed of switching, Figure 9~3 through 9-6 display
this effect for three different dwell times, Note from Figure 9-3 the
"soft" switch occurring especlally as T goes from T= to T+, requiring
almost one full second, Also note that actual switching occurs at the
value (X = A) ¥ 0.5 volts which would be expected for conventional diode
drops of approximately 0,5 volts.

Figures 9=4 and 9-5 show improved switching response for input rates
of change approximately 7 times that for Figure 9«3, Again note the 0,5
volt diode drop, Finally, Filgure 9-6 shows the much improved switching
speed when the input signal is scaled up even higher, = showing full

switehing in less than 0,05 seconds.

9,2 Optimalizing Control System Logic with Adjustable Delay

In order to test the action of the control logie cireuitry shown in
Figure 6~5, a typical physical system with dynamic delays of the form of
Figure O-1 was implemented. The static optimization curve was approxi-
mated by the expression:

c = K = (Y-K)

2 (9-1)

from which

¢ = -2Y + 2K, (9-2)

=18
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In order to simulate the dynamic delsys between § and é, the general

system of Figure 9-2 was implemented.

Controlled System

T T T T T T T T T |
|
| |
Dri I |
| Drive System ‘,Paraméter |
Source | Dynamics Dynamics T
|
R JU R |
Y
Q Quantizers Qo
Logic D
Figure 9=1 Optimalizing Control System.
K1 Ko K3 &
-] . > - > —»—
71D + 1 ToP + 1 P calc,
Physical Parameter
Dynamics Dynamics
sign
> Kb of
b C
Y
¥ Y

Figure 9-2 Simulated Optimallizing Control System.

An adjustable amount of delay may be placed into the control logic
network by feedback methods, Figure 9-7 shows the actions of the opti-

malizing control system with a hazard switching effect shown in the bottom
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trace. This response duplicates the predicted hazard switching response
of Figure 6-4, Figure 9-7 is the response for a system hazard delay
that is not sufficient to cause a limit cycle away from the optimum
point.,

Figure 9-8 shows the control system action when a small amount of
switching delay is placed in the loglc network. Note the improvement in
the i signal trace as the hazard switching duration is decreased. Figure
9~9 shows the system response when sufficient switching delay is provided
to eliminate the hazard effect., The § response trace shows definite
improvement, The above figures may be compared with Figures 9-10(a)
and 9-10(b) to evaluate system action, Figure 9-10 shows the limit
cycle behavior of the control system when no switching delay is provided
to overcome a high degree of hazard switching effect. Note from Figure
9mlO(a) that the hazard occurs when the i signal becomes zero, The §
output correctly tracks toward the optimum point until the § condition
is met, thereafter osecillating about the hazard point,

Figure 9-11(a) and 9-11(b) display proper logic element response
with switehing delay provided. Note the absence of any ambiguous
switching signal in the control output, T, as compared to Figure 9-7(b).
Also note the smooth tracking of the § value until the optimum point is

reached, thereafter oscillating about the point.

9,3 Typical Flip~Flop Response Using Operational Amplifiers

Flip-flop action with logical inputs is shown to be possible in
Chapter 9., TFigures 9=12 and 9-13 confirm this response for a conven-

tional "or" circuit and a logical "and" circuit., Figure 9-12 shows
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B0

the response for an input expressions of the form:

t, = (X>A)+w (9-3)
Note the action of the reset pulse in Figure 9-12(b) in which R does not
effect the circuit output if the input expression is still valid. Figure
9-1% shows the response for the analogous expression to Equation (9-5)

above,

t = (X<A)°w (9-k4)

Note in Figure 9-13(b) the relatively low value of the reset pulse R
required to reset the fllp=-flop action. Also, as expected, once the
circult has been set, the variation in elther of the varilable 1nputs,
continuous or binary, does not affect the flip~flop output. Figure

9-13(a) displays this effect quite sharply,

9,4 Basic Circult Operation for Continuous Signal Logic

ILoglcal operations using continuous input signals have already been
deseribed in Chapter 4, Figures 9-14 through 9-17 display the dual form
of the basic circults, as predicted in Figure k-2 and 4-3, Figure 9-1l(c)
shows the operation of a maximizer circuit for two inputs, shown in
Figure 9-14(a) and 9-14{(b). Note from the polarity being used that the
input signals operate in a continuous mode analogous to mode 1 already
described, Hence, the output correctly follows the maximum of the two
positive input signals, The basie clrcult configuration used for the
data of Figures 9-l4 and 9-15 is that of Figure 4-3.

When the input mode is changed to operation analogous to mode 2,
this same configuration becomes a minimization circuit. TFigure 9-15(c)

displays the circuit output for continuous negative inputs shown in
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Figure 9-15(a) and (b). The operation is as expected, the output con-
stantly following the minimum of the two input signals. Thus, the same
circult configuration can be used as a signal maximizer or minimizer by
proper choice of the mode of operation,

Similar to above, Figures 9-16 and 9-17 display the duality of logical
operations for the second configuration used, that of Figure 4-2, Figure
9«16(@) shows the output correctly following the maximum of the two negative
inputs, thus performing signal maeximization for mode 2 operatioms., Figure
9-17(c) likewise shows the dual operation when mode 1 input signals are
used. Note that (c) correctly follows the minimum signal input as expected.

One additional point should be mentioned concerning operation of the
two configurations. Either configuration can be used for maximum or mini-
mum signal selection when mode 3 operation is specified. Similar to the
dual form seen above, the maximum or minimum signal will be selected de-
pending upon which maximum voltage, +100 or =100 volts, is chosen as the
zero or one reference, Sinee a full 200 volt bilas gignal is wused, the
entire voltage range of the variable available on the computer,
=100 to +100 volts, may be used as inputs, However, there is‘a definite
disadvantage in forming the complement of a logical expression if the full
voltage range is used for inputs, Thus, operation analogous to mode 1 or

mode 2 will permit ease of complementation by simple inversion,

9.5 Conclusions
It has been shown in the derivations of previous chapters, and in
the empirical date of this chapter, that rather effective loglcal opera-

tions may be carried out using operational amplifiers on analog computing
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equipment, TIn particular, some forms of logical cirecultry involving
comparisons and ordering relationships can be implemented quite simply
by using operational amplifiers in diode networks,

I't 1s not the purpose of this study to suggest that static logic
networks be implemented on computer equipment for permanent control
applications. Rather, 1t is suggested that conventional anaslog computer
equipment can be used quite conveniently for checking out the logical
circultry. Since most control systems are simulated on analog computer
equipment for design purposes, the input signals, either binary or
continuous in form, are readily available for logical operations, It
1s interesting to note from Figures 9=7 through 9-13 that basic logical
quantities such as delays are also available from this type of logiecal
circultry, In effect, what has been done in this study is to investigate
the basic logical operations available on analog computing equipment and
to simulate those operations using conventional operational amplifier
circuits.

Chapters 6 and 7 show that this type of logical simulation does
have application to some control systems, In particular, the logical
control for the optimalizing system of Chapter 6 requires only 3
amplifiers, including the adjustable delay circuitry. Reference (12)
Indicates convantional logical implemenﬁationrrequires a great deal
more equipment, Although it is not within the scope of this study,
the author wishes to point out the implications of control logic
simulation to applications involving process control and industrial
automation, Chapter»? shows the ease with which an application ine

volving ordering relations can be implemented.



APPENDIX 1

BOOLEAN ALGEBRA TECHNIQUES

To illustrate the application of Boolean Algebra to logical expres-
sions involving operational amplifiers, the basic derivation of the algebra
will be given together with a summary of pertinent theorems, stated without
proof. For a complete discussion of theorems and proofs, the reader is.
referred to references (1), (2) and (5) in which rigorous derivations and

complete proofs are given for the system,

A=1 Fundamental Derivations

We begin by defining a set K of elements a, b, ¢,.,, which are
combinable under two operations designated as logical addition "+" and
logical product "¢" , The postulates of the system may then be stated
as follows:

Pla: For every a,b in K, a + b is also in K

Plb: For every a,b in K, a # b is also in K

P2a: For every a in K, there exists an element O such that a + 0 = a

PZb: For every a in K, there exists an element 1 such that a 1 = a

P3a: For every a,b in K, a+ Tt =b + a

, }- (commutative law)

P3b: For every a,b in K, a ¢ b=Db - a
Pha: For every a,b,c in K, a+ (b+c) = (a + b) +
%}-(associative)

PYb: For every a,b,e inK, (ab)-c=a - (b« c)

PSa: For every a,b,c in K, a + (bec) = (a + b) - (a + c)

}(distribu‘tive )
P5b: For every a,b,c inK, a » (b+ec) = (a » b)+ (a ¢ ¢)
P6: For every element a of K, there exists an element & in K such
that a+a = 1
- (complementation)
a a 0

e
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From the above postulates, the following theorems are stated
without proof.,
Tla: The element O is unique
Tlb: The element 1 is unique
T2a.: a+a=a
}' (idempotent)
T2b: a ° a =a
T3a: a+ 1s=1
T3b: a * 0=0
Tha: a+a+* b =asa

Thb: a - (a+b)=a+a-°b=a

T5: a is uniquely determined
T6: (-gh) =a
T7a: (a2 + b) = a - b
_ }' (DeMorgan’s Laws)
To: (2 - b)=aVh
T8 a+ac°b=a+b
T9: a - (a+Db)=a-hb

TI0: (a+b) * (a+ec)=1(a-c)+ (a-Db)

Tlla: (8- c*b-c)=(a-c)+ (b-+c)

T11b: (a+c) (b+c)=(a+c)e(b+a)

Note the interesting dual nature of the + and » operations, Duality
is a result of Boolean Algebra laws and provides symmetry to the logical
operations. Given one equation as valid, its dual is also then valid as
well as 1ts complement and the dual of the complement. For example, from
postulate PbSa:

a+(b-c)=(a+D)- (a+c) (A-1)
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The dual 1s formed by replacing all + by * and all ° by + as follows
a«(b+c)=(asd)+ (asec) P5b
The complement of the first expression is by thenfem 8:
5. (B+8)=(5-8)+ (5.3) (A-2)
Using the substitution technique, the dual of Equation (A-2) then becomes:
a+(bec)=(a+%) - (8a+0a) (A-3)

Thus, by proving the validity of one expression, four dual relatlons have
been proven valid.

Ordering relations involving continuous variables, such as (A > B)
and (A < B), may also be considered as statements for which the validity
1s a binary quantity, true or false, represented by the usual binary system
values 1 or O respectively, Also, from set theory conditions, which also
form a Boolean Algebra, the prineciple of set complements may be used such
that:

(A > B) 2 (A < B) (A-k)

Thus, the ordering relationship within parenthesis effectively be-
comes a binary veriable with a defined complement in terms of the comple=
ment of the ordering relation., All of the previous rules of Boolean
Algebra hold when working with ordering functions. In addition, the
complement of any ordering variable is easilly expressed by reversing

the ordering relationship., As an example, using postulate P5b and



Equation (A-l) above,
(A>B) - {{c<Dd)+ X>71)} (A-5)

may be expressed as:

(A>3B)» (C<D)+ (A>B) - X>7Y) (A-6)
= (A>B)« (C<D)+ (A>B)+ (X<Y) (A=T)

Since ordering relationships form boolean variables, they may be
logically combined with any other boolean variable, permitting mixed
variables in the same expression. To eliminate any confusion due to
notation, capital letters will be used for continuous variables while

lower cage letters will designate binary variables, For example,
T=(A>B)* (x+w-r)+z. (W<5) (A-8)
forms a perfectly valld boolean expression.

As2 Canonical Forms

Boolean Algebra operations require a standard form for comparison of
expressions, The two most common forms are the minterm canonical form
and the maxtsrm canonical form, both applicable to ordering relatien
logical expressions.

The minterm form 1s obtained by expanding a given expression, using
postulate P6, wntil all combinations of the given function variables are
obtained, Each combination occurs in conjunctive form (logical product )

with the sets of combinations connected by disjumetion {loglcal sum +).
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For an expression involving n variables, each of which have 2 possible
states, there are 2" possible unique combinations,
Exemple A-l: [Expand (x » y) + (x * z) = T into minterm form,
Using postulate P6,

(xey)e(z+8)+ (Rez) (y+rF)=m (A=9)

s

= (xeyez)+{xoyeE)+(Fey.z)+(R.F.2) (A-10)

For ease of notation, each minterm will be denoted by its binary number
equivalent, found by writing O for a complemented variable and 1 for an
uncomplemented variable, Thus, the simplified minterm notation for the
example A=l above becomes:

(111)+(110)+(011)+(001) = T (A-11)
7 6 3 1

The decimal equivalents of the binary numbers are known below each minterm
and serve as a couvenient notation, Thus, the above example can be written
as

T = m +mg +mg+ m (A=12)
where the lower case m denotes a minterm form,

In a dual fashion expressions may be expanded until all disjunctive
combinations of the input variables are obtained, Each combination is
connected by conjunction, Again, for n input variables, there are 2%
possible maxterm combinations,

Example A-2: Expand T = {x ¢ y) + (X * z) into maxterm form.

Using theorem T8 (DeMorgan's law) and postulate P5

T = (x-y+%o2z) = (R+F) . (x+8) (A-13)
= (xe R)+(R-Z)+(x-F)+(F-8)

)
e 5) 4 (x - ) (A-14)
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Again using theorem T8
T = (T)=(x+z) (x+y) - (y+32) (A-15)
Now adding O to the first term of (A-15)

(x+z)+(y - F)=(x+z)+(x+2) 1)+ (y-7F)

= (z+z)+(x+z2) (y+y)+(y-y) (A-16)
= {(x+z)+y}{x+z+y} (A-17)
= (x+y+z)° {x+3+2z) (A-18)

Similarly for the second term of (A-15)
(x+y)=%+y+(2-2) = (R+y+z) (F+y+3) (A-19)
For the third term

(y+z):(y+z)+(X’)-c)=(x+y+z)'(§-§+y+z) (A=20)

As in the case of minterm expressions, each maxterm will be denoted by the

decimal equivalent of the binary number represented. Thus for example A-2,

T=(x+y+z) (x+y+z)-(x+ty+z)-(R+y+z)-(x+7+2)

(g +y+z) (A-21)
is denoted as:
(L11)e(101)=(011)«(010)s(111)-{011) (A=22)
7 p) ) 2 7 3
Note fram theorem T2b, MJ- » Mj = MJ-
Hence, T=M ¢ My Mg o M, (A=23)

Where the capital letter M denotes a maxterm form.,
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A,3 Theorems and Canonical Transformations

Basic relationships exist between minterm and maxterm forms which

allow for convenient transformations. It can be easily verified that

the proper relationship is as follows:(l)
Iﬁl = M2n~l=i (A-Elka)
ﬁi = mon g4 (A-2Lp)
Where: n = number of binary varlables
i = particular‘termbconsidered
The following basic theorems ar= stated without prooft,
i1
) mp =2 (a-25)
i
20,1 ,
I M; = 0 (A=26)
i=0
mi ° my =0 = (A=27)
, boass
My o+ My =1 (A~28)

Now denoting by‘fi = 0,1 the presence or absence of the ith term,
functions may be conveniently exprsssed in either minterm or maxterm form

by the following notations:

ol
on.1
f = EE £, omy = 1£o (f; + Mon_y_s) (A-29)
1=0

The basic theorems (A-24) through (A-29) are important because they show

that any boolean function may be written in both minterm and maxterm form.
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Jsing the above canonical notation, ordering relation variables
may also be denoted as being in minterm or maxterm form for simplicatlon.
Thus,

(Y>3)° (z2<5)+ (w) * (R>K)
is in minterm form while
[{y >3y + (Z<5)] » [(w)+ (R>K)]

is in maxterm form. Standard boolean reduction techniques, including
mapping methods, may be applied to all of the above canonical forms.
These techniques are particularly well covered in references (1), (2),

and (5}ﬂ



ALGEBRAIC TREATMENT OF CONTINJOUS INPUT SIGNAL ILOGIC

Given a system involving variasbles A, B, C, ..., X which may be

APPENDIX 2

normalized to lie in the range 0 < X < 1, an interesting logic system

may be derived. From the above system, the following operations are

defined:

Logical And: A ¢ B

Logical Or : AWV B

Minimum [A,B]

Maximum [A,B]

(A-30)

Applying lattice theory to such a system(6>, it can be shown that any

boolsan identity, using the o, V relations, is valid if complementation

is not involved in the identity.

These identities

A-A =

AVA =

are summarized below:

A
B . A

¢y = (A-B)-¢C

Cy = (A - BV I{A-0C)

B) = A

A

0

A

BVA

¢l = (AVBRIVC

¢ = {(AVB) - (AVQC)
= A

=[5



AVO = A (A-b3)
AV = 1 (A-lk)

The inclusion relation A CB may also be used and appears as

A°B = A (A-45)
AVB = B (A-k6)
Where A<B

If the complement relation is defined as:

= 1-a (a-47)

DeMorgan's laws, theorem T7, may also be used. Hence,

K- B AV 3B (A=L8)

it

AVB = A-B (A-49)
Also, the rule of involution direetly follows from DeMorgan's law:
(LAY = A 1-(lL-A)=2A (A-50)

Not all the rules of Boolean Algebra follow however, In particular,

a+-4a=0 .
P6
a+a=1
must Dbe replaced for continuous variable logic by the expression
A-ACBVE (A=51)

Where A<B
For questionable identities, the validity of an expression may be checked
by substitutlon of the continuous values into both sides of the expression,

The following example demonstrates this technique.
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Example A-3: Show that the boolean identity
(a+b)e(B+c)=(a-c) (E8-0)+ (b-c)
does not hold for continuous signal logic.

Let A=3, B=1, C=1, A=1-3=

N+

Substituting into both sides of the identity

(AVB)°(AVT) = (3V1)°(3V1) =

S

while
(A-C)y(A-Biy(B-C) = (- 1V(E-1VY({1-1) = 1
Thus the two sides are not equivalent and the identity fails,

Using the formal reduction rules of Eguation (A-31) through (A-50),
logical expressions involving the "/ and "-" relations between continuous
signals may be reduced by algebraic methods, However, the systematic re-
duction methods of Boolean Algebra in general are not allowed since they
depend wpon the expansion of the function into canonical form, Because
of the limitation of complement operations, expressed by Equation (A-51),
a canonical form expansion equivalent to that of Boolean Algebra cannot
be obtained, It is the authors opinion, however, that a mapping method,
analogous to Karnaugh€2> mapping methods can be derivad, Although such
mappings are not now devaloped, to the authors knowledge, the amount of
research being conducted on many value logic systems indicates that

analogous reduction methods skould soon be available,
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