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ABSTRACT

The endoplasmic reticulum (ER) is a well-orchestrated protein-folding machine composed of protein chaper-
ones, proteins that catalyze protein folding, and sensors that detect the presence of misfolded or unfolded pro-
teins. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory
pathway and ensures that persistently misfolded proteins are directed toward a degradative pathway. The
unfolded protein response (UPR) is an intracellular signaling pathway that coordinates ER protein-folding
demand with protein-folding capacity and is essential to adapt to homeostatic alterations that cause protein
misfolding. These include changes in intraluminal calcium, altered glycosylation, nutrient deprivation, patho-
gen infection, expression of folding-defective proteins, and changes in redox status. The ER provides a unique
oxidizing folding-environment that favors the formation of the disulfide bonds. Accumulating evidence sug-
gests that protein folding and generation of reactive oxygen species (ROS) as a byproduct of protein oxida-
tion in the ER are closely linked events. It has also become apparent that activation of the UPR on exposure
to oxidative stress is an adaptive mechanism to preserve cell function and survival. Persistent oxidative stress
and protein misfolding initiate apoptotic cascades and are now known to play predominant roles in the patho-
genesis of multiple human diseases including diabetes, atherosclerosis, and neurodegenerative diseases. An-
tioxid. Redox Signal. 9, 2277-2293.

INTRODUCTION sit to the Golgi compartment (63). “Quality control” is a sur-
veillance mechanism that permits only properly folded proteins
to exit the ER en route to other intracellular organelles and the

As PROTEIN FOLDING is an essential process for protein func-
cell surface. Misfolded proteins are either retained within the

tion in all organisms, all cells have evolved a plethora of

sophisticated mechanisms to ensure that proper protein folding
occurs and to prevent protein misfolding. It is now recognized
that the efficiency of protein-folding reactions depends on ap-
propriate environmental, genetic, and metabolic conditions.
Conditions that disrupt protein folding present a threat to cell
viability. All proteins that transit the secretory pathway in eu-
karyotic cells first enter the endoplasmic reticulum (ER), where
they fold and assemble into multisubunit complexes before tran-

ER lumen in complex with molecular chaperones or are directed
toward degradation through the 26S proteasome in a process
called ER-associated degradation (ERAD) or through au-
tophagy.

The ER provides a unique environment that poses many
challenges for correct protein folding as nascent polypeptide
chains enter the ER lumen. The high concentration of par-
tially folded and unfolded proteins predisposes protein-fold-
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ing intermediates to aggregation. Polypeptide-binding pro-
teins, such as BiP and GRP94, act to slow protein-folding re-
actions and prevent aberrant interactions and aggregation.
The ER lumen is an oxidizing environment, so disulfide bond
formation occurs. As a consequence, cells have evolved so-
phisticated machinery composed of many protein disulfide
isomerases (PDIs) that are required to ensure proper disul-
fide-bond formation and prevent formation of illegitimate
disulfide bonds. The ER is also the primary Ca?*-storage or-
ganelle in the cell. Both protein-folding reactions and pro-
tein chaperone functions require high levels of ER intralu-
minal calcium. Protein folding in the ER requires extensive
amounts of energy, and depletion of energy stores prevents
proper protein folding. ATP is required for chaperone func-
tion, to maintain Ca2* stores and redox homeostasis, and for
ERAD. Finally, proteins that enter the ER lumen are subject
to numerous posttranslational modifications including N-
linked glycosylation, amino acid modifications such as pro-
line and aspartic acid hydroxylation and y-carboxylation of
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glutamic acid residues, and addition of glycosylphos-
phatidylinositol anchors. N-linked glycosylation is a highly
regulated process and is intimately coupled with protein fold-
ing and chaperone interactions to ensure that only properly
folded proteins exit the ER compartment (Fig. 1). All these
processes are highly sensitive to alterations in the ER lumi-
nal environment. As a consequence, innumerable environ-
mental insults alter protein-folding reactions in the ER
through mechanisms that include depletion of ER calcium,
alteration in the redox status, and energy (sugar/glucose) de-
privation. In addition, gene mutations, elevated protein traf-
fic through the ER compartment, and altered posttranslational
modification all contribute the accumulation of unfolded pro-
teins in the ER lumen. Accumulation of unfolded protein ini-
tiates activation of an adaptive signaling cascade known as
the unfolded protein response (UPR). Appropriate adaptation
to misfolded protein accumulation in the ER lumen requires
regulation at all levels of gene expression, including tran-
scription, translation, translocation into the ER lumen, and
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FIG. 1. Protein trafficking from the ER. On translocation of polypeptides through the Sec61 proteinaceous channel, as-
paragine residues are frequently modified by covalent addition of a preassembled oligosaccharide core (N-acetylglucosamine,-
mannoseo-glucoses). This reaction is catalyzed by the oligosaccharyltransferase (OST), a multisubunit complex associated with
translocon. To facilitate unidirectional transport through the translocon, nascent polypeptide chains in the ER lumen interact with
BiP, a molecular chaperone that binds to exposed hydrophobic residues. Subsequently, rapid deglucosylation of the two outer-
most glucose residues on the oligosaccharide core structures, mediated by glucosidase I and II (Glcl and Glcll), prepares glyco-
proteins for association with the ER lectins calnexin and calreticulin. The calnexin/calreticulin-associated oxidoreductase ERp57
facilitates protein folding by catalyzing formation of intra- and intermolecular disulfide bonds, a rate-limiting step in the protein-
folding process. Release from calnexin/calreticulin, followed by glucosidase II cleavage of the innermost glucose residue, pre-
vents further interaction with calnexin and calreticulin. At this point, natively folded polypeptides transit the ER to the Golgi
compartment, in a process possibly assisted by mannose-binding lectins, such as ERGIC-53, VIPL, and ERGL. As an essential
component of protein-folding quality control, nonnative polypeptides are tagged for reassociation with calnexin/calreticulin by
the UDP-glucose:glycoprotein glucosyltransferase (UGT1) to facilitate their ER retention and prevent anterograde transport.
Polypeptides that are folding incompetent are targeted for degradation by retrotranslocation, possibly mediated by EDEM and
Derlins, into the cytosol and delivery to the 26S proteosome. Triangles, glucose residues; squares, N-acetylglucosamine residues;
circles, mannose residues.
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ERAD. Coordinate regulation of all these processes is re-
quired to restore proper protein folding and ER homeostasis
(40, 63, 86, 107, 122, 150). Conversely, if the protein-fold-
ing defect is not resolved, chronic activation of UPR signal-
ing occurs, which eventually induces an apoptotic (pro-
grammed cell death) response.

Recent studies indicate that maintenance of ER homeostasis
is intimately intertwined with the cellular redox potential. How-
ever, the mechanisms that link ER stress and oxidative stress
are very poorly characterized. In this review, we attempt to sum-
marize the signaling pathways that mediate the UPR, the role
of oxidative stress in this adaptive response, the mechanisms
underlying oxidative protein folding, and finally the clinical im-
plications of these ER-associated processes in health and dis-
ease.

UPR SIGNALING

The molecular components of the UPR signaling pathway
have been successfully dissected over the past couple of
decades. It is now well established that in response to ER stress,
three ER-localized transmembrane signal transducers are acti-
vated to initiate adaptive responses. These transducers are two
protein kinases IRE1 (inositol-requiring kinase 1) (129, 159),
and PERK (double-stranded RNA-activated protein kinase-like
ER kinase) (42), and the transcription factor ATF6 (activating
transcription factor 6) (159, 160). These three UPR transduc-
ers are constitutively expressed in all known metazoan cells
(Fig. 2).
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IRE] signaling: selective mRNA splicing

The first component in the UPR pathway was identified in the
budding yeast Saccharomyces cerevisiae in the early 1990s us-
ing a genetic screen to identify mutants in UPR signaling. Two
independent groups identified Irelp/Ernlp as an ER transmem-
brane protein kinase that acts as a proximal sensor in the yeast
UPR (19, 86). Subsequently, it was discovered that Irelp is a bi-
functional protein that also has a site-specific endoribonuclease
(RNase) activity (19, 86). When cells are not stressed, Irelp pro-
tein kinase is maintained in an inactive monomeric form through
interactions with the protein chaperone Kar2p/BiP. Under con-
ditions of ER stress, Irelp is released from Kar2p/BiP and un-
dergoes homodimerization and trans-autophosphorylation to ac-
tivate its RNase activity. The RNase activity of Irelp cleaves a
252-base intron from mRNA encoding the basic leucine zipper
(bZIP)-containing transcription factor Haclp. The protein en-
coded by spliced HACI mRNA binds and activates transcription
from the UPR element [UPRE, minimal motif TGACGTG(C/A)]
upstream of many UPR target genes (87, 107). In S. cerevisiae,
the UPR activates transcription of ~381 genes (141), >50% of
which provide functions in the secretory pathway. Two mam-
malian homologues of yeast IRE1 have been identified; IREla
(139) and IRE1B (148). IREl« is expressed in most cells and
tissues, with highest levels of expression in the pancreas and pla-
centa (139). IRE18 expression is prominent only in intestinal ep-
ithelial cells (148). The cleavage specificities of IREla and
IRE1f are quite similar, thereby suggesting that they do not rec-
ognize distinct substrates but rather confer temporal- and tissue-
specific expression (97).

Analysis of promoter regions of UPR-inducible genes in

FIG. 2. Signaling the unfolded pro-
tein response. Three proximal sensors
(IRE1, PERK, and ATF6) act in concert
to regulate the UPR through their respec-
tive signaling cascades. The protein chap-
erone BiP is the master regulator and neg-
atively regulates these pathways. Under
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genes. Finally, BiP release permits PERK dimerization and activation to phosphorylate e[F2« on Ser 51 that leads to general at-
tenuation of translational initiation. Paradoxically, elF2a phosphorylation induces translation of ATF4 mRNA. The
PERK/elF2a/ATF4 regulatory axis also induces expression of antioxidative stress-response genes and expression of genes en-

coding proteins with proapoptotic functions, such as CHOP.
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mammals, such as BiP, Grp94, and calreticulin, identified a
mammalian ER stress-response element (ERSE, CCAAT-
(Ng)CCACG) that is necessary and sufficient for UPR gene ac-
tivation (157). Subsequently, Yoshida et al. (157) used a yeast
one-hybrid screen to identify the bZIP-containing transcription
factor XBP1 (X-box binding protein) as an ERSE-binding pro-
tein (157). Several groups demonstrated that XBP/ mRNA is a
substrate for the endoribonuclease activity of metazoan IRE1
(13, 70, 126, 159). On activation of the UPR, IRE1 RNase
cleaves XBP] mRNA to remove a 26-nucleotide intron. This
splicing reaction creates a translational frameshift to produce a
larger form of XBP1 that contains a novel transcriptional acti-
vation domain in its C-terminus. Spliced XBP1 is a transcrip-
tional activator that plays a key role activation of wide variety
of UPR target genes. Some of the genes identified that require
the IRE1/XBP1 pathway are those that encode functions in-
volved in ERAD, such as EDEM. Consistent with this obser-
vation, cells that are deficient in either IRE1 or XBP1 are de-
fective in ERAD (158) (see Fig. 2).

Deletion of Irela or XbpI in mice creates an embryonic lethal-
ity at E11.5-E14 (70, 111). Although deletion of Irel3 had no
developmental phenotype, Irel3~/~ mice were susceptible to ex-
perimentally induced intestinal colitis (7). Mice with heterozy-
gous Xbpl deletion appear normal but develop insulin resistance
when fed a high-fat diet (104). Thus, it was proposed that the
UPR might be important in insulin signaling (see later). In addi-
tion, both IRE1 and XBP1 have critical roles in B-cell differen-
tiation. Antigenic stimulation of mature B lymphocytes activates
the UPR, and signaling through IRE1-mediated XBP/ mRNA
splicing is required to drive B-lymphocyte differentiation into
plasma cells (13, 56, 112, 165). These studies suggest that the
IRE1/XBP1 subpathway of the UPR might be required for dif-
ferentiation of cell types that secrete high levels of protein (69).

PERK signaling: mRNA translation attenuation

The essential and unique properties of the UPR present in
yeast have been conserved in all eukaryotic cells, but higher
eukaryotes also possess additional sensors that promote stress
adaptation or cell death in a more complex, but coordinated
manner. In response to ER stress in metazoan cells, an imme-
diate transient attenuation of mRNA translation occurs, thereby
preventing continued influx of newly synthesized polypeptides
into the stressed ER lumen (64). This translational attenuation
is signaled through PERK-mediated phosphorylation of the eu-
karyotic translation initiation factor 2 on the « subunit (eIF2«a)
at Ser51. elF2a phosphorylation inhibits the guanine nucleo-
tide exchange factor eIF2B, which recycles the elF2 complex
to its active GTP-bound form. The formation of the ternary
translation initiation complex elF2-GTP-tRNAM¢! is required
for AUG initiation codon recognition and joining of the 60S ri-
bosomal subunit that occurs during initiation phase of polypep-
tide chain synthesis. Lower levels of active ternary complex re-
sult in lower levels of translation initiation (42-44, 121) (see
Fig. 2).

PERK is an ER-associated transmembrane serine/threonine
protein kinase. On accumulation of unfolded proteins in the ER
lumen, PERK dimerization and trans-autophosphorylation leads
to activation of its elF2« kinase function (41, 42). In addition
to translational attenuation, activation of PERK also induces
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transcription of approximately one third of the UPR-dependent
genes (43, 44, 114, 121). Although phosphorylation of elF2«
inhibits general translation initiation, it is required for the se-
lective translation of several mRNAs. One fundamental tran-
scription factor for which translation is activated on PERK-me-
diated phosphorylation of elF2« is the activating transcription
factor 4 (ATF4) (43, 44, 114, 121). Expression profiling found
that genes encoding amino acid biosynthesis and transport func-
tions, antioxidative stress responses, and apoptosis, such as
growth arrest and DNA damage 34 (GADD34) and CAAT/en-
hancer-binding protein (C/EBP) homologous protein (CHOP)
(41, 80), require PERK, elF2a phosphorylation, and ATF4 (43,
44, 114, 121).

Although the majority of PERK signaling is mediated
through phosphorylation of elF2¢, studies suggest that the bZIP
Cap ‘n’ Collar transcription factor nuclear respiratory factor 2
(NRF2) may also be a substrate for the PERK kinase activity.
NRF1 and NRF2 are transcription factors that integrate a vari-
ety of responses to oxidative stress. NRF2 is distributed in the
cytoplasm through its association with the microtubule-associ-
ated protein Keapl (Kelch-like Ech-associated protein 1). On
ER stress, PERK phosphorylates NRF2 to promote its dissoci-
ation from Keap1, leading to the nuclear accumulation of NRF2.
Nrf2™/~ cells are sensitive to ER stress-induced apoptosis.
NREF2 is a direct PERK substrate and effector of PERK-de-
pendent cell survival (21). NRF2 binds to the antioxidant re-
sponse element (ARE) to activate transcription of genes en-
coding detoxifying enzymes, including A1 and A2 subunits of
glutathione S-transferase, NAD(P)H:quinone oxidoreductase,
y-glutamylcysteine synthetase, HO-1, and UDP-glucoronosyl
transferase (95). Possibly in a similar manner, NRF1 is local-
ized to the ER membrane and translocates to the nucleus on ER
stress (147). These data support the notion that PERK phos-
phorylates multiple substrates to protect cells from oxidative
stress. Consistent with this idea, Perk™/~ cells accumulate ROS
when exposed to ER stress (44).

ATF6 signaling: regulated intramembrane
proteolysis

The bZIP-containing activating transcription factor 6 (ATF6)
was identified as another regulatory protein that, like XBP1,
binds to the ERSE1 element in the promoters of UPR-respon-
sive genes (157). The two alleles of ATF6, ATF6a (90kDa)
and ATF6 (110 kDa) are both synthesized in all cell types as
ER transmembrane proteins. In the unstressed state, ATF6 is
localized at the ER membrane and bound to BiP. In response
to ER stress, BiP dissociation leads to transport of ATF6 to the
Golgi complex, where ATF6 is sequentially cleaved by two pro-
teases (45, 74, 161). The serine protease site-1 protease S1P
cleaves ATFG6 in the luminal domain. The N-terminal portion
is subsequently cleaved by the metalloprotease site-2 protease
S2P (155). The processed forms of ATF6a and ATF6f translo-
cate to the nucleus and bind to the ATF/cAMP response ele-
ment (CRE) and to the ER stress-response element (ERSE-1)
to activate target genes (161). ATF6a and ATF6( both require
the presence of the transcription factor CBF (CAAT binding
factor also called NF-Y) to bind ERSEI (45, 74, 161). The pro-
teases S1P and S2P were originally identified for their essen-
tial role in processing of the sterol response element binding
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protein (SREBP) transcription factor, that is activated on cho-
lesterol deprivation (37) (see Fig. 2).

Recently, additional bZIP-containing transcription factors
that are localized to the ER and regulated by RIP were identi-
fied. CREBH was identified as a liver-specific bZIP transcrip-
tion factor of the CREB/ATF family, with a transmembrane do-
main that directs localization to the ER (164). Pro-inflammatory
cytokines IL-6, 1L-18, and TNFa increase transcription of
CREBH to produce an inert protein that is localized to the ER.
On ER stress, CREBH transits to the Golgi compartment, where
it is cleaved by S1P and S2P processing enzymes. However,
cleaved CREBH does not activate transcription of UPR genes,
but rather, induces transcription of many acute-phase response
genes, such as C-reactive protein and murine serum amyloid P
component (SAP) in hepatocytes. These studies identified
CREBH as a novel ER-localized transcription factor that has
an essential role in induction of innate immune response genes
and links for the first time ER stress to inflammatory responses
(164).

In addition to ATF6 and CREBH, additional similarly related
factors are regulated through ER stress-induced proteolytic pro-
cessing, although their physiologic significance remains un-
known. OASIS (old astrocyte specifically induced substance)
and BBF2H7 (BBF2 human homologue on chromosome 7) are
cleaved by S1P and S2P in response to ER stress in astrocytes
and neurons, respectively (67, 68). Tisp40 (transcript induced
in spermiogenesis 40) is cleaved by Slp and S2P to activate
transcription of EDEM (91). These tissue-specific ATF6-like
molecules may contribute to the ER stress response. Finally,
Luman/LZIP/CREB3 and CREB4 are also two ATF6-like mol-
ecules that are cleaved by S1P and S2P to activate UPR tran-
scription, although their cleavage appears not to be activated
by ER stress (76, 110, 134). These transcription factors might
be activated under conditions other than ER stress to activate
transcription of ER chaperones.

Activation of the UPR: autoregulation
through BiP

Biochemical studies have demonstrated that the luminal do-
mains of IRE1, PERK, and ATF6 are bound to the protein chap-
erone BiP in unstressed cells. In response to stress, unfolded
proteins accumulate and bind BiP, thereby sequestering BiP and
promoting BiP release from the UPR sensors. When these sen-
sors are bound to BiP, they are maintained in an inactive state
(7). This BiP-mediated negative-regulation model for UPR ac-
tivation is also supported by the observation that BiP overex-
pression prevented activation of the UPR on ER stress (90). In
addition, sufficiently high levels of expression of any protein
that binds BiP can activate UPR. In contrast, the accumulation
of unfolded proteins that do not bind BiP does not activate the
UPR. Analysis of the interaction between BiP and ATF6 sug-
gested that this dissociation is not merely a consequence of com-
petition between ATF6 and unfolded protein for binding to BiP,
but rather may involve an active ER stress-dependent release
of BiP from ATF6 (125). Recently, based on the x-ray crystal
structure of the yeast Irelp luminal domain, Credle et al. (20)
identified a deep, long MHC1-type groove that exists in an Ire1p
dimer and proposed that unfolded polypeptides directly bind
Irelp to mediate its dimerization. However, although the x-ray
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crystal analysis of the human IRE1 luminal domain indicated
a similar structure as yeast Irelp, the MHCI1-type groove was
not solvent accessible (167). In addition, the luminal domain
was shown to form dimers in vitro in the absence of added
polypeptide (167). These observations bring into question the
requirement for peptide binding to the MHC1-type cleft to pro-
mote dimerization. It is possible that a combination of BiP bind-
ing and peptide binding regulates IRE1 dimerization. Future
studies should resolve this issue.

ER STRESS-INDUCED APOPTOSIS

If the UPR-mediated efforts to correct the protein-folding de-
fect fail, apoptosis is activated. Both mitochondria-dependent
and -independent cell death pathways trigger apoptosis in re-
sponse to ER stress (Fig. 3). The ER might actually serve as a
site where apoptotic signals are generated and integrated to
elicit the death response. Several mechanisms by which apop-
totic signals are generated at the ER include PERK/elF2a-de-
pendent induction of the proapoptotic transcription factor
CHOP; Bak/Bax-regulated Ca?" release from the ER; IRE1-
mediated activation of ASK1 (apoptosis signal-regulating ki-
nase 1)/JNK (c-Jun amino terminal kinase); and cleavage and
activation of procaspase 12 (see Fig. 3).

CHOP-mediated ER stress-induced cell death

Probably the most significant ER stress-induced apoptotic
pathway is mediated through CHOP. CHOP/GADDI153
(growth arrest and DNA damage 153) is a bZiP transcription
factor that is induced through the ATF6 and PERK UPR path-
ways (80, 115). Chop™~ cells are protected from ER stress-in-
duced apoptosis (168), indicating the significance of this path-
way. Although the precise mechanism by which CHOP
mediates apoptosis is unknown, CHOP activates the transcrip-
tion of several genes that may potentiate apoptosis. These in-
clude Gadd34, Erol, Dr5 (death receptor 5), Trb3 (Tribbles ho-
molog 3), and carbonic anhydrase VI. Gadd34 encodes a
subunit of protein phosphatase 2C that enhances dephosphory-
lation of elF2a and promotes protein synthesis (99). Persistent
protein synthesis during periods of ER stress would chronically
activate the UPR and initiate cell death pathways. Erol encodes
an ER oxidase that increases the oxidizing potential of the ER
(82). Dr5 encodes a cell-surface death receptor that may acti-
vate caspase cascades (153). Trb3 encodes a human orthologue
of Drosophila tribble, and Trb3-knockdown cells are resistant
to ER stress-induced apoptosis (100). Carbonic anhydrase VI
may decrease the intracellular pH during ER stress (131). CHOP
has also been implicated in repressing transcription of the an-
tiapoptotic BCL2 protein, which leads to enhanced oxidant in-
jury and leads to apoptosis (85). However, the ability of CHOP
to induce ER stress-associated apoptosis has recently been dem-
onstrated to be dependent on the duration of the stress state.
Long-term exposure to a mild stress can lead to adaptation by
selective attenuation of CHOP expression mediated by degra-
dation of CHOP mRNA and CHOP protein, whereas expres-
sion of downstream targets encoding adaptive functions, such
as ER chaperones BiP and GRP94, is persistent because of long-
lived mRNAs and proteins (117).
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FIG. 3. ER stress—-induced pro-
grammed cell death. ER stress
leads to several redundant pathways
for caspase activation that involve
mitochondria-dependent and -inde-
pendent pathways. Activated IRE1 re-

Gadd34, Trb3, Dr5

Nucleus

Casp 12
\ ./

Apoptosis

cruits TRAF2 to elicit JNK phospho-
rylation and activation. Caspase 12
is a murine ER-associated proximal
effector in the caspase activation
cascade that activates procaspase 9
to cleave procaspase 3, the primary
executioner of cell death. A second
cell death—signaling pathway activated
by ER stress is mediated by trans-
criptional induction of genes encod-
ing proapoptotic functions. Activation
of PERK, ATF6, and possibly IRE1
lead to transcriptional activation of
CHOP that induces apoptosis, possi-
j bly through regulation of the genes
Gadd34, Dr5, and Trb3 or by inhibit-
ing expression of the antiapoptotic
gene Bcl2. ER stress can also lead to
ROS production, and this also can oc-
cur subsequent to accumulation of un-

Malfolded protein

Casp 9

Casp 3

folded protein in the ER. Mitochondr-

ial ROS can also be generated as a result of ER stress—induced Ca’" release and depolarization of the inner mitochondrial
membrane. Thus, oxidative stress in association of unresolved ER stress contributes to multiple pathways of cell death.

BCL2-regulated ER stress-induced cell death

BCL2 family proteins are also fundamentally involved in
ER stress-induced apoptosis. During ER stress, proapoptotic
members of the BCL2 family are recruited to the ER surface
and activate caspase-12. In contrast, the antiapoptotic members
prevent this recruitment, although the exact relation between
these factors is still unclear. Overexpression of BCL2 family
members can prevent ER stress-induced apoptosis. BIM
(BCL2-interacting mediator of cell death) translocates from the
dynein-rich compartment to the ER membrane and activates
caspase-12 in response to ER stress, whereas an antiapoptotic
factor, BCL-xL (BCL2-like 1), binds to BIM and inhibits its
translocation (89). Consistent with this notion, BIM knockdown
cells are resistant to ER stress-induced death.

BH3 domain (Bcl2-homology domain 3)-only containing
proapoptotic factors, such as BAX (Bcl2-associated X protein)
and BAK (Bcl-2 homologous antagonist/killer), are present at the
mitochondrial and ER membranes (123, 169). During ER stress,
BAX and BAK oligomerize possibly to permit Ca>* efflux into
the cytoplasm. Increased cytosolic Ca>* can activate both mito-
chondria-dependent and -independent caspase cascades (123,
169). In vitro experiments support the idea that the increase in
the cytosolic Ca®™ concentration (from micromolar to millimo-
lar) activates the calcium-dependent protease m-calpain, which
subsequently cleaves and activates the ER-resident procaspase-
12 to initiate caspase-dependent apoptosis (92). The Ca?™ re-
leased from the ER also enters mitochondria to depolarize the in-
ner membrane, promoting cytochrome c¢ release and activating
APAF-1 (apoptosis protease-activating factor 1)/procaspase-
9-regulated apoptosis. Thus, BCL2 family members regulate ER
stress-induced apoptotic responses through Ca®" signaling.

The regulation of BH3-only members of the BCL2 family
during ER stress is quite complex. BAX and BAK are required
for most forms of apoptosis (170). Additional BH3 domain—
only family members, PUMA (p53 upregulated modulator of
apoptosis) and NOXA (neutrophil NADPH oxidase factor), are
upregulated by p53 during ER stress. In addition, Puma "~ cells
and Noxa™/~ cells are resistant to ER stress-induced apoptosis
(73). BAX activation during ER stress is inhibited by the ER-
localized antiapoptotic factor BI-1(Bax inhibitor (1). Bi-1~/~
mice are sensitive to ER stress, whereas mice overexpressing
BI-1 are resistant (15). BIK (BCL2-interacting killer) is an ER-
localized proapoptotic component that enhances the recruitment
of BAX and BAK to the ER membrane (83). Finally, BAX and
BAK associate with IREla and potentiate its signaling during
ER stress (46).

IRE-mediated ER stress-induced cell death

In addition to initiating splicing of XBP/ mRNA, activation
of IRE1 signals into the MAP kinase cascade. The IRE1 cyto-
plasmic domain interacts with the adaptor protein, TRAF2 (tu-
mor necrosis factor receptor—associated factor 2). TRAF2 cou-
ples the activation of death receptors at the plasma membrane
to activation of Jun kinase (JNK) and stress-activated protein
kinase (SAPK) (144). IRE1 and TRAF2 interact with the mi-
togen-activated protein kinase kinase kinase, ASK1 (apoptosis
signal-regulating kinase 1), which subsequently phosphorylates
and activates JNK (96). Therefore, ER stress-induced JNK ac-
tivation and apoptosis are reduced in Irel '~ and Askl /™ cells.
However, this mechanism cannot account for the observation
that Traf2™/~ cells are more susceptible to ER stress-induced
apoptosis (84). TRAF2 also associates with caspase-12 and reg-
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ulates its activation (156). IREI-TRAF2 activates the tran-
scriptional repressor ATF3 as well, leading to apoptosis (163).
Evidence suggests that UPR activation of IRE1 may initiate the
extrinsic apoptotic pathway. IRE1 interacts with TNFR1 (tu-
mor necrosis factor receptor 1) to form a complex with TRAF2
and ASKI1 to mediate JNK activation. The activation of JNK
by ER stress is impaired in Tnfrl /= cells. In addition, the ex-
pression of TNF-« is upregulated by the IRE1 pathway during
ER stress (51, 154.). ROS can directly activate ASK1 by dis-
rupting an ASKI1-thioredoxin (TDX) complex through oxida-
tion of TDX, and thereby lead to activation of JNK, p38 MAP
kinase, and cell death (140). The Jun activation domain-bind-
ing protein (JAB1) may be a feedback regulator because it can
interact with IRE1 and inhibit XBP] mRNA splicing and BiP
transcription (101). Thus, oxidative stress and ER stress may
induce cell death using the same molecular complex consisting
of IRE1/TRAF2/ASK1/TDX. Finally, TNF-a can activate the
UPR in a ROS-dependent manner (152). These finding indicate
that an intricate relation exists between death-receptor signal-
ing, oxidative stress, and activation of the UPR.

Caspase-mediated ER stress-induced cell death

Caspases are well-known proapoptotic components, and cas-
pases 2, 3, 4,7, 9, and 12 are reported to be involved in ER
stress-induced cell death (17, 23, 25, 47). Caspase-12 is asso-
ciated with the ER membrane and activated by ER stress, pos-
sibly by calpain (137). In addition, proapoptotic BCL2 family
members BAX and BAK also colocalize to the ER membrane
and function to activate apoptosis through caspase-12 (17, 23,
25, 47). Caspase-12 activates caspase-9, which in turn activates
caspase-3 (88), leading to cell death. Caspase-12~/~ mice are
resistant to ER stress-induced apoptosis but sensitive to other
death stimuli, suggesting that caspase-12 is a regulator specific
to ER stress-induced apoptosis (93). However, the involvement
of caspase-12 in apoptosis of human cells is still open to ques-
tion, as the human caspase-12 gene contains several inactivat-
ing mutations (32). It is possible that caspase 4 mediates ER
stress-induced apoptosis in human cells (47, 66).
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OXIDATIVE STRESS

ROS can be produced in all cellular compartments and ulti-
mately results in protein damage (9). Furthermore, the expo-
sure of biologic systems to various conditions of oxidative stress
leads to age-dependent increases in the cellular levels of ox-
idatively modified proteins, lipids, and nucleic acids, and sub-
sequently predisposes to the development of well-recognized,
age-related disorders that cause impaired cognitive function and
metabolic integrity (133). Accumulating evidence suggests that
protein folding and production of ROS are closely linked
events; however, this area of ER stress is not well explored.
Because oxidative protein folding occurs in the ER and pertur-
bations in protein folding can cause deleterious consequences,
alterations in redox status or generation of ROS could directly
or indirectly (or both) affect ER homeostasis and protein fold-
ing. Elucidating the relation between oxidative stress and ox-
idative protein folding represents a major area for future re-
search.

PRODUCTION OF REACTIVE OXYGEN
SPECIES (ROS)

ROS can be produced both as a result of exposure to toxic
agents such as irradiation and environmental pollutants, and
also as byproducts of oxygen(using enzymatic reactions, such
as the mitochondrial respiratory chain, the arachidonic acid
pathway, the cytochrome P450 family, glucose oxidase, amino
acid oxidases, xanthine oxidase, NADPH/NADPH oxidases, or
NO synthases (11, 31) (Fig. 4). The electron-transport chain
produces membrane-impermeable superoxide anion, and the
rate is dependent on the mitochondrial inner-membrane poten-
tial. In the presence of mitochondrial SOD, superoxide is con-
verted to hydrogen peroxide (H,O,) that can diffuse out of
mitochondria into the cytoplasm. In the presence of iron, hy-
drogen peroxide forms the highly reactive hydroxyl radical
(OH") via the Fenton reaction. The superoxide anion radical

FIG. 4. Pathways of ROS production in
the cell. ROS are generated by exposure
to multiple stresses such as irradiation and
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(O,77). also generates other toxic metabolites such as perox-
ynitrile (ONOO™), hypochlorous acid (HOCI), and singlet oxy-
gen (0,). Under physiologic conditions, ROS accumulation is
guarded by numerous endogenous antioxidant defense systems
that include both enzymatic and nonenzymatic antioxidant
mechanisms that can either scavenge ROS or prevent their for-
mation. The enzymatic antioxidant defense mechanisms are me-
diated through superoxide dismutase (SOD), glutathione per-
oxidase (GPX), catalase, and thioredoxin reductase. Vitamins
provide a nonenzymatic antioxidant defense (8). Finally, redox
homeostasis is contributed by several redox systems, including
NAD*/NADH, NADP*/NADPH, and oxidized glutathione/re-
duced glutathione (GSSG/GSH).

Both ER stress and oxidative stress, through ROS genera-
tion, may increase leak of Ca2?* from the ER lumen (6, 38,
79). Increases in cytosolic Ca?>" can stimulate mitochondrial
ROS production through multiple mechanisms. The mito-
chondrial electron-transport chain generates ROS as a conse-
quence of increased mitochondrial Ca®>* loading. The amount
of mitochondrial ROS production primarily reflects the quan-
tity of the ubisemiquinone radical intermediate (QH-), an in-
termediate in the Q cycle at complex III (27, 132). QH- is
increased when complex III is inhibited. Ca?™ opens the per-
meability transition pore to release cytochrome ¢ from the in-
ner mitochondrial membrane, thereby blocking the respiratory
chain at complex III. In addition, the generation of QH- is in-
creased when the respiratory chain turns over more quickly.
Ca?" leak stimulates the TCA cycle, thereby increasing O,
consumption and ROS generation. Ca?* also stimulates nitric
oxide synthase, which generates NO- that inhibits complex IV
and can thereby enhance ROS production. Finally, Ca>*-in-
duced permeability transition pore opening may cause leak of
GSH from the matrix and, as a consequence, deplete reduc-
ing equivalents.

High levels of ROS generation within the mitochondria fur-
ther increase Ca®" release from the ER. The very close prox-
imity of ER and mitochondria leads to accumulation of Ca’*
near mitochondria, thereby increasing mitochondrial ROS pro-
duction and leading to opening of the permeability transition
pore (57). Furthermore, ROS can also feedback to sensitize the
Ca®"-release channels at the ER membrane (5, 146). For ex-
ample, this may occur through ROS or reactive nitrogen species
that can oxidize a critical thiol in the ryanodine receptor and
cause its inactivation, thereby enhancing Ca>* release from the
sarcoplasmic reticulum (28, 151). As the antioxidation poten-
tial of the cell diminishes, the vicious cycle of Ca2* release and
ROS production becomes more threatening to cell survival.

Oxidative protein folding in the ER

The ER is an organelle in which proper protein folding and
disulfide formation of proteins is dependent on the redox sta-
tus within the lumen of the ER. In contrast to the cytosol, which
has a reducing environment, the lumen of the ER is oxidizing
with a high ratio of oxidized to reduced glutathione (GSSG/
GSH) (145). Glutathione is a tripeptide (L-y-glutamyl-L-cys-
teinyl-glycine) that is synthesized in the cytosol. The cell con-
tains up to 10 mM GSH that is maintained in a reduced form
through a cytosolic NADPH-dependent reaction catalyzed by
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glutathione reductase. Cellular redox homeostasis is maintained
by a dynamic interaction between reduced glutathione (GSH)
and protein thiols with ROS. Reduced glutathione GSH serves
as a major thio-disulfide redox buffer in cells and the ratio of
GSH to GSSG is used as an index of the redox state. Whereas
the ratio of reduced glutathione to oxidized glutathione is
(>50:1) in the cytoplasm, this ratio is (1:1 to 3:1) in the ER lu-
men (53). The oxidizing environment of the ER lumen pro-
motes disulfide bond formation. In addition, the greater oxi-
dizing environment of the ER was suggested to contribute to
the preferred oxidation and inactivation of ER-resident proteins,
such as protein disulfide isomerases, thereby contributing to un-
folded protein accumulation (145).

Proteins that transit the secretory pathway frequently require
disulfide bond formation for their maturation, stability, and/or
function. Mispairing of cysteine residues and formation of in-
appropriate disulfide bonds prevents proteins from attaining
their native conformation and leads to misfolding. Although it
is likely that GSH reduces non-native disulfide bonds in mis-
folded proteins, this is likely not the major pathway used in
cells. The ER lumen maintains redox conditions that enable a
distinct set of folding catalysts to facilitate the formation and
isomerization of disulfide bonds (53). The process of disulfide
bond-dependent protein folding is slow because of its depen-
dence on a redox reaction, which requires an electron acceptor.
During this folding process, a protein may be oxidized to form
disulfide bonds, isomerized to allow polypeptide rearrange-
ment, or reduced to allow unfolding and subsequent degrada-
tion (16). The idea that disulfide bond formation is an assisted
process in vivo is supported by the discovery of DsbA mutants
in Escherichia coli that display compromised disulfide bond
formation (3).

In eukaryotes, oxidative protein folding is catalyzed by a fam-
ily of ER oxidoreductases, including PDI (protein disulfide
isomerase), ERp57, ERp72, PDIR, PDIp, and P5. PDI is a mul-
tifunctional protein capable of catalyzing the formation, iso-
merization, and reduction of disulfide bonds in vitro as well as
being an essential subunit for the enzymes prolyl 4-hydroxy-
lase and microsomal triacylglycerol transfer protein (30). When
chaperone-assisted disulfide bond formation occurs, cysteine
residues within the PDI active site [-C-X-X-C-] accept two elec-
trons from the polypeptide chain substrate. This electron trans-
fer results in the oxidation of the substrate and the reduction of
the PDI active site. Despite the ability of PDI to enhance the
rate of disulfide-linked folding, the mechanisms by which the
ER disposes of electrons as a result of the oxidative disulfide
bond formation has remained an enigma. A number of differ-
ent factors have been proposed to maintain the oxidizing envi-
ronment of the ER, including the preferential secretion of re-
duced thiols and uptake of oxidized thiols, and a variety of
different redox enzymes and small-molecule oxidants. How-
ever, no genetic evidence demonstrates that these factors are
physiologically important (14, 34, 35). It was believed for many
years that the low-molecular-mass thiol glutathione is respon-
sible for oxidizing the PDI active sites. This was contrary to
observations in yeast, in which depletion of glutathione did not
interfere with disulfide bond formation (22, 58).

Extensive genetic and biochemical studies using the yeast
Saccharomyces cerevisiae have provided detailed insights into
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the mechanisms underlying oxidative protein folding. A genetic
screen in yeast identified a conserved ER-membrane-associ-
ated protein Erolp (ER oxidoreductin 1) (35, 109) that plays a
role similar to that of the bacterial periplasmic protein DsbB in
oxidative folding. The proteins Erolp and DsbB specifically
oxidize a thioredoxin-like protein (PDI in eukaryotes, DsbA in
bacteria) that further serves as an intermediate in electron trans-
fer. In both prokaryotes and eukaryotes, molecular oxygen
serves as the terminal electron acceptor for disulfide bond for-
mation. Erolp uses a flavin-dependent reaction to pass elec-
trons directly to molecular oxygen. This reaction has the po-
tential to generate ROS that would contribute to cellular
oxidative stress. The role of Erolp in electron transfer suggests
that the activity of Erolp is tightly coupled with the protein-
folding load in the ER (142). In mammals, two ERO1 genes,
hEROI1-La and hERO1-Lg (10, 105), differ in their tissue dis-
tribution and transcriptional regulation. Only ERO1-Lf is in-
duced by the UPR (105), whereas ERO1-La is induced during
hypoxia (36). Further studies in yeast, and later in metazoan
cells, identified a critical role for flavin adenine dinucleotide
(FAD) in oxidative protein folding. As Erolp is a novel FAD-
binding protein (142), the FAD requirement in oxidative fold-
ing may reflect its function in Erolp. These studies suggest that
the versatile redox molecule FAD functions in disulfide bond
formation in the ER lumen.

One fundamental unanswered question is whether the pres-
ence of an unfolded protein in the ER lumen is sufficient to ac-
tivate oxidative stress (see Fig. 4). It has been estimated that
~25% of the ROS generated in a cell may result from forma-
tion of disulfide bonds in the ER during oxidative protein fold-
ing (see Fig. 4) (142). Two mechanisms have been proposed
for how disulfide bond formation generates ROS. During for-
mation of disulfide bonds, ROS are a byproduct formed as
EROI and PDI act in concert to transfer electrons from thiol
groups in proteins to molecular oxygen. Alternatively, protein
misfolding may be associated with inappropriate pairing and
bonding of cysteine residues. In this case, ROS may be formed
as a consequence of the glutathione depletion that occurs as glu-
tathione reduces unstable and improper disulfide bonds. The
consumption of GSH would return thiols involved in non-na-
tive disulfide bonds to their reduced form so they may again
interact with ERO1/PDI1 to be reoxidized. This would gener-
ate a futile cycle of disulfide bond formation and breakage, in
which each cycle would generate ROS and consume GSH (Fig.
5). As a consequence, it is expected that proteins that have mul-
tiple disulfide bonds may be more prone to generating oxida-
tive stress. In addition, it will be important to determine whether
misfolding of a protein that has no disulfide bonds can gener-
ate ROS.

Potential mechanisms exist by which unfolded protein may
generate ROS, independent of disulfide bond formation. First,
unfolded protein accumulation in the ER may elicit Ca® ™" leak
into the cytosol to increase ROS production in mitochondria.
Alternatively, because both protein folding and refolding in
the ER lumen are highly energy-dependent processes, ATP
depletion as a consequence of protein misfolding could stim-
ulate mitochondrial oxidative phosphorylation to increase
ATP production, and consequently to increase ROS produc-
tion.
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FIG. 5. Oxidative protein folding in ER. The trafficking of
reducing equivalents within the lumen of the ER is depicted.
The formation of disulfide bonds is catalyzed by PDI-mediated
oxidation of substrate polypeptides. ERO1 subsequently re-
duces PDI so it can recycle to catalyze protein folding. Reduced
EROL1 transfers electrons to molecular O,, thereby leading to
ROS production. Reduced glutathione (GSH) may also assist
in reducing nonnative disulfide bonds in misfolded proteins, re-
sulting in the production of oxidized glutathione (GSSG).

ER STRESS AND OXIDATIVE STRESS
IN DISEASE

The UPR has evolved as a series of signaling pathways to
ensure that the rate of protein synthesis, the capacity for chap-
erone-assisted protein folding, and the ERAD potential are cou-
pled with environmental, genetic, and nutritional influences to
prevent the accumulation of unfolded protein in the ER lumen.
Increasing evidence suggests that protein misfolding in the ER
lumen and alterations in UPR signaling play important roles in
the etiology of numerous disease states, including metabolic
disease, atherosclerosis, and neurodegenerative disease.

ER stress and oxidative stress in
metabolic disease

The development of type 2 diabetes is associated with a com-
bination of insulin resistance in fat, muscle, and liver and a fail-
ure of pancreatic 3 cells to compensate adequately to increase
insulin production (119, 128). Evidence indicates that oxidative
damage is associated with development of insulin resistance and
the diabetic state (50, 60, 113). Is it possible that both oxida-
tive stress and ER stress contribute to the progression from in-
sulin resistance to diabetes?

Insulin signaling is very sensitive to alterations in ER ho-
meostasis and redox status. ER stress and oxidative stress, as
well as inflammatory cytokines and free fatty acids, inhibit in-
sulin signaling through activation of the protein kinase JNK.
JNK phosphorylation of IRS-1 on Ser307 reduces insulin re-
ceptor—stimulated Tyr phosphorylation and insulin signaling
(60). Induction of ER stress may suppress insulin-receptor sig-
naling via IRE1a-dependent activation of the JNK pathway. In-
deed, suppressing the JNK pathway can ameliorate insulin re-
sistance (62), possibly by counterbalancing the deleterious
effects of ER stress, oxidative stress, free fatty acids, and proin-
flammatory cytokines. The role of ER stress in insulin signal-
ing was also suggested by the finding that ectopic expression
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of the molecular chaperone ORP150/GRP170 in hepatocytes
improved insulin sensitivity (94). It is possible that elevated
levels of ORP150 expression improve the protein-folding ca-
pacity of the ER and reduce UPR signaling. The ability of ER
stress signaling to cause insulin resistance was also suggested
by recent observations showing that treatment of mice with
chemical chaperones that can improve protein folding in the
ER, reduce ER stress, and reduce UPR signaling can increase
insulin sensitivity (104). Alternatively, some observations sug-
gest that ER stress and UPR signaling through IRE1 can actu-
ally improve insulin sensitivity. Heterozygous XbpI+/— mice
developed insulin resistance compared with control mice when
fed a high-fat diet (104). It is possible that reduced XBP1 sig-
naling impairs the ER protein-folding capacity, thereby acti-
vating the UPR, which may lead to JNK activation. Therefore,
ER stress signaling through IRE1-mediated XBP1 mRNA splic-
ing may increase the ER protein-folding capacity to improve
insulin signaling, whereas IRE1-mediated JNK activation could
cause insulin resistance. The sum of these observations indi-
cates that a link exists between insulin resistance and ER stress,
although the precise relation and mechanism(s) remain to be
elucidated.

The requirement for the UPR in B-cell function was first sug-
gested by the identification of PERK as the gene defective in
the human disease, Wolcott—Rallison syndrome (WRS) (24).
Individuals with WRS and Perk™/~ mice develop B-cell apop-
tosis with early-onset insulin-dependent diabetes (42). In addi-
tion, mice with homozygous Ser51Ala mutation at the PERK
phosphorylation site in elF2« display even greater B-cell loss
that appears in utero (121). Finally, although mice with het-
erozygous Ser51Ala mutation in elF2a do not display a de-
tectable phenotype, on feeding a high-fat diet, they develop in-
sulin resistance and a failure in the 8 cells to produce insulin,
typical of type 2 diabetes. The insulin secretion defect in the
high-fat—fed heterozygous SerS1Ala elF2a mutant mice was
due to an increased rate of glucose-stimulated proinsulin trans-
lation, which overwhelmed the protein-folding machinery of the
ER and led to (a) a distended ER compartment, (b) prolonged
association of proinsulin with the ER chaperone BiP, (c) re-
duced processing of proinsulin to insulin, and (d) reduced in-
sulin granule biogenesis (120). Thus, regulation of translation
initiation through elF2a phosphorylation is required for ER
stress signaling to prevent 3-cell dysfunction when the demand
for insulin is increased because of an HF diet and insulin re-
sistance. These findings indicate that B8 cells display a unique
requirement for PERK/elF2a-regulated translation.

Several mechanisms may explain why S cells uniquely re-
quire the PERK/elF2a pathway. First, 8 cells may require
PERK/elF2a signaling because they are sensitive to physio-
logic fluctuations in blood glucose. In B cells, the generation
of ATP fluctuates with blood glucose concentrations because
glycolysis is controlled by glucokinase, which has a low affin-
ity for glucose. Periodic decreases in blood glucose levels re-
duce the ATP/ADP ratio and would compromise protein fold-
ing in the ER so that UPR may be frequently activated. Through
this mechanism, PERK/eIF2«a signaling would be required in
B cells to couple protein synthesis with energy available for
protein-folding reactions in the ER lumen. Alternatively, glu-
cose stimulates insulin transcription, translation, and secretion.
PERK phosphorylation of el[F2a may be required for 3 cells to
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attenuate protein synthesis so that insulin production does not
exceed the protein-folding capacity of the ER. Results from the
high-fat—fed heterozygous Ser51Ala elF2a mutant mice would
support this hypothesis (120). Finally, as the PERK/elF2« path-
way is known to reduce oxidative stress, it is possible that
cells require PERK/eIF2a to minimize oxidative stress (81).
Two mechanisms have been proposed to account for the role
of the PERK/elF2« in limiting oxidative stress. First, the
PERK/elF2« pathway can prevent oxidative stress through in-
hibition of translation initiation when protein folding in the ER
lumen is disturbed (82). Alternatively, the PERK/elF2a/ATF4
pathway induces expression of antioxidative stress-response
genes (42, 82). It is likely that both mechanisms contribute to
the protective role for PERK/elF2« in limiting ROS accumu-
lation. Increasing evidence suggests that oxidative stress con-
tributes to the B-cell failure in diabetes (60, 113). B cells ex-
press low levels of catalase and glutathione peroxidase, two
enzymes that protect from ROS (130). Therefore, oxidative
stress would preferentially perturb B-cell function because of
their reduced capacity to neutralize ROS. Further studies are
required to elucidate why the PERK/elF2a pathway is essen-
tial for B-cell function and survival.

Numerous reports indicate that antioxidants can ameliorate
the diabetic state (61, 138). Antioxidants can preserve glucose-
stimulated insulin secretion, prevent apoptosis, and expand -
cell mass, without significantly affecting cell proliferation. For
example, treatment of Zucker diabetic fatty (ZDF) rats with the
antioxidants N-acetyl-L-cysteine or aminoguanidine prevented
hyperglycemia, improved insulin secretion, and increased
PDXI1 binding to the insulin promoter (138). Although the
mechanism by which antioxidants improve B-cell function is
not known, evidence supports the idea that oxidative stress ac-
tivates JNK. An oxidizing environment causes oxidation and
inhibition of JNK-inactivating phosphatases by converting their
catalytic cysteine to sulfenic acid (59). As a consequence, ac-
tivated JNK accumulates and can phosphorylate PDX1 to sup-
press PDX1 binding to specific promoters by preventing its
translocation to the nucleus (65). Significantly, JNK inhibition
protects B cells from oxidative stress, prevents apoptosis, im-
proves islet graft function (98), and also improves systemic in-
sulin responsiveness. The sum of these findings support the no-
tion that oxidative stress and ER stress play central roles in the
pathogenesis of type 2 diabetes and that targeted therapy to in-
tervene to prevent JNK activation may reduce progression of
insulin resistance to diabetes.

ER stress and oxidative stress in
neurodegenerative disease

Neurodegenerative diseases, such as Alzheimer disease (AD)
and Parkinson disease (PD), represent a large class of confor-
mational diseases associated with accumulation of abnormal
protein aggregates in and around affected neurons. Oxidative
stress and protein misfolding play critical roles in the patho-
genesis of these neurodegenerative diseases (33) that are char-
acterized by fibrillar aggregates composed of misfolded pro-
teins (124). At the cellular level, neuronal death or apoptosis
may be mediated by oxidative stress and ER stress or both. Up-
regulation of ER stress markers has been demonstrated in post-
mortem brain tissues and cell-culture models of many neu-
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rodegenerative disorders, including PD, AD, amyotropic lateral
sclerosis (ALS), and expanded polyglutamine diseases such as
Huntington disease and spinocerebellar ataxias (77). Recent
studies indicate that oligomeric forms of polypeptides predis-
posed to B-sheet polymerization and fibril formation may be
the toxic forms that cause neuronal death. The impact of these
oligomeric, potentially toxic species on ER function and gen-
eration of ROS is presently not understood.

In vitro studies suggest that 3-sheet polymerized aggregates
can inhibit the proteasome and ERAD. For example, in the dis-
ease Machado-Joseph syndrome, the polyglutamine repeats
present in spinocerebrocellular atrophy protein (SCA3) form
cytosolic aggregates that can inhibit the proteasome. Protea-
some inhibition in the cytosol can interfere with ERAD to elicit
UPR activation, caspase 12 activation, and apoptosis (4, 96).
Deletion of the ER stress-induced proapoptotic transcription
factor CHOP preserved neuronal function, suggesting the im-
portance of UPR signaling in this model.

PD is the second most common neurodegenerative disease
and is characterized by a loss of dopaminergic neurons. Analy-
ses of familial PD revealed involvement of three genes encod-
ing a-synuclein, Parkin, and ubiquitin C-terminal esterase L1
(UCH-L1). a-Synuclein is a cytoplasmic protein that forms ag-
gregates, called Lewy bodies, which are characteristic of PD.
Although the link between a-synuclein and ER stress is un-
clear, Parkin is a ubiquitin-protein ligase (E3) involved in
ERAD (127). One of the substrates of ERAD ubiquitinated by
Parkin is the Pael receptor, a homologue of endothelin recep-
tor type B (54). Interestingly, expression of Parkin is induced
by ER stress, and neuronal cells overexpressing Parkin are re-
sistant to ER stress (55). UCH-L1 is an abundant protein in neu-
rons, stabilizes a monomeric ubiquitin to ubiquitinate unfolded
proteins, and might be involved in ERAD (78, 102, 118). These
findings strongly suggest the involvement of ER stress in PD.
In addition, several additional reports support the link between
ER stress and PD. First, PD mimetics, such as 6-hydroxy-
dopamine, specifically induce ER stress in neuronal cells (49).
Second, expression of ER chaperones such as PDI is upregu-
lated in the brain of PD patients, and PDI is accumulated in
Lewy bodies (18). The identification of PDI family member
PDIp in experimental PD and Lewy bodies suggests that ox-
idative protein folding in the ER may be perturbed in PD.

In humans, mutations in SIL1, which encodes an adenine nu-
cleotide exchange factor for BiP, cause Marinesco—Sjogren syn-
drome, a rare disease associated with cerebellar ataxia, pro-
gressive myopathy, and cataracts (1). In mice homozygous for
a spontaneously occurring mutation in the Si// transcript, cere-
bellar Purkinje cell degeneration and subsequent ataxia occur
(166). Analysis of Sil/ mutant mice demonstrated that affected
Purkinje cells have ubiquitinated nuclear- and ER-associated
protein aggregates and also display upregulation of several ER
stress markers (BiP, CHOP, and ORP150) (166). It seems likely
that the protein chaperone BiP uses an ATP/ADP exchange that
is essential to preserve ER function and to prevent activation
of the UPR. A reduced efficiency of ATP-dependent BiP-me-
diated chaperone function may predispose to unfolded protein
accumulation in the ER, activate the UPR, and contribute to
Purkinje cell degeneration.

Oxidative stress is implicated in the pathogenesis of neu-
rodegenerative diseases. A group of neurodegenerative diseases
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including AD is characterized pathologically by the deposition
of intracellular aggregates containing abnormally phosphory-
lated forms of the microtubule-binding protein Tau (71). Using
a Drosophila model relevant to human neurodegenerative dis-
eases, including AD, it was demonstrated that oxidative stress
plays a casual role in neurotoxicity and promotes Tau-phos-
phorylation. In this model, activation of the JNK pathway cor-
related with the degree of tau-induced neurodegeneration (26).
Although oxidative stress and ER stress have been linked to
neurodegenerative diseases, at this point, it is not possible to
conclude that these processes are the primary cause of neuron
death. However, it is possible that these stresses modify the pro-
gression and severity of these complex diseases.

Nitric oxide (NO) is a second messenger for signaling path-
ways that regulate a variety of physiologic processes. In the
brain, NO is implicated in neurotransmission, neuromodulation,
and synaptic plasticity. However, excessive generation of NO
and NO-derived reactive nitrogen species is implicated in the
pathogenesis of neurodegenerative disorders, including AD and
PD (12). Studies now indicate that ER stress and apoptosis are
critical features underlying these disorders (106). Uehara and
co-workers (143) elegantly demonstrated that NO-mediated S-
nitrosylation of protein disulfide isomerase (PDI) inhibits PDI
function, leads to dysregulated protein folding within the ER,
elicits ER stress, and initiates neuronal cell death. A causal role
for this sequence of events in neurodegenerative disease was
supported by the demonstration that PDI is S-nitrosylated in the
brains of patients with PD or AD, but not in normal brains.
Thus, these findings provide additional evidence of a role for
dysregulated protein S-nitrosylation (oxidative stress) in neu-
rodegenerative disease and indicate that ER dysfunction may
serve as a critical common factor that couples NO-induced cel-
lular stress to neurodegeneration.

ER stress and oxidative stress in
hyperhomocysteinemia and atherosclerosis

Elevated plasma levels of homocysteine (Hcy), a sulfur-con-
taining amino acid, are linked to the development of ischemic
heart disease, stroke, and peripheral vascular disease. However,
it is not known whether Hcey is a primary cause of atheroscle-
rosis and thrombosis. Hcy may mediate vascular toxicity
through dysregulation of cholesterol and triglyceride biosyn-
thesis. Hyperhomocysteinemia activates lipogenic signaling via
the sterol-regulated element-binding proteins (SREBPs), lead-
ing to intracellular accumulation of cholesterol (149). Surpris-
ingly, ER stress appears to contribute to the activation of
SREBP by homocysteine. Livers of homocysteine-fed mice
contain elevated levels of ER chaperones. In addition, over-
expression of BiP prevented SREBP induction in response to
homocysteine (149).

Under normal circumstances, Hey is converted to cysteine
and partly remethylated to methionine by vitamin B, and fo-
late. When normal metabolism is disturbed because of defi-
ciency of cystathionine-8 synthase (CBS), which requires vit-
amin Bg for activation, Hcy accumulates in blood and results
in severe hyperhomocysteinemia. CBS condenses homocys-
teine and serine to form cystathionine. The harmful effects of
hyperhomocysteinemia may be mediated through several pro-
cesses. First, a decrease in cysteine may cause disease, because
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of reduced synthesis of glutathione (antioxidant). Thrombotic
and cardiovascular diseases may also be encountered. Second,
ROS generated during oxidation of Hcy to homocystine and
disulfides may oxidize membrane lipids and proteins. Third,
Hcy can react with thiols within proteins and form disulfides
(thiolation) to interfere with protein folding, structure, and func-
tion. Finally, Hey can be converted to highly reactive thiolac-
tone that can react with proteins forming —NH—CO—
adducts, thus affecting protein structure and function. In cul-
tured vascular endothelial cells, Hcy induces protein misfold-
ing in the ER by interfering with disulfide bond formation (72)
and activates the UPR to induce expression of several ER stress-
response proteins, such as BiP, GRP94, CHOP, and HERP (2,
52, 103, 162). Hey can also trigger apoptosis by a signaling
pathway that requires intact IRE1 (162). These studies support
the notion that Hcy can disrupt ER homoeostasis to cause UPR
induction (52, 103, 162). This is consistent with the observed
activation of UPR markers in livers of normal or Chs™~ mice
in response to hyperhomocysteinemia (48).

Atherosclerosis is caused by the abnormal deposition of cho-
lesterol in the coronary arteries. Cholesterol accumulation in
macrophages plays a critical role in the progression of athero-
sclerosis. Macrophages have multiple mechanisms to prevent
excess cholesterol accumulation, including an increase in cho-
lesterol esterification, induction of cellular cholesterol efflux,
and the repression of lipoprotein receptor and cholesterol
biosynthetic enzymes (135, 136). On formation of an initial ath-
erosclerotic lesion, these mechanisms are dysregulated, thereby
leading to the characteristic appearance of foam cells within the
vessel intima. The macrophage-derived foam cells take up ox-
idized lipoprotein particles and become laden with cholesterol.
The cholesterol is stored as esters within large lipid vesicles,
producing a foamy appearance, and hence their name. Over-
load of cholesterol in macrophages elicits apoptosis. Excess
cholesterol must accumulate in specific pools within the cell to
elicit cytotoxicity. Intracellular cholesterol is known to traffic
to the plasma membrane, mitochondria, and the ER. Although
the ER membrane has low levels of free cholesterol, it is par-
ticularly sensitive to cholesterol loading. Recent findings sug-
gest that free cholesterol requires trafficking to the ER to pro-
duce its toxic effects (29). This trafficking results in activation
of UPR signaling and caspase activation, and ultimately in mac-
rophage cell death/apoptosis. Macrophages from Perk™/~ mice
are hypersensitive to cholesterol-induced cell death, whereas
macrophages from Chop™~ mice are highly protected. Recent
findings also suggest that defective insulin signaling and re-
duced Akt activity impair the ability of macrophages to deal
with ER stress-induced apoptosis within atherosclerotic plaques
(39). This mechanism may contribute to the association between
insulin resistance in metabolic syndrome and atherogenesis
(108). These findings suggest that the UPR plays an important
role in the progression of the atherogenic disease process (29).
In addition, free cholesterol loading of macrophages increases
levels of cell-surface Fas ligand and activated proapoptotic Bax
protein, and increases mitochondrial-dependent apoptosis. Al-
though both the Fas death pathway and the mitochondrial cell-
death pathway may contribute to macrophage apoptosis, accu-
mulating evidence suggests that depletion of calcium stores in
the ER and subsequent activation of the UPR is the dominant
driving force in cholesterol-induced macrophage death (135,
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136). Finally, ER stress caused by free cholesterol loading in
macrophages promotes chemokine secretion, and this may con-
tribute to the formation of vulnerable atherosclerotic lesions.
These lesions lead to an inflammatory condition, with further
infiltration of macrophages and lymphocytes from the blood
and subsequent release of hydrolytic enzymes, cytokines,
chemokines, and growth factors that can inflict more damage
and eventually lead to focal necrosis (75, 116).

CONCLUDING REMARKS

Over the past few decades, tremendous progress has been
made in understanding the mechanisms underlying the cause of
ER stress and oxidative stress. Although it is known that both
stress processes are intimately interrelated, the mechanisms link-
ing ER stress to oxidative stress are not understood. Not only
are future studies required to understand how these stresses af-
fect protein folding, misfolding, and secretion in vivo, but stud-
ies also are required to elucidate how protein misfolding may
cause oxidative stress to cause apoptosis. Further studies in this
important area will aid in comprehending how interactions be-
tween ER stress and oxidative stress are integrated into other
cellular signaling pathways. A greater understanding of the com-
plex interrelation between protein misfolding and oxidative
stress may lead to the development of general pharmacologic
agents, such as chemical chaperones to improve protein folding
and/or antioxidants to reduce oxidative stress, for the treatment
of human disease. A coherent mechanistic understanding of the
mechanisms and pathways that signal ER stress and oxidative
stress responses should contribute to the development of more
selective and specific-acting therapeutic agents targeted for dis-
eases associated with ER/oxidative stress pathologies.
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