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ABSTRACT

The purpose of this thesis 1s to study the problem of existence
of an absolute minimum for two-dimensional integrals of the calculus
of variations when the admissible surfaces satisfy certain variable
boundary conditions. R. Courant has studied the existence theory
for the special case of the Dirichlet integral, but for general in-
tegrals only some classical necessary conditions are known.

For the non-parametric problem, we study integrals of the form

I(z) =\/;(x,y,z,zx,zy)dxdy, where the integrand is continuous, convex
B

in (p,q), and satisfies the usual growth conditions. For admissible
functions we take those which are continuous on a closed disk B, ab-
solutely continuous in the sense of Tonelli on the interior of B,
which map a fixed subarc y of the boundary B¥* of B onto a fixed arc

I' in ES, and such that the values on the complement of y in B¥ are
bounded by fixed constants. Thus, these are surfaces whose boundaries
have a portion spanning I', and the complementary portion is free on a
fixed finite cylinder. By a convenient generalization of a process

of L. Tonelli for smoothing surfaces, we prove that there is a func-
tion in this class which yields an absolute minimum for the integral.
We are then able to extend this result to the case in which the bounda-

ries of admissible surfaces are completely free in a fixed cylinder.
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Next we consider the same problem when the cylinder is replaced
by a "capstan" surface, that is, a surface of revolution generated
by a portion of a curve of the shape of, say, a branch of a hyperbola.
The admissible surfaces are now defined on different Jordan domains
contained in the disk B and containing a fixed disk D. We apply the
Carathébdory theory of conformal mappings on variable domains to con=
vert a minimizing sequence into a new minimizing sequence of functions
all defined on the unit disk. We show that one of these sequences ad-
mits a uniformly convergent subsequence, and then by a conformal map-
ping we show that the image of the limiting function is again admis-
gible, it 1s defined on the kernel domain, and it yields an absolute
minimum.

In the parametric problem we study integrals of the form Io(z,G) =

3
b/%(z,J)dG, where z(u,v) is a vector (surface) in E , J is the corre-
G

sponding Jacobian vector, and the function F(z,J) is a usual parametric
integrand. We let T be a fixed torus, or similar manifold, in ES, and
for admissible vectors we take continuous ones in the Sobolev space
W;(G) which span T and "cover the hole" of the torus. Since Courant

has shown that a minimizing vector need not have a continuous trace

on the fixed manifold, we say that a surface spans T if for every se-
quence of points in the parameter domain approaching a point of the
boundary, the corresponding sequence of points on the surface approaches
. In order to say precisely what it means to "cover the hole,” we pre-

scribe a topological linking condition.

v



For the existence proof, we introduce a class of sequences
{sz of surfaces which are admissible, except that their boundaries
approach T in the limit rather than lie on 7. The number & = inf

(1im Io(zn,G)), where the infimum is taken over all these sequences,

n-+oo

is (possibly) smaller than the infimum of IO(Z,G) over all admissible
surfaces. We introduce an integral I(z,G), following C. B. Morrey,
which dominates IO(Z,G) and agrees in case the gurface is quasi~
conformal., Minimizing I(z,G) in suitable classes F(K), we obtain a
sequence {z} of vectors such that I(zg,G) > ® and Iy(zg,G) + B, We

are then able to show that a subsequence {zp} converges to.an admissible
vector zp. Appealing to a lower semicontinuity theorem of L. Cesari

and L. Turner, zp yields an absolute minimum for IO(Z,G).
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INTRODUCTION

The problem which will be discussed in this thesis is that of
proving the existence of minimizing functions for integrals of the cal-
culus of variations when the boundary values for admissible functions
are partly fixed and partly free, or totally free in a fixed manifold,
More specifically, in the non-parametric case, consider a finite
(closed) cylinder over a circle B* and a set of functions 2z = z(x,y)
defined on the disk B bounded by B*, with the requirement that
the graph of z traces out a continuous curve lying in the cylinder.
Then we seek a class of such functions with the property that a given
integral of the form

I(z) = LS‘ F(x,v,z, zX, zy) dx dy
B
assumes an absolute minimum in. this class.

Alternatively, on a fixed subarc <Y of the boundary of B
we may prescribe continuous boundary values which each function
z = z(x,y) is to assume, and on the complementary arc we allow the
values of z(x,y) to be continuous, but otherwise free in the cylinder.

Instead of a cylinder, one may ask the same questions for,
say, a capstan-shaped surface (Chapter I, Definition 3.1), or for

portions of such surfaces.



In the parametric case we admit more general manifolds:
for example, a torus, ofa deformation of a cylinder or torus. Here,
of course, we seek minimizing vectors in appropriate classes, and

the integrals studied have the form

I{z, G) = gF(z,J)dudv ,

t.

G

where z(u,v) = (zl(u,v),z (u, v), z3(u,v)), (u,v) in G, and

1 2
J=,J, J3) is the vector of Jacobians relative to the mapping

N
it

z(u, v).

These problems have been studied from the classical point
of view for a long time, that is, studied under the assumption that a
minimum exists. The first work goes back to Gauss, and the ex-

pression for the first variation was originally obtained by Poisson

(1833) for problems of this type. In O. Bolza's book, Vorlesungen

iber Variationsrechnung, there appears a brief study of necessary

conditions of two-dimensional problems with variable boundaries,
and there is also a guide to the early literature (page 668).

H. A. Simmons [28] obtained expressions for both the first
and second variations in the case of non-parametric surfaces whose
boundaries are free in a capstan-shaped manifold, and he extended

his results to higher dimensional problems [29].



E. A. Nordhaus [24] generalized the problem studied by
Simmons to a Bolza problem. He obtained expressions for the first
and second variations, and also the transversality conditions.

For the existence theory in the case of parametric surfaces,
Riemann and Schwarz asked for simply connected surfaces of rela-
tive minimum area, whose boundaries consist of one or more seg-
ments and one or more arcs on given planes. The existence theorem
for minimal surfaces with partially free and partially fixed boundaries
was given by R. Courant [10], and for totally free boundaries by
R. Courant and N. Davids [12], and N. Davids [14]. Most of this
material is summarized in the book by R. Courant [11].

One notices that although some necessary conditions are
known for free boundary problems, the existence theory for general
non-para metric integrals has not been studied, and little is known
about the parametric problem except for the case of minimal surfaces

where the integral in question is the Dirichlet integral

2 2
D(z,G) = \(z +z )dxdy
X y
G
We now describe the reswls obtained on existence theory for
general integrals in this thesis. If G 1is a domain in the plane, we
E

shall denote by G its closure, by G its boundary, and by G°

its interior.
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In Chapter I we treat the non-parametric problem in two
forms. In the first we consider the class of functions z = z(x,y)
which are continuous and ACT (Chapter I, Definition 1.1) on a closed
Jordan domain Er, which assume given continuous boundary values
on an arc Y of the boundary G*, and whose values on the comple-
mentary arc are bounded, but otherwise free; and therefore the cor-
responding portion of the boundary of the surface S: z = z(x,y) lies
on the cylinder over G*. We show that there is a function in this

class which minimizes the integral

(0.1) I(z,G)=§ F(x,y,z,zx,zy)dxdy )
G

where F(x,y,z,p,q) is continuous in (x,y,2,p,q), convex in

(p,9q), . and satisfies the conditions

F(x;y,2,p,9) 2 V+u(p2+q2) , u>0
F(x,y,2,0,0) = f(x,y)

In order to prove the existence theorem, we need to show
that there is a minimizing sequence ‘Which converges uniformly on
the closed domain G to an admissible function. To this end, we
select a minimizing sequence {z,n(x,y)} , n=1,2,3, ..., and
then define a convenient generalization of a leveling process due to
L. Tonelli. By this process we obtain a new minimizing sequence in
which the functions do not oscillate too badly. We are then able to

show that the sequence is equicontinuous on the boundary, the
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Dirichlet integrals are uniformly bounded, consequently the func-
tions are equicontinuous on Er, and there is a convergent subse-
quence. Using a lower semicontinuity theorem of L. Tonelli [31]
and L. Turner [32], we prove that the limiting function yields an
absolute minimum for the integral.

In the second form of the non-parametric problem, we
consider those functions z(x,y) defined on a closed Jordan domain
E‘rz (depending upon z) whose boundary contains a fixed arc 7,
such that z(x,y) is continuous and ACT on E‘rz, assumes given
boundary values on <, and such that the points (x,y,z(x,y)),
(x,y) in G* - v, lie on a fixed capstan surface. In such a class
of functions we wish to minimize the integral (0.1). This means
that the problem is twofold: we must find an admissible domain G
and an admissible function z(x,y) defined on G which yields an
absolute minimum for I(z,G). The procedure is to begin with a
minimizing sequence {zn(x,y), (x,y) € an} , n=1,2, ...,
apply a leveling process as before, and to map each domain Gﬁ:
conformally onto the unit disk B by a mapping (un(x,y), vn(x,y)),
arranging things so that three distinct fixed points of ¥ are mapped
on three distinct fixed points of B* (the same points for each n).
We then prove that the vector functions
Rn(u,v) = (xn(u,v), yn(u,v), zn(xn(u,v), yn(u,v))) are equicontinuous

ale
P4

on B, where xn(u,v) and yn(u,v) are the inverses of un(x,y)
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and vn(x,y), respectively. Next we are able to apply the
Carathéodory theory of conformal mappings onto variable domains
and we produce a limiting conformal map (x(u,v), y(u,v)) of B
which we prove to be a homeomorphism of B onto an admissible
domain G. After showing that the functions zn(xn(u,v), yn(u,v))
actually converge uniformly on B to a function z(u,v), Wwe prove
that the function g(x,y) = z(u(x,vy), v(x,y)) defined on G yields
an absolute minimum for the integral.

For both forms of the non-parametric problem we extend
these results to prove the existence of minimizing functions when
the boundaries are completely free on the fixed cylindrical and
capstan surfaces.

In Chapter II we treat the parametric problem for the

integral

IO(Z,Q)=SF(Z,J)dudv ,
Q

. . . . . 3
where z(u,v) is a vector in Euclidean 3-dimensional space, E ,

1 2 3
J=(J ,J ,J) isthe vector of Jacobians, and F(z,J).is con-
tinuous in (z,J), convex in J, positively homogeneous of degree
1 in J, a Lipschitz functionin 2z andin J, and satisfies the

relation

m|J| < F(z,3)<M|J] , 0<m<M
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Let '/~ be a fixed torus in E3. (This replaces the cap-
stan surface considered before. ¢  could actually be a rather
general manifold of which the torus and capstan surface are special
cases.) For admissible vectors we turn to the space W2 of;
S.. L. Sobolev [30] (or the space .‘P2 of J. W. Calkin [2] and
C. B. Morrey [19]). Specifically, a vector z(u,v) defined on the
unit square Q is admissible if it is of class W; (Q), continuous
of the interior of Q, and if the surface S: z = z(u,v) 'spans
the fixed torus ’Z‘— and covers the hole of Z‘ N

The last part of the admissibility condition needs a precise
formulation. In order to define what is meant by ''covering the
hole, ' we prescribe a topological linking condition. Let H be a
simple closed curve linking the solid torus. Then we may say that
the surface S :z = z(u,v) ''covers the hole' if there is a boundary
strip Qh C Q such that every simple closed curve lying in Qh’
which is homotopic to the boundary of Q, is mapped by 2z = z(u,v)
onto a continuous curve in E3 linking H.

Deciding what it shall mean for a surface S:z = z(u,v) to
"'span ¢  '' is a more delicate problem. Courant [11, p. 220]
has given an example which shows that minimizing surfaces for some
free boundary problems (specifically, for minimal surfaces) do not
always have a continuous trace on the fixed manifold. Therefore,

in order toiformulate a reasonable problem, we shall say that the
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boundary of S : z = z(u,v) lies on (", or S spans ¢, if
the shortest distance of z(u,v) from points of ¢ approaches 0
whenever (u,v) approaches (uo, vo), (u,v) € Qo, (uovo) € Q*.

The lower semicontinuity theorem which we want to use
(L. Cesari [6], L. Turner [32])requires uniform convergence of
continuous vectors of class Wi (Q). However, the example of
Courant shows that we cannot in general obtain uniform convergence
on Q. Therefore, our reasoning will have to rely on interior prop-
erties only, and we shall have to settle for uniform convergence on
closed subdomains of Q (the compact-open topology). Even when
such convergence is obtained, the difficult problems remain of prov-
ing that the limiting surface ''covers the hole' and spans . The
result which guarantees that the limiting surface spans 7 is proved
in Section 2 of Chapter II. It essentially says that if a sequence of
continuous vectors of class W;, whose boundary values lie on a
manifold M, converges uniformly on every closed subdomain of Q,
and if the norms in the space Wi are uniformly bounded, then the
boundary values of the limit vector also lie on M. The linking is
proved by a variant of an argument of Courant [11].

For the initial step in the existence proof we introduce,

as does C. B. Morrey [21], the integral

I(z,G) = S\/F (2,7 M+m) = G) + F°] dudv
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where E, F, G in the integrand represent the usual fundamental
quantities of the surface. This integral dominates IO(Z,G) and
agrees with Io(z,G) in case the vector z(u,v) is quasi-conformal
(Chapter II, Definition 3.4). The integral 1(z,G) is shown to

satisfy the inequality

where
2
D(z,G) = glz l +'zvl )du dv
G

Therefore, a sequence {zn} for which I(zn,Q) is uniformly

1
bounded will have a subsequence which converges weakly in the W2
norm (Section 4). In Sections 3 and 4 we enlarge the class of mini-
mizing sequences to a class of generalized minimizing sequences.

Thus

0 = inf (lim inf I_(z ,Q)) ;
0" n

n—>
where the infimum is taken over this larger class, is less than or
equal to the original infimum. We show that there is a generalized
[}
minimizing sequence {fﬂn} of vectors of class C such that
lim I (§ ,Q)=20 and lim I(§ .Q)=
0 °n n
n —>o0 n —
In Section 5 we introduce the class ;’JJ(’(K) of admissible

1
vectors of class WZ(Q) with
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2 2 2
J(Z,Q)=‘S(lzuu] +2]zuv] +Izvvl )dudv < K

Q
and which map a fixed segment 0 into a closed set bounded away
from the torus. We show that I(z,Q) attains a minimum in F(K),

and applying the result of Section 4, we show that lim I(zk,Q) =0,
k=

where Z, is the minimizing function in HK). Usinga
""Dirichlet growth theorem'' of C. B. Morrey, we are able to prove
that a subsequence of {zk} , say, {zp} , converges uniformly
on closed subdomains of Q° - ¢ and weakly in W; (Q}. We then
prove that the limiting vector z is actually continuous (and of
class W;(Q)) on all of Qo, and apply the lemma stated earlier
that the boundary of S:z = z(u,v) lies on the torus 2~ . Finally
we prove that the boundary of S links the fixed curve H, and =z

is the required minimizing vector, since z is admissible and

I)(2,Q) < 0< inf I (£,Q)

where the infimum is taken over the class of all admissible vectors.



CHAPTER I

THE NON- PARAMETRIC PROBLEM

1. Basic Definitions and Theorems

In this chapter we shall be dealing with non-parametric
surfaces, that is, with functions z = z(x,y) defined on an open set
G of the Euclidean 2-dimensional plane.

Definition 1.1. A function z = z(x,y) defined on G is

said to be absolutely continuous in the sense of Tonelli in G, or

ACT, provided z(x,y) is continuous in G and

i)  for almost all x the function z(;c,y) of y alone is
absolutely continuous in each closed interval contained
in the set G(;c)z{(x,y)e G:xizgc} ;

ii) for almost all 3—/' ‘the function z(x, ';r) of x alone
is absolutely continuous in each closed interval con-
tained in the set G(¥¢) = { (x,y) e G:y = gr} ; and

iii) the partial derivatives = -a—-’z =2 z, which

111 e parfi v p—ax’ q~ay,
exist almost everywhere in G are summable in G.

As is usual in variational problems employing the direct
methods, we shall need a theorem of closure for certain classes of

functions. The theorem which will be used in this chapter is the

11
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following one.

Theorem 1.1. (Tonelli [31, §2, No. 11]) Let

{z (w) } , we G, n=1,2, 3, ..., be any sequence of continuous
n

ACT functions in the bounded open set G, let {zn} converge

to z(w) uniformly in each closed bounded set H C G, where

z(w) 1is a given function defined in G, and let the partial deriva-

) 0

tives P, 8220 94 ° -5—an, be La-integrable in G, a>1,

3
and S IP la + lqnla)dXdY < M< + ©, M a given constant.
n =

Then z is continuous and ACT in G, the partial derivatives
Z, q=a—ayz are La~integrab1e in G, and

n—x
G

Slqla dxdy < lim Sslqnla dx dy

n—>=e -
G

In the problems to be considered in this chapter, the admis-
sible functions will be continuous, and therefore we shall eventually
be faced with the task of proving that certain minimizing sequences
are equicontinuous. We shall now describe a procedure, due to
Tonelli [31, §1, No. 6], which will be applicable in the existence

theorems which we shall prove. This procedure replaces certain
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sequences of functions by other sequences, and in our cases the
new sequence turns out to be equicontinuous.
Let {f(x,y) be a function continuous on 6, the closure of
G, and ACT in G. Let n be a fixed integer, and let

Z., ZO < z1 < .,..< zN, be all the numbers of the form

l;-, k=0, £1, %2, ..., such that the planes Bj 12 = zj intersect

the surface z = f(x,y), (x,y) € G.

The set S  of the points (x,y) in G where f1(x,y) =z

0 0

is open, and we consider only those components 801’ 802’

o
on whose boundary 80 the function f has the constant value Z:

the function which is equal to z_. in each

Then we denote by f 0

0

set 80’ s=1,2, ..., andis equalto f otherwise. Thus

f =f on G, and fo is continuous on G and ACT on G.

We now repeat the same process on f_  using the plane

0

Pl. We obtain a new function fl with fl = fo ={f on G‘ﬁ, which

is continuous on G and ACT on G. Repeating this process N
—_— —_ Si¢
times we obtain a function f with f =f on G , which is contin-

uous on G and ACT on G, and we shall say that f has been

obtained from f by a 1/n leveling. If a function f has been

obtained by this process, then we say that f is 1/n leveled.
For the equicontinuity theorems which we shall use, we

need a restriction on the type of domain G.
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Definition 1.2. A domain G satisfies condition (@)

provided there is a number d0 > 0 such that for every point

E3
P € G andevery square Q, of center P sides parallel to

0 ¢ 0’

the x- and y-axes, and side length 2¢ with ¢ < d we have

0’
i £
Q NG #¢.
1
Thus, every Jordan domain satisfies condition (a), but
2 2
the set G:0< x +y < 1, for example, does not.

We are now able to state our main equicontinuity theorem.

Theorem 1.2. (Tonelli [31]) If G 1is a bounded open set

satisfying condition (a), if {zn(x,y)}, (x,y) € G, isa sequence
¢

of functions which are continuous on G, equicontinuous on G ,

ACT in G, with

g([pnlz+|qn|2)dxdy§A< +o , n=1,2, ...,
G

for some constant A, and if each function z is 1/n leveled,

then the functions 2z are equicontinuous on G.
n

The final bit of preparation needed before stating and attack-
ing our problem is a lower semicontinuity theorem for our integrals.
There have recently been some very general theorems of this type
given [22, 26], but the convergence of the functions which is used is

not enough to guarantee that the limiting function is continuous.
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Therefore, in this chapter we may just as well use a theorem of
lower semicontinuity with respect to uniform convergence. The

theorem is essentially that of Tonelli [31], but we use the more gen-

eral form due to Turner [32].

Theorem 1.3. Let G be a bounded open set and let

f(x,y,z,p,q) be a continuous function of (x,y,z,p,q) for

(x,v) € G andall z, p, q. Assume that

i) f(x,y,z,p,q) > N for some real constant N and all

(x,y,2,p,q) € G X E3;

ii) for every M > 0 there are positive numbers a, U,

and L such that

ICl[1-1-=ar)

1+
f(x,y,2,p,9) > p(|p| “ 4

3
for all (x,y,z,p,q).€ G XE™, with |z| < M,
lpl +]al > L; and
iii) f 1is convex in (p,q) .
Let @ be the class of all functions z(x,y) which are continuous
and ACT on G and for which
-~ < I(z) = ‘S‘ f(x,y,z,zx,zy) dxdy < 4
G

Then I(z) is lower semicontinuous on C with respect to uniform

convergence.
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We complete this section with a lemma which will be useful
in proving the equicontinuity of certain sequences of functions.
Lemma 1.1. If u(t), a< t< Db, is an absolutely continuous
function in [a,b] whose derivative u'(t) is LB—integrable in [a,b]

for some B > 1, andif u(t) has an oscillation >0¢ in [a,b],

then
b
ylu‘(t)lﬁ at > oP J(b-a)f 7!
a

Proof. By the Schwarz inequality we have

b b
055 [u'(t)] dt < (5 |u'(t)[B dt)l/B(b- a)(B'l)/B ,

a a

and the lemma now follows immediately.
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2. The First Free Boundary Problem

In this section we shall state and prove an existence theorem
in the case of a partially free and partially fixed boundary. We begin
with the admissible functions defined on the closed unit disk B, then
generalize to any Jordan domain, and finally reach a result concern-

ing totally free boundaries.

We shall consider the problem of minimizing the integral

I(z) = 5 F(x,vy, Z_ zy) dx dy )
B

where we take as the elements of the class G of admissible func-
tions z = z(x,y) those functions which are continuous on E, ACT

on B, and which take on prescribed continuous boundary values

€ =¢8(0), 0 <0 <6 6, -6 < 27, on the arc yz[olgegez,ml].

1 2’ 2 1-

Furthermore, there are constants a, b, a < b, such that for all
(x,y) on the boundary arc K complementary to ¥, 2z = z(x,y)
satisfies the relation a < z(x,y) < b. Thus, the portion of the bound-
ary of the surface S:z = z(x,y), (x,y) € E, which corresponds to
the arc K, traces out a continuous curve on a finite (closed)
cylinder over B*. We assume that there is at least one admissible
function for which the integral in question is finite.

We now make an extension of Tonelli's 1/n leveling pro-
cess. Let z(x,y) be an admissible function, and assume that it is
already 1/n leveled. We let Pj :z=2z_, j=0,1, ..., N, be the

J

same planes used in the first leveling operation. Just as before, the
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set S0 of the points of B where z(x,y) # Z is open, but now we

sk

consider those components 801 on whose boundary 80

) gOZs o e 0

the function z(x,y) has constant value z, or whose boundary

afe
b3

€0 intersects only the arc K (and not v) and such that

sk
z(x,y) has constant value z, °on &) ~ B°. Then we denote by

zo(x,y) the function which is equal to z, on each set 805’ and

equal to z(x,y) otherwise. Thus zo(x,y) is still. continuous and
ACT, z, =2z on the arc 9, and on K we still have a < zo(x,y) < b.
Now we repeat the process using the planes Pl’ cees PN

in succession finally obtaining an admissible function z(x,y).

Theorem 2.1. Let F(x,y,p,q) Dbe continuous for all

(x,y) € B andall (p,q), let F(x,y,p,q) be convexin (p,q), and
2 2
assume that F(x,y,0,0) =0 and F(x,y,p,q)> (p +4 ). If there

is an admissible function z for which I(z) = S‘F(x,y, z_s zy) dx dy
B

is finite, then the integral I(z) assumes an absolute minimum in the

class C

Proof. Let L = inf S F(x,v,2 ?Zy) dxdy, where the
— x
B

infimum is taken over the class of admissible functions. By hypothe-
sis, 0< L < 4%, Let {zn} be a2 minimizing sequence, and we
may well assume that L < I(zn) < L+1/n<L+1. Now we apply
to each z ~our generalized 1/n leveling process and obtain a new

sequence, which we again call {z } . This new sequence is again
n
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a minimizing sequence since F(x,v,2z ,2z is non-negative,
y x’ %y

F(x,y,0,0) = 0, and the leveling process reduces the absolute value

of Z_ and ZY to 0 over the sets on which the leveling takes
place. We shall first prove that the functions z -are equicontin-
£ ¢

uous on the boundary B . Since B is a compact set, it suffices

s
to prove that given any & > 0 and any point v € B thereisa

number s > 0 such that for any circle C of center W and

radius r<r every function z  has an oscillation < & on
= n =

O’
B N C. Actually, given € >0 and W it is enough to prove

this for..: some ro >0 andall n> N, N a fixed number. If

W is an tnterior point of %, there is nothing to prove since

all z take on the same values along Y. Thus we consider the
n

two cases where W is an interior point of K, and where v is

an endpoint of K. The disk B satisfies condition (a), and we

let hl be the number relative to B and this condition

(Definition 1.2).

Case I. Assume that W is an interior point of K. Let

hO be the smallest of the numbers h1 and the two distances from

W to the endpoints of K. We shall prove that the equicontinuity

property mentioned above holds for Ty = min[%ho9 —é—ho exp(83 8_2(L+2))],

N = 8/€&. Suppose this is not true. Then there is a function z

n > N, whose oscillation in the circle C0 of center WO and radius

sk
o is > €. Then there are two points: Wy Wy € CO ™ B  such
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- > >
that [zn(wl) zn(wz)[ €. Then, say, zn(wl) zn(wo) + 8/29
and we may assume that z (w,)< z (w. )< z (w,), for there will
n 2 n 0 n 1

surely be some point w in C_ with this property, and without loss

0

of generality, it may be w_. Let Q denote the closed square

0 ¢

of center Wi sides parallel to the x- and y-axes, and side

length 24, !ZO = roi g < ’21 = hO/Z, Let @a,fB be the two points
¢

of intersection of Q with K. Now since lz (w.) -z (w )[ > €,
[} n 1 n 2

we must have either lzn(a) - zn(wz)l > ¢&/2 or

- > 2.
[zn(a) zn(wl)l e/

(a). Suppose that ]zn(a) - zn(wz)[ > /2 .

1. Assume LG(w > zn(a) + £€/2. Then we claim that

5)
there is a point T on Qlj such that z (1) > zn(wo) + &/4. For
: n

if not, then for all w € QZ N B we have zn(w) < zn(wo) + /4,

i >
while zn(wl) zn(wo)-!-s/Z. Hence

zn(wl) > zn(wo) + &8/2 = [zn(wo) +e/4] + 8/4_>_ zn(w) +e/4

for all w e Q; N B. Thusif {P_} arethe z-coordinates of

the 1/n leveling planes, we have for some j

< P < < )
zn(W) Pj Pj+l zn(wl)

since 1/n < 1/N = &£/8. But this contradicts the fact that z
is 1/n leveled in our generalized sense. Thus there is a point T

on Q’Z such that zn('r) > zn(w ) + €/4. Now we already have

0
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zn(a/) +e/2< Zn(WZ) < zn(w ), and hence zn(a) < zn(wo)+ € /4.

0

sk
Therefore, z has an oscillation > £/8 on QIF\B,
< < .
1,501,

2. Assume that zn(a) > zn(w ) + €/2. Then we claim

2

that there is a point T € Q; N B with zn('T) < zn(WZ) +e/4, If
not, for all w € Qz N B we have zn(w)_>_ Zn(wZ) + €/4. Then
there is a j such that just as before zn(WZ) < Pj < Pj+1 < zn(w).
But this again contradicts the fact that 2 is 1/n leveled. There-
fore, there is a point 7T ¢ Q;Z N B such that zn('T) < zn(wz) +e/4.
Hence, just as before, zn(a) > [zn(wz) +&/4] + £/4 > zn(T) + £ /4,

b3
and so z has an oscillation > £/8 on Qﬂ N B.
n

(b). Suppose that lzn(af) - zn(wl)[ > &£/2. Then precisely
as in case (a), parts 1 and 2 above, we see that zn has an

oscillation > &/8 on Q;f\B.

Therefore by Lemma 1.1, for almost all § we have

2 2 -1
\Y F(x,v, Z Zny)ds > LS (Zrzlx + Zny)ds > £/8) (84)

Q se Q sk
{ L

Integrating with respect to ¢ in [520, /] 1] we have
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- 2 2
> ; , > :
L+1> 5\ F(x,v, zZ Zny)dx dy > ‘S (an + zny)dx dy

B B
;(1
> (£/8)° g (80) 'ag = 8'3ezlog§—l .
1, 0
Therefore,
-1

2" 'h
3 2 3 -2
9)> 87 e%loglexp e (L +2))) =L +2 ,

-3 2
L+1>8 "¢ log(

a contradiction. This proves the equicontinuity at every point Y
interior to. K.

Case II. Assume that W is an endpoint of the arc K

(and hence also an endpoint of the arc 7). Since all the functions z

agreeon ¥ (andat w there is a number h > 0 such that every

O)’

z has an oscillation < £/8 in C Ny, where C is any circle

with center WO and radius r < h. If h0 is the number relative

to condition (@), we may assume that h_ < h. We shall again

0

prove that the equicontinuity statement at the beginning of this proof

is true for

-2
rO:min[%hO, %hoexp(83s (L +2))] . N=28/¢

Indeed, suppose it is not true. Then there is a function z ,
n

n > N, which has an oscillation >& on C N (y v K) for some

circle C with center w_ and radius r<r and we may assume

0 0’
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that r = Ty Then there are two points Wi W, € CnN(y vK)

with Izn(Wl) - zn(WZ)] > &, and hence for at least one of these

points, say Ww., we must have lz (w,) - z (w )[ > ¢/2. Letus
1 n 1 n O

assume that zn(wl) > zn(wo) + £/2. We again consider all squares

Q with center w

1 0’
side length 2¢, Ty = 105 g < 11 = hO/Z. All these squares are

sides parallel to the x- and y-axes, and

contained in a circle C1 with center WO and radius ho. Also,

e
the boundary Q of Q must meet ¥ in exactly one point and

1 {
K in exactly one point. If @ 1is the point of intersection of Q"
with v, we know that zn(a) < zn(wo) + £/8 (see page 22).
si¢
We now claim that there is a point 7 € Qﬂ N B such that
z (7)>z (wo) + €/4. If this were not the case, we would have
n n
sie
z (W< z (w.)+¢&/4. forall we Q,6 M B, while
n — n 0 ¢
z (w,)>z (w.)+€/2. We draw an arc from w_ to Q" so close
n 1 n O 0 [4

to the arc 7 that for all w on this new arc, zn(w) < zn(wo) + &/8.

This, of course, is possible by the continuity of .. Then we have
> £/4 > + &/4 ’
zn(wl) [zn(wo) +e/4] +¢e/4 zn(w) /

and, therefore, there is a number j as before with

<z (w,) s
n 1

< <
zn(w) Pj Pj+1
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contradicting the fact that z is 1/n leveled in our generalized
sense. Thus there is a point 7T € Q: N B with zn( T) > zn(wo) + € /4,
while zn(a) < zn(wo) + £/8. Hence z has an oscillation > £/8
on Qz N B for every { satisfying 105 g < gl. Now exactly
as before we are led to the contradiction L +1> L +2,

Therefore, we conclude that the functions z are equicon-
tinuous on the boundary of the disk B. Thus by Theorem 1.2, the

functions z ~are equicontinuous on B. By Ascoli's Theorem,

there is a subsequence {z } which converges uniformly on B
n
k

to a function z which is continuous on B and takes on the pre-
scribed values £ = €(6) on Y. Now by Theorem 1.1 we can

conclude that z is admissible, since for every n,
2 2
S(z +z )dxdy < L +1
nx ny -
B

By Theorem 1.3, the functional I(z) is lower semicontinuous, so

I(z) < lim I(z_ )= L
k— Tk

But since 2z 1is in our admissible class C » I{z) > L. Finally,
I(z) = L, and z is the desired minimizing function. This proves

the theorem.
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We now state a slightly more general theorem than the pre-
ceding one. We consider the class c of functions z(x,y) defined
on a closed Jordan domain E, which are continuous on G and ACT
on G. Furthermore, each z(x,y) takes on prescribed continuous
boundary values = §(x,y) onanarc < ofthe boundary G, and
on the complementary arc K we have a < z(x,y)< b for constants
a,b, with a < b.

Theorem 2.2. Let F(x,y,z,p,q) be continuous in

(x,v,2z,p,q) on G X E3, convex in (p,q), and assume that there
are constants u >0, vy real, such that F(x,y,z,p,q)> v+ p(pz-l-qz).
Suppose further that there is a continuous function f(x,y) such that
F(x,vy,2,0,0) = f(x,y), and that there is at least one function z(x,y)

in the class G described above such that

I(z) = g F(x,vy,z, Zx’ Zy) dx dy
G

is finite. Then the functional I(z) has an absolute minimum in C .

Proof. First note that

2 2
I(z) > v measure (G) +u§ (zX + zy) dxdy > v measure (G)
G

for all z in the class C for which 1I{(z) is finite. Hence,

L = inf I(z) > - s
ZE€
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and since by hypothesis there is a function z in C with 1I(z)
finite, we have - < L < +0,

Let {En} be a minimizing sequence. To this sequence
we apply our generalized 1/n leveling process. The new sequence,
{ Zn} , again consists of members of the class c . Furthermore,
it is a minimizing sequence. Indeed, if we assume that

L<Ifz )< L+1/n<L+1 |,

h i H 3 ] b < F ’_ 3- 9 i th f
then since F(x,vy 2 2% 2 ) < F(x,vy 2 22 % ) (using the fact

X Yy S Yy
that F(x,vy,z,0,0) = f(x,y) ), we have

L< Iz ) < 1(;n)5 L+1/n<L+1

Since G 1is a Jordan domain, it satisfies condition (a).
Therefore, exactly as in the proof of Theorem 2. 1, except that we

replace

-2
= min[3h_, h_exp (838 (L + 2)}]

2]
!

0 0

3 -2 -1
= min[3h , $h_exp(8°¢ u (L +2 - vmeas(G)))] ,

H
1

0 0

Vs

we conclude that the functions z are equicontinuous on G ,
n

Since

2 2
I(zn) > v meas (G) +u§ (zn + z_ ) dx dy ,
G X y

we have
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E(zi ~!--zi'1 )dxdy < u-l(I(zn) - vmeas (G))
c * 7

iy-l(L-l—l- v meas (G)) = A )

where A 1is a constant. Therefore, by Theorem 1.2 the functions
z are equicontinuous on G, and by Ascoli's Theorem there is a

subsequence {z } which converges uniformly to a continuous
n
k

function z on G. Furthermore, by Theorem 1.1 z is admissible
(that is, in the class G ), and by Theorem 1.3 the functional I(z)

is lower semicontinuous. Hence, I{(z) < lim I(z )= L, while at
- = n
k> k

the same time I(z)> L. Therefore, I(z) =1L, and z yields an

absolute minimum in the class C . - This proves the theorem.

The results of Theorems 2.1 and 2.2 and their proofs enable
us to prove the existence of a minimizing function for the problem in
which the boundary values are left completely free in the cylinder over
the boundary G* of the Jordan domain G, where we, of course,
take only a finite (closed) cylinder. Let C be the class of all func-
tions z(x,y) defined on E‘}, continuous on G , and ACT on G,
whose boundary values lie in the finite cylinder S given by

{(xgy,z) 2 (x,v) € G*, a<z< b}.
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Theorem 2.3. Under the same hypotheses as in Theorem 2.2,

if the class G contains a function 2z such that I(z) is finite, then
the functional I(z) assumes an absolute minimum in the class G
Proof. Let {zn} be a minimizing sequence. We may

assume that

L=inf I(z)<I(z )< L+1/n< L +1
N s Hz )= =
Z €y

We divide the boundary G~ into two Jordan arcs @,B such that
@ and B have only their endpoints in common and @ B =G .
We may do this so that neither arc is degenerate. For the moment,
..:3’

let n be fixed. We consider the class (9 of all functions 2z
which are continuous on E, ACT on G, and take on the values
zn(x,y) for all (x,y) € @. Then by Theorem 2.2 there is a function
En(xyy) in this class which minimizes I(z) among all functions in

’ : 2 G
G . Therefore, I(zn)§ I(zn), and z_ is still in the class .

Therefore,

L_<_I(2n)§ I(zn)_<_ L+1/n<L+1 ,

so the sequence {En} is again a minimizing sequence. However,
each Zn is 1/n leveled in the generalized sense with respect to

the fixed values on the arc a@. Indeed, if one of them were not, we
could apply the leveling process and obtain a function Z0n such that

On) < I(En). Now exactly the same proof as in Theorem 2.1 shows

I(z

that the functions En are equicontinuous on f3.
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Next, for each n, we may replace z by the function
n

En which minimizes I(z) among all those admissible functions which

agree with En along the arc B. As before,

Lgl(in)g (z )< L+l/m<L+l

and we may assume the functions ;n ‘tobe 1l/n leveled. The proof

of Theorem 2.1 shows that the functions Zn are equicontinuous on

a@. Therefore, these functions are equicontinuous on G*,, and using

the fact that the cylinder is finite, we may reason exactly as before.

Thus we see that there is an admissible function 2z such that I(z) = L,
70

that is, I(z) takes on an absolute minimum in the class (o . This

proves the theorem.
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3. The Free Boundary Problem for
a Capstan Surface

Definition 3.1. By a capstan surface J we shall mean a

surface of revolution generated by revolving a curve C in the (x,z)-
plane about the z-axis, where C can be represented by a twice con-

tinuously differentiable function x = f(z), a < z< b, f£(z) >0, having

+
the properties that f'(z) has precisely one zero z = (_a?}_a_)’ f(z) 1is
. : (a+b) | : .
symmetric in the line z = . and f'"(z) >0 for all z in the in-

terval a < z < b. Such a surface may be represented parametrically

by the equations

x = X(u,v) , y =Y(u,v) , z = Z(u,v) ,
where 0< u<mn, -7<v<+7. The functions X(u,v), Y(u,v),
Z(u,v), are assumed to be at least of class CZ, and X(u,v),
Y(u,v), are assumed to have positive real period n in the variable
u for values of v in the interval -7< v< +7.

We take the (x,y)-plane as the base ’?‘

e
2

plane for /é , and we denote by DP the in-

tersection of 3 with the (x,y)-plane. Thus,

afg
kA3

D is a circle, and we denote by D the disk

it bounds. Let Dl be the disk contained in

D with the property that the cylinder over

afe
£

D1 is tangent to /Qg

We shall be interested in Jordan B

domains G  with the property that G contains a fixed Jordan

£

arc 7% lying in the annulus bounded by the circles Di and D and
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satisfying the relation D1 C G € D. It will be necessary to impose

si¢
a certain restriction on the boundary G of G. This restrictionis

embodied in the following condition.

Let r_,, a,, b, be given real

Condition S(ro, a4 bOv)' 0’ 20’ Po

r,>0, 7/2< a T/2< b The domain G is said to satisfy con-

0 0’
dition S(ro, 2y bo) if for every point W € G - Y there are
circular sectors S ., S each withvertex at w and radius r_,
a bo 0
having vertex angles a, and bo, respectively, such that one of

the sectors lies completely interior to G and one lies completely
exterior to G (except for the point w). The domains in figures 1

and 2 below satisfy condition S(r_, a

s ] i = =7/2,
0 Obo) with a_=b /

0 0

while the domains in figures 3 and 4 do not satisfy the condition for

this set of numbers.

dtst Cwn)\'/.z]>c

dist (W, wh]< 0
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In the existence proof which follows, we shall use as one of

our main tools the theory of convergence of conformal mappings onto

variable domains (the Carathéodory theory).

We first recall the defi-

nition of the kernel of a sequence of domains and then state the

Carath€odory convergence theorem.

Definition 3.1. Let { Bn} be a sequence of domains in the

complex plane, each Bn containing a fixed point, say, O.

kernel B = K{ Bn} is defined by the propertiesi

Then the

(a) If QBn contains no neighborhood of 0, then

B={0};

(b) If QBn contains a neighborhood of 0, then B

is a domain such that

(i) Oe B ;
(ii) If E is any compact subset of B, then for
n sufficiently large, E C Bn ;
(iii) If D is a domain satisfying (i) and (ii),

then D C B,

Such a domain always exists. Furthermore, if {B } is
S n

k

a subsequence of {Bn} , if B= K{ Bn} , B'= K{ Bn } , then

k

B' O B. Ifactually B'= B for all subsequences {B } , then
n

k

we say that the sequence of domains {B } converges to the
22 n =L

domain B.

We shall now state a convergence theorem which will be of

use to us.
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Lemma 3.1. Let {f (w) } be a sequence of conformal
—_— n

mappings defined on the disk B, let f (B) = Gn, D C Gn CD
n

1
for all n and two fixed concentric disks D1 and D. If the sequence
{fn} converges uniformly on E to a function f, then f is a
conformal mapping of B onto the domain G = K{ Gn} , and the

sequence of domains {Gn} converges to the kernel G. Further-

more, on every compact subset of G we have

lim £ H(z) = £ (2)
n

n—x

uniformly.

Remark. This is a slightly different statement of the
Carathéodory theorem than is usually found, for example, in
Goluzin [16, p. 46] or Carath&odory [3]. The essential reason is
that the usual statement is a necessary and su:fficient‘ condition, and
it includes a normalization of the form fn(O) =0, f;l(O) > 0. But
since we are assuming uniform convergence of the conformal mappings
(and hence the limit function is conformal) along with the uniform
boundedness of the domains Gn, we do not need to make assumptions
of this type. The proof of Lemma 3.1 may be obtained from the two
references noted above or more conveniently from the very general

theorems of F. W. Gehring [15].
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We wish. to consider functions z = z(x,y) defined on a Jordan

domain GZ (depending upon z) with D, C GZ & D, and having the

1

property that the set of points C : (x, y, z{(x,y)), (x,y) € G;, lies
on the capstan surface ,ég . That is, the surface S: z = z(x,y),
(x,y) € Ez, has its boundary on the capstan surface.

We let ¥ be a fixed Jordan arc lying in the annular region

%

B
bounded by the concentric circles Dl and D, andlet ¢ = §(x,y)

be a given continuous function defined on <Y, whose graph lies on

ng . Denote by G the class of all functions z = z(x,y), defined

on some Jordan domain G _  whose boundary G_ lies in the domain
Z Z

D - D1 and contains the arc v, such that z(x,y) is continuous on

(_}z, ACT on GZ, agrees with {(x,y) on <¥, and the points

E
(x,v,2(x,y)), (x,y) € GZ, lie on J . We further assume that each

domain G  satisfies condition S(r_., a
z

0 0’ bo) for some fixed numbers

ro, aog bO'

Theorem 3.1. Let F(x,y,p,q) satisfy the same conditions

as in Theorem 2.1. Assume that there is at least one function 2z in
@ such that I(z) = S F(x,y, z_s zy)dx dy is finite. Then the func-
G
Z
o)
tional I(z) has an absolute minimum in Cp

Proof. Let {'z } be a minimizing sequence, where the
- n

domain of En is denoted by Gn. We may assume that

L=inf I{z) < I{z )< L+1/n< L +1

e n =
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We apply Tonelli's 1/n leveling process described in Section 1
(not our generalized process) to obtain a new minimizing sequence
{zn} , each z having the same domain Gn as did En. By the
Riemann mapping theorem, for each n thereexists an analytic
univalent function fn mapping the interior of G  onto the interior

n

-1
of the unit disk B in the w = (u,v)-plane, with fn also analytic

and univalent, mapping B onto Gn. These functions fn, as we
know from the Carathéodory extension theory, may be extended to
continuous functions on the closure of the domains Gn.

Let Qi’ i=1, 2, 3, be three distinct fixed points on the
fixed arc 7, Ql and (Q3 being the endpoints, and let

Pni = zn(Qi), i=1, 2, 3. The triples (fn(Ql), :fn(QZ), fn(Q3))

define one or the other of the two orientations of B*. One of the
orientations occurs infinitely many times. Make such a choice of
orientation, and extract a subsequence, again called {fn} s such
that the orientation is the same for all n. Let (Wl’ W, w3) be
a triple of 3 distinct fixed points on B* which defines the same
orientation as above. Then there is, for each n, a unique linear
fractional transformation hn(w) of B onto itself sending fn(Qi)
g

-1, -1
onto w,,1=1,2,3. Let h (w)=£f (¢ "(w)). Then h (w) is,
n n n n

1
for each n,. a one-to-one conformal mapping of B onto G ,
n

sefrding- W, onto Qi, i=1, 2, 3. Furthermore, for each n,

z (h (w))=P , i=1,2, 3. If we write h (w) = (x (w), v (w))
n'n i ni n n n
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and z (w) =2z (x (W), y (w)), we have a sequence ofvectors
n n n n

— 3
R (w) = (xn(w), yn(w), zn(w)) mapping B into E , such that

= i)
the points R (w), we€ B, lieon yé) , and R (w.)=P .,
n n i ni

i=1, 2, 3. By the definition of the points Pni we have

inf [mutual distances of the Pni] =d, >0
n

We now assert that the vectors R (w) are equicontinuous
n

s

on B . For suppose that this is not the case. Then there is a
number d >0 anda sequence of pairs of points w' , w'' ,
nm nm
m=1,2, ..., of B with lw' - w'! l—>0 as m —%, and
nm nm :
lR (w! )-R (w'" )l>d for all m=1, 2,
m nm m nm'' —

By a convenient extraction of a subsequence and a renaming, we may

assume that the sequence [nm)] is the sequence [m], that the

N
R

sequence {wr'l} converges to a point Yo € B, and that

| < " - < =
wn WOI l/n, lwn WOI l/n9 n=1, 2, ... . Now the

is interior to one of the arcs defined by w., w_, w_,

point w 1 > 3

0

~
say, to that arc W W which contains W, We may assume that

all of the points w!', erll are also interior to the same arc, and that
n

the points in question are oriented (w., W', w'', w_ ). The vector
P 1 n n 3

aig
functions R (w) are one-to-one on B , and the images under R
n n

. e T <) ..
of the two disjoint arcs WaW, and W;WS are two disjoint arcs
™

AN
P _P and P'P'' of diameters >d. and >d, respectively.
n3 " nl n n -0 -
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Now let & >0 be given. Choose N so large that 8/N< &g,

and choose 51 < 1/N. For the "fixed arc,' that is, the arc which

is common to all the curves Cn :R = Rn(w), W € Bq‘, there is. a
number 62 > 0 such that any two points on the fixed arc which have

a distance less than 52 lie on a subarc of diameter less than )

(property of a continuous arc). Choose 6 = min [61, ) diameter of

2
fixed arc, 6$ ], where 6!:8 arises as follows. Givenany & >0
there is a number ég? >0 such thatif P, Q are points of the
capstan surface J of distance less than 6<§ , if a@ 1is any arc
lying in ,é joining P and Q such that the projection of & on the
(x,v)-plane is contained wholly in one of the two sectors (possibly
degenerate) of D determined by the center of D and the projections
of P and Q, then the diameter of the projection of « on the
(x,y)-plane is less than € /2.

Now we claim that there is a number 0, 0< 6 < 6 such
that for n > N, any two points of Cn at a distance less than 0
belong to a subarc of diameter < &. Suppose, on the contrary, that

this is not the case. Then there is a sequence of points P 1’ PnZ’
n

n > N, such that dist (P PnZ) — 0 as n — %, while each of
- n

1!

P_,A ~waA _=C,

A, A i i )
two arcs with endpoints P 02 nl n2 n

nl n2 nl’

has diameter > &. S8ince dist (P 1’ P — 0, we may assume
n

nZ)

that dist (P £

2 < H i
1 PnZ) 1/n, and thus if tn

p §., ares respectively,

P on the (x,y)-plane, then

C P,
the projections of 0l 02
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- - 1 , < . o
| ¢ rnZi dlSt[§n1 gn.?.] 1/n. Now by the choice of § ,

nl

¢

and ¢ cannot both lie on the fixed arc 7.
nl n2
Case I. Suppose that § 1’ §’n2 are both on the arc com-
- n
plementary to Y. Let us make the convention that Anl does not
nl

contain the fixed part of C . Since diameter A _ > &, thereisa
n

point P on A such that if § is its projection on the

n0 nl n0
- - > > - > -
(x,vy)-plane lrnO rnZI >n >0, !§n0 tnll 0 for some con
stant 7 depending only on the curvature of the capstan surface.
However, if we let n — © then |§ . - | =0, and this con-
nl n2
tradicts the fact that the domain Gn satisfies condition S(ro, ag bo).
Case II. Suppose that ¢§ 1 lies on the arc complementary
E— n
to 7%, and th lies on 4. Let L"O be the endpoint of 7% on
the smaller of the two arcs bounded by ¢ 1 and ¢ 5 Since
n n
- - 0 — 00 - 0
l §n1 §nzl as n we must have l rnl fol - as
n — % and lfnz - §‘Ol — 0 as n —>«, We may choose n so
large that the fixed arc on the capstan surface between PO and PnZ
has diameter < &£/2 (by the property of the continuous curve). Then

Ve

the diameter of the arc PnIPO is > &/2 for all n. Now we may

reason exactly as in case I. This proves the assertion.
Now we take € = min[do, d] and 6>0 as above. Then
~
we claim that the arcs P _P' and P''P of C have a mutual
nl n n n3 n

distance > 6. If not, there would be points P', P' of the first

two arcs; at a distance < 0 @amnd therefore a subarc of CI1 of
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diameter < & containing P' and P'. Since C_ is simple, this
n
N N
arc must contain either Pl'qP; or P3P1, both of diameter > €,

a contradiction.

Let sO be the minimum distance of WO from W1 and

W Let us consider the family of arcs B of circumferences with

center WO and radius r, s < r< S0 S = 1/n, contained in
n— - n

o
B with endpoints on B . The images of the endpoints a, 7 of

N TN\
these arcs on C under the mapping R lieon P P' and P'P,,
n n I n n 3

and hence at a mutual distance > 0. Introduce polar coordinates

(r, 9) with w, as pole. The region E covered by the arcs B

0
is given by [sn_<_ r< s 91(r)_<_ f < 92(1')]. Recalling that

Rn(w) = (xn(w), yn(w), zn(w)), where X and y, 2are the real and

imaginary parts of a conformal mapping, we see that

(x2 (u,v) + xz (u,v))dudv )‘ (yz (u,v) + yz (u,v))dudv
N n n . n n

B u v B u \'2

I

ydxdyﬁ area of D= A ,
G
n

since each Gn is contained in the disk D, and since the above inte-
grands are expressions for the Jacobian of the mapping (xn(w), y (w)).
n

Therefore, we have
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- >
L+l+2AzI(zn) +2AZS (zr1 +zn )dxdy + 2A

1

a * 7
n
2 2 2 2
>S(X +y +z +x +y_ +z )dudv
-, n n n
5 U u u v v v

T T T Do ] 0
n 1
'sfo 92
t - '] 2
>5 r 1dJ:'g (x +y2 -i-z2 )doé
- n n n
' 6 0 6
) 0
n 1
But we also have
0
% 2 3
& - 2 2 2
o< [ I aly, I +la D ao <NT{| 2 4y 42 jao
- . n n n n n n
0 0 0 0 9 0 6 0
1 1
or
0 2
T
(x +v ng - T
. ng ng

Combining this with the inequality at the top of this page, we obtain

52
L+1 +2AZ7 log(nso) )
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a contradiction, since the right hand side approaches + ®© as n

approaches + %, Therefore, the functions Rn(w) are equicon-

b3
tinuous on B .

S
The equicontinuity of the vector functions Rn(w) on B

implies that the mappings hn(w) = (xn(w), yn(w)) are equicontinuous

s¢
on B . However, each hn(w) is an analytic function on B and

continuous on B. Hence by the maximum-modulus principle, the
functions hn(w) are equicontinuous on B. Therefore, a subsequence
{h } converges uniformly on B to a function h(w) which is

n

k

analytic on B and continuous on B. Since each h maps the

A

E
three distinct points W i=1, 2, 3, of B ontothe three distinct

points Qi’ i=1, 2, 3, respectively, of 7v, and since h(w) is
continuous and h(wi) = Qi’ i=1, 2, 3, h(w) cannot be constant on
B. Therefore, h(w) is a one-to-one analytic function on B

[16, p. 9], continuous on B, and h(w) maps one of the two arcs

a, = m to th in a one-to-
1T W W Wy , = W,W,W, ontothe arc Y in ne one manner.
We may choose the subsequence {h } so that each member maps,
n
k
say, the arc a-= Q onto the arc Y. Then h(w) also maps

a onto 7.
We denote by G the image of B under the mapping h.

Thus G = h(B) is a simply connected domain, D D G D Dl’ and

afe
&

G contains the arc ¥ . By Lemma 3.1 we conclude that

G = K{G } and the sequence {Gn } converges to G.
k
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-1 -1
Moreover, lim h (§)=h (§) uniformly on compact subsets

k—o 'k

of G. We now replace the sequence [nk] by the sequence [n] for

the sake of simplicity.

¢

N
Next, we see that h maps B onto G . Indeed, if

) 4
s s

¢ €G and lim € =¢, ¢

-1 .
€ G, then the points {h (¢ )}
k —=0 K K

k
sk —

have an accumulation point w € B. Then a subsequence, again

«f,
s

-1
called {h (fk)}, converges to w . Since h(w) is a continuous

mapping on ];

b - -1 *
¢ =1lim §’k = lim h(h l(fk)) = h(lim h (’fk)) = h(w )

k—o0 k—>0 k—0

E
But since h(w) is a homeomorphism on B, w must be a point of
sk N b

B . Therefore, h maps B onto G .

Now we shall show that h is actually a one-to-one mapping

%

of B onto G (and therefore of B onto Er). Then we can con-

5, J,
s £

clude that G 1is a Jordan domain, since h will be a homeomorphism

on B,

Suppose, on the contrary, that there are distinct points w',

ale
b

w'" on B  such that h(w') = h(w'"), and we may assume that h
~

is not constant on the arc w' w'" = 8 which does not contain the arc

@=h (7). (Weknow by the ''three point lemma'' [11, p. 103] that

h is a one-to-one mapping of @ onto 7Y.) Then there is a point

Y interior to the arc [ such that h(wg‘a)}/ h(w'). By the uniform
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convergence of the functions h toward h, we may choose N >0
n

so large that for every n > N we have

lhn(w) - h(w)[ < r0/4 , w=w', w', Wo

where r_. is the number relative to condition S(r., a., b Con-

0 0" 0 0)°

sequently,

[hn(w') - hn(w”)l < rO/Z ,

. 1 - 1y .
while ]hn(w) hn(wo)l and lhn(w) hn(wo)[ are bounded away
from 0. But this contradicts the condition S(ro, 2 bo).
Therefore, h is a one-to-one mapping of E onto 5,

and G 1is a Jordan domain satisfying condition S(ro, 2 bO).

B3

Also from the equicontinuity of the vectors R (w) on B
n

N3
£

follows the equicontinuity on B  of the funttions zn(w) = zn(hn(w)).
Since hn(w) is conformal, zn(w) is ACT on B. If necessary,
we may apply Tonelli's 1/n leveling process obtaining a new se-
quence, again called {zn} » which is equicontinuous on B*, ACT
on B, and furthermore

L+125 ]F‘(x,y,zn 'z )dxdy

G v
n

2 2
> § (z +2z )dudv
— n n
B u v

Thus by Theorem 1.2 the functions =z = zn(w) are equicontinuous
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on E, and so we may choose a subsequence, again called {zn} ,
which converges uniformly on B to a continuous and ACT function

z(w).

Now we write
-1 -1
gn(x,y) = zn(hn (x,v)) , gxvy)=zh (xv)) .,

(x,v) € G = K{ Gn} . Thus we have shown that the functions gn(x,y)
converge uniformly on G toa continuous and ACT function g(x,v),
and furthermore, the sequence {gn} is a minimizing sequence. The
values of g(x,y) on the arc ¥ are such that the points

(x,y,g(x,v)), (x,y) € v, lie on the capstan surface. Thus, g isin
the class C of admissible functions. By the lower semicontinuity

theorem

Ifg) < Uim I(g ) =L

n-—*>0
but since g is in c » I(g) > L. Therefore, I(g) =L and the

theorem is proved.

We may now make the extension to slightly more general
integrands just as in Theorem 2.2.

Theorem 3.2. Let F(x,y,z,p,q) satisfy the same condi-

tions as in Theorem 2.2. Then I(z) = S F(x,y.,z,zx,zy)dxdy assumes

!

G

Z

an absolute minimum in the class G (as long as there is a function

zZ € C such that I(z) is finite).
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Proof. The proof of this extension is reduced to the case

of Theorem 3.1 just as in the earlier proof of Theorem 2. 2.

We may now use the final extension in Section 2 to prove the
analogous existence theorem for boundaries totally free on a (closed)
finite capstan surface. For this case we let C denote the class of

functions z(x,y) defined on a Jordan domain Gz’ D C CrZ C D,

1
such that z(x,y) is continuous on EZ, ACT on Gz, and such that
£

the points (x,y,z(x,v)), (x,y) er, lie on J . Let each GZ

, a., b

satisfy condition S(r0 0 0).

Theorem 3.3. Under the same hypotheses as Theorem 2.3,

the functional I(z) assumes an absolute minimum in the class C
Proof. We let {z } be a minimizing sequence, where
n

Z is defined on the domain Gn, and let vy be a connected sub-
n n

sie
arc of G _ with endpoints P lying, respectively, on

and P
n nl n

3

the positive y-axis and the negative y-axis, with 'yn lying in the right

half-plane. Then there is also a point P > which intersects
n

the positive x-axis. We now proceed as in the proof of Theorem 3.1.

P onto three dis-

by mapping the three distinct points P _, PnZ’ 3

nl

afse

tinct points Wi Wy W of the unit circle B . The proof of
Theorem 3.1 may now be repeated, except that we no longer need to

make a special argument about equicontinuity at endpoints of a ''fixed

arc.' This proves the theorem.
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Remark. It is clear that the theorems in this section are
not really restricted to the case of a capstan surface which is a
surface of revolution. The only features which we actually used were
the fact that the curvature was bounded away from O and the fact
that the projection of each admissible surface S: z = z(x,y) onto
the (x,y)~plane is a Jordan domain GZ containing a fixed disk
D, and contained in another fixed disk D, and satisfying tondition

1

S(rog a, b Without a condition like S(ro, a bo) it is conceiv-

o Bo): o
able that a limiting (minimizing) domain has the form of Figure 5.
If we were to enlarge the class
of admissible domains to, say,
simply connected domains, we
would not be able to extend the
Riemann mapping functions,

used in the proof, to continuous

functions on the closed domains.



CHAPTER II

THE PARAMETRIC PROBLEM

1. Basic Definitions and Theorems

In this chapter we shall consider the problem of minimizing

the integral

(1.1) Io(z,Cr) = S F(z,J)dudv ,
G

z(u,v) = (zl(u,v), zz(u,v), z3(u,v)) ) (u,v) € G

2 3
Zu Zu
1 2 3 1
J—'(J ,J ,J) b J = Z 32 2
Z z
\4 A%
3 1 1 2
Z zZ Z VA
JZ_ u u J3 ) u u
13 1) I I )
Z Z Z Z
A\ v \4 A\

where the integrand F(z,J) satisfies the conditions:
(i) F 1is continuous in (z,J) for all (z,J) ;
(ii) F 1is positively homogeneous of degree 1 in J ;
(iii) F 1is convexin J for each fixed z ;

(iv) there are numbers m, M, 0 < m < M, such that

47
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m|J| < F(z,J) < M|J|
for all (z,J) ; and

(v) there are numbers Ll’ L2 > 0, such that for all (z,J)

lF(zl,J)-F(zz,J)lfL |z, - =z

|F(z,7)) - F(z,3,)] < L, |3, - Jz[

It is known that properties (i) and (ii) imply that the integral
Io(z, G) is independent of the representation (z,G) of the Fréchet
surface (L. Cesari [5]). Thus we shall consider all surfaces (vectors)
to be defined on the unit square Q. It is also known that this integral
is lower semicontinuous with respect to uniform convergence of con-
tinuous vectors of class W;‘(Q), Definition 1.1 (L. Cesari [6],

L. Turner [32]),

The existence proof is mainly a generalization of the technique
of C. B. Morrey [21] used for the proof of existence of a minimizing
function of the parametric problem for surfaces spanning a fixed Jordan
curve in space; that result was first obtained for general integrands
independently by L. Cesari [8], J. M. Danskin [3], and A. G. Sigalov
[27]. We also incorporate the notions of R. Courant with regard to
the formulation of the free boundary problem.

We shall now give a brief discussion of the basic definitions
and properties of the function spaces W;n(Q), the so-called Sobolev

spaces. The study and systematic use of these spaces in potential
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theory, partial differential equations, and calculus of variations has
been developed by many authors. Their use goes back to the work of
B. Levi, and important contributions have been made by L. Tonelli,
G. C. Evans, J. W. Calkin, C. B. Morrey, S. L. Sobolev, and
others. A sizeable list of references may be found in Morrey [22].
The basic properties of these spaces may be found in
[2, 19, 20, 22, 23, 30].

1
Definition 1.1. A function z is of class Wp(Q), p> 1,

h also of

if z is of class L (Q) and there exist functions hl, >

class Lp(Q), such that

v

Q o)

gg(u,v)hi(u,v)dudv = - Ygi(u,v)z(u,v)dudv , i=1,2,

1
for all functions g of class C  with compact support in Q, where
g1 7 gu’ 8, 7 &y

The functions hi are uniquely determined up to null func-

1 sk
tions, and furthermore, if z is of class WP(Q) and z =2z almost

e

% 1
everywhere, then 2z is also of class Wp(Q) and the same functions

afe

h.i will serve for z'ﬁ in the above definition. The functions hi are

called the generalized derivatives of the function z, and we shall

write z =h zZ =h

s , and call =z and z the derivatives of
u 1 v 2 u v

z. In the language of the theory of distributions, the distribution
derivative of the function z (as a distribution) is a function of class

Lp(Q). Since we shall be concerned with vector functions, we shall
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1
say that a vector is of class Wp(Q) if each component is in that

class.

1
Definition 1.2. The space Wp(Q) consists of equivalence
A ,
classes of functions of class Wp(Q) under the equivalence relation
of equality almost everywhere.

Definition 1.3. A function =z is of class W;n(Q) if z

1
is of class Wp(Q) and if each of its generalized derivatives up to
- 1
order m - 1 1is of class Wp(Q). Analogous to Definition 1.2 above,

we define the space W;n(Q).

By introducing the norms

uzu;fﬂzvlzdudv ey l? o 12y Pauar
2 Q Q

= LZ(Z,Q) + D(z, Q)

and

2 )
I21° , = 1,2.9) + D@ Q) + | (l2
VV2 a

’2 +leuvlz + ]zvvlz)dudv

LZ(Z,Q) + D(z,Q) +J(z,Q) )

1 2
the spaces WZ(Q) and WZ(Q) become, respectively, Banach

spaces (in fact, Hilbert spaces).
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Theorem 1.1. If z € W;(Q), p>1, then z hasa
representative z which is absolutely continuous along almost all
lines parallel to the coordinate axes, and the partial derivatives of
z are representatives of the generalized derivatives of z. If z
is a function 6f class Lp(Q), p > 1, which is absolutely continuous
on almost all lines parallel to the coordinate axes, and if each first
partial derivative of z is of class Lp(Q), then z 1is of

class W1 (Q).
P

1
Theorem 1.2. Let 2z € WP(Q). Then
(a) there exists a sequence {zn} of Lipschitz func-

tions such that z — 2z in W;(Q);
n

e
(b) there is a function ¢ € Lp(Q ) such that z é

N
xR

in L (Q ) for every sequence as in (a) ;

(c) if z € W;n(Q), then there exists a sequence
00 — m
{ zn} of functions of class C (Q) such that z in Wp Q) ;

and

t Sl %
(d) if z € W(Q), then ¢e W (Q); ifalso
p

p

-1 H
z —z in Wm(Q), then ¢ — ¢ in w Q).
n b n P
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Theorem 1.3. (a) If p>1, then bounded families in

Wm(Q) are conditionally compact with respect to weak convergence

p
in WHQ) ;
p

(b) if z -2z weakly in Wm(Q), then z — 2z
n P n

- -1 b
strongly in ng 1(Q) and qsn—’tﬁ in W;n (Q); and

m
(c) if mp > 2, then every function z € Wp (Q) is

continuous (i.e., is equivalent to a continuous function); moreover,
any set { z } of functions in Wp (Q), mp >2, with uniformly

bounded norms, is a compact set in the space of continuous functions.-

Definition 1.4. A function ¢ is a Friedrichs mollifier

0
(or a mollifier) if ¢ 1is of class C (EZ), ¢(u,v) >0, ¢ has

compact support in the unit disk B, and qu (u,v)dudv = 1.

T

B

Definition 1.5. If z is locally summable on an open set

G, we define its ¢-mollified function z by

z_(w) = S z(x)qﬁf(x-w)dx , weGr:{weG:ng,r)CG} ,

B(w, r)

where B(w,r) is the disk with center w and radius r,w = (u,v),

2, -1
X = (Xlaxz)p and ¢r(Y) =T ¢(1‘ Y)’ y = (YI’YZ) .
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Theorem 1.4. Suppose z € L , ¢ 1is a mollifier, and

z denotes its ¢-mollified function. Then

o 2
(a) z € C (E ) and its derivatives are formed by

differentiating under the integral sign ;
(b) z —z almost everywhereas r — 0; if z is

r

continuous, the convergence is uniform ;

© lz 0, <Dzl
b p

d ~2z in L_(E9);

(d) z —z in b ) 5

(e) if z € W™ and h isa generalized derivative of
k k k
Dkz of order <m, then D z = hr , so that all such D z D z

in Lp(EZ) as r—0;

(f) if z € W;n(G), then (e) holds for w e G_ and

the convergence in (e) holds on each compact subset of G.

Most of these results will be stated in the text which follows
as they are needed. We have stated all the definitions and theorems
in this section in terms of functions of 2 independent variables,
that is, functions defined on a subset of EZ. However, all that has
been said holds for functions of n independent variables, except that
Theorem 1.3 (c) holds for mp >n, and r-2 must be replaced by

n * . .
r in the definition of ¢ (y). Also we remark that any function in
r
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2
class Lp(G) becomes a function in class Lp(E ) by simply defin-
ing it to be identically 0 outside of G.
For notational convenience, we shall write P, for WZ’

2

P'z for the class of functions in P, which are absolutely continuous

2

along almost all lines parallel to the coordinate axes, P‘Z' for those
functions of class PZ which are continuous, and H2 for Wg.

We propose to consider surfaces (vectors) whose boundaries
are free on fixed manifolds. R. Courant has shown [11, p. 220] that
there are smooth vectors which minimize Dirichlet's integral but
whose boundaries are not continuous curves. Although there are
some conditions known under which minimizing surfaces are continu-
ous along, and up to, the boundary (see, for example, [10, 17]), we
shall use the torus as our manifold for the sake of convenience, but
we shall produce a general existence proof which holds even in case
the manifold is the one of Courant's example. Thus, we shall make
a precise definition of the concept of a surface having its boundary

on a manifold.

Definition 1. 6. [11, p. 202] Let %L be a (topologically)

closed manifold (i.e., closed connected point set) in the 3-dimensional
space E3, and let p [z(u,v)] denote the shortest distance from
the point z(u,v) to the manifold m . If z is a vector defined

on 6, we say that the image of Q* under z, or z(Q*)g lies on

. o #* ) .
6)/)1 if (u,v) (uO’ VO), (u,v) € Q7, (uo, VO) € Q , implies
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, v.). (We shall

0

that p [z(u,v)] = 0, for all such (u,v), (u
m 0

sometimes say that ''z lies on 7)2 ,''" or ''the boundary of z lies
on ‘)’)’) .

Let '{ be a solid torus in E3, and let H be a fixed
circle linking 7/ and situated so that for every point p on H

dist (p, ¢ ) =d = constant > 0

and we take d small relative to the diameter of zj . Our manifold
will really be the surface of '/ , and the only reason for mentioning
the solid torus above was to prescribe the correct homology class
for H.

E3
Definition 1. 7. We say that z links H, or z(Q ) links

H, if there is a number r > 0 such that for every closed curve C,

o Y2

s
homotopic to Q , lying in the strip Sr C Q adjacentto Q having
width r, z(C) is a closed curve linking H.

For all the notions of topological linking and intersection, we

refer to Alexandroff-Hopf [1, pp. 413-425].
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2. The Main Lemma Concerning
Boundary Values

We first state a lemma of Reshetnyak [13, p. 747].

Lemma 2.1. Let z be a vector of class PZ(Q), defined
on 6 and continuous on Q*. Then there exists a sequence
{{’n(u,v)} of continuous piecewise-linear vectors which are non-
degenerate in any triangle A C Q, and having the properties that
as n — «©, { En} converges strongly in P2 to the vector z,
while on Q* { fn} converges uniformly to z. Moreover, if z(u,v)
is continuous on Q, then {fn} converges to z uniformly on
every closed subset F C Q whose boundary does not contain a point
of Q*. Furthermore, there is actually a sequence of continuously

differentiable vectors satisfying all the conditions above.

The goal now is to prove a type of closure theorem for ad-
missible vectors, which will be instrumental in our treatment of free
boundaries. We remark that p [z(u,v)]™ 0 uniformly as
(u,v) —- Q* if the boundary of z is on ’)72 [11, p. 202]. In the
following lemma we shall take Q to be the entire upper half-plane
for the sake of simplicity. By a conformal mapping, the conclusion
will hold for the case of the square.

Let Q be the upper half-plane v >0, and denote by

Q;7 the set {(u,v) tv > n} , N >0. We shall call P'Z’(Q’) the
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class of all vectors which are in PS(Q;?) for every n >0 (i.e.,

in PZ(Q) and continuous on QO).

Lemma 2.2. Let {zp} be a sequence of vectors of class
HZ(Q’) which converge uniformly on each Q;') to a vector z of
class P‘Z'(Q’), and assume that the image of Q* t[-o < u< 4+ v =0]
under each =z lies on the manifold r)})[ . Suppose that there is a

2
constant K, 0< K< +% , such that < K for all

2,5

p andall n >0. Then the image of Q* under z also lies on
Proof. Since for each p and each Q;} C Q we have

D(zp, Q'n)_f KZ, letting n — 0 we obtain D(zp, Q) < KZ. By the

lower semicontinuity of D(z,G) with respect to weak convergence

in P, (G) [20, Chapter III, §4], we have

D(z,Q) )< lim Dzl,Qk) < L D +@) < K> < w
n’ = % TN ypn S P

2
so that letting n — 0 we find D(z,Q)< K.
Let € >0 be given. Then we may choose a number h,
0< h< £, such that in the strip Qh:[—°° <u< +%; 0< v< 2h]
4
we have D(z,Qh)< e .
We recall that since zp and z are in class PZ(Q'),
each is equivalent, respectively, to a function Ep, z which is

absolutely continuous on almost all horizontal and almost all vertical

lines. Wezmayrassume (since all z , z are continuous) [2, p. 181]
p



58

that ép =z, 2z =12z, andthatthe line v =h 1is a line of absolute
continuity for all the functions concerned.
Let Sh:[h/3§ v<:2h;-l<u< +1]=-Rd—. In this strip

we still have D(z, Sh) < 84. By Lemma 2.1 there is a continuously

differentiable function ¢(u,v) defined on Sh such that

2 4
@) [=z- ¢l < € ;
P, (M)

P

(i1) lz(u,v) - f(u,v)l < 82 ) for all (u,v) e M )

(iii) |z(u,v) - €u,v)| <& , forall (u,v)eF

where F=[h/3+ 7<v<2h-7;-1+4h/3<u<1-h/3], 7 a
fixed number, 0< 7 < h/8.

Next, let ¢n(u,v) be a Friedrichs mollifier (Definition 1.4),
i.e., cjdn is of class Coo, ¢n >0, oﬁn (u,v) = 0 for [(u,v)[ > n,
lS‘ S ¢n (u,v)dudv =1. By writing dﬁn (u,v) we really mean the vector

2
E

(¢n , qﬁn , dbn ), and when we write z(ﬁn we really mean the vector
1 2 3
(z (u,v)¢n(u,v), z (u,Vv) ¢n (a,v), 2z~ (u,v) ¢n (u,v)). We shall always

take n < h/6.
Define

3h/2 1-h/3

pwv= [ ey e x v axay
h/2 -1+h/3



59

(=]
Then we know (Section 1) that r (u,v) isa C vector and

rn(u,v) - ?u(u,v) uniformly as n —= 0. Thius we may choose n

so small that

(iv) lrn(u,v) - Z’u(u,v)[ < 82

Let J(rn,G).:'S:Sj([rn [2+ern [2+[rn lz)dudv s

uu uv \a%
G

G=[-14+h/3<u<1-h/3;h/3+7<v<5h/3]. Let h=h/3 47,
Then J(rn,G) < 4+ ©. We may choose a number h', h < h' < 5h/3,
such that

(v) D(rn,G1)< 84 s Gl:[-l+h/3_<_u§l-h/3;£§v§h“]¢

Then we still have

(vi) D(z,Gl) < 84

Let h'=h + 3 (h' - —}-1-), By the uniform convergence of z

toward 2z, there is a number N = N(&,h') such that for all p > N

(2.1) [zp(u,h”)- zfu,h'")[ <& , -1<u<]l

We now obtain the following chain of inequalities:



u h' u
| S fu(u,h“)dul < [ L — S S 'fu(u,h”)dudv[
0 hi-hy
h' |ul
< l — S S lfu(u,h”)ldudv
h' -h T °
h O
. bl
S l__ S S lfu(u:h”) - fu(u,v)[dudv
h' -h —
h
h' |ul
1 N
+ — I{’ (u,v)ldudv
h' - h _§ S v
h O
First consider the second member of the right-hand side
of (2.2):
h' |y h' [u] 3 B |u 2
L — S S |§’ (u,v)ldudvf _{S Sdudv} {S S l§ (u,v)]zdudv}
hl_h__ h"‘h v LTS . u E
h 0 h O h O
<——{w - mlu} {0 Gp}*
h' - h
< 2}' {ﬂ Iul}z{'\/D(f— Z, Crl) —}-'\/D(Z,Gl)}
lul 2, 2
(2.3) < — 2 € )
-

as follows by (i) and (vi), where ¢ =h'- h .

Next we obtain
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h'v Iul hlv lul h,,
S \ Irn(u,hn) - rn'(u,v)ldudv =%q S S js rnv(u,t)dt I du dv
ho 0 h 0 v
‘h?" lu] }}lt hﬁu lu‘ v |
..<_ lﬂz‘g .S IS rnv(u,t)dt l dudv + ‘S S "S rnv(u’t)dt [ du dv g
h 0 \Y% h'" 0 "
B el ol
< -igs S S [rnv(u,t)ldtdudv-}-.g S S [rnv(u,t)ldtdudy}
h 0 v h'" 0 h"
h' lu' h" h' Iu{ h' |
Siis S S Irnv(u,t)ldtdudv+'sv S S {rnv(u,t)ldtdudv}
h 0 h h'" 0 h'
Iul h' Iul h'
< -112 {(hu - h) S S lrnv(u,t)ldt du + (h' - h') S S lrnv(u,t)[dtdu}
O E 0 hll
_ uf n
= (h”Q_ 2l ‘S S lrnv(u,t)[dtdu (since h'' - h=h!- h'')
0 h
|ul n'
5%\8 LS lrn (u,t)[dtdu (since f =h' -_1:1)
0 h
lu| &' |u| b
k) 1 3 1
<3 {f atau}? {| | Ix, wo)]atau)?
0 h 0 h
1
1 2
< % {lul ' - h)}% (Dl . G}F < (zl‘zll) 2
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Now using (iv) we obtain

h' |ul h' |ul
1 "y o .l ; ’ "my . 1
23 ‘S [{’ (u,h') §’ uv)ldudv g S S lru(u,h) rn(u,h')[dudv
h 0 h 0
h' |ul
+f§"3 S [rn(u,h“)-rn(u,v)ldudv
h
h' |u]
+Q1-.S S [r (u,v) - € (u,v)|dudv
h 0
<d et S UPEZ L) 2
1
2
(2.5) < (2]u] +-(4%‘ﬁ—)sz

Now from (2.2), (2.4), (2.5), we see that

1
IS\ r (u,h')du t< (Zl I+(£l ’) )& +2(.!.££l_)2 82
0
< lol + Lul () o ul® (37 ¢
{c.6)
<Llal® +1ulF (7 ulF 3F1E L sinee Jul<
(2.6) < lul%[z_’_(l)% +(é)%]€2
- 4 ]
Therefore, for all u, -1<u< 1, wehave (since §(u,v) is of

class Cl) )
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1 1 1
(2.7) | €(u,n") - €(0,h")| < |u|?[2 + (f)a + (32%)2 ]g‘2
1 1 1
Hence for |u|? < IR s =62 , or
2 —\2
[2+(4) +(2) Je
1
(2.8) |uf < ; 7 =6
L3, 4.2 2
[2+(7+()* ] e
we obtain
(2.9) | €(u,h'") - £(0,h")] < &
Now combining (2.9) with (iii), we get
(2.10) |z(u,h") - z(0,h")| < |z(u,h") - E(u,h")] + | €&(u,h") - £|0,h")]

+|€(0,h") - z(0,h")|

<eg+¢e+¢e =3¢
Finally, from (2.1) and (2.10) we conclude that for [u| < 6 and

p2 N
(2.11) | z(0, ") - zp(u,h“)] < |2(0,h") - z(u,h")| + |z(u,h') - zp(u,h”)[

< 3g +&=4c¢
Next, let p > N be fixed. Since Zp € I—IZ(Q’) we have

zpv € PZ(Q')’ and furthermore zpv € PZ(Qh) on the strip Qh of

height 2h. Thus there is a sequence {Cm(u,v)} of functions of

class Cl(Qh) such that

2.12 - — 0 — ©
{ ) “ fm ZpV“ Pz (Qh) as m
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2
We may assume that this norm is < &  for all m.

h”
. 2 .
Let Gm(u) = g [Cm(u,v)l dv . Then Gm(u) is of class
0
C1 on the interval [-1< u< 1]. We may apply the mean value
u

theorem to gGm(t)dt on the interval [0 < u< &8]. Thus there is

0
anumber u , 0<u < 8, such that
m - m~
) 0 0
(2.13) XG (t)dt-yG (t)dt = 6G (u )=5G (t)dt )
m m m m m
0 0 0
where u depends upon m . We have
6 h” 6 hH 6 h”
Y e} < ([ Pl § s 1
< - 2
{ S |t (e.v)| avat) * < { ) len A | } + { [zp |
0 0 0 0 M 0 0
< z +K )
6 hll
k] R 2 2
SO S Ifm(t,v)l dvdt < 82 +2eK +K . Thus
0 0
6 h" 0
2 2 Py ¥ 2 *
£ +2eK +K > [¢ {t,v)|"dvdt =\ G_(t)dt
. m m
0 0 0
= 0
Gm(um)
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and hence

hll
2 2 2
_ ‘ 2 g +2eK+K (g +K)
2. 14) | e, 1%y < > e :
0

Now the sequence of numbers {um} is bounded, so there

is a subsequence {um } which converges to a number Uy
i
0< u < 6. Rename this subsequence {um} and assume that

< , - < .
u <, for every m, u fuo and Ium u0| 1/m. (There

is no loss of generality here because of the nature of the proof which

follows) We have
h” h“
* 2 1%, " 2 13
@5 [z wpnlad s { | 2 wpv - g e wlfed
0 v 0 v
h”
. 2 1
SRNHNCRUER IR
0
h'l )
SO NENCIIS b
0

Let us examine the second integral on the right-hand side.
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u

P h'' 0
' 2 13 o 2 13
{S Ifm(uo,v) - fm(um,v)] dv}~2 5{8 | lS ?m (u,v)du] dv}
u
0 0 u
m
nt Yo
: 5 1
<{ S S ¢ |“dudv}?®
=1 ‘ m
0 u v
m
n't o
. ; ) 1
5{8 S | ¢ -z I dudv}‘2
u vu
0 u
m
h' o
' " 2 1
+{S S ]z | dudv}2
N ) Pou
0 u
m
n o
f_{S S If -z l dudvj;La +{S S[z [dudv}%
' C‘) My Pyu O ' Pyu
h urn
Since ¢ —=z in the P_. norm, there exists an M., such
m P, 2 1
2 1 2
that m > M, implies {YYIC -z |“dudv}?® < £°/6, and
' é Ty Pou
h

by the absolute continuity of the integral (and the fact that u | uo)

there is an M2 such that m > MZ implies

hl!

),
0 u

o

' 2 3 2

S | z |“dudv}?< £°/6. Thus for mZmax[Ml,Mz] we have
Py

m
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hrl
(2.17) { g |§m(uo,v) - gm(um,v)lzdv}i < e;2/3
0

Now examine the first integral on the right-hand side of

(2.15). First,we know that fm(u,v) — Zp (u,v) almost everywhere
\%

on Qh. Let EC Qh be the exceptional set. Then measure of
(E) =u(E)=0, and Qh =EVYB, BNE-=(@, Then for almost all

U e [-1,1], the set I_ = { (G,v): 0< v< Zh} has intersection with

u
B theset B_ =1 "B, and [B I > 0 where ] . [ denotes one-
u u u
dimensional Lebesgue measure. In fact, for almostall u, |B [ = 2h.
u

Assume first that u = u, is one of these points. Then lBu I =2h >0
0
and § (u_,v) -z (u_,v) for almostall v € [0,2h]. Therefore,
m 0 p O
v
2
F (v) = [z (uo)v) -¢ (u )V)l - 0
m P m 0
v
almost everywhere on [O) 2h] as m — «. Then we know that
Fm(v) — 0 almost uniformly on [0,2h]. That is, for every n >0
there exists a measurable set H C Ly = [0,2h] such that EIZh - H| < 7
and lim F_(v) = 0 uniformly on H. Let us write - H= IZh - H.
m—o0
Then lim S F (v)dv = 0. Thus there is a number M3 such that
m— ' m

m > M3 implies

" 2 ’ 2. 1% 2

2 - - _ 2 <

(2.18) {S Fm(v)dv} {S lzp (uo,v) §m(uo,v)l dv} £ /6 .
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Next,
1
‘ 2. 4 e 2 3
{jlzp (uO,V) - fm(uopv)l dv} :{S . lzp (uo,v) - fm(uo,v)[ dvdu}
g v 0 -H v
1.
_<_{S Slz (uo,v)-z u, v)| dv du} 2
O -H v \"2
1
(2.19) g g (w,v) - & (u, v)| dvdu}a
0 -H v

+1

OQ/\JH

Sm l §_(a,v) - §m(u0,v)lzdvdu}%
H

Examining the first integral on the right we see that

lv
{y flzp (u07V)- z (u v)| dvdu}2~ {XS\ [S (U9V)du]2dvdu}%
o -H "

0 -H u
1 Ug
2 ' o 2 1

= {S S § z dul dvdu + S S j S Zp du] dv du}z

0 -H u ug -H u va

uo uO 1 u

3 - A 2 ‘ > _é_ﬂ
<q [\ |z | duldvdu + [\ ]z | duldvdu}
) Pou Yoo Poy
0 -H u ug -H ug
Yo Y0 1 1
. e a : N

<{ S 3[5 | z l du]dv du +5 g S | lzdu]dvdu}2

b 0 Py g Pyu

%o Yo
u, )
‘ g' 2 Y i .
< - 1
(2.20) "‘{uO ) lvauI dudv + (1 uo) ‘ 5 lz ladudv}a
-H 0 -H u Pou

0
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2
Now since zp € H (Q') there is a number 4 > 0 such that if
2

A
then the whole right-hand side of (2.20) is < — .

l'Hl <" 18

19
By the same steps as in (2.20),

1
? R 2 %
(2.21) { S S |§m(u,v) - §m(u0,v)l dvdu}
0 -H
%o 1
» 3 Z "y ) 2 _é_
< {uo LS ‘S lfm | “dudv + (1 - uo) lS ‘S lfm [“dudvf? .
-HO v -H u "
0
But since { fm} converges in the PZ. (Qh) norm to z and since
A%

the PZ(Qh) norm of z is finite, it follows that the PZ(Qh) norm

Py

of fm is finite for each m and, infact, uniformly bounded for all

m. Therefore, there is a number nz > 0 such that if ]—Hl < nz
2

A
then the whole right-hand side of (2.21) is < ITh

Finally, by the convergence of the sequence {{’m} in norm

to z , there is a number M4 such that m > M4 implies
Py
1
I 5 3
s - ) < - <
(2.22) {‘S \S lzp (u,v) fm(u v dvdu} < | zp rm“P Q)
0 -H v \4 2" h

Now let nzmin[nl,nz], M=max[Ml,M2,M3,M4]. Then

there is a subset H C IZh’ l-H[ < 7n, suchthat m >M implies
> 2 1% ez ESZ &:2' 32
- 2 ¢ = =
(2.23) {5 Izp (uo,v) {gn(uo,v)l dv} 18 +18 +18 A

-H v
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Combining this with (2.22) we obtain

h”
(2.24) {3 lzp (uo,v) - fm(uo,v)[zdv}z
0 \%
: 2
< {5 Izpv(uo,v) - fm(uo,v)] dv
-H

-

12 1%
+lglzp (uo,v) - Cm(uo,v)_l dv}

We now combine (2.14), (2.15), (2.17), (2.24) to get that for. m > M

h”

" 2 1L & & e +K
(2.25) {S Iz (uo,v)l dv}a < = +—§-+ T '

, P 52

0 v

Now suppose that u = U is not one of the points for which

[Bu [ = 2h. Then we may choose a point u, 8o close to U
0
<
u, < ugs that
h!l u
S
(2.26) { S S |z |“dudvi® <—=
. . o) 6
0 u vu
1

We must show that (2.17) holds now. Since umf Uy for m

sufficiently large, say, m > M', we have u, < u < u_, and so
4 g y - 1 m 0
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h' um
£
0

u

2
1
|2du dv}2 < % . The rest of the inequality (2.16)

: [z
Py
1

holds now with g replaced by u Therefore, (2.17) holds with

1

We note that if u, is replaced by u, in

u, replaced by uy- 0 1

0

(2.24), the inequality still holds except that we may have to choose

H differently. Further, (2.14) does not depend upon ug at all.

Therefore, replacing U by u, in (2.25) we obtain

h'l 2 3

(2.27) { Slz f(u,,v)[zdv} <& L2 X +1K
! P, J 3 3 52
0

where

for either j=0 or j=1. We now replace uj by U,

u, is whichever point u, or u, yields (2.27). We point out that

u, depends upon p. From (2.27) we have

hll
(2.28) ]zp(uo,h”) - zp(uO,O)g = [ls zpv(uo,v)dv]
0
},}vll
< ‘S Izp (uo,v)!dv
0 \%
h‘!l
<~NhT S |2 (ag.v)|“av}?
2Ry
2 2
€ + K13
5\/"}17{%+%+g6% }2
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Before proceeding further, we make the following observa-
tions. Let {’p(u,v) = zp(u,v + 5p) where 0 is a positive constant.
Then the vector Cp(u,v) is continuous for v =0, and the values
fp(u, 0) lie on a curve Mp whose distance from the manifold
can be made arbitrarily small if 6 is chosen sufficiently small.
Now as 5p —- 0, fp(u,v) — zp(u,v), so we may prove the lemma
by writing zp imstead of fp and 0)7[ instead of Mp. Note that
with this convention, zp(u,v) has continuous boundary values on the

line v =0. Therefore, zp(uO,O) lies on 772 .

Hence by the triangle inequality and (2.28) we have

(2.29) p‘m [zp(uo,h")]_<_ lzp(uo,h") - zp(uO,O)[ + p‘m [zp(uO,O)]

From (2.11) we have for p > N, since [uol <9,
1 - it <
izp(uo,h ) - z(0,h )] 4¢

By the triangle inequality,

(2.30) p'm [2(0,h")] < |z(0,h") - zp(uo,h“)l + p?n [zp(uo,h”)]
2 K13
< e +NET {451
62

and the right-hand side does not depend upon p.

Now we recall that
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, f=h'-h, h"=h+i(h'-h), h< e,

The second term on the right-hand side of (2.30) yields

1 2 ,
2.31) VET{LE s EEE L. 2—§—W+<e+x)s[2+(§)5+%ﬁ]~/ﬁ'}

{577 4 e v metenEn 5 (BT 5 ()

ﬁ{%es/zi- (8+K)€[28% +e/2 +NB]} .

Therefore, p, [2(0,h')] can be made uniformly small. Since
(0,h'") was merely a convenient point on the line v = h', we con-
clude that the same estimate holds for any point (u,h'), - < u< +oo,

This proves the lemma.

Corollary 2.2.1. Lemma 2.2 is true if we assume the

weaker condition that zp € PS(Q')'

2
Proof. The only place in which zp € H (Q') is used is to
obtain relation (2.8); namely, there exists a number u, such that

2
2
lzp(uo,h“) - zp(uO,O)l <N h”{ 38 +

g + K13
T 1% =R
62

This relation is used in (2.29) to obtain

pm [Zp(uo’h”)] <R
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Now since zp lies on the manifold ah'l , there is a number d,
1"
0< d< % , such that pm [zp(uo, d)] < €, where d depends upon

. Let D=Q! ,. Then letti ,v) = (2 % v),
P e , Qd/Z Then letting §’p(u v) (zp én)(u v), where

<15n is a mollifier and 7 1is sufficiently small, "§p € Cw(B), and

2
hence §’p € H (D), and we have

lzp(u,v) - §p(u,v)l <€ for all (u,v) € D

Now we may repeat the reasoning from (2.12) to (2.28),

except that all integrals involved with respect to v have the form

hll h!l

v

S (...)dv instead of (...)dv. Then we conclude that there is

\Y

d/2 0

a number u0 such that

lcp(uo,h“) - cp(uo,d){ <R

Therefore,
(2.28") ]zp(uo,h“) - zp(uo,d)l < lzp(uo,h“) - rp(uo,h“)[
+ lgp(uonh”) - rp(uos d)[
+ ]g’p(uo,d) - zp(uo,d)[
< 2& +R
Finally,
(2.29") pa)n [zp(uo,h”)]_<_ Izp(uo,h”) - zp(uo,d)l + p;hl [zp(uo,d)]

< 2e+R+e=3e+R
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From here we may repeat the reasoning from (2.28) to (2.31) which
e
gives the conclusion that z(Q ) lies on 77], . This proves the

corollary.

Corollary 2.2.2. Lemma 2.2 remains true under the

weakened conditions:
(1) The boundaries of the z are on manifolds M ,
p p
where M _ tends to a continuous manifold m in the sense that the
p
greatest distance from points on Mp to points on m tends to 0
as p > «;

(2) z € P{Q")
P 2

Proof. We must show that, under the remaining assump-
tions of the lemma, the relation

PMP[ZP(H,V)] —- 0 as v—20

implies

o [z(u,v)] = O as v—>0

Let g(Mp, '}n) be the greatest distance from any point of

Mp to €m . By the triangle inequality we have

o, [z(w,v)]< oy [2(u,v)] + g(Mpm s

m P

and hence

v} < 1 )
pyy a0, ] < lim ol v)]
p—™*® P
Therefore it is sufficient to investigate P [z(u,V)]. Mp plays
p

the role of m in the lemma. Relation (2.31) shows that the bound
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on pM [z(u,v)] is independent of p. Therefore, the same bound
b

holds for p_ [z(u,v)]. But this bound can be made arbitrarily small,

uniformly in h'. This completes the proof.
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3. Some Lemmas Concerning Quasi-
conformal Representations
of Surfaces

In this section we shall define A-admissible vectors for our
problem and then show that each one of these may be replaced by a
vector with a quasi-conformal representation which is again A-
admissible, and such that the new vector does not increase the
integral IO.

Definition 3.1. A vector 2z defined on 6 is called

A-admissible if

(i) z € P)(Q) ;

(ii); z(Q'P) lies on a manifold whose greatest distance
from the torus ( is < d/4, d=dist[H,T];
(iii) 2(Q") links H ;

(iv) I.(z,Q)< 4+,

of
We now state some definitions and a representation theorem
from surface area theory. These may be found in Cesari [9, pp. 472-
486; 8, pp. 266-271].
Let S:z=2z(u,v), (u,v)e 6, be a continuous surface
(vector, mapping). For each point z_ € E3 which is in the graph

0

of S, we denote by

S_l(zo) ={w = (u,v) € Q: z(w) = ZO}
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The set Snl(z), z € [S] = graph of S, isa closed subset of Q,
and hence its components <Y are subcontinua of Q (possibly single
points of 6). Let us denote by G the collection of all continua
Y € 6 which are components of at least one set 3 (z). The col-
lection G has the following properties:
(i) each point w € Q belongs to one and only one con-

tinuum v of G ;

(ii) G 1is the collection of maximal continua of 6 on
which the vector 2z = z(w) 1is constant ;

(iii) the collection G 1is an upper semi-continuous de-
composition of Q.

Definition 3.2. A surface S:2z =z(w), we€ 6, is called

2
a base surface if for any continuum <Y € G the open set E - v is

connected.

Definition 3.3. A surface S:z = z(w), WE 6, is called

non-degenerate if

(i) for any continuum <Y € G the open set QO -7 N QO
is connected ;
(ii) v O Q* for some <y € G implies 7 =Q.
The property in the definition of base surface and the two

properties in the definition of non-degenerate surface are invariant

under Fré&chet equivalence.
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Definition 3.4. A representation S: z = z(w), w € 6,

is called quasi-conformal if z € P'Z’(a) and z € P’Z(Q), and if

E=G, F=0 almost every where in Q, where
3, 3, 3 i
E=2 z (w), G=2 z (w), F=2 z (w)z" (w) ,
. u : v . u v

i=1 i=1 i=1

2(w) = (& (w), 2" (w), 2> (w)).

Lemma 3.1. (C. B. Morrey [18]; L. Cesari [9, p. 484])
Every non-degenerate surface S with finite Lebesgue area has
a quasi-conformal representation S: z = z(w), w € Q. For any

representation of this kind we have

2 %)
Area (S) =§lJ|dw = WEG - F dw = é.j(E,:l—G) = 1+ D(z, Q).
Q Q Q
Let z € P'Z'(a), let S:z =2z(w) be a base surface, and
let G = {g} be the upper semicontinuous collection of maximal con-
tinua on which z(w) is constant. Let {g} " be the collection of all

those g € G suchthat g N Q # . Finally, let

{w eazweg, ge{g}*} .

F =

Lemma 3.2. [4, p. 907]. F is closed.

Let H=Q- F. Since Q CF and ©=Q+Q", then
H=Q - Q—F-, and therefore H is open in the plane. Let { @ }

als
5

be its (open) components, and denote by a the boundary of a,.

Then there are finitely many or countably many a.. and each

b3

3
p€a, belongs to a continuum: g € {g} .
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Lemma 3.3. [4, p. 907]. Each a. is simply connected.

Lemma 3.4. [4, p. 919] Let n be any positive integer.

1
Then there exist at most finitely many @ such that diam{z(qi)}z o

Now let z be an A-admissible base surface. Then by
Lemma 3.4 there are finitely many components « , i=1, 2, ..., N,
i
. 3d
such that dlam{z(ai)} > 7 (Note that there must be at least one

such ai, or else z would not be A-admissible.)

3d

Lemma 3.5. If diam{z(aj)} < 2 then the intersection

number of z(aj) with H is 0.

Proof. A necessary condition that z(a,) have a non-zero
J

intersection number with H is that some point of z(ea.,) touch H.
J

But

diam{z(aj)} = diam{z(&j)} < %Lg ,

e
and since «.
J

mQ:,::: ¢9

o

s £
dis’c[z(arj ~NQ), ]<

Thus no point of z(a@,) can touch H, and the intersection

number is 0,
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Now we separate {ai}, i=1,2, ..., N, intotwo

mutually exclusive subcollections Q = {ai'ﬁ}, s=1, ..., K,

s
and B = {a;'?}, r=1,..., L L+K=N. The collection (L
T

is defined in the following way. Let P0 be the center of gravity

of Z_ ,  let II(H) be the plane containing the circle H, and let

II' be the (unique) plane passing through P through the center

0’

h0 of H, and perpendicular to II(H). Then a. € a if and only

if for any plane Il passing through PO and perpendicular to II'

we have

I~ z(a;") 4 g

It is possible that B =@, but a # ¢ since z is
A-admissible.

Lemma 3.6. The intersection number of z(a'' ) with H
~emina J.c¢ i
r

is 0 forall o ¢ § .
r

Proof. Since a!' € B there is a plane II satisfying
Lrool i |

r
%
the above conditions with II N z(a!') =@ . We have
r
. . | d
maximum dlSt[Z(Q/; ), T] < max dist[z(Q ), T] < i

T
and d was assumedismall.relative to the diameter of T . Therefore,

z(afi'q‘) is not linked with H and so the intersection number of
r

z(a/i”;) with H is 0.
r
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By Lemmas 3.5 and 3. 6, and by the hypothesis on z,
b3 k
linking number{ z(Q )gH} = 2 intersection number(z(afi’ ), H) 7{ 0 .
s=1 s

Thus for one of the ! , callit « the intersection number of
1

S

1’
z(a/l) with H is # 0. Furthermore, z(a?) "winds around the
hole of the torus' since for any plane II satisfying the conditions
on page 81, II m z(a?) 4.

We mention also the well-known fact that since all is a

9,
s

bounded, open, connected, simply connected set in the plane, a{

is closed and connected.
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We shall now describe a process for cutting off the ''pinches'

from S:z=z(w), wWeE Q, leaving an A-admissible surface

S:z = ;(w), W € 6, which is non-degenerate. Such a surface S

always has a quasi-conformal representation (Lemma 3.1).

— D —
The complement of @, in Q, (o (al), is open in Q.

1

Thus C(;l) = v Bi’ 'Bi open in 6, I a finite or countable index
i€I P sk b3 st
set. We notice that Bi - ., and moreover B, C g, € {gi} .
i i

Therefore, z is constanton B, C g, .
i i

Now we define a vector z(w), w € 5, as follows:

z(w) , W € «a
(3.1) z(w) =)
Z(Bi)’ w € B

Let I_ ={(u,v):u=10, 0<v< 1} , 4-€[0,1]. Thatis,
u

11.1 is the intersection of the line L. :u =14 with 6 Let
u

o, -

F_=1. na., a closed linear set. Then 6__ NF_=¢, and
a u 1 u V)

Iﬁ ~ C (Z‘tl) , an open linear set , and let

I_ = 8_ “ F.. The set 8_ may be written as
u 1 ol u

@:'i: “ Ji, Ji disjoint open (intervals) components of @ﬁ’ I a

iel
finite or countable index set. F_ may be writtenas F_ = D,
a vl A
Ae A
D?t disjoint (closed) components of F_. We note that z(w) =
T

constant = < for all w € Ji; for if J, contains pointsin S, and
i i

3

B.. i#]j, it must containa point of B, (since B.,, B, are com-
i i

si¢

1

ponents), and since B, C « it also contains a point of @ a
i

l’
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contradiction.

We recall that z € Pg(a), and therefore 2z is equivalent

to a function z, € Pé(Q). Since z 1is continuous, we may take

— 1 Pa) ! A
z =z € PZ(Q) and z € PZ(Q) [2, p. 181].

Lemma 3.7. If z is absolutely continuous on the segment

I_:[u=1u, 0< v< 1], then z is absolutely continuous on I_.
- - vt

Similarly, Zz is absolutely continuous on I_.
v

Proof. Let & >0 Dbe given. Then there exists a number

0 > 0 such that for every finite collection {(vi_l,vi)} , i=1,2, ..., N,
< < < < ... < , - ing i i

VoS VSV, < vy s VN of non-overlapping intervals with

N N

2 [v, -V, l < 0 it follows that X2 ]z(ﬁ,v) - z(4, v, )l < &. For

=] * i-1 i=1 i-1

brevity we shall suppress U in the argument of z, U being fixed

throughout.
Case l. v., v, € F_. Then z(v.))=12z(v.), z(v. ,) =2z, .),
—_— i i-1 1 i i i-1 -1
and hence lz(vi—l) - z(vi)[ = [z(vi_l) - Z(Vi)'l'

- Case 2. vis Vi € @ﬁ' If both are in Bk for some Kk,

then lE(Vi) - E(vi_l)l = lck - ckl =0< lZ(Vi) - Z(Vi-l)l' If

v, € Bk’ v, €J., ¥ #s. Let

1_16 BQ’ then vi € Jr, vi_1

J =(a ,b), J ={(a ,b ). Then
r r r s s s

v.< b <a < v, 5
i s— r i

and b e€fB., a € B . Therefore,
s { r
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Case 3. Vi € @ﬁ’ Vi-l € Fﬁ Then vi € Jr Bk for

some r,k, and z(v. ,)=z(. .). Welet J =( , b ), so
i-1 i-1 T r T

v

. <a <v,<b, and a € B,. Thus
i-1 r i r r "k

la, - vl 2 lvi—vi_ll

For v, € Fﬁ’ Vil € 0ﬁ’ the analogous result holds.

Now combining cases 1, 2, 3, we obtain

N Nl NZ
Z |zv)-zZ(v, )< Z Jzlv. N-zlv, )+ 2 |z, ) -z, )
i=1 ! i-1 i=1 i-1 1 i=1 12 2
1 2
N3
+ 2 lz(a, ) - z(v, )l
i,=1 '3 '3

By rearranging and renaming on the right-hand side, we obtain a sum

of the form

N
1y - 1 ] i
‘Z lz(vi) z(vi_l)l ) where {(vi_l, Vi)}
i=1
N
is a collection of non-overlapping intervals with X [vi - v! 1[ <9,
5=
i=1

Thus the right-hand side is < &, and this proves the absolute con-

The proof is the same for I_.

tinuity of z on I_.
a v

. N,
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Lemma 3.8. z € PZ(Q)'

Proof. Q = '51 v C(‘&'l). Let w € 'CTI; then z(w) = z(w),

so IE(W)[Z = lz(w)lz. Next let w € C(‘&'l). By our cutting process,

z(w) is a point of z(Q'), and lz(Q'F)[ is uniformly bounded.
2 —
Therefore, |z(w)|  is uniformly bounded on C (afl), and hence

Z € LZ(Q)'

By Lemma 3.7, Z s Zv exist a.e. in Q. We must show

that each is in L2 (Q). Let Wy = (uo, vo) be a point at which Z,

and zu are both defined.

Case 1. Assume W € @). Then z(w)=3z(w) ina

neighborhood of w Therefore, Eu(wo) = zu(wo).

0
Case 2. Assume W, € B. for some i. Then Z(w) = c,
—_— i

in a neighborhood of w Therefore, 'z"u(wo) = 0.

o
Case 3. Assume w5 6,3: Then E(wo) = z(wO) =c..
(i) I (uy+h, vy) € B, then
['z'(uO +h,v0) - 'z'(uo,vo)l = |ci - Cil = 0.
(ii) If (uo +h,v0) € Ei’ then Z(uo +h,v0) = z(u0 +h,v0)
and hence
l'z—(uo +h,v0) - E(uo,vo)l = lz(uo +h,v0) - z(uo,vo)] .

(iii) Let (u0 +h,v0) € Bj, j#i, andassume h > 0.

Now L B, =1 , L :v=v is an open linear set,
Yo i v v

0 0 0

and (uo + h,vo) belongs to one of its components, say Jl, an
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open interval. Let (uo + thO) be the left-hand endpoint of JI;

< < ¢
so 0 h1 h. Then (u0+h1’V0)€Bj’ SO

lE(uO +h,v0) - E(uo,vo)l = ['z"(uo + h,vo) - z(uo,vo)[
< [z(uo,vo) - z(u0 +h1,V0)I + [z(u0 +h1,V0) - Z(uo +h,v0)f
< [z(uo,vo) - z(uo +h1,v0)l + lz(u0 -i-hl,vo) - z(u0 +h1,v0)l
< [z(uo,vo) - z(u.o +h1,vo)[ )

and h1 — 0 as h — 0. Moreover, since 0< h1 <h,
Iz(uo +h,vo) - z(uo,vo)l g ]z(uo +h1,vo) - z(uo,vo)[

h - hl

The analogous argument holds for h < 0.

Now combining cases 1,2,3, we see that the absolute values
of the difference quotients for z are bounded, point by point, by the
absolute values of the difference quotients for z. Since the derivatives

are known to exist almosteverywhere in Q, we have that a.e. in Q

7] <z o) . 17 ] < |a )]

Since z ,z € L_(Q), soare Z , Z . Therefore, we conclude
u v 2 u v

that Z € PZ(Q)’ and moreover, z € Pé(Q).



88

Corollary 3.8.1. Z € P'é(a) .

Proof. z(w) was continuous on Q, and so we may write

+h, v + k) - z(u, +h, VO)[

[ Z(u

0

+ k) - Z(uo,vo)l < I'z'(uo + h, Yo

0 0

+ l'z"(u0 + h, VO) - Z(uo, VO)[

and repeat cases 1,2,3 1in the proof of the Lemma 3.8. to conclude

that the right-hand side approaches 0 as (h,k) — 0. Therefore,

——

Z is continuous, and therefore, Z € P’é(Q).

Therefore, we have shown that for any A-admissible vector

z which represents a base surface S, we may choose a vector z

which is also A-admissible and such that the surface S : 2z = z(w)

is non-degenerate. Moreover, since [3[ =0 forall wg 671,

J being the Jacobian vector for 2z, and since

Io(f,Q) <M § lJl , we see that

Q
I (Z,Q) < %(Z,Q), and [S] C [S], where [S] denotes the point set

of the surface S. Since S is non-degenerate, and since it has finite
Lebesgue area, it has a quasi-conformal representation (Lemma 3.1)
¢ which is again an A-admissible vector. By the invariance of

IO under change of representation, we have Io(ng) = IO(E,Q) < IO(Z,Q).

Lemma 3.9. [8, p. 271] Let S:z=1z{w), wE€ Q, bea

surface of class P’Z' (6). Then there is a base surface S, :z = zo(w) s

0
(w) € PE(E), and

w € Q, such that 9S8 = BSOg [SO] C [s]. Z4

Io(zo, Q) < Io(z, Q).
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We collect the main results of this section.

Theorem 3.1. Let z = z(w), W€ 6, be an A-admissible

vector. Then there exists an A-admissible vector z = z(w), w € 6,

such that IO(E,Q)_<_ I (z,Q), [2] C [z], and Z(w) is quasi-conformal,

0
i.e., E:E, E:o, a.e. in Q.
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4. Admissible Vectors and Minimizing
Sequences

Definition 4.1. A vector z = z(w), w € Q, is admissible

if
() z € PHQ) ;
(ii) z(Q*) lies on the torus ¢
(i) z(Q") links H ;
(iv) IO(Z,Q) < 4
Let
(4.1) L = inf IO(Z,Q) ’

where the infimum is taken over the class of admissible vectors.
Our variational problem is to show that there is an admissible vector
z such that IO(Z,Q) = L.

Definition 4.2. A sequence of vectors {zp} is called an

admissible sequence if each zp satisfies the conditions of Definition

4.1, except that zp(Qm) is not necessarily on Z~ , but on a manifold

m which approaches T as p — © in the sense that the greatest
P

distance of points of '}')flp from { tendsto 0 asc p— .
Let

(4.2) 0 = inf (lim inf IO(Z,Q)) ;

p-—POO

where the infimum is over all admissible sequences.
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Definition 4.3. An admissible sequence {zp} for which

Io(zp,Q) — 0 1is called a generalized minimizing sequence.
Remarks.
(1) Obviously 6 < L .
(2) We assume, as usual, that there is at least one
admissible vector 2z with IO(Z,Q) < 40,
Lemma 4.1. Every generalized minimizing sequence (g.m.s.)
{Zp} may be replaced by a g.m.s. {‘z‘p} such that each —Z—p is
continuous on 6

Proof. For each p we choose a concentric square

p P p P p

sie
so small that the (continuous) curve zp(Qp) links H and lies at

Q :[0<7 <u<l-7;7 <v<1l-7], where Tp is chosen

a distance from ’}’np (and hence from T) goingto 0 as p — .
This is possible since {zp} isa g.m.s. By a conformal mapping
u = up(x,y), v = vp(x,y), we may map Qp onto Q and obtain a
vector

'z'p(x, y) = zp(up(x, V), vp(xs y))

defined on Q and of class P'Z' (5). The integral IO is known to

be independent of representation, and so I (E’p,Q) = Io(zp,Qp) <1

(zp,Q).

0 0

But Io(zp,Q) — 0, and hence lim IO(ZP,Q) < 8. On the other

p—™®

hand, {Ep} is an admissible sequence, so lim Io(z ,Q) > 0,
p—™®

Thus lim I (z ,Q)= 0. Therefore, we may choose the sequence

p =

of
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r— -—
2 such that I _(z ,Q) — 0.
1 p} 0%,

Let us now introduce the integral [21, p. 571]

(4.3) 1(z,G) = S S f(z,p,q)dudv |
G

1 2 3 1 2
h = ) ) s = ? s s
where p (Zu z, zu) q (zV z_ zv) and

2 M+m ¢ -G .2 .
(4.4) £(z,p,Q) = F (2,0) + () [(EZG) yF], >0,

2 2
E = [pl , G = lql ;, F =peq, and we note that J =p X q, where
'""e'" denotes scalar product and "X'" denotes vector product.
Then f(z,p,q) is as smooth as F(z,J) = F(z,p X q), and

moreover
2 M ‘
(4.5) -rzﬁ(lpl +lc“zlz)5 f(zsp,q)g“(lplzﬁ‘lqlz’)

To see that {(4.5) holds, we recall that fp X q,[2 = [plzlqlz- (p-q)z,
and by assumption,
F(z,J) = F(z,p X q) < M[J| = M[p X q]

Then we have

2 2 Mtm 2 E-G.2 2
f(z,p Xa) = F (2, p X ) + (F57) [5) +F]

2 2
< Ml xq)? + Ml el g

2 ,
@lpl®lal® + 1p1* - 2pl%la]® + lal®

IA

2 > 2
T el +1al%
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This demonstrates half of (4-5): and the verification for

the other half ig similar, As a consequence we see that
M
(4. 6) = D(z,G) < 1(z,G) £ 5 D(z,G)

and if z 1is quasi-conformal,

I(z,G) = IO(Z’G)

The basic idea behind the introduction of the integral I is

that we must always have

(4.7) IO(Z,G)S I(z, G)

in addition to (4.6). Moreover, we see that
2 E-G2 2 2 ; E-G?  _2
EG-F +{(55) +F} =[5]" +{) +F7}
- (EG)°
= (=5 ,
and so
2 1 2 1
E-G 213 E+G 21 3
{(=5=) +¥}e= {(Z) - |32,
2 2
Hence we may loosely say that the integral I(z,G) gives
IO(z,G) plus ''the average over G of the amount z misses being
quasi-conformal.'" Furthermore, it has the feature that boundedness of
I(z,G) is equivalent to boundedness of D(z, G).
Lemma 4.2. I(z,G) is invariant with respect to conformal

change of variables.
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Proof. Let ¢(w)= €(u,v)=x(u,v)+iylu,v), w=u+iv,
be a conformal mapping of the (Jordan) domain A inthe w=1u+4iv
plane onto a (Jordan) domain B inthe x +iy plane. Write
z’(")(u,v) = z{x(u,v), y(u,v)), z € PZ'"(B). Let E, —F—, G correspond

to z, andlet E, F,G correspond to 23;?0.. Then

I(z, B)

v o 2 2 —__ 2 —_
Sj \/F (2,3 ) +(N§+m) [(E2 )+ Foldxdy

B

Y e 2 -~ 2
([ 43 )+ AL LES? 5 17 gy

B

But the integrals
yg F(z,J) , yg (E +G) , S SIJI ,
B B B
Therefore, the right-hand side of the

are known to be invariant.

expression above may be written

2 p.c 2 i
I «/FZw,Jr) o]t + (AR ES) L B e Y ey

2 2
A

= I(z;”dg.m
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Combining Lemma 4.1 and Theorem 3.1 we see that there
is a generalized minimizing sequence {zn} such that z € Pg(a),
z € P'2 (Q), and z_ is quasi-conformal.

Let F be a closed solid cylinder in E3 with the properties
that the distance from F to 7~ is a positive number 7, andif S
is any surface whose boundary has greatest distance from ¢ less
than 7/2 and whose boundary links H, then any line parallel to a
generator of F has a non-zero intersection number with S.

Since the boundary of z links H, there is a point w o€ Q°
which is mapped by z into the interior of F, and a neighborhood
Un of W whose closure is mapped into F. Among all such neigh-
borhoods Un we choose one of maximal size, in the sense that for
every line parallel to a generator of F there is a point W € UI1
which maps onto this line. The continuity of z ~assures the existence
of such an open set Un. In such a Un, there is a point ‘_N-n such
that zn(Wp) lies on the axis of F. Now by a conformal mapping of
Q onto itself we may send ;év.n onto the center PO of Q. Then
the neighborhood Un is mapped onto a neighborhood Un of PO.

Let us assume this has already been done and that z is the resulting
function. Then Zn is still quasi-conformal, and the values of
Io(zn,Q) and I(zn,Q) have remained unchanged.

Let 0 be the segmentin Q which is parallel to the v-axis,

has PO as midpoint, and has length, say, 1/8. Then a portion of
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0 is contained in our distinguished neighborhood of P If o lies

0
completely in this neighborhood, then the image zn(G) lies completely
in F. If o does notlie completely in this neighborhood, then we
make the following change. A portion of © , say (‘ans lies in Un.
We shall map Q onto itself by a diffeomorphism dn so that outside
a thin rectangular strip Rn about 0 the mapping is constant, the
segment on is stretched onto the segment ¢, and such that if
§n(\i{7) Ezn(d;l(w)), then I(fnan)< 1/n, I(zn, Rn) < 1/n. Hence
rn maps O into F, and since dn is a diffeomorphism,

Io(fn,Q) = Io(zn, Q). Therefore, we have

0< I(¢ .Q)-I{z ,Q)=1(z ;Q-R ) +I{¢ ,R )-I{z ,Q-R ) - I{z ,R )
n n n n n n n n n’n

il

1§ .R_) - 1z R )

< 1/n
Since I(zn,Q) — 0 and IO(ZnQ) — 0 , we still have I(En,Q) —- 0
and Io(fn,Q) = IO(Zn’Q) —- 0,

Therefore, replacing §n by z . Wwe have a minimizing
sequence {zn} of vectors which map ¢ into F, and which are
guastconformal except on a rectangle Rn which may be chosen so that
its width approaches 0 as n — %,

The sequence of numbers {I(zn,Q)} is bounded. By
relation (4.6) this implies that {D(zn,Q)} is bounded, and-by

[23, § 2] sois {Lz(zn,Q))':g lznlz}. Let R be a bound for
Q
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these numbers.
Recall that Q is the square with vertices (0,0), (0,1),
(1,1), (1,0). We now extend the domain of definition for all the Zn
to the square 61 with vertices (-1,-1), (-1,2), (2,2), (2,-1) by
reflection in the sides of the square 6, and then by reflection in the
sides of the four resulting squares. The new vector, which we again

call z is clearly still in class P'Z‘(al) and quasi-conformal.

Let ¢p be a Friedrichs mollifier (Section 1). Then

o
(i) ¢p € C and has compact support ]w] < p;

(ii) tﬁp >0 ;

(iii) S ¢p‘(u;V)dudv=1 ) Bo(p)-‘-{W:lWlf;P}e

BO( P)

We shall always take p < 1/8. For each n we form the

¢ 0 -mollified function

27, v) = (z %4 Mu,v) = S S z (§,n)¢ (u-§,v-n)d§ dn ,
n n p I n P
B(uyv)(m
where "z ¢ " means the vector ((zld) zz'qs z,3¢ ), and ”ZP,;
nop n'p’“np’ nip’’ n
means the vector Ly [0} 2 % @ 3 %* ¢
[S] S Zr1 5 p,zn s p’ zn Y p)

The following facts about zi are known [10, p. 14]:

(b) z= — z uniformly on Q as p—0;



(© X =z ., @) = )
n- n n n
u u v A%
P
d z -
@ A=z, Znulle—-o and |2° -2 Iy, =0 as o0,
A% A%

For each n we choose p = p(n) so small that

() “zg -z ” = €i< 1/n , ”zp -z ” = 8i< 1/n;

u uLZ v vL2

B) 2o, v) - 2z (wv)| <A/n) @ /4) .
n n

where dn/4 is the greatest distance from points of zn(Qm) to the

torus ¢, d —0 as n—%, and d < d=dist[H, 7], forall n.
n

Now we set Cn(u,v) = zz(u,v), and we consider the domain

ale
%

of Cn to be only Q. Then fn(Qa) is a continuous (in fact, Coo)
curve linking H (since it may be continuously deformed into zn(Q*)
without touching H), and the greatest distance from fn(Q*) to
approaches 0 as n —+®, Thus the new sequence {fﬂ} is an
admissible sequence. Furthermore, if p =p(n) is chosen sufficiently
small, the segment O is mapped by !’n into the closed set F

(page 96 ). We shall show that this new sequence is actually a gener-

alized minimizing sequence.

Lemma 4.3. IO(Cn,Q)-*ﬁ as n — %,
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Proof.
|1,(5_.9Q) - Iy(z Q)| = l& [F(g’ns]fg ) - Fz_,J_)]dudv]
Q n n
<1 g 0-Fapg o+ (Ipe 1 ) - Fa g )
tQ n n Q n n
(4.8) <L leg -J | +L, S‘m -z | (relation 1.1 (v))
Q n Zn b n n
< L S‘lJr -3 | + L, (1/n)d_/4) meas(Q).
¥ n n n
Q
We obtain
§2 f3 2 2
n n n
1 I u u u u
|5 -3 | = - |
¢ Tz 2 ¢3 2 3
n n n
A% A% \% v
—:lf gi - € fi 'Zizi +zn z3l
u A% v u u v \4 u
2 .3 2 3 2 .3 2
<o, 8 maa Lalel e - a2 |
u v v v Tu v u
3 3 3.2
4.9) SHE, -2 08 (8 - e e |
u u \4 v \2 u
2
vl -2 0e% vt -2 |
u u \'2 \'2 nV u
2 2 3 3 3 2
<les -l Ll [+]8) -2 |28
u u \4 u
3 3 2 2 2 3
tle, 2 Ll T+le e |z |



100

Now
’ 2 2 3 2 2 3
Vle2 -2 e p<pe? =20 el
) u u By n Ty L2 \4 L2
Q
3 3 3
(4.10) <e (g -2 0 +l= 1
n n noL n,
u u L, 5
<& (g +4+R) )
— n n
where e = max(srll, ci), page 98, and R is the bound given on
page 96 . The same inequality holds for the other three members
of (4.9). Thus
>l 1
S “*:n ] Jzn[ < 4e (e *R)
Q
Since |J| = I(Jl, %, J3)| < lJll + [le + |J3l, it follows that
(4.11) S‘]J -J | <12& (¢ +R)
¢ T7a S eENE,
Q
From (4.8) and (4.11) we obtain
(4.12) |10( £ .Q) - Io(zn,Q)l < L,(l2e)(e_+R)+ L, | 1/nMd_/4) .

and the right-hand side approaches 0 as n — %, Since

Io(zan) — 8, we have Io(fn,Q) — 0. This completes the proof.
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We let -]—*3_, E, F correspond to Z s and E, G, F to
§’n. Since zn was quasi-conformal on Q - Rn, E = E, -E =0
almost everywhere on Q - Rn (page 96). While fn need not be
quasi-conformal, as n — « fn becomes ''nmearly quasi-conformal'

as the next lemma shows.

Lemma 4. 4. I(§’n,Q)—>6 as n — 0,

Proof.
e, Q= (R0 p Mm )T EG)E 2
( n’ "" n’ 2 [ 2 ]
Q
(4.13)
8 M+m " E-G ’
< fren s BB (1524 ()}
Q Q Q
Using the fact that z is quasi-conformal on Qn:Q~ Rn
(1=-ql y |E-E+G- g
Q Q
n
(4.14)
<(1=-E1+(15-ql
Q Q
n n

We obtain successively,
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- ‘ i 2 i 2
f |E - El= S l Z e -ty |
Qn Qn
3 L. a
<z S et % - @)Y
i:lQ u nu
n
3 ) .
< Z Ifl -z I [fl +z
1=1‘Q " u "y Ty
n
(4. 14a)
3 i i i
<zl - Qg e ]
i=1 u u L2 u u L2
> P i
<z el - wzfd g
i=1 u u LZ, u LZ

3
< X €& (& +2R) =3¢ (¢ +2R) ,
—131 n n n n

€ R as before. Similarly,
ok

(4. 14b) § |G- G| <3¢ _(e_+2R)
Qn

Next,



& 3 , .
Ciel=(ir-Flcz (el e a2l |
p i=1 TR u v
Qn Qn Qn
3 i 1 1 i i i
EE R N R TN S P
i’—'lQ u u v v v u
3 i i i i i 1
(.15 < 200 a1 [0, ce 1 1
=1 5 A v
n n

IA

Rl P E o A ET TS - P
i=1 u u LZ“ v L2 B W L

IA
-

2 { e (¢ +R)+ & R}=3e (¢ + 2R)
i:-]. n n n n n

Combining (4.14a), (4.14b), (4.15) and substituting in (4.4),

(M;m){y l E;__Gl +§ |F|} E‘LF(M;:m){% 6en(sn+2R)+3sn(gn+gR>}
Q Q

n n

S{V(M;m{{ésn(enﬂR)}
From (4.13) we obtain
(¢ _,Q) < g F(¢ D)+ sn[é(M;’m)(en + 2R)]
(4.16) Qn

S I6 .0 ) + & [6(FIR)(e 4 2R]].
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By Lemma 4.3 and the fact that !:n —+ 0 as n-—> %, the
right-hand side of (4.16) approaches 6 as n — %, Therefore,

lim I(§n,Qn)§ 0. But Io(fn,Qn)f I(fn,Qn), so

n—-

lim I(fn,Qn) > lim Io(fn,Qn) = lim Io(fn,Qn) = 6. Thus for any

n'—-bw n—»oo n—»oo

&€ >0 we may choose n so large that
0 - < < < < 6 i
/2 I8 sQ)ISIE QIS I (5 .Q )+ £/2 +& , thatis,
(¢ ,Q)— 06 as n — o, and since meas(Q ) = meas Q,
n n n
I(¢ ,Q) =06 as n —x,
n

We collect the main results of this section.

Theorem 4.1. There exists a generalized minimizing

©0
sequence {fn} of C vectors for Io(f,Q). Furthermore,
I(fn,Q) —~ 0 as n — %, andthe segment O is mapped into the

closed set F for every n.
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5. The Existence Proof

Let {Cn} be a sequence given by Theorem 4.1. Denote

afo
e

by R the greatest distance from fn(Q ) (i.e., the greatest dis-
tance of the manifold 7’)’2 on which ¢ (Qm) lies) to Z~ Then
n n
p —0 as n — ., For the moment we fix n. Let F(K) be
n nx
2
the class of all vectors z € H (Q) having the properties
(i) 2(Q") links H ;
(ii) the greatest distance from z(Qm) to /7 is < pn;
(iii) The segment o0 (as before) is mapped by z into
the closed set F;
" 2 2 2
(iv) J(z,Q)=5 (lJz | +2|z |" +|z | )duav < K.
uu uv Vv -
Q

Then for K sufficiently large, Cn € (K).

Theorem 5.1. There exists a vector zK € \S['(K)

(K sufficiently large) such that I{z,Q) is minimized by 2z among

K
all vectors in \\Dt (K).
Proof. {zp} be a minimizing sequence for I in 3‘(K).

Then by the remark on page 96. and the definition of the

: 2 p 2 :
norm in H , page 50, the H norms of the vectors zp are uni-
formly bounded. Thus, by the Sobolev imbedding theorem, there is
a subsequence {z } which converges uniformly on Q and weakly

m
2

2
in H (Q) to a vector Zy € H (Q). For simplicity, assume

2
[pm] = [p]c Weak convergence in H (Q) implies weak convergence
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in LZ(Q) of the second derivative and strong convergence in LZ(Q)
of the first derivatives [23, pp. 99, 100]. Since J(z,Q) is lower
semi-continuous with respect to this convergence, we have

J(z,,,Q) < lim J(z ,Q)< K )
K = == =

p—®

and since I(z,Q) is lower semi-continuous,

Iz ,,Q) < lim I(zp,Q)

p—

K

Therefore, if =z behaves properly, it will be the desired minimiz-
ing function.
First, since each z links H and since zp(Q'P) is

bounded away from H, the uniform convergence of Zp toward

ale
A3

z_ on Q implies that z_(Q ) may be continuously deformed into

K

zp(Q) without touching H. Thus Z is linked.

Secondly, by the uniform convergence of zp toward Zy

on Q, given & >0 there is a number P such that p > P implies

lzp(w) - ZK(W)l < & forall w € Q. Thus

dist[zK(w),T] < dist[zp(w)9 T+ [zp(w) - zK(W)I

<p + & , all we Q
n

But & >0 was arbitrary, so dist[zK, Tl< pn.
Finally, the uniform convergence again gives the fact that
0 is mapped into the closed set F. Therefore, Zy is a minimiz-

ing function in \}f (K).
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Theorem 5.2. For each n we may choose a vector Ze
n

as above, K < K < ..., suchthat lim I{(z_ ,Q)=290.
n n+l K

n-—+o n

Proof. For each n, choose Kn sothat § € -?(Kn).
- n
(See page 105). Since Z e is a minimizing function for 1I(z,Q) in

:'f(K ), we have
n

I(z, Q)< I(§_,Q)

n

SO

The sequence {ZK } is an admissible sequence for IO,

n.

6< lim Ipfa, ,Q < lim (s ,Q)< lm I(£,Q)

n—+>x n n—=o n n~—=o

but

Lm I(§ Q)= lim I({ Q)= o.

n—* n—+
Thus

. ’ -6
lim I(zK Q)

n-—=oc n

We shall now begin the process of showing that a subsequence

of {ZK }‘ converges tc a minimizing vector for our problem.
n

Lemma 5.1. [23, p. 100] Let z € P'Z(G) and let

y (lzulz + Izvlz)dudvﬁ A(r/a)zM , 0<r<a, 0<u<l1,
B(Wo,r)

si¢

€ G, where a is the distance from w_. to G . Then

for every w 0

0
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lW -w

|
[z(wl) - z(wz)[ < N(—i‘—'é—)u , 0< [Wl - WZI <a

for every pair of points Wi W, € G such that every point of the

segment joining W and v, is at a distance > a from GI, and

-1
2

-1 1 _1-
N=pu AZ2 "H3

Lemma 5.2. [20, p. 39] Let z € P2 on a disk B(P,R)

with center P and radius R. Then there exist functions a _(r),

2

0

a (r), bn(r), n=1, 2, ..., ofclass P'Z' (and therefore of class
n
Pé) on each interval (rO,R) with 0 < ro < R, such that the series

a ao(r) %

+ 2 [a_(r)cosnf +b_(r)sinnb]
2 1 n n
n=

converges in L_(0,27) to a function Z(r,@) for each r, the

2

convergence being absolute and uniform in @ for almost every fixed

r. Moreover, the function Z(r,@) is equivalentto z, and

2 2 2 2
IE ab 0 5 2 n (an+bn)
D(z, B{(P,R)) = nS r[ +f{a' +b +——————-—}]dr .
2 ) n n 2
: 0 J::l r

Lemma 5.3. [30, pp. 103-123] Let the functions tﬁoo, qle

be given on the boundary of the disk B(P,R), and suppose that there

' 2 } 2L _ °f_ 4
a function § € H (B(P,R)) such that ¢ = ¢OO’ oy ¢10, 5v - 4’01

on the boundary. Then there exists a unique function z € HZ‘(B(Pg R))

J ¢01

is
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satisfying these boundary conditions and minimizing the integral
’ 2 2 2
, B(P, = 4 2
J(§,B(P,R)) 5 (lruul + lfuvl +[§’Vvl )du dv

B(P,R)
among all such functions. The function 2z has continuous derivatives
of all orders on the domain BO(P,R) : { w:|w- P| < R} and
satisfies the biharmonic equation

2 0 z 34z 0 z
> 5 +
ou du ov ov

o
on B (P,R). Furthermore, =z is the only function biharmonic on

BO(P,R) and satisfying the given boundary conditions.

Theorem 5.3. Denote by Q' the (open) région Q°- 0.

For each K , ZK satisfies the oondition
n
n

X
D[zK , B(wO,R)]g D[ZK aB(WO,a)] (R/a) ,

n n
(5.1)
A= < R<
2M 0<Rza
for every disk B(Wo,a) C Q'. Thus the vectors 2. are equicontinuous
n

on every closed subdomain of Q.
Proof. To prove equicontinuity assuming that relation (5.1)

is true, we note that since I(zK ,Q) =~ 0 (Theorem 5.2), there is a
n
constant C such that I(zK ,Q)< C m/2. Thus
n
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2
2 < 3 < Tl 5 <
D[zK 7B(WO a)] < D[aK Q] < 7 I[ZK Q< C
n n n
forall X, n=1, 2, ... . Then by relation (5.1)
n

D[zK ,B(WO,R)]5 D[zK ,B(wo,a)] (R/a)h < C(R/a)>L

n n

and so by Lemma (5.1) we have

lwy - w, | /2

(5.2) Iz S

(W) = 2o (w,)] < N(

n n

K

independently of Kn. But this says that the vectors Zy are

n
equicontinuous on every closed subdomain of Q'.

To prove relation (5.1) we use the minimizing property of

Zre and the relation (4.5) to see that

(5.3) smD[z, B(w,R)] < [z, . B(w,. R)]
n n

<I[¢, B(w,R)] < ZMD[{, B(wg,R)] .

where ¢§ 1is the biharmonic function on Bo(w »R) having boundary

0
0z
o¢ Kn
values f(R,e)-:an(R,@), E(R,9)=8u (R,8),
0z
o¢ Kn
-a—V(R,9 ) =575 (R,9) (Lemma 5.3).

Let (r,0) be polar coordinates with pole at w,.. By

Lemma 5.2 we have
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a(r) %
z. (r,0)= + Z [a (r)cosnf +b (r)sinnf], 0<r<a
K Z n n — i
n n=1
Ao(r) 00
(r,0) = + Z[A (r)cosnf +B (r)sinnf] , 0< r<R
2 n=1 n n - -

Since ¢ 1is biharmonic and has the same Dirichlet data as sz on

afs
b3

B (WO,R), one may easily obtain

2 n+2

A (x) = cn(r/R)n + dn(r/R)n+ , B_(r)= e (r/R)" + £ (r/R)

where ¢ , d , e , fn are constants defined by
n

n n
2 = 2 = 2 = = »
c (n + )afnL Bn Zdn Bn na
a =a (R) , B = Ra'(R) , n>0
n n n n -
and similar formulas for eI1 and f for n>0. Thus if we set
n

¥ (R) = D[zK ’B(WO’R)]

we obtain

¥ (R) < GD[ £, B(w,,R)]

R 2
K A6 * 2 -2 2. 2 2
= ! ]
C?Tgr{ > + 2 [Arl +Bn +r n(An-]-Bn)]}dr’
n=1
0
M
! { - ==
< 2C'R¥ '(R) , C =57

The last member of the inequality follows by termwise comparison.

H

E
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Thus we have

Y (R) < ARY'(R) A>1

or 0< AR¢¥'(R) - ¢ (R), which yields

1 1 1
- -= -=-1
d, A oA o 1A
RR Y ®R) =R Y'R) a R ¥ (R)
21
A

R A0 R) - 2R W (R))

v
(@)

Since ¥ (0) = 0, we have

1 1
R YR)<a By |
or
Dlz. ,Bw R)] < () /AD[z |, Bw.,a)]
n 0 - & Kn 0
R X
= (g) D[ZKn, B(wo,a)]

Note: This proof may be found in [21, p. 573].

From Theorem 5.3 and the fact that the numbers D[ZK » Q]
n

are uniformly bounded, as well as LZ[ZK ,Q], we obtain the follow-
n
ing result.
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Theorem 5.4. There exists a vector 2z € PZ(Q) such that

a subsequence {zp} of {ZK } converges weakly in PZ(Q) to
n

z and uniformly on every closed subdomain of Q' to z. More-

over, Z(Q’P) lies on the torus ¢ , z(Q’P) links H, and

I,(z,Q) < 5.

Proof. The statements about convergence follow from the

above remarks. Thus 2z is continuous on every closed subdomain

of Q', and we may take z € P'Z(Q). By the lower semicentinuity
of IO, if RC Q' is any closed subdomain,
Io(z,R)_f Li Io(z ,R)< lim I(z_,Q)= 0

)
S

The fact that Z(QI) lies on Z~ (in the sense previously defined)
follows from Corollary 2.2.2. Thus it remains to show that Z(Q*)
links H.

Let QT) be any subrectangle of Q whose boundary QTI

contains the segment 0. By [23, p. 99, Theorem 2.11(b})], zp—>z weakly on

_ on'Q . Thus
2 N

Q; , and by [23, p.,_10.'0_,1 Theorem 2.12]; ,zp—kz strongly.in.L

there is a subsequence; again called {zp} ,~ such tfhat."zp —~z a.e. (l-dimensional
)

s

measure) on Q Since 2z (0O) is contained in a closed set F

(bounded away from Z_ ), for almost all w € 0 we have z(w) € F.
On the other hand, z € P’Z(Q). Therefore, there is a point W€ O

and a line parallel to the u-coordinate axis, passing through W

such that z is continuous along this line. Letus say w, = (u_ ,v,),

0 0" 0
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and the line LO tvEv is the one in question. Since z(wo) € F,

the distance from z(wo) to 7‘ is > 0. Thus there is a point near

W say, (u ,VO), such that z(ul,vo) is at a distance > 0 from

0’ 1

/7. But z is continuous at (ul’VO)’ so there is a neighborhood,

say a square R : [uZ_S u<u,, v, < v< v3], of (u ,VO) such that

1

37 2

the distance of z(w) from 7 is >7 >0 forall we R. Butas
shown above, there is a strip S near Q" such that z(w) 1is within,
say, T/4 of ( for all w in this strip. Thus,

0< '3211 < [z(u’,v) - z(u“,v)l

!

u' u
< l y z (u,v)du[ < g] Iz (u,v)ldu ,
- u - . u
u]l ul!
u" < u' (u",v) € R, (u',v) € S. Since this holds
for all v with vzi v < V3,
V3 V3 o
3T
0< —dv < lz (u,v)ldudv< lz (u,v)ldudv
4 - u - u
11
v, v, u Q

2 S‘ (zu(u,v)lzdudv)% < (D(z,Q)}?
Q

Therefore,

0< % D(z,Q) < I(z,Q)
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We now assume for the moment that all our conditions are
satisfied on the unit disk B, and we shall prove that z is linked.
Then by a conformal mapping the result will hold for Q.

Thus, since z(B*) lies on T , there is a strip
SO : [roﬁ r<1; 0< 6 < 27] suchthat z maps every closed curve
in SO onto a curve whose distance from ¢  is less than d/4
(d = dist[H, 7" ]). Hence for w € SO it must be that z(w) does
not lie on H; in fact, the distance from z(w) to H is >§ .
Let & >0 be given, € < d/4. Then there is a number T
0< T < 1, such that the circle r = T encloses all points w
which map onto H under 2z, and such that the curve
Me $z = z(rc, ), 0< 6 <27, has its greatest distance from
7 less than &£/2. By the uniform convergence of Zp toward
z on each closed subdomain of B' (B' corresponds to Q', i.e.,

a circular arc is omitted), we may choose p so large that

lzp(re,e) - z(rs,e)l < 8/2 , 0<@ < 2rm

Thus the curve Mpg 12 =z (rs,a) is at a distance < & from Z. .
p =

Now suppose that the curve Me tz = z(rg,@ ), O <_9 < 2w,

does not link H. Then neither does the curve M

cz=2 (r ,0), 0< 8 <27
p& p E -
link H (since they can be continuously deformed into each other
without touching H). However, the curve Mp cz=12z (1,0), 0< 8 < 27,
e curve p ~ Yz

does link H, so the intersection number corresponding to the image

under z_ of the ring T < r< 1 and the circle H is different
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from 0.
Since I(z,B) >0, there is a subdomain, say,
BO:[r_<_b;0_<_9§ 21], 0< b< T such that I(z,BO)>0.

Therefore, we have for some [ >0

0<351(z,BO)< lim I(z ,B.) ,

so after extracting a subsequence we rename it {z } and we may

assume that 0< B < I(zp,BO) for all p.

1
Next, set F (0) = S lz (r,9)lzrdr. Then F (€) e L_(0,27),
P . p. P 1
and b
2m 27 1
yF (0)de =S f | (r,9)12rdrd9 < D(z ,B)< A,
p . Pr - P -
0 0 b

A = constant .

5 A

oy 2-¢- on (0,27), then we would have

Now if F (9)
p

am
SF (0)dé > A, a contradiction. Therefore, there is a set of
p

0
positive measure for which Fp(9 ) < B—A; ; we let Gp be in that
set. Then

1

2
S\[z (r, 0 )l rdr < % .
p. P =
b )

Hence for almostall r, b<r<1,
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1
blz_(r,6 ) -2 (1,0)]° =] fz (r, 0 )dr|®
p P b P J P b
r
1
< b qlz (r,0 )ldr)2
- p b
r
1
2
< b(l - r) le (r, @ )[ dr
- . Pr p
T
1
2
< (1 - r) glz (r,@ )[ r dr
- v Pr p
b
A
<q-n2
Hence for almost all r, b< r < I,
2 A
z (r,0 )-2z (1,0 ) < (1-1r)— )
2509, P pI = @-0g

and since z is continuous, this relation holds for all r in the
interval.
Therefore, the oscillation on the radial segment

Np 2 [0 =9;p; r,<rs 1] is less than &/2 if T is chosen close
enough to 1. The point zp(l, ep) is on a manifold m o’ the
greatest distance from ’)’}'zp to Z- goesto 0 as p-— %, There-
fore, the values of z_ on Np are at a distance less than & from
T if p 1is large enough. But by the inequality above, T is

independent of p, so we may rotate and obtain N = N for all suf-
p

ficiently large p.
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We now cut the ring R, : [re <r<1, 0< @ <27m]
along N to obtain a simply connected domain R’s, whose boundary
is mapped by zp onto a continuous curve at a (greatest) distance
less than & f{from Z- s and this curve is linked with H‘ since the
inter section number of zp(Re) with H 1is not zero. (There can be

no point w € N such that z (w) lies on H, since the distance of
P

z (w) from Z- is < &, while the distance from H to & is
P

> &)
We now have
I(z »R')=1(z ,B)-I{z , B-R') ,
p ¢ P p €
and
Iz , B-R')>I(z , B,)> B =0,
P e'— ""p 0 -
so that

I(Zp.- R;) < I(zp’ B) = B

Letting p — ®© we have

. e 5.
lim I(ZP,RE)__ 6-pB

p—*®
By a conformal mapping we can transform Rl’g onto B and z into
p
a vector ¢ defined on B with I(z_, R')=1I(§ ,B).
p p ¢ p

The new sequence {§’ } is an admissible sequence.
p

Hence

60< lim I(¢ ,B)= lm I{z ,1R;::)< 6 - B,
S Am aim b’ =



119
contradiction. Therefore, we conclude that z must link H.

Now by a conformal mapping, the result holds on the

square Q.

Note: The proof of linking is a variant of that in [11, pp. 216, 217].

Theorem 5. 5. Io(z,Q) =0

Proof. The vector z is notyet known to be admissible
since it is not necessarily continuous on the segment 0. Let € >0
be given. We choose a rectangle A containing © in its interior

such that K - Qo, and such that
—ZM‘D(Z,A) < g

This, of course, may aiways be done, by the absolute continuity of

the integral. The boundary values of z on A* are continuous, and
therefore there is a harmonic function h whose boundary values agree
with those of z on A*, and moreover, h 1is continuous on X

We define a new vector

hiw) , weA
z'(w) =

z{w) , weQ-A

which is now continuous on Qo, linked with H (preceding theorem),
and whose boundary lies on ? . Thatis, z' is admissible. Fur-

thermore,
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D(z', A) = D(h, A) < D(z, A) )

and all these remarks hold for any such rectangle céntained’in A.

Therefore,
o ] - - 1
< IO(Z , Q) Io(z,Q A) + IO(Z , A)
< IO(Z,Q-A) + I(z', A)
M
<I (z,Q-A) +=D(z',A)< I (z,Q-A) + ¢
-0 2 0
Thus,
6 < IO<Z: Q'A) + e

fIO(z,Q) + &

But & >0 was arbitrary, and so it must be that 06 < IO(z,Q) . By

the preceding theorem, 6 > IO(Z,Q). Therefore, IO(Z,Q) = 0.

Now it remains only to show that z 1is continuous on the
whole of Q°. We shall prove that 2z is continuous on a closed subdomain
of . Q%2 which contaihs . This is all that is necessary. We may
take for such a subdomain a large (concentric) inscribed disk B.

Lemma 5.4. [19, p. 42]. Let B be a region bounded by

a finite number of circles. Let 2z be a vector of class PZ(B),

ale
&

whose boundary values are continuous as functions on B . Suppose
also that there exists a number K > 1 such that
D(z,G) < K D(H(z,G),QG)

for every subregion G, of B, which is of class K (see [19, p. 5]),
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H(z,G) being the function harmonic on G and coinciding with =z
on G . Then z is equivalent toa function z which is continuous

on B and takes onthese boundary values continuously.

Lemma 5.5. If G 1is any Jordan region such that G c B®

ate
b

and measure (G ) = 0, then

(z,G) = lim I(zp,G)

p—®

I0
Proof. By Theorems 5.2 and 5.5 we have

(5. 4) lim I(ZP,Q) =0 =1(20Q)

p—®
We shall prove the lemma for every G C QO, and then it will be
true for every G C Bo of the prescribed type. Furthermore, if
G 1is a region such that there is a sequence of closed subregions
RCG° invading G, and.on each E, z — z uniformly, each

p

z  being continuous on R, we have (by the lower semicontinuity

f
o IO)

»R) < 1i »R) < 1 )
Io(z R) < lim Io(zp R) < lim Io(zp G)

p—’OO p‘—>00
Letting R invade G, this yields

(5.5) IO(z,G) < lim Io(zp,G)

p'(-—POO
Let & >0 be given. By relation (5.4) above, there is a

number N, such that p> N

1 implies

1
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(5. 6) - f < Iz 2 Q) - 1(2,Q) < e /3

In view of relation (5.5), there is a number N2 such that p > NZ

implies

<
IO(Z,G) Io(zp,G) + & ,

or since I (z ,G)< I(z ,G) ,
0" p = (p

(5.7) ~-& < I(zp,G) - 1.(z,QG)

0

Let G'=Q- G. Since meas G =0, I(z,Q) = I(z,G) + I(z,G'"),
and similarly for IO(Z,Q), I(zp,Q), Io(zp,Q). We now construct a

region GTI defined by

G =G’mQ' )
n n n

G;7 ={w € G;: dist‘w,G* > n} ,

-

Q. ={weQ:adist w,Q" >n}

where 1n >0 is chosen so small that
. 5 P - <
(5.8) Io(z G Gn) e/3

3

%
Now GTI is a compact set, meas G =0, .and Qn is af

a positive distance from G and from Q . Therefore, we may cover

GTI by a finite grid of closed squares { Bi :\fl whose sides are

parallel to the coordinate axes, each square having the same side-

length, and whose diagonals are so small that if w,,eb—i ﬁ,Cx_n, )

v N - -

then aima’..-.g and Eir\Qa‘:;a, i=1,2, ..., M.
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Then (by relation (5.5), changing the name G to Qi) Io is

lower semicontinuous oneach @Q., and thus also on the closed set
i

M
GQ =iK_Jl QiC G'!. Therefore, there is a number N3 such that
(e N3 implies that
s < ,G )+ e/3< s +e/3 ,
Io(z GQ) Io(zp Q) / < I(zp GQ) /
or
5- ,G = :G < € 3
(5.9) IO(z Q)' I(zp Q) /
Also from (5.8) we have
.10 ,G' - < , G - <
(5 ) Io(z G GQ)_ IO(z G Gn) e/3

Now let N = max { Nl’ NZ, N3} . Then for p > N, using
relations (5.6)—(5.10), we have

e < -

(z,G) = I(zp,Q) - I(zp,G') - Io(z,Q) + IO(Z,G')

(I(zp,Q) - IO(z,Q)) + (IO(z,G’) - I(zp,G’))

- | . - | - ’
< £/3 4+ (IO<Z’GQ)— I(zp,GQ)) + IO(Z,G GQ) I(zp,G GQ)

< e/3< g/3+¢e/3- I(ZP,G' - GQ)

<ef3+e/3+e/3=c¢

(z,G), where G 1is a subdomain of

Therefore, lim I{(z ,G) =1
P 0

p—~>%

Q of the proper type. Therefore, this also holds for subdomains

of B.
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Now if G 1is any subregion of the type of Lemma 5.4, we
have by Lemma 5.5 and the lower semicontinuity of D(z,G) (with
respect to weak convergence in class PZ)

. m m
frnded < : fauid
(5.11) > D(z, Q) lim > D(zp,G)

p—®

< lim I(z .G)=1.(z,G)
= p 0

p—POQ
However, from the minimizing property of z (Theorem 5.5)

we obtain (using relation (5.11))

M

p D(H(z,QG), G),

% D(z,G) < I)(z,G) < I{z,G) < I{H(z,G), G) <

or
(5.12) D(z, G) < KD(H(z, G), G) ,

where H(z,G) is the harmonic function coinciding with z on G*,
and K :—rl\—rfz 1. However, by Lemma 5.4, relation (5.12) implies
z 1is continuous on B. Therefore, 2z is continuous on QO, Z
links H, and the boundary of z lies on 'l . Thus z is an ad-

missible vector and IO(Z,Q) = 0 < L. But then since 2z is admissible,

IO(Z,Q) > L. Thus Io(z,,, Q) = L, and the existence theorem is proved.

Remark. It can be seen now that the existence theorem
holds for much more general fixed manifolds. For example, we
3
could take any manifold whose complement in E  is homeomorphic

to the complement of a simple closed curve (or a torus). Thus a
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capstan surface and a cylinder fall into this category.

More generally, we could take a piece of a plane (or deform-
ation of a plane) and attach an arc to the plane at the endpoints of the
arc. The resulting manifold would be our fixed manifold. Moreover,
the arc need not even be simple; the position of an admissible surface
is described only by the intersection number of the surface with a
fixed simple closed curve. However, the existence theorem gives no
information as to the structure of the trace of the minimizing surface

on the fixed manifold.



BIBLIOGRAPHY

1. P. Alexandroff and H. Hopf, Topologie I, Julius Springer,
Berlin, 1935.

2. J. W. Calkin, "Functions of several variables and absolute
continuity, I,'" Duke Math. J. 6 (1940), 170-186.

3. C. Carathéodory, 'Untersuchungen {iber die Konformen Abbil-
dungen von festen und verdnderlichen Gebieten, ' Math.
Ann. 72 (1912), 107-144.

4., L. Cesari, ''Una uguaglianza fondamentale per l'area delle
superficie, ' Atti Della Reale Accademia D'Italia 14
(1944), 891-950.

5. , "La nozione di integrale sopra una superficie in
forma parametrica, '’ Ann. Scuola Norm. Sup. Pisa 13
(1947), 77-117.

6. , "Condizioni sufficienti per la semicontinuita degli
integrali sopra una superficie in forma parametrica,’
Ann. Scuola Norm. Sup. Pisa 14 (1948), 47-79.

7. , ""Su un particolare processo di retrazione per superficie, !
Riv. Mat. Univ. Parma 3(1952), 25-42.

8. » "An existence theorem for integrals on parametric
surfaces,' Amer. J. Math. 74 (1952), 265-295,

9. , Surface Area, Princeton University Press, Princeton,
New Jersey, 1956.

10. R. Courant, '""On a generalized form of Blateau's problem,
Trans. Amer. Math. Soc. 50 (1941), 40-47.

11, , Dirichlet's Principle, Interscience Publishers, New
York, 1950.

12. R. Courant and N. Davids, '"Minimal surfaces spanning closed
manifolds, ' Proc. Nat. Acad. Sci., U. S. A., 26 (1940),
194-199.

126



13.

14.

15.

16.

17.

18.

19.

20,

21,

22,

23.

24.

127

J. M. Danskin, ''On the existence of minimizing surfaces in
parametric double integral problems in the calculus of
variations,! Riv. Mat. Univ. Parma 3 (1952), 43-63.

N. Davids, '"Minimal surfaces spanning closed manifolds and
having prescribed topdlogical pesition, ' Amer. J. Math.
64 (1942), 348-362.

F. W. Gehring, '""The Carathéodory convergence theorem for

quasiconformal mappings in space,' Ann. Acad. Sci. Fenn.
A. 1. 336 (1964), 1-21.

G. M. Goluzin, Geometrische Funktionentheorie, Deutscher
Verlag der Wissenschaften, Berlin, 1957.

H. Lewy, '""On minimal surfaces with partially free boundary,"
Comm. Pure Appl. Math. 4 (1951), 1-13.

C. B. Morrey, ""An .analytic characterization of surfaces of
finite Lebesgue area.l,’ Amer. J. Math. 57 (1935),
692-702,

""Functions of several variables and absolute

continuity. II, ' Duke. Math. J. 6 (1940), 187-215.

, ""Multiple integral problems in the calculus of varia-

tions and related topics, ' Uniwv. Cal. Publ. Math., N. S.

Vol. 1, 1943, 1-130,

, "The parametric variational problem for double
integrals,’ Comm. Pure Appl. Math. 14 (1961), 569-575.

, "Multiple integrals in the calculus of variations, !

Colloq. Lec., Amer. Math. Soc., August, 1964.

C. B. Morrey and J. Eells, "A variational method in the theory of
harmonic integrals. I,' Ann. of Math. 63 (1956), 91-128.

E. A. Nordhaus, ''The problem of Bolza for double integrals
in the calculus of variations,' Contributions to the Calculus
of Variations, 1938-1941, University of Chicago Press,
Chicago, 1942.



25.

26.

27.

28.

29.

30

31.

32.

128

Yu. G. Reshetnyak, "A new proof of a theorem concerning the
existence of an absolute minimum for two dimensional
problems in the calculus of variations in parametric form, "
Sibirsk. Mat. Z. 3 (1962), 744-768. (In Russian)

J. Serrin, '""On the definition and properties of certain variational
integrals,' Trans. Amer. Math. Soc. 101 (1961), 139-167.

A. G. Sigalov, "Two dimensional problems of the calculus of
variations, ' Uspehi Matem. Nauk. N. S., 6 (1951), 16-101.
(In Russian)

H. A. Simmons, ""The first and second variations of a double
integral for the case of variable limits,' Trans. Amer.
Math. Soc. 28 (1926), 235-251,

, "The first and second variations of an n-tuple integral
in the case of variable limits, ' Trans. Amer. Math. Soc.

36 (1934), 29-43.

. SIL.Sobolev,, Applications of Functional Analysis in Mathematical
Physics, Translations of Mathematical Monographs, Vol. 7,
American Mathematical Society, Providence, 1963,

L. Tonelli, "L’estremo assoluto degli integrali doppi,! Ann.
Schola Norm. Sup. Pisa 2 (1933), 89-130.

L. H. Turner, "On the direct method in the calculus of variations, '
Ph.D. Thesis, Purdue University, Lafayette, Indiana, 1957.






