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ABSTRACT

Gene expression responses are complex and frequently involve the actions of many genes to
effect coordinated patterns. We hypothesized these coordinated responses are evolutionar-
ily conserved and used a comparison of human and mouse gene expression profiles to iden-
tify the most prominent conserved features across a set of normal mammalian tissues. Based
on data from multiple studies across multiple tissues in human and mouse, 13 gene expres-
sion modes across multiple tissues were identified in each of these species using principal
component analysis. Strikingly, 1-to-1 pairing of human and mouse modes was observed in
12 out of 13 modes obtained from the two species independently. These paired modes define
evolutionarily conserved gene expression response modes (CGEMs). Notably, in this study
we were able to extract biological responses that are not overwhelmed by laboratory-to-lab-
oratory or species-to-species variation. Of the variation in our gene expression dataset, 84%
can be explained using these CGEMs. Functional annotation was performed using Gene On-
tology, pathway, and transcription factor binding site over representation. Our conclusion
is that we found an unbiased way of obtaining conserved gene response modes that accounts
for a considerable portion of gene expression variation in a given dataset, as well as vali-
dates the conservation of major gene expression response modes across the mammals.

INTRODUCTION

MOST OF OUR PRESENT KNOWLEDGE of gene response patterns comes from pathway databases, such as
KEGG, BioCarta, and STKE. There are also gene expression analysis studies based on this knowl-

edge, such as Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005). These gene response pat-
terns are basically derived from the literature, however, which introduces ascertainment bias (i.e., some
genes that are part of a pathway might not be annotated as such simply because they are not well studied).
Evolutionary conservation offers a powerful, unbiased alternative approach to the definition of gene re-
sponse patterns.

Biological systems exist in dynamic environments requiring reaction to concurrent and complex stimuli
through coordinated multigene expression responses. Functional constraints on variation lead to evolution-

1Bioinformatics Program, 2Department of Pharmacology, 3Department of Human Genetics, University of Michigan,
Ann Arbor, Michigan.



ary conservation of gene expression, as well as gene sequences (Jordan et al., 2004, 2005; O’Brien and
Fraser, 2005). Previously, many studies of molecular evolution, such as clusters of orthologous groups
(COG) of proteins, focused on primary sequence (Doolittle, 2005; Li, 1997; Tatusov et al., 2003; von Mer-
ing et al., 2003). With the availability of gene expression profile data from widely applied microarray tech-
nology, we have seen more and more studies on evolutionary analysis of gene expression patterns (Jimenez
et al., 2003). However, the details of these expression patterns vary from study to study, and many studies
focus on a specific tissue (Adjaye et al., 2004), a specific process (Andersson et al., 2005; McCarroll et al.,
2004), or, in particular, a specific type of cancer (Andersson et al., 2005; Fang et al., 2005).

Several previous studies on global gene expression evolution focus on the evolution model of gene ex-
pression instead of using evolution as a tool to define gene expression patterns (Enard et al., 2002; Jordan
et al., 2005; Liao and Zhang, 2005; Oleksiak et al., 2002; Yanai et al., 2004). Stuart et al. (2003), however,
have done analysis defining pairs of genes that are coexpressed from humans, files, worms, and yeast and
thus have discovered some conserved genetic modules. In our work, instead of using pairwise gene ex-
pression comparisons as Stuart and co-workers have, we demonstrate a new, systematic way of defining
conserved gene expression modes. We use a simple numeric method—principal component analysis
(PCA)—to find conserved gene expression response modes (CGEMs) prominent in a given dataset between
two species; these CGEMs can be characterized as a tool to better understand the functional role and mech-
anisms underlying gene expression responses.

Principal component analysis is a widely used exploratory data analysis tool that is able to identify struc-
ture in complex multidimensional data. The technique has been used in microarray analysis in different
ways, such as summarizing experimental conditions or selecting gene markers in cancer search (Alter et
al., 2000; Bicciato et al., 2003; Raychaudhuri et al., 2000; Wang and Gehan, 2005; Yeung and Ruzzo, 2001).
Of particular relevance to biological interpretation, several studies have examined the relationship of func-
tion to PCA component loading in gene expression responses. For example, Crescenzi and Giuliani (2001)
assigned biological themes to the major components, and Misra et al. (2002) used component loading in
identification of tissue-specific gene expression patterns. These studies demonstrate that the modes of gene
expression responses defined by PCA can be interpreted in biological terms. Our study might be the first
to utilize PCA in an evolutionary context and find conservation between human and mouse principal com-
ponents. We examine those components (modes) that are conserved between species to strengthen the con-
nection to the functional biological processes.

There are several advantages to using PCA analysis to identify conserved gene expression modes. First,
the mathematics of PCA ensures that we choose the modes that represent directions of largest amount of
variation in gene expression dataset, thus giving us the most prominent patterns from the current dataset.
Each PCA mode represents a specific combination of tissue specificity; for example, a certain mode might
represent the scenario where genes have very high expression in lung, medium-low expression in liver, very
low expression in brain, and medium expression in other tissues. This combination captures maximal por-
tion of gene expression variation not explained by the preceding modes. Traditional tissue specificity stud-
ies have focused on gene expression variation in individual tissues, but do not examine coordinated, quan-
tified tissue specificity present as major patterns in datasets across different types of tissues. Our work, in
this aspect, stands out distinctly from other work (Liao and Zhang, 2005). Second, studies on finding global
conserved gene expression patterns using data from heterogeneous sources are often confounded by tech-
nical variation, resulting in strong within-laboratory and within-species correlations (Hampson and Hughes,
2001; Irizarry et al., 2003b). For example, such technical variation sometimes masks the conservation of
gene expression patterns between human and mouse while conservation is expected because the two species
share common phylogeny and ontogeny (Yanai et al., 2004). PCA, by extracting major biological patterns,
can make this interspecies conservation discernable, as it did in our study. Third, PCA has an advantage
over clustering and classification, which are used in many studies, in that genes are not artificially con-
strained to belong in a single mode. Since the selection of representative genes for each mode is based on
loadings on each principal component, it is possible that a certain gene can be selected in several response
modes instead of one, which can be the reality in biological systems.

In this work, we developed a method that identifies evolutionary conserved modes of expression that are
prominent in a given dataset based on matching of principal components of gene expression between hu-
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man and mouse. We demonstrate our method on a dataset integrated from multiple studies across multiple
tissues from the two species and find 12 CGEMs that are associated with functions fundamental to the two
species and conserved across evolution. Also, the promoter regions of the genes are studied to reveal tran-
scription factors that may be related to these biological processes.

MATERIALS AND METHODS

Gene expression data assembly

First, gene expression data were gathered for both human and mouse. We restricted our analysis to
Affymetrix GeneChip data to reduce technical variations between samples and between species. For human
we used four datasets: (1) Novartis Research Foundation’s dataset of normal tissues and cell lines (GEO
ID: GSE96) (Barrett et al., 2005; Edgar et al., 2002; Su et al., 2002), which has 80 samples; (2) Genenote
(gene normal tissue expression) dataset (GEO ID: GSE803) (Shmueli et al., 2003), also of normal tissues,
which has 24 samples; (3) a blood dataset (Feezor et al., 2003) with control and heat-killed SAC treated
cells, which has 9 samples; and (4) a dendritic cell dataset (Messmer et al., 2003) with control and cells
treated with LPS, CD40L, or CyC (TNF-a, IL-1b, IL-6�PGE-2), which has 32 samples. For mouse we
used two datasets: (1) Novartis Research Foundation’s dataset of normal tissues and cell lines (GEO ID:
GSE97) (Su et al., 2002), which has 90 samples; and (2) a 32D cell dataset with control and cells treated
with Csf1 or IL3, which has 12 samples.

For the procedure to obtain the 32D cell mouse dataset, interleukin-3 (IL-3)-dependent murine 32D
myeloid clones stably expressing the wildtype colony-stimulating factor-1 receptor (Lee and States, 2000)
were deprived of IL-3 for 6 h, followed by the addition (or not) of IL-3 for 18 h. Cells were washed and
RNA was harvested using the RNAeasy kit (Qiagen). Two independently selected clones were used and ei-
ther three or four sets of data were collected for starved or IL-3-treated cells on 3 separate days. Process-
ing and hybridization to the Affymatrix U74A chip were performed by the Washington University Medical
School (St. Louis) Gene Chip Core Facility. Altogether there were 145 human samples and 102 mouse sam-
ples.

Processing and integration of datasets

After we obtained the original gene expression datasets in .CEL files, we processed them using the RMA
method (Bolstad et al., 2003; Irizarry et al., 2003a, 2003b) as implemented in the R Bioconductor package
(Gentleman et al., 2004). Multiple species and multiple datasets were used; for human we have data from
both version 1 and 2 of U95A chip, and for mouse we have data from version 1 and 2 of U74A chip. We
used Bolstad’s mixed CDF environment, which takes only probe sets that appear on both chip types
(�http://stat-www.berkeley.edu/users/bolstad/mixtureCDF/MixtureCDF.html�), and were able to pool the
data into two groups: human data from U95A chip series, and mouse data from U74A chip series. After
that RMA preprocessing was carried out in R package.

Pairing genes and tissues between species

To compare the two species, orthologous genes were assigned using the TIGR database
(�http://pga.tigr.org/AnalysisTools.shtml�) (Lee et al., 2002; Tsai et al., 2001). We only chose gene pairs
that have expression information in the microarray data we use. Similar results are obtained using the NCBI
Homologene and ENSMEBL orthologs assignments.

Tissue correspondence also has to be assigned before comparing the two species. Anatomic origin and
similarity in orthologous gene expression profiles were both used to pair samples from human and mouse.
Samples were paired if three criteria were met: (1) if the Manhattan distance between orthologous gene ex-
pression profiles was in the upper 10% of all sample pairs; (2) the two samples fell within the reciprocal
10 top hits respectively; and (3) pairing could be validated by anatomic naming. Manhattan distance is de-
fined as the distance between two points measured along axes at right angles (i.e., in a plane with p1 at (x1,
y1) and p2 at (x2, y2), Manhattan distance is �x1 � x2� � �y1 � y2�). Using this process we assigned the 13
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pairs of tissue sets in Table 1. Gene expression values were averaged in each tissue set within each species.
By now we have aligned human and mouse dataset with regard to genes and tissues.

Principal component analysis and clustering

The gene expression model we are assuming is

Egt � �
p

�gp�pt,

where subscript g indicates gene, t indicates tissue, and p indicates profile. E is expression intensity, �gp is
projection of gene g on profile p, and �pt is weight of tissue t on profile p. Written in matrix form E � AP,
where A is the projection matrix and P is the matrix connecting profiles and tissues. PCA is one kind of
transformation we can perform to get A from E. We performed PCA on human and mouse data separately
(the two datasets had been aligned regarding genes and tissues, as mentioned above). PCA was performed
using “prcomp” in the R “stat” package with singular value decomposition of the data matrix rather than
“eigen” on the covariance matrix. This method is recommended for numerical accuracy. After that, princi-
pal components obtained using PCA from the two species were clustered. For clustering we chose an un-
supervised method—hierarchical clustering, also implemented in R. We found that 1 to 1 pairing of human
and mouse components is observed for 12 out of 13 principal components obtained from the two species
independently, and thus we defined 12 CGEMs.

Reconstructing gene expression using average loadings

Next we assessed how much of the gene expression variation could be accounted for by the conserved
part of principal components. From our expression model

Egt � �
p

�gp�pt,

the mathematics of PCA guarantees we can reconstruct Egt from �gp and �pt. In this step, however, instead
of using �gp from the concerned species, we used (�h

gp � �m
gp)/2 where superscript h and m indicated hu-

man and mouse, respectively. Thus for human we applied the formula

Eh
gt (predicted) � �

p

(�h
gp � �m

gp)/2*�h
pt

to calculate predicted values of gene expression, and for mouse the formula we used was

Em
gt (predicted) � �

p

(�h
gp � �m

gp)/2*�m
pt .

Note that considering most of the variation could be explained by the first principal component, which rep-
resented average gene expression across all tissues; this was subtracted from the data during reconstruc-
tion.

Annotating gene expression response profiles

We then chose representative genes for each CGEM based on loadings of genes on corresponding hu-
man and mouse principal components. We calculated products of the positive loadings of genes on human
and mouse components and selected the top 5% genes with highest products of loadings.

We annotated CGEMs based on functions of these representative genes. For functional annotation, we
examined enriched GO terms, pathways, and “words” in representative genes for each CGEM. GO terms
for genes were obtained from hgu74av2 and mgu74av2 packages of bioconductor (Gentleman et al., 2004).
We used information from these packages to build an association file in running a software termfinder
(Boyle et al., 2004), which calculates a p value using the hypergeometric distribution and outputs over-rep-
resented GO terms. When identifying over-represented Kegg pathways, we drew on information from NCBI
Entrez Gene records and used Fisher’s exact test with a cut-off of 0.05. When identifying over-represented
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words, we again obtained information from Entrez Gene records and used Fisher’s exact test with a more
stringent cut-off of 0.001.

We also examined transcription factor enrichment for representative genes of CGEMs. Two approaches
were used: one was using TRANSFAC, the other was using GSEA database. In the first approach, tran-
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TABLE 1. PAIRED TISSUE GROUPS BETWEEN HUMAN AND MOUSE

Human Mouse

Tissue group Sample Dataset Sample Dataset

Neural CEREBELLUM N Frontal cortex N
CEREBELLUM N Lower spinal cord N
CORTEX N Lower spinal cord1 N
AMYGDALA1 N Upper spinal cord N
CAUDATE NUCLEUS N Upper spinal cord1 N
CAUDATE NUCLEUS1 N Cerebral cortex N
FETAL BRAIN1 N Cerebral cortex1 N
BRAIN G Frontal cortex N
BRAIN1 G Striatum N

Prostate PROSTATE G Prostate N
PROSTATE1 G Prostate1 N

Bone marrow BONE MARROW G Bone marrow N
BONE MARROW1 G Bone marrow1 N

Lymphocyte THYMUS N Lymphnode N
THYMUS1 N Lymphnode1 N
SPLEEN N Spleen N
SPLEEN1 N Spleen1 N
SPLEEN2 G Thymus N
SPLEEN3 G Thymus1 N
THYMUS1 G
RAJI N

Myeloid PROMYELOCYTIC LEUKEMIA N 32Dcell D
PROMYELOCYTIC LEUKEMIA1 N 32Dcell1 D
PROMYELOCYTIC LEUKEMIA2 N 32Dcell2 D

32Dcell3 D
Liver LIVER G Liver N

LIVER1 G Liver1 N
LIVER2 N
LIVER3 N

Lung LUNG G Lung N
LUNG1 G Lung1 N

Placenta PLACENTA N Placenta N
PLACENTA1 N Placenta1 N

Heart HEART N Heart N
HEART2 G Heart1 N
HEART3 G
HEART4 N

Kidney KIDNEY G Kidney N
KIDNEY1 G Kidney1 N

Salivary SALIVARY GLAND N Salivary gland N
gland SALIVARY GLAND1 N Salivary gland1 N

Uterus UTERUS N Uterus1 N
Testis TESTIS N Testis1 N

TESTIS1 N

G, Genonote dataset; N, novartis dataset; D, 32D cell dataset.



scription factor binding site analysis was performed by obtaining sequences from ENSEMBL database (Bir-
ney, 2003), and scanning the gene region with a flanking sequence of 1 kb using TRANSFAC MATCH
(Kel et al., 2003; Matys et al., 2003; Wingender et al., 2000). In the second approach, we used the motif-
based gene set of GSEA (Subramanian et al., 2005) and only chose those annotated motifs. Fisher’s exact
test was used and a cut-off of 0.05 was applied to select over-represented transcription factors or motifs.

RESULTS

Pairing human and mouse tissues and cell lines

To assess the conserved gene expression patterns between human and mouse, tissue correspondence be-
tween the two species needs to be established. From the datasets we analyzed, we identified 13 groups of
corresponding tissues (Table 1). Many of the groups contained the same tissue as indicated by anatomic
name for human and mouse, but some groups contained samples from functionally related tissues where
the naming used in one species did not match that used in the other. For example, the first group included
neural tissues from both species but was labeled with a number of different names. This pairing involved
both matching across species and clustering within a species, resulting in a many-to-many mapping of sets
from each species.

Principal component analysis of gene expression responses

To assess the major expression patterns in the dataset, we employed principal components analysis. Based
on the averaged expression profile within each of the 13 groups listed in Table 1, we performed principal
component analysis on human and mouse expression data, respectively, with orthologous gene pairs aligned.
Shown in Figure 1 is a plot of the eigen values of these components. For human data, the first principal
component accounted for about 87% of the total variability while for mouse data it accounted for about
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FIG. 1. Plot of Eigen values of the principal components for human and mouse species. Most of the variance in the
data is contained in the first principal components.

http://www.liebertonline.com/action/showImage?doi=10.1089/omi.2006.0007&iName=master.img-000.png&w=282&h=260


91% of the total variability. The first component represents the average expression level across tissues. For
detailed information of eigen values and the variance they explain, see Table 2.

Comparison of species-specific principal components

After we performed PCA separately on human and mouse data, the loadings on each of the 2 � 13
principal components were clustered to determine if there was a correspondence between principal com-
ponents between the two species. As Figure 2 shows, there is highly significant pairing between human
and mouse principal components based on gene loadings, indicating that there is a high degree of evo-
lutionary conservation with the gene expression modes revealed by PCA. We found that there were 12
pairs of principal components in which the terminal binary nodes of the tree contain exactly one human
and one mouse terminal leaf. Apart from the second component of human data and the second compo-
nent of mouse data, all other components had their pairing components in the other species. Each pair
of components represents a conserved gene expression response mode (CGEM) between human and
mouse. The likelihood of a pairing this good occurring at random is calculated by randomizing the or-
thologous relationships. After 10,000 iterations, we found that such pairing occurs randomly about six
times. We conclude that the correspondence of human and mouse gene expression modes is highly sig-
nificant.

Conservation between species is reflected in correspondence between loadings; high loadings on both
corresponding human and mouse components are of interest. By calculating products of the positive
loadings, we could select genes with high loadings on both species for a specific principal component
pair. Figure 3 shows an example for a component pair H4M3 (CGEM H4M3), which consists of the
fourth principal component of human and the third principal component of mouse. From the distribu-
tion of cross-species loadings shown in Figure (3A) we find a few genes with large product values and
a large number of genes making little contribution to the cross-species component loading dot product.
The genes that have conserved expression profiles with high loadings on this component pair are se-
lected for further analysis. We used a cut-off of 5% to find those highly conserved high loading gene
set for each CGEM; the actual gene sets are provided in Appendix 1. Figure 3B gives us a more direct
view of the products of loadings, and we can actually see the sparse clusters of genes with conserved
higher loadings. The larger the product, the stronger the conserved component of the expression re-
sponse for the gene.
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TABLE 2. EIGEN VALUES WITH PERCENTAGE OF VARIANCE AND CUMULATIVE VARIANCE

Human Mouse

Cumulative Cumulative
Component Variance variance Variance variance
no. Eigen value (%) (%) Eigen value (%) (%)

1 33.29 86.99 87 21.61 90.62 90.6
2 1.02 2.68 89.7 0.65 2.71 93.3
3 0.88 2.29 92 0.32 1.34 94.7
4 0.69 1.79 93.7 0.27 1.14 95.8
5 0.57 1.49 95.2 0.2 0.85 96.7
6 0.34 0.9 96.1 0.16 0.68 97.3
7 0.29 0.76 96.9 0.14 0.58 97.9
8 0.27 0.71 97.6 0.12 0.51 98.4
9 0.25 0.67 98.3 0.11 0.46 98.9
10 0.23 0.59 98.9 0.1 0.43 99.3
11 0.19 0.51 99.4 0.07 0.29 99.6
12 0.17 0.43 99.8 0.05 0.21 99.8
13 0.08 0.2 100 0.04 0.18 100



Reconstructing gene expression using conserved part of component loadings

To assess how much of the variation in gene expression profiles can be explained by evolutionarily con-
served components, we attempted to reconstruct gene expression using average loadings (from human and
mouse) on components. The mathematics of PCA guarantees that we can reconstruct the gene expression
profile exactly using the species-specific rotation matrix and loadings on the components. Instead of using
the loadings on components from each species independently, we used the average loading values from hu-
man and mouse as an indication of the evolutionarily conserved components of gene expression. During
the process, the first principal component, which represents the average gene expression level across tis-
sues, is subtracted from the data.

Using these evolutionarily conserved components, we were able to reconstruct an average of 84% of the
variation in gene expression levels over all of the different tissue groups (the variation explained by the
first principal component aside). Shown in Figure 4 is the correlation between predicted (calculated) and
observed gene expression in liver, a representative tissue example. Figure 4A and B are for human and
mouse liver tissue, respectively. Observed values, which is gene expression intensity, and predicted values,
which is calculated from average loadings, have a good linear relationship. The correlation coefficient is
0.89 and 0.82, respectively, which implies that most of gene expression can be explained by these CGEMs.
Table 3 lists the correlation of observed and predicted values for each tissue in both human and mouse.
From Table 3 it can be seen that in most cases conserved gene expression contributes significantly to over-
all gene expression. Interestingly, the predicted values for human tend to have a better correlation with the
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FIG. 2. Hierarchical clustering of 2 � 13 principal components from human and mouse. A hierarchical clustering
was performed based on the loadings. Similar principal components were clustered together. Principal components from
human, H.; components from mouse, M.
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observed value than do those for mouse (p � 0.001). The reason for this difference is not obvious, but tech-
nical variation in the GeneChips used for the different species cannot be excluded.

Detecting over-represented functions using gene sets

For each representative gene set of orthologous genes with high loadings on a specific principal compo-
nent pair, we were able to find a GO term, as well as pathway over-representation that we used to anno-
tate the dominant functions of the CGEM. Because the annotation of orthologous genes in the two species
frequently differed, we focused on conserved functions between the two species. Figure 5 uses CGEM
H4M3 as an example. The over-represented human and mouse GO terms are listed according to their sta-
tistical significance of over-representation; lines connect the same term occurring in the two lists. This analy-
sis shows that many dominant functions are conserved, and in most cases the rankings of degree of domi-
nance do not change dramatically. GO has a hierarchical structure and many of the functions are related.
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FIG. 3. Distribution of the products of loadings between human and mouse on CGEM H4M3. (A) Empirical cumu-
lative density function of the products. The horizontal solid line indicates cut-off for selecting gene set. (B) Intensity
of the products for each gene.
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We have not attempted to collapse parent/child relationships when both are over-represented. In Appendix
1, we summarize the functions conveyed by the GO terms.

We also searched for conserved pathway over-representation (results also listed in App. 1) and found
that for most cases there is a good consistency between GO terms and pathway. For example, in CGEM
H4M3, over-represented GO terms include blood coagulation, acute-phase response, and related processes.
The pathway search identifies complement and coagulation cascades, fatty acid metabolism, and caprolac-
tam degradation, all of which are functionally related to the above GO terms. To further seek validation,
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FIG. 4. Comparison between observed and predicted gene expression intensity. The x-axis shows observed gene ex-
pression intensity and the y-axis shows predicted gene expression intensity calculated from average component load-
ings of human and mouse. (A) human liver; (B) mouse liver.
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we explored words that are enriched in the NCBI description. For our example H4M3, words such as
apolipoprotein, apom, apoe, and fatty supported our GO term and pathway findings.

Association of transcription factors recognition sites with gene expression response profiles

It is interesting to know whether specific transcription factors are associated with each gene set and how
this might relate to functional themes. We explored the transcription factor binding sites around the tran-
scription starting sites of the high-loading genes, and for most gene sets we found that there were tran-
scription factors that were over-represented in both species. A literature survey revealed evidence for rela-
tions between those transcription factors and the major function theme of the gene set. Continuing to use
CGEM H4M3 as an example, Figure 6 shows the list of transcription factors over-represented in both species
for the gene set. Though most transcription factors over-represented in each species have a connection with
the dominant functions of the gene set, there are just a handful that are consistently over-represented in both
species, which implies subtle differences between human and mouse gene regulation, even for similar path-
ways and similar functions. We also searched the relationship between our gene sets and GSEA-annotated
motif-based gene sets and found enriched representation of GSEA gene sets for each of our CGEM. Both
results for transcription factors and GSEA gene sets are listed in Appendix 1.

DISCUSSION

Annotating CGEMs

CGEM H4M3 is associated with blood coagulation, stress response, and other factors, and there is a good
agreement between over-represented GO terms and pathways. Transcription factors over-represented in the
promoter regions are hepatocyte nuclear factors (HNF4, HNF1) and estrogen receptor (ER). The connec-
tions between blood coagulation and ER (Farsetti et al., 1998; Moverare et al., 2004) / HNF-4 (Farsetti et
al., 1998) have been reported. HNF-1 was reported to be involved in some stress response (Leu et al., 2001).
H4M3 is statistically significantly correlated with GSEA motif sets HNF-1 and estrogen-receptor related
receptors (ERR).

CGEM H1M1 is associated with the GO term homophilic cell adhesion, but there is no significant over-
represented pathway, which is expected because this mode is strongly correlated with average gene ex-
pression across all tissues. Also we were not able to identify connections between homophilic cell adhe-
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TABLE 3. CORRELATION COEFFICIENT OF OBSERVED AND PREDICTED GENE EXPRESSION INTENSITIES

Correlation coefficient

Tissue group Human Mouse

Neural 0.89 0.79
Prostate 0.9 0.81
Bone marrow 0.88 0.8
Lymphocyte 0.89 0.81
Myeloid 0.88 0.85
Liver 0.89 0.82
Lung 0.89 0.78
Placenta 0.88 0.68
Heart 0.89 0.8
Kidney 0.9 0.82
Salivary gland 0.89 0.8
Uterus 0.89 0.81
Testis 0.88 0.69



sion and the over-expressed transcriptional factor octamer binding factor 1 (OCT1_B) or any correlated
GSEA motif sets (AP4, GFI1, NRF1, or SF1).

CGEM H5M5 is associated with energy generation coupled consistently with the citric acid cycle in both
the GO terms and pathway over-representation. The over-represented transcription factors include splicing
factor 1 (SF1) and CREB. CREB is involved in metabolism (Koo et al., 2005). This mode is statistically
significantly correlated with GSEA motif sets such as YY1 transcription factor, nuclear respiratory factor
1 (NRF1), and estrogen-related receptor alpha (ERR1), whose binding sites are all found in some genes in-
volved in regulating mitochondrial energy metabolism (Chinenov et al., 2000; Sladek et al., 1997).

For CGEM H6M6, we did not find common over-represented GO terms between human and mouse;
however, extracellular matrix (ECM)-receptor interaction comes up in the pathway analysis. There is liter-
ature showing E2F1 and SOX9, which are enriched GSEA motifs for this mode, are involved in ECM reg-
ulation (Davies et al., 2002; Tsuboi et al., 2000).

CGEM H13M12 is associated with immune responses. The over-represented transcription factor is MYC,
which is known to play a role in immune processes (Hayday et al., 1984). This mode is statistically sig-
nificantly correlated with GSEA motif set acute myeloid leukemia 1 (AML1), which is involved in devel-
opment of leukemic dendritic cells (Houtenbos et al., 2005); v-ets avian erythoblastosis virus E26 oncogene
homolog2 (ETS2), which is involved in acute myelogenous leukemia (Le Beau et al., 1986; Sacchi et al.,
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FIG. 5. Over-represented GO terms in CGEM H4M3. The straight lines connect overlapping GO terms, which are
sorted in order of dominance. Left column, human; right column, mouse. 
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1988); and GA-binding protein, which works in concert with other transcription factors, including PU.1,
regulates immune-related genes (Rosmarin et al., 1995, 1998; Shimokawa and Ra, 2005).

CGEM H9M9 is associated with acid and proton transport. The over-represented transcription factor is
GATA4, which is related with Na�/Ca2� (NCX) exchanger (Hudecova et al., 2004). This mode is statis-
tically significantly correlated with paired-like homeodomain transcription factor 2 (PITX2).

CGEM H10M8 is associated with energy generation coupled with pyruvate metabolism and glycolysis.
GO term over-representation search also suggests cell adhesion. Although TRANSFAC does not yield clues
through enriched transcription factors, GSEA does suggest that motif MEF2 is enriched in this gene set and
evidence shows MEF2 involved in energy charge (Holmes and Dohm, 2004).

CGEM H3M4 is associated with the cell cycle. Transcription factor nuclear factor Y (NFY) is over-rep-
resented in the promoter regions, which is consistent with the fact that most genes regulated by NFY play
a regulatory role in the cell cycle (Zhou et al., 2005). Gene sets regulated by ETS domain transcription fac-
tor (ELK1), nuclear respiratory factor (NRF), and specificity protein 1 (Sp1) besides NFY are also shown
to be correlated with this mode. There is evidence that Sp1 protein is involved in regulating cell cycle genes
(Safe and Abdelrahim, 2005), and NRF is found to be a coregulator of a large number of target genes of
E2F that play an important role in cell cycle (Cam et al., 2004).

CGEM H8M10 is associated with cation homeostasis and macromolecule metabolism, such as glycoly-
sis/gluconeogenesis. GSEA analysis reveals that GATA, which is involved in hematologic disease, is over-
represented (Cantor, 2005; Crispino, 2005).

CGEM H12M13 is associated with toll-like receptor signaling pathway and the gamma-hexachlorocy-
clohexane degradation pathway. The over-represented transcription factors from TRANSFAC (CREL,
NFKB, HNF1) are also immune-related (Li and Verma, 2002).

From the GO term search, CGEM H7M7 is associated with microtubule polymerization; however, from
pathway search, only complement and coagulation cascades are over-represented. Enriched transcription
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FIG. 6. Over-represented transcription factor binding sites (TFBS). The straight lines connect overlapping TFBSs.
TFBSs are sorted in the order of significance of over-representation.
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factors (HNF1, CDX2, CEBPDELTA) revealed that this mode is more stress response related (Alam et al.,
1992; German et al., 1994; Gilpin et al., 1996; Leu et al., 2001).

CGEM H11M11 is associated with protein biosynthesis. The over-represented transcription factor is HEB
(a helix-loop-helix protein related to E2A and ITF2), and this mode is statistically significantly correlated
with SRF. Both are transcription factors that are important in muscle gene regulation (Hu et al., 1992; Wang
et al., 2004).

Our functional annotations for the different components sometimes overlap with each other. For exam-
ple, H5M5 and H10M8 are both associated with oxidative phosphorylation. However, these are coupled to
different functions. Oxidative phosphorylation is coupled to citric acid cycle in H5M5 but coupled with
pyruvate metabolism and other functions in H10M8. Since biological systems are very complex and func-
tions are sometimes interwoven, this phenomenon is expected. It helps to look at functions from different
aspects, e.g., the GO term, as well as pathway, to understand function in a more comprehensive way.

A challenge in annotating the CGEMs is that in some cases they can be multi-factorial responses inte-
grating multiple functions. As a result, in these cases there is not a simple 1-to-1 mapping of CGEM to his-
torically defined biological functions or pathways. This phenomenon is illustrated in Figure 7, which shows
the number of genes shared between each CGEM representative set and the COG functional families (Tatusov
et al., 2003). A number of associations between gene membership in a CGEM and gene membership in an
annotated function are observed. In the lower left corner of Figure 7, we see a nearly 1-to-1 association be-
tween CGEM H11M11 (which is associated with protein biosynthesis) and COG functional class J (trans-
lation, ribosomal structure and biogenesis) and between CGEM H5M5 (which is associated energy gener-
ation) and C (energy production and conversion). In other cases, such as CGEM H6M6, several COGs
appear to be associated with the mode but none is dominant. This can be caused by discrepancy between
sequence space, which COGs are based on, and expression space, which CGEMs are based on, or it can be
caused by the different gene space of CGEM and COG (right now COG only has 860 proteins conserved
across all species); it can also be that CGEM H6M6 is a mode with a complex response that involves a
combination of the 20 or so simple COG functional categories. Nevertheless, these associations provide a
useful aspect in annotating CGEMs (App. 1).

Another note-worthy point to make is that CGEMs delineate multi-tissue coordination in biological re-
sponses and thus there is not a simple 1-to-1 mapping of CGEM to tissue. Figure 8 shows the association
between CGEMs and tissues. In the upper right-hand corner, a 1-to-1 association between CGEM H13M12,
which is associated with immune response, and lymphocyte is observed. However, in most cases a CGEM
seems to be positively associated with several tissues. For example, H6M6, which is mainly associated with
extracellular matrix–receptor interaction, is positively associated with several tissues but none is dominant.
So the majority of the cGEMs involve responses across several tissues, and the representative genes of those
responses are not single tissue–specific genes, but rather genes that are highly expressed in a number of tis-
sues and low expressed in other tissues.

As defined by us, CGEMs are connected to fundamental functions in human and mouse species. We base
our analysis on a set of normal tissues such as lung, liver, and brain, so much of the variation of gene ex-
pression across these samples can be attributed to these tissues coordinating with one another and per-
forming different important biological functions. Our approach for defining CGEMs is a general one that
can also be applied to other datasets for different purposes, depending on the specific dataset. For exam-
ple, it would be of interest to apply our method to a series of treated samples from two species and exam-
ine conserved stimulus response patterns. Note that it is possible to apply our approach to compare two dis-
tant organisms since we mainly use an objective pairing method based on expression profiles of orthologous
genes to pair up tissues; thus, if only orthologous genes between two organisms can be identified, tissue
correspondence can be assigned using our pairing method. Principal components can then be calculated and
clustered for these two organisms.

Evolutionary implications

The evolution of gene expression is an interesting and controversial topic. One view is that gene ex-
pression patterns evolve through a neutral model (Khaitovich et al., 2005, 2004) in which most changes in
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gene expression are not related to fitness and changes in gene expression accumulate randomly over time.
Other studies suggest that a neutral model accompanied by selective constraint is likely (Jordan et al., 2005).
Based on expression similarity among 32 human and mouse tissues (Su et al., 2002), Yanai et al. (2004),
found incongruent expression profiles between human and mouse othologous genes and they supported neu-
tral evolution of transcription control. They also showed that expression of human and mouse tissues was
clustered into two species-specific clades. By using a measurement called relative mRNA abundance among
tissues, however, Liao and Zhang (2005) observed that orthologous tissues between species are more sim-
ilar than nonorthologous tissues in terms of expression profile, thus supporting conservation of gene ex-
pression. In our study, 12 of the 13 modes we found from each species form a binary pair with a sample
from the other species. Thus, by using PCA, we are able to find “orthologous modes” between species,
which again validates the conservation of gene expression theory. In terms of the relationship between con-
servation of gene expression and biological function, a previous report (Yanai et al., 2004) mentioned “ex-
amples of orthologous profiles where the tissues of conserved expression relate to gene function, whereas
divergent expression does not.” This statement is consistent with our finding that the conserved expression
patterns are linked with specific functions.

For one half of the CGEMs defined here, the magnitudes of the component loadings of the paired com-
ponents appear in the same order in human and mouse (PCA components are ordered by variance). In one
third of the CGEMs, the orders of the mode loadings differ by one (e.g., cell cycle–related genes dominate
the third component of human but the fourth component of mouse). In two CGEMs, the orders differ by
two. This implies that expression pattern variation within genes with similar functions differs slightly be-
tween human and mouse in relative magnitude. This reshuffling of order might be interpreted as slightly
different rates of evolution between genes of different functions.

CONCLUSIONS

By integrating data from multiple tissues and two mammalian species, by executing PCA analysis sep-
arately on two species, and by matching principal components across species, it is possible to find evolu-
tionary conserved gene expression modes, and these modes can be associated with specific biological func-
tions and pathways. Since no prior knowledge is used, these modes represent an unbiased way of finding
gene expression response patterns. In our study, we mostly used a set of normal tissues and found 12 CGEMs
related to functions vital to human and mouse, including energy metabolism, immune response, protein
biosynthesis, and cell cycle regulation, among others. Representative genes for each mode are also identi-
fied. Compared to traditional tissue specificity studies, our analysis is relatively less sensitive to the intrin-
sic high noise of microarray data and ensures that these CGEMs explain most of the variation in our dataset.
Also our result further validates the conservation of many major gene response patterns between human
and mouse.
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FIG. 7. Relationship of CGEM with COG functional classes. Rows show CGEM modes; columns, COG functional
classes. Elements in the matrix are colored according to the number of genes in the CGEM representative set that are
assigned to each COG functional class. The pseudocolor scale runs from black to grey to white corresponding to zero
to maximal overlap. A, RNA processing and modification; B, chromatin structure and dynamics; C, energy production
and conversion; D, cell cycle control, cell division, chromosome partitioning; E, amino acid transport and metabolism;
F, nucleotide transport and metabolism; G, carbohydrate transport and metabolism; H, coenzyme transport and metab-
olism; I, lipid transport and metabolism; J, translation, ribosomal structure and biogenesis; K, transcription; M, cell
wall/membrane/envelope biogenesis; O, post-translational modification, protein turnover, chaperones; P, inorganic ion
transport and metabolism; Q, secondary metabolites biosynthesis, transport, and catabolism; R, general function pre-
diction only; S, function unknown; T, signal transduction mechanisms; U, intracellular trafficking, secretion, and vesic-
ular transport; V, defense mechanisms; W, extracellular structures; Z, cytoskeleton.

FIG. 8. Relationship of CGEM to tissues. Rows show tissues; columns, CGEM modes. Elements in the matrix are
colored according to the correspondence between CGEMs and tissues based on rotation matrix calculated using PCA.
The pseudocolor scale runs from black to green to yellow corresponding to low to high correspondence.
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ABCC2 C8G GC PCBD1 1700013L23Rik Azgp1 Fbp2 Nnt
ACADM C9 GK PDCD8 1810014L12Rik C4 Fga Orm1
ACOX1 CDH16 GNMT PDZK1 2610205H19Rik C4bp Fgb Pcbd1
ACSL1 CDO1 GRHPR PGM1 Abcc2 C9 Fgg Pdcd8
ADH1C CHUK HADH2 PHYH Acadm Cdh16 Gc Pdzk1
ADH5 COMT HGD PLG Acox1 Cdo1 Gnmt Pgm2
AGT CRYZ HGFAC RBP4 Acsl1 Cfi Grhpr Phyh
AHCY CYP1A2 HRG RNASE4 Adh1 Chuk Gyk Rpb4
AK2 CYP2E1 HSPA9B SCP2 Adh5 Cml1 Hadh2 Rnase4
ALB DBI HSPD1 SDHB Agt Comt Hgd Scp2
ALDH9A1 DKFZP564B167 HSPE1 SERPINA1 Ahcy Cryz Hgfac Sdhhb

H4M3 ALDOB DLD IF SERPINA6 Ak2 Cyp1a2 Hrg Serpina1a
AMBP ECH1 ITIH4 SERPINC1 Alb1 Cyp2e1 Hspa9a Serpina6
APOC4 ECHS1 KLKB1 SERPINF2 Aldh9a1 Dbi Hspd1 Serpinc1
APOE ENPEP KNG1 SHMT1 Aldob Dld Hspe1 Serpinf2
APOH F12 LCAT SLC22A1 Amp Ech1 Itih3 Shmt1
APOM F5 LYPLA1 SLC2A2 Apoc4 Echs1 Itih4 Slc22a1
ARG1 FABP1 MAC30 SLC37A4 Apoe Enpep Klkb1 Slc2a2
ASGR1 FASN MST1 TXN Apoh F12 Kng1 Slc37a4
ASL FBP1 NAT8 UMOD Apom F5 Lcat Txn1
AZGP1 FGA NDUFV2 VTN Arg1 Fabp1 Lypla1 Umod
C4A FGB NNT Asgr1 Fasn Mst1 Vtn
C4BPA FGG ORM1 Asl1 Fbp1 Ndufv2

H1M1 ATRX DSPG3 MATN3 RB1 2600011C06Rik Dspg3 Matn3 Prkca
BDNF EDNRB MEOX2 RBM25 4833408C14Rik Ednrb Meox2 Ptpro
BNC1 ELAVL4 MGAT2 REL Bdnf Elavl4 Mgat2 Rb1
BUB1 FGF7 MKRN3 SIM1 Bnc1 Fgf7 Mkrn3 Rel
CALB1 FOLH1 MMP13 SLC10A2 Bub1 Folh1 Mlf1 Sim1
CCNE2 FUT9 MTP SLC16A1 Calb1 Fut9 Mmp13 Slc10a2
CCR5 GAD2 MYBL1 T Ccr5 Gad2 Mttp Slc16a1
CDH11 HAPLN1 NOX1 TANK Cdh11 Hapln1 Myb T
CDH8 HGF NPY2R TPH1 Cdh8 Hgf Mybl1 Tank
COPS2 IL2 NR5A2 TYR Cstf2 Il2 Npy2r Tph1
CLCL10 IL7 OR1 ZFX Cxcl10 Il7 Nr5a2 Tyr
CYP24A1 KCNJ3 PCDH7 ZW10 Cyp24a1 Kcnj3 Pawr Zfa
CYP7A1 KITLG PHEX Cyp7a1 Kitl Pcdh7 Zfx
DKK1 KLRG1 PLA2G4A Dkk1 Klrg1 Phex Zw10
DSC2 LEPR PTPRO Dsc2 Lepr Pla2g4a
ACADM CYCS MAPT PHYH 1110030L0Rik Cox7a2 Ina Pgam2
ACO2 DBI MGC8721 PIPPIN 1810045K07Rik Cryz Kifap3 phyh
AHCYL1 DKFZP564B167 NCDN PMM1 2610205H19Rik Cycs Klk6 Ptgds
ANK3 DLD NCKAP1 PTGDS 2900054D09Rik D10Bwg0791e Mapt Pthr1
APP ECH1 NDUFA5 PTHR1 Acadm Dbi Mccc1 Scp2
ATP1A1 ECHS1 NDUFAB1 SCP2 Aco2 Dld Ncdn Sdhb
ATP1A2 EGF NDUFB8 SDHB Ahcyl1 Dp1 Nckap1 Sdhc
ATP5A1 ESD NDUFC1 SDHC Ank3 Ech1 Ndufa5 Slc4a4
ATP5C1 FEZ1 NDUFS1 SLC4A4 App Echs1 Ndufab1 Spnb2
ATP5L GAD1 NDUFS5 SPTBN2 Atp1a1 Egf Ndufb8 Spnb3

H5M5 ATP6V1A GJA1 NDUFV2 SUCLA2 Atp1a2 Esd Ndufc1 Sucla2
ATP6V1D GK NNT TDE2 Atp5a1 Fez1 Ndufs5 Tde2
C5orf18 GPM6B PAFAH1B1 THY1 Atp5c1 Gad1 Ndufv2 Thy1
CALB1 HSPA8 PARK7 TSPYL4 Atp5l Gja1 Nnt Uchl1
CDH16 HSPA9B PCCA UBPH Atp6v1a1 Gpm6b Pafah1b1 Umod
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(continued)

CDH2 HSPD1 PDCD8 UCHL1 Atp6v1d Gyk Park7 Vsnl1
CGI-51 HSPE1 PDHB UMOD Calb1 Hspa8 Pdcd8
COX5B IGFBP5 PDZK1 VSNL1 Cdh16 Hspa9a Pdhb
COX7A1 INA PEG3 Cdh2 Hspd1 Pdzk1
COX7A2 KIFAP3 PFKM Cox5b Hspe1 Peg3
CRYZ KLK1 PGAM2 Cox7a1 Igfbp5 Pfkm
AKAP4 DNAJB9 LUM SDC4 1110014C03Rik Cyr61 Lgals3 Rpn2
ANXA4 EPHB4 LYPLA1 SEC11L1 1810014L12Rik Dbi Lgals3bp S100a10
ATP6V0E FN1 MAC30 SEC61B Akap4 Dlk1 Lum Sdc4
C1orf8 FUCA1 MFAP5 SERPINE1 Anxa4 Dnajb9 Lypla1 Sec11I1
CALU GADD45G NAGLU SLC39A6 Atp11a Fn1 Mfap5 Sec11I3
CCT5 GM2A ODF2 TACSTD1 Atp6v0e Fuca1 Naglu Sec61b
CD151 GNG5 PABPC1 TAF9 Calu Gadd45g ORF18 Serpine 1
CLDN3 GRP58 PRM1 TAGLN Cct3 Gm2a Odf2 Slc39a6

H6M6 COL3A1 HMGN1 PROCR TFPI2 Cct5 Gng5 P4hb Tacstd1
COL4A1 HSPA5 PRSS8 TMP21 Cd151 Grp58 Pabpc1 Taf9
COL4A2 KDELR3 RHOC TMPRSS2 Cldn3 Hmgn1 Prm2 Tagln
CSRP1 KRT18 RNASE4 TRAM1 Col3a1 Hspa5 Prm3 Tfpi2
CTSL2 LAPTM4A RNP24 VIL2 Col4a1 Kdelr3 Procr Tmprss2
CYR61 LDHC RPN2 WEE1 Col4a2 Krt1-18 Prss8 Tram1
DBI LGALS3 S100A10 WWTR1 Csrp1 Laptm4a Rhoc Vil2
DLK1 LGALS3BP SCC-112 Ctsl Ldh3 Rnase4 Wee1

H13M12 ADRBK2 CD74 HLA-DOB PSMB8 6330406L22Rik Cel Jak1 Psmb9
APOE CD8A JAK1 PSMB9 Apoe Cr2 Klk6 Rac2
ARHGEF1 CEL KLK1 RAC2 Arhgef1 Csk Lcp1 Rag2
BIRC2 CR2 LCP1 RAG2 Birc2 Cst3 Lcp2 Rasgrp1
C1QB CSK LCP2 RASGRP1 C1qb Ctsl Lgmn Rpl26
C4A CTSL2 LGMN RPS16 C4 Cxcl9 Ltb Rps16
C7orf32 CXCL9 LOC92482 SELL Ccl5 Cxcr4 Ly86 Sell
CCL5 CXCR4 LTB STAT1 Ccr7 Cyp1b1 Marcks Sh2d1a
CCR7 CYP1B1 LY86 TAP1 Cd19 Ddit4 Mlp Stat1
CD19 DDIT4 MARCKS TCF12 Cd2 Dntt Ms4a1 Tap1
CD2 DNTT MARCKSL1 TNFRSF1B Cd28 Dusp2 Mx2 Tcf12
CD28 DUSP2 MS4A1 TRAM1 Cd3d Fcer2a Mxd4 Tnfrsf1b
CD3D FCER2 MX1 UBXD2 Cd3e Fkbp5 Pdcd4 Tram1
CD3E FKBP5 MXD4 UGCG Cd3z Gmfg Pfc Ubxd2
CD3Z GMFG PFC VCAM1 Cd48 Gnb2-rs1 Pla2g7 Ugcg
CD48 GNB2L1 PLA2G7 Cd53 H2-Ob Pscdbp Vcam1
CD53 HA-1 PSCDBP Cd8a Ii Psmb8
ABCC2 CSH1 ICAM1 SCGB1A1 2900054D09Rik Cdh16 Gpx3 Ptprd
AHCY CSHL1 IGFBP5 SDC4 A030007L17Rik Cln2 Gyk Ptprf
AHCYL1 DAO KCNAB2 SEMA3B Abcc2 Cml1 H2afz Ptprs
ALDOB DDX17 KIBRA SLC12A3 Ahcy Cryz Icam1 Scgb1a1
ANK3 EGF KNG1 SLC1A1 Ahcyl1 Dao1 Igfbp5 Sdc4
AQP4 ENPEP LGMN SLC22A6 Alcam Ddx5 Ii Sema3b
ATP1B3 FBP1 LIPA SLC3A2 Aldob Egf Kcnab2 Slc12a3
ATP6V1A FTH1 MRLC2 SLC4A4 Ank3 Enpep Kng1 Slc12a1

H9M9 ATP6V1B1 FTL MS4A1 SLC7A7 Agp4 Fbp1 Lgmn Slc22a6
ATP6V1B2 GAD1 MSN SMPDL3A Atp11a Fbp2 Lip1 Slc3a2
C7orf2 GH1 NAT8 TKT Atp1b3 Fth1 Ms4a1 Slc4a4
CALB1 GK PDZK1 TPP1 Atp6v1a1 Flt1 Msn Slc7a7
CD48 GM2A PPIA TXN Atp6v1b2 Gad1 Mylc2b Smpdl3a
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CD53 GPC4 PRKCZ UCHL1 BC037006 Gh Pdzk1 Tkt
CD74 GPM6B PTHR1 UMOD Calb1 Gm2a Ppia Txn1
CDH16 GPX3 PTPRD VIL2 Cd48 Gpc4 Prkcz Uchl1
CRYZ H2AFZ RNF24 YWHAZ Cd53 Gpm6b Pthr1 Umod

H10M8 ACADM CYR61 ICAM2 PKIG 1110030L07Rik Cycs Ier3 Pdlim1
ALDOB DKFZP564B167 IER3 PKP2 1500010M16Rik Cyr61 Ii Pkig
ATP6V03 DLD ITGB1 PPGB 2610205H19Rik Dld Itgb1 Pkp2
C1QR1 DLK1 LDHC PPIC Acadm Dlk1 Ldh3 Pltp
CA4 ECH1 LGALS3 PTHR1 Aldob Ech1 Lgals3 Ppic
CD74 ENG LOC112714 RBMS1 Atp6v0e Eng Lum Pthr1
CDH13 ENPEP LUM SDHB C1qr1 Enpep Lyzs Rbms1
CDH16 F2R LYZ SLC12A3 Car4 F2r Mapkapk2 Sdhb
CDH2 FABP1 MAPKAPK2 SLC7A7 Cdh13 Fabp1 Mef2 Slc12a3
CGI-51 FABP3 MEF2A SOD2 Cdh16 Fabp3 Myh2 Slc7a7
COL4A1 FTH1 MYH6 TM4SF7 Cdh2 Fth1 Myh6 Sod2
COL4A2 GC20 NDUFA5 TNCC1 Col4a1 Gja1 Myh7 Tm4sf7
COX6A2 GJA1 NDUFAB1 TUBA2 Col4a2 Gja4 Ndufa5 Tnnc1
COX7A1 GJA4 NDUFC1 UBPH Cox6a2 Gng11 Ndufa9 Tuba1
COX7A2 GK NDUFS1 UMOD Cox7a1 Gng5 Ndufab1 Tuba3
CRIP1 GNG11 NDUFV2 VCAM1 Cox7a2 Gpx3 Ndufc1 Umod
CSRP3 GNG5 NNT WWTR1 Crip1 Gyk Ndufv2 Vcam1
CYC1 GPX3 PDHB CSRP3 HBA-A1 NNT WWTR1
CYCS HBA1 PDLIM1 Cyc1 Icam2 Pdhb
ACYP1 CDKN3 LDHC RAN 1810014L12Rik Cct Hspca Prm3
AF1Q CETN3 LYPLA1 SCC-112 2610205H19Rik Cdc2a Hspcb Psip1
AKAP4 CHC1 MAC30 SLC7A5 573049M16Rik Cdkn3 Impdh2 Psma6
ASNS COPS5 MARCKSL1 SMC4L1 AI839562 Cetn3 Ldh3 Psme4
ATP1B3 COX7A2 NDUFA5 SNRPD2 Acyp1 Chc1 Lypla1 Ran
BUB1 CSDA NEK2 SRP14 Akap4 Cops5 Mlp Slc7a5

H3M4 BUB3 DKFZP564B167 NRD1 SRPK1 Asns Cox7a2 Ndufa5 Smc4I1
C18orf10 ERH ODF2 TAF9 Atp1b3 Csda Nek2 Snrpd2
CCNA1 EZH2 PABPC1 TBPL1 Bub1 Dnajc2 Nrd1 Srp14
CCNBA2 FDFT1 PRM1 TRIM28 Bub3 Erh Odf2 Srpk1
CCT4 H2AFZ PSIP1 UCHL1 Ccna1 Ezh2 Osbpl9 Srpk2
CCT5 HSPCA PSMA6 ZRF1 Ccnb2 Fdft1 Pabpc1 Stk23
CDC2 IMPDH2 PSME4 Cct4 H2afz Prm2 Taf9

H8M10 ALDOB EPB42 LMO2 S100A9 1110014C03Rik Epb4.2 Ltf Serpine1
ARFGEF1 EZH2 LTF SCC-112 Aldob Ezh2 Mcm5 Slc12a3
ATP6V0C FBP1 MMP9 SERPINE1 Arfgef1 Fbp1 Mmp9 Slc22a6
BPGM FLT1 MPP1 SLC12A3 Atp6v0c Fbp2 Mpp1 Slc3a2
CALB1 GALC NAT8 SLC22A6 Bpgm Flt1 Pabpc1 Slc4a4
CCNB2 GK PABPC1 SLC3A2 Calb1 Gns Pdzk1 Slc7a5
CCR2 GNS PDZK1 SLC4A4 Ccnb2 Gpr56 Peg3 Slc7a7
CCR5 GPR56 PEG3 SLC7A5 Cd59a Gpx3 Ppgb Tfpi2
CD59 GPX3 PPGB SLC7A7 Cdh16 Gyk Prss11 Tfrc
CDH16 HBA1 PRSS11 TFDP1 Cdr2 Hba-a1 Prtn3 Umod
CDR2 HMS PRTN3 TFPI2 Cldn4 Hmbs Psen1 Vil2
CLDN4 HMOX1 PSEN1 TFRC Cml1 Hsd17b2 Pthr1 Xpo7
CTSL2 HSD17B2 PTHR1 TMP21 Ctsl Igfbp1 Rab11fip5
CYP17A1 IGFBP1 RAB11FIP5 UMOD Cyp17a1 Kng1 Rcor1
DAO KNG1 RCOR1 VIL2 Dao1 Krt1-18 Rhced
DLK1 KRT18 RHCE XPO7 Dlk1 Lgmn S100a8
DNAJB1 LGMN S100A8 Dnajb1 Lmo2 S100a9
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AGER CYP2A13 ITGA6 RARS 1110014C03Rik Cpd Galnt3 Notch4
ALDH3A1 CYP4B1 KLK1 RDX Ager Csf3 Gp38 Nr1d2
AMY2A DOCK9 LAMB3 SAA1 Alcam Cyp1a1 Gpsm3 Nr4a2
ANSN EIF2AK2 LMO7 SCC-112 Aldh3a1 Cyp2a4 Gzmb ORF31
ATP11A ELF3 LOC92482 SCGB1A1 Amy2 Cyp4b1 Icam1 Ocln
ATP2A1 ELL2 LYZ XED61B Asns D3Ucla1 Icam2 Pabpc1
CAMK1G EMP2 MAPK11 SERP1 Atp11a Dock9 Il6 Pdcd4

H12M13 CASP4 F2R NAP1L1 SOX10 Atp2a1 Egfl8 Itga6 Pon3
CD14 F3 NFKBIA T1A-2 Atp2a2 Elf3 Klk6 Ppt2
CD9 FGG NR1D2 TMP21 Atp2a3 Ell2 Lamb3 Prkr
CDO1 GALNT3 NR4A3 TRAM1 Casp11 Emp2 Lmo7 Ptprm
CLDN3 GZMB OCLN VIPR1 Cd14 F2r Lyzs Rars
CPD ICAM1 PABPC1 Cd9 F3 Mapk12 Rdx
CSF3 ICAM2 PON3 Cdo1 Fgg Nap1I1 Rnf5
CYP1A1 IL6 PTPRM Cldn3 Fkbpl Nfkbia Saa3

H7M7 ADD1 FGA NDN TCEB1 1700093E07Rik Dpp6 Macf1 Tde2
ALB FGB PDGFRA TCF8 4930542G03Rik Fabp1 Ndn Tuba1
AMBP FGG PEA15 TDE2 5430432P15Rik Fez1 Pdgfra Tuba3
APOE FLJ13052 PEG3 TNKS Alb1 Fga Pea15 Tubb2
APOH FN1 PENK TSPYL4 Ambp Fgb Peg3 Tubb5
APP FTH1 PLG TUBA2 Apoe Fgg Penk1 Tyro3
AQP4 FYN PLS3 TUBA3 Apoh Fn1 Pls3 Ugcg
ARG1 GC PTGDS TUBB App Fth1 Ptgds Vsnl1
ATP6V1B2 GLUL RAB31 TUBB2 Agp4 Fyn Rab6ip1 Vtn
C4BPA HRG RAB6IP1 TYRO3 Arg1 Gc Ranbp1 Wfs1
C9 HSPCA RANBP1 UGCG Atp6v1b2 Glul Rbp4 Zfhx1a
CDC2L1 KIFAP3 RBP4 VSNL1 BC004012 Hrg Rohn
CRMP1 LCAT RND2 VTN C4bp Hspca Serpina1a
DIA1 LOC112714 SERPINA1 WFS1 C9 Hspcb Serpinc1
DPP6 LUM SERPINC1 Crmp1 Kifap3 Serpine1
FABP1 MACF1 SERPINE1 D10Bwg0791e Lcat Serpinf1
FEZ1 MMP23B SERPINF1 Dia1 Lum Tceb1
ACTG1 CYP1B1 RBP1 SFRP1 Actb Esd Rbp1 Slc22a6
ACTR3 EPHB4 RNASE4 SLC12A3 Actr3 Fgl2 Rnase4 Slc7a7
ADRBK2 ESD RPL10 ASLC22A6 Aldh1a2 Hnrph1 Rpl10a Svil
ALDH1A2 IER3 RPL13 SLC7A7 Amy2 Ier3 Rpl13 Tacstd2
AMPD3 IF RPL19 SVIL Arg1 Igfbp5 Rpl19 Tagln
AMY2A IGFBP5 RPL23A TACSTD2 Atp5a1 Igi Rpl23a Tgfb1i1
ARG1 IGJ RPL30 TAGLN Calb1 Impdh2 Rpl30 Thy1
ASS IMPDH2 RPL5 TEAD3 Ccl11 LOC436061 Rpl5 Tnc
CALB1 LTF RPL6 TGFB1I1 Ccl5 Lamr1 Rpl6 Trip6

H11M11 CCL11 LUM RPL7 THY1 Cct3 Ltf Rpl7 Umod
CCL5 MAF RPS10 TNC Cd2 Lum Rps10 Wdr1
CCR2 MFAP5 RPS11 TRIP6 Cd3d Mfap5 Rsp12 Wnt5a
CCR5 MYH11 RPS12 UMOD Cdh16 Myh11 Rps19 Wnt5b
CD2 NAT8 RPS19 WDR1 Cfi Myh9 Rps3 Wt1
CD3D PADI2 RPS3 WNT5A Cml1 Padi2 Rps3a Ywhaq
CDH16 PDZK1 RPS3A WT1 Cspg2 Pdzk1 Rps7
CSPG2 PLAT RPS7 YWHAQ Csrp1 Plat Serpina1a
CSRP1 PTHR1 RPSA Ctsl Pthr1 Sfrp1
CTSL2 PTMA SERPINA1 Cyp1b1 Ptma Slc12a3
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