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SUMMARY

Throughout the automotive industry, the operational definition of quality
has taken the form of process capability indices. These indices are fairly
well defined for the standard case of a univariate process characteristic with
symmetric bilateral tolerances. However, for other nonstandard tolerancing sit-
uations process capability indices are poorly defined and potentially misleading
measures of process quality. In this paper, we describe methods for computing
process capability indices for three nonstandard design tolerances: unilateral
tolerances, nonsymmetric bilateral tolerances, and bivariate circular toler-
ances. Examples will be given to show that these new indices consistently
convey the ability of a process to meet design specifications.

INTRODUCTION

Process capability indices have become widely used in American and Japanese
industries to quantify process quality. In fact both Ford Motor Company, in
its Quality System Standard Q-101 Manual, and General Motors Corporation, 1in
its Manufacturing Systems Qualification Manual GM 1735, require computation
and documentation of process quality for all manufacturing processes throughout
their organizations.

In Ford’'s Q-101 Manual, they specifically outline the corporate requirements
regarding process capability. For example, while process capability *“does
not apply to processes evaluated using attributes data”, it *“does apply to
all critical and significant characteristics evaluated using variables data”.
Furthermore, the following specific numerical requirements for Cp and Cpk are
detailed in Q-101. Ford’'s requirement for process capability is that Cp and

pk equal at least 1.33 and that the producer pursue process improvement to
increase capability. Based on the actual Cp and Cpk+ the following responses
are required: For unstable processes and those with a Cp or Cpk less than 1.0,
containment actions (typically 100% inspection or testing) must be implemented
immediately and sustained. For processes with Cp and C ok levels above 1.0 but
less than 1.33, containment is required unless otherw1se stated on an approved
control plan. Process improvement to reach 1.33 is mandatory. Therefore, both
Cp and Cpgk must be at least 1.0 for *“all characteristics using variables data”
and attempts to improve them to 1.33 or greater are mandated by corporate decree.
This perception that 1.0 is marginally acceptable and 1.33 or better must be
achieved for all processes is very much ingrained in the minds of managers and
engineers throughout the organization.

The goals of 1.0 and 1.33 were computed from the case of a normally dis-
tributed univariate process characteristic toleranced with symmetric bilateral
tolerances. ANSI (1982) defined a nonconforming unit as any unit that falls



outside the tolerance zone. Since Cp is a one-to-one function of the potential
proportion nonconforming, each Cp value can be translated to a specific defect
rate (Boyles (1991)). For example a Cp of 1.0 indicates a potential proportion
nonconforming of 2700 parts per million (ppm). However, Cpk is not a one-to-one
function of the actual proportion nonconforming, but it does provide an upper
and lower bound on the actual proportion nonconforming (Boyles 1991). This fact
is fairly surprising to many engineers and managers since Cpk is usually treated
as a direct function of the actual proportion nonconforming.

Since Cpk has been shown to be an inconsistent measure of the actual
proportion nonconforming, the goals of 1.0 and 1.33 are somewhat arbitrary for
Cpk even in the standard symmetric bilateral tolerance situation. When you begin
to apply that goal to other “critical and significant characteristics” that are
not the standard symmetric univariate case, the interpretation becomes even more
arbitrary. In order to solve this problem, Lam and Littig (1992) have recommended
the direct use of the actual and potential proportion nonconforming as process
performance measures. However, to satisfy common corporate requirements, these
values will generally have to be expressed in terms of capability indices. In
particular, if p* and p are the potential and actual proportion nonconforming
of a process, they define

1 * 1

va = Sd’-l (1 - %—) and Cpp = §¢_1 (1 - %) (1)
where ®(x) is the integral of a standardized normal density from minus infinity
to any real number x. The definition of Cp+ is chosen such that Cp. =Cp for the
standard case of a univariate normal distribution with a symmetric bilateral
tolerance. They recommend that Cp., Cpp and the k (Kane (1986)) indices should
be reported in order to consistently, and effectively, communicate the ability
of a process to meet design tolerances.

In this paper we will show that by using Cpp in place of Cpk especially
for nonstandard tolerance situations, interpretation and logical decision mak-
ing will be improved. 1In this paper we consider three examples: the case of
unilateral tolerances (used to measure flatness and surface finish for exam-
ple), nonsymmetric bilateral tolerances (often used to tolerance assembly fit
characteristics), and bivariate circular tolerances (used for hole location and
two dimensional characteristics).

TEXT

In this section, the three nonstandard tolerance cases will be discussed.
For each case we will first discuss the specific tolerance and why it is
used. Capability indices currently being used for these situations will then be
presented. A simple example will demonstrate why this definition is ineffective
and misleading. Finally we will discuss a new definition to measure capability
in these cases and demonstrate the logical interpretation by applying the new
definition to the previous example.

Unilateral Tolerances

A common nonstandard case is the situation of a process characteristic
toleranced with a unilateral tolerance. Generally in this situation, the nominal
target value is set at zero and a single upper specification limit is defined.
By the ANSI definition, any characteristic that lies above the upper limit (USL)
is considered to be nonfunctional.
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Figure 1: A comparison between 3 different processes over a unilateral tolerance

Currently for unilateral tolerances, Q-101 states that Cp does not exist
since the process mean cannot be centered at the target. This is due to the
fact that if the mean of a normal distribution were centered at the target value
of zero, some process characteristics would have negative values. Since this
is physically impossible Cp is not reported. Therefore, Cpk is the only index
that is reported in this situation and it is defined identically to the CPU
index (Kane (1986)) for the bilateral specification case with the target value
centered between the specification limits.

The problem with defining process capability for unilateral tolerances in
this manner stems largely from the fact that the underlying process distribution
is nonnormal and usually skewed to the right. Since the traditional capabil-
ity indices implicitly assume a normally distributed process, calculation of
the indices when normality is clearly not present can lead to misleading and
incomplete results.

Consider the two processes presented in Figure 1. Process A follows a three
parameter gamma distribution (Johnson and Kotz (1970)) with shape parameter
o = 4, scale parameter B = 1, and a minimum value Y = 0, and process B follows
a gamma distribution with @ = 4, f = 1/2, and v = 5. Since Cp is not reported
for unilateral tolerances, and they both have a Cpk value of 1.0, an engineer
would logically assume that the two processes are identical and equally capable.
However, it can be clearly seen that Process B has a distinct location bias and
much smaller variance than Process A. Therefore if the location bias for Process
B can be corrected, it would be far more potentially capable than Process A.
However, this information is never reported using the current system.

Aside from this problem, there is a major discrepancy with the definition
of Cpk in the unilateral case. We have already shown that many engineers and
managers judge the capability of a process by the magnitude of the process
capability index. An index value of 1.33 or greater usually indicates that the
process is conforming appropriately to the specification limits. However, the
unilateral definition of capability can be extremely misleading. Examine process
C in Pigure 1. This process is exponentially distributed with a Cpk value of
1.5 and therefore is presumably capable of meeting the design specifications.
However, the defect rate for the process is over 4000 defects per million!
Since a capability of 1.5 in the case of a normal distribution with bilateral



specifications implies a defect rate of less than 7 units per million, this is
a dangerously misleading result.

The basic problem in measuring capability for unilateral specifications is
the implied assumption of normality. In fact, a characteristic with a unilateral
tolerance is much better modeled by a gamma distribution. Using a three parameter
gamma distribution has several primary advantages:

1. The gamma distribution has a distinct minimum value y > 0. This correlates
well with the physical process since the process cannot produce any parts
below zero. Furthermore, this minimum does not have to be a zero. For
example in Figure 1, Process B is a Gamma Distribution with a minimum value
of 5. This minimum value allows us to define a Cp. index since we could
presumably shift the process so at least one part could be produced at the
target value.

2. The gamma distribution is very flexible in shape and form. This allows
the distribution to more closely model the sample data. As discussed in
Lehrman (1991), exponential and chi-squared distributions (both special
cases of gamma distributions) are among the commonly used frequency distri-
butions in modeling data from production.

3. Proportion nonconforming calculations (and thus Cp. and Cpp values using
Equation (1) above) will be far more accurate in reflecting the ability of
the process to produce parts which conform to tolerance.

Thus the new proposed method for computing capability for unilateral tolerances
is to use a three parameter gamma distribution. Compute the proportion of
this distribution that falls outside the tolerance range. This is the actual
proportion nonconforming. Compute Cpp using Equation (1) above. To compute
Cp+, shift the gamma distribution so that the minimum value is at the target
location. Compute the potential proportion nonconforming and use Equation (1)
to compute Cp+. Also, it is useful to report the k index and in this case, k
= Y/USL. k here is a measure of the deviation of the minimum value from the
target. k = 0 means that the process is centered so that at least some parts
are produced at the target value.

Applying this method to the previous examples demonstrates the consistency
of this approach. In the first example, Process A will have a k value of 0, a
Cp+ and Cpp value of 0.85. Process B will have a k value of 0.5, Cp+ of 1.55 and
a Cpp of 0.85. It is then clear that while both processes currently have the
same Cpp value, process B has the potential to greatly outperform Process A.
Process C in Figure 1 would have a k value of 0, a Cp+ and a Cpp of 0.96 which
is a more accurate representation of the actual conformance of the process to
the tolerance.

Nonsymmetric Bilateral Tolerances

Another common situation is that of nonsymmetric design tolerances where the
process target is not centered between the upper and lower design specifications.
This is generally used for assembly fit process characteristics where deviation
in one direction is less acceptable than deviation in the other. The current
method for calculating capability in these cases was described by Kane (1986).
In particular, he defined

- |T-py I {US - T—LS}
k = R{n{T-LsL, USL-T}’ cp =min { U5, 580 5, (2)

and
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Figure 2: A comparison between 4 different processes over a nonsymmetric tol-
erance
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where L and 0 are the process mean and process standard deviation respectively.
This method has some fairly substantial flaws primarily because it ignores the
fact that deviation on one side is more allowable than on the other. The
problem with this method is highlighted in Figure 2. Note that all processes in
this example have a standard deviation of 0.67. Under the current method for
capability computation, processes A, B, and D all have a Cp = 1.0 and a Cpk =0.
Therefore a simple examination o6f the capability indices by an engineer would
indicate that all three processes are identical. This is clearly not the case.
Examine A, B, and D by sight and ask yourself which of the three processes is
currently best conforming to the tolerance. It is obvious that process B is the
best of the three. While the means for both processes B and D are both located 3
standard deviations from the target, process B is clearly preferable to process
D since the intent of the design engineer is to penalize deviation toward the
lower specification less than deviation toward the upper specification. Since
the deviations are penalized equally in both directions in computing Cpk., this
important fact is ignored.

A factor which makes calculation and interpretation of capability indices
difficult for bilateral nonsymmetric tolerances is the fact that the primary
intent of the design engineer is not to simply minimize the proportion of noncon-
forming units. Instead, the engineer wants to minimize proportion nonconforming
under the additional constraint that the majority of units be produced near the
target value. With this in mind, observe processes B and C which have identical
standard deviations. The mean of process B is 2 units below the target value
of 16. Since the lower specification limit is set at 10, the deviation of the
mean below the target for process A has consumed a third of the allotted lower
tolerance. Similarly for process C, we can see that the mean of 16.67 indicates
that the deviation of the mean above the target value has consumed a third of
the allotted upper tolerance. Although the mean for process B has deviated from
the target three times more than the mean for process C, proportionally they
have identical deviations since deviation in the lower direction is three times
more acceptable than deviation in the upper direction. Therefore, it seems
reasonable to assume that both processes B and C are currently equally capable.
This can be achieved through the use of the following approach.



Define d;=max{(T-LSL)/(USL-T),1} and d;=max{(USL-T)/(T-LSL),1}, i.e., d; or
d; compare the allowable deviation below the target and the allowable deviation
above the target. Assuming that the underlying process is normally distributed,
we define the modified potential proportion nonconforming, p*, and the modified
actual proportion nonconforming p as follows:

o -o(155%) vo 48

and

d,c d,0 d,c
3Cpf (1- kN )+¢('3Cpt(1+kN))

( USL - max{T B}  max{T-p, 0})<+¢ (_min{T,u} - LSL max{u-T, o})
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where ky = max {(T-p)/(T-LSL), (4-T)/(USL-T)}. Note that Cp. defined by Equa-
tion (1) using the modified potential proportion nonconforming p* is the same
as Cp defined by Kane (1986) (Equation (2) above). Also, the modified potential
proportion nonconforming is weighted such that in the centered case (L = T), the
modified proportion nonconforming in the upper and lower tails is the same.

Using these definitions, we recompute the capability for the examples
presented in Figure 2. In this case, all indices will still have a Cp+ = 1.0.
However, processes A and D now have Cpp = 0.225 and ky = 1, and processes B and
C have a Cpp=0.76 and ky = 0.33. Therefore, processes B and C are correctly
identified as currently being equivalent. Note that the Cpp for A and D is
not equal to zero using this method since only 50%, and not 100%, of the parts
produced do not conform to the tolerance. Note that the k index defined in Kane
(1986) is equal to 1 for both processes B and D even though process B is a better
process. Hence, the ky index defined here is a more consistent measure than the
k index for deviation of the mean from the target for nonsymmetric tolerances.

Bivariate Characteristics

The third situation we present is the case of a bivariate process charac-
teristic. One example is a location characteristic for the center of a drilled
hole. The target in this case will be both an x and y coordinate and the toler-
ance zone is generally circular or elliptical in nature. Currently, there are
two methods for compressing the two dimensional data down to cne dimension so
that the traditional capability indices Cp and Cpk can be applied. Part center
radial deviation measures the radial deviation from a reference point on the
plane outside of the specification zone (for example, the part center) and true
position deviation measures the absolute deviation from the target location. It
is not difficult to see from Figure 3 that even though sample A is preferable to
sample B, the current methods would both report an estimated Cp value of 1.0.
This shows that compressing the two dimensional data into one dimension results
in an inherent loss of information and can produce misleading representations
of the true bivariate capability.

The solution to this problem is to compute the potential proportion non-
conforming p* and the actual proportion nonconforming p over the circular or
elliptical tolerance zone. In the case when the underlying process is bivariate
normal, a computational procedure is given in Littig, Lam and Pollock (1992)
to compute p* and p efficiently. Once p* and p are available, Cp+ and Cpp can
then be computed using Equation (1) above. We can also compute the k index for
a bivariate characteristic with process mean (p,,H,) over a circular tolerance
zone centered at (0,0) with radius r. In particular, k= Mu?+¢@/r. For a
more detailed discussion of computing process capability for bivariate and mul-
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Figure 3: Current methods to compute process capability for a bivariate char-
acteristic over a circular tolerance zone

tivariate characteristics over complex tolerance regions, see Littig, Lam and
Pollock (1992).

CONCLUSION

In this paper we have presented process capability indices for three non-
standard tolerance situations. The overall intent of our research is to develop
a comprehensive and complementary set of capability measurements for all possi-
ble tolerancing situations. Since this method relies on a computer to calculate
the indices, software has been developed and implemented for this purpose. Re-
search continues on extending this approach to other cases and determining the
statistical properties of the estimators presented here.
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