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Abstract

A new approach to process capability measurement is developed and applied to a complex
multivariate tolerance system. The approach, including a comprehe.nsive and complementary
system of indices, is based on process proportion nonconforming and deviation from target. It is
both consistent and extendible for any univariate or multivariate tolerance systems. A detailed
example for a transmiss}on gear carrier is presented to highlight the solution method for single

holes, coaxial holes, and multiple coaxial holes.
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Multivariate tolerances; Process capability.

1. Introduction

Two critical elements needed for continuous improvement in manufacturing industries are the ability
to quantitatively measure production quality, and the use of those measures for competitive bench-
marking and product failure diagnostics. For these reasons, quantitative measures are now required
at virtually every level of manufacturing throughout the automotive industry. Process capability
indices were introduced to serve as the language for these quantifying measures (Kane 1986). They
have since been widely accepted and adopted in industry and are now often the mandated units of

measure for describing process quality.

Unfortunately, the current capability indices in use are often inconsistent measures with little



or no physical meaning. This is especially evident when one tries to extend the common one-
dimensional indices to measure the quality of a process with multi-dimensional characteristics and
tolerance zones. In this paper we describe some of the current methods used to measure multi-
dimensional process capability, demonstrate how these methods are inconsistent and misleading,
and define solution techniques which should be valid for bany multi-dimensional characteristics and

complex tolerance regions.

Our initial motivation was prompted by a question of how to measure capability on the produc-
tion of transmission gear carriers. A gear carrier is an essential part of an automatic transmission
(Figure 1). The primary function of a gear carrier is to hold a number of small pinion gears in a
specific location and angular orientation with respect to the centerline of the transmission. Shifting
from gear to gear is then accomplished by rotating these small pinion gears, either in conjunction

with or independent of other gearing systems within the transmission.

Since the entire power of the automobile flows through this gear system, the gear carrier must
be held to very tight tolerances for location and angular orientation of the pinion gears. Both of
these characteristics are obviously controlled by the location of the holes drilled in the upper and
lower tier of the carrier. These upper and lower holes form a coaxial hole pair which determines
the eventual location and a,zigular orientation of the shaft for one of the four pinion gears. From a
design standpoint, there are three separate two-dimensional tolerance zones for each coaxial hole
pair. These three tolerances control the location of the hole on the top tier, the location of the
hole on the bottom tier, and the angular orientation of the gear by constraining the location of the

bottom hole with respect to the location of the top hole.

Many different manufacturing processes are used to produce the coaxial holes in the gear carrier.
They vary widely by method and approach but in general they are all responsible for producing
the proper locations and orientations of all four coaxial holes. Since quantitati;/e benchmarking
and comparison data is needed among the processes, it is imperative that reliable methods exist
for quantifying the ability of each process to conform to the tolerance requirements for the four

coaxial holes.

While there are a variety of reasonable methods for this quantification, we concentrate on those
that complement and can be directly related to ezisting process capability indices such as Cp and

Cpr (Kane 1986). Modern manufacturers have invested a great deal of time and money in training



engineers, managers, and technicians in the use and interpretation of these indices. In fact, process
capability indices have become a familiar, preferred, and often required language for quantifying
process performance. For example, Ford’s Q-101 manual (1990) states the requirement that all
manufacturing processes must achieve minimum process capability indices Cp and Cpy of 1.33 or

better (1.0 for previously tooled parts).

For the gear carrier process it is common to apply Cp and Cpk to measure-the process capability
for a single hole location. However, as illustrated by the examples in the next section, compuﬁng
Cp and Cp in the conventional manner for a hole location can easily produce misleading results.
Indeed we show that current process capability indices are insufficient to properly quantify the
capability for producing even a single hole. Thus they are inappropriate to accurately quantify the
capability of the production and tolerance ‘system for the gear carrier. This situation motivated us
to develop a new system of capability measurement which can consistently and accurately quantify

process quality for a wide variety of multivariate process situations.

2. Current Methods for Bivariate Hole Location Problem

A nonconforming part is defined in ANSI (1982) to be: any part that falls outside the tolerance
zones. It is therefore clear that the most basic measure of manufacturing process capability is the

proportion or fraction of nonconforming parts produced.

In this section, we present definitions of the commonly used indices Cp and Cpk, and show
that Cpk can be an inconsistent measure of the proportion of nonconforming parts. We explain
how Cp, and Cpi are currently computed for the bivariate hole location problem and why they are
misleading measures of process performance. These examples motivate the definition of new indices

that are applicable to both univariate and multivariate processes.

For a univariate process, let

T = the design target or nominal,
g = the process mean,
o = the process standard deviation,

U and L = the upper and lower design specifications.



In this paper, we assume that the target value T lies in the center of the specification limits.

The univariate Cp index is defined in Kane (1986) as

_U—L
" 6o

Cy (2.1)

and is a function of only the process variation. Thus, C, measures the potential performance of a
process: that which could be attained if the process mean is equal to T. Note that for a given value
of Cp, the potential proportion of nonconforming parts can be directly determined. v.In particular,

the associated proportion nonconforming (when the univariate process is normally distributed) is
p =21 - 8(3C,)] (22)
where ®(z) is the cumulative standardized normal distribution.

The Cpk index, related to the C, index, is a measure of the actual performance of a process

with the process mean not necessarily equal to T'. Again, from Kane (1986),

Cpk = Cp(1 - k)
where
_2[T-p|
k= T (2.3)

Note that for a given value of Cy, and k, the actual proportion nonconforming is given by
p=2-%(3C,(1-k))— ®(3C(1 +k)). (2.4)

The index k, which compares the difference between the process mean and the target to half the al-
lowable spread, is widely used in Japanese industry as a measure of process centering (Kane 1986).
Both Cp and Cpy are generally used to quantify process performance under the conditions of nor-

mality or near-normality of the realized part dimension (Pearn et al. 1992).

2.1 Application of C, and C, to the Hole Location Problem

In order to demonstrate their deficiencies, we now present (via examples) commonly used methods
that reduce the inherently two-dimensional problem to one-dimension so that the traditional capa-

bility indices can be computed. Consider a manufacturing process which is responsible for drilling



a hole in a plane. A target location (Zo, yo) for the center of the hole is specified where zo and
%o are measured from some fixed reference point on the plane. The specification region for these
characteristics is frequently in the form of a circular or elliptical region (ANSI 1982). It follows
that the hole location process relative to the fixed reference point on the plane is a two-dimensional
random variable (X,Y). We assume that (X,Y) has a bivariate normal distribution with process
mean p = (Ug,py) and variance-covariance matrix ¥. Furthermore, we assume the specification
region is a circle with a center of (2o, yo) and radius r. Note that in this paper when we refer to
“hole location”, we mean the location of the center of the produced hole. It is assumed that the

radius of the produced hole is separately toleranced.
Example 1

The true position deviation for the location of the center of the hole is defined to be:

D= /(X -2 + (Y - )2,

where (o, o) is the target location, and (X,Y) is the realized hole location, both relative to some
fixed reference point on the plane. Using D as a one-dimensional proxy for the two-dimensions
of (X,Y), Cp and Cpi can be computed by using the mean and standard deviation of D. One
immediate weakness of this ;nethod is that D, being strictly nonnegative, is not likely to be modeled
well by a normal distribution. Hence the usual interpretation of Cp, and the well known statistical

methods to estimate C;, based on independent and identically distributed normal samples no longer

apply.

Consider a process A that produces a hole location process (X4,Y4) that is bivariate normal

with p4 = (0, %) and

2.2
UL
9
Y4 =
T202
0 5

where c is a positive constant.

We shall compare process A to another process B that produces a hole location (Xp,Yp) which



is bivariate normal with pg = (2o — /2, y0) and

2
— 0
36

Yp =
0 &2

where 6 is a positive constant. The contour plots for the respective density functions are given in

Figure 2 for ¢ = 0.75 and 6§ = r/36.

Let

Dy= \/&A - 20)? 4+ (Y4 — v0)?

and

Dp = \/(XB - 20)? + (Y5 - %)?.

It can be verified that ,

VAR(D,) = r'd (2 - 125> .

9
VAR(Dp) ~ VAR(Xp) = (r/6)?, when § << 7/6.

Thus VAR(D,4) < VAR(Dp)if ¢ < 1/(24/2 — 7/2) ~ 0.76 and so if § and c are small enough, the
Cp of process A is greater than the Cp, of process B. This result suggests that the potential capability
of process A is greater than the potential capability of process B. However, a visual examination of
Figure 2 indicates that process B has a better potential for producing fewer nonconforming. parts

if the process mean can be centered at the target.
Example 2

The part center radial deviation measures the radial deviation from the realized point to a
reference point on the plane outside of the specification region. Generally, this reference point is
the part center or a locating pin position on the part. If this reference point is (zg, y¢) then the

part center radial deviation is given by

D' = /(X - zh)2 +(Y - ).

Since the expected value of D' is usually much larger than its variance, the probability distribution

of D' can be usually be approximated fairly well by a univariate normal distribution.



Let us compare process E that produces (Xg,Yg) and process F that produces (Xp,Yr).
Assume z, = 0, y) = 0 and let R be the distance between the reference point (0,0) and the center

of the specification region of radius 7. The random vector (Xg,Yg) is assumed to follow a bivariate

o} 0
Yg = 9 |2
0 o5

and (Xp, YF) is bivariate normal with up = (0, R) and

o 0
Yr = E
0 o

where 07 >> 03. An example of this situation is illustrated in Figure 3. As can be seen in this

normal with pg = (0, R) and

figure, the distributions of the two processes are identical except for a 90 degree rotation of the
principal axis. Regarding the production of nonconforming parts, process E and process F are
equivalent. However, the part center radial deviation method will report that process E has a

much greater potential capability than process F. This is because

D =+/X%+ Y2
Di = /X3 +YE

and the computed values of C, for processes E and F are proportional to the standard deviation

and

of D%; and D} respectively. It can be seen that the standard deviation of DY is less than that of

D% by the following argument. If 0y is held constant, and Z is a standard normal variate,

E(DY) = E(D§%)=ol+ol+R®

E[\/0?2? + R?|

E(Df) = R

and as g, goes to zero
E(Dg)

but

as 0, goes to zero. Hence provided that o, is small enough, it is clear that VAR(DY%;) < VAR(Dj).

We have shown that computing process capability for two-dimensional characteristics using
either of these methods can produce inconsistent and inappropriate results. In the next example,

we show that Cpi can be a misleading measure even in one dimension.



Example 3

Consider two processes G and H where ‘process G has Cp = 1.01 and Cpx = 1.01 and pro-
cess H has C, = 1.33 and Cpx = 0.97. Then using a criterion such as that stated in Q-101
(Cpk must be > 1.0), process H would be stopped and 100% inspected while process G would
be left to run. However by Equation (2.4), process G produces an actual proportion of p =
2 — $(3.03) — $(3.03) = 2.446 x 1073 nonconforming parts, while process H produces an actual
proportion of p = 2 — $(5.07) — $(2.91) = 1.807 x 10~3 nonconforming parts. Therefore, basing a
control decision on Cpk can lead to misleading and potentially costly results. This example simply
highlights the fact, stressed by several authors (Boyles 1991), that Cpr is not a consistent measure
of the actual proportion nonconforming. Specifically, given any value of Cp, the actual proportion
nonconforming is bounded above and below by 2[1 - (3Cpt)] and [1— ®(3Cpk)]. Since Cpx behaves

inconsistently in one-dimension, it is not surprising that it does even worse in two-dimensions.

3. General Criteria for Evaluating Process Performance

There has been a considerable amount of disagreement and debate regarding the criteria that should
be used in quantifying the c;xpability of a production process to meet its design tolerances. Much of
this debate has focused on comparing the merits of various individual indices. However, it is clear
that even for a simple one-dimensional process characteristic no one index can adequately describe
all relevant process information. Other authors have introduced capability indices for multivariate
processes. For example, Chan et al. (1991) introduced the Cpr index and Pearn et al. (1992)
defined a multivariate ge_znera.lization of Cp and Cpm which they called the ,,C: and ,,C;m indices. |
However, since each of these indices maps quality into an index value differently, it is difficult to
make consistent interpretations when using them. We believe more effort needs to be devoted

to tying together various measures to form a complementary and comprehensive set of indices to

describe all useful process information.

A capability report should accurately and consistently summarize process information to assist
engineers and managers in decision making. Our objectives are therefore to report measures that
have direct physical meaning and supply information relevant fo process description and improve-
ment. Specifically, we recommend that three separate criteria should be used to judge or evaluate

the performance of a manufacturing process.



1. p = Actual Proportion Nonconforming
The actual proportion nonconforming currently being produced by the process, p, is a function
of both the current process mean and process variation. It reflects the current state of the
process and assumes that no actions are taken to shift the process mean or to reduce the

process variation.

2. p* = Potential Proportion Nonconforming
p* measures the minimum possible proportion of nonconforming parts that can be achieved
through a simple shift of the process mean. In the common case of a symmetric distribution
(such as a normal), this minimum value will be attained when the process mean is centered
within the tolerance zone. Since most short term engineering procedures for optimizing
process performance are limited to a shift of the process mean, this measure conveniently
summarizes a best case scenario for potential proportion nonconforming without requiring a
reduction in the process variation. Strictly a function of the process variation, the potential

proportion nonconforming can be decreased only through a reduction in process variation.

3. k =Process Centering Indez
For the symmetric case, when the actual and potential proportion nonconforming are not
equal, the process is not perfectly centered. However, it is generally unclear precisely how
poorly centered the mean is with respect to target. Therefore a natural quantitative measure
is to compute the ratio of the difference between the process mean and the design target to the
allowable tolerance. The k index defined in Equation (2.3) is an example of such a measure for

a one-dimensional process. Note that this measure does not depend on the process variance.

Besides the three criteria presented above, a fourth possible criterion that may be useful in
describing process performance is one that incorporates a general loss function approach (e.g., see
Alkhairy and Staelin 1992, Phadke 1988, and Taguchi 1989). In the case of a 0-1 loss function, the
actual proportion nonconforming is equivalent to the expected loss. Many authors have convincingly
argued for the use of an alternative loss function, such as one that is quadratic in the deviation
from target values. Although such a measure might be of eventual interest, our concern here is
with developing indices that are a) direct extensions of existing univariate indices to multivariate

situations; and b) easily interpreted and adopted in practice.



3.1 Definitions of Cy« and Cp, using p and p*

While it is informative to report p and p*, they are not directly compatible with most current corpo-
rate requirements. It is therefore convenient to transform p and p* into equivalent indices that retain
.their physical meaning (actual and potential proportion nonconforming) but allow communication
in a language familiar to engineers, managers and technicians. In particular, the transformation
we use ensures that when the underlying process follows a univariate normal distribution, the new
capability index Cp+ to measure the potential proportion nonconforming is the same as the C,
index defined in Equation (2.1). This is of practical importance since Cp, has become a well known,

understood, and deeply entrenched fixture in industry for measuring potential capability.

Consider the function

f(z) = %q»-l (1 - g) . (3.1)

A plot of f(z) is given in Figure 4 where z is in logarithmic scale. Define a new index of the actual

proportion nonconforming, Cpp, to be
Cop = f(p). (3.2)
Note that Equation (3.2) is the equivalent to
p=2[1-®(3Cp)]

The actual capability of a process is then obtained in the following sequence: First a value of
p, the actual proportion nonconforming, is somehow obtained (this can be done analytically, by
simulation, statistically, etc.). Then, using Equation (3.2), the value of Cp, is reported out for

compliance with corporate requirements.

Similarly, we define Cp+ by means of the potential proportion nonconforming p*:

Cpr = £(5"). (3.3)

whefe, again, first p* is obtained (measured, estimated, calculated) and then Cp« is reported out.

We see that Equation (3.3) can be written
which is identical to the traditional definition given by Equation (2.2).

10



3.2 Definition of k; a Process Centering Index for Bivariate Location

To illustrate the use of Cps and Cpp as defined in Section 3, and to introduce a generalization of

the centering index k, consider a manufacturing process which drills a single hole in a plane.

The tolerance region for the hole is defined as the set of all (z,y) pairs such that

(z — zo)?

> =) o (3.4)

b2 -

+

This (elliptical) region is shown in Figure 5 for the case where (2o, y0) = (0,0). (Such an elliptical
tolerance zone for a hole center is appropriate where deviation in one direction affects product

functionality more than deviation in the other.)

A bivariate equivalent of the process centering index k can be defined by noting that the k
index defined by Equation (2.3) is the ratio of the distance that the process mean is off-center with
respect to the length of the tolerance zone. Thus, for a bivariate characteristic and an elliptical

tolerance zone centered at (zo,yo), we generalize the concept of “distance” so that

oy (B2) + (B2 5)

where (pz, 4y ) is the process mean of the bivariate characteristic. Note that both k and kf, reflect

only the amount that the process mean is off-center. They provide no information about the

direction of this deviation with respect to the target.

4. Capability Analysis for a Single Hole Location Problem

4.1 Computing Actual and Potential Proporfion Nonconforming

In this subsection, we present an efficient method for computing p and p* for the specific case of a
bivariate normal characteristic and an elliptical tolerance zone. In particular, let (X', Y"’) represent
the hole location characteristic of the process. Assume that (X’,Y’) follows a bivariate normal

distribution (BVN(x', X')) with mean p' = (pz, ;) and variance-covariance matrix X', where

12 (]



(In practice, u' and X' are of course unknown and must be estimated. If we use the sample mean
ji' and sample variance-covariance matrix 2’, then the method described below will produce the
corresponding estimates for p and p*. Computing the accuracy of these estimates, and associated

error bounds, is discussed later.)

The probability that (X',Y’) will fall inside the elliptical region of Equation (3.4) can be
computed by first transforming the coordinate system so that the region is circular with radius .

To do this, we transform the BVN(p', ') to a BVUN(p = (pz, py), 2) where

XY= % 0 .
0 o
It can be shown that
r = b,
0
Hz = ' ﬂ cos 1110 ,
0
By = ‘ pxsxn +,uycos0
o2 = b2g!? ;:osza 2bpa,’,o';cosﬂsin0+0;28in20’
a a
b20' % 5in2 ¢ 2bpa y cosOsin 0
2 _ / 2
o2 = =a2 - + 0,” cos” 4,
where
2
, a 2 [bol\? bo! \? 2pbatal, T K
o - e (5 e T (5. 5o
an 2pboa, % a A% a + a ' 2 <Os 2

The above transformation ensures that (kz, py) lies in the first quadrant of the new coordinate

system, and that o, > o,. Furthermore, the elliptical region of Equation (3.4) becomes the circular

region z2 4+ y2 < r2.

Using a formula from Groenewoud et al. (1967), the probability that a bivariate normal random

variable falls outside a circular region of radius r is given by

m—1
0o 7'2 [ 2 ] . 2 o. ” 0. l‘L 0. +#
P=1- Sm | — D? A0 S J , 4.1
amZ:l (203) 15;; m\ T2 gt zogag (4.1)

m-1
where [ ] is the greatest integer less than or equal to , a is given by

2 2
_ 0y R
a= Oz exp{ (203 203)}’

12



and S (z) is the Poisson tail probability

m;l k

e T
Sm(z) =1l-e Z F
k=0
The terms D7, (u,w,y) can be computed recursively from

D?(u,w,y) = 1,

1
Dg(u:w;y) =Y + U,

2
1 3
DY (u,w,y) = — { [(m - 5) u+ y] DY _.(u,w,y)— uyD?n_z(u,w,y)} form > 3, (4.2)
D,’,;,(u,'w,y) = qun_l(u,w,y)-i- yj—wa:_lz(u,w,y) for j > 1and m > 25+ 1. (4.3)

The initial values for D9(u,w,y) and DJ(u, w,y), along with Equations (4.2) and (4.3), completely

define the DJ, term for all relevant ranges of the summation in Equation (4.1).

For computational purposes it is necessary to truncate the summation over m at some value
m = N. Groenewoud et al. (1967) show that when this is done, the error in the computed
probability, €y, has the bound

-p? ﬂZN(N + 1)
NI(N +1-p2)

T
where % = —

2
ey <e .
202

To ensure that ey < K, it is possible to find the smallest value of N such that

2 PN(N+1)
NY(N +1-p5?)

<K. (4.4)

This integration method provides computations for any practical error ey in a matter of seconds
on simple desktop PCs. Note that the above algorithm is used twice: to determine both a) the
actual proportion nonconforming p, and b) the potential proportion nonconforming p* (by setting

the process mean at the design target, p; = p; = 0).

4.2 Computing C,« and C,, Indices

Once p and p* have been determined, we can compute Cpx = f(p*) and Cpp = f(p). This requires
a computational method for accurately evaluating the tail area of the standardized normal curve
1 /m "32/2
—— e dz =1 - &(2).
v27l’ z ( )

13



Hill and Joyce (1976) present a fast and accurate computational algorithm for this computation
making use of two significant results from Abramowitz and Stegun (1972). If 2 lies in the central
area of the normal curve, then the algorithmic method used is the convergent series

5 27

3
N Y R .
¢ /oe do=ztgtastanext

If z lies in one of the tails of the normal curve, then the method used is the continued fraction

o0
612/2/ e—:c’/'.’ dr = 1 T
2z Z+ 2
z+;:‘T'
z+...

They recommend the changeover point between the two methods to be |z| = 2.32. This procedure
is extremely fast and computes tail probabilities to virtually the accuracy of the machine for z < 7

and to one digit less than the accuracy of the machine for z > 7.

In order to find Cpy, it is necessary to solve for Cpx in
p* = 2[1 - #(Cp)] = 28(~Cpr). (45)

A bisection root finding method can be used to solve for any p* calculated from Equation (4.1). To

solve for Cpp, p* is replaced by p in Equation (4.5).

In practice, implementation of this method is limited only by the length of the double precision
variables of the computler. Although this is both machine and compiler dependent, 19 digits of
~ precision for floating poinf variables on a desktop PC is not uncommon. Therefore, numerical
errors only begin to occur for Cpx (or Cm,) values greater than or equal to approximately 3.0, a value
that is essentially indistinguishable from higher index values since it implies that the proportion

nonconforming is on the order of 1071°.

4.3 Example

Consider the scatterplot presented with Table 1, plotted over a circular tolerance zone with radius
r = 0.1 mm and target value of (0,44.45) mm. (The data is from an actual manufacturing process:

we do not include the raw data set for proprietary reasons). Using the original data we have

14



i' = (0.0042,44.4667) and

.y 5.83 2.47 4
Y = X 1075,
247 2.58

Applying the coordinate transformation gives § = 28.32 degrees, i = (0.0116,0.0127) and

. 7.15 0 4
X X 107%,
0 1.38 :

To achieve a desired accuracy of K = 1.0 x 10722 in computation of  and $*, Equation (4.4)
produces a cut-off value of N = 87. Using Equation (4.1) then gives §* = 2.296 X 10~* and
P = 6.689 x 10™* from which Equation (4.5) gives C'p* = 1.23 and C'm, = 1.13. Using the sample

mean estimate in Equation (3.5) gives kz = 0.17.

In order to make statistical confidence statements about the true process values of Cpx, Cpp, and
k from the sample data; a bootstrap simulation was performed. The bootstrap method resamples
(with replacement) from the original data set and computes estimates of C'p*, (:”pp, and k for
each run. The result is an empirical distribution for each of these sample estimates. From these
distributions, confidence in!:erva,ls on the true unknown parameters are generated. See Efron (1982)

for more details on the bootstrap and other resampling procedures.

For this example, 10,000 bootstrap replications were performed. The descriptive statistics for
the resulting C'p*, C'pp, and k are presented in Table 1. From this table, we see that the 95%

confidence interval bounds are:

1.11 < Cpx < 1.41 (23.4ppm < p* < 868ppm),
1.00 < Cpp < 1.33 (66.1ppm < p < 2700ppm),
0.13 < kg, <0.22.

The general usefulness of ki, is demonstrated in this example. Suppose the minimum possible
location adjustment for this process (due to limitations on machine control) is 10% of the tolerance
radius. In this situation therefore, any k7, < 0.10 indicates that the centering of the process cannot
be improved. Since the 95% lower bound on kr, is 0.13, we can conclude that the process is not
centered and could be improved through a mean shift. The estimate of kr = 0.17 immediately

indicates that the process mean is estimated to be off-target by 17% of the allowable tolerance.

15



Note that kz, does not by itself provide directional information and therefore care must be
taken in interpreting hypothesis tests. As shown in Table 1, in this example of the 10,000 boot-
strap resamples taken, 9408 of the sample means were in the positive-x, positive-y quadrant. The
remaining 592 sample means were in the negative-x, positive-y quadrant. This additional informa-
-tion supports an inference that the mean of y is biased in the positive direction, and the mean of

z is also biased in the positive direction but to a smaller degree.

5. Capability Analysis for a Coaxial Hole

While single hole location tolerances are more commonly encountered in design specifications,
coaxial hole tolerances are also used for critical dimensions. We now show how our method can be

used for measuring process capability for a coaxial hole tolerance system.

A two-tier coaxial hole usually constrains a pin or shaft to lie in a proper location and angular
orientation. For a single hole, there is one two-dimensional tolerance region for the location of the
hole center. Since a two-tier coaxial hole has two separate holes, there is a pair of two-dimensional
tolerance regions, one each for the location of the top and bottom holes. As discussed in Section 4,

these tolerance regions are usually circular or elliptical. Hereafter, we refer to both of these tolerance

regions as location tolerances.

A further constraint is often necessary to control the angular orientation of the shaft. This is
usually expressed as a two-dimensional tolerance region for the relative location of the coordinates
of the center of the bottom hole with respect to those of the top hole. (By convention, we define
the top hole to be the first hole produced by the tool.) This is justified since in most common
process plans, once the tool has produced the top hole, it proceeds down to produce the bottom
hole. In this case, the location of the center of the bottom hole with respect to that of the top hole
reflects the drift of the tool after machining has begun. Hereafter, we refer to the tolerance which

constrains this drift as the angular tolerance.

While the two location tolerances are fixed with respect to the target location of the hole centers,
the angular tolerance depends on the realized location of the top hole for a given part. For example,
if (z7,yr) and (2B, yB) represent the realized location of the centers of the top and bottom holes

respectively and the specified angular tolerance is circular, then the angular tolerance is a circular

16



region centered at (z7r,yr).

The overall tolerance region for a coaxial hole is therefore defined to be the intersection of these
three two-dimensional tolerances (see Figure 6). Any produced two-tier coaxial hole which fails to

meet all three tolerances simultaneously is considered, by ANSI definition, to be nonconforming.

5.1 Definition of Capability Measures for Coaxial Holes

Computing p and p*, the actual and potential proportion nonconforming for the coaxial hole toler-
ance system, shown in Figure 6, requires finding the probability that a part fails to simultaneously
conform to all three tolerance requirements. An appropriate measure of process centering is slightly
less straightforward. In particular, it seems pointless to have a single scalar index of a process that
includes two separate notions of centering: a) the location of a mean circle center relative to a fixed
reference point; and b) the location of a second mean circle center relative to the produced first

center.

However, the process centering capability for a coaxial hole could be measured by two separate
k indices: kg, the ratio of the deviation of the top hole process mean from its target; and k4, the
a ratio of the distance between the process means of the top and bottom hole with respect to the

width of the angular tolerance region. These can be formally defined as follows:

Let (pg1, fhy1) and (g2, pty2) be the process mean of the top and bottom hole location respec-
tively. If the location tolerance regions and angular tolerance regions are both circular, with radii

rr, and 74 respectively, then we define

kL Eb \/(F'::l - 20)i:‘ (uyl - 3/0)2 (51)

and

(5.2)

\/(#n = pa2)? + (1 — p)?
kA =
T

A
where (zo, yo) is the target location of the top hole. Note that ky, reflects the ability of the manu-

facturing process to accurately position the drilling tool at the proper location prior to machining.
The index k4 reflects how well the drill maintains its angular orientation perpendicular to the
drilling surface throughout the machining process. Since both of these indices measure indepen-
dent physical properties, reporting both of them is consistent with the overall goal of summarizing

all relevant process information in an easily understood language.
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5.2 Computation of Capability Indices for Coaxial Holes

Recall that (XT,Y7) and (XpB,Yp) represent the (random variable) locations of the top and bot-
tom holes. Assume that X = (XT,Yr,XpB,YR) follows a four-dimensional normal distribution
with mean pe = (12, Hay, M2z, poy) and variance-covariance matrix ¥Y¢. Computation of p and p*
requires a method for integrating this four-dimensional normal distribution over the intersection of
three distinct tolerance regions'. Monte Carlo integration is often useful, although time-consuming,
for computing p and p* siﬁce it can integrate high-dimensional distributions over any complex
region. In the example below, Monte Carlo integration, programmed on a Risc 6000 IBM worksta-
tion, generates approximately one million four-dimensional random variates every 3 minutes. An
accurate estimate of a p (or p*) for a proportion nonconforming below 1 part per million, needing
at least 50 simulated non-conforming observations for statistical significance, may require an hour
or more. We are currently researching methods to carry out this integration efficiently. Once p
and p* have been computed, Cpp and Cpx can be obtained by solving Equation (4.5) numerically,

as discussed in Section 4.

5.3 Example

This method is best demonstrated through the use of an example collected from actual manufac-
‘turing data. A gear carrier has four different coaxial hole pairs with top and bottom hole location
target values of (44.45,0), (0,44.45), (—44.45,0), and (0,—44.45) mm. A circular tolerance'region
with radius of 0.1 mm specifies the location of the top and bottom holes. The angular tolerance is
specified as a circular region with a radius of 0.075 mm centered at the realized hole center of the
top hole. (Angularity is usvually specified with a tighter tolerance than location since the angle of .

the pinion shaft is a more critical element for proper gear function).

78 sample observations were collected, each consisting of eight hole (center) location coordinates.
This data is shown in Figure 7. The top hole for coaxial hole 1 was used as a location reference
by the coordinate measuring machine, so the sample data for this y-coordinate is always zero.
Figure 7 also shows the angular tolerance regions, as well as points obtained by subtracting the
bottom hole coordinates from the top hole coordinates, since the target value for each of the four

angular tolerances is (0,0).
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5.4 Capability for Each Coaxial Hole Pair

We first concern ourself with the computation of p and p* for each of the four coaxial hole pairs.
For each coaxial hole pair, the capability of the top and bottom hole can be computed indepen-
dently using the method given in Section 4. The capability of the angular tolerance and hence
the capability of the entire system of tolerances must be computed using the coaxial hole method

described above.

To evaluate the four-dimensional normal integrals as discussed in Section 5.2, ji., and 2
are estimated for each coaxial hole pair, and Cholesky decomposition is applied to find a lower
triangular matrix A such that 3¢ = AA. The resulting fic, 3¢ and A for each of the four

coaxial holes are shown in Table 2.

Next, four independent N(0,1) random variates Z;, Z;, Z3 and Z; are generated, and X =
jtet+Z At is computed, where Z = (Z,, Z3, Z3, Z,). The random variate X is thus normal with mean
jte and variance-covariance matrix $¢. Each generated variate X is checked to see if it satisfies
the tolerance system shown in Figure 6, i.e. “that it conforms”. The proportion nonconforming is
determined by dividing the observed number of nonconforming items by the total number of four-
dimensional random variates generated. This same random variate can also be used to estimate

the potential proportion nonconforming by centering the process mean vector at the design target.

The results, along with C'p*, C'pp, and the kg, indices for both top and bottom holes and the k4
index are shown in Table 3. Note that these indices for the coaxial hole system complement, but

do not.replace, the information_provided by the indices for each single hole.

Asin the single hole case, a bootstrap analysis was performed on the coaxial data. The resulting
95% confidence intervals for the individual tolerances and the entire coaxial hole are presented in
Table 4. These results are based on runs of 10,000 for the top and bottom hole and 1000 runs for

the angular and entire coaxial holes.

6. Capability Analysis for the Entire Gear Carrier

The analysis in Section 5 produced capability measurements for each individual coaxial hole. An

interesting and challenging issue is the determination of the capability of the system comprising all
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four coaxial holes pairs. Since a single process is responsible for making all four coaxial holes, the

performance of the process over the entire tolerance system is relevant.

The major difficulty with computing the capability of the entire system is that it is a 16-
dimensional process (eight holes, each with two dimensions describing its center), involving a total
of 152 unknown parameters that must be estimated (16 components of the mean vector and 136
components of the symmetric variance-covariance matrix). This is clearly infeasible unless a large
data set is available. Furthermore, it would be difficult to test for assumptions about statistical dis-
tributions. Although these challenges are substantial, it is likely that a large number of the elements
in the 16-dimensional variance-covariance matrix are approximately zero. (We have collected about
a dozen process samples and the empirical evidence supports this position.) Assuming normality,
such zero correlation allows a decomposition of the 16 variables into smaller sets of independent

variables, whose individual conformance probabilities can be multiplied.

However, even without making these assumptions of independence, there are simple bounds
on p for the entire four hole coaxial system that can be computed. Let p; represent the actual
proportion nonconforming for each coaxial hole 7, 1 = 1,2,3,4. A gear carrier is defined to be
nonconforming whenever any of the coaxial holes fails to simultaneously meet the three tolerances
as described in Section 5. Then it can be shown that bounds on p for the entire system are given
by

pL = max(p1,p2,p3,p4) < p < min(l,p; + p2 + p3 + p4) = pu. (5.3)

It follows that f(py) < Cpp < f(pL), where f is the transformation defined in Equation (3.1)
-of Section 3. The same bo>unding inequalities clearly also hold for p* and Cpx. For the data of
‘Figure 7, this results in_ |

0.76 < Cpx < 0.89  (7318ppm < p* < 22,966ppm),
0.61 < Cpp < 0.74 (26,014ppm < p < 65,475ppm).

Process centering for the entire four hole system can also be obtained by generalizing Equa-
tions (5.1) and (5.2). Let (pz1i, fiy1i) and (gz2i, fy2:) be the process mean for the top and bottom
hole of coaxial hole 7, ¢ = 1,2,3,4. As in the coaxial hole case, we define two separate k indices,
one for the overall location of the drill pattern and the second for the overall angular orientation.
Again, let rf, and r4 be the radii of the location and angular tolerance regions of an individual

coaxial hole system. If (zoc, Yoc) is the target value for the center of the top hole pattern, then we
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can define

2

14 )2 14
7 2 Hati — Zoc +('— 2 ;—yc)
\(42 Tl 0 4§ yl 0

TL

and

1=1

1=1

\ [i‘ Z(ﬂzu - #zzi)] + [% Z(#yn‘ - #yzi)]

T4
Estimates kr, and k4, for the data in Figure 7 are

(kz,k4) = (0.06,0.25).

The bootstrap simulation carried out for the coaxial hole also provides sampling information
for the entire carrier. For each of the 1000 resampling runs, the bounds of Equation (5.3) were
recomputed. From these we can produce “95% bounds ” by solving for the interval that is com-
pletely covered by 95% of the resampled bounds. From this we form the following 95% confidence

interval on the true capability of the entire gear carrier:

0.58'< Cpx < 1.02  (2213ppm < p* < 83,451ppm),
0.47 < Cpp < 0.84 (11,537ppm < p < 158,540ppm),
0.02 < ky, < 0.10,

0.21 < k4 <0.29.

Note that these bounds are fairly wide, and only provide an order of magnitude estimate of
the proportion nonconforming. A more accurate analysis would require a larger sample size of the

original data.

Also note that k, = 0.06 for the entire process while kf, (from Table 3) for the individual coaxial
holes varies from 0.15 to 0.29. The reason for this can be seen directly from Figure 7 since the
average location for the top of each coaxial hole has a greater radial deviation from center than
specified. However, these deviations cancel out for the entire four hole system. Thus, the overall
k indices have a special relevance when the process drill bits cannot be moved with respect to one
another since kr, and k4 reflect the overall centering (both for location and angularity) of the entire

drill pattern.
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7. Summary and Conclusions

The capability indices described in this paper are general and have application beyond the specific
gear carrier example with circular location and angular tolerances. The criteria and the transformed
indices Cp+ and Cpp defined in Section 3 are useful performance measures for any complex multi-
variate processes. In this paper, we concentrate on circular tolerance regions since hole location
tolerances are usually circular. However, the methods developed here have obvious extensions to
rectangular or other general shapé tolerance regions. Although we only discuss how the actual and
potential proportion nonconforming can be computed under a multivariate normal assumption,
extension to other statistical distributions is clear. Furthermore the assumption of multivariate
normality is not unreasonable since it is likely that, after suitable transformation of one or more
of the variates, data can be considered to be approximately normal. Koziol (1986) presents a

comprehensive review of available methods for assessing multivariate normality.

While the capability indices described in this paper have meaningful physical interpretations,
statistical properties of their estimators are not yet fully explored. It is unlikely that the distribu-
tions of p, p* or k can be explicitly determined for the multivariate cases. While other multivariate
capability indices with better defined statistical properties have been proposed, these indices have
no obvious physical meaning and therefore have the potential for being misunderstood and misinter-
preted by engineers and managers. Practitioners are therefore left to choose between indices having
nice statistical properties but inconsistent meaning, and those (as presented here) with direct phys-
ical meaning but difficult statistical properties. Considering the availability of computer-driven

statistical estimation procedures (such as the bootstrap), the choice becomes clear.
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a

Coaxial Hole | Tolerances Cpr (9%) Cop (D) k index

Top 1.84 (0.0381ppm) | 1.31 (87.12ppm) | 0.29
Bottom 1.15 (566.8ppm) | 0.95 (4210ppm) | 0.25

1 Angular 1.00 (2780ppm) | 0.95 (4210ppm) | k4 = 0.21
Coaxial 0.99 (3037ppm) | 0.89 (7791ppm) (I;L,IEA) =(0.29,0.21)
Top 1.23 (229.6ppm) | 1.13 (668.9ppm) | 0.17
Bottom 1.00 (2727ppm) | 0.97 (3478ppm) | 0.08

2 Angular 0.98 (3445ppm) | 0.88 (8291ppm) | k4 =0.28
Coaxial 0.92 (5571ppm) | 0.85 (11,054ppm) (k[,, kA) (0.17,0.28)
Top 1.00 (2727ppm) | 0.94 (4893ppm) | 0.20
Bottom 0.97 (3649ppm) | 0.76 (21,906ppm) | 0.34

3 Angular || 1.01 (2470ppm) | 0.97 (3756ppm) | k4 = 0.24
Coaxial || 0.89 (7318ppm) | 0.74 (26,014ppm) | (kz,k4) = (0.20,0.24)
Top | 120 (303.8ppm) | 1.11 (868.5ppm) | 0.15
Bottom 0.95 (4497ppm) | 0.81 (15,606ppm) | 0.36

4 Angular 0.9 (2864ppm) | 0.92 (6051ppm) | k4 = 0.30
Coaxial 0.90 (6934ppm) | 0.77 (20,558ppm) | (kp,k4) = (0.15,0.30)

Table 3: Capability Measurements for the Coaxial Holes of Figure 8
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