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Algorithms for Selecting Informative Marker Panels
for Population Assignment

NOAH A. ROSENBERG

ABSTRACT

Given a set of potential source populations, genotypes of an individual of unknown origin at
a collection of markers can be used to predict the correct source population of the individual.
For improved efficiency, informative markers can be chosen from a larger set of markers to
maximize the accuracy of this prediction. However, selecting the loci that are individually
most informative does not necessarily produce the optimal panel. Here, using genotypes from
eight species—carp, cat, chicken, dog, fly, grayling, human, and maize—this univariate ac-
cumulation procedure is compared to new multivariate “greedy” and “maximin” algorithms
for choosing marker panels. The procedures generally suggest similar panels, although the
greedy method often recommends inclusion of loci that are not chosen by the other algo-
rithms. In seven of the eight species, when applied to five or more markers, all methods
achieve at least 94% assignment accuracy on simulated individuals, with one species—dog—
producing this level of accuracy with only three markers, and the eighth species—human—
requiring ∼13–16 markers. The new algorithms produce substantial improvements over use
of randomly selected markers; where differences among the methods are noticeable, the
greedy algorithm leads to slightly higher probabilities of correct assignment. Although none
of the approaches necessarily chooses the panel with optimal performance, the algorithms
all likely select panels with performance near enough to the maximum that they all are
suitable for practical use.

Key words: ancestry inference, informativeness, microsatellites, population structure.

1. INTRODUCTION

Situations often arise in which the source population or populations for genetic material from
individuals of unknown origin must be determined (Anderson and Thompson, 2002; Davies et al.,

1999; Guinand et al., 2002; Hansen et al., 2001; Lowe et al., 2001; Manel et al., 2005; Waser and
Strobeck, 1998; Ziv and Burchard, 2003). In a typical scenario, allele frequencies at a set of loci are
given for several predefined groups, and using their genotypes at these loci, unknown individuals are each
assigned to a single source population (Banks and Eichert, 2000; Baudouin et al., 2004; Buchanan et al.,
1994; Paetkau et al., 1995; Primmer et al., 2000; Pritchard et al., 2000; Rosenberg et al., 2003).
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In an increasing number of species, the number of markers for which allele frequencies are available
exceeds that required for accurate assignments. Thus, to perform assignment procedures efficiently, the
panel of loci for genotyping of unknowns can be chosen from a larger collection of markers to contain as
much information about ancestry as possible. Two of the questions that arise in the selection of an efficient
panel are:

1. Given a collection of L loci and a desired number of markers M < L to genotype, which markers
should constitute a panel of size M?

2. How should the number of markers to genotype, M , be determined?

To answer question 2, for each number of markers from 1 to L, a measure of the “performance” of
marker panels (either random panels or those selected using answers to question 1 can be evaluated, and M

can be chosen as the smallest number for which the performance exceeds a specified threshold (Bamshad
et al., 2003; Banks et al., 2003; Bernatchez and Duchesne, 2000; Campbell et al., 2003; Cornuet et al.,
1999; Edwards, 2003; Manel et al., 2002; Risch et al., 2002; Rosenberg et al., 2001, 2003; Turakulov and
Easteal, 2003). In this analysis, one of several possible procedures for measuring performance can be used.

Question 1 poses greater difficulties. A simple answer suggests evaluation of an information-content
statistic for each marker, followed by assembly of a panel consisting of the M most “informative” markers,
or of any M markers individually more informative than a specified threshold (Collins-Schramm et al.,
2002; Dean et al., 1994; Manel et al., 2002; Rosenberg et al., 2001, 2003; Shriver et al., 1997). These
approaches produce higher performance than use of random markers (Rosenberg et al., 2001, 2003).
However, they need not lead to the set with maximal performance (Pfaff et al., 2004; Rosenberg et al.,
2003): in Fig. 1, Locus 1 is most informative, but the most informative pair of loci is {Locus 2, Locus 3}.
In fact, in Fig. 1, the two loci that are most informative individually comprise the least informative pair.

The explanation for why selecting markers that are most informative individually need not lead to an
optimal panel lies in the fact that the ability of a marker to assign an individual correctly depends on the
source population of the individual. A panel of markers that are generally useful for all source populations
may be less efficient than a panel of markers that are generally poor but in which for each m, the mth
marker is extremely informative for the mth source population. Consider K ≥ 3 populations and a set X

of K loci, numbered 1 through K , in which each locus has K alleles. For locus m ∈ X, the mth allele has

FIG. 1. A set of three loci—with each locus statistically independent of the others in each of two populations—for
which the pair most informative about ancestry does not consist of the two most informative loci; fORCA (Section 2.2)
gives the probability that a multilocus genotype is assigned correctly. The frequency of each genotype in the population
in which the genotype is most frequent is shaded (lightly, in case of a tie). For the set containing all three loci, it can
be shown that fORCA({Locus 1, Locus 2, Locus 3}) = 0.7928.
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frequency 1 in the mth population and frequency 0 in all other populations; all other alleles of locus m

have frequency 1/(K − 1) in all except the mth population. Using the fORCA measure of performance
(Section 2.2), which gives the probability of correct assignment if multilocus genotypes are assigned to the
population from which they are most likely to have originated, for one of these loci, the probability that an
individual is assigned to the correct source population is 2/K . However, using all K loci, this probability
is 1, because every possible multilocus genotype for the K loci is observed in only one population.

Now consider a second set Y of K loci, each of which also has K alleles. For each locus in Y , the
mth allele has frequency 1 − (K − 1)ε in the mth population and frequency ε in all other populations,
where 0 < ε < (K − 2)/[K(K − 1)]. Using fORCA, the probability of correct assignment for such a
locus is 1 − (K − 1)ε, which is larger than 2/K . Thus, any locus in Y gives a higher correct assignment
probability than any locus in X. However, because every genotype is found in every population, no
multilocus genotype at the loci in Y can be assigned with certainty to a particular source population.
Consequently, the probability of correct assignment for the set Y is less than 1, and the panel of generally
informative markers is less useful than the panel of markers that are each informative for only one source
population.

To account for the fact that the performance of a set of markers need not be expressible solely in terms of
performances of individual markers, I consider multivariate algorithms for selecting efficient panels of size
M from among L loci. In analytical and simulation-based forms, these algorithms, as well as sequential
accumulation of individually informative markers, are applied to data from various species. Using simulated
individuals, the performances of the algorithms in population assignment are then compared.

2. ALGORITHMS FOR SELECTING MARKER PANELS

2.1. Algorithms based on a given “performance function”

For a finite set SL containing L loci, denote the set of all its subsets by P(SL). Let φ denote the empty
set.

Definition. Consider a function f : P(SL) → R. Function f is a performance function for SL if
f (T1) ≤ f (T2) for any finite T1, T2 ⊂ SL with T1 ⊂ T2.

Informally, a performance function measures “performance” of a collection of markers in population
assignment; higher values indicate better performance, so that subsets of a set of markers have equal or
poorer performance than the set itself. Specific examples are discussed in Section 2.2; we will see later that
if f is the function that measures the probability of correctly assigning individuals when each multilocus
genotype for a set of loci is assigned to the population in which it is most likely to occur, then f is a
performance function.

Question 1 from Section 1 can now be rephrased: given a set SL of L loci, a performance function f

and a positive integer M < L, identify the subset of SL that maximizes f over all subsets of SL with
cardinality M . Several methods can be used to choose a set SM to serve as a candidate for this optimal set.

In each of the following approaches, ties for the choice of set are broken randomly. The first method is
to evaluate f for all possible candidate sets.

Method 1 (exhaustive evaluation). For M ≥ 1, define

SM = arg max
T ∈P(SL)

|T |=M

f (T ).

Two computational difficulties arise in application of Method 1. First, for sufficiently large M , evaluation
of f (T ) may be impractical when |T | = M . Second, for sufficiently large L and M , even if it were
possible to evaluate f (T ) when |T | = M , the number LCM of subsets of SL with cardinality M is very
large and the subsets cannot be exhaustively tested.

If L or M is large enough that Method 1 is not feasible, an algorithm that is less computationally
intensive but that produces only an approximately optimal set can be used. The three such algorithms that
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follow each sequentially accumulate loci to marker panels. Thus, Methods 2–4 are all greedy algorithms,
in that each constructs SM from SM−1 together with the “best” remaining locus by some criterion. For
convenience, however, Methods 2, 3, and 4 are labeled “univariate,” “greedy,” and “maximin,” respectively.

The simplest of the three computationally feasible algorithms is the procedure discussed in Section 1,
which proposes evaluation of loci individually, and which defines SM as the set containing the M loci that
have the highest individual values.

Method 2 (univariate accumulation). Define S0 = φ, and for M ≥ 1, define

SM = SM−1 ∪
{

arg max
v∈SL\SM−1

f ({v})
}

.

This algorithm is convenient, but as discussed in Section 1, if f depends on interactions among contributions
of individual markers, the procedure might fail to choose the set with maximal performance.

To incorporate multivariate dependence of f while reducing the computational burden of Method 1, a
procedure can be used that chooses the next marker in the panel conditional on the information obtained
from those markers that have already been included.

Method 3 (greedy accumulation). Define S0 = φ, and for M ≥ 1, define

SM = SM−1 ∪
{

arg max
v∈SL\SM−1

f ({v} ∪ SM−1)

}
.

To choose the Mth marker, this algorithm evaluates each of the remaining markers together with the M −1
markers that have already been chosen and selects the marker that gives the highest value of f . Method 3
is more computationally feasible than Method 1 in that for each M , only L − M + 1 rather than LCM

sets must be tested. However, like Method 1, Method 3 is not practical if M is sufficiently large. This
procedure is also not guaranteed to locate the set with maximal performance (Fig. 1).

The final algorithm takes into account multivariate dependence and has greater computational feasibility
than Methods 1 and 3, but also does not necessarily maximize performance.

Method 4 (maximin accumulation). Choose r ≥ 2 small enough that for M ≤ r , SM is obtained by
Method 1. For M > r , define

SM = SM−1 ∪
⎧⎨
⎩arg max

v∈SL\SM−1

[
min

T ∈P(SM−1)

|T |=r−1

f ({v} ∪ T )

]⎫⎬
⎭

Note that this algorithm has two parts: for small M , exhaustive evaluation is performed. For larger M ,
the method accumulates loci that contribute new information, conditional on the information from markers
that have already been selected: it chooses the Mth marker from among the remaining markers as the one
with the maximal value of the minimum f , where the minimum is taken across all sets in which the other
M − 1 markers are among those that have already been selected.

Other “hybrid” algorithms are possible. In increasing order of ability to locate the set with maximal
performance, but also in increasing order of difficulty of computation, the methods are ordered 2, 4, 3, 1.
Thus, for a given set of loci, as M is increased, Method 1 can be used until LCM becomes too large
for exhaustive evaluation of all subsets of cardinality M . Method 3 can then be used to add new loci to
the existing set until M becomes too large for evaluation of any sets with cardinality M . Method 4 can
then be used until LCr is too large for evaluation of all subsets of cardinality r , reducing r to 2 as the
computational burden increases. Finally, if no other options are available, Method 2 is likely to be feasible
in any realistic scenario. The specific choice of the performance function f affects the values of L and M

at which the various algorithms become impractical.
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2.2. Performance functions

To evaluate the potential of a set of loci to provide information about ancestry, I consider an analytical
approach and a closely related simulation approach. The simulation procedure and modifications of it
are frequently used to assess performance of sets of loci (Banks and Eichert, 2000; Banks et al., 2003;
Buchanan et al., 1994; Campbell et al., 2003; Paetkau et al., 1995, 2004; Waser and Strobeck, 1998); the
analytical approach uses the formula that underlies the simulation procedure (Rosenberg et al., 2003).

Consider a set SM containing loci m = 1, 2, . . . , M , with locus m having alleles j = 1, 2, . . . , N(m).
Consider populations i = 1, 2, . . . , K , with the relative frequency of allele j of locus m in population i

equaling p
(m)
ij . Suppose that at each locus, in each population, the two alleles of a diploid individual are

independent: that is, for each i, j , h, and m, an individual in population i has genotype jh at locus m

with probability (2 − δjh)p
(m)
ij p

(m)
ih , where jh is the same genotype as hj and δjh is 1 if j = h and 0

otherwise. Suppose also that within each population, genotypes are independent across loci, and that for
each i, individuals of unknown origin have prior probability 1/K of having derived from population i.
If we consider decision rules where each possible multilocus diploid genotype has a specified probability
of being assigned to each of the potential source populations, the rule that produces the optimal rate of
correct assignment (ORCA) simply assigns an individual to the population from which its genotype is
most likely to have originated (Rosenberg et al., 2003). The probability that an individual is assigned to
its correct population of origin is

fORCA(SM) =
N(1)∑

j
(1)
1 =1

N(1)∑
j

(1)
2 =j

(1)
1

N(2)∑
j

(2)
1 =1

N(2)∑
j

(2)
2 =j

(2)
1

· · ·
N(M)∑

j
(M)
1 =1

N(M)∑
j

(M)
2 =j

(M)
1

max
i∈{1,2,...,K}

[
1

K

M∏
m=1

(2 − δ
j

(m)
1 j

(m)
2

)p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

]
.

(1)

For the empty set, fORCA(φ) = 1/K . It can be shown that fORCA is indeed a performance function
(Theorem 2 in the appendix).

Conveniently, because of its relationship to assignment by most likely source population, fORCA(SM)

can be approximated using the following simulation.

1. From a uniform prior on {1, 2, . . . , K}, simulate the source population, q, of an individual.
2. Independently for each locus m ∈ SM , simulate two independent alleles, j

(m)
1 and j

(m)
2 , from the allele

frequency distribution of population q.
3. Compute

γ = arg max
i∈{1,2,...,K}

[
1

K

M∏
m=1

(2 − δ
j

(m)
1 j

(m)
2

)p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

]
.

In case of a tie in the value of the product for two or more values of i, randomly assign one of these i

to equal γ . If γ = q, the individual is assigned correctly.
4. Repeat steps 1–3 many times, computing the fraction of simulated individuals that are correctly assigned.

The result is f̃ORCA(SM).

For the empty set, f̃ORCA(φ) = 1/K . An advantage of evaluating the less precise f̃ORCA rather than
fORCA is that the simulation can be performed quickly for large values of M , whereas if the number of
terms summed in Equation (1), or

∏M
m=1(N

(m) + 1)N(m)/2, is large, then Equation (1) cannot realistically
be evaluated. In a strict sense, f̃ORCA is only approximately a performance function (Corollary 6 in the
appendix), as stochasticity makes it possible for a set of loci to have a lower value of f̃ORCA than one of its
proper subsets; however, because of its close relationship to fORCA, f̃ORCA is treated here as a performance
function.
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3. DATA

Methods 2–4 and fORCA and f̃ORCA are applied to selection of marker panels using data from eight
species (Table 1). The datasets each consist of unphased individual multilocus diploid genotypes for
autosomal microsatellite loci (Goldstein and Schlötterer, 1999) spread throughout the genomes of their
respective species. They span a wide range in number of markers and populations, as well as in levels of
genetic diversity within populations and of genetic divergence across populations.

4. IMPLEMENTATION

4.1. Computation of fORCA and f̃ORCA

Allele frequencies at a locus were estimated from the data using the ratios of the numbers of ob-
served copies of alleles to the total number of observations for the locus. In each dataset, for each locus
and population, individuals were assumed to have two independent alleles. This assumption of Hardy–
Weinberg proportions holds for most locus-population pairs, although the fraction of pairs at which it is
violated is large in some populations (Irion et al. [2003] for example). A substitute for this assumption is
replacement of the product of allele frequencies, (2 − δ

j
(m)
1 j

(m)
2

)p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

, in Equation 1 and in Step 3

of the simulation procedure, with the genotype frequency p
(m)

i(j
(m)
1 j

(m)
2 )

, and simulation from the genotype

frequency distribution in Step 2 rather than from the allele frequency distribution. However, the large
number of possible genotypes compared to typical per-population sample sizes makes it more difficult
to obtain accurate estimates of genotype frequencies than of allele frequencies. When sample sizes are
too small for this approach to be feasible, genotype frequencies estimated from allele frequencies and a
single parameter measuring the deviation from Hardy–Weinberg proportions—the inbreeding coefficient
(Ayres and Balding, 1998)—could potentially be used. For simplicity, however, Hardy–Weinberg propor-
tions were assumed here. Additionally, because markers were generally widely spaced across the genomes
of the various species, in each population, genotypes at different loci were assumed to be independent.

Because the allele frequencies were estimated from samples that were in general small compared to the
numbers of alleles at loci, similarly to previous implementations (Banks and Eichert, 2000; Campbell et al.,
2003; Paetkau et al., 2004; Waser and Strobeck, 1998), a slight alteration was made to the computation
of f̃ORCA: 1/(Z + 1) was substituted in place of allele frequencies of 0 in Step 3, where Z is the largest
number of alleles genotyped at any locus in any population. This substitution reflects the fact that even if
its sample frequency is 0, an allele may be present in a population at nonzero frequency. However, because
the simulations were performed assuming that the sample frequencies equal the true allele frequencies
(Step 2), the use of 1/(Z + 1) in place of a true frequency of 0 systematically decreases f̃ORCA compared
to fORCA; note that this change has little effect if most alleles are found in most populations, so that allele
frequencies of 0 are rare. The corresponding substitution of 0 with 1/(Z+1) was not made in computation
of fORCA, as this substitution can only increase the value of fORCA and therefore is anticonservative.

4.2. Selection of marker panels

Because of the sizeable number of alleles at the microsatellite loci in the data, for sets of approximately
four or more loci, the number of possible multilocus genotypes was quite large and evaluation of fORCA

for M ≥ 4 proceeded very slowly. Thus, in Method 4, r = 2 was chosen, as the use of even r = 3 was
impractical for the datasets with the largest numbers of loci and alleles. In each of the datasets, the number
of loci was sufficiently small that fORCA and f̃ORCA could be evaluated relatively rapidly for all LC2 pairs
of loci.

Of the eight possible combinations of methods (1, 2, 3, and 4) and functions (fORCA and f̃ORCA), five
were practical to implement on the datasets for all possible values of M and L: panels were obtained using
both fORCA and f̃ORCA with Methods 2 and 4 and using f̃ORCA with Method 3. In case two or more loci
tied in their values according to any criterion, one of these loci was selected randomly to be the next locus
accumulated to the chosen set.
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Table 2. Robustness of Sets of Selected Markers that Were Obtained Using Simulations with f̃ORCA
a

Kendall coefficient of Mean across loci of standard
concordance of rankings deviation of rank across replicates

Method 2 Method 3 Method 4 Method 2 Method 3 Method 4
Species (univariate) (greedy) (maximin) (univariate) (greedy) (maximin)

Carp 0.977 0.740 0.972 0.39 1.46 0.49
Cat 0.923 0.808 0.910 0.66 1.18 0.70
Chicken 0.984 0.445 0.961 0.90 5.71 1.38
Dog 0.966 0.183 0.981 5.12 26.74 3.85
Fly 0.979 0.208 0.978 3.09 20.29 3.17
Grayling 0.976 0.622 0.973 0.55 2.31 0.63
Human 0.940 0.125 0.980 26.09 105.63 15.21
Maize 0.983 0.177 0.988 3.55 26.85 2.98

aFor Method 4, if the marker ranked 1 was not included in the top-ranked pair, the two loci in the top-ranked pair were assigned
rank 1.5 and the top-ranked marker was assigned rank based on the later stage at which it re-entered the list. This scenario was
generally unusual, occurring for none of the 10 replicates in chicken, grayling, and maize, 1 of 10 in carp, cat, and dog, and 3 of 10
in fly, but 8 of 10 in human.

In application of f̃ORCA, it is necessary to simulate enough individuals that robust rankings are obtained.
Thus, for each dataset, 10 replicates were performed for each of Methods 2, 3, and 4, using 1,000 individu-
als to evaluate f̃ORCA for each proposed panel. For each replicate, each locus was associated with a number
in {1, 2, . . . , L}, indicating the step at which the locus was accumulated to the set of selected markers (for
example, in Fig. 1, using Method 3, Locus 1 is added at the first step, Locus 3 at the second step, and
Locus 2 at the third step). The Kendall coefficient of concordance (Gibbons, 1985, p. 250) of the ten marker
“rankings” obtained in this manner was then computed. Also, the mean across loci of the standard deviation
of locus “ranks” across replicates was calculated. Except for those based on simulations with the greedy
algorithm, rankings in independent replicates were highly concordant, and loci varied little in rank across
replicates (Table 2). For the greedy algorithm, after enough markers for nearly perfect assignment have been
accumulated, additional markers are selected essentially randomly, because none of the markers contribute
to an increase in performance. Thus, less concordance of marker sets is to be expected if the number of
markers is sufficient for highly accurate assignment. Even though the marker panels in replicate simulations
differed in composition, however, these panels had very similar performance. For all datasets and each pos-
sible number of markers M , the values of f̃ORCA for the 10 panels suggested by the greedy algorithm were
nearly always within 0.04 of each other; only occasionally was the range of the 10 values larger than 0.01.

Thus, use of 1,000 simulated individuals to compute f̃ORCA was assumed to be sufficient for selection
of marker panels; to be conservative, in all f̃ORCA computations other than those that underlie Table 2
(and those applied to random sets of markers—Section 4.3), 10,000 individuals were simulated. In larger
datasets for which the simulation time with this number of individuals is prohibitive, fewer individuals
could potentially be used, with a consequent decline in robustness of the rankings obtained.

In addition to the variability that results from the stochasticity of simulation, sampling provides a
separate source of variability for rankings. However, in a previous analysis (Rosenberg et al., 2003), using
a performance function similar to fORCA with datasets of comparable complexity to those in Table 1, values
of the performance function and the associated rankings based on Method 2 showed little variation across
datasets in which bootstrap resamples of individuals were taken. Thus, although it might be nontrivial
for the smallest of the datasets in Table 1, the impact of sampling variation on marker rankings was not
investigated here.

4.3. Evaluation of performance

After marker panels were chosen using each of the five approaches, simulations were used to evaluate
f̃ORCA on the panels selected with Methods 2 and 4. For each set of loci, 10,000 individuals were simulated.
For panels obtained with Method 3, this evaluation of performance was based on the same simulations
used to select the markers.
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FIG. 2. Relationship of the difference between simulated and analytically obtained probabilities of correct assignment
to the analytical probability. (A) Simulations performed with replacement of allele frequencies of 0 by 1/(Z + 1).
(B) Simulations performed retaining allele frequencies of 0. Both graphs were generated using the same simulated
individuals. In (A), locus 3-4 in carp lies below the graph at (0.734, −0.151).

The performances of the five approaches were compared to those of random sets of markers. Each
marker was associated with a random number. For each number of loci M , f̃ORCA was evaluated (using
1,000 simulated individuals) for the set containing the M markers with the M highest random numbers.
This procedure was repeated for 100 random orderings of the markers.

5. RESULTS

As described in Section 2.2, f̃ORCA in principle estimates by simulation the same quantity computed
analytically by fORCA. Similar values of f̃ORCA and fORCA for individual markers were observed in all
data sets, with f̃ORCA < fORCA more often than fORCA < f̃ORCA (Fig. 2A). The generally smaller values
of f̃ORCA compared to fORCA result from the substitution of 1/(Z + 1) for 0 in Step 3 of the computation
of f̃ORCA. This interpretation is supported by the fact that when the substitution is not made, the simulated
and analytically obtained values are nearly equal (Fig. 2B). Note that for cat, in which most alleles have
nonzero frequencies in both populations (Table 1), the substitution has little impact on the simulation.

Although f̃ORCA was sometimes ∼10% smaller than fORCA (Fig. 2A), when the same algorithm was
applied to selection of panels—Method 2 or 4—locus ranks when f̃ORCA was used as the performance
function were nearly identical to those obtained with fORCA (Tables 3 and 4). With the same algorithm
applied, correlation coefficients of marker rankings based on the analytically computed fORCA and the
simulated f̃ORCA were in most datasets larger than 0.99 (Table 3).

Table 3. Spearman Coefficients of Rank Correlation between Pairs of Rankings of Markers

Pair of rankings
Spearman coefficient

(Method, (Method,
function) function) Carp Cat Chicken Dog Fly Grayling Human Maize

(2, fORCA) (2, f̃ORCA) 0.936 0.983 0.995 0.997 0.997 0.996 0.996 0.994
(4, fORCA) (4, f̃ORCA) 0.945 0.983 0.996 0.993 0.994 1.000 0.996 0.993

(2, fORCA) (3, f̃ORCA) 0.864 0.933 0.488 0.161 0.410 0.780 0.229 0.216
(2, fORCA) (4, fORCA) 0.927 0.983 0.991 0.985 0.981 0.956 0.992 0.988
(2, fORCA) (4, f̃ORCA) 0.982 1.000 0.987 0.984 0.979 0.956 0.991 0.985
(2, f̃ORCA) (3, f̃ORCA) 0.809 0.900 0.511 0.154 0.402 0.793 0.227 0.211
(2, f̃ORCA) (4, fORCA) 0.955 0.950 0.991 0.982 0.979 0.943 0.989 0.982
(2, f̃ORCA) (4, f̃ORCA) 0.945 0.983 0.991 0.982 0.979 0.943 0.989 0.983
(3, f̃ORCA) (4, fORCA) 0.818 0.917 0.510 0.183 0.454 0.833 0.228 0.230
(3, f̃ORCA) (4, f̃ORCA) 0.827 0.933 0.515 0.183 0.448 0.833 0.233 0.236
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For pairs of rankings that used the same marker selection algorithm but different performance functions,
correlation coefficients were generally larger than for pairs that used different marker selection algorithms
and the same performance function (Table 3). However, Methods 2 and 4 produced highly correlated
rankings and lists with similar composition, regardless of whether fORCA or f̃ORCA was used as the
performance function (Tables 3 and 4). Note also that for chicken, a previous application of a univariate
procedure based on a heterozygosity performance function (Rosenberg et al., 2001) produced the same
choice of the seven best-performing markers as Method 4 with fORCA.

Partly because of the fact that after enough markers for nearly perfect assignment have been selected, the
greedy algorithm chooses new markers in an essentially random manner, lists of high-performing markers
suggested by Method 3 were not very closely related to those obtained using the other algorithms (Tables 3
and 4). Especially for the larger datasets—dog, fly, human, and maize—the lists contained markers that
were not included in panels suggested using the other algorithms. Simultaneously, many markers that were
obtained using other algorithms did not appear among the lists suggested by the greedy method.

When f̃ORCA was evaluated for panels recommended by the selection algorithm/performance function
combinations, performance was substantially higher than that of random panels (Fig. 3). Other than in the
human dataset, in which performance differed across combinations for many choices of the number of loci,
all five combinations had nearly identical performance for most numbers of loci. In the human data, as the
number of loci ranged from 2 to 28, the greedy algorithm with f̃ORCA averaged 0.013 higher performance
than the univariate algorithm with fORCA, and 0.015 higher than the univariate algorithm with f̃ORCA. Over
this range, the combinations involving the univariate algorithm were also slightly outperformed by those
involving the maximin algorithm. When performance differences were noticeable in the other datasets—for
example, in the situations when it exceeded 0.015 (carp with 2 loci, chicken with 2, 4, 5, and 6 loci, fly
with 2, 3, and 4 loci, and grayling with 2 and 4 loci)—as was true in humans, the greedy algorithm
with f̃ORCA generally outperformed the other approaches. For each algorithm, performance function, and
dataset, performance appeared to converge as the number of loci increased.

6. DISCUSSION

Several combinations of marker selection algorithms and performance functions appropriate for choosing
a panel for use in ancestry inference have been suggested. As a consequence of the fact that f̃ORCA has
expected value equal to fORCA (Rosenberg et al., 2003), the analytical and simulated performance functions
produced nearly identical panels. The panels obtained by straightforward selection of the most informative
individual markers, although this procedure does not take into account interactions among markers, had
nearly identical composition and performance to those obtained by the maximin procedure, which in
the cases studied, makes use of bivariate interactions. The greedy procedure, although its recommended
markers differed from those of the other procedures, generally did not produce substantially different
performance.

The similarity in performance of the various procedures suggests that although counterexamples do exist,
performance of a set of markers can almost be decomposed into univariate contributions of individual loci,
with only a small contribution of bivariate and higher-order interactions. The greedy method is perhaps
appropriate when slightly higher performance is desired. However, when simplicity, robustness, and ease
of computation are needed, performance changes little when the univariate or maximin procedure is used
in its place. Although none of the three algorithms—univariate, greedy, or maximin—is guaranteed to
identify the panel of maximal performance, each likely selects panels that have performance sufficiently
close to the optimum that any of the algorithms is suitable for use with data.

The dataset in which the greedy procedure did produce a consistent (though slight) increase in perfor-
mance—the human data—was both the one with the largest number of markers and the one in which the
number of markers required for assignment was largest. These two aspects of the dataset are likely to
be partly responsible for the improved performance of the greedy algorithm, as the careful selection of a
marker panel has the greatest potential impact when the number of possible choices is particularly large
and when the assignment problem is sufficiently difficult to allow different panels to vary substantially in
their performance. Further investigation of the influence of various dataset characteristics on assignment
success will help to determine the generality of this claim.
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FIG. 3. Probability of correct assignment as a function of number of markers for five methods of selecting marker
sets. The median probability of correct assignment based on 100 random orderings of the markers is also shown. For
zero markers (not shown), the correct assignment probability is the reciprocal of the number of populations in the
dataset. Note that the x-axis is scaled differently for the plots with the human dataset.

APPENDIX

It has sometimes been observed for certain ancestry inference procedures that accuracy of inference
does not necessarily increase as markers are accumulated (Alaska Department of Fish and Game, 2000).
This appendix investigates the relationship of fORCA and f̃ORCA to the number of loci, demonstrating that
fORCA does have the property that accumulating loci increases performance, and that f̃ORCA “almost” has
this property. Thus, when evaluating the performance of f̃ORCA in assignment of individuals, although
exceptions can occur, incorporating additional loci generally increases performance (as was observed
in Fig. 3).
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Lemmas 1 and 3 give bounds for fORCA. Lemma 1 motivates the choice fORCA(φ) = 1/K , so that
nonempty sets of loci produce correct assignment probabilities at least as large as those obtained with
no loci. Theorem 2 proves that fORCA is a performance function: if allele frequencies are known, the
probability of correct assignment for the procedure that assigns individuals to their most likely source
populations increases as additional loci are considered. Theorem 4 shows that the values of fORCA for a
nested sequence of sets of loci converge to a constant, providing an explanation for the apparent convergence
of performance in Fig. 3. This constant need not equal 1—for example, consider an infinite set of loci in
which for each locus l, each allele has frequency 1/N(l) in every population. For this set of loci, fORCA

equals 1/K .
Corollary 6 of Theorem 5 explains the assertion that f̃ORCA is “almost” a performance function. It

shows that if enough simulated individuals are used in the evaluation of f̃ORCA, with high probability,
accumulation of additional loci either increases performance, does not affect it, or decreases it by a small
amount. Corollary 8 of Theorem 7 gives a similar result in case fORCA is computed using sample allele
frequencies rather than true frequencies. If large enough samples are used in evaluation of this estimate,
f̂ORCA, accumulating loci is likely to either increase performance, not affect it, or decrease it by a small
amount.

Finally, Corollary 10 of Theorem 9 shows that if ˜̂
f ORCA—performance based on simulations that employ

estimated allele frequencies—is used to evaluate assignments, then both the number of simulations and the
sample sizes can be made large enough so that with high probability, accumulating additional loci either
increases performance, does not affect it, or decreases it by a small amount. This result demonstrates that
even under realistic conditions—in which simulations rather than the analytical formula are used and allele
frequencies are estimated rather than known—the genotyping of additional loci is likely to increase the
probability of correct assignment.

We now introduce additional notation before proving the theorems. Consider a vector Q of nonnegative
numbers q1, q2, . . . , qK with

∑K
i=1 qi = 1. The choice of Q corresponds to a prior probability distribution

for the source population of an individual; the purpose of introducing a general prior is to allow more
general assignment rules. With the prior distribution Q, the probability of correct assignment if individuals
are assigned to their most likely source populations, denoted fQ, is obtained by replacing 1/K with qi in
Equation (1). The following form of this generalized quantity is more convenient for the proofs than is
that of Equation (1) (though it is less convenient for evaluation due to its increased number of terms):

fQ(SM) =
N(1)∑

j
(1)
1 =1

N(1)∑
j

(1)
2 =1

N(2)∑
j

(2)
1 =1

N(2)∑
j

(2)
2 =1

· · ·
N(M)∑

j
(M)
1 =1

N(M)∑
j

(M)
2 =1

max
i∈{1,2,...,K}

[
qi

M∏
m=1

p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

]
. (2)

The function fORCA (Equation (1)) is the special case of fQ in which q1 = q2 = . . . = qK = 1/K .
Define f̃Q by the simulation procedure in Section 2.2, replacing Step 1 with simulation of q from the prior

Q. For a set of loci T , let f̃Q,α(T ) be the (random) value of f̃Q(T ) obtained from α simulated individuals.
Let f̂Q,(n1,n2,...,nK)(T ) be the (random) value of fQ(T ) obtained using allele frequency estimates from

a sample with ni ≥ 1 observations in population i and abbreviate (n, n, . . . , n) by n. Let ˜̂
f Q,α,n(T ) be

the (random) value of f̃Q(T ) obtained using α simulated individuals based on allele frequency estimates

from a sample with size vector n. For the empty set, define ˜̂
f Q,α,n(φ) = f̂Q,n(φ) = f̃Q,α(φ) = fQ(φ) =

maxi∈{1,2,...,K} qi .
Until now, we have viewed fORCA and its extensions as real-valued functions on sets of sets. For

a given set with M loci, it is convenient to also view them as functions on the set of possible allele
frequencies for the loci. In this framework, these functions have domain �K

N(1) ×�K
N(2) . . .×�K

N(M) , where

�N = {(p1, p2, . . . , pN |pj ≥ 0,
∑N

i=1 pj = 1} is the set of possible allele frequencies for a single
population at a locus with N alleles. Henceforth, allele frequencies of 0 are retained in all computations.

Let WM = {(j (1)
1 , j

(1)
2 , . . . , j

(M)
1 , j

(M)
2 ) | j (m)

1 , j
(m)
2 ∈ {1, 2, . . . , N(m)} for each m}. Consider a denu-

merable set of loci SL, and without loss of generality, label the loci 1, 2, 3, . . . . Let RM denote the subset
of SL that contains loci 1, 2, . . . , M (R0 is the empty set). Note that in the main text, SL is assumed to
be finite, in order to guarantee that maxima exist for functions on P(SL). Theorem 4 below, however,
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specifically assumes infinite SL. In case SL is finite, this result applies to infinite sets obtained by ap-
pending loci to SL so that for each positive integer l, at locus L + l, each allele has frequency 1/N(L+l)

in every population.

Lemma 1. For any v ∈ SL, fQ({v}) ≥ max
i∈{1,2,...,K} qi .

Proof. It suffices to show that for each Q, fQ(R1) ≥ max
i∈{1,2,...,K} qi . Using Equation (2), for any

k ∈ {1, 2, . . . , K},

fQ(R1) =
N(1)∑
j1=1

N(1)∑
j2=1

max
i∈{1,2,...,K}

[
qip

(1)
ij1

p
(1)
ij2

]
≥

N(1)∑
j1=1

N(1)∑
j2=1

qkp
(1)
kj1

p
(1)
kj2

.

Using the fact that for any m

N(m)∑
j1=1

N(m)∑
j2=1

p
(m)
kj1

p
(m)
kj2

= 1, (3)

it follows that fQ(R1) ≥ qk . Because this inequality holds for each k, fQ(R1) ≥ max
i∈{1,2,...,K} qi .

Theorem 2. Function fQ is a performance function for SL.

Proof. It suffices to show that for any M ≥ 1, fQ(RM−1) ≤ fQ(RM). For M = 1, the result follows
from Lemma 1. Otherwise, writing out fQ(RM−1) and fQ(RM) (Equation (2)), it suffices to show that for
any j ∈ WM−1,

max
i∈{1,2,...,K}

[
qi

M−1∏
m=1

p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

]
≤

N(M)∑
j

(M)
1 =1

N(M)∑
j

(M)
2 =1

max
i∈{1,2,...,K}

[
qi

M∏
m=1

p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

]
. (4)

For j ∈ WM−1, abbreviate ai = qi

∏M−1
m=1 p

(m)

ij
(m)
1

p
(m)

ij
(m)
2

. For j
(M)
1 , j

(M)
2 ∈ {1, 2, . . . , N(M)} and k ∈

{1, 2, . . . , K},

akp
(M)

kj
(M)
1

p
(M)

kj
(M)
2

≤ max
i∈{1,2,...,K}

[
aip

(M)

ij
(M)
1

p
(M)

ij
(M)
2

]
.

Summing this inequality over all possible j
(M)
1 , j

(M)
2 and using Equation (3), we obtain

ak ≤
N(M)∑

j
(M)
1 =1

N(M)∑
j

(M)
2 =1

max
i∈{1,2,...,K}

[
aip

(M)

ij
(M)
1

p
(M)

ij
(M)
2

]
.

Because this inequality holds for each k, we can take the maximum of the left hand side to obtain (4).

Lemma 3. For any T ⊂ SL, fQ(T ) ≤ 1.

Proof. By definition of fQ, the result holds for the empty set. Otherwise, it suffices to show that the
result holds for every RM , M ≥ 1. Choose M , and for each k ∈ {1, 2, . . . , K}, let

WM,k =
{

j ∈ WM | arg max
i∈{1,2,...,K}

[
qi

M∏
m=1

p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

]
= k

}
.
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For a given j, if i1, i2, . . . , iC tie for the maximum, place j in WM,minc∈{1,2,...,C} ic . Rearranging Equation (2),

fQ(RM) =
K∑

i=1

qi

∑
j∈WM,i

M∏
m=1

p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

≤
K∑

i=1

qi

∑
j∈WM

M∏
m=1

p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

=
K∑

i=1

qi

M∏
m=1

N(m)∑
j

(m)
1 =1

N(m)∑
j

(m)
2 =1

p
(m)

ij
(m)
1

p
(m)

ij
(m)
2

.

Applying Equation (3), it follows that fQ(RM) ≤ ∑K
i=1 qi = 1.

Theorem 4. If m1 ≤ m2 implies Tm1 ⊂ Tm2 ⊂ SL for all m1, m2, then {fQ(Tm)}∞m=1 converges to a
number in [maxi∈{1,2,...,K} qi, 1].

Proof. As a consequence of Theorem 2, the sequence is monotonically nondecreasing. As a conse-
quence of Lemmas 1 and 3, it is bounded below by maxi∈{1,2,...,K} qi and above by 1. Using the fact that
monotonic bounded sequences of real numbers converge (Rudin, 1976, Theorem 3.14), the result follows.

Theorem 5. Consider T ⊂ SL. As α → ∞, f̃Q,α(T ) converges almost surely in and probability to
f̃Q(T ).

Proof. The almost sure convergence is a consequence of the strong law of large numbers (Serfling,
1980, Theorem 1.8B), using the fact that for any T , E[f̃Q,1(T )] = fQ(T ) (see Section 2.2). Convergence
in probability then follows (Serfling, 1980, Theorem 1.3.1).

Corollary 6. Consider T ⊂ SL, sets T1, T2 ⊂ T with T1 ⊂ T2, and ε1, ε2 > 0. There exists α∗ such
that if α ≥ α∗, then P[f̃Q,α(T2) > f̃Q,α(T1) − ε1] > 1 − ε2.

Proof. Applying Theorem 5 and the definition of convergence in probability, there exists α∗ such that
for α ≥ α∗, both P[|f̃Q,α(T1)−fQ(T1)| < ε1/2] > 1−ε2/2 and P[|f̃Q,α(T2)−fQ(T2)| < ε1/2] > 1−ε2/2.
Then P[f̃Q,α(T1) < fQ(T1) + ε1/2] > 1 − ε2/2 and P[fQ(T2) < f̃Q,α(T2) + ε1/2] > 1 − ε2/2, from
which P[(f̃Q,α(T1) < fQ(T1) + ε1/2) ∩ (fQ(T2) < f̃Q,α(T2) + ε1/2)] > 1 − ε2. The intersection in this
expression has probability less than or equal to that of f̃Q,α(T1)+fQ(T2) < fQ(T1)+ f̃Q,α(T2)+ε1, which,
using Theorem 2 to obtain fQ(T1) ≤ fQ(T2), has probability less than or equal to that of f̃Q,α(T2) >

f̃Q,α(T1) − ε1.

Theorem 7. Consider T ⊂ SL. As n → ∞, f̂Q,n(T ) converges almost surely and in probability to
f̂Q(T ).

Proof. If T = φ the result is trivial. Otherwise, by the strong law of large numbers (Serfling, 1980,
Theorem 1.8B), for each i, m, and j (m), as n → ∞, the sample frequency p̂

(m)

ij (m),n
estimated from sample

size n converges almost surely to the true frequency p
(m)

ij (m) . Because each component sample frequency
converges a.s. to the appropriate true frequency, the sample frequency vector converges a.s. to the true
frequency vector (Serfling, 1980, Problem 1.P.2b). As a composition of sums, products, and maxima, fQ

is continuous on �K
N(1) ×�K

N(2) . . .×�K
N(M) , and it follows that f̂Q,n(T ) converges a.s. to fQ(T ) (Serfling,

1980, Theorem 1.7i). Convergence in probability follows (Serfling, 1980, Theorem 1.3.1).
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Corollary 8. Consider T ⊂ SL, sets T1, T2 ⊂ T with T1 ⊂ T2, and ε1, ε2 > 0. There exists n∗ such
that if n ≥ n∗, then P[f̂Q,n(T2) > f̂Q,n(T1) − ε1] > 1 − ε2.

Proof. Using Theorem 7, f̂Q,n(T2) converges in probability to fQ(T2) and f̂Q,n(T1) converges in
probability to fQ(T1) (trivially if T1 = φ). The remainder of the proof follows the same argument as in
the proof of Corollary 6, using f̂Q,n in place of f̃Q,α and n, n∗ in place of α, α∗.

Theorem 9. Consider T ⊂ SL. As α, n → ∞, ˜̂
f Q,α,n(T ) converges in probability to fQ(T ).

Proof. Let ε1, ε2 > 0 and Dα,n = P[| ˜̂
f Q,α,n(T ) − fQ(T )| > ε1]. Because | ˜̂

f Q,α,n(T ) − fQ(T )| ≤
| ˜̂
f Q,α,n(T ) − f̂Q,n(T )| + |f̂Q,n(T ) − fQ(T )|, it follows that Dα,n ≤ P[| ˜̂

f Q,α,n(T ) − f̂Q,n(T )| > ε1/2] +
P[|f̂Q,n(T ) − fQ(T )| > ε1/2]. By definition of convergence in probability, it suffices to show that there
exist (α∗, n∗) such that for any α ≥ α∗ and any n ≥ n∗, Dα,n < ε2. By Theorem 7, using the definition
of convergence in probability, there exists n∗ such that for n ≥ n∗, P[|f̂Q,n(T ) − fQ(T )| > ε1/2] < ε2/2.

Applying Chebyshev’s inequality (Durrett, 1996, p. 15) and using E[ ˜̂
f Q,α,n(T )] = f̂Q,n (see Section 2.2),

P[ ˜̂
f Q,α,n(T ) − f̂Q,n(T )| > ε1/2] ≤ Var[ ˜̂

f Q,α,n(T )]/[(ε1/2)2]

= 4Var[ ˜̂
f Q,1,n(T )]/(αε2

1)

< 4/(αε2
1),

where the last step follows from the fact that the variance of a random variable on [0,1] is less than 1. The

bound 4/(αε2
1) applies for any n. Choosing α∗ > 8/(ε2

1ε2), P[ ˜̂
f Q,α,n(T )− f̂Q,n(T )| > ε1/2] < ε2/2.

Corollary 10. Consider T ⊂ SL, sets T1, T2 ⊂ T with T1 ⊂ T2, and ε1, ε2 > 0. There exist α∗ and

n∗ such that if α ≥ α∗ and n ≥ n∗, then P[ ˜̂
f Q,α,n(T2) >

˜̂
f Q,α,n(T1) − ε1] > 1 − ε2.

Proof. By Theorem 9, there exist (α∗, n∗) so that for α ≥ α∗ and n ≥ n∗, both P[| ˜̂
f Q,α,n(T1) −

fQ,n(T1)| < ε1/2] > 1 − ε2/2, and P[| ˜̂
f Q,α,n(T2) − fQ,n(T2)| < ε1/2] > 1 − ε2/2. The argument in the

proof of Corollary 6 then applies.
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