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ABSTRACT

The equation of rectilinear motion of a projectile which moves in an
atmosphere, of which the density decreases exponentially with the altitude, is
solved. It is found that the velocity of the projectile can be expressed explicitly
in terms of confluent hypergeometric functions. This theory is applied to treat
two specific problems: (1) the flight analysis of a sounding rocket during the free-
flight period and (2) the calculation of ambient temperature from the trajectory

of a spherical projectile.

1. INTRODUCTION

The theory of flight of a ballistic projectile in a resisting medium
dates back to Newton. In the meantime, various approximations for the flight
parameters which are involved in the equation of motion have been used. 1 The
most important ones are the aerodynamic-drag coefficient of the projectile and
the ambient-air density. The former is usually considered as functions of Mach

number, the latter as functions of the altitude.

1Superscript numbers indicate similarly numbered references at the end of
this note.



The theory of flight of a sounding rocket during the free-flight period
deals essentially with the same problem as that of a ballistic projectile. The
only difference is that the air-density factor is more critical because of the ex-
treme altitude attained by the former; hence, a more realistic approximation to
the ambient-air density is necessary. In view of the multiplicity of parameters
involved, the equation of motion of the projectile (or rocket) is generally treated
either by a laborious method of step-wise integration or by the analog computer

technique.

2 in which a falling sphere is used as an am-

A recent experiment,
bient-temperature probe in the upper-atmosphere measurements, stimulates new
interest to the trajectory problem. Measured trajectory data of a spherical pro-
jectile are used to determine the ambient-air density, from which the ambient-air
temperature can be derived.

In this note, new approximations to the aerodynamic-drag coefficient
and ambient-air density, which are believed to be more accurate than previous
representations, 1 are introduced. Particle drag, which is caused by the pres-
ence of aerosols in the atmosphere, is allowed in the present analysis. This, of
course, warrants consideration only in some special cases.

It is found that the projectile velocity is expressible explicitly in
terms of confluent hypergeometric functions. The significance of this result,
which is believed to be new, is twofold: (1) In treating "direct" problems, for

instance, like the trajectory analysis of a sounding rocket, the present theory
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can be used to save the labor of step-wise integration if tabulation of the particu-
lar confluent hypergeometric function is available. (2) In the case of an "indirect"
problem such as the computation of the ambient temperature from a falling-sphere
trajectory, it can be applied with advantage because of the elimination of the nu-

merical differentiation process which is involved in the original theory.

2. SIGNIFICANT FORCES

The word "projectile" is used here referring to any axially symmetric
body in free flight. We restrict our discussion to the case with negligible spin and
yaw.

The force system acting on a projectile includes: (1) the gravity mg;
(2) the bouyancy gV, where V represents the volume displaced by the projectile,
and O, the ambient-air density; (3) the aerodynamic drag D; (4) particle drag d,
which is caused by the presence of aerosols in the atmosphere; and (5) the inertial
force (m +.Am)dv/dt, where Am, Munk's apparent additional mass, is equal to
one half the mass of air displaced by a spherical projectile; and dv/dt, the pro-
jectile acceleration.

The bouyancy and the inertial force of the apparent additional mass
are significant only for projectiles of the balloon type. Though, under sea-level
conditions, the particle drag due to water droplets, for instance, may be insigni-
ficant when compared with the aerodynamic drag, it is conceivable, however,

that in the cumulus clouds at high altitudes, the drag due to water droplets may
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become significant. While the water-droplet content depends primarily on the
ambient temperature, the ambient-air density decreases with the altitude ex-
ponentially.

It is not intended here for us to become involved in detailed com-
putation of the particle drag. Rather, we shall investigate its effect on the pro-
jectile motion since the particle-drag term in the equation of motion follows a
functional dependence upon the altitude, which is, in general, different from that
of the aerodynamic drag. As a first approximation, the particle drag is pre-
scribed as d = cdo—sz/z, according to the Newtonian concept of drag. The
particles are assumed to be mass points at rest; hence, Cd should depend only
on the position and shape of the projectile and be independent of its size A and

velocity v. The particle concentration is represented by o.

3. APPROXIMATE REPRESENTATION OF THE
AERODYNAMIC-DRAG COEFFICIENT

It can be demonstrated with a dimensional analysis that the aero-
dynamic-drag coefficient, defined as CD = D/(,OV2A/2), for geometrically
similar projectiles depends primarily upon the Mach number and Reynolds
number. For projectiles moving at high speeds, the dependence of CD on the
Reynolds number is much less significant than that on the Mach number except
in cases for which the Reynolds numbers are low, such as those at the high

altitudes. In those cases, however, the aerodynamic-drag force is usually

negligible as compared to the gravity.
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For a specific projectile, the variation of CD with Mach number M,
in general, shows distinctly different characteristics in the three Mach number
ranges: (1) subsonic, (2) transonic, and (3) supersonic. Qualitatively speaking,
CD(M) starts with roughly constant values (for different projectiles) then in-
creases gradually as transonic range is approached. During the transonic range
it increases until the supersonic range begins. CD(M) in the supersonic range
decreases with a gradient which is very large at first and gradually diminishes
to a small value.

Reliable values of CD still rely mostly on measurements from
model tests. Theoretical consideration may, however, serve as a guide to the
choice of emperical functions for prescribing CD.

Consider separately the compressibility effect in the subsonic flows
for slender and round bodies. In the former case, to account for the compressi-
bility effect on the pressure coefficient, either the Prandtl-Glauert factor

-1/2 or a modified version of it (for instance, the Karman-Tsien for-

(1-Mm?
mula or Goethert's generalized Prandtl-Glauert formula) can be used. These

factors, when expanded in a power series of M, can be expressed in the form

2
CO+C2M (3.1)

after neglecting higher-order terms. In the latter case, as an index of the
compressibility on the drag coefficient of a round body, the impact-pressure

coefficient at the stagnation point can be shown to be



2
_ M
Cp-1+T + ...

(3.2)
It has also been shown by measurements that the compressibility effect on the
skin-friction coefficient and the coefficient of drag due to interference between
body and fins can be considered as proportional to the powers of the Prandtl-
Glauert factor.

A large fraction of the drag force on a projectile in the supersonic
flows are attributed to the frontal shock wave and the base pressure. For a

typical body like a cylinder with a nose cone, the drag coefficient can be shown

to be approximately of the form

-2
C, + CgM (3.3)
The validity of the above expression is expected to extend to the hypersonic
range. 3 Relatively less is known concerning the theory of drag in a transonic

flow, which is a mixture of subsonic and supersonic flows. It is therefore

suggested to use

_ 2 -2
Cp = €+ C,M” + C,M (3. 4)

D
as a general expression for approximating the drag coefficient of a projectile
in the following analysis. Co’ CZ’ and Cgq in (3.4) are empirical constants to

be prescribed for each Mach-number range.



4, EQUATION OF RECTILINEAR MOTION OF A PROJECTILE

Consider a nonspinning projectile which ascends at zero angle of
yaw in a stationary atmosphere. By collecting terms of forces which have
been discussed in Section 2, we obtain the equation governing the rectilinear
motion of a projectile along the vertical axis y.

2 -2 2 1 2 d
M +C3M JAov +7CdAo‘v - ng+mg+(m+Am)va§ =0 (4.1)

é(C0+C2
For an isothermal atmosphere with temperature T in altitude
interval (y - yo), the ambient-air density can be expressed as O =
A, exp [—(y - yo)/H] where H, the scale height, is defined as kT/mlg-- k =
Boltzmann's constant; m, = mean molecular mass of air .
To simplify Eq. (4. 1), we introduce
2 -1.2
Z=M"=(/gH) "v, x=-exp [-(y—yo)/H], and p = P X (4.2)

where >’= ratio of specific heats of air, and obtain

4z _
I - Co

2 . et _
Az +(C A +E)Z+(Cq0 - §+£) (4.3)
where
o= A,OOH(m-!-Am)_l, B= CdAo"H(m+Am)-1, § = Z,OOVV-I(m+ Am)_l, and
_1 _1 (4. 4)
€=2mY (m+Am)

Equation (4. 3) is nonlinear and of the Riccati type. It can be

transformed through use of the substitution

—IdCZde] (4.5)

u = exp




into a linear equation

d®u (o.C +5) + dC (QC - d+&€)yu =0 (4. 6)
2 ) dx x4 = ’

dx
Equation (4. 6), which has a regular singularity at x = 0 and an

irregular singularity at x = 0o, can be converted into the canonical form

d
£d£2+(b f)j% ag = 0 (4.7)
with 2 g
é=2ﬂx ﬂ2=OLC° +AUC(§ - aCy,) ;2(=uexp[ﬂ-lac ]X b=-4, and
’ B 2 3"’ 2 0]’ ’
(4. 8)

a=3(50aC B -ac,e -BMA"

One of the fundamental solutions of (4.7) is the confluent hyper-

geometric function4

Oo n
(a) g
4a, b, €)= Fa b, £)= B (4.9)
n=0
where
(a)n=a(a+1)...(a+n-1) n>1
(:at)o =1
The other one is
1-b
£ Flra-b 2-b8) (4. 10)

171

provided b is not an integer. The general solution of (4. 7) with nonintegral b

may be written as
_ . 1-b _ .
@-BlFl(a, b; £)+Cé 1F1(1+a b, 2 b,f) (4.11)

where B and C are arbitrary constants. Confluent hypergeometric functions have

been fairly extensively tabuleted. 5.6, 17
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In view of (4. 2), (4.5), (4.8), and (4. 11), we obtain

C
2 2ygHN |1 %o 1 dP
M cPantl A 7 SV (4.12)

Because of the term (d@/df)/é, one of the arbitrary constants of @ as given

in Eq. (4. 11) will be eliminated in Eq. (4. 12) for. V2. Since Eq. (4. 3) is of the
first order, there is only one constant of integration. This is consistent with the
physical aspect of the problem. The constant of integration is to be determined
by the use of the boundary condition of the projectile trajectory.

Consider the restriction on b in (4. 11). Since b = -8, where g is
defined as CdAc'H(m + Am)-l, which, in general, is less than unity, the limita-
tion on the values of b is not significant as far as the present analysis is concerned.
The only notable exception is the case b = 0, which corresponds to the problem
when the particle drag is null.

Equation (4.7) with b = 0 has been studied by Bateman. 8 The
solution of (4. 7) for this particular case is known as Bateman's k-function. The
general solution of Eq. (4.7), when b = 0, is bounded in the neighborhood of
£-0.*

It is to be noted that when C2 = 0, Eq. (4. 3) becomes a linear equa-
tion of the first order, which can be integrated immediately in terms of elementa-

ry functions. 9

*This is pointed out to the author by Professor Robert C. F. Bartels.



It is also to be noted that the equation of motion of a projectile with
the assumption CDN M-1 (a satisfactory approximation for the wave drag of
airfoil sections in hypersonic flows) and @ = 0 is again a linear equation of the
first order if v and t are used as a dependent and an independent variable, re-
spectively. 10

It is interesting to note that the function ¢ in Eq. (4.7) can be ex-
pressed in terms of Bessel functions provided that the condition 2C,e = C0 ,315
fulfilled. Other special cases of the confluent hypergeometric function will be

obtained for the solution ¢ when values of the parameters b and a in Eq. (4.7)

fulfill appropriate restrictions in each individual case.

5. ENGINEERING APPLICATION

The result of the present analysis may be applied to the following
problems:

5.1 Flight Analysis of a Sounding Rocket.

A rocket which carries sounding instruments to high altitudes for
measuring the upper atmosphere is called a sounding rocket. It is usually
launched vertically upward to gain the utmost peak altitude. In view of the
simplicity of the designed trajectory, it is generally equipped with the least
guidance. As a first approximation, it is plausible to assume that a sounding
rocket with normal performance moves rectilinearly at zero angle of yaw.

Hence, the present analysis can be applied in the free-flight period.
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For a solid-propellant rocket, which usually has large jet-propulsive
thrust of a short duration, we can estimate the burnout velocity and altitude by
neglecting the aerodynamic drag in comparison to the forward thrust. The classi-
cal method is to integrate the equation of motion of a rocket with mass m as a
function of time t:

dm dv 0 (5. 1)

where C is the constant exhaust velocity. This leads to

Mp
vy = - Cln—ﬁc—) - gty - t) (5.2)

2

tb m, 1
yb =-C f (].1’1 m—o)dt - -gg(tb - tO) (5. 3)
t

o)

where subscripts o and b denote initial and burnout condition, respectively. The

above calculations can be improved through an iterative process in regard to

the aerodynamic-drag correction.

5.2 Ambient Temperature Computation from Trajectory Data of a Falling Sphere.
The idea of using a free-falling sphere, of which the trajectory can

be accurately measured, to probe the upper atmosphere for the purpose of meas-

uring the ambient temperature was originally conceived by Jones. 2 This was

carried out by incorporating a miniature Doppler receiver-transmitter in an in-

flated sphere, which was released from a sounding rocket near its peak altitude.

11

The sphere trajectory is determined by a DOVAP system, which consists of a

transmitter and an array of receivers on the ground.
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In an alternative scheme, as proposed by the author, the ground
stations of transmitters and receivers are replaced by a mobile station which
has a transmitter and a receiver just like those used in the DOVAP system ex-
cept in miniature sizes. The mobile station is incorporated in a body, with
negligible drag-to-weight ratio, which is to be released simultaneously with the
sphere from the rocket. With this scheme, the velocity of the sphere, relative
to an apparently null-drag trajectory or pseudo-vacuum trajectory, is obtained
from Doppler cycles which are to be telemetered from the mobile station and
recorded along a time scale. It is assumed that both the mobile station and the
sphere fall vertically with no relative tumble.

One serious drawback of the falling-sphere method is the need of
numerical differentiation of the velocity data in the process of computing ambient-
air density according to the original theory. 2 As it is known, numerical differ-
entiation is a notoriously inaccurate process because it exaggerates the irregular-
ities of the numerical function whose derivatives are to be determined. This
process can be avoided if the present theory of projectile trajectory is applied
in step-wise calculation of the scale height H, which is proportional to the ambient-

air temperature T.
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