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GENERAL DISCUSSION

A. OBJECTIVE OF THE PRESENT STUDY

A rational theory or accurate calibration of sphere drag corresponding to
the free flight conditions of a falling sphere in the upper atmosphere is of
utmost interest in the current program of upper atmosphere measurement. Unfor-
tunately neither has been available for the entire experimental range of inter-
est,

The experimental data obtained from laboratory calibrations of sphere drag
in the rarefied flows have been scanty, lacking especially for the flow regime
intermediate between the free-molecule and the continuum flows. Recently there
have been some experimental sphere drag studies at hypersonic speeds for the
purpose of simulating re-entry conditions. These results turn out to be not
very useful to the falling sphere experiment because of the extremely high tem-
perature for the skins of the sphere; furthermore these skin temperatures are
unknown to a considerable degree. The fact that the sphere drag in a highly
rarefied atmosphere depends critically on the skin temperature makes the ex-
perimental sphere drag data for re-entry even less favorable for extrapolation
to the falling sphere experiments.

In view of the unsatisfactory status of sphere drag theory, one tends to
use various forms of semi-empirical approach which consists of extrapolating
sphere drag on the basis of available experimental data with the guidance of
physically plausible functions to represent the sphere drag coefficient. This
approach would be doomed to failure if the empirical formula is used beyond its
limited range of validity. In general, one uses a limited number of empirical
constants to represent some physical quantities which vary with many parameters.

It is felt that the present situation of the sphere drag problem pertaining
to upper air measurements calls for an examination of sphere drag from the view-
point of the Boltzmann equation in kinetic theory.

B. METHOD OF APPROACH TO THE PROBLEM OF SPHERE DRAG IN TRANSITIONAL FLOWS

It has been generally agreed that aerodynamics of semi-rarefied gas of
neutral particles can be adequately represented by the Boltzmann equation in
kinetic theory. It is also well known that Boltzmann equation has been no-
toriously resistant to solution except in its application to the relatively
simple cases such as the transport phenomena and free-molecule flows. Con-
sequently, numerous kinetic models for the evaluation of molecular collisions
have appeared in the literature as approximations to Boltzmann's collision in-
tegral. Such efforts are certainly worthwhile in view of the significance of

iv



the problem provided the consequences of both the shortcomings and the advantages
of such approximations are carefully clarified. Unfortunately this is usually
not the case.

A common procedure in reporting such approximate analysis in the scien-
tific literatures starts with some drastic simplification of the binary colli-
sion integral without careful discussion of its consequences, then the simpli-
fied kinetic equation, thus obtained, is applied to some special problems usu-
ally the internal flow problems such as Couette flows. The analysis proceeds
with the solution for the simplified equation and compares its results with
some other models. The most damaging consequence of such analyses 1s the claim-
ing of broad implications of the agreement of the calculated results on the
basis of some applications to the simple special problems. Much of the exist-
ing confusion and conflicting impression of the kinetic theory of the transi-
tion flows result from these unjustifiable claims.

In the present approach which is described in the scientific report, au-
thored by V. C. Liu, S. C. Pan, and H. Jew, attached at the end of this report,
we obtain the first-order iteration starting with the free-molecule solution
of Boltzmann equation as its zero-order approximation. The exact binary colli-
sion integral is expanded in terms of Hermite polynomials for molecules inter-
acting under the Maxwellian potential.

C. RESULTS AND DISCUSSION

Calculations of sphere drag in transition flows based on the present solu-
tion of first-order iteration are made for spheres with skin temperature equal
to the free stream temperature.

It is found that the present results of sphere drag coefficient depends in
a very simplified manner on the speed ratios (or molecular Mach numbers as they
are sometimes called)., For detail functional dependance, see the quoted report
attached at the end of this final report.



On the Sphere Drag in Flows of Almost-Free Molecules*

by
Vi-Cheng Liu, Sing-Chin Pang and Howard Jew

Department of Aeronautical and Astronautical Engineering
The University of Michigan
Ann Arbor, Michigan

Abstract

A kinetic theory of sphere drag in the transition flows is presented. The
kinetic method starts with the Boltzmann equation for the Maxwellian molecules
and having the exact binary collision integral in first order Knudsen iteration.
The collision integral is expanded as a function of Hermite polynomials in mole-
cular velocity. The Hermite coefficients are taken as functions of the space
vector. The sphere drag analysis is thus reduced to a problem of integration in-
volving tensor algebra.

Although the general method of approach to the problem is valid for the
flow of any speed provided it is in the regime near the free molecules, the calcu-
lated results, based on Hermite expansion truncated beyond the second order, are
estimated to be accurate for speed ratio (free stream velocity/the most probable
molecular speed of the free stream) less than unity. The calculations are for
spheres at the free stream temperature and having perfect diffuse reflection for
the incident molecules at the solid surface. The computed results agree with
Millikan's measurements for the extremely slowly moving spheres within a few
percent over a wide range of Knudsen numbers (0.5 <\ /d < 10).

A result of possible great significance is that the sphere drag of the
almost-free molecular flows expressed in units of the free molecular drag at the

corresponding speed ratio is found essentially independent of the speed ratio for

*This work was supported in parts by the upper Atmospheric physics Laboratory,
Geophysics Research Directorate, AFCRL and the Phoenix Memorial Research
Grant of the University of Michigan.



the range of speed ratios the present calculation is supposed to be valid.



(I) Introduction

The recent interest on sphere drag in a rarefied gas has been stimulated,
partly at least, by the advent of the earth satellite experiments and the upper
atmosphere measurements. The theory of sphere drag in the extremely rarefied
medium such that the state of free molecules' exists, is well known provided the
reflection mechanisms of the incident molecules on the solid surface are ade-
quately represented by accommodation coefficients of Maxwell and Knudsen.

Numerous attempts have been made recently in the determination of sphere
drag for the state slightly less rarefied than free molecules. This has been called
the near-free molecular flows (or almost-free molecular flows). Many of these

attempts are limited either to the flows of extremely high speeds?’?

or to the ex-
tremely low speeds4. These restrictions have been introduced to make the ana-
lyses tractable. In the present study, an effort is made to remove the limitations
imposed in previous analyses on the speed of the sphere. The purpose of the pre-
sent work is two-fold: (1) to obtain the sphere drag in a rarefied atmosphere
which is of utmost interest in upper atmosphere measurements, (2) to understand
the fundamental nature of the transition flows with a model which is realistic
enough such that accurate drag measurements, either free flight or laboratory,
can be made in the near future in order to make meaningful comparisons.

It is a matter of simple dimensional analysis to show that the flows around
geometrically similar bodies without the influence of external force are dynamically
similar, provided the flows have equal speed ratio (s) and Knudsen number (Kn)
respectively.

Experimental results of sphere drags corresponding to the Knudsen num-
bers of the near=frée molecular flows rarely exist except for the excellent
measurements by Millikan® which covers a wide range of Knudsen number

(.01 < K < 10) at however extremely low speed ratios (s < 107 ). Millikan's data

o]

N. Patterson, Molecular Flow of Gases, John Wiley, 1956

R. Willis,""A Study of Near Free Molecule Flow'' Rand Report R-339 (1959)
M.

S

L. Baker and A. F. Charwat, Phys. Fluids 1, 73 (1958)
zymanski, Arch. Mech. Stos. (Warsaw) 8, 449 (1956); 9, 35 (1957)
A. Millikan, Phy. Rev. 22, 1(1923)

i B W N e

G.
D.
R.
Z.
R.

-3 -



for which the experimental conditions were clearly defined may serve as im-
portant check points for theory of sphere drag at asymptotically low speed
ratios.

The elementary kinetic theory of the transition flows based on collision

6

statistics®® can only give a gross quantitative answer to the problem of interest

as was painstakingly cautioned®. A rigorous theory must start with the Boltz-
mann equation. The present study on sphere drag gives the first order (Kﬁl)
iteration of the Boltzmann equation for the Maxwellian molecules’. The basic
approach is similar to that of Szymanski4 except that we preserve the nonlinear
terms of speed ratio in the Boltzmann collision integral which is essential in

the treatment of high speed flows. The inclusion of these nonlinear terms con-

siderably complicates the collision integral analysis.

(II) Formal Iteration of the Boltzmann Equation

Consider a gas with Maxwellian molecules’ of mass m, number density
n, and with the most probable velocity w . To describe the molecular distri-
bution surrounding a spherical body of diameter d placed in a free stream of
velocity u , we introduce a molecular distribution function F(c, r) for the mole-
cules at point r with velocity ¢ in dimensionless form with displacement and
velocity expressed in units of d/2 and w,, respectively. If the differential col-
lision cross section for the molecular collisions can be expressed in units of
the momentum cross section B, for Maxwellian molecules®, we can write the
steady state Boltzmann equation for Maxwellian molecules in dimensionless
form as follows:

2r  w/2

oF dn, B,
—_— = = g dc, de de B(®) (F'F! - FF,) (2. 1)
ZWOO — . 1
0 0

or

Ke)

ébyv.C. Liu, J. Aero. Sci. 25, 779 (1958); also J. Fluid Mech. 5, 48l (1959)

"S.Chapman and T.G. Cowling, Mathematical Theory of Non-uniform Gases,
(Cambridge 1951)

8 4. Grad, Comm. Pure and App. Math. 2, 325 (1959) (Note: the definition of
B(8) is different from Grad's by a factor of B, .)
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where

ST

B, =0.343 (=)

(inter-molecular force = K/n°)

5|

B(6) d0 de = bdbde /0. 343 (b = impact parameter, See Fig. 1)

A physical interpretation can be given to the dimensionless constant in front of
the integrals in Equation (2.1). If we define a mean free path \ based on the
momentum cross section B; and use the definition of viscosity p from transport

theory for Maxwellian molecules, namely™
1

p = kT/6B; =0.491(4/m)® mn_ w,\ (2.2)

we can rewrite (2.1) as
2 w/2
oF

© 5o = 0.075 (d/n) gdgl gdegde B(6)(F'F, - FF;) (2.3)
et 0 0

in other words, this dimensionless constant of interest is inversely proportional
to the Knudsen number (\/d).

For the studies of flows at high Knudsen numbers, it is appropriate to
expand the distribution function F into a power series in d/\, the inverse of
Knudsen number?,

0 1 2
F=F+(d/\F + (d/\)2F +- - (2. 4)

Equation (2. 3), after the substitution of the expansion (2. 4) and a re-

arrangement of terms in the powers of d/\ results in the sequence of equations:

0
oF .
E 5:5 - O (2- 5)
2w mw/2
81%‘ , 0 0 00
c: 5 = 0. O75(d/)\) dgl \ de \ d6 B(G)(F‘F{ - FF,) (2.6)
- 0 0

--------------

..............

It is observed that the left hand side of Equation (2. 5) is the derivative

0
of F in the direction of the vector ¢ in the molecular phase space. At each

9G. Jaffe, Ann. d. Phys. 6, 195 (1930); See also C.S. Wang Chang and G. E.
_Uhlenbeck, Univ. of Mich. ERI Rept. M999 (1953)
“For the Maxwellian molecules B, = Bj"" following notations used in Reference 8.



point in this space (E, E)’ this vector points in the direction of the molecular tra-
jectory through that point,” which is also the characteristic curve of the equation.

Hence if q denotes arc length along a trajectory, Equation (2. 5) and (2. 6) become

respectively 0
dF _
C a&]__ =0 (Z' 7)
dF
c aq = 0. 075(d/)\)E(£ , €) (2.8)

where E(r, c) denotes the multiple integral in Equation (2. 6), the physical sig-
nificance of which will be discussed later.

Since Equation (2. 7) states that the function Fo‘is constant along a tra-
jectory, it is the distribution function for the free molecular, or collisionless,
flows when appropriate boundary conditions of interest have been satisfied.
Equation (2. 8), which contains a collision term expressed in terms of the free
molecular distribution ]g‘, may be considered as the kinetic equation of flow of
the almost free molecules!®, It may be noted that the previous analyses made on

the flows of the almost-free molecules® ®

are, in essence, some macroscopic
moments of Equation (2. 8) for mass and momentum fluxes etc., after drastic
simplifications have been made to the collision integral E.

It is further noted that in view of the mathematical structure of Equations
(2.7) and (2. 8), the analysis of the rarefied gas invariably involves integrations
along the characteristic curves when the flow fields need to be mapped. In the
case of the free molecular flows, this is quite similar to the problem of geo-

metrical optics. In fact, the line of sight principle will be adopted in mapping

0
the distribution F(E’ E)'
(III) Zeroth Order Approximation to the Molecular Distribution

As a prelude to the analysis of flows of the almost-free molecules, we
0
must first obtain the solution F to the collisionless Equation (2. 7) with boundary

conditions prescribed on the sphere and upstream. This constitutes our zeroth

1%y, C. Liu, Univ. of Mich. ORA Rept. 02885-11-F (1962)
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order approximation to the problem. It might be of interest to note here that in
the aerodynamics of free molecules! where the primary interest is usually the
total momentum and energy transfer between the molecules and the solid body,
the molecular distribution for the entire flow field surrounding the body, namely
Fo‘(g, c),is not of interest. In the present study, however, Fo‘(g, ¢) must be ob-
tained before one can start on the first order iteration by the use of Equation (2. 8).
It is noted that the aggregation of molecules at any point (r) in a free mole-
cular flow field must come from either of two sources: the free stream and the
reflected stream from the solid surface. It is possible to express 1% as the sum
of two component functions each from one of two mentioned sources with weight-
ing factors; the weighting factor contains a unit vector which represents the
boundary of the cone of sight ata point and is a discontinuous function!®. The ex-
pression so obtained for I(i)‘ containing a closed form weighting factor is more

elegant but not effective in the eventual integrations for the collision integral E.

0
Thus we simply express F in terms of functions f(r, ¢) and g(r, c) as follows:

0
where 3
f=m 2 exp - (E - g)z for all regions (3. 2)
and 0 for region 1(See Fig.2) (3.3)
g = _3 _ 3
m 2n(p)exp - c® -1 Zexp-(c,-s)® for region II

(3. 4)
where s denotes the free stream velocity in units of w_, i.e., s =u/w, and
the equivalent number density n(P) of reflected molecules at point P on the sphere

(See Fig. 2) is given by!

n(P)=exp»(§'n)2—'\Er‘§~n +\]1?_s_'g

n n, erf (s - _QO) (3. 5)

(0]

In (3. 5) r_10 denotes a unit vector as shown in Fig. 2. The subscript 'o' always

designates a unit vector in the direction of the vector it subscripts, e. g.,

s =s/]s| etc.
S, 8/1s



It can be shown, by referring to Fig. 2 that

n ‘" s =

1
n ot s =s rr-(s e )lir-c)-(l-r*sin®x?] (3. 6)

In the present study the function n(P) is approximated by a linear function
with s-dependent coefficients a(s) and B(s) as follows:

n(P) = asx + B (3.7)

where x = 8, 1, and the parameters o, 3 are to be determined by considering the
conservation of particles for the upstream and downstream semi-spherical sur-

faces respectively (See Appendix 1).
(IV) A Mathematical Representation of the First Order Collision Effect

In the interest of aerodynamic drag, we shall be concerned only with a
few lower moments of the distribution function Fl‘ rather than the function itself.
Accordingly, the present approach Wilbl dwell primarily with the determination of
moments for Fl‘ from the use of Equation (2. 8). The fact, however, that the dis-
tribution ]g‘ appearing in the integrand of the collision integral E is a discontinuous
function—an inherent feature of the free molecular distribution—makes it un-
fruitful to use the moment-generation technique of Grad® which appears effective
for the near-continuous flows only'!.

It is observed that the right hand side of Equation (2. 8) can be interpreted
as the distribution function of molecules having collisions in the neighborhood of
the point (r). In more precise statement, it can be said that 0.075 (d/)\,)E(E, c) drdc
represents the net rate of change of the number of molecules situated in the region
r, r + dr and having velocities between ¢ and ¢ + dc. Note that collisions have the
tendency to randomize the molecular arrangement hence to smooth out the discon-
tinuity in molecular arrangement in the molecular phase space. It is therefore
postulated that for the almost-free molecules the collisional distribution E(E’ 9)
should be better suited for representation,compared - to F for instance,by a series

(p) (c) which has been used by Grad®

of three dimensional Hermite polynomials Hi]k c

' R. Goldberg, ''Slow Flow of a Rarefied Gas Past a Spherical Obstacle',
Thesis, New York Univ. (1954)
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for representing the distribution F(r, c) in the near-continuous flows. This

must be considered as the fundamental hypothesis of the present approach.

(IV-1) Series Expansion for distribution E(r, c)

It is assumed that

0

Bz < ©emeta) al A (4.0

n=o

(i, j, k ranges from 1 to 3)

(n)

where the coefficients a! "

1]
functions of r, and H(ln) , the three dimensional Hermite polynomials of the

jk...
nth order, are functions of c. The coefficients are, in turn, expressible as

, symmetrical tensors of the nth order, are

a( n)

1
iik. .. = Sldc Hi'k E(r, c) 4 (4.2)

-----

Equation (4, 2), after the substitution of F = f + g from (3.1) and E(E,_c) from

(2.6) and (2.8), also the use of symmetryrelations for the binary collision integral’,

becomes
2 mw/2
a(n) ) r% ygdgdil‘gde S‘de B(6) [H(n)](gxf + 381 8) (4.3)
0 0
where*
E™) = 5y + 5] - 5V o) - 5 e (4. 4)

From conservations of momentum and energy in elastic collisions of

molecules, we obtain the velocities after collision (See Fig. 1)

!

C, =c; thcos b6k
o *) (4. 5)
c'=c-hcosbk '
- = —0
*Subscripts ijk. .. have been dropped since the order of tensor is designated by

subscript (n).



where h is the velocity of approach in the center of mass system: 50 , the unit
vector pointing to the direction of interaction force that changes the vector h to

}}_V The substitution of (4.5) in (4.4) and the use of the identity:
n

(a +b) = > }I(n-'])(a)bj
- L

H(n)

leads to

('™ > {f]‘h'J)(gl) + (-1 1-'1(“'3)(9_)} cos! 0 n li('l (4 6)

Zm N(J/Z) . .
' \ . (j-2m) m w(—l)J cos‘lnZm 4] sinzm 0

S‘de ko= > h' (6 - h?) (4. 7)
(0] L —O - -0 m-i .

0 m=0 2 m.

where N(j/2) denotes the highest integer not greater than j/2; 6, the unit tensor
or Kronecker delta 6i1 with i, j omitted®. (For the derivation of (4. 7) see

appendix 2). 02
Define B = gsinzme cosZJ_Zm
jm

0

6 B(6) do (4. 8)

The expression (4. 3), after the use of (4. 6), (4. 7) and (4. 8), becomes

n N(j/2)
a(n) = —17 5‘ ? ygdcdcl{H( J)( ) +
v Lo ) - =
j=1 m=o
j.{n-j -2 , f .
+(_1)JH(n J)(_C_l)}EJ m(h26_h2)Bjm(i1’1 + Igrllg > (4.9}
T2 m! 27 m!

So far, the expansion has been given to the nth order. In the evaluation for
collision effects, we shall truncate the series beyond n = 2; the mathematical
effort of higher order terms becomes prohibitively heavy and is probably not
rewarding because, as it will be shown, the present approximation appears

satisfactory.

- 10 -



(IV - 2) The Evaluation of the Coefficient a( 2)

A careful study of (4. 8) will show that the final evaluation of the co-

(2)

efficient a° * amounts to the calculations of the following types of moment
integrals:

(1) an = gghcl fdc (4.10)

over the whole velocity space, which can be integrated without much trouble.

The results of the first few moment integrals (n < 2) are as follows:

N

0p0 _ 1. Ol - g Op2 o 2 4

55 2% =% +3 (4.11)
(2) Zgn = g _c_nc2 gdc (4.12)

over a conical domain subtended at the point r by the sphere of diameter d.

(See Fig. 2) To accomplish the integration we divide the g-function into four

parts:
= + + +
g~ 8, g1b g2 T g3 (4.13)
where -= .,
gla = as (-S—o -+ T) exp -c
-3
i} 2 2 2 %} 2
glb— - as(§o- go){g- Eo -(1 - r® sin® X) exp -c
-3
2 2
g2 = 1 Pexp-c
-3
2 2
gy = T exp -(c - s)
and £ n £ n fn {n {n
= 1a+ glb- g2t g, (4.14)
These moment integrals have been evaluated and the results are as
f : .
ollows ., N(j/2)
{ n £ n 2 _ n+40+3 n-2m 2, m
+ = -r+ _— -
8ot 8 (as -r+p)m I > )Z r (6-r0) e (4.15)

[

m-=o

-1 -



where sin Cosn_zmx Sin2m+1 ;
@ =v§ X X (4.16)
nm m
0 2 m!
n-+l
N———A—
and f n 3 n+4 +3 (211+12m m
= - 2 . - _ a2
p o " ITT s Z ro TR (4.17)
m=o
sin“1 L
- 1
. 3 . 2mt +1-2
8 - S' 't cos X - (1-r?sin? X)?% sin m 1X cos” 1 mxdx (4.18)
nm m
0 2 m!

-1
The coefficients @ and ﬁnm are functions of r and are expanded up to the

-5
power r . These coefficients have been evaluated and the results are as

follows (n < 2):
a0 = (r/8)4r™" + x4 ) 5 e (n/2)r
azp = (17/8)(4cr_2 - r_4+. L) ay = (TT/S)(I’_4 +...)

Boo = (1T/48)(2.4r_1 S l6r Z-6r C-rd 4., )

Bio = (TT/60)(3OI‘-1 -ZOr_2-15r_3+ 4r—4+, )
B = (Tr/120)(15r—3-8r'4+. ) (4.20)

By = (m/120)(15r - 8r *-5r" +...)

. 4
with these coefficients we obtain the moment integrals gllla ) Zgrllb and Zg?

with n < 2,

-12 -



00 -1 -3
= . 32) (8 + 2 + + ...
g, " las r /32) (8r r r )

2g° =(as - r /64)(241*’-1 +6r  +3r 0 +...)
1a Z o0

-1
ogl =@s *r (N];r— 2r) r
1a — =0 -0

-5

- -2 -3
" = -as - r (24r™" <16r " -6r -1 ° +...)/96
b - —0
o1 =-las r (601'—1 - 4:01r'_2 - 4510_3 +16r_4 +...)r - ozS(15I‘_3 - 8r
- -0 -0

259 = 451 (24r_1 —161*-2 - 6r—3 -r'_5 +...)/64
glb 0

-1 -2 -3 -4 -5
%% = -as _x;o[(lzof - 80r = -150r  + 64r + 351 )3(2_)/320

- - -5
+(30r" -16r " -10r )8/320] - @s - 1 {

%% = Blar C 1 +...)/16

zgg = 6(121"-=2 +3p7t 4 ...) /32

ot = pl12r™® - or™t L r? + (3r7

+...)81/32
rS S

-4

(4. 21)

+...)]/120 N

- - -5
30r > - lér © -10r )/320

(4.22)

. L o
The remaining moment integral g? turns out to be the most difficult one

to cope with. To facilitate the integration we introduce the Cartesian coordinates

(r , t, t_'o) where ry is the unit vector pointing from center of the sphere to the

-0 —o

point of interest; 10 is the unit vector, perpendicular to ry lying in the plane

- 13 -



containing r, and 8y t_’o is the unit vector perpendicular to both r, and io (see
Fig. 3). In terms of the new vectors, we obtain, after a lengthy algebraic

manipulation, the Eg? in the following form:

N(j/2) o

-2 - 2m, 2m (" -c? n+e+2
£g2=2w 2T (5)T (m Zes n“ My S0 nlz dCX
=0 m=0

s

o

sin ()

r

-2 it n-i
S' dy e~ %8¢ cos 8 cosX ¥ cos 1y X
0

X gl~2m }‘ z/Z
sz _/ k! (k+m)'

z=2sc sinX sin© (4.23)

It turns out that the manner in which we split the tensor into spherical
components (Eo’io’ t_'o) makes possible the further advance in the effective evalu-
ation of ag?. We shall illustrate this by showing the terms associated with the

: -1 .
powers of re Io and t_'o in the expanded (r ) power expression for Bg? :

1 2 -4
n -2 s . n _ (i _ _ 9wl il
r ...(m) ‘e r [r °f (7)r {(n 1)fn+2+2 2s cosG)fn_M_l_3 2s8° sin 6fh+2+4}+

(j =0, m =0)

n-1 1, -3 -s% . n-1, -4 .
= + = = =

r io' L (3)N) ce ssm@zo t r fn+£+3 (j=1, m=0, k=1)
n-2,2 1, -3 -s® n-22 -4
ro % (z)(m) ro t D42 (j=2, m=0, k=1) (4.24)
n-2,.2 1, =3 -s?n-2.2 -4

1 L 1 + 1 = = =
r, —JEo () m) “e r, t'r fn+£+2 (j=2, m=1, k=0)
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o ¢]
-1 m
e o _pym,m N
where fn(s cos ©) =§e AR ZSccos®dc :Z( ) va (s cos© ™ m+1)
- :

2
0

It is significant to note that in the r! power expansion for zggl the orders
ofi‘O appear only in even powers which means that there is no rotational component
of molecular flow around Eo; also as functions of ©, s, and r_l, the lower order of
Eo and i(') always accompany with the lower orders of r = as shown in (4.23). Hence
for any order of n, there will be only a few terms of the low order Eo and_té) assum-
ing importance in the expansion. It implies that the moment integrals Qg? are pre-
dominantly r-dependent functions.

Again the moments of ﬂg? up ton = 2 and the expansion in power series of

r-=1 to the 5th order are evaluated and presented as follows:

-1 g2 -2 -4
°%3 = (m 2" [4r f 41 (f, +2scos@f; +28% sin® €1,)]/4

-2 -g? - -4

Zgg = (‘rr) 2e S [41‘ Zf4 +r (f4 + 28 coSs @fs +Zsz Sinz ®f6) ]/4
-1 _SZ -2 -4

%! =(m) 2e " [4r “f; +r (2s cos Of, +2s2 sin? @fs)]_ljo/‘l +

(4. 25)

+(m) 2 ® ssin@_‘gor—4f4/2

1 _ _ -
ogz = (m) 2e S [4r 2f4 +r 4(-f4 + 2s cos Of + 2s? sin? of,)] 32/4 +

1 _4 _1 _4
+(m) 2" ssin@r  f; J2+(m 2™ 0T g (12 +12)/4

t r
—0—0

(IV - 3) General Expression for the Collisional Distribution E(r, c)

Finally the expression for the collisional distribution E(r, c) can be given
in computable form. It is noted that the first non-zero term in the expansion for
(1)]

0 .
E(r, c) is the second order term because both [H( )] and [H '] vanish. Forn = 2

the possible j and n are as follows:

(j, m) =(1,0), (2,0) and (2,1).
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With these values of j, m we obtain

2
a(ij)(-rl) - [0g7 OF0 - 0gl 0pt 4 0500:2 | 0,2 0,0 | 0,1 0,17 (2B, B _B,) +

+[2g0 060 - 201 . Ol 4 Og2 20 4 250 250 051, 05175
The evaluation of Byo, By B,; for the Maxwellian molecules gives!?

ZBZO - B1° - BZl = -1,0562

V. Contribution of Momentum Flux by the Collided Molecules

(V - 1) Formulation of Sphere Drag in an Almost-Collisionless Flow

From the use of the collisional distribution E(E’ _) we can evaluate the
momentum flux to the sphere contributed by the first order collisional effect.
This constitutes, of course, an additional term to the sphere drag due to the
free molecules. Note that the rate of change of the molecular distribution in
the neighborhood, q, g + dq (See Fig. 4) with velocities lying between ¢, c+dc
is

0.075 (d/\) E(q, c)dgdc

where g denotes the position of point Q; the origin of the vector g is at point P
on the spherical surface (See Fig. 4). The direction of the velocity vector c
at point Q is specified such that it extends from Q to intersect the surface of

the sphere at P; hence
PQ
| PQ

c =-c = -cQp (5.1)

Furthermore, the molecules with velocity c originating from Q and intersecting

a surface element do at P, lie in

dc = c?dc cos T d6/q? (5.2)

12 7.C. Maxwell, collected works; (Dover).
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where T denotes the angle between gq and the normal n, to the surface at P. From
the use of Equations (5.1) and (5. 2) we obtain the change of the incident molecular

flux and momentum flux to a unit area at P,

o0
N(P) = 0.075 (d/\) y dq Svdc c? E(q, —cgo)cos T/q? (5.3)
R o
and o0
Mi(P) = -0.075m(d/\) § dg_ Sdc c3 E(g_, —cqo)cos -r/qz (5.4)
R B

respectively. The domain R refers to the Semi-infinite region bounded by the
plane tangent to the surface at P (See Fig. 4). The momentum flux taken from
the body by the reflected molecules of the amount N(P) is, assuming diffuse
reflection,

1 3

Mr(P) el mN(P)EO (5.5)

The net change of momentum flux for an area do around the point P is

[M.(P) - M_(P)]ds (5.6)

and the sphere drag contributed by the first order collisional effect, in dimen-
sionless drag coefficient*
1
AC = 0.6 (d/\){(wd?s) lgdU[Mi(P) —;— ZmN(P)r_lo] (5.7)
sphere '

(V - 2) The Computation

In order to facilitate the integration processes in the formulations of the
sphere drag, we must introduce a coordinate transformation from the
(£0, EO,_t"é))-system,- on which the moment integrals ﬂgn have been prescribed,
to a new (g, 7, ¢) -system in terms of which the sphere drag will be conveniently
expressed. Referring to Fig. 4, k is in the same direction as n.. iand k are

coplanar with s and n_ while j is normal to them. In terms of these unit
—0 —0 =

>Sdrag coefficient is defined as the ratio of the drag force in question and the
total dynamic pressure based on the sphere cross sectional area (md? /4)
and the free stream density and velocity.

-17 -



vectors we express the following quantities:

g=gsinTcosocit+tqgsinTsineg j+qcos Tk

1

r=qgsinrtcoscitqgsinTsinej +(l+qcosT)k (5. 8)

S :—siné_i—cosig_

Integrals (5.3) and (5. 4) become respectively:

w /2 2T o
N(®) = \dg \dt sin T cos v \ do \dc c? a(.z.) H(z) (5.9)
) 1] 1]
0 0 0 0 . )
0 TT/Z 2m 0
M.(3) = qu SdT sin T cos T S\d(r gdc cm (s -c) a(.?) H(Z) (5.10)
' 0 0 0 0 -0 - 1] 1]

To evaluate the integrals (5.9) and (5.10) we must begin with the con-

(2) (2)

traction of the second order tensors a and H . Since

2
and a(..) given in Section (IV - 3) contains terms: r? , 6, s r etc., as a pre-
ij -0’ - -0 -0

liminary step, we need contractions of the following terms:

H(Z)I‘z =(c_-r)¥c? -1
-0 =0 o
H(Z)g = o? -3
H(Z) r =(c s c_-r )C2 -8 r
=0 =0 'Zo =00 -0 %0 =
H(Z)_I: t, sin® =(r_-c ) RERE (Eo'io)(zo'go)]cz (5.11)

- 18 -



. _ . 2
Soto 510 @ =l sl eg) -5y T r, e et A s, 1)

The following terms which appear in the above contracted results are now ex-

pressed with the new spherical system.

(g,_o'go): - (q sin T cos ¢ sin & + cos & + q cos T cos 3)/r

(Eo ‘ So) = (sin T cos o sin & + cos T cos &) (5.12)
. - - +

(e, r) (g +cos T)/r

After the substitution of the contracted result of H( 2)a(z) in (5.9) and

(5.10), the general term of which appear of the following type:

qk COSzT sin™ 7 cos? & sinﬁ & cos’ o/rP (5.13)
Let o w/2 T 2m
kzm L B
d-r d@ do q cos T sin" Tcos’ & sin" & cos Yo /rP (5.14)
paﬁv

and note that Ikﬂm vanishes after integration with respect to ¢ with odd y; with

P By

even y and next integration for &, Ika m

PaBy

In addition to the functions of (5.14), we need some more building blocks

again vanishes with odd o.

to facilitate the computation of sphere drag which are defined as follows:

Let w=§ *r ; y=s *C ;zZ=cCc_ 7T , we define
0 -0 0 -0 -0 -0
o w/2 ®™ 2w
Ai' = gdq dr \d& gdo yw r sin@ sin T cos T (i, odd) (5.15)
15 ¢ & %
o w2 T 2T
A1J = S'dq ng gdé S'd(r wr ) sin & cos & sin T cos T (i, odd) (5.16)
o o0 o0 0
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Similarly we may define Bij’ Di]' and Gi]‘ by replacing y in (5.15) with zy?
(with i, even) , zzy (with i, odd)ﬁ and y3 (with i, odd) respectively; also define
Bl:| DlJ , and G;‘]. by replacing w’ in (5.16) with zyw1 (with i, even), z? W' (with

i, odd) respectively.
(V - 3) Procedure for Numerical Analysis

The double integrals
o /2

£ m k 2
11; m. qu 5d7 q cos T sin™ /rP (5.17)
0 0

obtained from (5.14), after elementary integrations, are numerically integrated
on the IBM 7090 Computer for integer indices in the ranges: 0 Sk <5, 1<( < 8,
l=m=7, 3<p=10withk+1<p.
The basic integrals A, , ATF,, B, ., B ., D., Dis., G.. and G.. with integer
ij ij kj kj ij ij ij ij
indices in ranges i =1,3, j=2to5and k =0, 2,4 are computed. These basic

integrals are the building blocks which enable us to calculate the collisional

distribution and the sphere drag. The computed functions are tabulated in Table I.

(2)

To prepare for the final contraction of the Hermite polynomial H' ™ and its

(2)

coefficient, a ', we first evaluate its component functions associated with ten-

sors: gz, EZ, (sr), 6, _t_z +_’E'2, (s t) and (r t). The collection of the momecit

an and Zgn (for £ =0,2andn = 0,1, 2) grouped in separate terms of

(2)

integrals

(2)

scalar, vectorial and tensorial species for a' ' are readied to contract with H .

The final integration of the moments of the collisional distribution E(r, ¢) over

the molecular phase space are made to obtain the collisional momentum transfer
to the sphere and its associated dimensionless drag coefficient ACD, see eq.(5.7)
which is a function of the speed ratio s and inversely proportional to the Knudsen
number (A /d). The computations for AC_ have been made for s = 0.1, 0.2...1.5

-5 D
and also for s =10
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(V - 4) Results of Computations

The results of computations of the aerodynamic drag for a sphere in an
almost collisionless flow are shown in Fig. 5. The drag components contri-
buted by the incident species (Mi) and the reflected species (N) respectively
are also shown in Fig. 6. All the calculations are based upon the assumed
condition that the sphere temperature is equal to the free stream temperature,
and perfect diffuse reflection prevails. Although it is difficult to prove the con-
vergence of the expansion, we are able to establish the rapid decrease of the
absolute values of the succeeding terms in all the expansions when the speed
ratio s is not much larger than 1.

It is significant to note that the theoretical result calculated for a very
small value of s (s = 10-5 ) agrees with Millikan's measured values*at corres-
ponding s over a wide range of Knudsen numbers (0. g <2— <10). Itis also
noted that over a wide range of speed ratios (s <1.0) the drag coefficient ratio
c./C (C

D' Dfim. “Df.m.
molecules flow at the same speed ratio) depends only on the Knudsen number

denotes the drag coefficient of the sphere in which the free

(\/d) in this first order approximation (See Fig. 7). Even for 1<s <1.5 the

computed results for CD/C show only slight dependence on s. We feel

Df.m.
however that to vindicate this conclusion with respect to the range s > 1, higher

order terms of s in the expansions must be included.
VI Discussions and Conclusions

The classification of rarefied flows, e.g., the continuum, transition,
free molecular, has been traditionally based on values of the Knudsen number,
a ratio of the mean free path (\) and a characteristic dimension of the body (d).
In view of the asymptotic solutions of the Boltzmann equation we can give a dif-
ferent viewpoint to the flow regimes.

Consider the flow field around a body. Within a distance much less than

In this comparison the same expression for the mean free path is used in
calculating Knudsen numbers.
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a mean free path from the body the molecular distribution would exhibit the
features of quasi-free molecular flow since the collisions between the streams
incident on and reflected from the surface is dominated by the collisions be-
tween the incident stream and the surface. On the other hand, at distances

of many free paths away from the body the molecular distribution is almost
locally Maxwellian, provided that sufficiently large volumes are used for sam-
pling; hence, it can be treated as quasi-continuum. At the intermediate dis-
tance from the body, the molecular distribution will deviate from both the
asymptotic solutions mentioned above. The significance of each of the three
flow regimes pertaining to a given flow must be determined by the Knudsen
number in question.

Although there is little doubt that the transition flow structure in a
monatomic gas is contained in the Boltzmann equation, we cannot treat the
transition flow as an entity because the contemporary solutions to this flow re-
gime are valid only either near continuum or near-free molecular flow. In the
former class there is Goldberg's solution to the thirteen moment equations
which are linearized for the problem of a slowly moving sphere. Contrary to
Grad's remark!?, Goldberg's sphere drag solution cannot be expected to cover
the whole range of mean-free-paths because it would not be a meaningful ap-
proximation to the free or near-free molecular flows (see Fig. 5).

In the latter class there is a valuable solution by Szymanski* which is
a first order Knudsen iteration of the Boltzmann equation. Like Goldberg,
Szymanski also limits his discussion to the slowly moving sphere such that
linearization of the disturbance effect can be used. Unfortunately, we found
two gross errors” in Szymanski's development and hence have serious reser-
vation about the validity of his results. In any event, his theory is developed
for the flows of extremely low speeds only.

At the other extreme of speed ratios (s >> 1) there are theories of sphere

drag based on either Boltzmann equation with simplified collision integlr'*al2 or

1¥*H. Grad: Principles of the Kinetic Theory of Gases, Handbuch der Phys.,
vol. 12, p. 292, Springer, 1958.
*One in this equation (7.10); another, equation (7.14) in Reference 4.
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collision statistics® = In both cases many gross approximations have been intro-
duced. Since the answer obtained often is a small difference of two large quantities,
serious doubt is cast upon the validity of the results. On the experimental side
there is hardly any data available for such high Knudsen numbers. Besides, much
of the sphere drag measured at intermediate Knudsen numbers is made with un-
known surface temperature on which the sphere drag strongly depends.

The present theory based on the exact*Boltzmann collision integral for
Maxwellian molecules is formulated for high Knudsen number (Kn 2 1) and a speed
range 0 < s <1; the upper limit for s is not of the cut-off nature. In fact, it can
be extended to higher values of s with more terms in the expansions. The effect
on the sphere drag due to the use of an artificial molecular model, such as the
Maxwellian molecules is difficult to estimate. It would be, of course, very de-
sirable to treat the problem with a more realistic model such as the elastic spheres;
the mathematics thus involved will be quite formidable.

The lack of sphere drag measurements at corresponding Knudsen number
and surface temperature makes it impossible to ascertain the accuracy of the
present theory; nevertheless its close agreement (within 5 per cent) with Millikan's
experimental results at the low speeds in a wide range of Knudsen numbers does
appear encouraging. A composite plot of sphere drag against Knudsen numbers
including the continuum range is given in Fig. 5 to lend some support to the
present theory.

Much of the contemporary studies of flows, at moderately high Knudsen
numbers, with exact Boltzmann equation approach are limited to simple internal
flows such as Coutte flows, etc. Should the present results be considered favor-
able, it could suggest that the method of the present approach might have opened

a new effective avenue to the mysterious regime of transition flows.

*The only approximation introduced is at representation of the molecular flux
of the reflected molecules.
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1

-2.09439
-1.25658
-2.09439
-0.33504
-1.74524
-1.04704
-1. 25662

-0.83773

-2.09436
-1.25655
-1.39626
-0.33347
-1.62889
-0.97723
-0.97738

-0.69811

Table I

= -1.04719

I

. 41880

.69813

17781

. 78530

. 29309

.62832

.26324

.19542

. 51400

. 46541

.67809

. 82237

.33440

. 51834

. 24640
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H

1t

it

11

-0.69813

-0

-0

.31408

. 52358

.22733

. 48859

. 20931

. 41885

. 85682

.40436

.34905

.22621

. 54361

. 24179

.35753

Ass

= -0.52358

n

11696

.1645]

. 34896

. 31415

. 67410

.93080

16737

.40314

. 27446



Fig. 1 Kinematics of Collision.
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Fig. 2 Sphere-cone Geometry.
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Fig. 3 Spherical Tensor Geometry.
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Fig. 4 Field Coordinates.
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Appendix 1 Determination of o(s) and B(s)

The equivalent number density of the reflected molecules at point P on

the surface (See Eq. 3.2)

n(P) = exp ~(sx)? - N7 sx +nNT sx erf(sx) = n, (1)

where x = n, s, is approximated by the linear function:
n(P) =asx + B =n; (2)

such that the total number of molecules reflected from the semi-gspherical
sphere on theupstream side based on (1 ) is equal to that based on ( 2 );
similarly for the reflected molecules for the downstream semi-spherical sur-

face, i.e.,

1, 1
§n1 dx = S‘nz dx
0 0

Performing the integrations and solving for « and B we obtain

)=

o = =T

-

1 -
w2[(1 + 28?) erfs + 2sm 2 exp - s%]/4s

™
0]



Appendix 2. Derivation of formula for yde K’
0

This tensor integral of rank j appears in the present theory and is worth
consideration. Figure 1l of the text gives a picture of the relationship between

vectors 150 and Eo' From Figure 1 and by vector addition theory (let Eo' lio = -cos )

= o -4 1

Eo Eo cos Y P, sin ¢ (1)
and
i PN
Eo ( _1r_1_o cos ;_)Osmxp)
J
- m
= Z I th ™ cos? qu sinm\p P, (2)
m=0

Now with h and p orthogonal and p_ = (0, cos e, sine)
-0 o =0

we have 2m
=0
S‘Eo de (3)
0
and 2
2 - 2
Séo<k (6 QO) (4)

Generalizing these integrals, we find

(0 , iodd
2
i
S‘p de = < (5)
0 0 if2
(8 - h?)
T—9 , 1 even
\ i"%§>'
From (2) and (5), it fpllows that
2T N(J—) 2, M
' 2 j-Z2m i-2m 2Zm (§- ) }—10)
gde kI = WZ ()78 T Meogd Ty sin "My 0
. —0 —0 m-1_,
m=0 2- m.

A-2






