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Prediction Problems in Genomics
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ABSTRACT

We propose a method for constructing classi� ers using logical combinations of elementary
rules. The method is a form of rule-based classi� cation, which has been widely discussed
in the literature. In this work we focus speci� cally on issues that arise in the context of
classifying cell samples based on RNA or protein expression measurements. The basic idea
is to specify elementary rules that exhibit a locally strong pattern in favor of a single class.
Strict admissibility criteria are imposed to produce a manageable universe of elementary
rules. Then the elementary rules are combined using a set covering algorithm to form a
composite rule that achieves a perfect � t to the training data. The user has explicit control
over a parameter that determines the composite rule’s level of redundancy and parsimony.
This built-in control, along with the simplicity of interpreting the rules, makes the method
particularly useful for classi� cation problems in genomics. We demonstrate the new method
using several microarray datasets and examine its generalization performance. We also draw
comparisons to other machine-learning strategies such as CART, ID3, and C4.5.
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1. INTRODUCTION

The signi� cance of RNA and protein expression as fundamental processes in physiology, develop-
ment, and pathology has been recognized for decades. Measurements of protein and RNA expression

based on technologies such as hybridization to labeled probes, RT-PCR, RNase protection, Southern blots,
and immunostaining have been commonplace in laboratories for a number of years. While the experimental
analysis of gene and protein expression is not a new area, there have recently been a number of important
technical advances, and the use of quantitative tools for analyzing the experimental data is undergoing a
rapid expansion. In this paper, we describe a rule-based approach for addressing one of the key quantitative
analysis problems in expression genomics: the class prediction problem.

The class prediction problem involves the prediction of a qualitative characteristic of a sample of cells
based on expression assays covering large numbers of genes or proteins. For example, it may be of interest
to predict the precursor cell type for a particular tumor, or whether a tumor is on the verge of becoming
metastatic. The problem is dif� cult for several reasons. One reason is that the samples assigned to a
single class may nevertheless exhibit a fair amount of heterogeneity. Part of this heterogeneity arises from
measurement error. However, a substantial fraction is likely to be biological in origin, for instance, due to
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tissue being acquired from patients with different disease stages, or exhibiting different levels of immune
response. Another dif� cult feature is that, in general, there may be distinct mechanisms involving different
genes that produce the same observable characteristic, and a single gene may play a role in determining
many distinct characteristics. In particular, for the majority of problems, no single gene will serve as a
universal marker for the characteristic of interest, so any useful decision procedure must be multivariate,
in that it must rely on a number of genes.

Many of the popular methods for carrying out automated classi� cation involve taking linear combinations
of the features, which are gene or protein expression measurements in this case (see Ripley [1996] for
an overview). While such methods can be powerful and may provide a great deal of insight in certain
settings, they often will have a tendency to produce linear combinations of genes that are hard to interpret.
Additionally, many of the popular “� exible” classi� cation procedures, such as the nearest-neighbor and
neural-network approaches, are widely considered to produce rules that are of a black-box nature and are
also dif� cult to interpret. The rule-based classi� ers that we describe in this paper are easy to interpret, as
they resemble the kinds of decision procedures that trained experts, such as pathologists, have used for
many years with assay systems such as immunostaining.

In this paper, we discuss a new mechanism for constructing a transparent class of rule-based classi� ers,
placing a special emphasis on issues that are speci� c to the problem of classifying cell samples based
on gene expression. We demonstrate the procedure using two publicly available gene expression datasets,
and we draw comparisons to other approaches for carrying out rule-based classi� cation, both in terms of
general properties and in terms of their suitability for the class prediction problem in genomics.

2. THE CLASSIFICATION PROBLEM

The expression data that we work with can be represented by an n £ d matrix X D [x1 ¢ ¢ ¢ xd ], where
xj 2 Rn denotes the expression levels for the n genes in sample j and d is the number of training samples
that are available. In addition, each sample is accompanied by a class label yj that takes on a value in a
set having K elements. In practice, the classes may correspond to the type or severity of disease, the type
of treatment intervention, or the type of tissue that is affected, among other possibilities.

A classi� cation rule is a function that predicts yj based on xj . Such rules are constructed from a training
dataset where an expert has assigned each sample to a particular class. The quality of the classi� cation
rule is assessed by applying it to an independent test dataset where the class labels are also known. One
then compares the predicted and true class labels to estimate the error rate of the classi� er.

Our classi� cation rules are constructed in two stages. First, we identify a subset of genes such that
either high or low expression of each gene in the subset implies strong evidence in favor of one class
over the others. These genes de� ne a set of elementary rules. At the second stage, these elementary rules
are combined to generate composite rules that achieve a speci� ed level of � t to the training set. Given
that in the gene expression setting there are many more features (genes) than samples, one is virtually
assured of obtaining a large number of composite rules that � t the training set to this speci� ed level. Thus,
for parsimony purposes, we require a composite rule to be minimal in size subject to meeting the � tness
requirement to be speci� ed below.

2.1. Identi� cation of the elementary rules

We construct classi� cation rules using logical combinations of the following elementary rules:

RC.T ; i/ D I(expression of gene i is greater than T )

R¡.T ; i/ D I(expression of gene i is less than T ):
(1)

Letting R¤.i; T / denote a rule of either of the two types, we consider an elementary rule for use in
classi� cation only if it satis� es the following admissibility criterion:

A.k/ : R¤.T ; i/ D 1 ) class is k:

We note that if there are K classes, then there are K distinct admissibility criteria.



RULE-BASED METHODS TO CLASS PREDICTION PROBLEMS 691

FIG. 1. Two examples of admissible rules using the lymphoma dataset. The left panel shows a rule R¡.¡:03; JAW1/

that is admissible for the AB class based on the JAW1 gene. The right panel shows a rule RC.:23; FMR2/ that is
admissible for the GCB class based on the FMR2 gene.

Given a rule that satis� es admissibility criterion A.k/, we will say that a sample in class k is covered
by the rule if the sample satis� es the rule. An alternative way of developing the elementary rules is to
consider consecutive runs of samples that fall into a common class. An elementary rule is A.k/-admissible
if there is a run of samples in class k covered by the rule that includes one of the two samples taking on
an extreme value. The threshold can be set to any value between the level of the innermost sample in the
run and the level of the adjacent sample that does not belong to class k. Figure 1 shows two genes from
the lymphoma dataset (introduced below in Section 3) that determine admissible elementary rules. The
expression values are sorted from left to right. The abscissa for each point is the rank of the sample, and
the ordinate is the expression level.

Every gene produces two admissible rules, one of the form RC and one of the form R¡. The coverage
for each rule must be at least 1, and it will be exactly 1 if the second-highest-expressing sample is of a
different class than the highest-expressing sample (or analogously if the second-lowest-expressing sample
is of a different class from the lowest-expressing sample in the case of R¡ rules). The vast majority of
the rules with coverage 1 or with very low coverage will be spurious. Therefore, we impose an additional
admissibility constraint that requires each elementary rule to cover a minimal number of samples. Let Nk

denote the number of samples in class k for k D 1; : : : ; K . If there is no association between the expression
of gene i and the characteristic, then the probability that a rule R¤.T ; i/ is A.k/-admissible and covers at
least c samples in class k is given by

Qc.k/ D
Nk.Nk ¡ 1/ ¢ ¢ ¢ .Nk ¡ c C 1/

d.d ¡ 1/ ¢ ¢ ¢ .d ¡ c C 1/
:

For each class k, we require a minimal coverage c so the Qc.k/ is smaller than a user-speci� ed threshold.
For the examples in this article, we use the familiar setting of :01.

2.2. Construction of Composite Rules

We make use of the following obvious fact to construct complex rules out of the elementary rules: dis-
junctions of rules satisfying A.k/ also satisfy A.k/. Therefore, if we consider a suf� ciently long disjunction
of rules satisfying A.k/, then we will eventually cover all samples in class k. This is not a mathematical
fact, but it is virtually assured in our setting given the large number of elementary rules that are available.
One could even proceed further to the point where each sample is covered · > 1 times. In this case, we
call the value · the covering multiplicity. The use of disjunctions to represent rules for class prediction is
reminiscent of the strategy followed by pathologists in the clinic, where a minimal number of features out
of a speci� ed universe of features is considered suf� cient to make a prediction.
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Each elementary rule covers a certain subset of samples, and the goal is to select a set of rules such
that each sample is covered by a speci� ed number · of rules. More speci� cally, suppose we have mk

elementary rules that satisfy admissibility criterion A.k/ for k D 1; : : : ; K , and let °ij k be the indicator
that sample j is covered by the ith A.k/-admissible rule. The construction of a composite rule involving a
minimal number of elementary rules corresponds to a set covering problem that can be formulated as the
following integer program:

minimize
KX

kD1

mkX

iD1

±ik

s:t:
KX

kD1

mkX

iD1

°ij k±ik ¸ ·; j D 1; : : : ; d (2)

±ik 2 f0; 1g:

Note that the � rst constraint ensures that each sample has the speci� ed coverage multiplicity, while
the second constraint imposes the integrality condition that indicator functions must satisfy. The objective
function is formulated so that we minimize the number of rules that are involved, subject to achieving the
speci� ed coverage. It is also worth noting that one can introduce weights into the objective function that
may give preference to certain of the elementary rules. For example, rules that cover many samples or that
correspond to previously validated patterns may receive a higher weight.

From a computational point of view, Problem (2) is NP-complete (Papadimitriou, 1994), but a variety
of good heuristics are available. For the problem at hand, we adopt a greedy approach based on forward
selection to produce a sequence of elementary rules such that the composite rule has covering multiplicity
· . Let C.j I r1; : : : ; r`/ denote the number of times that sample j has been covered using elementary rules
r1; : : : ; r`. The next rule to be selected must be the solution to the following,

r`C1 D argmaxr

X

j

minfC.j I r1; : : : ; r`; r/; ·g;

where r ranges over all admissible elementary rules, and j runs over the samples. That is, the next rule to
be selected must make the greatest possible progress towards achieving the speci� ed coverage multiplicity
for all of the samples.

The forward selection procedure is carried out until the coverage multiplicity · is achieved, giving as
its � nal product a composite rule that is formed as a disjunction of a certain set r1; : : : ; rh of elementary
rules. Let ±.j/ denote the class such that rj satis� es admissibility criterion A.±.j//. In order to make a
decision on a new sample Z, we allow the rj to vote, with the votes weighted by the number of elementary
rules corresponding to each class. That is, if there is a unique class k that maximizes

V .k/ D
X

j

rj .Z/I.±.j/ D k/
¯ X

j

I.±.j / D k/;

then the sample is predicted to belong to class k. If there is no such unique class, then the sample identity
is considered to be indeterminate.

In general, there will be a large number of admissible elementary rules and an enormous number of
composite rules that satisfy the coverage multiplicity ·. Therefore, it becomes computationally challenging
to identify the composite rule of coverage multiplicity · with minimal support (i.e., the rule involving the
smallest possible number of elementary rules). The strategy that we adopt is to begin the forward selection
procedure at each of the n genes, giving n composite rules with the required coverage. Among these rules,
there is a rule with minimal support that is comprised of h elementary rules. We retain all of the composite
rules produced by the forward selection procedure that have size equal to h.

As will be seen below, the rules that are generated will not even come close to using all of the information
that is available (they will refer to only a tiny fraction of the genes). When only tens or a few hundred
samples are available, the minimal support requirement alone will produce rules that can be considered
to be too simple. Our second requirement, namely, that the rule must cover each sample several times,
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is a way to mitigate this circumstance. The combination of the minimality and coverage multiplicity
requirements is designed to achieve a balance between parsimony and the need to achieve a suf� cient level
of redundancy so that correct class predictions can be made in the presence of measurement error and
expression heterogeneity.

3. EXAMPLE: PREDICTING SUBTYPES OF LYMPHOMA

Alizadeh et al. (2000) described a set of experiments using cDNA microarrays that identi� ed two
putative subtypes of diffuse large B-cell lymphoma (DLBCL). The subtypes were discovered by applying
a hierarchical clustering technique to 97 samples that included 45 DLBCL samples, 20 samples from two
other clinically distinct lymphoid malignancies, and 32 samples obtained from normal and transformed cell
cultures of various types associated with the immune system (resting and activated B cells, T cells, tonsil
and lymph node derived cells). Based on the hierarchical clustering, the 45 DLBCL cases were subdivided
into 22 cases that were identi� ed as having the “germinal center B” form of the disease (GCB-DLBCL)
and 23 cases that were identi� ed as having the “activated B” form of the disease (AB-DLBCL).

Treating the GCB-DLBCL/AB-DLBCL designations as � xed, we generated rule-based classi� ers for
the class prediction problem using the procedure described in Section 2. We used the 2,983 transcripts
that are shown in Fig. 3b of Alizadeh (2000), for which the raw expression values can be obtained
from llmpp.nih.gov/lymphoma. Using rules admissible under A.1/ (GCB) or A.2/ (AB) with coverage
multiplicity · D 2 and minimal coverage satisfying Qc.k/ D :01 for k D 1; 2, the smallest rules involved
nine genes. There were 30 distinct rules having this minimal size. Although these 30 rules have “positions”
for 30 ¢ 9 D 270 genes, only 41 distinct genes occur. Six genes occurred in every one of the 30 composite
rules. Eleven genes occurred in only a single composite rule.

It is easy to understand the structure of the composite rules through a graph such as is shown in Fig. 2.
In the graph, each column corresponds to a sample, and each row corresponds to a gene. When an RC.¢; ¢/
rule covers a sample, then a “+” is placed at the point corresponding to the gene/sample pair. Similarly
a “-” is used to indicate coverage by an R¡.¢; ¢/ rule. It is easy to verify that every sample is covered
twice and that, if any of the 9 genes were omitted, then at least one sample would be covered only once.
Furthermore, we gain some insight into the way that the rule uses the expression information to produce
the class prediction. For example, the genes Hs.186709 and JAW1 cover most of the AB cases twice;
however, they miss samples 40 and 42 completely and cover samples 23, 29, 41, and 45 just once. The
mRNA for T-cell tyrosine phosphatase and Hs.190288 � lls in the missing coverage.

Using Fig. 2, we can characterize the relationship between certain pairs of genes as being “complemen-
tary” or “redundant.” For classi� cation purposes, Hs.186709 and JAW1 are redundant. Since they covary

FIG. 2. A composite rule with coverage multiplicity · D 2 for the lymphoma data. Each row corresponds to a
gene, and each column corresponds to a sample. Columns 1–22 correspond to GCB-DLBCL cases, while columns
23–45 correspond to AB-DLBCL cases. The genes, listed from top to bottom, are T-cell protein-tyrosine phosphatase,
Hs.190288, Hs.186709, JAW1, clone 1357367, FMR2, Hs.192708, diacylglycerol kinase delta, clone 1354788. A “+”
indicates high expression for the corresponding gene/sample pair, while a “¡” indicates low expression. A lack of a
symbol indicates that there is no tendency for the gene/sample pair to give consistently high or low expression.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652703322539033&iName=master.img-001.png&w=346&h=117
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so closely, we would care to measure both genes only as a protection against measurement error. Both
genes are being selected by our method since a coverage multiplicity of · D 2 is imposed, re� ecting a
user-speci� ed preference for a certain level of redundancy. On the other hand, Hs.190288 and Hs.186709
are fairly complementary. Although they cover a number of samples in common, each covers several sam-
ples that the other does not cover. The discrepancies between the expression levels of these two genes
seem to be more than just measurement error. Rather, there may be a biological difference between AB
cases expressing Hs.190288 and AB cases expressing Hs.186709 that requires both genes to be measured
in order to achieve a good prediction.

4. EXAMPLE: BREAST TUMORS

Perou et al. (2000) described a study in which gene expression for 9,216 genes was measured on 55
breast tumor tissue samples using microarrays. The tumors were assigned to a mitotic grade of 1, 2,
or 3, indicating the rate of tumor proliferation (higher numbers correspond to greater proliferation). We
used the mitotic grade as the qualitative characteristic and built composite rules using our procedure. This
demonstrates the natural way in which our procedure can handle problems with more than two classes.
Using coverage multiplicity · D 1 and minimal coverage satisfying Qc.k/ D :01 for k D 1; 2, the smallest
rules used 12 genes. There were only four distinct rules of minimal size produced by the forward selection
procedure. Figure 3 shows one of these rules. This rule uses four genes to cover each of the three mitotic
grade levels.

5. GENERALIZATION ERROR RATE

A proposal for a new classi� er is often evaluated primarily based on its generalization error rate. This
quantity is obtained through a theoretical analysis when possible. However, for most classi� ers such an
approach is not tractable, in which case the issue is usually addressed empirically through cross-validation
studies (Ripley, 1996). In order to evaluate the prediction error rate for our rule-based method, we carried
out a cross-validation study using the lymphoma data that was discussed in Section 4. We note that for
our rule-based procedure the apparent misclassi� cation error rate (proportion of misclassi� ed samples in
the training data) is zero by construction.

Each of the 45 samples was omitted from the data set in turn, and a set of rules was obtained by applying
the methods of section 2 to the remaining samples using coverage multiplicities · D 2 and · D 10. Denote
by Q¡j the number of rules that are obtained when omitting sample j . Each of these Q¡j composite rules
was applied to sample j using the voting procedure described above. Let ½j denote the proportion of the
Q¡j rules that assigned sample j to the correct class. The average of the ½j over the samples estimates
the misclassi� cation error rate for a rule that is selected at random from the rules that are of minimal size
subject to achieving the speci� ed coverage multiplicity. The estimated error rates are reported in the � rst
two rows of Table 1.

We compared our procedure to a nearest neighbor classi� er in order to assess whether comparable results
could be obtained using a simpler method. In order to produce a meaningful comparison, we took into
account the design constraint that our method must produce rules that rely on a small number of genes.
The intent of this constraint is to enable the production of simple and transparent rules, even at a moderate
cost in predictive power. For comparison, we considered nearest-neighbor classi� ers using 9 genes and
21 genes, which are the numbers of genes used by the rule-based procedure with coverage multiplicities
· D 2 and · D 10. It is relevant to note that at present routine clinical immunohistochemistry work-ups
generally use fewer than � ve expression assays to make a prediction.

The nearest-neighbor classi� er is de� ned by three steps: (1) standard two-sample t-tests were computed
for each gene, and the N D 9 or N D 21 genes with smallest p-value were retained, (2) the correlation
coef� cient between the held-out sample and each of the remaining samples was computed using the N

selected genes, (3) the classi� cations of the � ve samples with the greatest correlation coef� cient were
considered, with the majority vote determining the class prediction for the held-out sample. The results
are shown in rows three and four of Table 1.
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FIG. 3. A coverage rule with multiplicity · D 1 for the breast tumor data. Samples 1–25 have mitotic grade 1,
samples 26–38 have mitotic grade 2, and samples 39–56 have mitotic grade 3. The genes, listed from left to right, are
PIR121, (EST), (EST), (EST), TLH6, YWHAH, HNRPC, (EST), SGCA, AA609920, SMARCC2, (EST).

Table 1. Summary of the Generalized Misclassi� cation
Error Rates for the Rule-Based Approach (RB) and

the Nearest-Neighbor Approach (NN)a

Method # Genes Error rate

RB 9 .19
RB 21 .06
NN 9 .35
NN 21 .04

aThe rule-based approach was applied using coverage multiplicities of
· D 2 and · D 10, which lead to rules involving 9 or 21 genes. The
nearest-neighbor approach was applied as described in the text using either
9 or 21 genes.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652703322539033&iName=master.img-002.png&w=133&h=434
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For the smaller rule (· D 2 or N D 9), the nearest-neighbor classi� er performs substantially worse
than the rule-based method, while for the larger rule (· D 10 or N D 21), the error rates are comparable.
We believe that this re� ects a general point of strength for our method when working with very small
rules. This point of strength derives from the issue of “complementarity” versus “redundancy,” which was
discussed above. By requiring every sample to be covered, we implicitly enforce a minimum degree of
independence across the genes that are included in the composite rule. Speci� cally, given a set of genes
that are very highly differentially expressed, but that provide essentially the same information in terms of
sample coverage, at most · members of the set will be included. The remainder of the rule must be built
from complementary genes. These complementary genes help to produce correct predictions for some of
the less common variants of a class of samples.

In contrast, in order to build a parsimonious rule using a classi� er that does not possess a built-in method
for variable selection (such as the nearest-neighbor approach), the variable selection must be done in a
separate stage. The most commonly used methods for this second stage are marginal in nature, such as the
t-test procedure described above. These � rst-stage variable selection procedures will tend to select genes
that are highly correlated and that are strong predictors for the majority of the samples in a class, but
that do not provide additional information for the more rare variants. This is consistent with the � nding
that as the rules grow larger, the rule-based method and nearest neighbor method become comparable. We
can speculate that certain genes that fall in the bottom half of the top 20 genes based on the t-test are
decisive in correctly predicting the classi� cations for about 20% of the samples that might be somewhat
less prototypical.

We have claimed that it is gene selection rather than the details of the rule construction method that
controls the error rate in the case of the smaller set of genes. Further evidence for this conclusion follows
by using the set of genes selected by the rule-based procedure to drive the nearest neighbor algorithm. In
this case, we achieved an error rate of :17, which is comparable to the error rate of :19 achieved by the
pure rule-based procedure.

Certainly, an alternative to the t-test could be used to select genes for use with the nearest neighbor
approach that would provide for greater independence among the genes that determine the neighborhoods.
Some alternative methods for gene selection are discussed by Ramaswamy et al. (2001) and Dudoit
et al. (2002). It is quite possible that error rates that are even better than those obtained for the rule-
based procedure could be obtained using a carefully constructed method. Our assertion is simply that the
proposed rule-based procedure produces simple and transparent rules, with error rates that are comparable
to or lower than those of other simple methods. As is pointed out by Dudoit et al. (2000), the identi� cation
of “marker” genes to be used in classi� cation procedures remains a very important issue. In our approach,
the derivation of elementary rules and the construction of the minimal composite rule automates and
integrates the processes of gene selection and rule construction in a natural way.

6. RELATIONSHIP TO TREE-STRUCTURED METHODS

The tree-structured methods such as CART (Breiman et al., 1984), ID3, and C4.5 (Quinlan, 1993)
are three of many possible alternatives to our rule-based method. In this section, we brie� y describe the
relationship between our proposal and these widely used classi� cation procedures.

The tree-structured methods produce rules that are described by binary trees. At each node of the tree, a
rule of the form (1) is applied. A number of algorithms have been devised for � tting trees to data. Finding
the optimal � t is known to be NP-hard (Grigni et al., 2000), just like the set covering problem that arises
in our approach. Therefore, in practice, heuristic � tting procedures are used. Like the set covering strategy
described above, the usual methods for � tting trees are sequential and greedy, adding a new split at each
step to maximize the homogeneity at each node.

One obvious difference between our method and the tree-structured methods is that the latter have no
analogue to our admissibility criteria A.¢/. These admissibility criteria require that each elementary rule
in our method must make a de� nitive decision about a certain subset of the training samples. Speci� cally,
the samples that are covered by an elementary rule that is A.k/ admissible are known to belong to class
k without reference to the other rules. The tree-structured methods, on the other hand, use an entropy
criterion to de� ne the splits. This criterion re� nes the classi� cation at each step, but until the � nal step a
de� nitive call cannot be made for any of the training samples.
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A more important difference between our procedure and the tree-structured methods is that the latter
methods apply the constituent rules sequentially in de� ning the composite rule. The speci� c rule that is
applied at the kth step (i.e., at the kth level of the tree) depends on the result of the rule that was applied
at step k ¡ 1. The rules for our method can be applied in any order, or in parallel. There is no interaction
between the rules, as the result depends on a simple majority vote.

The aspects of the tree-structured methods that differ from our proposal allow the former methods to be
more � exible. In many contexts, this will work to the advantage of the tree-structured methods, in particular
if the feature space is small and the classes are hard to separate. In the genomics context, however, the
feature space is enormous, and the classes are always linearly separable. Thus, the ability to obtain simpler
rules using a more constrained approach may be valuable.

We note that a compromise between our method and the tree-structured methods arises out of the various
proposals for growing many small trees and then using a majority vote of the trees to determine the class
prediction (see, for example, Breiman [1996]). If this idea is applied to stumps (trees with a single split),
then there is a very close connection with our method, with the stumps playing the role of the elementary
rules.

7. DISCUSSION

In this paper, we have introduced a rule-based method for carrying out class prediction that produces
compact, transparent rules with competitive error rates. We evaluated the procedure by applying it to two
gene expression datasets that have been widely discussed in the literature. An earlier work (Michailidis and
Shedden, 2000) presented more examples, including a widely discussed leukemia study (Golub et al., 1999).

Recently, a number of different classi� cation methods have been applied to classi� cation problems
involving gene expression measurements. For a comparative study, see Dudoit et al. (2002). Many of the
initial results are quite promising, although it is still unclear how much information the data actually carry
about different characteristics, and which (if any) methods are achieving near-optimal results. Since many
of the methods are applied in their generic form, it is expected that there is a great deal of room for
improvement by considering the special nature of the problem. This improvement may take the form of
better error rates, or it may arise through the construction of rules that are simpler or more interpretable,
or that address certain preferences that are speci� c to the domain of genomics. Our proposal emphasizes
the latter goal.

While microarrays permit large numbers of genes to be considered during the discovery phase, in
practical applications such as clinical diagnosis, a cheaper assay that covers far fewer genes will be used.
Therefore, there is substantial interest in achieving reliable class prediction using only a few expression
measurements. On the other hand, a certain amount of redundancy must be built into the procedure in
order to provide some robustness to measurement error and expression heterogeneity. The procedure that
we have described allows the user to balance in a natural way the opposing goals of obtaining a compact
rule and having a desired level of redundancy.

It is generally accepted that from the point of view of prediction error rates, it is preferable to retain
all of the features and subject the model to a regularization or shrinkage, rather than to drop many of the
features completely (Copas, 1983). Therefore, it is quite possible that our method, which ignores nearly
all of the features, will not be able to achieve as low an error rate as would be achieved by a method that
can retain hundreds of genes. However, there continues to be an emphasis on developing transparent and
small classi� ers for use in class prediction with gene expression data. Our method performs well from the
prediction point of view when compared to other methods that use very few genes.

Note: A C-language program that implements our procedure is available from the second author.
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