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ABSTRACT

Ganciclovir (GCV) is widely used as a prodrug for selective activation in tumor cells expressing herpes sim-
plex virus thymidine kinase (HSV-TK) because of its ability to induce multi-log cytotoxicity to HSV-TK-ex-
pressing as well as nonexpressing bystander cells. We now report that another substrate for HSV-TK, D-car-
bocyclic 2’'-deoxyguanosine (CdG), induces multi-log cytotoxicity in HSV-TK-expressing and bystander cells
at concentrations =3 uM. We have compared the cytotoxicity and cell cycle effects of CdG to that observed
with GCV in two human tumor cell lines. The results demonstrated that cytotoxicity of CdG was similar to
that of GCV in both U251 glioblastoma and SW620 colon carcinoma cells that stably expressed HSV-TK. In
addition, CdG induced a potent bystander effect in both cell types in co-cultures consisting of HSV-TK-ex-
pressing and nonexpressing bystander (lacZ-expressing) cells at ratios of 50:50 or 10:90. Selectivity for HSV-
TK-expressing compared to lacZ-expressing cells was similar for CdG and GCV in the U251 cells, however
CdG was less selective than GCV in the SW620 cell lines. Despite their ability to induce multi-log cytotoxic-
ity at similar concentrations, CdG and GCV exhibited differential effects on cell cycle progression. Cells in-
cubated with 1 uM CdG for 24 hr accumulated in S-phase and G,/M after drug washout, and the majority
of cells died prior to cell division. This contrasts with the delayed effects of 1 uM GCV that were not evident
until after cell division when cells attempted S-phase for the second time. Thus, CdG is a potent cytotoxic
agent that merits further investigation to determine whether it will be therapeutically effective in enzyme-
prodrug therapy with HSV-TK.

OVERVIEW SUMMARY INTRODUCTION
We have evaluated D-carbocyclic 2’-deoxyguanosine (CdG)

TRANSFER OF A FOREIGN ENZYME into tumor cells to activate
as a prodrug for activation by the herpes simplex virus

a nontoxic prodrug has been proposed as a more selective

thymidine kinase (HSV-TK) stably expressed in human tu-
mor cells. Similar to previous findings with ganciclovir
(GCYV), CdG elicited multi-log cell killing at micromolar
concentrationsin two different cell lines. CdG also displayed
potent bystander cytotoxicity even when HSV-TK was ex-
pressed in only 10% of the cells in the culture. HSV-TK-ex-
pressing cells incubated with CdG accumulated in G,/M, in
contrast to the delayed S-phase arrest observed previously
with GCV. Thus, CdG is a potent cytotoxic agent for en-
zyme-prodrug cancer therapy with HSV-TK that merits
further investigation.

approach to cancer chemotherapy (Moolten, 1994). One of the
more promising of these gene therapy approaches uses transfer
of the herpes simplex virus thymidine kinase (HSV-TK) cDNA
followed by treatment with the antiviral nucleoside analog
ganciclovir (GCV). The HSV-TK phosphorylates GCV to its
monophosphate, and subsequently cellular kinases phosphory-
late it further to the di- and triphosphate derivatives (Keller et
al., 1981; Cheng et al., 1983; Field et al., 1983; Boechme, 1984;
Biron et al., 1985). GCV triphosphatethen competes with dGTP
for incorporationinto DNA to elicit cytotoxicity (Cheng et al.,
1983; St.Clair et al., 1987; Reid et al., 1988; Reardon, 1989;
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Isley et al., 1995). Because GCV is not a good substrate for
any of the endogenous mammalian kinases, this approach
should be more selective than traditional nucleoside analogs
which can be phosphorylatedin many normal host tissues. The
combination of HSV-TK/GCV has produced complete tumor
regressions in animal models (Moolten, 1986; Culver et al.,
1992). In addition, even when only 10% of the tumor expressed
the activating HSV-TK, complete tumor regressions have been
obtained (Culver et al., 1992; Ram et al., 1993; Link et al.,
1997). The ability to kill neighboring non-HSV-TK-expressing
cells, termed the bystander effect (Freeman et al., 1996; Pope
et al., 1997), is important because current methods for gene
transfer will result in transgene expression in only a small per-
centage of the tumor cells (Roth and Cristiano, 1997).

Despite the excellent antitumor activity of GCV in preclin-
ical models, HSV-TK/GCV has not shown efficacy in human
trials (Shand et al., 1999; Rainov, 2000; Trask et al., 2000).
This has been attributed in part to the low delivery of the HSV-
TK cDNA to tumors using currently available methodologies.
In the absence of improved delivery techniques, investigators
have attempted to improve HSV-TK enzyme-prodrug therapy
by enhancing the affinity of HSV-TK for GCV (Black et al.,
1996; Kokoris et al., 1999; Qiao et al., 2000), improving by-
stander cell killing (Park et al., 1997; Touraine et al., 1998;
Carystinos et al., 1999; Boucher et al., 2000; Robe et al., 2000),
combining it with other modalities (Castleden et al., 1997; Aghi
etal., 1998; Freytag et al., 1998; Wildner et al., 1999), or iden-
tifying better substrates for HSV-TK (Degreve et al., 1999). We
and others have reported previously that GCV was significantly
more cytotoxic to cells expressing HSV-TK than other sub-
strates (Rubsam et al., 1998; Degreve et al., 1999). Our stud-
ies have demonstrated that GCV produced multi-log cell killing
at submicromolar concentrations (Shewach er al., 1994,
Boucher et al., 1998; Rubsam et al., 1998). GCV triphosphate
was shown to be highly potent, in which an intracellular con-
centration of 5-10 uM was sufficient to kill >3 logs of cells
(Rubsam et al., 1998; Boucher et al., 1998). Other substrates
could achieve higher triphosphate concentrations but produced
<1.5 logs of cell death. Mechanistically, GCV differed from
classical nucleoside analogs in that cells divided once after in-
cubation with GCV, then arrested permanently during the
S-phase following cell division (Rubsam et al., 1998). The high
potency of GCV triphosphate appears to explain the ability of
GCV to kill non-HSV-TK-expressing bystander cells adjacent
to HSV-TK-expressing cells. Transfer of phosphorylated GCV
from HSV-TK-expressing to nonexpressing bystander cells re-
sulted in low but highly cytotoxic levels of GCV triphosphate
(Bi et al., 1993; Ishii-Morita et al., 1997; Boucher et al., 1998;
Rubsam et al., 1999).

On the basis of the unique toxicity of GCV, we have searched
for other similarly effective analogs. We have noted that the
experimental antiviral drug D-carbocyclic 2’-deoxyguanosine
(CdG) was also capable of inducing multi-log cell killing at low
concentrations. Similar to GCV, CdG is a guanine nucleoside
analog with therapeutic activity in herpes virus infections due
to its ability to be phosphorylatedby the herpes-encodedthymi-
dine kinase and subsequently become incorporated into DNA
(Bennett et al., 1990, 1993; Parker et al., 1992). We hypothe-
sized that the unique multi-log cell killing observed with these
drugs may share a common pathway. Thus, we undertook an
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evaluation of the cytotoxicity and cell cycle effects for CdG.
We also assessed the ability of CdG to induce killing of non-
HSV-TK-expressing bystander cells, because this is an impor-
tant requirement for drugs in a gene transfer enzyme-prodrug
approach to cancer chemotherapy. A preliminary account of a
portion of these results has been reported (Murphy et al., 1999).

MATERIALS AND METHODS

Cell culture

U251 human glioblastoma cells were cultured in RPMI-1640
medium supplemented with 2 mM L-glutamine and 10% bovine
calf serum (Life Technologies Inc., Grand Island, NY). SW620
human colon carcinoma cells were cultured in McCoy’s Sa
medium supplemented with 2 mM glutamine and 10% fetal calf
serum (Life Technologies Inc., Grand Island, NY). Cell cul-
tures were maintained in exponential growth at 37°C in a hu-
midified atmosphere containing 5% CO,. Each cell line had
previously been stably transduced with a retroviral vector con-
taining the cDNA for herpes simplex virus type 1 thymidineki-
nase or 3-galactosidase (3-Gal) and monoclonal sublines were
developed for each transgene (Boucher et al., 1998; Rubsam et
al., 1998).

Cell survival assays

Exponentially growing cells were incubated with drug for 4-24
hr and cell survival was measured by a colony formation assay
as previously described (Boucher et al., 1998; Rubsam et al.,
1998). Briefly, cultures of 100% HSV-TK-expressing or 100% (-
Gal-expressing cells were harvested at the conclusion of the drug
incubation period and diluted to plate approximately 10-100 vi-
able cellsin a 35-mm-diameter well in 6-well culture plates. Three
to six wells were plated with the same number of cells to estimate
viability at each drug concentration. After 10-14 days, the re-
sulting colonies were fixed and stained with 0.4% crystal violet,
and colonies of at least 50 cells each were enumerated. For co-
culture experiments with HSV-TK- and B-Gal-expressing cells,
cells were plated as described, and B-Gal-expressing (bystander)
colonies were detected by staining with 0.2% 5-bromo-4-chloro-
3-indolyl-8-D-galactoside (X-Gal, Boehringer Mannheim, Indi-
anapolis, IN). After enumeration of the 3-Gal-positive colonies,
the culture dish was stained with crystal violet and all colonies
enumerated. The difference between the number of crystal violet-
stained colonies and 3-Gal-expressing colonies yielded the num-
ber of HSV-TK-expressing colonies. Cell survival was expressed
as a fraction of plating efficiency for control (no drug treatment)
cells. All colony formation assays were performed at least twice.

Cell cycle analysis

Flow cytometric analysis was performed essentially as de-
scribed (Ostruszkaand Shewach, 2000). Control or drug-treated
cells were incubated with bromodeoxyuridire for 15 min, har-
vested, washed and fixed with 70% ethanol. Within 6 hr prior
to flow cytometric analysis, fixed cells were washed, and in-
cubated with RNase A for 30 min at 37°C. DNA was denatured
by treatment with 0.1 N HCI containing 0.7% Triton X-100,
then resuspended in dH,0 and incubated at 95°C for 15 min.
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Cells were washed and resuspended in phosphate-bufferedsaline
(PBS) with 0.5% Tween 20 and 5% calf serum, followed by the
addition of anti-bromodeoxyuridine mouse immunoglobulin G
(IgGy) antibody (PharMingen, San Diego, CA). After centrifu-
gation, fluorescein isothiocyanate (FITC)-conjugated goat anti-
mouse IgG antibody (Sigma Chemical Co., St. Louis, MO) was
added for detection of the primary antibody, and propidium io-
dide was added to label total DNA. Trout erythrocytenuclei (Bio-
sure, Grass Valley, CA) were added as an internal standard. Cells
were analyzed using a Coulter EPICS Elite ESP flow cytometer,
and the cell cycle distribution was determined using WinMDI
software provided by Joseph Trotter of The Scripps Research In-
stitute. For measurementof apoptosis, cells were fixed and treated
with propidium iodide and RNase A only, and analyzed by flow
cytometry for cells with sub-G; content.

RESULTS

Cytotoxicity of CdG in HSV-TK- or LacZ-expressing
U251 cells

U251 cells were incubated with a broad range of CdG con-
centrationsfor 24 hr and survival was determined using a colony
formation assay. As illustrated in Fig. 1A, U251 cells express-
ing HSV-TK (U251tk) exhibited similar sensitivity to CdG and
GCV, with the ICsy value for each drug approximately 0.06
uM. In addition, CdG and GCV produced multi-log cell killing
in the U251tk cells, with approximately 3 logs of cell killing at
1 uM. Less toxicity was evident in U251 cells expressing 3-
Gal (U251lacZ) , with ICsg values of 40 and 60 uM for CdG
and GCV, respectively,and at 1000 wM both drugs induced ap-
proximately 1-1.5 log decreases in cell survival (Fig. 1B).
Shorter incubation periods with CdG also induced multi-log cy-
totoxicity with U251tk cells, with 10 uM CdG producing 2 to
3 logs of cell death following incubation periods of 4-12 hr
(Fig. 2). At a concentration of 1 uM, the 4-hr CdG incubation
reduced cell survival by 70%, and a 24-hr exposure decreased
survival to <0.5%. The corresponding L-isomer of CdG did
not show significantcytotoxicityin these cell lines, with >95%
cell survival following a 24 hr incubation with 100 uM L-CdG
in U251tk cells (data not shown).

Cytotoxicity of CdG in U251 Co-cultures of HSV-TK-
expressing and nonexpressing bystander cells

HSV-TK-expressing U251 cells were co-cultured with
U251lacZ bystander cells to evaluate the ability of CdG to induce
bystandercell killing. When 50% of the cells in the co-culture ex-
pressed HSV-TK, the effect of CdG in the HSV-TK-expressing
cells was similar to that in the 100% HSV-TK-expressing culture
(Fig. 3; ICsp = 0.04 uM). Although CdG was somewhat less toxic
to the bystander cells, killing was still impressive with an ICs
value of 0.2 uM. When only 10% of the co-culture expressed
HSV-TK, the sensitivity to CdG was reduced approximately 10-
fold in both the HSV-TK-expressing and bystander cell popula-
tions, with ICsy values of 0.4 and 3 uM, respectively. Notably,
CdG was able to induce =1 log reduction in cell survival in HSV-
TK-expressing and bystander cells when present in co-culture at
aratio of 50:50 (ICyg = 0.25 and 1.0 uM, respectively)or 10:90
(IC9p = 5 and 7 uM, respectively).
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Cell cycle progression

With the similarity in cytotoxicity for CdG and GCV, we
wished to determine whether CdG killed cells by the novel
mechanism proposed for GCV. Previously, we observed that
cells incubated with GCV were slowed in their ability to
progress through the cell cycle, but they doubled following a
24-hr GCV incubation and then arrested in the subsequent S
phase (Rubsam et al., 1998). We performed dual-parameter
(bromodeoxyuridire incorporation and propidium iodide stain-
ing) flow cytometry on U251tk glioblastoma cells following in-
cubation with 1 uM CdG for 24 hr. As indicated in Table 1,
after a 24-hr incubation with CdG the percentage of cells in G
decreased by almost four-fold, with a nearly two-fold increase
in the percentage of cells in S and G,/M. By 48 hr after drug
washout, the S-phase percentage decreased with a concomitant
increase in Gy, but the G/M population remained high. There
was a slightincrease in cell number at 24 hr after drug washout;
however, the cell number decreased over the next 48 hr. These
data indicate that at best only a small portion (<27%) of the
cell population divided. Some of the cells appeared to die in
S-phase as evidenced by the two- to four-fold increase in the
percentage of cells in S-phase that did not incorporate bro-
modeoxyuridine (Syy). CdG was able to induce apoptosis; how-
ever, this was a delayed effect that appeared at least 48 hr af-
ter drug washout. Thus, most cells exposed to CdG died without
going through cell division.

Cytotoxicity in SW620 colon carcinoma cells

We wished to determine whether effects of CdG in the
SW620 human colon carcinoma cells were similar to those that
we observed previously with GCV. SW620 cells that stably ex-
pressed either HSV-TK (SW620tk) or B-Gal (SW620lacZ) were
used for these studies. As shown in Table 2, CdG was less po-
tent than GCV, but CdG was able to induce =1 log cytotoxic-
ity at micromolar concentrations. CdG showed similar potency
to GCV in killing bystander cells co-cultured with 10% or 50%
HSV-TK-expressing SW620 cells. Furthermore, the bystander
killing ability of CdG could be augmented synergistically by
the addition of hydroxyurea at concentrations ranging from 0.5
to 4 mM (datanot shown), as we have demonstrated previously
for GCV (Boucher et al., 2000).

The major distinction between CdG and GCV in these stud-
ies was in the cytotoxicity to 100% cultures of lacZ-expressing
SW620 bystander cells. The SW620lacZ cells were approxi-
mately five-fold more sensitive to CdG than GCV based on rel-
ative ICs( concentrations. In addition, the relative ICs, values
for CdG in 100% cultures of SW620lacZ and SW620tk cells
differed by 100-fold, whereas there was a >4500-fold differ-
ence in the corresponding values for GCV. Thus, CdG was not
as selective as GCV for HSV-TK-expressing SW620 cells;
however, selectivity was similar between CdG and GCV in the
U251 cell lines.

DISCUSSION

For enzyme-prodrug gene therapy for cancer to be effective
clinically, the prodrug must be able to induce the killing of not
only the enzyme-expressing cells, but also the neighboring by-
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FIG. 1. Comparison of the cytotoxicity of CdG and GCV in U251 cells. U251 cells that express either HSV-TK (U251tk, panel
A) or B-Gal (U251lacZ, B) were incubated with the indicated concentrationsof CdG or GCV for 24 hr. Survival was determined
at the conclusion of the drug incubation period using a colony formation assay. Each experiment was performed at least three
times, and a representative experiment is shown. Values represent average = SE of triplicate determinations.

stander (non-transgene-expressing) cells because gene transfer
in vivo is estimated to result in gene expression in fewer than
10% of cells within a tumor (Roth and Cristiano, 1997). Pre-
viously, we and others have demonstrated that substrates for

HSV-TK differed significantly in their potency of cytotoxicity
to HSV-TK-expressing cells, and that GCV exhibits strong by-
stander killing ability (Balzarini et al., 1993; Rubsam et al.,
1998). Here we report on another antiherpesvirusdrug, b-CdG,


http://www.liebertonline.com/action/showImage?doi=10.1089/10430340252809838&iName=master.img-000.png&w=333&h=271
http://www.liebertonline.com/action/showImage?doi=10.1089/10430340252809838&iName=master.img-001.png&w=325&h=274

MULTI-LOG CYTOTOXICITY WITH CdG 547

% Control Survival

10-2 A1 a1t A gl il N R |

0.01 0.1 1 10 100
uM CdG

FIG. 2. Effect of length of incubation on cytotoxicity of CdG. U251tk cells were incubated with CdG for 4 (H), 8 (@), 12 (A)
or 24 (@) hr. Cell survival was determined by a colony formation assay. Values represent the average = SE of triplicate deter-
minations.

with similar potency to the highly cytotoxic GCV in HSV-TK-  GCV, the strong cytotoxicity of CdG in HSV-TK-expressing
expressing cells, the ability to induce multi-log cell killing, and  and bystander cells in two different cell lines suggests that this
excellent bystander cytotoxicity. Although non-HSV-TK-ex- drug may have efficacy in vivo.

pressing SW620 cells appeared more sensitive to CdG than to In the U251 cells, cytotoxicity with CdG was similar to that
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FIG. 3. Cytotoxicity of CdG to HSV-TK-expressing or bystander cells. U251tk cells (filled symbols) and U251lacZ (bystander)
cells (open symbols) were co-cultured at ratios of 50:50 (circles) or 10:90 (triangles) with CdG at the indicated concentrations.
Control cells (100% U2511acZ culture) (X) is shown for comparison. This is a representative experiment performed at least three
times. Each value represents the average = SE of triplicate determinations.
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TaABLE 1. CELL CycLE DisTrRIBUTION OF U251tk CELLS AFTER CdG INCUBATION

Percentage of cells in:

Time after drug Cell
Treatment washout (hr) G; S G,/M Syt Apoptosis number
Control cells 0 58.2 26.6 9.2 33 2.8 1.45 X 106
1 uM CdG 0 15.0 46.5 16.4 5.7 5.7 0.94 X 106
24 25.7 40.4 20.1 7.8 6.0 1.19 X 106
48 29.8 20.0 20.8 13.4 16.0 1.02 X 106
72 29.5 26.0 22.2 9.8 12.7 0.70 X 106

U251tk cells were incubated with 1 uM CdG for 24 hr. Drug-containing medium was replaced with fresh medium (drug
washout) and cells were analyzed periodically for cell cycle distribution using dual-parameter (bromodeoxyuridire and propid-
ium iodide) flow cytometry as described in Materials and Methods. Results are from a single representative experiment repeated

twice.

2Sn1, Cells with S-phase DNA content by propidium iodide staining with no significant incorporation of bromodeoxyuridine

observed with GCV in the HSV-TK-expressing as well as non-
HSV-TK-expressing (lacZ) bystander cells, cultured alone or
together. However, cell cycle progression differed between
these two drugs. Whereas cells incubated with 1 uM GCV were
able to complete one cell division 2448 hr after drug washout
(Rubsam et al., 1998), following treatment with 1 uM CdG the
majority of cells did not divide but instead showed an accu-
mulation in S-phase and G,/M with a decrease in cell number.
Although we did not observe a large increase in Go/M with
GCV in our cell lines, a report on B16 murine melanoma cells
stably expressing HSV-TK indicated that a high percentage of
cells accumulated in G,/M after a 48—72-hr incubation with a
cytotoxic concentration of GCV (Halloran and Fenton, 1998;
Wei et al., 1998). We observed only a doubling of the per-
centage of cells in Go/M after treatment with 1 uM CdG. In ad-
dition, the murine melanoma cells did not undergo an apoptotic
cell death, whereas in our cell lines both GCV and CdG in-
duced apoptosis, although the onset occurred at approximately
48 hr following drug washout. Thus, multi-log cell killing may
occur by different mechanisms depending upon the drug and
cell line.

CdG exhibited similar selectivity as GCV for U251tk cells,

but was less selective in the SW620 cell lines. It is difficult to
translate these in vitro results to in vivo selectivity. For exam-
ple, it is not known whether CdG will be as toxic as GCV to
bone marrow cells, and drug metabolism and disposition in vivo
can affect the therapeutic index. Further studies are needed to
determine whether selectivity in vivo differs for these two drugs.

It is not clear why CdG exhibited higher toxicity than GCV
in the SW620lacZ cells. It is likely that toxicity in the non-
HSV-TK-expressing cell lines was due to minimal phosphory-
lation by an endogenous enzyme. Previously, it has been dem-
onstrated that deoxycytidine kinase, deoxyguanosine kinase,
and 5'-nucleotidase can phosphorylate L- and p-CdG in unin-
fected mammalian cells (Bennett et al., 1998). Although L-CdG
was a better substrate than was p-CdG for deoxycytidine ki-
nase and deoxyguanosinekinase, it accumulated in intact cells
primarily as the monophosphate (Bennett et al., 1993), which
may explain the low toxicity of L-CdG to U251 cells. Cytoso-
lic 5'-nucleotidase has also been implicated in the phosphory-
lation of GCV in non-HSV-TK-expressing MOLT-4 T-lym-
phoblastic leukemia cells (Agbaria et al., 1994). Differential
expression of these enzymes in the two cell lines used in the
studies presented here may lead to greater activation of CdG in

TaBLE 2. CyTtotoxicity oF CdG anp GCV 1N Human CoLoN
CARCINOMA AND GLIOBLASTOMA CELLS

[CAG] (uM) [GCV] (uM)

Cell line IC5() ICQ() IC5() ICQ()

SW620tk 0.9 4.5 0.07 5

SW620lacZ 90 265 450 >1000

50% SW620lacZ + 2.4 8.7 1.5 14
50% SW620tk?

90% SW620lacZ + 12 >100 55 260
10% SW620tk*

U251tk 0.06 0.3 0.06 0.2

U251lacZ 40 300 60 800

U251 glioblastoma and SW620 colon carcinoma cells expressing either HSV-TK or 3-Gal were
incubated as indicated with CdG or GCV for 24 hr. Cell survival was determined using a colony

formation assay.

4ICsg, ICyg values represent survival of bystander cells after co-culture with HSV-TK-expressing

cells at the indicated ratios.
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the SW620 cells, resulting in higher cytotoxicity. Previous re-
ports in the literature indicate that CdG is not highly toxic to nor-
mal cells. Human hepatoma cells treated for 10 days with CdG
at 5 ug/ml did not show evidence of toxicity (Price et al., 1989).
Similarly, no toxicity was observed in primary duck hepatocyte
cultures treated with 10 ng/ml CdG for 8 days (Fourel et al.,
1994b). Furthermore, in vivo studies in ducks treated with CdG
showed only mild liver abnormalities (hepatocyte vacuolization,
mild disruption of lobular architecture) after prolonged adminis-
tration (100 wg/kg CdG administered every other day for 5
weeks) (Fourel et al., 1994a). These results are encouraging, and
suggest that CdG may have low toxicity in humans.

Of all the substrates tested for cytotoxicity in tumor cells ex-
pressing HSV-TK, purine analogs have shown higher cytotox-
icity compared to the pyrimidine analogs, with good bystander
killing (Balzarini ef al., 1993; Rubsam et al., 1998; Degreve et
al., 1999). An evaluation of six guanine analogs that varied in
the moiety attached to the base showed a wide variation in cy-
totoxicity. GCV, its elaidic acid derivative, and a cyclobutyl
dervative showed good bystander cell killing, whereas other
acyclic analogs such as penciclovir, buciclovir, and acyclovir
displayed poor or no bystander cell killing (Degreve et al.,
1999). Here we have demonstrated that a carbocyclic guanine
analog has high cytotoxicity to HSV-TK-expressing cells with
good bystander activity. With so few analogs available that can
efficaciously eliminate HSV-TK-expressing as well as nonex-
pressing bystander cells, further investigation is warranted to
compare their antitumor effects in vivo. The drugs that have
shown the highest bystander cell killing also show the highest
toxicity to non-HSV-TK-expressing cells. Therefore, it will be
important to determine whether these analogs have an advan-
tage over the commonly used GCV, such as reduced toxicity
to bone marrow cells.
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