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PREFACE

This final report is submitted on the work done under
contract No, AF 19 (604)-5477 with Air Force Geophysics Research
Directorate for the period from March 1959 to June 1962,

This report is more than a compil ation of the progress
reports and reprints of published works. It is organized according
to subject matter rather than chronologically; it contains some new
results and a good deal of analysis and discussions not included in
the progress reports; and it attempts to present an over-all picture
of the work accomplished and future works needed to be done.

For economy of writing, detail description of works that have
been published or prepared to submit for publication are not included;
instead they are attached in reprint form and preliminary manuscript
form respectively as appendixes to this report.

Preliminary results of some studies, which are still in progress,
have also been included.

An attempt has been made to keep the notations used in the
equations and formulas self-consistent within each chapter; they are
not necessarily consistent from one chapter to another and from one

appendix to another; but they are all defined in each case,
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1

ABSTRACT

The present report aims at resolving some rarefied gas dynamical
problems pertaining to atmosphere measurements by means of sounding
rocket, and satellites. Specific problems treated are the following:

Sphere drag in semi-rarefied gas (often called transition flows), electro-
hydrodynamic interaction of ionosphere with a moving body, propagation

of sound in a rarefied gas under external force field, rarefied gas dynamical
considerations of sounding measurements of upper atmosphere. Report also
includes several basic problems of possible geophysical interest.

Specific recommendation is made in regard to coordinating the
geophysical experiment and gas dynamical studies in the free flight

measurements.



I. Introduction

The systematic exploration of the upper atmosphere by direct
me ans started in the late forties when sounding rockets, capable of
climbing to an altitude of several hundred kilometers were introduced
to probe the upper air. Much of the geophysical me asurements, thus
conducted, are based on gas dynamical principles., This happens not
by choice but by necessity because of the special experimental environ-
ment. As one can easily see, the experimental aim of direct-measuring
the undisturbed ambient quantity such as density, temperature, or
pressure with a probe, carried by a fast-moving rocket which continually
generates aerodynamical disturbances, is not feasible., Therefore, some
indirect scheme must be made in which me asurable aerodynamic quantities
are taken as primary data that can be used to derive the ambient quantity
of interest. A basic premise for the success of this indirect scheme of
measurement is the availability of a satisfactory gas dynamic theory,
either mathematical or empirical, that relates uniquely the ambient quantity
of interest to the measured (primary) quantities. Such a gaé dynamic
theory, appropriate for a rarefied gas as the upper atmosphere, is not
easily available,

In the earlier works of upper air measurements, such basic diffi-
culty of the experiment was not resolved scientifically, Instead, an

experiment was usually planned on the basis of a gas dynamic theory



which is known to be valid only for non-rarefied gas., As a result,
the measurements of the rarefied atmosphere were not meaningful.
Fortunately, some measurements, such as the pitot tube method in
which Rayleigh's theory of supersonic pitot pressure is used, turng
out to be reasonable approximations even at moderately high altitude
(about 80 Km) acconding to later study (Liu 1956).

One of the basic works to be done in upper atmospheric research
program is a realistic appraisal of the validity of the contemporary
methods of measurements in the light of modern rarefied gas dynamics,
It is expected that new rational methods, appropriate for high altitude
experime ntal exploration, may be conceived; admittedly the development
of rarefied gas dynamics is still in her infant stage.

It is worth noting that one vital reason for the slow advancement
of rarefied gas dynamics, especially in the transition flow regime, is
the unusual difficulty in generating satisfactory uniform flow condition in
the laboratory. As we know,the upper atmosphere provides unlimited
uniform medium. It is quite conceivable that appropriately designed
experiments of upper air measurements can serve a very useful purpose
of advancing the state of art of rarefied gas dynamics,

The above discussion for the me asurement of neutral atmosphere
would apply, in general, to the ionosphere except that the disturbances
induced by the moving body becomes further complicated with the added

electrodynamic aspect.



Besides the methodclogy of measurements, the atmospheric
physicists also face with the task of interpreting and predicting phenomena
of geophysical interest, e.g., the gravitational diffusive separation of
the upper atmosphere, the distribution and escape of the earth's atmos-
phere, the dynamic equilibrium between the earth's atmosphere, and
the interplanetary gas, etc., The advance to the eventual resolution of
these problems, which are basic to the physical laws of atmosphere,
must rest on gas kinetic approach,

It is for the initial understanding and exploration of all these
problems mentioned above that the present report tries to make its
modest attempt. The author is fully aware of the fearsome difficulty

ahead.



2. Sphere Drag in a Rarefied Atmosphere

2.1 Introduction

The aerodynamic drag of a sphere has been used successfully
as adia«gnostic device in the exploration of the upper atmosphere. This
can be dme, e.g., by the use of a falling sphere which carries an accel-
erometer or is tracked with electromagnetic system to provide data for
analysis of the sphere trajectory from which the ambient density can be
determined., A basic premise of this method of ambient density measure-
ment is that a well-established function of sphere drag coefficient
(Cph & drag/dynamic pressure x cross sectional area) in terms of flow
parameters such as the free stream Mach number (M) and Reynolds
number (Re ) is available.

In spite of the great amount of works done on the aerodynamic
drag of sphere, there is no general theory available that gives the sphere
drag under various flow conditions. In fact the present knowledge of
sphere drag has been cumulated mostly through experimental investi-
gations, As to the theory of sphere drag, the success has been limited
to the flows of extraordinary nature, e.g., very low Re and Mm(Stokes
theory); utmost rarefaction (free molecule flow theory); and extremely
high M, in non-rarefied gases (Liu 1957). From the viewpoint of the
falling sphere experiments in upper air measurements, the sphere drag
of much geophysical interest, which corresponds to an altitude near
100 Km, belongs to aerodynamics of the semi-rarefied gases, a flow

regime with characteristics lying between the continuum and the free



molecules. Unfortunately, transition flow regime is the least
developed.

It is unrealistic to anticipate that the problem of sphere drag
in transition flows can be completely solved in a short and specified
time interval., This, however, does not mean to imply that the falling
sphere experiments should be withheld until the aerodynamic problem
is resoclved. On the contrary, a well-planned geophysical experiment
of falling spheres can be very valuable to the theoretical study of sphere
drag. In other words, the free-flight sphere in the atmosphere, properly
programmed in measurements, may serve the causes of both geophysical
exploration and rarefied gas dynamics of sphere.

In the present study, we have attempted an integrated effort
of theoretical and experimental approach to the sphere drag problem,
The experimental investigation with low density wind tunnel facilities
was undertaken by the Institute of Aerophysics, University of Toronto;
the results of this experimental study had been reported in an earlier
scientific report of this project (see Appendix IV). In the following, we

shall report the status of the analytical approach to the problem.

2.2 Almost-Free-Molecule-Flow Theory

The theory of gas dynamics deals with the integrated effect of
momentum and energy transfers between the gas medium and the sub-
me rged moving body. A fast moving object produces gas dynamical

disturbances in its neighborhood, the intensity of which decays with



distance from the body. It is the momentum and energy transfers
induced by these disturbances that are of primary interest to the gas
dynamicists. At distance from the solid surface, in general it is the
intermolecular collisions which determine the molecular velocity distri-
bution of the gas. For normal density where the mean free path is
extremely small, the effect of the presence of a solid body is transmitted
primarily through the intermolecular collisons, The random nature of
these collisions tends to create near-Maxwellian distribution for the gas
molecules should a true Maxwellian distribution of an equilibrium state
not be attained because of the non-vanishing transport fluxes. In other
words, beyond an order of a me an free path from the solid boundary the
molecular velocity distribution representing the disturbances can be
closely approximated by a small perturbation from the local Maxwellian
distribution. This intrinsic property of a gas is responsible for the
success of Chapman-Enskog's kinetic theory of transport phenomena which
laid the molecular foundation of macroscopic gas dynamics,

On the other hand, with a rarefied flow where the mean free path
is much longer than the dime nsion of the body, the effect of these inter-
molecular collisions is insignificant in the determination of the flow field
near the body. Essentially we are saying that the presence of the solid
body does not create any significant disturbance to the molecular distri-
bution in the free stream. This is the condition of free-molecule flows,
also called Knudsen gas flows, Under this simplified situation the

momentum and energy transfer to the body are completely determined by



the two independent streams of molecules incident to and reflected from
the solid surface. Eventually, of course, they would collide but only at
large distances from the body; hence, the collision effect is spread and
thinned out in a large volume of action,

It is obvious that with a less rarefied medium which, of course,
has shorter mean free path, there will be higher concentration of the
above mentioned collisions in the immediate neighborhood of the body,
hence more intense distrubance to the meclecular distribution of the free
stream. It is based on the single collision consideration that the almost-
free-molecule-flow theory is formulated. It represents an attempt to
analyze a first order iteration to the problem considering the free-moclecule
flow approximation as the zeroth order.

In the original formulations of the almost-free-molecule-flow
theory (Liu 1957, Liu 1958, Liu 1959), the collision effects were calculated
based on physical considerations without regard to the Boltzmann's
kinetic equation. An effort has been made to give the physical theory a
more rigorous mathematical basis by developing, for mally, the first order

iteration of collision effect from the Boltzmann's equation,

2,3 Formal Development of the Iteration Process

A rigorous kinetic theory of flows depends on a knowledge of the
distribution of molecular velocities throughout the flow field. The distri-
bution function f (¥, ¥, t) when multiplied by d ¥ d V gives the probable

number of gas molecules which, at time t, are located in the region of space
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between T and T +dT and have velocities between vV and ¥ + dv.
The above description should suffice for monatomic gases which have
translational degrees of freedom only. If there are more than one species
of molecules present, each species must have its own distribution function.
We assume there is only one kind of monatomic molecule of mass m

- e - o .
present which are under the influence of an external force™(F ), the distri-
bution function f (¥, ¥, t) satisfies the Boltzmann equation (Chapman and

Cowling1952)

f - g — -
.= = T E g (£'1) - ££,) v-vllbdbdf,d'\?l (2. 1)
Vv

Equation (2. 1) states that the change of f with time, apart from the streaming
molecular motion, andthe influence of the external force field, is due to the
binary intermolecular collisions in which the velocities of the two encounter-
ing molecules before collision are ¥ and -v‘l; after collision ,?fﬂ and Vi.
The integration extends over all values of ?f\l and also over all values of
the polar coordinates b and £ which specify the relative position, based
on the asymptotes of the initial trajectories, of the two encountering mole-
cules, In the collision term [J (f,£,) ], the prime and the index 1 of the

f's refer to the velocity variables alone, e.g., f; = { ('1?, '\7, t), etc. The

two terms in the collision integral represent the gains due to the restituting

o,

"We have given here a more general form of Beltzmann's kinetic equation
than it is necessary for the discussion of sphere drag. This, however,
provides the background for later discussions in Chapters 3 and 4.
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>0 - S . -
vy )——{v, v;) and the losses due to direct collisions

. a0
collisions (v ,
v, V) ¥, ¥ ) respectively,

i 1 P ¥

To gain some physical insight inioc the mathematical formulation,

we propose to give a dimensional analysis of equation (2.1). Let us

introduce the dimensionless variables defined by:

2
N o 2 My N
b=g b¥, T=RT¥, t-= R, v =Y, v f:_399;.3.f'-9 F = —2 F* (2.2)
Ve ROV R

where R 1is a characteristic length of the flow field, e.g., the radius of

a sphere; V,

'y represernts the mean mass velocityof the molecules upstream from

the body : 0 , the effective range of the intermolecular force, e.g.,
the diameter of an elastic sphere; N, number of molecules in volume R3.,

Equation (2.1), in dimensicnless variables, becomes

af f - f R e R ¢ ! by, 9
—_ 4 "%;k,, -é: + F* o ma-__- = J (f"\g fl*) = ij (f'rfgtr - f«‘fl*) .
ot o7 o JZ ) V2 m A -
TF - ?1*,1 b b*d £ d viF (2. 3)

where >\ = R,3 /ﬁﬂ’ g% Ny, is the mean free path of gas at the iree stream
density., The Boltzmann equation in the form (2.3) clearly reveals that the
molecular collision effects on the rate of change of {* is of the order R/)\
or inverse Knudsen number {Kn = A\/R). Equation {2, 3} is uniformly

valid for gases at normal density as well as at rarefied state, In fact, from
equation (2. 3) one can observe the anticipated difference in mathematical

structures of the treatments of flow problems in continuum vs, those in
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rarefied state; with the former, terms on the left hand side of equation
(2. 3) has the weaker influence on f, hence the iteration must start with
the Fredholm type integral equation which is what Chapman and Enskog did.
With the latter, such as the almost-free-molecule flows, the reverse is
true, we have therefore a differential equation in f with the inhomog-
eneous term provided by the collision integral which is prescribed in
terms of f from lower order approximation,

We may further observe that the left hand side of equation (2. 3)
is the derivative of f in the direction of the vector (t, ?;, f‘) in the seven-
dime nsional space. At each point in this space, this vector points in the
direction of the molecular trajectory through that point, which is also the
characteristic curve of the equation with collision term omitted. Hence,

if s denotes arc length along a trajectory, equation (2. 3) becomes:

. Df*
o
Ds

= NZrKn) b Tt € (2.4)
where Kn = A/R.
To assess formally the order of approximation of the iteration

process in treating rarefied flows, we let:

w« = pd0) © Roeul Ri2 c4(2)
£ £ +)‘f ) + (,\) £ Foonon (2.5)

,f*(l),f*(z).

The significance of £:40) ... will be clear after equation (2.5)

is substituted in (2.5) and coefficients of like powers in R/)\ are equated:

«{0)
V*Df =0 (2.6)
Ds
(1) ,
v DI NZnkn) ! g (f*(o), ff'io)) (2.7)

Ds
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(0) along a
Equation (2. 6) says that f*

is  constant trajectory; in other words,
it is the distribution function for the free-molecule filow. We shall see
fi'(O) S D . .
that (¥, v) for a sphere in free molecule flow does satisfy equa-
tion (2.6) except for the points on the solid boundary as expected.
Equation {2, 7) which entails collision effect prescribed with the

(0)

use of free-molecule distribution f* constitutes the formal basis of
the almost-free-molecule flow theory discussed in §2., Z, Note that a

formal solution to equation (2.7), after the boundary condition,

f = f (so,v*) at s = sy is substituted, can be written in the following
form:
s
«1) _ %(0) 1 ds
g o O o —— I (2.8)
(4 {2 7 Kn I o
o

It may be noted that the almost-free-molecule flow analyses made in
references ( 3 ,4 4 5) are essentially some ma croscopic moments of
equation (2. 8), giving the mass and momentum fluxes, etc.,, after the
collision integral J in equation (2.8) has been simplified with physically
justifiable assumptions.

Up to now, the developme nt of the iteration is formal and is
uniformly valid for rarefied flows, In the following, we attempt to make

a first order iteration of the sphere drag.
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2.4 Zeroth Order Approximation to the Sphere Drag - Free-Molecule-
Flow Theory

In the zeroth order approximation, we neglect the collisions between
the streams of molecules incident on and reflected from the sphere, hence
the classical free-molecule flow is obtained. It must be noted, however, in
the standard works on free molecule flows (see, e. g., Patterson 1956),

: . : . . . (0),~ =
the molecular distribution function for the entire flow field, namely ' '(r, V)
is usually not of interest unless one wants to map out the flow field around

(0)

the sphere. In the present study, we must know f (?, X?) in order to cal-

culate the distribution of collision frequencies as prescribed in the collision

integral J(f(o), fl(o)

) for the first order iteration.
It is noted that the aggregation of molecules at any point (r) in a

free-molecule flow must come from two sources:

3 o= (F-V )
(i) Stream incidi the sphere, £+ n (=2 ¢ KT oo (2. 9)
ream inciding on the sphere, fi: n_ (5= e .
oo}
. . 3 m c*
(ii) Stream reflected (assumed diffusely) m 2 T3RT (2.10)
4 , S R
from the sphere fR :onp (ZﬂkTR) e
where n_ is a fictitious number density which can be determined by the

R

conservation of the number of molecules during the process of reflection

at the solid boundary. 1
T 2 2
_ (0 0] _SV .
n_=n_ (=) [e +~/;sv(1+erfsv)] (2. 11)
R
1
here S = (+2) % (V. #f'and c is th d lecul datT
where v_(ZkT )y . n') and c is the random molecular speed a R’

In general we can write the distribution function at a point (¥) in

the following form:

+ :
See Fig 2-1
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Fig. 2-2

Fig. 2]
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0)

f( (F,¥)=2f +(1 -2)1

2,12

where Z (T, ﬁv), n, being a unit vector in the direction 7 (see Figs. 2-1
and 2-2), is a discontinuous function defined as follows:

It is zero if the molecule with velocity V at the point (T) comes
from the sphere (i. e., in zone 1, see Fig. 2-2) and one otherwise. Analy-
tically

z=0iff- % >0andr®- (F- &) < R*

Hence, we can express Z, after simplification,
1 s a 1 o o [[ R L .
Z-E[l—sgn(nnnv)]%-z [1+Sgn(nonv)][l+sgn(\,l-—r—2—nonV)J

(2.13)
where sgn x 2 signum (x) = -1 when x < 0; 0,when x = 0;and +1 when x> 0.
It can be shown by simple differentiation that f(o) given by (2. 12)

satisfies the collisionless Boltzmannequation (2. 6) except at the solid

(0)

boundary r = R, which is, of course, expected. Note that f is equivalent

(0)

to except in dimensional form.
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2.5 First Order Approximation to the Sphere Drag - Al most-Free-

Molecule Flow Theory

It may well be admitted at this point that formal mathematical
deduction with respect to equation (2.7) which invelves complicated inte-
gration along characteristic directions is not expected to be fruitful. To
make any progress we must simplify the collision integral (J) by invoking
physically justifiable assumptions for a specific flow problem of interest.

It appears that, for an almost free molecule flow of not very low
speed, the restituting collisions near the body which produce molecular
distribution of significant drag contribution (positive or negative) is much
less frequent than the direct collisions. This statement can be justified
by invoking the second law of thermodynamics. Hence, £(0)° fl(o)ﬂ - term
in the collision integral (J) in equation (2.7) can be neglected,

It can be shown that under the specific flow condition mentioned
aboveythe contribution to f(o)fl(o) - term in J of equation (2.7) from
fRfR and flfl collisions are much less significant than from fjfR collisions#f

Even after these simplifications, the mathematical work in solving
equation (2.7) for a sphere is still very heavy. An indiscriminate compu-
tation without inquiring its physical significance may lead to waste as far
as physical interpretation of the flow phenomena is concerned.

Before starting with the computation of the single-cocllision contri-
bution to the sphere drag ( § D) we may take advantage of the result of the

dimensional analysis in § 2.3 to see what is likely to be the significant

parameters governing & D. It is not difficult to see that (Vg /cpf)(R/A )

#This can be justified by comparing the numbers of collisions per unit

distance for these species.
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must be the parameter in question. In other words, for diffuse reflection,

#
the sphere drag is likely to be in the following form:

D = wR? mn, Voi) {1 + ’3’ [(VGD/CM) (R/)‘ )]} (2.14)
or to a first order effect:

D = wR? mn, Vo‘:‘) [1 + o (V/em) (R,/)\) ] (2.15)
where o depends on the geometry of the molecular trajectories in the
vicinity of the sphere.

We can give an order of magnitude analysis of the single-collision
effect on drag based on a simple. physical model in order to throw some
light on the result of (2.15)., Suppose that, to start with, the sphere, by
its forward velocity (V,) has trapped a molecule against its surface. This
trapped molecule, owing to its the thermal speed say;CM ,will in general
move out of the region swept by the surface of the sphere within a certain
time @ ~ R/CM) unless T, be equal to or greater than the time required
by the sphere to cover the distance of a mean free path of the molecules
c, ~ )\OO/VCD). In the latter case, other molecules will collect in front
of the sphere before the trapped molecule finds time to escape and a
concentrated layer begins to form. At this point, we would like to make a
remark concerning a general misconception of the criterion for free-
molecule flows: should this concentrated layer of trapped gas form around

the sphere, the free-molecule flows cannot exist, no matter how large the

#CIV‘I—‘ { Zk,T/m)]t/Z is the most probable value of the random{thermal) speed.

#Q‘"l‘ denotes an arbitrary function;it should be emphasized that the hypothsis

expressed in Eq. (2. 14) is based merely on dimensional considerations.
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ratio )\00/R is! (Note: it is commonly claimed that free-molecule
flows exist if )\OO/R >> 1). Instead, for a free molecule flow to exist,
the ratio of the two time constants( )‘oo/voo) / (R/cy) must be larger than
one. Alternatively, one may define a new mean free path_/\_ = )‘OOCM/VGD
which can be considered as a mean free path of a reflected molecule
moving among the incident molecules assuming that the body is fixed in
space and the surface temperature is equal to T, of the gas.

The number of molecules reflected per unit time from the sphere
must be of the order w R? ny, V, a fraction of the order (VOQ/CM)(R/)\GD)
of which will probably collide with the incoming molecules within a distance
of the order R from the sphere. Thus, the number of molecules created
in unit time within the region of consideration is of the order ,
'(VOO/CM)(R/)\OO) ™ R% ng, V- As agross estimate, the momentum transfer

to the sphere per unit time from these colliding molecules is of the order:

Veo/cpp) (R/)\OO) T mng, RZ Voo (2,16)
Note that the sphere drag for a free molecule flow under the

assumption of diffuse reflection is:
2
Dp . = mnmR*V (2.17)
combining (2,16) and (2,17) with an unknown coefficient a that depends
on detailed geometrical considerations of the collision effects near the
sphere, we obtain equation (2.15) for sphere drag considering single

collisions, The exact formulation for a will come out of predise analysis,



19

It is interesting to note that the results of recent measurements
of sphere drag in the transition flow regime (see Appendix IV) appear to
comply with the present prediction (see Appendix V) although one should
be cautious in drawing conclusions on the basis of limited data t0 a single
Mach number (note: only the UTIA test seems to satisfy the almost free

molecule flow condition),

2,6 Method of Analysis of the Single-Collision Effect

For the general case of arbitrary Mach number, we have not been
succe ssful in our attempts to arrive at a form simple enough to be presented
analytically, With a rarefied gas at hypersonic speeds, the mathematical
analysis becomes more tractable. This entails the neglect of the thermal
velocity component of the incident molecules (f]) in comparison with the
mass velocity component.

The work on sphere drag in a rarefied gas is still in progress. In
the following we shall briefly describe one of the schemes that has been
used in treating the single collision effect,

Consider the flow past a sphere. Let J(T, V)dT dV denote the
number of molecular collisions per unit time in the volume element of
the phase space bounded by T,T+dT and ¥V, V+d¥V. Let v represent
the velocity vector of a molecule which emerges from collision at P(r) and
intersects on a surface element dS of the sphere at Q. From geometrical

considerations we have

cos @dS
ja®|®

dv = v¢dv (2.18)
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Fig. 2-3
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——
where @ is the angle between QP and the normal 7' to the surface
passing through Q (see figure 2.3). Let dH,; denote the number of
molecules which emerges from a collision in d Tdv and deposit on

dS at Q

-~ 2
3, v)dr cos @ v2 dv (2.19)

QP2
where Crg is the solid angle scattering coefficient, Note that the

dHIZGQJ(

—
direction of V appearing in (2,19) is related to the direction of QP:

s QP (2. 20)

The total contribution to the incident molecular flux by the collision
is:
(@ - af Joo Gg v? 1@ v BB 2l
"B o
where i denotes the semi-infinite region bounded by the plane tangent to
the sphere at Q (see figure 2.3).
Following the same reasoning, we can calculate the contribution

to the momentum flux in the direction of \700 by the molecules emerged

from collisions

- - * ) 3 ., QP cos®
H,(Q) = drj(Gecose+G sin ) m v” J(r,-vi——),) Zdv (2.22)
s ) (2-0) [ Jo?]

To calculate the net change in sphere drag due to collisions relative
to its zeroth order approximation, we must consider the loss accounted for
those f; molecules being thrown out by the collisions, The net contribution

to drag by single collision effect can be written as:

8D = f FIZ (Q) - m'\?w H; (Q):I ds (2.23)
S
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The results of the preliminary calculations using the formulation given
by (2.23) are not very satisfactory because the values of the two functions
in the integrand are very close, thus throwing doubt on the accuracy of
the results unless extreme precise calculation is followed. Comparing
with results from this preliminary analysis, the drag coefficient given
in Baker and Charwat (1958) appears reasonable.

Much improved analysis of the problem is still under investiga-

tion.



23

3. Gas Kintetic Problems of the Neutral Particles in the Upper Atmosphere

3.1 Generally speaking, the upper atmosphere is a multi-component
mixture of neutral particles, ions and electrons, the concentrations of
which are functions of altitude. A general theory of flow of this mixture
with due considerations of the couplings between the various components
would be quite untractable. It is often not necessary to face this difficulty
because for many problems of the atmosphere, it can be avoided from the use
of physical arguments. For instance, at lower altitude where the con-
centration of charged particles is extremely small, the effect of the
ionized particles can be ignored except the cases where charged compo-
nents play a significant role of the physical phenomena in spite of their
minute constituents.

Even for some atmospheric phenomena at very high altitude, the
analysis of the kinetics of the neutral atmospheric.  particles, because of
its analytical simplicity and therefore more tenable to solve, can reveal
much physical insight into the atmospheric problems. It is under this
supposition that we divide the atmospheric problems of interest into two
groups: (i) gas kinetics pertaining to neutral particles, (ii) to the ionized
particles. In this chapter we shall concentrate on the first group; in the
next chapter, on the second group. It goes without saying that the feasi-
bility of this convenient division must be considered with caution in treating

a particular atmospheric problem in question,

3.2 Propagation of Sound Disturbances in a Rarefied Atmosphere

The use of sound waves as a diagnostic probe of the atmospheric
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temperature distribution dated back half a century ago. It has been applied
recently in a modified version to the rocket-borne grenade experiments
in which sound is generated by grenade explosions at specified altitudes.
In this experiment the ambient temperature distribution is determined from
the time taken by the sound waves to travel a specified distance through the
atmosphere in question. The basic principle of the experiment is that the
velocity of propagation of the sound wave is a simple function of ambient
temperature, as given by Laplace for an ideal non-viscous gas, namely
V0 =(fk %)l/zg It is naturalto raise the question whether Laplace's for-
mula of sound velocity is applicable to the rarefied atmosphere in which
the grenade sound experiment is conducted.

In rarefied gas dynamics, the problem of sound absorption and
dispersion is of unusual interest because it is a case to which the linearized"
Boltzmann equation, derived from assuming a small perturbation to the
equilibrium distribution function, is known to be valid; furthermore, the
solid boundary, a source of difficulty in rarefied gas dynamics is not
involved. Another reason is that experiment for checking the theory can
be set up without unusual difficulty.

Wang-Chang (1948) give the solution to the sound propagation in a
rarefied monatomic gas without external force and found that the change in

#
speed of propagation (AV) is

AV 4442 (-‘I";)Z (3. 1)

O

where w is the viscosity in c. g. s. units; w, sound waves in megacycles

4V =V - Vo where V denotes the sound velocity in any gas medium,.
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per second; and p, in atmosphere. From equation (3. 1) one can easily
see that for waves of ultra-high frequencies the change in propagation
speed from the Laplace value, V09 can be significant. This change can
become significant also when the ambient pressure (p) is extremely low.
Since the physical mechanism of propagation of a sound disturbance is
collisions, the process will be disrupted when an appreciable number
of molecules cross a wave length without colliding

We have made a study of the sound propagation in a rarefied
atmosphere considering the external force, e.g., gravity, acting on
the molecules (see Appendix VI) and found that the effect of gravitational
field is not significant until the wave length is comparable with the scale
height of the atmosphere. The analysis is, however, valid also for
other kind of external force field which may have a much shorter ''scale

height'".

3.3 Ofifice Flow of a Rarefied Gas

The flow of a rarefied gas through an orifice is a problem funda-
mental to the pitot tube experiment for the measurement of the upper
atmosphere (Liu 1956). We have developed a transition flow theory (see
Appendix VII) which appears in agreement with existing measurements in

the laboratory.

3.4 Rarefied Gas Dynamical Considerations in Rocket Sounding
Measurements

To carry out low density experiments in the laboratory involves the

generation of a uniform flow and the measurements of minute forces under
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the most unfavorable conditions concerning forces of interference, both of
which are experimental difficulties of the highest order. On the other
hand, the upper atmosphere provides an unlimited uniform medium. It

is therefore worth considering the possible free flight facilities in geo-
physical experiment for rarefied gas dynamics study. An effort has been
made to discuss this possibility and the comparison of results from the

laboratories and free flights (see Appendis X).

3.5 Gravitational Diffusive Separation of the Atmosphere

The atmosphere is a multi-component mixture of gases situated
in the earth's gravitational field. Unlike the moon, the earth has suffi-
cient force of attraction that prevents its atmosphere from escape in a
catastrophic rate. From kinetic theory of gases one learns that when
two gases of unequal molecular masses are mixed, a diffusion flux is
set up due to acceleration of the gasesﬂ< which tends to make the heavier
molecules move, relative to the lighter ones, toward the lower altitude.
In diffusive equilibrium, an isothermal atmosphere will have for each of
its components a separate exponential distribution with altitude, defined
by a scale height (kT /mg) of its own.

In the lower atmosphere, the molecular action, exhibited by the

diffusion flux mentioned above, is likely to be nullified by the stronger

*An alternate way of saying is that an hydrostatic pressure distribution
is set up by the gravitational field. Pressure diffusion flux is developed
which tends to make the heavier molecules move to the region of higher
pressure.
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macroscopic mixing action of the atmosphere--often called atmospheric
turbulence. It is therefore the relative strength of these two actions that
determines the status of the diffusive separation of the atmosphere (see
Appendix XI).

Although measurements of diffusive separation in rocket sounding
program carried out at The University of Michigan and U. S. S. R. showed
atmospheric separation effect at altitudes as low as 60 Km, our calculation,
based on standard atmosphere, shows that this is most unlikely in view
of the long time constant for the diffusion and the evidence of atmospheric

turbulence shown in meteor trails at altitudes below 80 Km.



28

4. Gas Kinetic Problems Pertaining to Ionospheric Measurements

4,1 Introduction

Recent interest in the gas dynamics of the ionosphere arises
essentially from two groups of technical problems: {i) the anomaly
of radar cross section of space vehicles moving through the F-region
of the ionosphere; (ii) the interpretation of ionospheric measurements
from the use of sounding probes, e.g. Langmuir's ion traps (also
called Langmuir Probe), mounted on a sounding rocket. As we shall
see later,. these two problems unentioned above are actually
intimately related phenomena which are originated from the electro-
hydrodynamic disturbances created by a moving body in an ionized
medium - generally called plasma.

Inas‘much as the problem of plasma interaction with a moving
body arises whenever prospective experiments of studying the ionosphere
with the aid of satellites and sounding rockets are considered, it becomes
important in upper atmospheric research to understand the behavior of
a tenuous plasma which interacts with a moving body. Unfortunately,
up to now, very little progress has been made in this field, This is
caused by the fact that the theoretical analysis is harassed by the complex
mathematical nonlinearity encountered and the experime ntal investigation

is rendered helpless by the difficulty of generating satisfactory plasma

in the laboratory. It is encouraging to learn that useful results on plasma
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can be gained from geophysical experiments in which the procedure is
based on various physical phenomena that take place in the vicinity of
a satellite or a sounding rocket, In other words, the geophysical
exploration of the ionosphere can serve a dual purpose of investigation
in basic plasma dynamics as well as didgnostic study of ionospheric
phenomena.

4,2 Ionosphere as a Flow Medium

A review of the physical properties of the ionosphere as a gas
dynamical medium seems desirable before we start with the discussion
of ionospheric gas dynamics.,

It is well known that the upper layers of the earth's atmosphere
are continually being bombarded by radiations from the sun and from
the regions of outer space. Particles present in this bombardment have
been identified as to their chemical species and charge. In addition,
the role of electromagnetic radiation has been shown to play a very
important part for the maintenance of the plasma state in the ionosphere.
The production of electrons and ions in the atmosphere is, of course,
counter-balanced to some extent by their re combinations which produce
neutral atoms or molecules, In any small region of the ionosphere,
there must be equal numbers of positive and negative charges. If this
were not so, strong electrostatic forces would arise between different

parts of the ionosphere. Rapid motion is then anticipated within the
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regions to redistirbute the charges. These motions would continue until
inequalities between concentrations of charges of opposite signs were
smoothed out. It is often (but not always!) necessary to assume as a
useful first approximation that the ionosphere is in the state of quasi-
thermal equilibrium, thus in the absence of external field, the distribution
of particles is Maxwellian for each species.

The ionosphere is a weakly ionized plasma, hence of low conduc-
tivity in the lower ioncsphere; the degree of ionization, denoted by the
ratio of the concentration of the electrons to the neutral particles increases

3

5 at 200 Km; 107° at 300 Km; 1 at

from the order 10"8

at 100 Km; 10~
1000 Km. At 3000 Km the degree of ionization rises to an order 1.03.,
It should be noted that the increase in the degree of ionization of the
ionosphere with altitude is not uniform. The detail structure of the
ionosphere is not of our interest here. The above description serves

only to show that the plasma through which a satellite or rocket travels

varies over a wide range.

4,3 Kinetic Properties of a Plasma

A plasma differs from a gas of neutral particles in certain
important respects such as the nature of interaction between neighboring
particles. It is well known in the kinetic theory of gases that the collision
frequency between particles in a gas is determined by the force of inter-

action between the encountering particles, among other factors. For a
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gas of neutral particles this interaction force is short-ranged, that is
to say, the effective range of interaction between two neighboring particles
is very small compared with the me an distance between particles of the
gas, Therefore, in evaluating the statistical averages of the collision
effects, e.g., the calculation of mean free path, we need to account for
binary collisions only. It is not so with charged particles for which the
interaction force, known as coulomb force, is effective at considerable
distances; thus, the motion of a given particle influences the motion of
many particles in its neighborhood. In other words, each charged particle
moves under the influences of many charged particles in the plasma.,
This long-ranged nature of particle interaction causes much difficulty
in the evaluation of collision integrals that are involved in the analysis
of plasma kinetics., Many alternates have been suggested to circumvent
this difficulty in order to develop a consistent kinetic theory cf plasmas.
It is not possible to say at the present time that full satisfactory answers
have been derived or that schemes are available for their derivation
which are non-controversial,

It may be briefly mentioned here that among these aiternatives,
Bogliubov's approach (Ref, /| ) which is based primarily on the fact
that a definite sequence of relaxation processes take place in a gas which
transforms it from any arbitrarilyprescribed initial condition appears most

promising., In his approach, the first relaxation is that in which the gas
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molecules adjust to their correct pair distribution function, The next
relaxation is that which allows for the adjustment of the function describ-
ing the distribution of the particles according to state velocity., This
second relaxation is usually described as the Boltzmann stage. The

third and last stage is that in which the conti nuum variables of the
ensemble, density, pressure and temperature adjust to the environmental
conditions. Attempts are then made to expand the dynamics of adjustment,
or relaxation of the appropriate distribution functions, in a series in
which the coupling constant or constant of expansion is directly propor-
tional to the frequency by which the adjustments are taking place,
Although this approach has led to some rather elegant formalisms at the
presenttime, the state of advancement using this program does not com-
pare to that already achieved with the modified Boltzmann equation that
takes into account the long-range nature of interaction by separating the
plasma into two domains with respect to a particular test particle., First,
there is a region in the immediate neighborhood of the test particle in
which the effect of coulomb interaction istreated much like a short-range
interaction, in the sense, they are ey cut off at a specified finite
range from the test particle. Second, there is the region, exterior to
this cut-off range, in which the interaction effect of the surrounding
particle charges is considered collectively as if it were an external force

field acting upon the test particle. The size of the first region may be
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characterized by the Debye radius

kT ,l/2
= ——— 4,1
D (4nnee2) { )

R

where T is the plasma temperature; e, the electron charge; n, the
electron density; k, Boltzmann constant. The significance of the Debye
radius will be further discussed in this report. It should be noted here
that more sophisticated treatment concerning the interaction in the first
region has been used. However for a weak rarefied plasma which is

considered here, the afore mentioned model appears sufficient,

4,4 General Considerations of Flow Problems in the Ionosphere

The aerodynamics of an ascending rocket in the atmosphere may
be used as an illustration of the extensive change in basic flow charac-
teristics from the condition of continuum at low altitude, then the
transition state at ntme diate altitude, say about 100 Km, and finally
the free molecule state at high altitude. The division of these flow
regime s with respect to a given moving body, becomes considerably
modified when the neutral medium is replaced by a plasma. For one
thing, the mean free paths of the particle species of the medium are
different from that of the neutral particles due to long-range interaction
between the charged particles. A more important factor is that such a

moving body will normally become negatively charged on account of the
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higher rate of electron influx than ion from the surrounding plasma,
This is made possible by the higher thermal speeds of electrons. The
negative potential on the body will have an electrostatic field in its neigh-
borhood. The free stream plasma will be so disturbed by the presence
of the negatively charged body that large electrostatic forces are set up
such that cluster of positive ions will migrate to the neighbeorhecod and
form a ion sheath thus restoring electric neutrality of ambient plasma
in the large.

To illustrate the physical structure as well as the thickness of
this sheath, which is a significant parameter in plasma dynamics, we

an extremely
consider a small mass point moving at,low subsonic speed in a plasma,

A
the electrostatic potential distribution in the sheath is governed by the

Poisson equation, assuming singly charged ions,

vzcb = 4me (ng - n) (4, 2)
in which the term on the right hand side represents the net charges due
to the presence of isolated electrons and ions., The solution tc equation

(4.2) for a stationary mass point is,

ta - R
p - comst - r/Rp (4.3)

r
1/2 )
where RD = (K T /4 n-neez) , called Debye radius, is the distance at
which the electrostatic potential @ has become 1/e times the value it
would have with no other charged particles present, and is a measure of
the distance over which the potential can vary significantly from ambient

pressure,
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A physical interpretation to the above sclution can be made: note
that the factor ;l- is appropriate to a single ion in a vacuum, the factor
exp (- r/Rp) represents the influence of the plasma,

In the general case with a body of finite size moving at high
speeds, the electron and ion densities (ne and ni) must be considered as
functions of the translational speed of the body. Among other factors,
the sheath will be distorted from the symmetric ring shape and its thick-
ness will no longer be uniform. This will be discussed later.

The Debye radius Rpy and the mean free path A of the atmos-
pheric neutral particles are plotted as functions of altitude in Figure (4-)).

It is well known that the contemporary methods of treating flow
problems can be classified into two alternatives:; the continuum approach
and the particle approach. The difference between these two has been
over-emphasized in the literature. In the first approach, the gas
(including plasma) is viewed as smeared over the whole of space. A
basic criterion to justify this viewpoint is that a length characterizing
the granular structure of the particle motion such as the mean free path

(Rp)
>\ in the case of neutral particles or Debye radius/\in the case of plasma,
snould be small compared to a significant size parameter of the flow field,
such as the characteristic length (L) of the body in que stion, In the second
approach, the view is held that the space is mostly vacant and the

occurrences of particles are such special events that they must be
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treated with the individual respect that is theirs due., Obviously this is
only true when >\ > ) L in the case of neutral gases; Rp )} L, ionized gases,
The distinction between the points of view is not so clear as was
once supposed, in view of the particular manner these approaches are
handled. The theory of flow of gases consists of an appropriate blending
of the mechanics of particles and mathematics of statistics. In the particle
approach, the large amount ofinformation concerning the mechanics of the
particles involved must be condensed by means of statistical averaging
processes. This is necessary in order to cut off the uninteresting physical
informations which the basic formulation contains and thus to make the
problem mathematically tractable., It is clear that the distinction ulti-
mately resides in whether the average occurs before or after the analysis,
i.e., whether statistics precede or follow mechanics, Of course, the
spe cific manner of taking the statistical averages in the particle approach
must be delicately handled in treating a rarefied flow problem,
For a qualitative description of the flow regimes in the ionosphe re
we may use the following criterias

(1) Continuum flow, if )\ and Rp<< L

(2) Free molecule neutral gas flow

}if Rp4< L A\

Quasi-continuum ‘plasma’' flow

3) Free molecule gas and 'plasma’' flow, if L R_..
g p D
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Note that Rp << >\ is assumed in (2) and (3); alsc, we assume
here that plasma is considered as a separate gas which does nrot interact
with the neutral particles in the region of interest.

One can, of course, refine the division of flow regimes to include
the transition regime as interme diate between free molecule and continuum
states.

In treating the flow problems in the ionosphere the interaction of
the charged particles with the solid surface must be considered. The
physical process thus involved is still a matter of some controversy.

One hypothesis is to consider the surface as a third body for re-combina-
tion, e.g., an ion, after hitting the solid surface, becomes neutralized by
an electron and emitted as a neutral particle. One should, however, be
cautious in using such an hypothesis when the kinetic energy of the im-
pinging particle is near the energy range for sputtering effect to be

significant,

4.5 Mathematical Formulation of Flow Kinetics in the Ionosphere

In the following discussion we deliberately leave out the gecmagnetic
field effect, the approximation thus obtained should not be used for the
ionosphere at an extreme altitude where the magnetic field become s the
dominating influence. The gravitational forces on the particles are also
excluded. This can be justified for problems where the characteristic
length of the flow field in question is small compared with the local scale

height (see§4.3 of this report).
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in most problems of ioncspheric measurements from a sounding
rocket or satellite;, the electrostatic potential {@) in the immediate
neighborhood of measuring probe, which is immerged in the electrohy-
drodynamic disturbances created by the moving bedy, is of utmost interest,

The potential distribution is governed by the Poisson equation:

Vz(b = 4me(ne,=ni) (4.2)
which is prescribed in terms of the local concentrations of ions (n;) and
electrons (n,). Therefcre, to build a consistent theory of potential
distribution, we need to know the rigorous expression of ion and electron
distribution functiongwhich can be obtained, for a rarefied plasma as the
ionosphere, as the solutions to the Boltzmann-Viasov equations for the two

charge species:
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where £ (’r‘a Y, t) is the distribution function for either ions or electrons

with correspondingly prescribed {e/m)oQ/oT . T is the particle velocity
K . .

and T 1is the particle displacement,

Note that in equation (4.4) the change of £ (?, "\?, t) due to ""binary
collisons, ' as discussed in§4., 3, has been neglected because of the tenuous
nature of the ionosphere, while the collective motion effects due to charge
separation appear in the last term on the left hand side in the form of an

external force field acting upon the particles.
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To complete the formulation of the problem, we must specify
the boundary conditions which express the process of impinging of the

charged particles at the body.

4,6 Solutions to Problems of Ionospheric Interest

We chose to treat two problems of geophysical interest, The
first contribution (see Appendix I) deals with the electrostatic potential
distribution in the sheath near the frontal part of a moving bedy. The
aim of this analysis is to supply some useful information pertaining to
the me asurements of ionosphere with Langmuir probes, etc. The second
contribution (see Appendix II) attempts to clarify much of the existing
confusion concerning the electrohydrodynamic wake behind a moving
body in an ionosphere. As an initial study of this complex problem, we
chose a body of finite size moving at a subsonic speed in order to make
the analysis tractable. It is our opinion that some significant revelation

concerning the structure of wake has been made through this analysis,
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5. Miscellanecus Problems of Geophysical Interest

5,1 Skin Temperature of a Sounding Rocket

In sounding rocket design, a problem of great interest is the
strength of the structure which may possibly be weakened by the sudden
and intense heat input from aerodynamic energy conversion, The heat
conduction thecry, usually based on the simple assumption of constant
heat transfer coefficient, apparently does not apply to the problem in
question because of the highly transient nature of the heat input function.

We have solved a problem pertaining to the skin temperature of a
sounding rocket (see Appendix III) which may have a time -dependent heat

transfer coefficient,

5,2 Free Convection Problems

A flow phenomenon, basic to the dynamics of the atmosphere is
the free convection generated by the coupling of temperature gradient with
external force field (gravity). To treat this hydrodynamic problem properly
one has to start with the Navier-Stokes equation of motion which is highly
non-linear. The mathematical difficulty involved with this non-linear
boundary value problem is well known,

In an attempt to understand the basic nature of this interaction
between gravity and thermal gradient effects for a flow medium, we set up
a relatively simple problem that incorporates with this interesting inter-
action phenomeron, We use a flow in a cavity with temperature gradient
and external (centrifugal) force (see Appendix VIII), and found some intri-

cating results with the aid of IBM 704 computer.



42

We then proceed to treat a specific feature, the stagnation
phenomenon, cf this type of flow in a cavity and obtain some interesting
results (see Appendix IX) which may be of interest to the cooling of gas

turbine blades rotating at very high speeds,

5.3 Molecular Distribution Function and H-Theorem

Thirteen years ago, H. Grad published his memoir of thirteen=-
moment distribution which was claimed to be of uniform wvalidity in the
non-equilibrium processes of gas kinetics. It is supposed to be a theory
of wider applicability than Chapman-Enskog's, It turns out that his

represent
claim is not exactly valid although it does a new approach which has been

A
very influential upon later works.

The key to Grad's theory is the new formulation of the molecular
distributicn function in terms of thirteen moments, in an order of approx-
imation higher than that of Navier-Stokes, Grad's thirteen-moment
distribution is essentially a hypothesis. P. B. Hays has shown that the

thirteen-moment distribution of Grad can be derived by invoking the

H-theorem of Boltzmann (Appendix XII),
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6, Conclusions and Suggestions

The present study has made an ambitious attempt to analyze
a very wide spectrum of geophysical problems extending f{rom free con-
vection phenomena, sphere drag, transition flow aerodynamics to electro-
hydrodynamics of icnosphere. In a short period of three years, one does
not expect to resclve all the problems, perhaps not even one, mentioned
here., The nature of these problems is such that it is unlikely to see some one
solving any of these over night; rather, one is expected to clear the obstacles
little by little with continuous effort.

In the mean time, the understanding of the physical problem thus
gained would always be helpful in improving the contemporary geophysical
experiments, e.g., the need for measurement of the skin temperature of a
falling sphere in order to make sphere drag in the rarefied atmosphere
determinable,is a typical example., The current measurements of electron
temperature and concentration of the ionosphere are even more susceptible
to improvement because of the complex nature and primitive status of the
rarefied plasma dynamics.

Repeated emphaseés have been made in this report about the desirability
of coordinating the gecphysical experiments with gas dynamical studies in
the rocket sounding programs. One simple guiding principle of this approach
is to make the geophysical measurements redundant such that the over-
determinateness of the unknown quantity of gas dynamics can be used tc reveal

some physical insight of it, For instance, it would be very useful geophysically



44

and gas-dynamically to set up a rocket probing, in the ascending trajectory

of which pitot tube is used to me asure the ambient density with the release

of a falling sphere near the peak of the trajectory; the ambient density, below
the peak altitude can be thus re-determined. In so decing, we can cross-
calibrate the sphere drag and the pitot pressure both of which are knowledge
basic to the science of rarefied gas dynamics.

The exosphere phenomenon which pertains to the escape of atmospheric
particles from the earth's gravitational field at the fringe of the atmosphere
(see Appendix XI) presents a gas kinetic problem of unusual interest. Although
lately there have been several papers in the literature (see,for instance, 6pik
and Singer, 1961) dealing with the molecular aspect of the exosphere, it
appears, however, that a fundamental aspect of the problem has been ignored,
namely, whether there is a dynamic equilibrium between the outer atmosphere
of the earth and the interplanetary gas, the existence of which is still a matter

of controversy.
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Appendix I

On the Sheath Surrounding a Metallic Body
in a Very Rarefied Plasma

(Contributed by Paul B. Hays)
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Abstract

A nonlinear kinetic analysis of the sheath isolating
the forward face of a metallic body is developed. The theory
is valid for arbitrary bodies of small curvature moving super-
sonically through a highly rarefied n-component plasma. An
interesting similarity results when there are no negative ions
present. In this case the sheath is dependent only upon n-
normal mach numbers and ion density ratios. The universal
sheath resulting merely shifts relative to the body in order to
satisfy the condition that the potential is the surface potential
at the body.
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Introduction

Direct observations of the properties of the ionosphere have become
common with the present sounding rockets and satellite vehicles as meas-
uring platforms. However, most of these studies suffer to some degree
because of the complex plasma sheath which separates the measuring device
from the ambient rarefied plasma. A great deal is known about this phenom-
ena for bodies at rest (i. e. the Langmuir Probe studies), however, little
work has been done for moving bodies. The work that has been done in this
area is concerned mainly with the properties of the wake behind the body.(l’ 2,3, 4)#
While these discussions have been useful in a qualitative sense, they are of
little value to the experimental scientist who is concerned with the precise
conditions which exist in the neighborhood of his device. The present paper
will deal with these problems which must be faced when actual measurements
are made with an instrument contained in or in the proximity of a large odd
shaped body.

Of course, it would be entirely unreasonable to expect that this can
be done without some restricting conditions. However, these restrictions
are not as severe as one would expect. In fact, there are only three major
restrictions. First, the section of the body being considered must have a
normal mach number greater than 1.0. Secondly, the radius of curvature
of the body in the neighborhood of interest must be very much greater than
the debye length characterizing the plasma. Thirdly, the surface potential
of the body must be negative. Under these conditions one finds that the
sheath separating the body from the rarefied plasma is well defined and
characterized only by the normal mach number and the surface potential.
(i.e., The surface potential is nondimensionalized by ambient plasma kinetic
potential.) This last remark applies to a plasma containing only one species
of ions. However, the extension to a realistic multicomponent plasma is
trivial. The sheath of the n-component plasma is characterized by the sur-
face potential, n mach numbers based upon various species, and n-number
density ratios. This result is given in the discussion to follow, however,
the numerical results are for a two component plasma containing singly
~ionized particles and electrons.

at
TRefer to the numbers of References listed,\the end of this appendix.
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General Discussion

The motion of a highly rarefied plasma consisting of ions, electrous,
and neutral particles is governed by a set of Bolizmann species equations
coupled by the overall electric field and the ''colligion" interactiocs. These

can be written schematically as follows:

o1, af, zieﬁ at,
_é-‘i:_—-l_?o-_a_?_—-{- Mi °—3V:Ci lzloonN
1-1
-
Jf afe eE of

The overall electric field E is derived from the smoothed charge
density and the ''collision' terms C contain all the fluctuation centributions.
In this paper the plasma will be assumed to be so rarefied that the fluctuation
terms are unimportant. This condition is only realistic in the immediate
neighborhood of the body and the effects over large distances must be intro-
duced by the boundary conditions. Thus the problem degenerates to the
solution of a set of Landau-Vlasov equations coupled by the electric field.
Notice that for the neutral particles, where Zi = ¢, the equations for these
particles are uncoupled from those of the other species when collisions are
neglected. Thus the usual free molecular solutions hold for these particles.

The formal solution to the Landau-Vlasov equations is well-known
and may be stated verbally as follows: The distribution function for any
species in a collision free plasma is a constant along the trace of the particle
path in the phase space. However, this is of little value in the general case
because the electric field depends upon the distribution function and thus
the particle traces are unknown. This is not a problem in all cases as

(5)

is pointed out by Bernstein, et al. For special cases where planar,
cylindrical, and spherical symmetry exists these conditions may be written
in terms of the momentum, and energies of the particles. A more detailed
discussion of this phencomena will be given later. The problem now is to
demonstrate that the general case may be approximated accurately with a
simple one dimensional model which can be evaluated in general without

recourse to exact particle tracing.

#Also called Boltzmann-Vlasov equatiors
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Aside from the details of the basic equations the boundary conditions
must be specified. In this paper we will be considering metallic bodies
which act to recombine all charged particles which reach the surface. This
imposes a restriction on the energy of the particles being used. If the im-
pact energy is very high one must then consider the reflection of particles
and foreign particles which are sputtered from the surface. However, this
doesn't appear to be a problem for the particle energies encountered within
the ionosphere. Thus it will be assumed that all particles impinging on the
surface are reflected as neutral particles. Secondly, a condition must be
imposed on the distribution function at the edge of the sheath. Here one
must in essence take the '"collision' phenomena into account. This is most
simply taken care of by assuming that the distribution function is maxwellian
at infinity. One will notice that this condition is not satisfied by the Landau-
Vlasov equation, but, as pointed out by Yoshihara(G), it is a physically realistic
condition.

Consider 2 large body which may be characterized by a length R. For
this discussion let the body be spheric?%)and the length R be the radius. It

has been shown by Jastrow and Pearse' 'that near the stagnation point the

€
sheath has a thickness of the order,/-2 K_'I(‘)_ A D for a large body where
e

R>» )Do This value proves to be valid over much of the forward surface of

the sphere. Now extending this order of magnitude analysis one may give
eéo
the electric field the value éo/ -2 EK—Te >\D within the sheath.

Now one may use the information given above to compute the region

(1)

of influence that a boundary point' ™’ exerts within the sheath. This is
illustrated in figure 1-1. Notice that the region of influence is actually a
convenient fiction as there is really no sharp boundary. However, it is
possible to define two limiting velocities which will give a definite region
for practical consideration. These velocities represent the extreme
deviations for particles with a random velocity equal to the mean thermal

speed. These velocities are:

g ->
Vl =u_ i+ (uoo + CM)J
X Y
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and
Vo=u_ i+ ( c )7
Vg =up trtuy, - Cppll
X y

A particle entering the sheath with either of these velocities will strike the
body in a time

24 1
at= = = [,/w 1 - 1} 1-2

X
where ed
_Z O
i KT
¥ = Wi .
o
p'e

The region of influence is defined by two lengths y and A y given below.

2
—_— 2/— M
?\D Zi 0

7 -]

y

1-3

S -2 [ [T -]

Thus the criterion that the sheath be a local phenomena which is essentially

one dimensional in that y/R and ay/R are very small. This becomes the
criteria that

M

(00)
Y 1
T [”” 'I:ITRTTDT <

and 1-4

e 7T |y <<

These conditions are subject to the sheath being approximately thick-

ness given above. This requirement is essentially that the ion and electron
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number densities be very close to the ambient at the distance L from the

surface. These conditions are satisfied if

erfc (Mooy) <1

and 1-5

ed

0
BT >>1
e

These criteria are conditions on the ion and electron densities at the
edge of the sheath. These will be discussed in more detail in a later section.
Hence in review one may state that the sheath is essentially a local one-

dimensional phenomena when the following criteria are satisfied.

i (1 1 1
< , <<
iTaa . RIAL
1-6

o
erfc (MOOX) (<1, _K_Té_ >>1

One-dimensional Sheath Computation

The previous discussion has shown that near the stagnation point of
a large metallic body moving through a highly rarefied plasma the sheath is
nearly one dimensional. Thus one may proceed to solve the problem of a
one-dimensional sheath and then apply it locally to the general body subject
to the condition (1-6) outlined above.

One proceeds by first determining the distribution function for a
particle in a one-dimensional electrostatic potential field where no metallic
boundaries exist. The potential field is assumed to drop to zero when

x -~ o. The distribution function for the jth species at infinity is given as,

8. 3/2 8 [(umum)z N <V'Voo)2 N Wz]

- J J -
fj(oo,x‘/*) noo]., = e 1-7
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However due to the planar nature of the electrostatic field one may charac-

terize the particle motions by three parameters:

W= W 1-8
m. 2
—j)—u +Zje¢5=E

However one knows that at any point x the distribution function is the same as
it is at infinity for a given particle, but that the particle has changed its
position in the velocity space. This change is known as a function of the

potential field and thus the distribution function is

eplx)
8. \*2 [(i /uz +22, " - u_)?
fj(qS, \—/’>) =n_ ——77;1-— e J | 1-9

J

t v -y )P w - woo)2]

Where the + is for particles from -o, and - is for particles from +co.

One now introduces the planar metallic surface at x = 0 and imposes
the recombination criterion at this surface. For negatively charged bodies
the distribution becomes truncated and takes the form given below for

positive and negatively charged particles.

A) Positively charged particles (Z.> 0)

/ >s 2z eé(x)

2

(ﬁs Vgn ‘—7——-
1-10

+ (v - voo)2 +(w - WCO)Z]

-2eZ.H(x)
for ~oo < u < =~\/——J———
m

=0 otherwise,
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B) Negatively charged particles (Zj < 0)

B \3/2 -8 [(-/u2+2z.£%(3‘l-um)2
(6D -ng | L) e J

1-11
+ {v - VOO)2 +(w - Wm)z]

sel. )
for ~co ¢ u €+ '——'—Lm (éO - é(X))

= 0 otherwise.

At this point it is obvious that the formulation is not complete as the potential
field is yet unspecified. This problem is solved by taking the density mo-
ments of these distribution functions and satisfying the compatibility condition

that they satisfy the Poisson equation for the potential field.

qu N f0)
d _ - — - _
13- 3 Z z J £ (g, V) AV 1-12

Nondimensionalizing by the mean speeds of the particle, the debye
length, and the thermal energy yields the following set of equations that

must be solved for ¢ as a function as x.

N
a%g! "

= - E Z.n, j 1-13
dx' 2 Iy

0.
j=1 noo

e
<u2+Z¢S' >
e

where

(Zj 0) 1-14
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Jud+ zgt - M ;
- +‘_ I -
(00] u 3% mX.
f e du I (z,¢0 1-15

n' = L
I
TZ (p1 - §
/ J“Soj 81)
where
e :
b - ng ) = ¢ (Te/T))
x! = X/AD nJ‘. = nj/nooj 1-16
MooX " Vo / Booj
]

For electrons the solution becomes rather simple as MX { {1, hence one may
e

neglect it in the integral for the density. Thus,

¢|
nl = 62 (1+ert /¢' - 4!) 1-17

However one observes that as x—m n'e should tend to one, but this condition

is not satisfied if p—>0. Thus it is necessary that a condition be placed on

qS'o such that this is realized. This condition is that

erfc ( ~q$o)<<1 1-18

which was one of the conditions introduced initially in (6).

The equations 1-13, 1-14 and 1-15 are highly nonlinear and thus
not readily amenable to closed form solution. This is not a great handicap
in many cases for there exists an approximate similarity which is valid as
long as there are no negative ions. That is the equations are independent
of the surface potential in that case and the only effect of changing this
potential is to displace the sheath outward or inward. This will become
clear as the solution is presented below. We shall however simplify the
computations in this brief paper by considering only a two component plasma
consisting of singly ionized positive ions and electrons with a common
temperature. Under this condition the problem becomes easily amenable

to numerical solution. This is stated formally below.
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A. Mathematical formulation

(0 0]
- u?+ p' - M )2
e du X 1-19

I
# = e - —
dx' ol e

B. Boundary Condition

Here one has some latitude in choosing the boundary conditions.
A very general solution may be obtained by first taking an asymptotic
solution for small ¢ then extending this to large values of | b I numer-
ically.

For large distances from the body where ¢ becomes small (1-19)

may be linearized to yield

9 erfc Moo
d¢' _ X_ 14 1-20
dx'? 2

The solution to this equation for convergence at x—»+ o is

5= B %! erfc Moo
=¢'(o)e © - _ = 1-21

b _gi(o)e™®

dx'

One notices here that the final condition of the criteria (1-6) is dem-
onstrated in (1-21). That is if the sheath is to have an effective finite size

then erfc (MOo ) must be very much less than one.
X

Thus it is obvious from equation (1-21) that the boundary condition
need not be given at the body surface. Rather they may be chosen at a point
within the sheath where the asymptotic solution is valid, then the computa-
tion may be continued backward into the sheath to any desired qSo'° When
this is carried out the result will be valid for any «z% and will only yield a
shifting of the profile as éé) is changed.

A numerical solution of equation (1-19) has been completed for

various normal mach numbers, Moo and is presented in figure (1-2). The
X
reference distance, x = 0, was determined by the surface potential. Figure 1-2



"SYIGWNN HOVW TVWHON SNOIYVA 304 IONVISIA 'SATVIIN3LOd J11V1S0¥10T1 2-1 B

a
X /X
Ol 6 8 L 9 S 14 € 2 _ 0

59

//
/
/
Y|
avy

/
2L
b2

»

oNoYoNoXeo
— a6
8
=

0¢

o¢



%)y

06 ="n 00¢ = g
$31009 T¥I1¥ANTIAD ANV TYI1¥IHAS ¥04 SINIT IVIINILOd 1nD3I 40 101d ¥NOINOD €1 B
S334930 ¢
0L 09 0S o  o¢ 02 ol 0
og o
82
¢N|®|N\\\|\\H\I\|l 5
R —t———
—
P
d \ m .
ol
8 \ .
w lllllllll o — — 1' an—— cam— | — — —
9 v \ A - \ O_
Y o - N
c=ge| s ¢ 20°=¢p 3903 HLVIHS
/ A
Pl
“W
>/

a
X/4V



bl

shows a potential profile which has been shifted corresponding to.a surface

potential QSZ) = 30 and normal mach numbers Moo from 1 to 5.
X

The results of this study were then applied to the sheath surrounding
the stagnation point of a large spherical body. (Note: These are identical
to the results for the corresponding cylinder.) These data are presented
infigure 1-3ascontour plots of the electrostatic potential surface. It is inter-
esting to notice that these results indicate the validity of the criteria obtained
in the order of magnitude analysis. The region near the stagnation point does
appear to change very slowly with distance along the sphere. Also the diver-
gence near 80° indicates two things. First, the one-dimensional solution is

breaking down, however, this is predicted by the criteria (1-6) as the M =
X

1.0. Secondly, the sheath is thickening as is required in order to merge into
the wake. This of course is expected and one would not expect the results in
this region to be of quantitative value. However, one observes that the entire
sheath forward of about 70° is predicted by the theory.

Conclusion
The theory discussed above is able to predict the sheath surrounding
a body of large curvature over most of its forward face. The limits of

validity on the theory have been shown to be

M(D .
®7§—4<1 , W <1

erfc (MOO Y<K, KTO >> 1.
y e

Thus the present theory is a valuable tool when applied to satellite vehicles
carrying instrumentation which is affected by the local plasma. The results
of the theory yield the distribution function, the electrostatic potential, the
charge density and other moments of the distribution function at any point in
the sheath. The numerical computations given herein have only been carried
out for the potential field. This was done only to prove the validity of the
method, however, the extension to other quantities can be carried out very

easily using numerical methods.
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Symbols

Mean particle speed

Electron charge

Electric field

Distribution function

Boltzmann constant Y ‘60

Approximate sheath thickness | g AD
e

Electron mass

Ion mass

Normal Mach number u_ /C
X

M

Tangential Mach number uooy/ Cut

Number density

Radius of curvature of body

Time

Time for a particle to traverse the sheath
Temperature

Mean velocity of fluid at infinity

Particle speed

Distance normal to the body

Distance along the body

See equaticn (1-3)

See equation (1-3)

Number of electrons stripped from an ion
1/Cy2

1
Debye length, (£ KT [n_ e?)?
e

Electrostatic potential

Super- and Subscripts
Nondimensicnal quantity
Condition at body surface
Condition at infinity
Property of jf‘h species

Property of electron
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Appendix II

On the Potential Field Surrounding a Large Metallic Body
Moving Subsonically through a Rarefied Plasma

(Contributed by Paul B. Hays and V. C. Liu)



Abstract

The interactions between a highly rarefied plasma and
a moving metallic body are investigated from the kinetic point
of view., The present investigation considers cases where the
free stream mach number is less than 1.0 and the body radius
of curvature is very much greater than the debye length. Under
these conditions the sheath may be separated into two regions,
an inner nonlinear region, and an outer "linear' region. The
inner regicn is treated by a one-dimensional nonlinear theory.
The outer region is treated by using a perturbation on the
"free molecular' solution for neutral particles. These two
solutions are joined to form the complete sheath surrounding
the body. The results of the theory are then illustrated with

an example of a metallic sphere moving with mach number 0. 2.
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Introduction

The interest in electrostatic interacticns within a plasma has increased
substantially in the past decade. This increase has no coubt been spurred on
by our ability to place measuring instruments in regions of the atmosphere
where these interactions are important. In general, irteractions of this type
are caused by two factors. First, the instrument or irstrument platform may
have an electrostatic potential different from the ambient plasma. This causes
particles with charges of one sign to be atiracted to the body, and of the other
sign to be repelled. In the steady state this results in the charge separation
and currents associated with the sheath. Secondly, the existence of a solid
surface induces a distortion in the distribution functions of the various types
of particles. This distortion is dependent upon the character of the particles
under consideration and thus will cause charge separation and currents.

These properties of the plasma are of great interest in that they may be used
to determine the character of the ambient plasmsa from the currents and
other properties measured in an artificially disturbed region. Thus in
order to take advantage of these properties and to cancel spurious effects it
is essential that a sound theoretical foundation be estaklished for these
phenomena. Unfortunately the mathematical representations of these phen-
omena are highly nonlinear and not readily emenable to solution.

Recently a number of papers have been published which investigate
1, 2,3, 4#These

investigations have mostly increased our understanding of the basic physics

these problems using various perturbation techniques.

underlying these interactions. However, most of these studies have been
directed toward the details of the wakes behind infinitesimal point charges.
This yields the perturbations in the field due to the scattering by the body
as a potential well, however the effects of the body surface are absent.

The metallic surface acts as a third body to recombine the charged particles
which strike it. Hence the distribution functions for the icns are vastly
modified near the surface and this can be the deminant disturbance in many
cases. Thus it is necessary to consider the extreme where the conversion
of ions and electrons to neutrals at the body surface is the dominant effect.
S. Rand3 has considered such a case in his solution for the large disc,
however his solution must be considered carefully due to the breakdown

of the assumption of linearity in the wake region near the body. His method

#

Refer  to the numbers of References listed at end of this appendix.
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also suffers in that the charge distribution on the body must be known
a priori, however thig should in general result from the analysis. This
represents one of the difficulties inherent in the consideration of large
metailic bodies. Here the surface of the body is an equipotential surface
and one cannot predict the surface charge distribution a priori.

The present analysis will attempt to circumvent these problems by
using a perturbation technique based upon the distribution function of a
neutral particle as a zeroth iterate. Secondly, a rather general solution for
the Poissonr equation will be derived under the condition that the electrons
are in thermodynamic equilibrium and that the body surface is an equi-
potential surface. This solution for the electrostatic potential will be subject
to the condition that ed)/KTe <<1 (i.e. that the electron density may be
approximated by a linear term) and the body having small curvature. These
conditions appear to be rather restrictive, but they will allow qualitative
solutions for arbitrarily shaped bodies under various conditions. Finally

this solution for regions where —I%%— ¢ <1 wili be supplemented with an inner

irmen solution which will hold in those regions near the body where % 1l
e

The ability of these two solutions to be united to form the entire flow field
about the body will be shown to depend upon the free stream mach number

being subsonic.

General Considerations

When a large conducting body moves through a highly rarefied plasma
it acts primarily as a sink for ionized particles. That is, it causes all
charged particles which impinge upon its surface to yield their charge and
be rejected as neutral particles., The result of this recombination is that
the ion and electron distribution functions must be discontinuous in the
velocity space. This is, of course, obvious if one considers the analogous
case for neutral particles which are unaffected by an electrostatic field.

In this extreme, neglecting the reflection of particles from the body, the
distribution function is equal to the ambient distribution except in those
regions of the velocity space where a particle would have to pass through
the body in order to reach the point being considered. Those velocities
where a particle would pass just tangent to the body define the discontinuity.

On one side of this surface in velocity space the distribution is the ambient,



on the other it is zero. The mechanism is identical in the case of charged
particles except that the ambient distribution is distorted due to the curved
particle trajectories and the boundaries of the discontinuity are twisted due
to this same effect. Thus one must initially face the fact that simple pertur-
bations on the ambient distribution function cannot yield useful results.

It appears after this brief introduction that a rigorous solution for
the distribution functions in the presence of a metallic body presents quite
a formidable task. However, it is reasonable to consider one effect to be
dominant and carry the others as perturbations. This has been done by Kraus
and Watsonl in their discussion of the wake behind a charged body. In their
solution they entirely neglected the effect of the recombination of ions at the
body surface and considered only the distortions due to the potential field.

We shall approach the problem from the other extreme where the body is
very large and consequently the recombination is dominant. However, it

will be necessary to consider the distortions of the distribution function by the
potential field at least as a perturbation in this case.

In order to clarify the succeeding discussion we shall define the re-
striction that we are going to use in the following study. First, in order that
the recombination effect be the main effect, the body must have a characteristic
dimension very much larger than the debye length. Secondly, the potential
field will be treated as a perturbation quantity. That is, at every point in
the field the potential energy must be very much less than the average kinetic

energy of the ions. These conditions become the following relations:

R/Ap M1 2-1
o
————IgTe <1 2-2

Here R is the characteristic length of the body and ¢ is the electrostatic
potential at any point in the field. Condition 2 will require more careful
discussion later in this analysis. The reason for this is that the potential

is not an independent parameter, but results from the analysis. Thus
placing a restriction upon this parameter will restrict the number of physical

problems which can be considered.



69

The final assumption that we shall make is that the velocity of the
body is very much lower than the mean electron speed. This is actually more
of a statement of fact than an assumption due to the extiremely high electron
thermal speeds. This assumption allows one to use the Boltzmann distribution
for the electrons if the surface of the body has a highly negative potential

ed
{i.e. — mK_’_?‘_ > 1). This is true only to the extent that the effects of the
e

body are only significant {for electrons with very large velocity. These
electrons, however, do not effect the density moment significantly. The major
difficulty associated with this simplification is that it violates the criterion that

#

¢<1. In order to incorporate this simplification we will consider the

KT
e
possibility of separating this nonlinear region from the major region of the
field where % {1, It is always possible tc do this formally, however,
e

for this separation to be of practical value two conditions must be satisfied.
Firsu the "inner" region must be thin. Secondly, no particles are reflected
from the inrer region into the exterior region. If these conditions are true
ther the inner region has the nature of a boundary layer in that the exterior
solution may be obtained without knowledge of the details of the inner solution.
The criterion that the inner region be thin is needed so that one may
specify the general shape of the interface without detailed knowledge of the
inner sclution, The thinness criterion is also required in order to make the
inner solution be a one-dimensional effect. If the inner solution were not
nearly one dimensgional than the problem would still be beyond our present
methods of analysis. Secondly, the criterion that very few particles be re-
flected from the inner region is required in order to specify the boundary
condition on the distribution function at the interface. If a large number of
particles were reflected, thenthis boundary condition would require a detailed
knowledge of the trajectories within the inner region. Here again the bene-
fit of the separation would be lost. If both of these conditions are satisfied
then one may proceed to study the inner and exterior region separately.
In general, one will specify the interface and solve both the inner and ex-
terior fields from the information given on this surface. This information
is that the distribution function is zero for all velocities such that _X?_ﬁ' > 0,

(i.e., ?i a unit normal vector at the interface) and that the interface potential



is a constant. The constant value for the interface potential ig unspecified
initially and will be determined by the exterior solution.

At this point in our development much of what has been said is in the
nature of speculation; however, conceptually the argument seems plausible.
The final reasonability lies in the results of the theoretical discussion to
follow. If the results compare favorably then we have outlined a realistic
approach to the physical problem. This will prove to be true with the
qualification that the free stream mach number mugt be small.

In review we may outline our assumptions as follows:

1. The metallic body being considered is very much larger than
the debye length,

2. The sheath surrounding this body is divided into a outer sheath

ep

T
e

criterion is violated.

where ¢<1 and a thin inner transition sheath where this

3. The interface surface is specified a priori and the actual body

will be determined from the transitional solution.

The major restriction on this theory is that the inner sheath must be thin.
This will result in restrictions being placed upon the mach number of the

moving body.

Outer Sheath Solution

ep
KT, << L

Secondly, the plasma is extremely rarefied,thus the collision-like effects

In the outer sheath the fundamental agssumption is that

may be neglected. Finally, the electron distribution may be approximated
by linearized Boltzmann distribution as discusgsed above. Thus the basic

relations used for this region for a singly ionized plasma may be given as-

T E %%

+ o o . =0 2=
at v oxX N QV 3

where

2-4
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Here the plasma consists of electrons and a single specieg of ionized particles
of mass Mi anc charge e. In order that these equations have a solution bound-

ary conditions must be applied at infinity and at the interface.

A. At infinity the potential tends to zero and the distribution tends to
a maxwellian. This form of the distribution function is determined by the

ambient plasma state and the body velocity.

B. On the interface we assume that é—-ygbo.. This condition will also
determine the outer boundary condition on the transitional solution. Secondly,
the distribution function will be zero for all particles entering the outer region.

That is no ions are allowed to be refiected within the transitional region.

These conditions along with equations 2-3 and 2-4 completely determine
the external sheath if the interface position is specified initially. The solution
of this set is still formidable in its present form. However, this is not final
since we have not used the fact that the potential field is small. In order to
use this information we shall consider expanding the distribution function in
terms of some characteristic potential value. It is reasonable to do this if
the distribution function is a weak function of the potential field. This is
eventually an ad hoc approach which is used to show that equations 2-3 and
2-4 may be replaced by a hierarchy of simplified perturbation equations.

Thus we shall assume that the distribution function may be written as

(o) (1)

f=f"7"+Nf""+N f(z) .o 2-5

ed

(0]

where N = ®T In this case we have chosen the characteristic potential
e

as the interface potential, however, this procedure is valid for any potential
which characterizes a given problem. Now in order to simplify the analysis

we nondimensionalize the equation using the following parameters.

.ﬁ
oo 18 x! =% V= Vv
AD Mp C
% = _Lév__ o= f _—C:T_?:
D n
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where C is the mean particle speed, }‘D is the debye length, d)b is the inter-
face potential, and noois the ambient particle density.

Introducing 2-5 and 2-6 into equations 2-3 and 2-4 yields the equation:.:

()" | (1) 4 262, _ N 98 ©) 4 ne(D' 4 N262)
D" + Nt + N L) =N S —%;'(f T8 R N A

2-17

(00
Vi - = - o J- Z N avr - 1.0 b 2-8
j=0
b2

where

One notices here that ¢' is of order [1] and further if the dependence of f on
$ is small then all of the f(J)'s are of the same or of lower order than f(o)
Thus one may approximate 2-7 by the system of perturbation equations listed

below.

(o)

D" _
ot -0
pit)' a4 g5l 99
B T o ST

D' apr  prmV)
Dt’ 3¥ oV

We notice that the function ¢' i8 still depends upon all of the distribution
functions. However one observes from 2-8 that the highest order terms

in ¢ are retained if we keep only the first two terms, i.e.

P - gL { J © 4 Dy T

We may write this as

b7
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2 (& (& -1 f
A L )4 -
; Néﬁ

-
(1) dV

where

2-10

U)_ élc'é -
—
V!

72 f

Using these approximate relations the basic set of equations is modified

to the form:

pst0’

o =0 2-11a

1 PG) 1 l‘p) 1
Df(l)o ad , af(0) _ 20 ° Sf(o) 2o11b
Dt! X av aX oV

prt)’ Y a£tn-1)" 2 11c

Dt =t a?n a'v’

These equations still contain all of the essential features of the original
equations. The coupling between the distribution function and d is contained
in equation 2-11b. The basic equations are strikingly similar to the linear-
ized Landau-Vlasov equatlong%for a uniform plasma. The exception is that
the background distribution function is time and space dependent. i.e., From

equation 2-11la,

O sR-F, U, LR, W, v )=

F. M. 2-12

where L(}—&i“,‘i_/?'y t') is zero for particles which pass through the body and is one
otherwise. This solution is commonly called the free molecular solution. In
many cases if one is interested only in gross effects the cross coupling in
equation 2-11b may be neglected. This is equivalent to neglecting the potential
' compared to #.. To this order one may formally write the solution to the

distribution function as:

#Or Boltzmann-Vlasov equations.
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—»

t ! -> - —>
p T EE-Vt, ¥, 0+ N J’ HX - Vit -£), ¥, )E)LE, V', 1) 2-13
(o]

where
1 (O !
39" gf(o)

H' = —E Y
X AV

In terms of dimensional quantities this becomes,

t
= ~ ;v
&V 07 @R T, 0+ 2 j HE-V-5), V. £)a5 (L& V.0 2-15
i
(o)
where
(0)
as 5¢0)
H = . 2
IX * BV
and
(o)
2,09 ep’ _ e T 7 g-}' V
Vb g Tl | HX-VEV, 0) LIX V. 1)d 2-14
e o] A
\%

One observes here that the greatest single problem remaining is to evaluate
the potential field in terms of the density moment of f © . This is in general
the practical problem which will decide the general usefulness of the approxi-
mate solution obtained at this point. In the next section we shall develop a
series type solution to equation 2-14 for the potential in terms of an arbitrary

density variation.

Approximate solution for the potential field

The following section will be devoted to solving the Poissons equation
for the electrostatic field.

2" b e <An>
- KTe & ©°\ "o /n
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In general this equation cannot be solved analytically for an arbitrary ion
density function, however it will be shown that under certain condition a valid
approximation may be obtained without previous knowledge of the ion density.

In order to solve this equation the boundary conditions must be specified.

Boundary Conditions

For this problem the interface is at a constant potential é(s) = ¢)O.,
Secondly, the potential must tend to zero as the distance from the body tends

to infinity.

Greens Function Solution

The solution obtained here will be given for a large spherical interface,

(i.e. Ro>) KD)O This is done only for convenience and will be extended later

in the analysis. Now in order to proceed in the most general sense the equa-

tion for the potential is nondimensionalized as follows:

U - b = - %ln (r') 2-15

(0]

where
eém}

é':.___} x':__}_(.__
KTe AD

This equation may be solved formally in terms of the Greens function ¢ in

the following form,

1 I -16
- —Zi—-ﬂ:,— j&n (P dSi 2-16
S

where ¥ satisfies the adjoint homogeneous equation, *

See Reference 5.
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viy -y =0

with boundary conditions that Y—>0 as ¥—»om. However one observes that
one additional condition on ¥ is required because 8¢/8n is not known on
the interface. This condition is that ¥ = 0 on the interface.

The Greens function will now be developed satisfying the condition

stated above, i.e.;

Adjoint Homogeneous Equation

vz‘P-\P=0 2-17

Boundary Condition

a) ¥ =0 when Ir'l = a'
b) Y—0 as r'—m

c) and further that ¢ has the required singularity at the point P

in the field where a charge of magnitude 417" is located.

A transformation is made to spherical coordinates yielding the equation:

2
1 or'y 1 ) < _ Y=
i = T —3 35— (sin ® _%a )-¥=0 2-18

or! r'“sin 0

Note: Dependence upon azimuth angle is not included as the field is axially

symmetrical.
This equation is separable yielding the two equations:

2
(1 —/wz) .d_;Q_— 2/#%/% +nhnh+1)®=0 2-19
d

where SV = cos 0

and

1 2 r'R 1 _
R4 —g = [n+1] -1=0 2-20

where

Y=R @.
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Equation 2-19 is recognized immediately as Legendre's equation, hence,
®=P (wh 2-21
It can easily be shown that the solution to 2-20 is

_rﬂ
e -r!
=——7 Or rfle 2-22
r'n

Both of these solutions satisfy the boundary condition at infinity, however th
first is easier to work with. Thus choosing the first solution one has the

following general form for the function ¥ .

fo'e} T e—r" (r, W)
Y = E %h 1nn+l Pn(/W) * r r,,LU) 2-23
n=0

Here the series is used to satisfy the condition thaty = 0 when r = a and the
last term is the solution for a point charge shielded by electrons.

See the diagram below for an explanation of the variables.

A

All that is required now is to evaluate the coefficients under the condition
that ¥ = 0 when r = a.
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This condition is simply that

2 T (@)
Z Q, —mFT Pl * l;n—(;/u) =0 2-24

n=0

Multiplying through by Pm( /u)) and integrating with respect to _ww yield the final

relation for the coefficients.

+1 H(a| )

-(2m+1) a'™ /Y

Qm 5 —a 5 P (/ou) ——n—(—7j)f d/LU 2-25
e
-1
One must now evaluate the above integral. Let

I - R e_r”(al”W)P ()d 2-26
m f rla‘,/w) m M

-1

Now transform to coordinates ‘o' = r"(a,/w)., Then,

r‘ +a|
o] , 2

! 1
1 L -§
Im= ar f Pm 2a'r! © J g . 2-21
0

Again one must make some realistic assumption in order to evaluate this
integral. In the regions of the atmosphere being considered it is well known
that the debye length is small, hence for relatively large bodies of the order
of tens of centimeters a is a very large number. Thus ry + a is a very large
number and is called infinity here. Apply the transformation u =§’-ro +a-=
€ - 2, to 2-27 which yields:

_Z' )
Im’—_“fm.?_ f Pl - g °© )e ¥ du. 2-28
o
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Now the expansion for Pm(x) will be introduced.

m
1 [2 ] (-1) (2m-2)! m-2
P ;ﬁz Hm) (m-2y) X 2-29
')j:

where l:—%l—] denotes the integer n, such that n € _1%1__ $n+ 1. At this point

we make the following observation. Due to the extremely large value of 2aro

we may assume that

u2 + 2zl)u
—ggpr — << 1 2-30
o}
for the important interval in the integration. Then:
Ed
g @ 2 )
o}
~ e 1 (-1 (2m-2Y)! _m-2Y , 2 -u .
In = o S ™ YT m= I (w2 Y (¢~ gapr (@t 2zpulpe tdu
o} 2 = o}
Y=0
o}
2-31
_n_l_
A
o
_ € (- 1) (2m-2))! m-2
- a'rg § Y (m- ) (m-2Y))! Lo Tl (2 + Zz)

But for points near the body, which is all that one will find to be of interest,

the last term is negligible, thus one finds that

-z -z!
e © e ©
m a’ré) Pm(l) - a'rz) 2-32

Thus the coefficients Qm have been determined, i.e.

+1 -z'
2m + 1) ar ™ o)
Qp = - (Za'r' —a € 2-33
o e
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This yields the final form for the Greens function.

-r"(r, w) -(z) +r'-a’) m+1
w - € ’ _ e 2m+1l [ a' _
Y= r(r, w) a'ry &= 2 <—F—> P 2-34

Up to this stage the only assumption of major consequence is that (zo/az)(«le
This is a physically realistic assumption due to the extremely sharp damping
exerted by the electrons in the region of the test charge. This is in effect the
ability of the electrons to shield any local discontinuity from the rest of the
field. One may further assume that a/a+z = 1, allowing the above series to
be summed. This greatly simplifies the work of integration which must

succeed this development.

" W2, 02, 2
pe ' ) _o~(r'-a) e_/x‘ Ytz
r'lr,,w5 /x'2+y'2+ 7! 2
0
2-35
. \
. e X'2+y‘2+(z'—z;))2 ) e-z' o” X‘2+y'2+zé)2
2. 02 (1 2 / 2 2, 2
XU+ y' T+ (z zo) X'+ y oz

Here rectangular coordinates based at the surface of the sphere have been

introduced.
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Evaluation of the Potential

The next step is to evaluate the potential using the Green's function

developed above. The surface integral of % is easily evaluated yielding

the following form for «b(zo)

o AN,
qS‘(zo) = gﬂée Zo + ﬁ, 5§5n ! ydx'dy'dz’ 2-36
z >0 ioo

We note here that the only major assumption introduced thus far is that the
radius of curvature of the body is much larger than z'. This is equivalent to
assuming that the body appears as a plane isolating the half space z > 0.
This yields a valid solution for the potential about all bodies which have small
curvature. Thus the results developed from this point on will be valid for a
body of any shape which has a small curvature.

The final evaluation of the potential involves the weighted integral of
the density. However due to the sharp damping of the ¥ function one may

expand the density in a Taylor series about the point under consideration.

Eo %G*) K5y An) R e I GRS
! 02) 1

n n n n z' \ n o)
(0 o) oo o0 C (0]

2-37
AN
n 2 2
R A R O | T
QX' 1 ay' 00 v 82' ‘ 00/ |,
[¢) (o] N 0
+ .

This series has been truncated with the quadratic terms for simplicity,
however, it can be carried to any degree of accuracy required. These inte-
grals are tedious, but elementary, thus only the results will be given. To

terms quadratic in x, y, and z the results are given below.
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*Z' _Zl
= O o ___l_rl - o
VS'(ZO) o, e e (1-e 7)
'Zv
2-38
AN -z! 2 2 -z!
+ gaz' <n1> z'e ‘92 (‘;}n y 2 5 an {1-3/4z6e O]
cy . x! CQ ayv Co A
o] o)
’32 AN 9
nOo z' -z'o
+ — 1 - +1 je +
oz 2
!

This result yields a value for ¢' = qS'O at the interface and appears to have the
correct limit far from the body. This outer limits may be considered as
follows. If the potential were taken such that electrical neutrality existed
then,

¢,(0)

= an./n. 2-39
i’

)

€0}

However the next iterate would be that

a&n, Fay
1

&6(1)' =ang/n; + 9240 - %

L 2-40

n
n. n.
0 9] 1 1

00 00
But this exactly what the above solution yields far from the body. Note that
the next higher iterate would involve forth derivatives and hence it is
possible to neglect these in slowly varying density fields.
Note:

This lends some credibility to the possibility of

using an iterative solution to the nonlinear Poisson's

equation, i.e., in regions far from a metallic body

the nonlinear solution should approach

_ 2
$' = log (ni/ni )+ 1og(ni/ni ) o+
Q0 00}
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Review of Exterior Solution

We have constructed a theory for the exterior sheath surrounding a

large metallic body. This solution depends upon three main assumptions.

1. The curvature of the body is very small.

2. The sheath may be resolved into two sections,
an inner sheath, and an outer sheath.

3. The potential outside of the interface between

the two sheaths is small such thatleqS/ KTe\<< 1,

Under these conditions one obtains the approximate solution for the distribution

function in the oufer sheath.

t
f(X, V, 1) = 5KVt V, 0) + 15— J‘H(}E’-V(t-§),??’,§)¢§ L&, V1) 2-41
i
(0]
where 3?5(0) 5 — — g —
HX, ¥ 1) = Jf(X-Vt, v,_o})L( , V. 1) 9-49
oX IV
(0 _ ed, -Z/AD+ an (l-e-Z/AD)
KT KT -
’ Z

An
9 An
2 3 n 2 -z/A
tAp ¢ o [1 <-2—Z—2 +1 e D:‘ T
2z D

-
an 1 ff()'(’—?t, V. OLX, V 1)dV - n 2-44
n n 0.4]
(0.4] (0,0]
—
v
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This solution is complete in the exterior region if the interface is known
(i.e., if the interface is known then L(X, V, t) is known). The next problem
is to determine the interface shape in terms of the body shape, or the con-
verse problem. The next section will be devoted to obtaining an approximate

solution for inner sheath.

Inner Sheath Solution

The inner sheath depends upon the condition at the interface and the
body surface potential. If this region is thin as is required by our original
discussion then the inner solution is eventually one dimensional. There is an
"exact" solution for this problem if the condition at the interface are known.
Exact here refers to a solution under the assumption that there is no scattering
due to collision-like effects. This solution was discussed by the present author
in a previous paper6, thus only the results will be given here. The distribution
function for the electron still may be approximated by the Boltzmann distribu-

tion. The ions,however, have a distribution function given by,

}
e 2 2e - _
f(z, V, t) = £(0, u u, Vv, Jw + F’Eé(Z) WO). 2-45

where the subscript (o) refers to the interface. w is perpendicular to the

interface directed into the outer sheath. See diagram below.

Y
Outer Region - K

Inner Region

Interface
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The solution given here is a quasi-steady solution depending upon the

rate of change of this field being slow in a time period T- /_B-}\D = l/wpﬁ

(i. e., ion plasma frequency).

In order to obtain the condition at the interface one may neglect the
perturbation in the outer solution due to the potential in the first approxima-
tion. For a large body this distribution depends only upon the angle of the
local normal to the free stream velocity. For a maxwellian velocity distribu-

tion the approximate distribution at the interface is:

2 2 2
(Bm>3/2 e-Bml:(u-uo) + (v-vo) + (w- wo):'
ﬂd

--’
f(o, V,t) = n w {0 2-46
16,)
=0 w0
where

u =3 .d
o X le0)
- -

v =-1i 1
0 y le0)
- —

'W :—l -u
o z 00)

where TA*CD = velocity of the body.

Thus the ion distribution function within the inner sheath is given by

3/2 2.2 \ 2 2 2
o 7 b - %(Boo > e‘Ba)[(/W +-,;‘% (¢>-¢5§) - WO> +(v~vo) +(u-uo)]

2-47

for w ¢ -/%i——(é@-ﬁ)

- [ 2e _
=0 for w Y /——m— (bg - 0)
The ion density at any point is then given by

Q0 \
0 g e '(/B”WZW%Q 49 11,
n(Z,t) = n F e dw 2-48
2e
1/“5‘“’0'“5)
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and thus the potential in the inner sheath satisfies the equation:

v2¢=+_<?_n JKTg . 1 f e~</w,2+K?.,re(¢-¢)-Bu 9-49

where

and the sheath thickness is given by

AZ = z where ¢ = ¢Sb

The interface solution can be carried out very easily by numerical means,
however we shall consider a simple order of magnitude method such as

that used by Jastrow and Pearse7 for simplicity. Jastrow and Pearse assume
that within the nonlinear sheath the electron density is zero and the ion density

is equal to the density at the edge of the sheath. This yields a parabolic approxi-

mation to the sheath given by:

ed
n 2 IRT b
e oy (= + ¢ + ° 2-50
. 9696) T v
D

0
For small qSO and a-aT one may neglect these compared to ébody' Thus the

inner sheath thickness is of the order,

N T

The criterion that the inner sheath be thin is satisfied if

LZ 1 2-52
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or

1

(R7?‘—D) 2-52 a

If we neglect the potential field effects in the outer sheath one may compute

n. as follows:

)

n
) _
n, = — (1 +erf Boouo) 2-53

Therefore the criterion for thinness of the inner sheath is,

-4 eéb A

1 KT
< 1

ZR7)\D) 1 +erf (§ Z?wuoi K

2-54

where
- =
u

u =i -
o #

The worst case occurs where uo = —uOO and here the criterion becomes:

-4 equ
KT
erfc (ff%—u )7 < 2-55
® 0" R p)?

For example if ep, /KT = 10 and R/ = 100 then
p b e D

(B, <<1.50

Thus one observes that in this case the two sheath separation can only be
valid for subsonic flows. The exact criterion in each case depends strongly

upon the body size and the surface potential.
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Computation of the Complete Sheath

At this point the details of the analysis are essentially finished, however
the means by which these results are combined to yield the complete sheath
must yet be examined. Before we consider this task it might be well to dis-
cuss this process from a more basic viewpoint. First let us consider the

basic relations for the potential field.

P = e - n;/n_ 2-56

For large bodies the major contribution to this equation will be the term:

2
a9 ~ ¢ -
—Er—z——e ‘ni/nw 2-57

if ni/nwis a weak function of 8. From this approximation we note that if
ni/nwincreases nonatomically from the body there can be only one inflection
point in qS.‘ That is there are no isolated bumps in the potential field. In our
case this means that there can be no maximum in the exterior potential field.
For if these were to occur it would require that the interface potential would
be at a higher potential then that in the exterior field. However, we know
that the interface potential satisfies the condition that eqbp,/KTe 2 <1 and the
body satisfies the condition eQSb/K’I‘e»l. Thus there would be at least two
inflection points in the potential field. Hence the interface potential must

be less than or equal to the lowest possible potential in the exterior solution.

This requirement is that @ ¢/ 9 z at the interface is always positive.

Differentiating equation 2-38 by z and dropping the quadratic terms yields

the criterion that,

e(b"‘ ni_nco P 1Qi_noo
A - p + - -
KT N n Jdz (=) - 2-58
e W e o)

at any point on the interface. Neglecting the derivative terms we find that the
worst case occurs when n,” 0 is a maximum which corresponds to the wake.

For a spherical interface they may be replaced by the requirement that,
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ed,
—KT; < ‘% (1 + erf/_B;um) o 2'59

Hence for our criterion eg[)a/KTe {<1 to be even approximately accurate the
mach number must be small. One should not be unduly alarmed by the
apparent difficulty even if the criterion is not completely satisfied in the
wake. The reason for this is that the region where the exterior solution is
in error will be small and does not have a large effect on the rest of the field.
Thus one may choose any value for the interface potential consistent with the
above criterion. Any criterion will lead to some small errors in the immediate
vicinity of the interface, however, the main results will be valid throughout
the field.

Using this information we shall outline the method of solution. For
the simplest cases one chooses the shape for the interface initially. This
can be done by taking the body shape and correcting it for the inner sheath

by using the approximate formula 2-51 for the displacement distance.

-4 eéb
az_ o | "Te 2-60
A e
D erfc (/Bo.o"i;uoo)

Thus for a spherical body the interface would take the shape,

-4 e(bb
)\ KTe
r, = +a., 2-61
I D
1+ erf (VBOOUOO cos 0)

However in many cases it is easier to start with a simple interface shape and
compute the body shape after exterior solution is complete.

In order to illustrate the method and to indicate the region in which
the linear approximation breaks down the zeroth iteration has been com-
pleted for an interface which has a diameter of 40 debye lengths. The sur-
face of the interface was kept at a potential engo/KTe = 0.3. The mach
number of the sphere was chosen to be 0.2. The free molecular distribution

function for the sphere is given below.
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. - 1
“ 3/2 2 2 2
/Baoi Boi [(u+u00) +v +W~J!
fF.M. = nw\ 7 e
s 2-62
vXxr
for 2 daandv - r »0
TxT pa —>
—
—Ofor———[7|— aOI‘V'l"<0
where
v = particle velocity
= radius vector from center of sphere to the point at which
the distribution function is required
a = radius of sphere

This distribution function integrates to yield the free molecular density
given below

2-63

o]
2 .
-C : . . / ©
S Se 7 J (2 /_B;iuoosm 9¢) - erf E—r%—:Jr/E;@iuoo cos 9> d¢
0

s

> >
-1 r-uoo
where 6 = cos

ru
(08

oy = sin -l(a/r)
JO(iX) = Bessel function of imagining argument.

The final integral was computed numerically and used to compute the zeroth
order potential field surrounding the sphere.
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The exterior field ground the spherical interface moving with Moo =
0.2 is plotted in figurell -1 as contour lines of the potential. The approximate
inner sheath distance derived from equation 2-60 has been used to indicate the
actual body shape which would produce this interface and exterior field.
Here we have chosen the body surface potential eéb/KTe = -5.0. Notice
that the case we have chosen violates the condition that the inner sheath is
thin, however this was done purposely in order to show these regions clearly.
In this case the inner sheath has a thickness of about 4?\D and the external
field has characteristic dimensions of the order of the body size. Thus the
external field should approximate the actual external field of the given body
quite well. The area very close to the interface which is indicated by the
cross hatching will not accurately depict the real potential field, but this is
only a small portion of the total field. The details of the inner solution have
not been completed in this case.

From the graphical presentation of the solution given in figurell-1
the major features of the problem become clear. The exterior sheath is
distorted as is expected due to the motion of the body. One also observes
that the exterior sheath is very large due to the effects of the recombination
of ions at the body surface. Secondly, the inner sheath represents a small
portion of the entire sheath. Here we have used a case where this is marginal,
however, in general the region covered by the external solution is propor-
tional to the body size and the inner sheath is of constant thickness. Thus
for a large body of the order of a meter in diameter the inner sheath would
represent a very small portion of the field in most regions of the earth's

atmosphere.

Conclusion

An approximate theory has been developed to compute the electro-
static sheath surrounding a large metallic body moving subsonically

through a rarefied plasma. This theory is based upon the assumption that:

1. The body radius of curvature is very much larger than
the debye length,
2. The surface potential satisfies the condition egbb/KTe Wi,

3. The mach number of the body, /B;ouoo’ is very much less
than 1. 0.
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Under these conditions it has been demonstrated that the sheath may be sub-
divided into inner and outer regions, where the outer region is treated by a
linear perturbation theory, and the inner region by a one-dimensional non-
linear theory. This method is similar to the boundary layer theory in con-
tinuum dynamics. Our theory is approximate, but it does yield the qualitative
features of the entire field surrounding a large body.

The main advantage of such a theory is not in its practical application,
but in the general insight which can be obtained from it. The preliminary re-
sults which have been obtained so far indicate that many of the limitations
present at this stage may be circumvented with further work. For example,
the errors found in the transition region between the inner and outer solutions
can be eliminated by introducing a more complex condition on the interface
potential field. Secondly the interior solution may be improved by considering
the effects of curvature in this region. Thus the methods and analysis pre-
sented in this review represent an intermediate stage in the development of

a unified theory, not the final result.
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Symbols

Radius of sphere

Most probable particle speed
Substantial derivative

Electric field

Dielectric constant of vacuum

Electron charge
Distribution function
See equation 2-13

Integral in equation 2-25

Boltzmann constant

Discontinuous function used in free molecular distribution
function.

fgu mach number
o'}

Mass of particle
number density

ed

]

T nondimensional interface potential
e

Legendre polynomial
Coefficient in Greens function expression

Radial eigen function and radius of curvature of body
Temperature

Body velocity

Particle velocity
Position vector
Distance from interface
1/c2

Debye length

Electrostatic potential
Greens function
Angular eigen function

cos 6
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Symbols (continued)

Super- and Subscripts

() Nondimensional quantity
( )(J) jth iterate
() Refers to body surface
() Refers to electrons
e
(); Refers to ions
), Refers to interface
() Refers to condition far from body.
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APPENDIX II1

ON THERMAL SKIN EFFECT

Contributed by
V. C. Liu and Y. S. Lim
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I. Introduction

A heat transfer problem of unusual interest involves a .
physical process such that a highly transient temperature and extremely
large thermal gradient are encountered within a thin layer at the surface
of a heat-conducting body. This is often called skin heating problem.

It occurs in the aerodynamic heating of the skin of a highly accelerated
sounding rocket, the explosive heating of a gun barrel and the combus-
tion chamber of a rocket engine.

This thermal skin problem, important as it is, has not always
been treated in comply with sufficient physical reality. For instance,
the heat flux input to the skin is often considered as proportional to the
tempe rature difference between the hot gas and the skin; the proportion-
ality constant used is the convective heat transfer coefficient. This
can be justified only for the heat convection process at a reasgnably
steady rate. It is well known that the convective heat transfer coefficient,
of aerodynamic origin, depends on the Reynolds number (Re) and the
free stream velocity,both of which vary rapidly with time under the
special heating conditions mentioned in the last paragraph.

The problem can be divided into two parts: (1) the study of the

rate of convective heat transfer across the '"boundary layer' formed
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at the skin of the body, (2) calculation of the temperature distribution
within the body in the immediate neighborhood of the exposed skin, The
present note treats the second part only; however, the boundary condition
related to the heat flux is made to accommodate a time -dependent function.
This is a new feature which distinguishes the present analysis from the
previous works.,

To illustrate the physical phenomenon of the thermal skin effect
we use a one-dimensional case with a simple time -dependent function for
the aerodynamic heat transfer coefficient. It should be noted that the
characteristic feature of the thermal skin effect is that the depth of pene-
tration of the heat flux into the wall in a characteristic time of interest is
often small in comparison with total thickness of the wall. This justifies
the rise of the following simplifications in the idealized model to be used:
Firstly, the wall may be considered as a semi-infinite solid bounded by
a plane surface; Secondly, all thermal gradients other than the one

normal to the wall can be considered as negligibly small.

II. Mathematical Formulation
The problem of determining the skin temperature of a one-
dimension boundary solid with surface conducting linearly varying with

time is described by the following equations:
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UGN (1)
ot o x*
V(x,0)=0  V (00,t) =0 (2)
V (o,t) = D(t) (3)
-Kga'z:h(t) E/g-(l)(t)] at x = 0 (4)
h(t) = Bt Vg (t) = At (5)
where V = temperature of the solid body

k = diffusivity
K = thermal conductivity
h(t) = convective heat transfer coefficient, a function of t
Vg = gas temperature of the free stream
For convenience, dimensionless quantities of the dependent and

independent variables are used., In this particular problem, the con-

version of dimensionless quantities is as follows:

V =—3 u u:——ﬁg
A a

p
o v
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X
Xe—3{ P = K/Ba2/3
h{t)
h(t) — gl(t) glt) = o 2/3
\%
Vg™ U O TE
where a = X it is checked that
BJkx '

LA S [T-l]
- (3 _ |

AaZ/3 = [V:l

K Kk L3

—773 :[—B ] ) [L]

2]

since k =
-1 -1 -1
K= QL T v -
- -1 -1 -2 =2 -1
h = QLZT v or B = [QL T v J

Substituting the dimensionless quantities into the original equations we

have the normalized equations:

A (1a)
ot 8¢

u(f,0)=0, u(ooT)=0 (2a)
u (0,T) = LF('[’) (3a)

ou .
- 5t = e [5,0 - p@] e

git)= T, w=7T (5a)
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III. Methods of Solving the Problems

The important point in this problem is that h is assumed to be
a linear function of t, i.e., h(t) = At, which is usually assumed to be
a constant in ordinary heat transfer problems.

The first step in solving this problem is to take the Laplace:
transform with respect tof. A nonhomogeneous linear differential
equation with variable coefficients is found for the dependent variable
_(P‘(s) (which is the Laplace transform of (P (t)). The solution of the
differential equation is then expressegd in a series form of asymptotic
expansion,

Then by taking the inverse transform it gives the expression
for the temperature at the boundary (skin temperature). From the
tempe rature at the boundary, one can calculate the temperature inside

the solid using the well known expression:

2

X
x ; edklt-h) ‘o
Vi(x,t) = L D) — 37z dA (
2ymk J (t _/\)3 2
(o]
XZ
or t 4 kM
X
V(x,t) = z\i—w—k— f Q(t'}t) £ A3 > dA (7)
(o]

IV. Analysis

g(r) =T u = T or [h(t)th, \4 (t)=At]
s 8 g
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From (la) the Laplace transform is

su(g,s) = ﬁM (A bar - denotes the transform) (8)

the solution of which is

iy AN
G(L,s) = c; e s + cze+ vs

With the boundary condition (2a), it is found that

N

£

u(g,s)=®(s)e

x-%
—_—
0
~—

Taking the Laplace transform for (4a):

L[— %]:L[Tt_t\{)w)J: ‘;23 +'05‘MS'L y L =0

ds
but
du 9 8 [m \ -INS
L [57} -- gprhen he- 57 (U"S)e I-
ﬂ:O o sj _
£=0
= 5 ) (s) (10)

since interchange of operations is permissible. Then a differential

equation is obtained:

' @(s)z =4
S

or W . 50 - 22

: —3 (11)

ds § S3

58‘3/2
With the integrating factor e 3 we have
2 3/2 1% A 2 3/2
e 3 ° LF(S) = -2 e 3 ds
| : g3
s
2 3/2

_ 2 S3/2. o ea"g‘s
so that 90 (s) =2 e 5 B — ds (12)
s
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3/2
Now consider s as real variable and let y=3s
2 1 1
33 2/3 373 .
s = (3) v : ds = (3) "y 3dy
1
® = 1 ®
-y 373 .1 2 -y
T y e - 8,23
L,V—Ze f 322(2) Y?dY=9(3) e 13 dy
)y
Y y
4
- § 2 1/3 Y -y -_3_-].
(}0— 9(3 e e y dy (13)
y

The integral is the incomplete Gamma function which can be
expressed in terms of a confluent hypergeometric series ¥ (a,c, y)

(see pp. 226, Bateman, Vol. 1).

1 1
8 2 =% - 71 2
f=21(37 e e (3. 5y = T3

O | oo

77
¥(3, 33 Y) (14)

For large value of y and s, ¥ can be expanded into series form

1 n 7 17 7 1
— 8 2% | & (1) () (C-=+1) _Imx Jon-1
CREY anT) 3n3 3 noyT w0/l 3 >J<15>
b n!
n=20,1,2 --- , Yt ® ﬂsee pp. 478 Bateman, Vol. l,j

Although this is a divergent series as n--—$o00, it is actually an approximate
solution for finite n and large value of y. This is the property of

asymptotic expansion, so:
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1 7
= 8 2- | (3t n) +1 1 T,
Y =533 > -y 77 (lotl) 1 -377,.
n=0 ["(3') [~ (1) n.
1 7 1
- % _i_z ~, ( l)n F__j___(;-'-n) -.3-~n +aoo
n=0 F(-g
-
i (n+1
where (1) = j':—_) = nl!.
n o [ ;
8 1 ’n n -'(__'_n) Z_—_n 1-311
- - —-3. 1! 3 - 3 - . sn e
P = 557 |2 D — (3 s"277 4
n=0 -
{ (3)
n r‘(7+n) 7 3n
£y 2 -n -
e T g
Ln=0 r3)
2 M, 7.10,13....(6m+7) 1
=|<7/2 -
S/ m:0 sz s3m+5
M, 7.10.13,...(6m +4) 1
+m:l jem -1 3m+7/2 tee | (16)

This solution is exactly the same as obtained from integration by

parts if we carry out the integration of equation (12).

Taking the inverse transform, we have,

3m+4
. 2* 52 M1 o7.10013...(6m+7) T
gy = ——— -
1.3.5 7 m=0 22 ™ (3m +4)!
5
3m+3 2
M, 7.10.13...(6m+4) 2° 17 p3mt3
+ o (17)
+§.— sz‘l
ool 1.3.5, .. (6bm+5)Jy™

In examining these two series in the above equation, we found that
even for M;—»m and M,__3ym, these two series are convergent for finite

value of T . This can be shown as follows:
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For the first series, we have:

um+l . (6m+10) (bm+13) _

lim —— = lim

=0

for finite t .

For the second series, we have:

_ um +1 . ((am+7)(6m\+10)?."L‘3
im —— = lim
m-—yco Um m—® (bm+7)(bm+9)(6m+11)

= 0 for finite T .

Therefore, as long as T is finite, the representation of an infinite

convergent series for the solution is valid. Then equation (17) becomes:

3m+4
) - 4 5/2 oo 1.10.13...(m+7) T
¢ 1.3.5(% P pm (3m+4) !
00 +4
7.10.13,..(6m+4) 2m 3m+=—
+ EEL — T 2 (18)
m=1 1.3.5 ... (bm+5) NP
We have for the first few terms:
4 5
2 5/2 1 11/2
Tm: T /-TT4+LMZV /
1.3.5\7 4. 1.3.5.7.9.11
7.10,13 7 7.10.13.16 . 26 17/2
- —— ’C + . ,t
22 71 1.3.5.7.9,11.13,15,17Jw
B ‘ 57
_ 7.10.13.16.19 th.10 +( 7.10.13.16.19.22 . 2 4 ).
24 101 1.3.5.7.9.11. 13,15, 17.19.21. 23y7

T2
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[F(fc) - 0,604‘(‘5/2 - 0.2915T* + 0.1212T 11/¢

17/2
o0.04513T7 + 00152 T

2
- 0.004765 T 10 + 0.001385 T>3/% 4. ...

For T in the range 0 - 1,3, the function L? (¥) is tabulated below:

T YT

Q 0
0.1 0.00189
0,3 0.02720
0.5 0.,00902
0.7 0,19020
1.0 0.39640
1.3 0.64970

This is plotted in Figure (IiI-1).

Iv. Conclusion and Discussion

An accurate knowledge of the temperature and the thermal
gradient at the surface of a body under a sudden and extreme heating is
very important in engineering design, These are pertinent informations
in deciding whether a certain structural member so involved will crack

or not under a thermal shock,
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The thermal demands on the material of the inner surfaces of
gun bores and combustion chambers, as well as the skin of a sounding
rocket, are very severe. It is known that the lifetime of gun barrels
depends on the surface temperature reached after a series of shots.
The ablation of rocket skin during flight is also a known fact,

All of these points the need for a precise determination of the
thermal skin phenomenon. In this note, we have improved the
accuracy of conventional heat conduction analysis by a successful use

of a time-dependent function for the convective heat transfer coefficient.

V. Reference
H. Bateman (Erd‘elyi, etc. ed, ), "Higher Transcendental

Functions, ' Volume I andII'.
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ON THE AERODYNAMIC DRAG OF SPHERE

Contributed by

V. C. Liu
( written as a scientific report for this project, Oct. 1961)



ON THE AERODYNAMIC DRAG OF SPHERE
BY
V. C. LIU

SUMMARY

The purpose of this report is to review and interpret the
present state of knowledge concerning sphere drag especially for
the case with rarefied gas media. Supersonic sphere drag at low
and intermediate Reynolds number has been of particular interest
to the upper air measurements and space vehicle re-entry studies.

In the report recent experimental measurements and re-
sults that have contributed to the understanding of rarefied gas dy-
namic effect on sphere drag are briefly described and interpreted.
Several contemporary theories fruitfully bearing on the issue are
also discussed.

On the basis of the present study, suggestions to improve

the falling sphere experiment of upper air measurement are made.
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(I) INTRODUCTION

The characteristic Symmetry and Simplicity in geometry
make the spherical body a favorite aerodynamic model for flow
studies as well as for sounding probe in upper air measurements
and ballistic range calibrations. In such experiments, the sphere
drag is invariably chosen as a characteristic aerodynamic parameter.
Recent developments in space research such as the determination of
atmospheric density from satellite observation and the decay of sat-
ellite orbits as well as the accurate prediction of the impact point
of vehicles that re-enter the atmosphere from orbital and space mis-
sions have added new significance to the problem of sphere drag.

Measurements of the sphere drag have been made by various
means over a wide range of Reynolds numbers and Mach numbers in
many countries. These results are not without significant disagree-
ments; some of these disagreements of early results, especially in
the measurements of sphere drags at high Reynolds numbers and low
subsonic speeds, are attributed to the effect of free stream turbulence,
among other factors (Goldstein 1938).

It appears that the first Systematic compilation of sphere
drag data was made by Goldstein (1938). The sphere drag data up to
that time were mostly for the flows at low subsonic speeds for which
the compressibility effect is insignificant. Goldstein's collection
covers a wide range of Reynolds number. His primary interest was
to establish the critical Reynolds number relative to the free stream

turbulence present in the measurements.
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During the forties and earlier fifties, interests in ballistic
problems brought forth extensive measurements on sphere drag with
high speed wind tunnels and ballistic ranges. A comprehensive comp-
ilation of sphere drag data covering a wider range of Mach numbers
than the earlier one was presented by May and Witt {1953) of the Naval
Ordinance Laboratory. The main objective in this collection was to
establish the Mach number effect on sphere drag and also to explore
the rarefied gas dynamic effect (i. e, the low Reynolds number effect)
with the fragmental and controversial data available then from the
earlier low density wind tunnel measurements (Kane 1951, Sherman 1951
and Jensen 1951). In the early days of low density experiments incom-
plete knowledge of the flow structure in the test section with resulting
uncertainties about the sphere wake, hence the base drag, made the
measured sphere drags in the low density wind tunnels doubtful in value.

The use of falling sphere method to measure the upper atmos-
pheric density (Liu 1950, Liu 1951, Bartman, Chaney, Jones and Liu 1956)
has introduced a new wrinkle to the importance of sphere drag. In such
experiment, accurate sphere drag coefficients at wide ranges of
Reynolds numbers and Mach numbers are one of the prerequisites. On
the other hand, precision-instrumented falling sphere experiments can
also serve as a free flight calibration of the sphere drag provided the
ambient density is known. The availability of such free flight drag of
falling sphere in the upper atmosphere becomes an invaluable asset as
independent check of the sphere drag obtained in laboratory tests. The
agreement of these results (Liu 1959) removes some of the doubts about
the accuracy of the sphere drag obtained in the laboratory tests.

It is obvious from the composite contour plot of sphere drag
coefficient against Mach number and Reynolds number (see Figure 2)
that the sphere drag corresponding to the intermediate Reynolds numbers

(l€Re<1000) and supersonic speeds still remains essentially unknown.



114

Experimental difficulties in obtaining the sphere drag in a rarefied
medium accounts for the lack of information in this transition flow
regime. From the viewpoint of the falling sphere experiment, the
sphere drag coefficient in question corresponds to the measurement
of ambient density at the approximate altitude region of 100 km which
happens to be an atmospheric layer of great geophysical interest.
From the aerodynamic standpoint experimental information on sphere
drag in the transition flow regime would be of utmost importance in
the analytical studies of the transition flows - an important missing
link in the science of fluid mechanics.

In the last few years extensive works have been done con-
cerning supersonic sphere drag at the intermediate Reynolds numbers,
particularly the recent measurements at the University of Toronto
which appears to have supplied the experimental knowledge that links,
in a limited sense, the known results of the free molecule flow theory
and of the continuum flow. The present report on the status of sphere
drag aims at clarifying the rarefied gas dynamic effect on the sphere
drag and also recommending some points of vital interest to the falling

sphere experiment on the basis of the recent studies.

(II) MEASUREMENTS OF SUPERSONIC SPHERE DRAG AT
INTERMEDIATE REYNOLDS NUMBERS

Recent experiments of interest are described as follows:
(a) Institute of Aerophysics, University of Toronto
(Sreekanth 1961 and Deleeuw 1961}, The measurements were made in
the UTIA Low Density Wind Tunnel which is the continuous, open cir-
cuit type with a vacuum pump drive designed to operate at Mach numbers

up to 5, over a static pressure range from 1l to 70 micron Hg. In the
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present experiment, an axially symmetric open jet nozzle designed to
give a Mach number of 2 at a static pressure of about 20 micron Hg. was
used in the sphere drag measurements. The force measurements were
made by a remote control beam-type balance. The mean free path of
the air in the test flow was 0. 049 inches and the model sizes were such
that Knudsen numbers in the range 0.1 to 0. 8 based on the diameter of
the sphere were covered.

The drag coefficient of the spheres as a function of Knudsen
number is plotted in Figure 1. The important finding in the experimental
results is that the free molecule flow and experiment will most likely
agree at Knudsen number only slightly larger than unity.

{(b) Jet Propulsion Laboratory, California Institute of
Technology (Wegener and Ashkenas 1961). The experiments were per-
formed in a low density supersonic wind tunnel with a uniquely designed
displacement technique for force measurements. The tunnel was designed
to have a continuous flow in a Mach number range of 3. 8 - 4. 3 for free
stream static pressures of 30-100 micron Hg.

The drag coefficient of the spheres as a function of Knudsen
number is shown in Figure 1.

(c) Rand (Masson, Morris and Bloxsom 1960). The
tests were conducted in a hotshot-type wind tunnel in which high-enthalpy
stagnation conditions were produced by the electrical discharge of a
bank of capacitors through electrodes into a stagnation chamber contain-
ing gas. The stagnation chamber was separated from a conical nozzle
by a frangible diaphragm which was burst by the high pressures gener-
ated in the stagnation chamber when the electrical charge was released.
The flow process in the test section consisted of a starting shock with

a series of trailing disturbances, followed by a period of steady flow.
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The starting shock was reflected from the end of the tank and returned
upstream, and the steady-flow period was terminated when the effects
of this reflected shock reached the test section. The time available for
testing in the steady flow amounts about 2-5 microseconds.

The Mach numbers and Reynolds numbers in the test section
cover the ranges 11-60 and 30-15, 000 respectively. The interesting
point of these measured results is that they cover practically the entire
range of the transition flow regime; at the continuum end, the data check
with the value (CD’,‘JO,QZ) predicted earlier by theory of sphere drag at
extreme speeds (Liu 1957), and at the opposite end the theoretical free
molecule value of CD%Z for spheres at hypersonic speeds also agrees
with the measured results. The measured results in this experiment
are preliminary in nature; much of the experimental uncertainties in-
volved need to be re-examined and evaluated. The drag coefficient vs.
free stream Knudsen number is also shown in Figure 1.

The above results of sphere drag have been plotted in Figure 2
as a function of Reynolds number and Mach number in constant drag
coefficient curves. It is noted that on the basis of the recent measured
sphere drag data the earlier contour CD (Liu 1959) has been revised

accordingly.

(III) THEORIES OF SPHERE DRAG

In spite of the geometric simplicity of a sphere the aerodynamic
theory of sphere drag has met with only very limited successs. There
is not a general theory of sphere drag that is uniformly valid over exten-
sive ranges of Mach number and Reynolds number. Among the special
theories there are the well-known Stokes theory and its extensions by
 Oseen (Schlichting 1955}, Millikan (1923) and Epstein (1924) which is applic-

able to the case of extremely low speeds and low Reynolds number. With



a sphere in an ultra-low density flows for which the free molecule hypoth-
esis is valid, the drag formula is known provided the momentum accommo-
dation coefficient for the surface interaction between the gas particles

and the solid wall is given. Qualified success in sphere drag theory has
been developed for the case of extremely high speed flows at high Reynolds
numbers.

The purpose of the following reviews of the contemporary theories
on supersonic sphere drag is to establish the pertinent parameters that
govern the mechanism of flow in question and to point out additional
measurements needed to improve the accuracy of the falling sphere exper-
iments.

(2) Free molecule theory of sphere drag. The character-
istics of the free- molecule flows is that the gas medium is sufficiently
rarefied so that the gaseous mean free path is everywhere much greater
than the sphere diameter, so that collisions between the molecules and’
the solid boundary dominate over intermolecular collisions. The neglect
of the intermolecular collision effects greatly simplifies the gas kinetic
treatment of the sphere drag. The result of calculation for sphere drag

assuming diffuse reflection is (Emmons 1958):

1
5
o e (- 2) (142 S2)+ 4 56 14 Swo- 1 erfg 4 2l (3”5",____)
Fo I\/Io 2: Sm W

w2 5300
if the oncoming molecules are re-emitted diffusely at a speed ratio SW
corresponding to some degree of accommodation to the wall conditions.
Note that the speed ratio S,, denotes the ratio between the mass velocity
and the most prcobable random velocity of the free stream.

(b) Drag of a sphere in an almost free-molecule flow. As
the ratio of the gaseous mean free path to the sphere diameter decreases,
the intermolecular collision effects that are neglected in the free-molecule

flow analysis assume more and more importance in determining the
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aerodynamic drag. In the case where such intermolecular collision
effects are still small but not negligible compared with the gas-boundary
collision effect, one may set up an almost-free-molecule hypothesis
that the probability of a reflected molecule colliding twice with the
incident molecules, before it is deflected away, is negligible compared
with the probability of its colliding only once. The single collision
effects are calculated on the basis of Maxwellian distribution for the
molecular velocities. It is further assumed that molecules are reflected
diffusely from the solid wall without preferred direction (Liu 1958, Liu
1959; Baker and Charwat 1958).

The application of the single collision theory to the calculation

of sphere drag leads to:

1

T —

C. = C -0.15Re(——Q-)2
D D :
F. M. Tw

Where Tw is the wall temperature; T the free stream temperature, while

CD is the sphere drag coefficient based on free-molecule flow theory.
F. M.

It is significant to note that the wall temperature of the sphere
should be measured (Liu 1951b) in experimental investigation and falling
sphere experiments in order to remove an uncertainity in sphere drag
determination.

(c) Theory of sphere drag at extreme speeds considering
real gas effects. The gas kinetic theory of sphere drag thus far discussed
does not take into account the effect of complex molecular structure which,
e. g., can lead to digsociation at high temperatures. In the case of a very
fast moving sphere in a continuous medium, one may introduce a simplified
shock model consisting of a nose shock following the exact contour of the
frontal half of the sphere and with the rear half of the sphere exposed to a

narrow vacuum half shell. The sphere pressure drag can be calculated
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with the use of the oblique shock relations with an equivalent isentropic
exponent Je to account for the chemical dissociation of the molecules

behind the shock wave {Liu 1957):

2 4 2

C. = + -+ 5
D y+l I+ Mg Teo MZ,

In the original derivation, Liu uses J’e = 1.15 for air whereas
Lampert (1961) recently suggests the use of Je = 1. 2 based on more
recent experimental results of dissociated gas mixtures at high temper-

atures.

(IV) DISCUSSIONS AND CONCLUSIONS

The task of presenting the sphere drag coefficient for the entire
range of Mach number and Reynolds number is indeed challenging and
would be rewarding considering the technical significance of the sphere
drag problem. Aerodynamically it means a complete solution of a flow
problem which so far has denied the best effort of the fluid dynamicists
even for the simplest object. No claim is made in this report as to the
fulfillment of this ambition; however, one sees clearly studies have been
made recently to clear some of the obstacles to the eventual success such
as the mild break through into the transition flow regime.

On the basis of the present study on sphere drag in a rarefied
gas, we found that measurement of the wall temperature of the sphere
drag is necessary in determining the sphere drag. This idea is worth
noting both in the experimental investigation of sphere drag and in the

falling sphere method of determining the upper atmospheric density.



SYMBOLS

- 1 2
o = Sphere drag force/ = £ V2 (rd2/4)
C = C_ based on free-molecule flow theory
D D
F. M. =
Soo = Free stream velocity V/most probable molecular
random speeds\/ 2R T,
SW = Veo! ZRTW
$ Vod
Re = Reynolds number VH
M, = Mach number VOO/JJ‘OORTOO
Too = Free stream temperature
Tw = Wall temperature
A = Equivalent isentropic exponent
Jo = Ratio of specific heat for the free stream
R = Gas constant
Kn = Knudsen number, gaseous mean free path/d

d = Sphere diameter
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Appendix V

AN EMPIRICAL THEORY OF SPHE RE DRAG IN TRANSITION FLOWS

Contributed by

V. C. Liu
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Calibrations of sphere drag made in wind tunnels, ballistic ranges, etc.,
have been very helpful to the geophysical measurements using the device of a
falling sphere. The aerodynamic drag coefficient (CD) as a function of the free
stream Mach number (M,) and Renolds number (Re,) has been the commonly accepted
scheme of presentation except perhaps in cases of extremely high Mach numbers
which are usually not of interest to the falling sphere experiments., This
manner of presentation of Cp has the advantage of uniform validity over various
Mach number and Reynolds number ranges, but is inconvenient for the users be-
cause of its three-dimensional plot and does not provide much physical insight
into the nature of the sphere drag.

On the basis of the discussion in 8 2 of this report, it is found that
Ma/Knajmust be a significant parameter for the sphere drag in the transition
flow regime. It is, of course, well known that Re ~ M/Kno Cp as a function
of Re, or My/Kn, is shown in Figure (V-1). The data on Cp are from two inde-
pendent sources of measurement (for references, see Appendix Iv).

In the estimation of Cp at much lower Re,, one may use Figure (V-1) for
extrapolation together with Cp for free molecule flows prescribed at given M

and thermal condition at the surface of this sphere in question.
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APPENDIX VI

Propagation of Sound Waves in Rarfied Gases Under the Influence

of an External Force Field

( Contributed by V. C. Liu and Paul B. Hays)
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I. Introduction

The propagation of sound waves has always been a problem of
unusual interest to gas dynamicis:[’?sf}j\%tsliﬂrélppr}gssénq%sggcase of crowning
success for the mathematical physics whereby the physical phenomenon
is represented by an idealized model for which a simple elegant mathe-
matical solution is obtained that checks remarkably well with measured
results under the assumed conditions of the theory. This theoretical
triumph, first achieved by Laplace in 1816, is much responsible for our
physical insight into this intricate gas dynamical phenomenon.

Among the numerous applications of the theory of sound propagation
in gases, one may mention the probing of the upper atmosphere by sound

(1)

waves to measure the ambiett temperature Several questions naturally
arise in connection with the propagation of sound waves in the rarefied
atmosphere with or against gravity: (i) how will the amplitude, intensity
and the phase velocities of the sound waves vary as it proceeds to the
higher and higher altitude ? (ii) what will happen to the sound waves when
the mechanism of propagation of disturbance, namely the molecular collisions
is disrupted when an appreciable number of molecules in a rarefied gas
cross a wave length without colliding ?

The phenomena of absorption and dispersion are clear from the

(2)

macroscopic viewpoint. It is clear that at higher frequency or longer
mean free path the thermal and velocity gradients between compression and
rarefaction become so steep in the length scale of the mean free path that

transport phenomena - heat conduction and viscosity - begin to cause absorption.

%Refer to references listed at the end of this note.
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To answer the second inquiry, one must analyze the problem from the
kinetic viewpoint. The kinetic theory of sound propagatiori in a rarefied
monatomic gas without external force field has been given by Wang-Chang
and Uhlenbeck, (3) The consideration of the influence of the external force
field acting on the wave-carrier gas adds a new characteristic length parameter,
namely the scale height H*, to the problem. It is clear that when H is much
larger than the mean free path (A) of the gas and the wave length (/1Y) of the
wave, then the external force field, with or against which the waves propagate,
does not  give  significant contribution to the ''dispersion' of the waves.
On the other hand, a new interesting physical phenomenon can be developed
when all three parameters are of the same order.

In the following analysis of the dispersion of planar sound waves in a
monatomic gas under the influence of an external force field, we choose a

restricted case of isothermal gas in a potential force field (U).

-2 Perturbation Analysis and the Linearized Boltzmann Equation

It is assumed that the wave-bearing medium is in thermodynamic
equilibrium (fe)o The sound waves can be treated as small pressure dis-
turbances from equilibrium, we are, therefore, justified in representing the
molecular distribution function f (X, ¥, t) as a perturbed function of the
following form:

a2 QA
Hxv ) =5 V) 14 n (2,7,8)] 0
(4)

which satisfies the Boltzmann equation ' for a monatomic gas of mass m

in a force potential field U (x):

T W (0 ooy o) o

- - as
*H(= k T/maJmay be defi ned,a distance in which the density of variable

isothermal medium decreases to 1/e times its value at the initial station
from which the distance is measured;'a'" denotes the acceleration of the

molecule of mass m.



132

In equation (1) the equilibrium distribution fe is given by the Maxwell-

Boltzmann law:

fo = v (;‘)YT‘I?T) e RTLUVA]

(3)
where ng denotes the molecular density at x = 0; k, Boltzmann constant,
T, temperature of the gas; v, molecular thermal speed.

In equation (2), the prime and the index 1 of the f's refer to the
velocity variables alone, e.g., fl = f (§, ?fk, t))etcu I (g, 0) is the differential
collision cross section corresponding to a turning of the relative velocity

= | vy v | ) over the angle 6 into the solid angle sin 6 d 8 d¢ .
For molecules which interact like the Maxwellian model) i.e., when

-5

>

the force of interaction = Kr

- K
9 1(g.8) = Flo) (4)

Notice that by the assumption of perturbation, h << 1, we obtain the

linearized Boltzmann equation (2), after the introduction of the dimensionless

velocity: c = (yn/ﬂ?-r)/z = = 6'/1 \—}‘.

a -y
J’g?i—*c'%df@i;—ﬁ-:noe T J(h) (5)

where the collision integral:

T(h) = % fHda—;e—@z”oizAeme(cjl(},e)(h&/,,'_wl)(g)

The right hand side of equation (5) is conveniently expressed such that the

collision integral J (h) preserves the mathematical form of that without the

(3)

external force' ’; it was pointed out in reference (3)2'< that, for Maxwellian

(5)

“See also L. Waldmann
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model (4), the eigenfunctions \Plof the collision operatorJ defined as:
2

j(%) = Au v, | (7)

where N is the eigenvalue, are the complete set of functions given by the product
A

of Sonine polynomials with spherical harmonics:in the following normalized form:

TV AN () ¢z (8)
LPILQ -Jmc, ﬁ(cost)Sﬂ,/z(C)

Note that (8) formsa complete orthogonal set with weight function exp(-c?)

and the corresponding eigenvalues:

) ~—1-nfrd M S5 (9
(= 2T doamd FB) (s 2 s &)+ p(n )-8

o Lo
3 Propagation of plane sound waves along. an external force field

Let the gravitational potential be: U = gz + Ug; the scale height: H = (gf) !

We have, from (5) and (6), the perturbed Boltzmann equations

7 dh cdh V3 21, (10)
\}(~)) )t -+ }_92 “+ ﬁ—a——c—z *,Y\an j-(l'\)

In the expansion for h we must introduce a more general expression than
that in Ref. (3). Let

(11)

ZZ o, %P, ©)

z
-C
Equation (10), after the substitution of (11), multiplication by(/z A and
/

integration over T, yields

-2
\5 Nl % (12)
+ E z( ne, 'L,o 3 'LH_/),_P ! Q) o€ D<’ >\/L/?,

T
h a2 _C
o Mafz,/ﬂa':“g"‘“% Gty M u"( dce© aLP %,

1.
"Extensive use of these functions in the expansion for the normal solution to the

Boltzmann equation was made much earlier by Burnett({4)
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The evaluation of equation (12), for the purpose of seeking the dispersion

relation of the wave propagation, can be simplified by introducing the Fourier

transform with respect to z and t, thus #

W, (6) Gy |+_,-_\[L+l) Vel +34 = 5) e ..‘__
oL ( 6! (@841) (2R'+3) O</>. /£+!() ! (zm.)(u'_,)dm/e

- ",QI‘PQ,,*'/L -
° ( HG))}( )l D)d'lz J (2 +) 1}4!)(2,0+3) /L IQJH (13)

WU+

Ly

= L)\u ;(G+%
where dA.A sd%j at C L(62 (»t) (% 1),

o= W/MoJ2%m 4 Gy —(GAO)W Gmf(/w)/‘lﬁ QJ’;.

4 Approximate solutions and the dispersion relation

First order approximation.
For the propagation of sound waves in the atmosphere, it is justifiable to

-1
assume H>>0 , hence we have the first order approximation to equation (13);

' T 2R 3oy (14)
W+ Negr )b, — <2A4 00 vl
Zeroth order approximation.

The neglect of the first order (derivative) terms of equation (14) results

in a set of linear homogeneous algebraic equations which has a solution if

determinant of its coefficients vanishes.

Dy gt )R L — 2N [£4 20 YA o,
(0% LAy g1 )% er =G (14 HO‘\)‘;(?+') mg)dm,’?{f-l d 841)(24'53) "*'/I'J
’Gb( H’ﬁg)@, 'M %, U?’—H) FT’P\_ o 0 ]O(ls)

@) (=) ! [ VD pag) o

We may approach the solution of this. infinite set in the same manner as in

Ref. (3),i.e. in the order: 2r+1=0,1,2,...... Comparing with results in Ref. (3)

Our terms below the diagonal of determinant have a constant multiplier (1+1/HG);

above, (l1+2i/HG).

#Index o refers to the dimensionless quantity as defined below.6is wave number.
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We let these factors be Q, and Q then the determinant has the form given

below for the first eleven rows and columns.

We have expanded this using the same procedure of successive approximation

as in Ref. (3). The result appears that for the first 8 rows and columns the
determinant is exactly the same as in Ref. (3) except with Go replaced by l QQ Go
We have not beenable to prove that this is true in general, however it does
appear that due to the special form of these equations that it appears so. Thus

the "second approximation? following that in Ref. (3) yields the dispersion relation:

2 5
(foQQ N bwo I 19 LU)D_ 2 w3+2 3] (,wg 275676! Luﬁ" '
" 5 R, 35ta, " 3 A3+ 5717 A(Hm](lé)

Thus introducing theQ's and H)}G-E we have
G(H?J,L)g__u_l_ TP 2 pwt + &5 L/‘w3 sb76| mtat (17)
2H6 3PV PV L S”*v" 26 PH,%
o

Note that , we havet
= JSkThm

o
A 4(,04 (18

o
G= — &2 29 _——+5’(, +>

v = e eV, 775 A
and {19)

0, < /(_A__( l7-—l|93’”3_£°_. e >*’3

Sv3 L 3aAs 2H
where for a sinusoidal input
\ £ W
L (20 = 0,00 ™ TV g2

For the case where gravitational force important

3%\

A, (2,5) = d,y (2, t)/&+ £

A represents the amplitude of the received wave as a function of z and t.

# The second approximation here refers to the ""Burnett'level of approximation
in fluid mechanics;it should not be confused with the sucessive approximations
discussed in (14) and (15).

+ The complex wave number G= G’,-CGZ where O] is the dispersion coefficient; Gy,
the absorption coefficient.
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5 Conclusions and discussions

Although theC%fS%rime interest, namely when Hn. )\ ~J\_has not been
solved here, in fact the perturbation technique probably would not be effective
for treating such problem, we have , however shown the qualitative trend for
the general effect of an external force on the propagation of sound wavesi;.

The damping action of the viscosity and heat conduction is more
effective on the sound waves of shorter length. It increases with (’\/J\.) Under
the condition \a A, considerable number of molecules will move at thermal
speed, which is of the same order as the sound speed, in one oscillation
from the region of compression to that of rarfaction on account of the
temperature and pressure differences. This equalization of temperature
and pressure effectively checks the progress of the sound wave by dissipating
its energy t6 thermal energy.
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APPENDIX VII

ON THE ALMOST-FREE-MOLECULE FLOW THROUGH AN ORIFICE

(Contributed by V. C. Liu and G. R. Inger)

(Published in J. A. S., 1960)






On Almost-Free-Molecule Flow Through an
Orificef

V. C. Liu oand G. R. Inger**

Professor and Graduate Student, Respectively
Department of Aeronautical and Astronautical Engineering,
University of Michigan, Ann Arbor, Mich.

May 20, 1960

HE APPLICATION of the principle of almost-free-molecule

flow, which is essentially a form of first-order Knudsen
iteration of rarefied-gas dynamics, has shown some very en-
couraging results.!: 2 The effusion of rarefied gases through an
orifice into a vacuum is a very instructive problem for the pur-
pose of studying the basic nature of rarefied-flow phenomena.
The object of the present analysis is to provide a microscopic
description of the flow parameters pertaining to the steady
effusion from an orifice, the diameter (D) of which is of the same
order or smaller than the mean free path (A\) of the reservoir gas.
A thin diaphragm (¢/D << 1) which has a small circular orifice
separates a large high-pressure (p;) reservoir from the low-pres-
sure (pe) region. The pressure ratio will be assumed large enough
(p1/p2 > 103%) to permit neglect of the back flow from the low-
pressure side. This condition distinguishes the present problem
from the pitot-pressure problem of reference 1.

Consider first the case of free-molecule effusion, where A >> D
and molecules move through the orifice essentially independent
of each other. The deviations of the resulting molecular dis-
tribution from its equilibrium state will be negligibly small and
promptly wiped out by the intermolecular collisions, which always
tend to set up and preserve the equilibrium state. The loss of
molecules through the orifice, however, develops a trace of mass
motion toward the orifice due to absence of those collisions that
the lost molecules would have made with the ambient molecules
on' their return from the wall. This trace of orifice-bound mass
motion grows in prominence as A/D decreases. The principle
of almost-free-molecule flow is applied here to calculate the
molecular flux of the mass motion within the reservoir as a result
of intermolecular collisions or their absence. The following
physical model is devised for this purpose.

Imagine the orifice were closed with an imaginary disc of diam-
eter D as the orifice; then equilibrium (Maxwellian) distribution
of molecules in the reservoir would be restored through scattering
of reflected molecules, from the imaginary disc, with the ambient
molecules. It is postulated that the net molecular flux toward
the orifice, inhibited by the scattering action of the imaginary
reflected molecules, is equal to the difference between the true
effusion flux through the orifice and its calculated value based
on free-molecule hypothesis. It is assumed that this molecular
flux, due to absence of scattering, amounts to only a small frac-
tion of the corresponding free-molecule effusion flux. This im-
plies that the present theory is valid only when D is not much
larger than A, so that the single-collision analysis used here is
acceptable. The rate of collisions (N) between the molecular
rays incident on, and reflected from the imaginary disc is calcu-
lated for rigid spheres on the basis of classical kinetic theory
The cross section of the spheres is taken from the experimental

t This investigation was part of a broad upper-air research program
supported by the USAF Cambridge Research Center under contract No.
AF19(604)-5477 with the University of Michigan.

** Now with Aerodynamic Research Group, Missile and Space Division.
Douglas Aircraft Co., Santa Monica. Calif.
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Fic. 1.

Geometry of scattering analysis.
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determination of the mean free path. It is assumed that every
collision throws the incident molecule out of the impinging
stream on the disc. This assumption can be justified only when
M is not very small compared to D.  'We assume that the molecules
inside the ‘‘closed”” reservoir are now in thermodynamic equi-
librium with Maxwellian distribution. To determine the net
contribution, through intermolecular collisions, of the hypo-
thetical reflected molecules, we need to calculate the molecular
flux (Naq), originated from the diaphragm surrounding the
orifice, that is thrown into the incident ray through their collisions
with the reflected molecules from the disc. These molecules
(Nyq) would otherwise not impinge on the orifice area. Thus,
the net impingement inhibition for the imaginary reflection ray
isequal to (N — Naa).

Let Ny be reflected molecular flux from the disc, which is equal
to #Dnc/16 where n molecular density, ¢ mean thermal
velocity ; E(E = 0.92/\ for air) the average collision expectancy
per unit distance traveled by a single molecule moving through
molecules under equilibrium (Maxwellian) distribution.?

Reprinted from JOURNAL OF THE AEROSPACE SCIENCES
Copyright, 1960, by the Institute of the Aerospace Sciences and reprinted by permission of the copyright owner
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Referring to the coordinate system shown in Fig. 1, we obtain
N E

—2t0/\

2r i 2x d /2 i D/2 4 ® poro sin 8y cos? fee d
Na axt Jg . 0 b 0 *Jo Fo o [re? + po? + 270 po sin 60 cos (vo = 6)]%2 To 1)

Let p and ¢ be the polar coordinates of an area element of the diaphragm outside the orifice area; r the distance from the point ro to this
elemental area; 6, the angle between r and the normal to this elemental area (see Fig. 1). We obtain

Nag E

After the exponential functions in the integrands are approxi-
mated with appropriate parabolic representations (these approxi-
mations remain close when D is not much larger than A), we ob-
tain from Egs. (1) and (2)

Nia/Na =~ 0.153 (D/\) Fi(\/D) (3)
Naa/Na 20019 (D/N) F2(A/D) (4)

where Fi(A\/D) and Fy(\/D) are given in Fig. 2.

From the hypothesis that the intermolecular-collision effect
on the effusion rate is equal to the molecular flux inhibited from
hitting the orifice area when closed—namely (N;a — Nag), we
have

N/Np =1+ [(Nia — Naa)/Nr] (4)

where Np is the free-molecule effusion rate through the orifice
(note that Ng = Np as a first approximation). A graph of
N/Nr as a function of A/D is shown in Fig. 3, in which are also
shown the experimental results® which were taken with pi/ps >
103, Itisfelt that with refined analysis—e.g., taking into account
the contribution to the impinging flux from molecules, emerging
from collisions (N;4), that are deflected toward the orifice area,
the validity of the theory can be extended to lower values of A/ D.
The present analysis appears fruitful in illustrating the functional
dependency of the effusion-flow rate on the intermolecular
collisions.

2r 2 2x /2 ® p/2 ® pporo? sin Gy cos® fge ™ 2Fo/2
N = 8 den dve do déy dp dpo T dry (2)
4 ™Jo 0 0 0 D/2 0 0 rr
N
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APPENDIX VIII

ON LAMINAR FREE CONVECTION FLOWS IN CAVITY

(Contributed by V. C. Liu and H. Jew)

(Abstract published in Bull. Am. Phys. Soc. Series II, vol. 5, no. 2, 1960)
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C8. On Laminar Free Convection Flows in Cavities.* V. C.
L1u AND HowarD JEw, University of Michigan.—A theory is
developed for the velocity and temperature fields due to
laminar free convection in two-dimensional cavities, closed at
the bottom and opening into a reservoir of cool fluid at the
top. The outstanding feature of the present problem concerns
the effect of confinement and heat conduction at the walls on
the laminar free convection flow of a fluid in an external
force field. It thus involves the interaction of the velocity
and the temperature field. In an earlier study by Lighthill,?
some estimates of the useful heat transfer and flow parameters
for special cases were obtained by approximate methods of
solution (of the Karman-Pohlhausen type) to the boundary
layer equations. The present paper gives a general solution of
the flow by solving the boundary value problem with the
Navier-Stokes equations and the equation of heat transfer. A
numerical method is developed based on the use of orthogonal
polynomials which reduces the solution of the governing
equations to the numerical solution of two sets of coupled
algebraic equations. The numerical analysis by iteration
process is accomplished with an electronic digital computer.
Streamlines and isothermals have been plotted for various
values of Rayleigh number.
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APPENDIX IX

AN EXACT ANALYSIS OF THE STAGNATION PHENOMENON OF

LAMINAR FREE-CONVECTION FLOWS IN THERMOSYPHONS

{Contributed by V. C. Liu and H. Jew)

(To appear in Zeitz. fur Angew. Mech. und Math. )
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An Exact Analysis of the Stagnation Phenomenon of Laminar
Free-Convection Flows in Thermosyphons®

By Vi-CHENG L1u**) and HowARD JEW**¥)

Es wird eine Methode fiir die exakte Untersuchung der Geschwindigkeits- und Temperaturverteilung
laminarer konvektionsfreier Stromungen in geschlossenen 2wesdimensionalen Hohlrdumen dargestellt. Die
Lésung der Glesichungen (der QGleichung von Navier-Stokes und der Glesichung fiir die Warmeiibertragung)
erhilt man durch eine Doppelreihen- Entwicklung der Strom- und der Temperaturfunktion nach orthogonalen
Polynomen. Die resultierenden Gleichungen fiir die Entwicklungskoeffizienten werden in zwei gekoppelte
Systeme algebraischer Gleichungen umgeformt, und diese werden dann mit einem Rechenautomaten numerisch
gelést. Die angegebene Methode ist z. B. besonders wirksam bei der Behandlung der Staupunkt- Erscheinungen
tn einem Thermosyphon, welche mit den bekannten Niherungsverfahren der Grenzschichitheorie nicht aus-
reichend genau behandelt werden kénnen. Die Ergebnisse der Untersuchung werden durch Bilder ver-
anschaulicht.

A method of exact analysis for the velocity and temperature distribution of the laminar free-convection
flows in closed two-dimensional cavities is presented. The solution to the governing equations (the Navier-
Stokes and the heat transfer) is obtained by the use of double series expansions of the stream and temperature
functions into orthogonal polynomials. The resulting equations for the coefficients of expansions are reduced
into two sets of coupled algebraic equations which are solved numerically with a computer. The present
method is particularly effective in treating problems such as the stagnation phenomena in a thermosyphon
which cannot be accurately treated with the existing approximate analysis of the boundary-layer theory.
Tllustrative result of the analysis are presented in the paper.

B paGore manaraercsa MeToX TOYHOTO MCCIeOBaHMA pacnpejelleHUsA CKOPOCTH M TeMIlepa-
TYPHI IaMUHAPHBIX IIOTOKOB B 3aKPHITHIX IBYXMePHBIX NOCTOAX. Pemenue ypaBHeHuii (Hasnbe-
CTOKCAa U TEIUIONPOBOTHOCTH) HAXOIAT ITyTeM pasjiosKeHUs B pAX QYHKIMI IOTOKA M TeMnepa-
TYPBHI 110 OPTOrOHAJbHBIM OJMHOMaM. YpaBHeHHe Ui KO3((PULMEHTOB Pa3joKeH A CBORATCA
K IBYM CBA3aHHEIM CHCTeMaM ajrefpauvyecKUX ypaBHeHMil, KOTOpbie PelIaloTCH YMCJIeHHO Ha
BBIYHCJIMTEIbHOM MamiuHe, M3i103KeHHBI MeTOJl NPUMEHAETCA, HAapuMep, NIPH UCCJeloBaHUK
AIBJIECHUA TOYKH TOPMOMKEHHA B TepMOCHPOHe, TaK KaK U3Ce3THhle NPHUOGIUMEHHBIC MeTOMbI
TEOpUM IPAHUYHOTO CJIOA He HAIOT YAOBJIETBOPUTEIHLOTO pe3yJbTaTa.

PeaynbraThl HccllemoBaHUA CONPOBOMKIAIOTCA PUCYHKAMH,

1 Introduction

Free-convection flows in open or closed cavities which are generated by the coupling bet-
ween nonuniform heating and body force effects have been studied frequently of late [1—5],
apparently because this particular type of flow constitutes a basic element in many technological
applications: e. g., the CLusrius thermal diffusion column for separating isotopes, the nuclear
reactor, and the ScaMIDT-HoLZWARTH [5] thermosyphon cooling scheme for turbine blades. The
complete analysis of this interesting flow problem which involves the treatment of the NAVIER-
STOKES equations together with the heat-transfer equation is extremely complicated. Fortu-
nately, much pertinent information concerning the flow can be obtained by an approximate
analysis in which the governing equations are simplified by the introduction of the boundary-layer
approximations [1]. This simplified analysis gives useful results within the limits of its validity.
The boundary-layer approximations are not expected to be valid near the closed ends or the
region having flow reversal.

With the geometry of the cavity having large value for the ratio of depth (see Figure 1)
over width, a stagnation phenomenon involving flow reversal may develop near a closed end of
the cavity. The purpose of the present paper is to study this stagnation phenomenon, which
makes the thermosyphonic cooling ineffective, by determining the velocity and temperature
distribution without the use of boundary-layer approximations.

*) This investigation was supported jointly by the U. S. Air Force Cambridge Research Center and a
research grant from the Institute of Science and Technology of The University of Michigan. Generous Compu-
tation time allowance from the computer center of the University is gratefully acknowledged.

**) Professor of Aeronautical Engineering.

***) Assistant Research Engineer, Sponsored Research.

1009 ZAMM 684 VI-Cheng Liu
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2 An ldealized Model

Consider a two-dimensional closed cavily, a cross section of which is shown in IFig. 1. With
the prescribed wall-temperature distribution?) and the influence of the impressed body force,
a layer of hot fluid at the walls, being less dense, is buoyant against the direction of the body
force and is replaced by heavier cool fluid moving down the center of the cavity. Thus a cir-
culation pattern, as shown, may develop, provided the depth-width (d/w) ratio is not large enough
to cause stagnation, hence flow reversal.

3 The Flow Analysis as a Mathematical Boundary-Value Problem

In formulating the problem, we choose a body force field thal contains the main characte-
ristics of that due to the centrifugal acceleration (?T) generated by a rotating body with a con-
stant speed (w) but not of the Coriouts effect?). The gravitational force on the fluid, being small
compared to the centrifugal force for a high rotating speed, is also neglected. With a moderate
temperature difference (Ty— 7,)/ T, we may treat the fluid as incompressible with negligibie
viscous heat dissipation and consider its density variation due to nonuniform heating only. The
fluid property is otherwise independent of the temperature [6]. Under these assumptions Lhe
governing equations for the two-dimensional laminar flows with prescribed body force become

u%—{—v%:——%-%—ﬂwzx(’l‘—7’o)+§»l7211 R R O
u%—l—v%:—%—%——ﬁwz(yo+y)(7'—To)+ZVZU (3,
%Jrg%:o................(3.3),
ll%+1}%§=%W']‘. e S O N

With the elimination of the pressure, p, and the introduction of the dimensionless variables
we reduce the Egs. (3.1)—(3.4) to

2 1 3 1 ” o
Peeer + ) WEEM + b 'Pnnfm = Ra o O, — (o +an) O + a“p*r{(wg])s q]ﬂ‘(V“g[)ﬂ Ve (3.5),

Ot g Opy= (P O — WO . 36

The associated boundary conditions for the flow field in the region £ = 0 are as follows:

60,00 = 0;

B¢ 1) =1; 6¢&0) =sin?xé for 0 <& <1/2;

01/2,n7) =1; 60,7 =0 for0=gy=1;

PE 0 =05 Y0 =0; Yy 0) =0; - 3.

Y 1) =0; P51 =0; Y1) =0 for0=¢&=1/2;

P0,n) =0; Yel0, ) = 0; P(12,m) = 0;

Pe(1/2,m) =0; Y, (1/2,7) =0 for0 =9 =1

4 Solution of the Boundary-Value Problem

The appropriate use of orthogonal polynomials for the eigenfunctions in the expansion of
the two dependent variables @ and ¥, plus suitable integral transforms, may reduce the governing
equations to algebraic equations of the expansion coefficients. A similar expansion has been used
earlier by Poots in a simpler free-convection-flow problem [4].

1) In the open cavity as ScuMipT-HOLZWARTHS, the side A B is replaced by a free surface of the coolant
reservoir. The replacement of the free boundary by a closed surface with prescribed temperature distribution
makes the mathematical problem tractable, and yet preserves the main feature of the phenomenon in question.

%) CorioLis force on the fluid tends to distort the circulation pattern slightly [5].
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Let
O¢E, n) = p;\_’,o; 12; A, 08 Qp—1)mé sinqrn +sin®x & + (1 —sin2x &) sin% 7 (4.1),
Ve = i qg'] B X, &Y, - . @.2),
where
X6 = sinh4, & sin ??i ............ 4.3),
sinh 5 Ap sin 5 Ay
Yq(’?) = cosh g, — cos pu, n — 7, (sinh Bgm—Sinp,m) . ... . (4.4).

The orthogonal expansions (4.1) and (4.2) satisfy the boundary conditions (3.7) provid ed
the following STURM-LI0UVILLE systems (4.5a) and (4.5b) are satisfied.

Xy =4 X8,

X, (_%) _ X,,(%) _x (_%) _x (%) o b (4.5a),

where 1, satisfies the transcendental expression

1 1
coth—Z—Ap—coti ,=0.

rrrs _ 4
Y = s Yol } ........ (4.5b),
Yy(0) = Yy(1) = Yp(0) = Yp(1) = 0
where p, satisfies the transcendental expression
cosh y, cospu, —1 =0,
vy = (cosh u, — cos g )/(sinh g, — sin u,) .

Note that the functions X, (&), Y,(n), cos (2p — 1)z & and sin gy form, respectively,
orthogonal sets; so it is possible to transtorm the governing equations into an associated system
of algebraic equations after multiplying Eq. (3.5) by X,,(¢) Y,(n), and Eq. (3.6) by cos(2m—1) n &
sin n 77 and integrate over the region 0 < & <1/2, 0 <5 < 1. Egs. (4.6) and (4.7) form the
infinite set of algebraic equations.

1 2 1 2 o
l§ '1;‘" + EE D(lm’ }“m) D(‘un’ /”"n) + —2;} f":} Bmm = _ﬁ p§1 £1 D(Z.p, j'm) D(/‘q’ ,un) Bp, q
1 1 1 1
b Raf L 1) — Q1 E(} 5 ) — 4530 ol — (3 st + of Pt — 150
+,,§1 q‘:‘;AM l?% V@p—1;2,)E(g; ) + 2p—1) A 2P —154y) {no Alg5 ) + & 1(g; un)}]}
1 1 1
T b2 2 B |2 2 By Kl o ) Lt ) + 55 Ly o ) Bl i )
1
— — H(lgy Ay A) Ly s pt) — ;15 L0y Ay o) K (it 1 ,;,.)”} ............ (4.6),
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n? 2 (1Y _2 @Cm—DE)m [T . 4 n(—)+!
~lem—y +(a)}Am,n—,,2(2,,,_3)(2,,,+1){,, = 1}+Tzn_1>(2n+1)

+2—’3{2 z B |R@m—12:3)
&

1
B(n; p,) — S(f‘j,n; ,,J)]
r=1 8=1 2
_ 1
;[W@m 1;2,) P(2m~—-1;l,)]R<f2,n;‘u3>;

-

— A
p§1 q§1 pe

+gG2em—12p—1;4) R(q,n;m)H} ........ e, A.7).

In the integral formulas in thelist of symbols, those with 4, srefer to X,(£) in the integrand

2 X B {@p—DREm—12p—1;4) S ni )

1 : s .
and have limits £ =0 to & = 5 The corresponding formulas with g, s refer to Y () in the

integrand and have limits 5 = 0 to 5 = 1. In the algebraic Eqs. (4.6) and (4.7) relating the
coefficients A, , and B, ,, we have, for example, quantities like R(m, p;4,) and R(q, n; u,)
which we define to mean

12 1
[ X&) cosmnésinprédé and [ Y(n)cosquysinnandy,
0 0

respectively. As the integrands have the same form, we give only R(m, p; 4,) in the list of symbols.

Numerical Iteration of Eqs. (4.6) and (4.7)

The definite integrals appearing in equations (4.6) and (4.7) were computed from thec losed
forms for these integrals. The interative IBM 704 computing machine instruction procedure was
as follows: Read into memory the integral constants and a set of Ra, Pr, « and 7, values. From
these, compute an initial set of B, coefficients using the Eq. (4.6) with terms involving Apq
and B, B, , neglected. Using the initial set of B,, ,, thus obtained, compute an initial set of A, .
coefficients, using Eq. (4.7) with terms involving A, B, neglected. Proceeding from the
initial A, , and B, , values, compte a second set of B,,, coefficients using the full Eq. (4.6)
and the initial A,,, and B,,, values, followed by a second set of A, . coefficients computed
using the full Eq. (4.7) and the initial 4, , and B,,, values. Proceeding from the second set
of A, , and B, , coefficients, compute a third set of coefficients A,, , and B,, , similarly, and
so on, until steady values are obtained.

Results

Fig. 2 shows streamlines and isothermals in the cavity. Fig. 3 shows transverse (across
cavity in the &-direction) velocity profiles for & = 0.1, 0.2, and 0.4. Fig. 4 shows axial velocity
profiles for = 0.35 and 0.36. In Table 1 are shown A, and B, , coefficients. It should be
mentioned that NusseLT numbers (which measure heat transfer) can easily be computed once
the A, coefficients are known.
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Table 1

Ap ¢ and By 4 Coefficients for the Case
Ra =103, a =10%, Pr=1.71, 5, =1

Ay, 0.021915630 By, 0.055326513
Ay, —0.017854899 By, -0.013547021
Apy 0.019285883 By 0.003974909
Ay 0.009253715 B, 0.001591794
Ays —0.000004586 B, —0.000778962
Ay —0.002092713 B, —0.000182942
Ayq 0.000270965 By, 0.000239221
Ay, —0.000637357 By s —0.000092480
Agy | —0.000952134 By —0.000059894

5 Discussion and Conelusion

The linear iteration process used limits the solution of Egs. (4.6) and (4.7) for cases with
modified RAYLEIGH number up to order 10;. Beyond this limit, the linear iteration process
fails to give ‘proper convergence. The RAYLEIGH number of interest in applications usually
runs an order of magnitude higher than 105 so that there is need to investigate up to RavyLEIGH
number equal to 104, above which laminar flow may no longer be possible.

A promising approach to extend the solution to cases with higher RAYLEIGH number is
proposed in Appendix I. One of the assets of the present method of analysis is its practically
unlimited accuracy which might be of interest when the problem of hydrodynamic stability of
the thermosyphonic flow is treated. Its wider scope of adaptability to different prescribed
body force fields and boundary conditions is another advantage of the approach. The availability
of a medium-capacity digital computer makes the analysis much less formidable than it appears.

Appendix I

Suppose we transpose the left-hand term to the right-hand side of each of Eqs. (4.6) and
(4.7). Then these equations may be written as

fan=0 . . . ... 0000 (A
and
Imn =0 . . . . . ... L0 (A2).
The sum of squares
D A -4 Y - W52 )

is clearly non-negative. By the method of steepest descent {7], minimization of (A.3) gives the
zeros of Egs. (A.1) and (A.2), and hence the zeros of Egs. (4.6) and (4.7). To start the mini-
mization, good starting A, , and B, , values are needed. These can be obtained by solving
the linear, the bilinear, and the quadratic terms in A4,, and B,, of Eqgs. (4.6) and (4.7) simul-
taneously. With A, and B,,, we can evaluate the next values A, and B, , similarly, and so on.
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Symbols
z,y = cartesian coordinates (see Fig. 1)
u = component of velocity in z-direction
v = component of velocity in y-direction
p = pressure
d = depth of cavity (see Fig. 1)
w = width of cavity (see Fig. 1)
T = absolute temperature
T, = uniform temperature of a portion of cavity boundary (see Fig. 1)
T, = absolute temperature at x = 0, y = y,
" = viscosity coefficient
B = [M ~ 1 coefficient of volume expansion [1]
oT I, T,
% = thermometric conductivity [6]
v = ufp kinematic viscosity
o = d|w aspect ratio
() = rotation speed
I3 — z/w nondimensional distance in x-direction
n = & y/w nondimensional distance in y-direction
Mo = y,/w nondimensional distance from axis of rotation at t =y =0toz =0,
J=1
Tw — Tl Y . C . . .
m = sin?x & prescribed temperature distribution along = 0, where T, is wall
temperature along y = y,
Pr = /% PRANDTL number
Ra = B w?*w*(Ty— T,)/x v modified RAYLEIGH number
Xo(8) = eigenfunction of ¢ defined by Eq. (4.3)
Y, () = eigenfunction of % defined by Eq. (4.4)
Ay = eigenvalue associated with eigenfunction X,
78 = eigenvalue associated with eigenfunction Y,
Yq = coefficient defined by a relation in Eq. (4.9b)
0 T —T,

T nondimensional temperature defined by Lq. (4.1)
o~ 11
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nondimensional stream function defined by Eq. (4.2)
coefficient defined by Liq. (4.1)
coefficient defined by liq. (4.2)
[ X&) sinpr&dé [for Limits of inlegration see Discussion Following
Equatlon 4.7)]
[ Yi(n)sinnzydy

N,(8) d¢
N/ (€) Np(6) dt
A1) cos gy dy

X, (&) d&
(§) cosmm&cospnldé

"(§) X&) N (8) d&

n) sin g 7wy dy

() X&) N, (6) d&
(5) Xp(&) N (&) dé

(&) cos mam Esin?a & dé
X, (&) sin? 7zt & d&
\,.(S) cosmaz&sinpmsds
Yi(n)singmysinnzydy
X, (&) sin?x & dE
EN, (&) cospréds
X, cosmm & dE
fun( tion defined by Eqgs. (A.1) and (4.6)
function defined by Eqgs. (A.2) and (4.7)

o

NN

=

I= -\3

M/*//M//‘"M

I:
I
[y
f
[X
X
Iy
[N
I
S
J
f
J
J
I
I}

RN L

pand Y, denote derivatives with respect to their respective independent variables.

& and %, when used as subscripts, denote partial differentiation with respect to these
independen variables.

Lower case letters m, n, p, ¢, r, s, denote indices and parameters which are integers or
1/2 as indicated.
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Fig. 1. Two-dimensional cavity section.
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= = Pr =171, 9, = 1.
. 2. Streamlines and Isothermals in cavity, Ra = 10°, « = 10%, ,
(1;‘3) gtr\‘:::xllnea w(&, n) = constant; (2b) Isothermals 6(¢, n) = constant.
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APPENDIX X

RAREFIED GAS DYNAMICAL CONSIDERATIONS IN ROCKET

SOUNDING MEASUREMENTS

(Contributed by V. C. Liu)
(An invited paper in Rand Symposium on Aerodynamics of the Upper

Atmosphere, 1959; also appears in Rand Report R-339)
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RAREFIED-GAS DYNAMICAL CONSIDERATIONS IN
THE ROCKET-SOUNDING MEASUREMENTS*

V. C. Liu
Department of Aeronautical and Astronautical Engineering
The University of Michigan, Ann Arbor, Michigan
ABSTRACT
Aerodynamic methods of measuring upper-atmospheric properties by means
of sounding rockets are discussed from the rarefied-gas dynamical point of
view. On the basis of this discussion, it is proposed that combinatlons
of different aerodynamic methods on the same sounding rocket can and

should be designed to acquire additional physical insight into the aerody-

namics of rarefied media.

INTRODUCTION

"Rocket-sounding" refers to the experiments of probing the upper at-
mosphere by means of nearly vertically ascending rockets with the purpose
of measuring atmosphere properties, e.g., amblent pressure, density, and
temperature. Ususlly, some form of aerodynamic effects due to the pres-
ence of the rocket is registered; these may be the pitot-probe pressure,
conical-surface pressure, or the sphere drag. One or more of these quantil-
-ties, together with the forward speed of the aerodynamic body, can be used
to calculate the atmospheric parameters. This general scheme is called

the aerodynasmic method of upper-atmospheric measurement.

*The support of the Air Force Cambridge Research Center, under Contract

No. AF-19(604)-5477, for the work reported here is gratefully acknowl-
edged.
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DISCUSSION

The success of an aerodynamic method depends upon, among other things,
the avallability of a well-established aerodynamic theory which relates the
measured aerodynamic effect to the atmospheric parameter of interest.
Since the atmosphere forming the flow medim of the aerodynamic theory in
question becomes more and more rarefied as the rocket ascends, it is ex-
pected that application of the aerodynamics of continuous medium will be-
come less and less valid. At such altitudes where the molecular mean free
path A is not negligibly small compared to a characteristic dimension L of
the flow field in question, the concept of rarefied-gas dynamics should be
used in treating the flow problems.

Present knowledge concerning dynamics of high-speed flows of rare-
fied gases is very much limited except for the region of extremely rare-
fied flows (K/L >> 1) for which the free-molecule hypothesis is applicable (1)%
The validity of the free-molecule concept is confined to cases where the
effects of intermolecular collisions between the molecules incident on,
and reflected from, a surface element are negligible. With increasing
density of the medium, the effects of these collisions become aerodynamical-
ly significant. The conventional mathematical treatment of the flow prob-
lems in the almost-free-molecule region is based on the principle of per-
turbation expansion of the Maxwell-Boltzmann equation in powers of L/x.
The calculations along this line of attack are quite formidable and few
results of direct aerodynamic interest are available.

Recently, an alternative approach to the problem by means of the free-
molecule iteration of the intermolecular collision effects appears to have

Numbers in parentheses indicate References at end of paper.
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shown some promising results in the analyses of such quantities as the
drag of a plate normal to the flow {2), pitot-probe pressure (3), flat-
plate drag (4), and sphere drag (5). The significance of these new the-
ories of rarefied-gas flows must be ascertained by comparison with meas-
ured results, which are still lacking. Laboratory measurements using fa-
cilities such as low-density wind tunnels and ballistic ranges are plagued
with experimental difficulties.

With improved rocket technology and better known upper-air properties,
rocket-sounding experiments are better able to help in acquiring additional
physical insight into the aerodynamics of rarefied media. That this cause
has already been served in a limited way can be illustrated by two exam-

ples.

Pitot-Probe Pressure

Measurement of the impact pressure given by a pitot probe (see Fig.

1), together with the forward speed of T|,P’,X
the probe, has been shown as an effec- T,
tive aerodynamic method of determining Po

the ambient density of a stationary and

not very rarefied atmosphere (6). At T
high altitudes where atmospheric air can V(M=V/a)
no longer be considered as a continuous Fig.l

medium pitot-probe pressure must be reformulated, considering the charac-
teristics of the coarse-molecular structure of air as a flow medium. The

theory of pitot pressure in extremely rarefied or "free-molecule" flows



155
339
i

R-
7-
and moderately rarefied or "almost-free-molecule" flows is illustrated in

Fig. 2, along with the pitot-pressure equation for an ideal (continuous)
fluid. For comparison, the results of low-density wind-tunnel measure-

ments (7) are shown in the plot. Assuming that the ambient density is

the mean density given by the Rocket Panel (8),we may compare the results

of the pitot pressure measured on & sounding rocket (6) with those from

other sources in Fig. 2. The fact that the cavity temperature T, of the
pitot probe is not available in this particular flight explains the use of
finite line segments to represent the uncertainty of the results as indicated.

The qualitative check of the rocket-sounding measurements with the theory

of almost-free-molecule flows is of interest.

Sphere Drag

Sphere-drag coefficlents taken from measurements in ballistic ranges
(9) wind tunnels, (10) etc., are plotted as functions of Mach number
(M = v/ V9RT;) and Reynolds number (Re = Vdg/u )in Fig. 3. If, again, we
may assume that the upper-atmospheric density can be represented by the
mean density of the Rocket Panel (9), the sphere-drag coefficient can be
evaluated from falling-sphere measurements (11). Each of the circular
designations represents the mean value of drag coefficients measured in
an interval of approximately 20,000 ft of the falling-sphere trajectory.
Again, the rocket-sounding measurements show good consistency with re-
sults obtained in ballistic ranges and wind tunnels.

The cited examples illustrate that the rocket-sounding measurements,

if conducted properly, may serve a dual purpose of both gathering informa-
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tion concerning the atmosphere at high altitudes and exploring the basic
principles of rarefied-gas flows. The latter purpose appears to have been
served in a limited way through indirect interpretations of the restricted
amount of free-flight results, even though the experiment had not been de-
signed with this purpose in mind.

Different regions of the atmosphere at various altitudes may serve
as typicel media of fluid mechanics. Considering the difficulties in-
volved in bullding workable low-density testing facilities, we feel that
it might be less troublesome to perform & rarefied-gas-flow experiment
with a sounding rocket or free-falling object than with a low-density wind
tunnel or a ballistic range. A proposed experiment with this in mind is
to perform the pitot-probe (6) end the falling-sphere (11) measurements
on the same rocket. The former is achieved during the ascending flight
of the rocket trajectory, while the latter begins with the ejection of the
sphere by the rocket near the peak of the flight. By calibrating one
method against another, one might expect to learn a great deal about the

upper atmosphere and rarefied gas dynamics.
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