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ABSTRACT

This paper discusses turbulent dispersion of
particles whose size and inertia are such that it cannot
be assumed that they will follow exactly the fluctuations
of the fluid elements with which they are associated. The
turbulent field is assumed to be stationary, homogeneous,
and isotropic. Stationary, extraneous force fields for the
particles may exist. The method of generalized harmonic
analysis (Wiener) is used to determine the statistical
particle dispersion parameters in terms of the spectrum
density of the turbulent field and the physical character-
istics of the particles. The discussion is restricted to
one-dimensional problems; it includes consideration of the
relation between turbulent dispersion and Brownian motion
of the particles due to molecular impacts.

An illustrative example of dispersion calculation
with a given turbulence spectrum is presented, and aspects

of practical applications are discussed briefly.
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OBJECT

The object of the research is to study both theo-
retically and experimentally (1) the dispersion of airborne
particulates and (2) the penetration of these particulates
into structures as a function of atmospheric turbulence and

wind velocity and direction.
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1. INTRODUCTION

The problem of the dispersion of material particles in a turbulent
fluid concerns meteorologists, chemists, engineers, and others in many ways.
The fact that particle dispersion constitutes a direct and striking manifes-
tation of the mechanism of fluid turbulence makes it an interesting aerody-
namic problem.

Turbulent dispersion of particles is a random process. The velocity
of a particle can be considered as the response of a dynamic system which has
turbulence impacts as its input. ©Since turbulent velocity is random in nature,
so must the particle velocity and displacement also be random. It is the
statistically defined properties of the particle motion which are of primary
interest.

In contrast to Taylor's treatment of turbulent diffusion (1921),
which identifies the transportable property with certain fluid elements,
the present study considers the particles as dynamic bodies which may have
amplitudes of fluctuations different from those of the fluid elements with
which they are associated. A distinction is thus being made between turbulent
diffusion and turbulent dispersion. Turbulent diffusion depends on the char-
acter of turbulence only while turbulent dispersion of particles depends on
both the character of turbulence and the physical properties of the particles.
When the particle size decreases below a certain threshold value, depending
on the frequency spectrum of the fluctuations, kinematic viscosity, etc.,
the particles will drift to and fro in full accord with their associated
fluid elements. Then the particle dispersion becomes identified with the

fluid diffusion.



It should be noted that the results hereby obtained are valid only
when the particles are so sparsely distributed that the dynamic effect of
the embedded particles on the fluid can be ignored. For instance, turbulent
dispersion of atmospheric aerosols, such as smoke, fog, etc., would satisfy
this requirement.

In reviewing the literature, we have found only a treatise by
Tchen (1947) in which the problem of particle dispersion in a turbulent fluid
is treated. Tchen's method of approach is different from ours, although some

of the results are complementary.

2. SIGNIFICANT FORCES ACTING ON A PARTICLE

An important step in the study of the motion of material particles
which are suspended in a turbulent fluid (either liquid or gas) is the re-
cognition of all the significant forces experienced by the rapidly fluctuating
particles. ©Some of these forces that are relatively insignificant in normal
experience may become important when they are scaled to the mass and size of
a minute particle which is of the order of 5 x 107t g for a one-micron

(107

cm) particle with specific gravity of unity.

In order to analyze the problem, we assume that the suspension of
material particles 1s so dilute that every particle, spherical in shape,
behaves as if it were alone in a fluid medium of infinite extent. Further-
more, we restrict this study to the one-dimensional case. This should not
be a serious drawback for the purpose of exploring the fundamental mechanism
of particle dispersion in an isotropic turbulent fluid.

The forces acting on a particle in a turbulent fluid can be

classified as follows:

Extraneous Forces EiF.-—These include forces due to gravity,

buoyancy, and the thermal field and electrostatic field, if such fields



exist. We are not concerned here with the detall analysis of these forces
which have been discussed elsewhere (Green, 1953).

Fluid Resistance.-—-Stoke's formula is adopted for the fluid re-

sistance to a spherical particle
Dy = brap(V - U) (2.1)

where a is the radius of the particle, and p is the coefficient of fluid
viscosity; V and U are velocities for particle and fluid, respectively. It
should be noted that Stoke's formula holds provided (V - U)a << v, where
VvV = ppo'l is the kinematic viscosity of the fluid, p, being the density of
the fluid. This constitutes one of the governing factors concerning the
particle size range for which the present analysis is valid.

There is an additional fluid resistance which is attributed to the

relative particle acceleration [V(t) - U(t)] (Bassat, 1910; Tchen, 194T).

_ ¢ t V() - UCE) el . .
Do e —K—V—U—f t-g)/2 at (2.2)

For a sinusoidal motion, i.e., (V = U)~ sin wt, where ® is the

“1/o

- 1
angular velocity of fluctuation. DzD;3 * is of the order aw /2v , which
is in general negligibly small unless wv™t happens to be very large, such
-1 -2

as v “ o~ a .

Fluid Inertia.-—The pressure gradient, which is induced by the

acceleration of fluid, causes an apparent mass addition, (2/5)ﬂa3po, to
the particle in addition to a pressure force of magnitude Enaapoﬁ (Tchen,
1947).

The random molecular impacts which produce Brownian motion of

the particles are not considered until Section 8.



3. EQUATION OF PARTICLE MOTION

In view of the discussions in Section 2, we can write the equation
of motion of a dynamic particle with density pi; which is suspended in a

turbulent fluid in the form

4 A Ey(e) - U(e). 3, 1
5 % (on + B+ G E’ [ g)l/z’)d%"znaapoU T

(3.1)
To simplify (3.1), we introduce the transformation
U = ﬁ +u
. (5.2)
V = V+v

where ﬁ and V represent the mean values of U and V, respectively; u and v are

the fluctuating values such that

u = 0
_ (3.3)
v = 0.
Furthermore,
V = -ﬁ + Vd (5')4»)

where Vg = (6 nap)™t SF is equal to the particle drifting velocity due to
the stationary extraneous forces L F. This is obvious in view of condition
(3.3).

Equation (3.1) thus becomes

tov(e) - ulg) } .
JC z;—t—gsz7;— d%} 5Dou = 0. (3.5)

-00

pP1 + Pp) V + V - u 4 —
(201 + po) ¥ + 2 ey
a (T(V) 2

The equation of particle motion (5.5), which involves random

function u(t) which in turn is prescribed only by its statistically defined



properties, is called a stochastic differential equation. The ultimate aim
of solving a stochastic differential equation is to seek a probability dis-
tribution such as W(v,t,vo) which governs the probability of occurrence of

the random velocity v at time t given that v = vo at t = O.

Because of the measurements made by Simmons and Salter (1938) and
Townsend (1947), u(t) of homogeneous and isotropic turbulence is known to
have a Gaussian distribution within experimental error. It can be shown
that v(t), which is linearly related to u(t), will also have a distribution
of Gaussian type.

To prescribe a probability distribution of a Gaussian process, we
need to know only the mean value and the variance of the random variable in
question (Creamer, 1946). The former vanishes in view of (3.3). The var-
iance, GETES, alone is fequired to prescribe the probability distribution
of v(t).

It is further assumed that u(t) is stationary or statistically
homogeneous with respect to time. This is true only when the decay of
turbulence is negligible.

Various statistical properties of the randomly fluctuating
quantities to be discussed in the following are averages taken over the
fluctuations of an ensemble of macroscopically identical systems (ensemble
average). In physical measurements, the time average of the quantity taken
over the fluctuations of a single system usually is the only feasible ex-
perimental average. It has been shown by Birkhoff (Kampd de Fériet, 1950)
that, for a stationary process, the time average of a fluctuating quantity,
if taken over a sufficiently long time, will agree wifh the ensemble aver-

age.



4, MATHEMATICAL REPRESENTATION OF THE TURBULENT VELOCITY

Consider a truncated stationary function u(t) such that

Il

up(t) 0 when [t| > T

up(t)

]

ut (t) when |t] <T

where T is long compared to the scale of turbulence (Lagrangian). The quan-
tity uT(t), being stationary and continuous in mean squares, possesses a

Fourier expansion

up(t) = -(—271)-1-7-2-f°° 1% A (w)aw (4.1)
where
Alw) = 11 T ™% yr(t)at . (k.2)
(2“) /2 Jf

To describe the sequential behavior of a random process, the
spectrum density and autocorrelation function are generally used.

In view of the Parseval theorem (Wiener, 1933),

fm up-(t)at = fT up?(t)at = fw NI (4.3)
=00 -T

«00

Since |A(w5]2 is an even function of w,

w?(t) = Lim éf
T+ oo

fm la@)l 2aw = meA_i‘%’)_lfdm . ()
o]

For a stationary random function u(t), u®(t) has a constant value.
2 .
The quantity IA(w)l T l, therefore, tends to a definite limit and is de=-

fined as the spectrum density py(®w) of the random function u(t).



From the physical point of view, Fourier analysis of the turbulent
velocity field amounts to resolving the motion into components of different

linear sizes which make additive contributions to the total energy,

20 - [ s (h.5)

o

Consider next the autocorrelation function ¢u(T);

fo(x) = FEMETT) - LimE [ ult)ult + v)as (4.6)
T 2T T

which has the following properties:

g.(0) = w3(t) , (4.7)
Lim §y(r) = 0, and (4+.8)
o0

d.(r) = ¢u(-’r) . (4.9)

The following relations between ¢u(T) and p,(®w) are known as the

Wiener-Khintchine theorem (Wiener, 1933):

g lr) = ) y(@)cos wr dw (+.10)
u JC b
and
Pu(w) = ‘% J[ ¢u(T) cos wr 4r (+.11)
0

from which it can be shown that

g Pu(w)wzo = foo ¢ (v)ar . (k.12)

0O

Successive differentiation of ¢u(T), both (4.9) and (4%.10), gives



(g;%%)Tzo = —g/ﬂw wzpu(w) dw (4.13)

O

which relates the derivative of the autocorrelation function at 7 = o to
the second moment of the spectrum density.

The above discussion represents a brief resume of some pertinent
results of the theory of random functions which will be needed in the fol-

lowing discussion.

5. SOLUTION OF THE PARTICLE EQUATION

The fact that u(t) can be adequately répresented by a qurier
integral and that Equation (3.5) prescribes a stable linear system suggest
the use of the generalized harmonic analysis approach (Wiener, 1933; Lin,
1943).

It is obvious that the response v(t), will have fluctuations
similar to those of the input function u(t). We resolve u(t) and v(t)

into Fourier components

1 © iwt
and
v = 1 ” el0t B dw . .2
(t) - fw (o) (5.2)

Substitute (5.1) and (5.2) into Equation (3.5), leading to

_ Blw) _ 1
“Lp 17Pol' 3 wa? (a>a2) ]



The function W(w) denotes the ratio of the sinusoidal component
velocity of the spherical particle to the corresponding component velocity
of the fluid element at the position of its center when the spherical parti-
cle is absent. |

So far the analysis has been carried for an arbitrary fluid
medium, liquid or gas. The function y{(w) may be simplified for some
special cases.

Nonviscous Fluid.--~When the viscous effect of the fluid is negli-

gible compared to its inertia effect, y(w) becomes

_ 3P0
\V - 20 l"""po ¢ (5')4')

The function ¥ is, therefore, less or greater than unity according as p;
is greater or less than pg.

When aml/2v-l/2 << l.=In most problems concerning turbulent dis-

‘ . 1 -1
persion of material particles, it becomes valid to assume aw /2v /2 < 1.

Hence,

1

yw) = 1- 5 Toov . (5.5)
1l -5 ) '
I: 2 (py = po)wa2]
If wa®v™', though itself small, is large compared with py(p; - po)'l,

w(é) may become very small. This means that the spherical particles remain
nearly at rest as the turbulent flow beats upon them.

When the radius of a particle decreases, the inertia diminishes

3 2

as a°, whereas the surface on which viscosity acts diminishes as a“ only.
It is therefore to be expected that a stage will be reached when y(w)
approximates to unity, in which case the particle drifts to and fro with

its corresponding fluid element in an identical manner. In other words,

the particle dispersion can be completely identified by the turbulent fluid



diffusion. This condition is satisfied provided

2<<g_£’2-__1’- ] (5.6)

For a water droplet in air fluctuating with a maximum frequency of sinu-
soidal component air motion of one cycle per second, the limiting radius

of the droplet should be much less than .0l cm.

Now, from (5.2) and (5.3), we have

1 f°° eIt () Alw) o . (5.7)

ey

In view of the Parseval theorem [see also (4.4)],

-z - [m |W(w)|2T|A(w)|2 o
= f |‘lf(a>)|2pu(w) dw . (5.8)
(o]
Hence,
(@) = || pyl) . (5.9)

Since y(w) generally vanishes for w—w, py(w) the spectrum density

of v(t), will go to zero for m—» faster than py(w) will. This has the

effect of "smoothing" the particle velocity function v(t) as compared to

u(t).
By the Wiener-Khintchine theorem [see (4.10) and (4.11)],
() = (@) vt +1) = Jf 'w(w)lzpu(w) cos WT dw (5.10)
(0
and
Pv(w) = ;2;\/j @,(7) cos oF dv . (5.11)

o]

10



Py, = [ flar . (5.12)

0
It can be shown that

Py@yy = Pul@dpsg

[see (5.3)]. Hence,

|

in view of the result: V(®),, =

f w¢u(r)dv

e}

I

fw¢v<-r)dv : (5.13)
(o]

It is well known (Dryden, 1939; Batchelor, 1949) that when the

diffusion time t is very large, the turbulent diffusion of a given initial
distribution of marked fluid in a homogeneous isotropic turbulent field can
be closely represented by a Fickian-type diffusion equation with the diffusion
coefficient proportional to the integral on the left-hand side of (5.13).
The conclusion as represented by (5.13) therefore justifies the use of the
same diffusion equation to prescribe the dispersion of the particles as
well as the marked fluid, provided that t is very large (see Section 6).

It should be noted that a result similar to (5.15) has been

previously obtained by Tchen (1947) by a different method.

6. PARTICLE DISPERSION

The variance of the displacement y(t) has been commonly used
(Taylor, 1921) as a statistical property of turbulent diffusion. The
corresponding parameter for particle dispersion can be similarly derived

(Kampé de Fé}iet, 1939; Frenkiel, 1953):

y2(t)

t
2 u/\ (t - 1) vit)v(t + 7) ar . (6.1)

0
11



Substituting (5.10) in (6.1), we find

t o0
y2(t) = eu/\ (t - T)U/‘ lv(w)‘zpu(w) cos wr dw (6.2)
o o

Interchanging the limits of (6.2) and integrating it by parts, we get

PO = [ )| yle) Bags ) gy L (6.3)
o}
In comparison with the result for turbulent diffusion (Kampé de

Fériet, 19%9) which applies only when condition (5.6) is satisfied, the
dispersion parameter, as expressed by (6.3), for larger particles has &
weighing factor lw(w)‘z in the integrand. As y(w) generally decreases
monotonously and vanishes when w—w. The properties of the dispersion
associated with eddies of different sizes will be presented in the qualita-
tive sense. For instance, eddies of low frequencies contribute most to

particle dispersion when t is large.

The properties of yZ(t) at

od

(1) t > ¢, (v)az

0~

and

ti1) £<< f g, (r)ar
(@]

can be investigated by rearranging Equation (6.1)s

For case (i) write

2(¢) = 2t " g (t)ar - 2 ) 1@, ()T . (6.4)
; [ tter -2

Q

The second term on the right-hand side of (6.4) represents the first moment

of the correlation function and is a constent. Its significance, as compared

12



to the first term, diminishes as t increases. When t is very large

—_ oo
y2(t) =~ Et\/n @, (r)ar 21:\/\oo By(r)ar (6.5)
(o) o}

in view of (5.13). The quentity (2t)~'y2 can be shown (Kenard, 1938) to be
equal to the dispersion coefficient of a Fickian-type equation when t is
very large.

For case (ii), expand @, (7) into a power series in T, and note
that ¢V(T)t=0 = v2, Therefore, we obtain from (6.1), after substituting

(4.13) and (5.8),

—————

2w = 62 [T o) e - B [T ve) %@ . (6.6

0 o

The second term on the right-hand side of (6.6) becomes very

small, compared to the first term, when t is very small. Hence,

FE # 2 [ ) . (6.7)

O

When particles are dispersed from a fixed source, the variance
y2(t), or rather its square root value, indicates the size of the cloud
of dispersion at time t.

T. PROBABILITY DISTRIBUTIONS

Following the discussion of Section 3 we can write the probability

density for v(t) (Cremer, 1946):

= —————l—-——ex - _f .
Wv) = =Ty p = (7.1)

15



Introduce (3.2) and (3.4), so that

W) = -——]-'-T]- exp E v - ﬁ_'_ Vd)z] . (7.2)
) 2

(2nv2

A similar probability density for y(t) can be written if it is
known to be a Gaussian type. It is expected that when t is sufficiently
large, the random variable y(t) should have a Gaussian distribution in view
of the central limit theorem (Batchelor, 1949), in which case, according

to (3.4),

] _ 1 (y - Ut - Vat)?
W = A d

The probability density W(y;t) represents the spatial (one-dimen-
sion) distribution of the mean concentration of the particles. The practical
applications of the probability density W(v) will be found in the treatment

of coagulation and impaction problems.

8. RELATION BETWEEN TURBULENT DISPERSION AND BROWNIAN MOTION

Brownian motion of particles is attributed to the direct molecular
impacts whose frequency, in a liquid, is in the order of 102t per second.
From the very definition of fluid elements as comprising a continuous
medium, one can justifiably assume that the random forces due to molecular
impacts and those due to turbulent impacts are statistically independent
sets of forces insofar as the dynamics of particles is concerned.

It is known in the theory of random functions that the spectrum
density of the sum of two or more independent random functions is the sum
of the spectrum densities of the random functions separately. Hence, the
total motion of particles can be obtained by using the total spectrum
density.

1L



It can also be shown that the particle displacements due to
Brownian forces and those due to turbulent impacts are statistically inde-
pendent. Therefore, the variance of the total particle displacement is
equal to the sum of the variances of the partial displacements due to

Brownian forces and turbulence, respectively.

9. ILLUSTRATIVE EXAMPLE

In the discussion so far, the question of the actual shape of the
turbulence spectrum density function has been left open. The only restriction
is that the integral, which involves the spectrum density function, must
converge. This indeed simplifies the discussion of the general problem.

The final answer, however, can be determined only after the turbulence
spectrum density is prescribed.

Consider the spectrum density

2 B -
= 2 _ 0 42
w = u .1
Pu( ) T, + 0 (9-1)
where wy is the characteristic frequency of fluctuation whose corresponding

autocorrelation function @,(t) can be shown to-be of the form

Fu(t) ~ exp (--L%L)

where L is the Lagrangian scale of turbulence.

We do not wish to stress the importance of this spectrum, though
measurements (Dryden, 1938; Liepmann, et al., 1951) indicate that (9.1)
represents a close approximation of the spectrum density of some turbulence
fields.

Let

B = 2FP17FPoa? (9.2)
9 o

<|

15



From (5.5) we obtain

|W(w)l2 = if:%?;;gg (9.3)

Substituting (9.1) and (9.3) into (5.8)

— (o]
- 2u2 d/\ 1 o
v = — | . dw . (9.4)
o 1+ p%” w02 +

Equation (9.4) becomes, after integration,

-_— ul

2 _  _us
v l + Bwo (9'5)
Similarly, from (6.3), we get
T2
y2(t - )-\L f 1l = cos wt do . (9‘6)
1+ 6 Z o2 + 0 0P

Equation (9.6) can be reduced to an integrable form by resolving its integrand

into partial fractions. Thus,

y2(&) _ 2 2 i 283w ) jl
= = ot - [ FPE)er [1 - exp(~wot)] +———°—— 1 - exp(- (9.7)

——

The quantity y2(t) approaches 2u2t(a>o)'l when t approaches . This checks

with the general conclusion given in (6.5) because

® 2
2u
2t Jf gul(rlar =  mtpylw),_, = bt .

When t is very small, yz(t) becomes approximately

5
) N u 2  _ TZ .2
v2(t) 7 T4 Foog t = v@t

which again checks with the general conclusion given in (6.7).

16



More discussion concerning the properties of the spectrum density
(9.1) can be found in works on diffusion (Kampé de Fé}iet, 1939; Frankiel,

1953) and on Brownian motion (Wang and Uhlenbeck, 1945).

10. PRACTICAL APPLICATIONS

Physical problems of turbulent dispersion generally involve motion
in three dimensions. To generalize the simplified (one-dimensional) analysis
to the general case (three-dimensional) would not present any difficulty if
one can be certain that the random particle velocity components are statis-
tically independent. This condition can be guaranteed when the turbulent
velocity components are statistically independent [see Equation (3.1)].

The latter has been generally assumed for the case of homogeneous isotropic
turbulence (Frenkiel, 1953).

The present theory can be applied to problems of two general types.
The first is the calculation of the dispersion of particles emitted from a
fixed or moving source in a turbulent atmosphere, the spectrum of which is
known. The dispersion of pollens can be considered as a typical example.
Secondly, by measuring the dispersion of a cluster of floating "particles"
one can calculate the turbulence spectrum of the atmosphere in which the
particles are embedded. The "particles” here act as "filters" to component
motions of turbulence. The latter can be conceived in a method of measuring
clear air turbulence by tracking the dispersion of floating balloons or
other artificial 'particles,”

The present study also establishes the basis of an analysis of
more complicated problems such as the coagulation of particles and their

impaction on surfaces which will be treated in another paper.
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TABLE OF SYMBOLS

U =  fluid velocity
U = mean fluid velocity
u(t) = turbulent fluid velocity fluctuation
V4 = particle velocity
v = mean particle velocity
Vi = 25 _ Dparticle drifting velocity due to stationary extraneous
d = Bmpa forces XF
v(t) = particle velocity fluctuation
y(t) = particle displacement fluctuation
T
¢u(T) = j;d[ u(t)u(t + 7)ar
2T
-T
g, () L [T vt e
T = = vit)vit + 7)dr
v oT
-T
py(®) = spectrum density of u(t)
py (@) = spectrum density of v(t)
w = angular frequency of fluctuation
a = particle radius
P, = particle density
Po = fluid density
M = coefficient of fluid viscosity
v = u/po = kinematic viscosity
8 - 28%p1 - po
9 v Po
o)
¢u(T)dT
L = o = Lagrangian scale of
— B
[w2(t)] 2 [w2(t + 7)1*/2 turbulence
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