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ABSTRACT

TECHNIQUES FOR ESTIMATION OF THE AREA
OF INTEGRATED DIGITAL CIRCUITS

by

Wen-tai Liu

Chairman: Daniel E. Atkins

This dissertation describes a sub-system of an Arithmetic Design System
(ADS) which is intended to estimate figures of merit for a particular arithmetic
design at the VLSI technology realization level. We emphasize the gate array, the
programmable logic array (PLA) and the general cell approach. The fact that the
design processes are so time consuming motivates us to develop estimation
methods for figures of merit (i.e. area) resulting from design characteristics.
These estimates offer advice which avoids wasting design time to achieve only a
small amount of improvement. We develop the estimation methods for the gate
array and the PLA approaches. In both cases, Rent's relationship represents the

design characteristics.

In the gate array approach, we propose a point model for the layout study
and show both the final area and the average interconnection length increase as
Rent's exponent r increases. In the PLA approach, based on a partition model for

the folding process, the saved area ratio d is shown to be bounded by
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We propose a constructive layout approach for the general cell model,
which is needed to map the hierarchical design description into physical struc-
tures. The routability problem and channel router are particularly discussed in
detail. The minimﬁm condition set for the routability test and channel routing
order generation algorithm are derived by using a graph model to represent all
the legal routing orders. The routing process can be entirely completed by
sequentially applying a channel router to each channel according to the routing
order. The new channel router consists of two graphs, namely the interval graph
Gy and the constraint graph Gg, which represent respectively the overlap and
constraint relatioms among the nets. The reduced gréph G; is formed by remov-
ing the constraint edges from the complement of Gy The rout?:r chooses the best

candidate from the dynamically updates G;.
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CHAPTER 1

INTRODUCTION

This thesis describes a sub-system of the Arithmetic Design System (ADS).
The main pui‘pose of the sub-system is to provide tools for estimating the figures
of merit for a particular arithmetic design at the realization level. The Arith-
metic Design System can be described at three levels , namely the application
level, the arithmetic design level, and the realizalion level. At the realization
level, we will focus on VLSI technology. Area and time complexity are the impor-

tant figures of merit to be considered in VLSI design.

The research is concerned with obtaining estimates of the silicon area
required for the layout of a given logic circuit. The goal is to account for both
device and the interconnection areas and to produce the estimate with respect

to a reasonable layout (placement and routing) procedure.

In addition, we are concerned with finding estimates of propagation delay.
A typical‘aésumption in the current literature is that minimization of the aver-
age interconnection length tends to minimize the total layout area. We will
dérive quantitative relationships between layout area and interconnection

length. For the "point model” in this thesis, our analysis shows that the assump-

tion is true.

How do we devise a method for estimating the area or the interconnection
length of a design ? In fact, there are numerous design spaces as well as design
methodologies. | It is impossible to devise an estimation method spanning all the
design spaces and design methodologies. For example, the logic description at
the realization level can be a computation graph of the logic devices and/or a

hierarchical partition description. On the other hand, gate array, polycell, and



general cell approaches are viable schemes for the design of complex VLSI and
have the potential to be automated. Since we can map a computation graph of
the logic devices into a gate array scheme, and a hierarchical description into
general cell scheme, we restrict ourselves in this study to developing the neces-
sary estimation tools for the gate array and general cell approaches. Keeping
this in mind, we develop two models namely a point model and a rectangle
model. The point model represents the gate array approach, while the rectangle

model represents the general cell approach.

The two approaches require different sophisticated layout processes. In
general, layout is a process of mapping the logical structure into the physical
structure of the design. Placement and routing are two aspects of the layout.
They interact strongly. The way in which the modules are placed may dramati-
cally affect the quality and the routability of the routing process. The global
nature of even a single aspect of the layout can make the problem difficult. For
example, the way a single net is routed affects the potential solutions for the
others. Ideally, for each design approach, there are two extremes to choose

from:

(1) enumerating the routing process associated with each given placement and

choosing the best or

() accurately estimating the area required for routing in a placement without

doing the complete routing.

However, in the current literature, the interaction between placement and rout-
ing processes is poorly understood. The two extremes seem to be unrealistic, We
offer a constructive approach ,namely, to develop efficient algorithms to give

figures of merit for the layout process.

In regard to the general cell approach, a hierarchical description is parti-

tioned and then translated into a network of Programmable Logic Arrays (PLAs)



because PLAs have been used frequently to implement both control logic and
data path. There are, of course, problems of partitioning and placing the PLAs.
The partition préblem is very difficult and has been studied by other research-
'ers. Hopefully, we can get insights into partitions through techniques developed
in the thesis. At present we assume that a partition into PLAs is given, and we

concentrate on the related placement and routing problems.

Chapter 2 gives a literature review in which we emphasize the development
of the gate array approach and the general cell approach. The fact that the lay-
out processes are time consuming motivates a thesis philosophy. Keeping the
thesis philosophy in mind, we discuss the results associated with gate array,

PLA, and general cell layout methods in the following chapters.

Chapter 3 describes a gate array model and a rectangle model. Our gate
array model consists of an array of lattice points and has only one unit width for
both vertical and horizontal channels. The circuits are placed at-the set of lat-
tice points while the connections are mapped to the channels by a placement
and routing procedure. We also define the area bto be the smallest rectangle
enclosing the lattice points. The analysis shows that both the area and average
length are functions of Rent's exponent of the circuit. The results indicate that
the interconnections contribute a significant part to the layout area. We also
define the circuit elements and channels associated with the rectangle ( general
cell) model. The problems associated with the general cell model are then for-
mally defined. We also survey the related literature for the general cell model.
Finally, a layout approach for a general cell model is proposed. In this approach,

we discuss the subproblems and propose a strategy for them.

Chapter 4 rigorously treats the routability problem in the rectangle model
in terms of graph theory. The goal of the placement procedure is to avoid creat-

ing unroutable channels and to minimize the circuit area. In this chapter, a suf-



ficient and necessary condition for testing the routability of a placement is
given. Under this condition, we compare with and criticize previous published
methods. Our method is the most complete and efficient method as shown in
section 4.4. In addition, an algorithm for testing routability and generating the
legal routing orders is proposed. At the end, we propose a method for the gen-
eration of the routing orders in the unroutable layout by breaking some chan-

nels in the layout.

Chapter 5 describes the problems which affect the final area. Among them
are the displacement problem, fopology net assignmenls, the T-shape router,
the cross channel router, and the channel routing problem. In particular, we dis-
cuss and formulate the channel routing problem in detail. The problems are
either with cyclic constraints or without cyclic constraints. By defining an eligi-
ble set, we are able to discuss a class of channel routing algorithms. Graph
theoretic techniques are used to develop a new heuristic channel routing algo-
rithm. For the case without the cyclic constraints, our algorithm takes O(n?®)
steps, where n is the number of connections in the channel. Qur algorithm is
compared with the previous algorithm [1], and gets much better results. Possi-
ble extensions of our algorithm are mentioned too. Some theoretical limitations
for the channel routing problems with cyclic constraints are also discussed. At
the end of the chapter, we study the algorithms for the T éhape router and cross

channel router.

Since PLA is a basic module at the realization level, techniques to reduce
the area should be addressed. Chapter 6 discusses those techniques. Most of
them are very complicated and time consuming. In particular, we develop a
model for predicting the saved area ratio without executing the complex folding
algorithm. Our results are validated by folding the PLA implementation of some
arithmetic functions. In the end, we pose an open problem related to logic

minimization and the folding process.



Chapter 7 summaries the major contributions of the thesis. Further

improvements related to this work are also mentioned.



CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

In recent years, the figure of’merit for a digital design has been shifted
from traditional gate counts [2] toward the final area for the implementation in
very large scale integrated circuits [3]. The major difference between these two
figures of merit is that in VLSI implementations, the interconnections contribute
a significant portion of the final area. It is not uncommon for the area for the
interconnections to contribute more than half of the final circuit area [4]. In
this thesis, the figure of merit is defined as the final area of a digital design. In

other words, the design is discussed in the context of very large scale integrated

circuits.

Advances in VLSI technology has made it possible to incorporate a large
digital system on a single chip. Both circuit complexity (i.e. the number of
gates and their connections) and technology constraints (i.e. design rules as
well as available layers) make the design of VLSI a complicated process, fre-
quently beyond the management capacity of humans. In order to reduce design
complexity, researchers have proposed different methodologies for VLSI design.
These are the manual layout approach, grid symbolic layout, non-grid symbolic
layout, Programmable Logic Array (PLA) approach, gate array approach, stan-
dard cell approach, general cell approach, silicoh compiler, and hierarchical
structured design, etc. In the next section, we will briefly survey these metho-

dologies.



2.2. Layout Approach

A layout process is a process that maps the logical devices and their con-
nections to the physical structures and their corresponding connections. This
generally includes placement and routing processes. In the following section, we
distinguish the methodologies according to whether they have the ability for

automatic placement and routing.
2.2.1. Non-automatic Approach

2.2.1.1. Manual Approach

This is the most straightforward approach. In this approach, the designer
manually finishes the entire design by taking care of logic partitions, chip plan-
ing, shape management of the circuit components, and routing. In the process,
the designer usually uses the interactive graphic system to carry out the layout
in detail. A post-processor is used to check design consistency such as design
rule check and performance evaluation. The natural limitation of this approach
is the extent to which it is humanly manageable. This depends not only the com-
plexity of the design but also on the desigher's experience. While this method

usually produces a compact layout, it is very time consuming.

Since the designer needs to specify every component and interconnection
in the manual approach, the designer manages the shapes of the components
and then puts them together to get a compact layout. One way to reduce the
burden of the designer is to use the symbolic layout method. In this methed, the
designer only inputs a shorthand notation for each component, interconnection,
via etc., according to some layout configuration. Two kinds of symboalic layout

methods are discussed in the following:



2.2.1.2. Grid Symbolic Layout

The method divides the plan into equally spaced grids. Then the symbols
are placed into the gridded plan. A program transforms the symbols into their
real geometric structure [5], [8]. In this method, the space between thé grids
depends on the design rule governing the technolegy. Usually, there are many
layers with different minimum legal spaces. A biggest minimum layer space is
chosen for the common grid space such that the design does not violate the
design rules. Under this restriction, some portion of the layout may be sparse.
To removed this disadvantage, a non-grid method is proposed. The quality of the
final layout in this method still depends on the designer's ability to input a

dense symbolic layout.

2.2.1.3. Non-—grid Symbolic Layout

In this method, the designer only specifies the relative placement and inter-
connections of the symbols in the entire circuits. For example, in the stick
diagram system [7], the line represents an interconnection, while the intersec-
tions of lines represent devices. In general, this method allows the designers to
do topology planning. It then requires a set of compaction and expansion algo-
rithms to transform the symbols into a final layout. Different non-grid based

symbolic layout systems have been implemented [8], [9], [10] . [11].

2.2.2. Automatic Approach

In the next section, we discuss the methods that can be automated in both
placement and routing process. In general, the methods have regular structures

which are good for automatic processing.

2.2.2.1. Programmable Logic Array

Figure 2.1 shows a PLA floor plan in which input and their complement lines

run vertically through the AND-plan, while the product terms are represented by



horizontal lines run through both AND and OR plans. The output lines run
through OR plan vertically by connecting each output line to a set of selective

product terms. Figure 2.2 shows the electric circuit model.

- —_— ——— —
\ N
N 1 pull-un N
\ | . \ N
\l DN N q R
\ s | RN N |
N [ - I\ a N | R
N (u]c = \ E N
NIRE 5 \ = Q| N
\ N = N | N
. o}
N |y | ==\ N | N
N AN N [ N
\ N\ Y
N i — =~ =CLE
N CS \ =\ N\~ 3 I-“(
N P —— GND
\ Input Output
v Priver Driver Mecal
CLX—""4{T—~—
Inputs Outputs
Figure 2.1 A PLA Floor Plan
£.. =casacitance ° "
‘i along 75 hatn ] o0
€, mcapacicance l I I
.L along % '
— ! { ! ! 4
TR N s I
9] = A
T T
<L | =
—_ >
VDD X "'xi'”K}\ Tdeeeead L...ZL
Inpue Quedut
oriver driver

Figure 2.2 The Electric Circuit Model for PLA

Programmable Logic Arrays (PLAs) are used frequently to implement con-
trol logic, and are increasingly being considered as an implementation mode for
the datapath [12] and advocated as a viable methodology for VLSI designers
[13]. Although PLAs are generally considered to be wasteful of silicon area in
comparison to random logic, they offer a éonceptual and structural regularity

which is quite attractive for VLSI design. Optimization to reduce area and delay
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can be automatically applied to the structure in a manner which is transparent

to the logic designer.

Conventional PLA designs are characterized by three factors: number of
inputs, number of outputs, and number of product terms. Statistical results
[14] show that typical personalization densities for the conventional AND and OR
arrays are 10 percent and 4 percent respectively. Such sparse densities
together with long delay time are two major disadvantages of PLA-based design
styles but numerous schemes have been proposed to improve the area efficiency
and performance of a PLA. These include the two bit decoder [15], phase selec-
tion [15], logic minimization [15], and PLA folding [14]. We will discuss tech-
niques in the later sections. Some of the techniques such as logic minimization
and phase selection have been developed over a long time. On the other hand
techniques such as the two bit decoder and folding were developed following pro-

gress in VLSI technology.

2.2.2.2. Gate Array (Masterslice) Approach

In this method, some basic circuit components are placed and prefabri-
cated on pre-defined slots arranged in rectangular arrays, and are separated
from each other by areas (vertical and horizontal channels) through which inter-
connection wires may be run. A classical random logic design can be imple-
mented automatically in a gate array chip by using placement and routing pro-
cedures. Automatic algorithms for both placement and routing processes are
available [16]-[19]. One paper [20] reports that the placement time is almost
linear with the number of circuits to be placed. A major problem associated
with this approach is how much space should be reserved for the wiring in both
vertical and horizontal channels. Several researchers have worked on this prob-

lem [21], [22]. Figure 2.3 shows a schematic diagram for a gate array.



11

[ VERTICAL CHANNEL

T
CELL

=——HORIZONTAL CHANNEL

Figure 2.3 A Schematic Diagram for a Gate Array

2.2.2.3. Standard Cell (Polycell) Approach

A schematic diagram of the standard cell approach is shown in Figure 2.4.
The chip plan-has been divided into several rows separated by a set of horizontal
channels. Each row contains several standard cells. Each cell in a row has the
same height but variable width. The cell represents a group of logic gates or a
function unit. In this method, a placement procedure assigns the logic gates to
the standard cells. A routing procedure then performs the interconnections by
connecting them through the horizontal channels and some feed-through cells.
Reserving enough space for routing in the horizontal channels is also an impor-

tant problem. Both placement and routing procedures have been intensively
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studied and can be fully automatic in a successful system [23].

STANDARD
CELL

ROUTING
CHANNELS

Figure 2.4 A Schematic Diagram for the Standard Cell Approach

2.2.2.4. General Cell Approach

A general cell is a cell with no restriction on its height and width, and no
restriction on the location of its input-output pins. Building blocks like the PLA
and ROM are general cells. Since the complexity of VLSI circuit is increasing
rapidly, the general cell approach is viable for designing complicated circuits
(R4, 25], [28], [R7]-[R9] ., [30], [31], [32], [33]. The general cell approach to
layout consists of a placement procedure and a routing procedure. The place-
ment procedure gives the relative positions among the building blocks and pro-
duces a rough layout. Before doing a final routing procedure we ask the question
"Is the rough layout routable?" The problems associated with this approach are
numerous, and suffer from being neither rigorously treated nor intensively stu-

died. Since the general cell approach is an important model for developing esti-
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mate techniques, in section 3.3.3, we will in section 3.3.3. intensively survey the

problems associated with the general cell approach.

2.2.2.5. Silicon Compiler

The silicon compiler is a process to translate a design description into a lay-
out. Bristle blacks [34] is a typical silicon compiler. It is a system for construct-
ing a microprocessor data path. The data path consists of functional elements
strung along two horizontal busses. Functional elements are the shifter, regis-
ter, 1/0 ports, ALU etc. A functional unit consists of a group of basic cells
stacked vertically. On the bottom, a decoder decodes the externally supplied
microcodes and generates the necessary symbols to control functional ele-
ments. Since the cells are parameterized, the bristle blocks can generate the
layout of the desired data path by specifying the width of a data path, the kinds
of cells, and the microcodes. One special feature associated with bristle blocks is
the sirefching ability, and hence connecting by abutment, of the functional ele-
ments. Small elements are stretched to make connections, lengthen the vertical
wires inside the elements as necessary to reach the horizontal bus. Since the

floor plan has been {ixed, this approach has limitations for general digital

design.

2.2.2.6. Hierarchical Structured Design

This design approach is advocated by Mead [3]. The design style
emphasizes the consideration of overall context. The design is carried out in
several hierarchical levels by choosing the most suitable layout scheme on each
level. In this method, small modules are fitted into large fnodules. Placement is

predetermined by overall consideration and routing is done through the abut-

ment of modules.
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2.3. Layout Approach Used in This Thesis

The common goal of the various layout methods is to map the logical dev-
ices and their connections into physical structures such that the final area is as
small as possible. A survey of the method reveals two facts: 1) each method has
its own limitations; 2) each layout method is very time consuming. Each method
has been decomposed into several subprocesses. Again, each subprocess is also

time consuming. This motivates the following thesis philosophy:
Thesis Philosophy.

Given a logic design, can we estimate the figures of merit (average or the
worst case) resulling from the process or the subprocess by extrocting
some characteristics of the design ? If the answer is posilive, we propose
some model and do the estimations. If the answer is negalive, we use a con-
structive approach by developing a set of efficient algorithms to estimale

or even exactly compute the desired figures of meril.

Since the processes or subprocesses are time consuming, not every design
instance deserves going through the processes. The first part of the philosophy
has the merit of advising the designer to avoid wasting time by just getting a
small amount of improvement. In this thesis, the results relating to the gate
array and PLA follow this philosophy. The nature of the hierarchical descrip-
tions in the ADS cannot fit the gate array and PLA layout approach. We need a
general model to map the design descriptions into physical structures. This
motivates us to develop the rectangle model which is the same as the general
cell approach. Since the general cell approach is a very complicated process,
this motivates us to use the constructive approach which follows the second part
of the philosophy. In summdry, the thesis investigates the techniques for reach-
ing the goal outlined in Chapter 1 under the thesis philosophy in this section. We

discuss the problems associated with the gate array, PLA, and general cell lay-
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out methods. Detailed discussion of our work is given in each chapters.



CHAPTER 3

MODELS AND CONSTRAINTS

3.1. Introduction

This research is concerned with obtaining estimates of the silicon area
required for the layout of a given logic circuit. The goal is to account for both
the device and the interconnection areas and to produce the estimate with

respect to a reasonable layout (placement and routing) procedure.

Moreover, we are concerned with finding estimates of propagation delay. A
typical assumption in the current literature is that minimizing the average
interconnection length tends to minimize the total layout area. For the point

model in this thesis, our analysis shows that the assumption is true.

In this thesis we study the problem under two particular models, namely a
Point Model and a Rectangular Model. They represent two viable schemes for
designing complex VLSI. The point model represents the gate array approach,

while the rectangle model represents the general cell approach.

3.2. Point Model and Computation Graph

A computation graph is an indirect graph which represents the logical rela-
tions among the circuit modules. In the graph, the nodes represent the circuit
modules, while the edges represent the logical relations. Figure 3.1 is a compu-
tation graph, where we think of both AND and OR gates as nodes. The point
model represents the physical layout of the computation graph. The model

‘shown in Figure 3.2 consists of an array of lattice polnﬁs. Fach lattice point i4
the intersection of vertical and horizontal grids. The circuit modules are

mapped into the set of the lattice points. The interspace between two

16
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consecutive grids is for the interconnection. In order to make the analysis of the
layout area and the routing length tractable, we allow only one unit width in
each interspace in our model. The design problem becomes that of finding an
efficient method to map the computation graph into the point model and then to
predict the figures of merit associated with the proposed mapping method.
Both Donath [35] and Feuer [36] derived the average routing length of a circuit
layout as a function of Rent's exponent of the circuit without the unit width res-
triction. In other words, their results are normalized by the channel width, and
hence are not exactly the real length. Moreover there are deficiencies in their

results, which will be discussed in section 3.2.5.
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Figure 3.1 Eight Bit Carry Look-ahead Generator.
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VERTICAL CHANNEL

GATE
(THINK OF IT AS A POINT)

HORIZONTAL CHANNEL

_ |

Figure 3.2 A Point Model

In accomplishing the mapping of the computation graph into the point
model, we propose to apply the "divide-and-conquer" technique to the layout
strategy. Based on this technique and its implied Rent's relationship, we can
derive the final area and average routing length for a circuit. Divide-and-
conquer techniques, widely used in tackling complex problems are being studied
for their application to the IC layout problem. The use of divide and conquer
techniques implies the need for an algorithm (for example, a Min-Cut algorithm)
to partition the computation graph and a procedure to reconnect the parts

under some specified criteria.

Rent's rule [37] provides a relationship between the number of terminals
and number of gates in a 6omputation graph (logic network). It appears to be
useful in deriving estimates of the number of interconnections required between
subnets of a partition logic net (computation graph). This information together
with a layout strategy provides estimates of the circuit area and the average
routing length. The analysis of the point model are based on the following

assumptions:

(1) Rent’s relationship holds in every level of the partitions.
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(2) The features of the point model are useful.

(3) The layout strategy is efficient.

3.2.1. Area and Routing Length

We define the area to be the smallest rectangle which encloses the set of

the mapped lattice points.

The routing length for two connected modules is the manhattan distance

between two objects connected together.

3.2.2. Layout Strategy

Since we are interested in the approach to partition the computation graph
and to reconnect the parts under the partitions as shown in Figure 3.3, we are

looking for some layout procedure that uses "divide-and-conquer" techniques.

SUBNET 1 | ° | SUBNET 2

1

Terminals to be connected
between SUBNET 1 and SUBNET 2

Figure 3.3 A Partition Module.

Ullman [38] and Leiserson [39] propose a routing method to connect two
modules shown as Figure 3.4. The method is to add at most two channels in
either directions such that the required interconnections can be embedded into

the added channels. In this method, we have two routing layers for the connect-
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ing channels. One of them is for the horizontal channels, the other is for the

vertical channels.

Figure 3.4 The Connecting Method.

Suppose we put the left module at the lower left corner and right module at the
upper right corner as arranged in Figure 3.4. Table 3.1 shows the required
number of channels to be added in order to connect two modules. Here the

north, south, east, west denote the side of the connecting points in a module.
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Left Right Horizontal | Vertical
' Module Channels Channels
east east 1 : 2
east west 1 2
east north 1 1
east south 1 1
west east 1 2
west west 1 2
west north 1 1
west south 1 1
north east 1 1
north west 1 1
north north 2 1
north south P 1
south east 1 1
south west 1 1
south north 2 1
south south 2 1

Table 3.1 The Required Minimal Added Channels

3.2.3. Rent’s Relationship

The partition of a logic network produces a collection of subnets. Is there
any relationship between the number of terminals and the number of gates (in
general, they can be a block of gates, a chip, etc.) contained in each subnet?
Rent's rule [37] (Dr. Rent of IBM first discovered the existence of the relation-
ship) provides a relationship between them. The relationship had been observed
experimentally by several authors before a serious study was conducted by

Landman and Russo [37]. It has been also derived theoretically by Donath [40]

using a stochastic model.

Rent’'s rule is

T=KCT

where
(1) O=r=<i

(%) T isthe average number of terminals of a subnet containing an average of C

gates,
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(3) Kis the average number of terminals per gate in the subnet, and

(4) 7 is a constant related to the structure and partition schemes of a given

logic network.

Example 3.1:

Given: An B bit carry look-ahead generator shown in Figure 3.1 taken from
[2] , and a heuristic Min-Cut partition algorithm [41] (the Min-Cut algo-
rithm minimizes the connected terminals in the partition. The algorithm

has been implemented in APL as shown in APPENDIX 1)

Find: Rent's relationship for the logic network shown in Figure 3.1.

1 __C
33 29
21 18
17 13
10 8
13 8
11 8
11 5
7 4
B 4
B 4
10 4
B 4
8 4
7 3
4 2
4 2
4 2
4 2
5 2
5 2
8 2
4 2
5 2
5 2
5 2
4 2
4 2

Table 3.2 Terminals and Gates Count in the Min-Cut Algorithm.
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T™=33
C=29

17,18,19,20,21,22,23,24,25,26,27,28,29

21 T=17
C 16 c=13

1,3,4,5,8,10,11,1 2,6,7,9,16,17,19,
14,15.18, 20, 2 ,27 22,23,24,25,26,29

,13

28 .

11 T=10
8 =8

‘ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,

T=13 T= T=1l1

c=8 c= c=5
1,4,5,8, 3,10,14,15, ¢,16,17,19, 2,7,9,
11,12,13,18 20,21,27,22 23,24,25,22 22726
T=7 T=§ T=8 T=10 =8 T=8 T=7 T
C=4 C=\4 C=4 C=\".- C=4 C=—'\4 C=3 =2
1,5, 4,11, 10,14, 3,20,| 6,18, 19,24, 2,7, 2;;,-}
8,13 12,18 15,27 21,28] 17,23 25,29 9 26 |

18} |1y |1s | {271 {21] |28}l1s| 12371 |24
T=4 T=4 T=4 T=5 T=5 T=6 T=4 T=5 T=5 T=5 T=4
C=2 (C=2 (C=2 C=2 C=2 (=2 (=2 C=2 C(C=2 C=2 C=2

Figure 3.5 The Partitions of a Carry Look-ahead

Generator by the Min-Cut Algorithm
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Figure 3.6 The Least-square-error Line for Table 3.2.

The procedure is as follows:

Obtain the set of subnets shown in Figure 3.5 by recursively applying the

Min-Cut algorithm.

Find the average terminals among the rows which have same number of

gates C in Table 3.2.

Plot the terminals vs gates counts shown in Figure 3.8.

Draw a line with the least-square-error.
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Finally, we get the Rent's relationship

T=3.053 08966

Rent's exponent, r, depends on both the partition algorithm and the struc-
ture of the logic network. If we fix the partition algorithm, the variations in r can
be attributed to the structure of the logic network. Russo [42] shows that high
performance networks (those which reduce the number of gate delays) have
large Rent's exponents r. On the other hand, if we fix the logic network, r can be
atiributed to variations in the partition algorithms, and serves as an index of the
relative "figure of merit" of various partition algorithms. The next example
shows that a different Rent's relationship is obtained if the Min-Cut algorithm is
replaced by another partition algorithm. In this case the partitioning is done by
human inspection with an attempt to minimize the number of terminals of sub-

nets.
Example 3.2:

Given: An 8 bit carry look-ahead generator (Figure 3.1), and the partition

shown in Figure 3.7.
Find: Rent's relationship of the generator.

Table 3.3 shows the relationship between the average terminals and the
gates in subnets. Figure 3.8 is a plot of Table 3.3. From Figure 3.7 and Figure

3.8, we get a Rent's relationship

T=3.54C07147
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Table 3.3. Terminals and Gates Count in the Intuitive Partition.

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,186
17,18,19,20,21,22,23,24,25,26,27,28,29

\

1,2,3,4,5,8,9 6,7,16,17,18,19,20
10,11,1R,18,14 21,22,23,24,25,26
27,28,29

/N

1,2,3 45,11,12 6,7,16,17 22 23 24
8,9 10 13,14,15 19,20,21 25.26,27
28,29
1,2.3]18,9,10|4,5,11] |12,13,14l|6.7 |[18,19][22,23]|26,27
15 18,17[20,21] | 24,25|[ 28,29

Figure 3.7 Intuitive Partition of the Generator.
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Figure 3.8 The Least-square-error Line for Table 3.3,

Both partitions produce big Rent's exponents since the circuit is a high per-
formance carry look ahead generator which, as predicted, should have a big
Rent's exponent. Moreover, the Min-Cut algorithm produces a smaller Rent's
exponent than the intuitive partition. One might infer that the Min-Cut algorithm
always prodquces a smaller Rent's exponent than any other partition algorithms.

Unfortunately the following theorem shows that the inference is not true.

Let
t=log T
k=log K

c=log C
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Since T=KC" then t =k +7rc. And since the least-square-error fit is used, the

linear regression model defines the parameter:

Where N is the number of the terminal-gate pair in the plot, i means ith
partition algorithm which generates N data sets, &;(f;) means the average

number of gates (terminals) in ith partition algorithm.

In particular, we are interested in the case that the algorithm divides the
whole logic network into two halves and the effect of shuffling the gates between
two halves. Therefore, we make the restriction that C{=C} =CJ for 1<j<N in

order to prove the following theorem.

Theorem 3.1: For a given logic network, partition algorithm 1 produces a
smaller Rent's exponent than partition algorithm 2 does if and only if
E[c(t,-tg)]<E(c)E(t,-t3), where E(x) denotes the expect value of the random vari-

able x.

Proof:

Necessary Condition: We want to show r; < r, implies that
Elc(t-t2) J<E(c)E(f1-t2).

By definition of r

N o .
j);l(t{ ~ty)(ci{-¢cy)

f (c{-e®)

i=1

=
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Mz

(td—Ea)(cd—Ce)

2 (ct -2
i=1

We are interested in the case:

J

Ta=

'Mz
"‘N

Then r, < ry implies that

J 1

We get E[c(t-tp) |<E(c)E(t-Lp).

Sufficient Condition: It is straightforward by reversing the process for the

necessary condition.

Let algorithm 1 be the Min-Cut algorithm and algorithm 2 be any partition
algorithm. Obviously, t§ = t{ holds for every j. However, the condition E[c(¢,-
tg)]SE(C)E(tl'tg) is not always true. Unfortunately, we get the conclusion that
the Min-Cut algorithm doesn't always produce the smallest Rent's exponent.

However, it can be mechanized and be adapted to our study later.

3.2.4. Layout and Rent’s Relationship

In this section, we study the effects of the Rent's exponent on the area and
the average interconnection length. We study two partition alternatives. We find

that the dependence of the area on the Rent’s exponent holds in both cases:
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(1) Partition approach 1: divide the computation graph into two equal halves.

(2) Partition approach 2: divide the computation graph into four quarters.

3.2.4.1. Partition Approach 1

Suppose that we have found a partition procedure to partition the given

n

computation graph G(n) with n gates into two halves Gl(%) and Gg(g') with >

gates respectively. Then we can use the "divide-and-conquer"” technique to lay-

out the whole graph recursively. Here is the procedure:

(1) Layout Gl(%) with area 4,(=).

w3

(2) Layout G %) with area Ag(

|3

).

(3) Layout the interconnection with the number of interconnections I(n) which
is to be derived in the following.

(4) Merge (1),(R), and (3) to produce a whole layout with area A(n).

Now we are going to use Rent's rule to derive I{n). Since T=KC", then a cir-
cuit with size n, if divided into a set of equal sized subcircuits each of size m, has

total terminals

Ttotm (m)=Km" ( '7%)=knmr—l

The number of the interconnections is proportional to Ty (i.e. lpm(m)=

¢ Tiotqr (M )=cknm™"!, ¢ is a constant. Every interconnection consists of a pair of
terminals if c=—é~). Therefore the number of interconnections connecting two

subcircuits is

I(n)=lom (%)—[total(n)

=ckn|[ -(22 )T_l—'n"‘l]
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=cknn”"1[271-1]
=gn" where k=ck[R!""—1]

3.2.4.1.1. Area to Embed Computation Graph

Before we derived the closed form formula for A(n), we state a geometric

lemma. Theorem 2 follows [39] but with differences which are specially tailored

to fit our cases.

Lemma 3.1: For every rectangle R with aspect ratio op satisfying opnsop<1l

and o, < =, the rectangle R’ as shown in Figure 3.9, generated by putting two

1
2
Rs together in the manner that two long sides are combined together, has

aspect ratio bounded by o;,.

'\/AO'R '\/AO'R R'
R R A
Or

Figure 3.9 Geometric Construction of Lernma 3.1.

Proof:

Suppose that A is the area of the rectangle R, then the length of R is

1(R)=\/ - and the width of R is w(R)=+/Aog. On the other hand, the length of
R
[ ™\ — — : [ N\ e :I
R' is I(R')=2V Aoy and the width of R' is w(R')= P
R

This implies that op= w(R) =1
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1 . 1
& —— —
<3g ( since on >1)

N

Since Opin<

therefore op = —z—i—zamm
R

Theorem 3.2: Let
2

a(n)=2a(%)+2\/.2—t;,-(——'g-31(r1)+[2 (n)=[‘\/—é—a—(—z"2——3+l(n)]

then A(n)= > a(n) is big enough to embed the graph G(n).
min :
Proof:
An]
Op
R
Rv
Rll Rll ’Ain SO.R

N

NEES

Vog

Figure 3.10 Geometric Construction of Theorem 2

(1) Partition recursively by using "divide-and-conquer” to divide G(n) into

Gl(%) and Gz(g). For simplicity, we assume that G; and Gz can be laid out

).

in R'" with the same size A(

©I[3

() Construct a rectangle R' with area=2A(g—) such that the width of R’ is

RN
— RSN
'\/ZA('E)O'R: - and the length of R’ is

VS
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2\/A —)op. respectively., By Lemma 3.1, R’ is still bounded by aspect
ratio opn.

(3) Construct a rectangle R as shown in Figure 3.10 which is similar to R’ and

has area A(n). In this case, og=0p .
(4) Perform routing for I(n) interconnections.
In order to use the layout techniques in section 3.2.2, we must show that
1(R)=1(R")+RI(n)
w(R)=w(R')+2I(n)

Remember that

Op O R Omin

P QLTI ()

NuB) g

Op O R Omin

Va(n)

I(n

V4

OR Omin

=L(R')+ I(n)

=l(R')+RI(n) since >1

OR Omin

Similarly

w<m=\/m=\/4

\/4-—-— '\/—B—t;.-—_)+[ (n))

amm

A B2




>w (R )+2/(n) since Op=0min

This shows that A(n) is big enough.

Note that A(n) is just a constant factor bigger than a(n). We only refer to

a(n) in the later analysis.

— 2

Theorem 3.3: For I(n)=kn", then a(n)=[ '\/Za( —=)+I(n)] has closed form

solutions:

(1) 0$r<—é-. a(n)=0(n).

() r=%,a('n)=0(n),
(3) -%<'rs1,a(n)=0(n2").

Proof:

Take a square root of

— 2
a(n)=[\/2a(Z)+I(n)]
We get a nonlinear recurrence relation:

van)= ‘\/Ba TyiI(n)
Let X(n)=Va(n) then X(n):x/éx(%)u(n).

Suppose n=2N, (ie. N=logyn)

By substitution:
X(n)=VE[VEX(Z)+1(F)]+1(n)

=I(n)+VRI(Z 5 ) VR2I(T 2t (VRNI()
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1 .
=kn’ f: 2(E e

=0

(z-IW+1) 1,
X(n) =kn" (since 2% >1)

(3) %Crsl
(3-T)W+1)
X(n)=gn"|— -
1-2%
X(n)Rgn”
X(n)=0(n")

a(n)=0(n*)

3.2.4.1.2. Average Routing Length

Theorem 3.4: By using ''divide-and-conquer" technique in the layout, the

average routing length L(n) is:

(1) Os'r<%, L(n)=f (r).
(2) r=—é—. L(n)=0(logn).

(3)

é— <r=1, L(n)=0(n?1).
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Proof:

Refer to the following figure, the distance between point (z;,%,) and point
(2.y2) is L+zp—x1+|y,;—ya|. Let Ly and W, denote the length and the width

required for a circuit with 2° components. We derive the average interconnec-

tion length as follows:
The average interconnection length is

Ly=—=%3 2 Y 0 b Ltze—zi+ly-yel
W Lgt T =1z =1y =1y =1
Ly Ly Wy Ly

=W L 5 0 L 2 u (Ltze—z)+(ly—yel)

ol z;=1zy=1y=1yp=1

= W L Z Y Lze—z,+ 2 Z ly1-yz2l)
zl—lza=l Vi=1yp=1
W
- et 1
=Lyt 3 3w,
L ' L
(Z2.Y2)
w
(zllyl)

By following the definition of section 3.2.4.1, 1(2*) is the number of the total
1nterconnection terminals in a circuit with size 2¢. Therefore the total terminals

in the entire hierarchical decomposition are
n
Tiotm = 2—’ V) —
=0 2

N
=Y gn(2t)y !
1=0



37

!

=Kn

The total sum of the interconnection length is

n
Lot =3, Lu I (RY)
i=0 2
N W{ 1
=3 ken (24) YL+ —= —
1
< =
(1).0_r‘<2
At level 4, A2¢=
L= o (2 AL b 2]
N r-1 r-3
— ol 2_ _ L o 2
=en (a2 f-giat ]
1
1_£2r—52N+1
Na'kn 1
rol
1-2 *
Nf (r)en with f('r')=a'———l;-_—i-
1-2 ?

i

Therefore the average interconnection length is

— L
Ltatalz [total.
total
=f(r)
=1
(). r= 5

At level i, A= a2’, therefore Ly =a; 2

L =§m(21)”‘[L +K31— L ]
totas = 2, 273 3w,

Wle.

and W2¢ =ayR

a2, therefore L2¢=oq,2§ and ¥ =a 22,

e
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NO(knN) where N=logn
Therefore the average interconnection length is

- Liotu
Lot =

Ttotar
=0(N) = O(logn)
@), £ <r=1
2

At level 4, Ay, = a2'®, therefore Ly=0;2" and W=ayRt.

L =9 en (2 ) I[L +Ka—i :
total“igom( ) [21. 3 3% ]

21

=Kn

1=

woiyer-1_ _1 o-i
[a'(2) By ]

NO(TLZT)
Therefore the average interconnection length is

Ltotul

Liotar =
total Itot'al

=0 (nZT—l)

3.2.4.2. Partition Approach 2

Another approach to investigate the relationship between the area and the

Rent's exponent is as follows:

(1) Divide the circuit into four quarters as shown in Figure 3.11 (recursively).
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() Perform routing by using layout techniques in section 3.2.2.

(3) Put them together.

Gy Gy

Figure 3.11 Partition Approach 2.

Now we are going to use Rent's relationship to derive the terminals among

the partitions G,,G3,Gg,Gy.

Since T=KC", then a circuit with size n, if divided into a set of equal sized

subeircuits each of size m, has total terminals

Ttotar (M )=KmT ( ':';):‘knmr_l

The number of interconnections is proportional to Tipg (i.e. [pim(m)=

¢ Tiotar(m)=cknm7™ !, ¢ is a constant. Every interconnection consists of a pair of
terminals if'c=%). Therefore the number of interconnections connecting two

subcircuits are
n
r (n)zftotql(z')—rtotal (n)
=ckn[(F) -n"]
=cknn’ " 1[417"~1]

=k'n” where K'=ck[41"-1]

Now we want to make further assumption that I'(n) are equally distributed

among each pair of G,,Gg,G3,G4. That is
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Iip(n)=T13(n)=T 14(n)=T23(n)=T24(n)=T134(n)
=<1 (n)=I(n)

We get I(n)= %n,

3.2.4.2.1. Area to Embed Computation Graph

Theorem 3.5: The area by Partition 2 is
1 n 2 n
A('n)=[2A2(Z)]2+4A2 (Z)x5x21(n)+5x2[2(n)
l 2
=[2A2(—E)+1O[(n)]

Moreover, if I{n)=kn", then A(n) has closed form solution:

(1) Osr<%. A(n)=0(n).

(2) r=21

3 A(n)=0(n).

(3) %<r.<_1, A(n)=0(n?r).

Proof: Consider the layout in Figure 3.11. There are six pairs of subcircuits to be
routed together. First all, let's route pair (G,,Gz). By our routing strategy, this
will increase dimension X and Y by 2I(n) units respectively. Therefore, if we fin-
ish routing the pairs (G, Gg).(G3,G4).(G1,G3),(Gs, Gs), the total dimension in X

and Y are
L’X=2A(%)’5+81(n)

L'y=2A(%)%+8[('n)

Now it is the time to route the pairs (G,,G4) and (Gg, G3) as shown in Figure 3.12,



Figure 3.12 Routing Between Diagonal Pair.
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Gs

Ly+2I(n)

Therefore the final layout would be

0 |

LX=2A
And

(%)+10[(n)

A('n)'—'LxLy':

Now we want to solve the non-linear recurrence relation.

ZA%(%)+1OI('n)

2

n=4L (ie. L=logsn), for convienence.

L'y+2[(n)

Suppose that

By substitution and the same techniques used in the proof of Theorem 2.

Let X(n)=VA{n), then
X(n)=[(n)+2[(%)+(2)21(%)+.,..+(2)L1(1)
L i-,—.‘,
=10kn" )| 47
L
=xknT ) 4 ?

(1) oO=r<-i

2

i=0

i=0

(3-r)



(Z-r)L+1) . 1,
X(n) = 10kn” |=—5—=| (since 27 >I)

X(n) = 0(v¥n)-sa(n)=0(n).

(R) 'r=%

X{n) = 0(vn)-a(n)=0(n)

(3) %(’rsl

(-rHL+1)
X(n)=10kn" 1—4
1-47

X(n)~gn”
X(n)=0{n")

a(n)=0(n?*)

3.2.4.2.2. Average Routing Length

By following the partition 2, we can prove the Theorem about the length of

interconnection.

Theorem 3.6: By the partition 2, the average routing length L(n) is as fol-

lows:

(1) 057'(-%, L(n)=f (r).

() r= L{n)=0(logn).

1
>
(3) —%(1'51, L(n)=0(n?").

Proof: The proof is similar to those of Theorem 3.4.
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3.2.5. Summary of Point Model

Our model consists of an array of lattice points and has only one unit width
for both the vertical and the horizontal channels. The circuit are placed at the
set of lattice points while the connection are mapped into the channels. Under
our model, we define the area to be the smallest rectangle enclosing the set of

mapped lattice points. The results show that

(1) both the area and the routing length are function of Rent's exponent of the
circuit. By our analysis, both figures of merit grow fast when a circuit has

big Rent's exponent which implies the circuit has high performance.

() good partition algorithm implies small . In order to reduce the area and

the average routing length, we need a good partition algorithm.

However, if we removed the restriction of unit width of channel, the problem to
figure cuf, the area becomes extremely difficult. Donath [35], [38] assume
unspecified width on the channel and‘ do not impose the unit width restriction in
studying the relation between Rent's exponent and the average routing length.

However, their solutions have two deficits:

(1) They assume that any circuit with size n always can be placed into an array
with n lattice points. Some circuits have routability problem under this

assumption.

() They get the results (the average routing length) by normalizing them with
the channel width. However, it is another difficult problem to estimate the

channel width [21], [RR].

Although our model is restrictive , we feel our analysis help us to under-

stand how the interconnection would contribute to the area of the final layout.
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3.3. The Partition and Rectangle Model of a Circuit

As we mentioned in Chapter 1, the Programmable Logic Array (PLA)_is a
basic module in the realization level. Programmable Logic Arrays (PLAs) are
used frequently to implement control logic, and are increaéingly being con-
sidered as an implementation mode for the datapath [12] and advocated as a
viable methodology for VLSI designers [13]. Although PLAs are generally con-
sidered to be wasteful of silicon area in comparison to random logic, they offer a
conceptual and structural regularity which is quite attractive for VLSI design.
Besides the conceptual simplicity, many related software tools have been
developed for PLA-based design system. These include logic minimization [15],
[43] , and the automatic geometric layout for the optimal performance of a sin-
gle PLA [44], [45]. From the user's point of view, optimization to reduce area
and delay can be éutomatically applied to the structure in a manner which is
transparent to the logic designer. In ADS, a hierarchical description of a design
is partitioned and then translated into a network of Programming Logic Arrays.
Since ‘the partition problem is very difficult and has been studied by other
researchers [46] , we are making assumption that a partition into PLAs is given
and concentrate on how to provide the estimates of its final layout. An example
is shown in Figure 3.13. Suppose that the Terminal Control Circuit (TCC) has
been partitioned into eight PLAs and has the interconnections as in Figure 3.13.
The problem is to obtain estimates of the final layout are. We develop the follow-
ing method to solve this complicated problem. The proposed Rectangle Model
consists of a set of rectangles for the set of PLAs (eventually it can be any logic

block) and a set of channels for the interconnections among the PLAs.
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Figure 3.13 A PLA-based Terminal Control Circuit.

3.3.1. The Circuit Model

A single PLA can be modeled as an arbitrary-sized rectangle, as shown in
Figure 3.14. In each rectangle, the terminals are distributed around the peri-

pherals of the rectangle.
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X

CIRCUIT
BLOCK
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3.3.2. The Channel Definitions

As we mentioned earlier, a channel in the layout is used for an interconnec-
tion. A channel is a space between two rectangles as shown in Figure 3.15. In
order to use the channel routing algorithm, we restrict ourselves to the case
where there are two layers for the routing process. One of them is for the con-
nections in the vertical direction, while the other is for those in the horizontal

direction. Under this construction, the routing can not go through the rectan-

gles.

3 ')
e "

BLOCK #1

N\

k 4
:::;;7Terminals
K

Figure 3.14 A Rectangle Represents for a PLA.

BLOCK #2

\__v__/

A Channel

Figure 3.15 The Definition of a Channel.
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3.3.3. Problems with the General Cell Approach

Now we study the problem of estimating the figure of merits for a particular
arithmetic design under the rectangle model. For example, we will ask the ques-
tion "Given Figure 3.13, how big is the final circuit ?"" As we have said in Chapter
1, it is impossible to provide an estimate of the interesting figures of merit
without referring to some particular design methodology. In relation to the PLA
realization, the rectangle model corresponds to the general cell approach for
VLSI design. We, therefore, offer a constructive solution which includes the
placement and the routing processes. Later chapters are devoted to developing

tools and algorithms to provide a quick estimates of the figures of merit.

3.3.3.1. Works Related to the General Cell Approach

The general cell approach to layout consists of placement procedure and

routing procedure.

3.3.3.1.1. Placement Procedure
The placement problem of the general cell approach is defined as follows:

Given: A set of predefined but different sized rectangles.

Find: A placement with minimal area and interconnection length.

Two classes of algorithms, initial and constructive, have been intensively
surveyed [47]. However, they are not useful for the placement of the general
cell approach because the modules in [47] are dimensionless, which are in con-
trast to those of general cells. Since the general cell approach is a viable tool for
custom IC design, much effort has been devoted to the general cell placement
problem. Two kinds of algorithms have been proposed. The first is the exhaous-
tive search approach [24], [26]. In this category, a module is added by exhaus-
tively searching the best location under some estimated figure of merit. Possible

figures of merit are the length of interconnections or space for a channel. The
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disadvantage of this approach is that it is time consuming. The other category
is the min-cut oriented algorithms suggested by [25], [48], [49]. The idea is to
divide the rectangle region into two subregions and the cluster of modules into
two subclusters, and then assign each subcluster a subregion such that the
number of the connections crossing over two subregions is minimal. The.
development of this class of algorithms is based on the assumption that the area

can be reduced by minimizing the crossover connections. However the assump-

tion is never confirmed.

3.3.3.1.2. Routing Procedure
The routing problem is defined as follows:

Given: (1) A relative position of the set of placed rectangle blocks. (2) The signal
nets with terminals on the boundaries of the blocks.

Pind: Completed interconnections.

The procedure includes three subprocedures. An important component of
the routing is to find a good router. Good early surveys of the routing problem

can be found in [50]. Literatures reveal four categories of routers.

Lee type router - The original idea comes from [51]. However, some speed
up version of routers have been proposed [52], [53]. One major disadvantage of

the Lee type router is that we cannot prevent the congestion of the interconnec-

tions.

Hightower [54] proposed two other kinds of routers, namely cellar router

and line router. Again they also have the disadvantage of congestion.

Channel router - This kind of router was originally proposed by [1]. Sophis-
ticated extensions of the router can be found in Chapter 6. This router enforced

by the following subprocedures can generate completed routing.
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3.3.3.1.2.1. Channel Routing Order

The procedure tries to generate a legal routing order such that we can
apply a router one by one according to the order. The problem has been dis-
cussed in [24], [55], [56], but lacks rigorous treatment. In Chapter 4, we investi-
gate the necessary and sufficient conditions for the routability of the layout

based on a routing order constraint graph.

3.3.3.1.2.2. Global Routing

The procedure tries to allocate a path or a tree structure for each signal
net. It is a global optimization problem. Figure 3.16 shows a typical channel. The
important task by global routing is to decide which channel absorb the pass-
through connections and which side of the channel the flow-in connections come

from.

FLOW-IN
N,
THROUGH
N
Nl NS N5 Ne
INTRA

Figure 3.16 The Contribution in a Channel

The arguments in [24], [57], the author argues that finding the shortest
path for signal nets is meaningless unless we know the exact width of each chan-
nel. Therefore, he proposes a stochastic model to estimate the channel width.

The model is based on two unverified assumptions:
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(1) Distribution of pins around the periphery is a Poisson distribution.

() Distribution of the net length is a geometric distribution.
Careful examination reveals that in his model zero width of channel is
assumed in order to compute the parameters of the distribution of pins and
the ‘diétribution of net length. This is a serious factor of the distribution of
net length if the circuit has a big interconnection area. Ignoring the factor
in computing the parameters would cause error in estimating the width of
each channel. Therefore, we don't think the stochastic model would pro-
duce better results. Our strategy for this problem is to compute the width
of each channel contributed by intra-connections within each channel.
Based on this width, a shortest path or a Steiner tree procedure is applied

to perform the path allocation [58].

3.3.3.1.2.3. Track Assignment

We develop a new efficient channel router. Besides that we develop the T

shape router and cross channel router. We discuss these routers in Chapter 8.

3.3.3.2. A Proposed Layout Approach

Two specific goals of the layout, hamely to minimize the chip area and teo
achieve 100% connections, make the automatic process for the general cell
approach very difficult. In particular, to achieve 100% connections implies that
the foutability problem is the first issue to be considered. Methods must be
developed to test the routability for the given placement. Chapter 4 addresses
the routability problem. Since the other goal is tb minimize the chip area, the
arrangement of the relative locations of the rectangles affects the final layout.
The interaction being so complicated, researchers generally break the process

into

(1) Placement
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The goal of the placement is to avoid an unroutable channel and to
make the final area as small as possible. The necessary and sufficient
condition for the routability test provides a guideline for avoiding
unroutable channels. while the global allocation is a process to

minimize the final area.

() Routing
The goal of the routing process is to have 100% complete intercon-
nections and make the final area as small as possible. We break the
routing process into the following processes:
(2-1) Finding a legal channel routing order.
(R-R) Performing topology net assignments.
(2-3) Solving the displacement problem for each channel.
(2-4) Performing channel routing by following the legal
channel order.
(2-5) Performing the T shape router on each T shape
intersection if any.
(2-8) Performing the cross channel router on each

+ shape intersection if any.

Both chapter 4 and chapter 5 are devoted to the entire step (2).



CHAPTER 4

THE ROUTABILITY AND CHANNEL ROUTING ORDERS

4.1. Introduction

The general cell approach is a way to automatically generate a VLSI layout.
A general cell is a cell with no restriction on its height and width, and no restric-
tion on the location of its input-output pins. Building blocks like the PLA and
ROM are general cells. Since the complexity of VLSI circuit is increasing rapidly,
the general cell approach is viable for designing complicated circuits [24], [25],
[33]. The problems associated with this approach are numerous, and suffer
from being neither rigorously treated nor intensively studied. One of them con-
sidered in this paper is the routability problem. Though previously discussed by

[24], [55], [56], it still needs complete investigation.

The general cell approach to layout consists of a placement procedure and
a routing procedure. The placement procedure gives the relative positions
among the building blocks and produces a rough layout. Before doing a final

routing procedure we ask the following question: Is the rough layout roulable?

We begin at section 4.2 by defining the channel routing order among the
channel éet C={c,,....c,} and the routability of a channel ¢; € C. Then we define
the routability of the entire rough layout. The nature of the channel routing
algorithm imposes some inherent routing order constraints on the channels [1],

[59], and hence reduces the number of legal routing orders.

In section 4.3 we define the legal routing order by constructing a routing
order graph. The routing order graph consists of n channels as its nodes and has

a directed edge when two channels have an inherent routing order constraint.

52
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This allows us to discuss the routability in term of the routing order graph.
Based on the graph, we investigate the necessary and sufficient conditions for
the routability of the rough layout. Our condition set is the minimum one and
hence a subset of the condition set given by [55]. This set will speed up the test
of routability. By using a different approach from [55], our results are derived

directly from considering all routing orders.

In section 4.4 we make some comparisons and show the advantages of our
method over previously published methods [24], [55], [56] for testing routabil-
ity. Finally we propose an algorithm for testing routability and generating a legal

routing order for the rough layout.

4.2. Definitions

Parallel routing is generally possible but poorly understood at present.
Here we restrict our interest to routing the channels sequentially. We give the

following definitions, assui:ning sequential routing:

Definition 4.1: A routing order is a permutation of the channel set C={c,,
€2,...,.Cpn}
Definition 4.2: A specification is a set of order pairs describing the relative

positions of the building blocks.

Definition 4.3: A final specification is the one obtained from the initial

specification under a routing order.

A trivial initial specification is the one which leaves the relative position of

the blocks totally arbitrary.

Definition 4.4: A channel is routable if there exists a final specification such

that it does not over specify the width of the channel.

Definition 4.5: A routing order is legal for a channel ¢; if we apply it to some

initial specifications, and the channel ¢; is routable. Figure 4.1 is an example of



this case.

Example 1:

B

route C 1 first

-+ tix y(B,,52) and y(5,,.B
B, Ca > tix y (By. B 1.B3)

-+ C o is unroutable.

Figure 4.1 T Shape Channel Intersection.

Definition 4.6: An initial specification is complete if and only if there exists

a final specification such that all the channels in the rough layout are routable.

The existence of a complete initial specification implies there exists a rout-

ing order which is legal for all the channels in C.

Definition 4.7: A rough layout is inherently unroutable, if and only if there

does not exist any complete initial specification.

Definition 4.7 provides a method for testing the routability of a rough layout
by checking all the routing orders on the trivial initial specification, and then to
see if there exists any unroutable channel. Obviously the number of routing
order is n!. An exhaustive method to test whether the given layout is routable is
to check all the routing orders and see if there exists any complete specificé—
tion. The following section describes a method for cutting down the number of
routing orders checked. By applying the graph representations, the method is

reduced to testing whether it has a directed cycle in the routing order graph.
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4.3. Inherent Channel Routing Order

Theoretically, we need to study all of the {g’] pairs of order relationships.

However, careful analysis shows that only some special kinds of channel inter-
sections cause order constraints. In this section, we identify all the inherent
channel routing order constraints. There are three types of channel intersec-
tion, namely "T" shape intersection, "+" shape intersection and "L" shape inter-

section.

The order constraints resulting from these three types of channel intersec-
tions are called direct order constraints in contrast to indirect order con-
straints resulting from indirect channel interactions under some special chan-

nel configurations.
4.3.1. Direct Order Constraints

4.3.2. T Shape Intersection

As shown in the Figure 4.1., T shape intersection can have only one legal
routing order, namely that c; must precede c¢,. No matter what the specifica-
tions, the sequence c; precedes c; is always an illegal order. Therefore we
always put a directed edge in the channel routing order graph from c; to ¢, (i.e.

cg » ¢). Note that the relation ¢y T ¢, implies the relationc; T’ c3.

4.3.2.1. + Shape Intersection

Let (z;,4;) denote the coordinates of the lower left corner of the building
block B;. Every building block B; has width w; and length ;. Let =z (Bi.B,-) =Z;-Zj
denote the relative position of B; and Bj in the X-coordinate. Similarly y(B;,B;)

is for the Y-coordinate.

Figure 4.2 shows the " + " shape intersection. Let us consider the routing

order of the channels, namely ¢; and ¢, which form a "+" shape intersection.
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For routing ¢, first, we need to specify z(B,, Bg), (B3 By, y(B,F3), and
y(B2.By4). The solution of the displacement problem would give the optimal value
of z(B,.Bz) and z (B3 B,) such that the width of channel ¢, is minimal. This
would fix y(B,,B,) and y(F3,B,) but not fix either z(F,,B3) or (B B,). The
width of the channel c; is fixed after routing ¢,. Channel c; is still routable by
Definition 4.4. However, in order to route the channel ¢, we need to specify
y(B,,Bg), y(B2B,), z(B,B;), and z(Bg,B,). All these required specifications
have been fixed after routing c,. Similar analysis applies to the case for routing
¢ before ¢;. The analysis shows that either sequence c¢,,c3 or cp,c; is a legal

routing order, therefore we do not have any directed edge between nodes ¢, and

Ca.

Figure 4.2 + Shape Channel Intersection.

4.3.2.2. L Shape Intersection

The possible locations of L shape intersection are only in the four corners of
the rough layout. Figure 4.3 shows the L shape intersection. Obviously two

channels ¢; and ¢ are symmetric, so there are no order constraints between

them.
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C1

Pigure 4.3 L. Shape Intersection.

4.3.2. Indirect Order Constraints

In this section, we study the constraints generated from some special

geometric configurations.

4.3.2.1. Constraints Due To Propagations

Let us define the following relations between the channels:
1. ¢ Tc, and ¢; T' ¢, if the channels ¢, and ¢, form a T shape intersection.
2. ¢, + cyif the channels ¢, and ¢ form a + shape intersection.

Let r; € R={ T,T",+ } denote a relation between two channels. Since the

graph representing the rough layout is strongly connected, the following Lemma

is true.

Lemma 4.1: For any two channels ¢; and ¢, in C, there exist channels

€1, ...,Ck such that S=c¢;r,c,....ceTecy, where 7y, . .. , 1 €R,
Proof:

Let's consider the point p; in the channel ¢; and the point p,y in the channel
cy. We prove the lemma by answering the question "Is p; connected with p,?".
We prove the statement by contradiction. Aséuming that there doesn't exist any
path that connects p; with p,. This implies that the layout can be divided into

two parts. By definition, the space that separates these two parts is a channel.
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Obviously, p; can be connected to p,. This is a contradiction.

Lemma 4.2: The constraints between c; and c, is the union of all the con-

straints generated by all the sequences S in Lemma 4. 1.
Proof:

Lemma 1 guarantees that there exists at least one S. Every relation
sequence 7, . . ., T define a routing order constraint between ¢; and ¢, . There-
fore to see whether c; precedes ¢y or the reverse is to explore all the sequences
Ss between ¢; and cf. This is equivalent to say the constraints between c; and ¢,

is the union of all the constraints generated by all the sequences S in Lemma 4. 1

The relation sequence r,, . . . , 7, can be classified into two cases:

Case

All the relations in r;,....,7; are either T or T'.

Subcasé
All the 7;'s are T, then ¢; » c,. Since the constraint ¢; » ¢, is automatically
implied by the relation sequence, we do not have the directed edge in the rout-
ing order graph.
Subcase
Otherwise, there exists a channel ¢, ,cq4,c, such that S=¢;...c, Tecg T' ¢,...c;. In
this case we have three geometric configurations shown in Figure 4.4. All the
configurations have the routing order graph as shown in Figure 4.5. Obviously

there are no order constraints between ¢; and ¢, .
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°p
Cp Cp
C, c,
Cr
a
(a) (b) (c)
Figure 4.4 Geometric Configurations
% %p i Cp G4
Cq Cr Cq Cr
C.f C.f
(a) (b)
Figure 4.5 Order Constraints Corresponding to Figure 4.4.
Case
At least one relation 7y, inry, ..., 7 is +, We divide S into S, = ¢;71¢1 " ' ' Cp
and Sz= ¢; - - + ¢, such that 5=8, + S, and ¢, + ¢;. The analysis of subcase

1.1 in section 4.3.2 shows that there are at most four cases as shown in Figure
4.6. We exclude the case that no constraints exist between c; and ¢, as well as
between c¢; and c;. Since ¢, and ¢; form a + shape intersection, there are no

constraints between ¢,, and ¢; in section 4.3.1.2. Hence we have no constraints

between c; and cp.
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C; Con, C; Cm C; Con c,; Con
CT Cr CT—Cr T Ty CI " Cf
(a) (b) (c) (@

Figure 4.8 Order Constraints.

The analysis shown above suggests that, if we are concerned only with the
relationship between any pair of channels, the order constraint graph can be
constructed from only the direct constraints. However, since we don't impose
any constraint between any pair of channels except that they form a T shape

intersection, the following special case deserves our attention.

4.3.4.1. Constraints due to Parallel Blocks

Let's consider the case shown in Figure 4.7. So far we don't have any con-
straint between ¢, and c; as well as ¢; and c3. The routing sequence ¢, c3 ¢,
seems to be legitimate. But it is not true and we would show it as follows: Routing
¢y first, we need to specify z(54,Bl). z(Bg,Bs), y(B4.Bs) and y(B,,By). This
would fix ¥(B,,B,). Again routing ¢ 3 next, we need to specify z(B,,Bg), z{Bs.B7),
y(B,.Bs), y(Bg, B,). This again would fix y{B,,B3). Then we have y (B, Bj3) fixed
which would violate Definition 4.5 (i.e. ¢, is unroutable!). Any routing sequence
ending with ¢z or c3 (that is, two-thirds of the permutation sequences) are legal.
Since we represent the legal routing order in terms of a constraint graph, we are
looking for the minimum cardinality of graphs such that the union of sequences
generated by the graphs is equal to the set of all the legai sequences. The union
of sequences generated by Figure 4.8.a and Figure 4.8.b is equal to all the legal

sequences associated with Figure 4.7.
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Figure 4.8 The Spanning Graphs of Figure 4.7.

The case in Figure 4.7 can be generalized to Figure 4.9 and Figure 4.10, It is
clear that Figure 4.9 is a special case of Figure 4.10. We only consider the case

of Figure 4.10 later in this chapter. Let C;; denote the set of the channels

between two parallel channels ¢; and ¢;.
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Figure 4.9 Generalized Parallel Blocks Py
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Figure 4.10 Generalized Parallel Blocks F;.

Let S(G) denote all the sequences generated from directed graph G by
applying topological sort [B60]. Also let L,(P;) be the set of all the legal

sequences for the parallel block F;;.

Definition 4.8: The spanning graphs of a configuration are the set of graphs

by which the union of sequences generated is equal to all the legal sequences.

Lemma 4.3: All the legal sequences Ls(Py) of Figure 4.10 are the sequences
ending with either ¢; or c;. Moreover |L;(P;)|=R(m—1)!, where m is the number

of channels within P;;.
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Proof:

We prove the Lemma by contradiction. Suppose that there exists s € Lg(Py)
such that s ends with neither ¢; nor ¢;. This implies that there exists a ¢; € G-
fei.cj] such that s=....c; ¢jc; ends with ¢;. Then ¢; and ¢; would fix the width of ¢,

before routing it. Therefore, the sequence s is not a legal routing order. This

contradicts the assumption.

Let G,(Py) and G,(P;;) denote the graphs in Figure 4.11 and Figure 4.12,

respectively.

Figure 4.11 Graph G, (F;;).

Figure 4.12 Graph G, (Py).
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Lemma 4.4:

S(Gu(Py)) U S(Go(Py)) =Ls (Pyy).

Proof:

(1). We show S(G, (Py)) U S(Gy,(Pyy)) € Lg(Py):

For every s € S(G, (Py)) U S(G, (Py;)) implies that s ends with either ¢; or c;.
This shows s € Lg(Py).

(). We now show Ly(Py;) C S{ G,(Py;)) U S(Gy (Py)):
For every s € L, (P;) implies that s end with either ¢; or c;. Let s=c;..... Ciy_Ci

where cy € Gij-tci}. We construct the graph by having iy = CigonnCyy ™ Gy, Cp

1

Cigier1Cig @ Civrr G 1y = Ci Then we know G, is a subgraph of the constructed

graph, and s € S (G,(Py)). Similarly for every s=c; .... Cifp_y)Ci+ S € S(Gy (Pi)).

(1) and () show that S(G, (Py)) U S( Gy (Py))=Ls (Py).

By Lemma 4.4, it can be shown that {G,(P;), G,(Py)} are the minimum

spanning graphs of the parallel blocks Py .

Definition 4.9: Let A=(a,,....a,,) be a vector with a; € {u,b}. Then G4(V.E) is
an order graph constructed in the following way:
(1) If ¢, T g, put a directed arc from cp Lo cq.
() For each parallel block Py, choose either G,(P;) or Gy (Py) for the

constraints on channels with this parallel block according to the vector A

Theorem 4.1: The rough layout L is inherently unroutable if and only if

every order graph G4(V,FE) is cyclic.

Proof:



65

The core portion to prove the theorem is to show that the union of the
sequences generated by the set of order graphs are the set of all legal routing

sequences with respect to the given layout. In other words, U S(Gy) =
all order graphs

{ all the legal routing sequences with respect to the given layout §{.

As we show in section 4.3.1 and 4.3.2, the constraints between two channels
can be either direct or indirect constraint. The indirect constraint is due to the
structure of parallel block. For each parallel block, in Lemma 4.4, we have shown
that two spanning graphs generate all the legal sequences associated with a
parallel block. By our construction, each order graph contains all the direct
constraints and a combination of spanning graphs representing for the set of the
constraints due to the corresponding parallel blocks. Therefore the set of order
graphs with all the combinations of vector A will generate all the legal routing
sequences. If a layout is unroutable, by Definition 4. 7, there does not exist any
initial complete specification. This implies that there dosen't exist any legal
routing order, therefore, every order graph must be cyclic. The theorem is

proved.

Figures 4.13 and 4.14 show an inherently unroutable layout and the associ-

ated routing order graph, respectively.
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Figure 4.13 An Inherently Unroutable Layout.




87

Figure 4.14 The Routing Order Graph of Figure 4.13.

4.4. Comparisons And Critiques

In this section, we will discuss the various proposed methods published in
the literature to solve the problem we are addressing.
4.4.1. Classical Constraints

Kawanishi [56] proposes the following method to generate the order con-

straint graph in which routability can be tested.
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Method I:
(1) If ¢p Tcgq, put a directed arc from ¢, to ¢q.
(2) For each parallel block Py, put a directed arc from every channel in Cy-
feq,c;4 to both of fc;.cyi.
Theorem 4.2: If the constraint graph generated by the Method I is acyclic,

then the layout is routable. However, the reverse is not true.

Proof:

We prove the Theorem by proving the negative statement to be true. The nega-
tive statement is that " if the layout is unroutable, then the constraint graph
generated by Method I is cyclic.” First that the layout is inherently unroutable
implies there exists at least a directed loop in the order graph by Theorem 4.1.
There are two kinds of loops. One is the loop consisting of only T constraints,
This implies that the classical constraint graph is cyclic. The other is the one
consisting of both constraints by T shape intersections as well as parallel blocks.
This implies there exists a parallel block Py such that an arc of either G, or G,
is in the directed loop of the order graph by Theorem 4.1. This case is shown in
Figure 4.15. Since S(G(Py))= S(G,(F;;)) U S(Gy(Py)), the classical constraint

graph is cyclic.

The proof of the reverse part is shown by a counter example in Figure 4.186.
By Method II, c,,c3, c4,c, form a directed loop in the classical constraint graph.

However, either cgcy ¢ cac5 or c3c,4 € 1C5C3 is a legal routing order,
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Figure 4.15 A Direct Loop in an Order Graph.
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Figure 4.18 A Counter Example for the Reverse Part.

Corollary 1: If the constraint graph generated by the Method I is acyclic,

then every G4(V.E) is acyclic.
Proof:

By the construction of Method I, the constraint graph contains the union of
Gy (Pi;) and G,(Py;) which representing for the parallel block P;;. Every graph
G4(V.E) is a subgraph of the constraint graph constructed by Method . If the
constraint graph in Method I dosen't have any cycle, obviously G4(V,E) doesn't

have any cycle.
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4.4.2. Canonical Specifications

We do the following analysis by referring to the generalized parallel block in
Figure 4.10, and we refer readers to the paper [55] for detail. In the following,

we briefly describe the canonical specification and its corresponding constraint
graph G ; (Py).

The graph G,; (P ;) is constructed by the following steps.

(1) Specify y(5B;,.B;, ).

(2) Put an arc to ¢; from every channel which is between ¢y, and ¢; or between
¢;, and ¢;.

(8) Put an arc to ¢; from every channel which is between c; and c¢; or between
¢;, and c;.

We construct the graph Gg(V,E) as follows:

Method 1I:

(1) B is the vector to specify the canonical specification pair in every parallel

block Py.
(R) If ¢, Tecy, put a directed arc from ¢, to cq.

(3) For each Py;, choose G, ; (Py) according to specification vector B.
AL ng
There are L;; K;; graphs Gg‘jr(P.;,-) associated with each P;;. By our scheme in

R;:
Theorem 4.1, we need to check only G, and (. That is Ltjz ¥ reduction.

Lemma 4.5: S(G,(Fy;)) U S(Gy (Py)) —dU S(Gy;, (Py)).
b ydy

Proof:
(1) It is clear that G,(Py) = G,; (Py;) if we choose both ¢; and ¢; to be c;.
Similarly for the case of G (Py) = G; (Py) if we choose both ¢; and ¢;_ to

be c;. Therefore S(G,(Py)) U S(Gb(Pv.J)) < Y S(Gys,(Py)).
b gy
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! emma 4.4 shows that bo 2w (Pii) an ;i ) generate all the legal rout-
2) L 4.4 sh that both G, P,) dG,,(PzJ te all the legal

ing orders. It is straightforward that (U S(Gy; (Py)) < S(Gu(Py)) U
all i‘jr

S(Gy (Py))
From (1) and (2), the equality holds.

Theorem 4.3: Every order graph G4(V.E) is cyclic if and only if every
Gg(V,E) is cyclic.
Proof:
(1) Necessary condition: It is obvious by following Lemma 4. 5.
(R) Sufficient condition: We prove the negative statement of the Theorem by
considering the only case in which Gp possibly produces an acyclic graph but
not G,. Figure 4.17 shows the case that the arcs ¢p - ¢; and ¢g » ¢; always form
directed loops I, and {; under G4. However, suitable Gp canvget rid of both arcs
and avoid both loops ¢, and I;. In this case, Gp requires both arcs cp - ¢y and ¢q
- c¢;. Then a loop ¢;,¢4,c5,¢p,¢; is formed. Therefore there doesn't exist any acy-

clic graph under scheme Gg. This proves the necessary condition.

Theorem 4.3 suggests that our scheme is as powerful as that of Sato and
Nagai [55] in the test of routability. However, our scheme is much simpler. Sato
and Nagai [55] propose to test the routability of the layout by checking whether
all Gg(V.E) are cyclic. The disadvantage of this method is that the number of
Gp(V.,E) is much bigger than that of our G4(V,E). An example is for k parallel

blocks and in each block there are L;; channels in the left half and R in the
k
cyclic tests of the graph. In general the

Li: Ri:
right half. Qur scheme saves [iz—'i

cyclic test takes O(n?) steps for the layout having n channels.



Figure 4.17 A Proof of Theorem 4.3.

4.4.3. Generalized T Constraints
Preas [R4] proposes the following method for generating the order con-
straint graph in which routability can be tested.

Method IIT:
(1) If cp Tcq, put a directed arc from cp to cq.

() Put an arc if two channels form a generalized T constraint as shown in Figure

4,18,
Cyq | Cg o1
C
1 \ eneralized

ﬁ constraint

c 2 C 3
Cyq

(a) (b)

Figure 4.18 A Generalized T Constraint.

Theorem 4.4: If the constraint graph generated by Method III is

'acyclic,then the layout is routable. However, the reverse is not true.
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Proof:

(1) The forward part is obvious.

() The reverse part is shown by the counter example in Figure 4.19. By Method
Ill, Cicycscqe; form a directed loop in the constraint graph. However, the

sequence Cp, €4,€5Cg,C1,Cq is a legal routing order. Therefore, the layout is still

routable.

Theorem 4.4 shows that the generalized T constraints are not absolutely

necessary for testing routability,

Cy Ca Cq

Cq

Cg generalized
/’I‘ constraint

C /\

Co 'C 2
Cs

Cs .
Cg C4 C 7
(a) (b)

Figure 4.19 An Example for the Reverse Part of Theorem 4.4.

4.4.4. Algorithms For Generating Legal Routing Order

The comparison shows that previously published methods can be improved.
We suggest the following algorithm for both testing routability and generating
the legal routing order.,
Algorithm Order:
(1) Construct any order graph G,(V,E) by randomly choosing
a specification vector A
(R) Perform the acyclic test.
(3) If it is acyclic, then perform a topological sort on G,(V,E) and stop.

(4) Otherwise, if there is any new specification, change to
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a new Aand goto step (1).

(5) Else if there has no new A, stop.

It is clear that the Algorithm Order always gives a legal routing order if the
rough layout is routable. In the next section, we discuss the generation of the

routing order for an unroutable layout.

4.5. Routing Order Generation for an Unroutable Layout

If the layout is unroutable, there are two possible cases in the directed
cycle. The cycle is formed either by T constraints entirely or by the mixture of
both T and the constraints due to the parallel blocks. For the first case, the
rough layout is unroutable. The only way to find a routing order is to pick up a
channel in the directed cycle and reserve a very wide space for that channel and
then route that channel at last. While in the case of directed cycle consisted of
mixed constraints, we can pick up and break one of the up or the bottom chan-
nel in the cross channel such that the directed cycle is broken. For example, we
can choose channel ¢ in Figure 4.20 and break it into two channels ¢} and ¢} as
shown in Figure 4.21. The constraint graph of Figure 4.21 does not have any

directed cycle.

Cz Cy
Cy
/1
\
Cs c £ LN NG
R // \\\J 6
\
// \
C1 // U \\
:3\ C5
Cs é4
Csy

Figure 4.20 An Unroutable Layout
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Cy
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Cs Ce
Cq \
cl
cl cf y
Cy
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Figure 4.21 To Break the Directed Cycles by Breaking a Channel

4.6. Summary

In summary, the routability problem in the general cell approach for IC lay-
out is treated rigorously. We study the routability problem of the layout from
the point of view of the legal routing orders. Since the nature of the channel
routing algorithm imposes some inherent routing order constraints on the chan-
nels, the nurﬁber of legal routing order is reduced. We represent the legal rout-
ing orders in terms of a routing order constraint graph. The constraints among
the channels are either due to T intersections or parallel blocks. For the case of
a single block P, the set of the legal routing orders cannot be represented by a
single constraint graph, and must be represented by a union of constraint
graphs. We, therefore, derive the minimum spanning graph {Gy (Pij), Gu(Py)}

which together generate all the legal routing orders for Py;. This is a significant

Lij Ry
2

reduction, . In the number of the graphs over paper [55]. The global con-

straint graph is the order graph G4(V.E) constructed by Definition 4.9, In terms
of G4(V.E), Theorem 4.1 describes the necessary and sufficient conditions for the

routability of the layout. Again, the number of the order graph G, (V.E) is much
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smaller than that of the so-called canonical specification graph Gg(V,E) in [55].
Based on the conditions we derive, we show thét previous methods for the routa-
bility problem [R4], [56] are unnecessarily complex and and overly restrictive.
In addition, an algorithm for testing routability and generating the legal routing

orders is proposed.



CHAPTER 5

CHANNEL ROUTING PROBLEM

5.1. Introduction

As we state in Chapter 3, a channel is a space reserved for the inter-block
wire routing. Our primary goal is to minimize the width of the channel. Figure
5.1 shows that a channel consists of three contributions, nameiy Jlow-in-out con-
neclions, inira connections, and pass through connections. The contribution due
to pass through connections is a global optimization problem. It requires a com-
plicated method to allocate the wire connections and even a sophisticated esti-
mation of the global wire routing. However, the contribution due to both flow-
in-out conneclions avnd intra connections can be computed exactly by the chan-

nel routing algorithm, which is the topic to be pursued in section 5.2.

In addition, there are several factors affecting the width of a channel. For
example, the relative position between cell #1 and cell #2 affects the routability
of a channel and, of course, the width of the given channel. This is called the dis-

placement problem, which is studied in section 5.3.

5.2. Channel Routing Algorithms

In this section, we study the algorithms for different situations in a channel.
The goal of the algorithms is to minimize the width of the given channel provided

that the constraints are satisfied.

7
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FLOW-IN
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Nl Ns Na Ng
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Figure 5.1 An Example of a Channel.

5.2.1. Problem Specifications

The set N ={N,...N,] denotes the nets in a channel Let
U, = iyl,uz,..,,,uui be the coordinates iof the grid points in the upper row of the
channel, while L = {8,,lz,.....1;} be the coordinates of the grid points in the lower
row of the channel. Also let U(N;) = fuu?, ..., u¥®] be the coordinates of the
grid points in the upper row of the channel, which net N; is connected. Simi-

larly, L(N;) = §.LL2,.... . 11%)]} are the connecting points in the lower row.

Let £, be a function from {uy, ..., u,} to {& Ny,... Ny} Similarly, £, be a
function from ill, ... 4} to §{®, N,,.....N,,{. Both functions assign a net to each
grid point in the lower and upper rows, Then both
UC)=§¢tl, ... . t: ... t¥land L(C)={t} ... &k, ...  t¥} are the channel
specification.

5.2.2. No Vertical Constraints Case

A net Nis represented by an interval I=[x,y] where x is the leftmost point
and y is the rightmost point of the net N.- The routing of the nets N = {N,,....,N,,}

is to assign each net N; € N a track such that there is no overlap between two
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representative intervals I; and I;.

The problem of the optimum * channel routing without constraints is:
Given: The set of the nets N = {N,,....,N,,} in a channel.
Find: Assign each net in N a track in which no two nets overlap each other and

the number of the tracks in a channel is the minimum.

We first define the overlap relation R and construct an interval graph based
on the relation R. Then we show that the optimum routing problem can be

transformed into a graph theoretic problem.
Definition 5.1: N;RN; if and only if I, and I; overlap (i.e. [z,9:] N [z2.y2] #9).

Now let the set N ={N,Ng...N,} be the set of nets and E
= {(N;,Ng) | for every 1,1,V and I;Rl}. Then we can construct a graph G=(N,E)
which is an interval graph. Example 5.1 shows the construction of the interval

graph corresponding to the channel in Figure 5.2.

Figure 5.2 An Example for Channel Routing

* Note that there is strict difference between optimum and optirnal in complexity theory. The
set with property P is the optimum means the set is absolutely the best with respect to the property
P. On the other hand, the set with the property P is optimnal means the set is not contained in any set
satisfying the property P. Similarly the definitions apply for marimum and mazimal as well as
minimum and minimal.
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Example 5.1:

N =[N1,N2,N3.N4.N5,Ns]
1 =['[1,3],[3,5].[4,7],[5,9],[10.11],[12,13]]

E ={ (Ny,Ng).(N2,N3),(N3,N,), (N, Ny) ]

THE INTERVAL GRAPH G(V,E): THE COMPLEMENT GRAPH Gy(V, E):

N, N,

Definition 5.2: A clique of a graph G=(N,E) is a set S € N such that the

induced subgraph of G on S is a complete graph.
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Let P = {C,,C;,.....Cp} be a partition of N into cliques.

Also let O(Q) = min{|P|] be the smallest possible number of cliques into
P

which N can be partitioned.

Definition 5.3: The minimum cliques partition problem of G is to find

P = {C,,C,,....,.Cp} such that m=0(Q).

Theorem 5.1: The optimum channel routing problem is equivalent to the
minimum cliques partition problem of the complement graph G.

Proof:

Since G=(N,E) represents the overlap relationships among the nets. It is clear

that G represents the nonoverlap relationships. To get the minimum number of

the tracks in a channel means to have the minimum number of partition cliques

of G.

By Theorem 5.1, we know the key point in solving the optimum routing
problem is to solve the minimum cliques partition problem. Here we are

interested in

(1) finding an efficient algorithm to compute the number 0(G).
(2) finding an efficient algorithm for the minimum cliques partition problem.

The solution of (1) provides the exact number of the required tracks, hence

we solve (1) first.
Definition 5.4: An independent set of a graph G=(N,E) is a set S € N such that
no two distinct nodes of S are adjacent.

Let a(G) = _max {l I}
all independent sets

It can be shown that a(G) = @(Q).
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Theorem 5.2 (Berge [61]): If G is an interval graph, then its complement graph
Gisa comparability graph.

Theorem 5.3 (Berge [61]): Every comparability graph G is a-perfect (i.e.
a(G)=0(G)).

From Theorem 5.2, G is a comparability graph. Therefore a(G)= 8(G) fol-
lows Theorem 5.3. This say that if we can find the maximum independent set of
G, and we know the minimum number of tracks needed. However, to find the
fmaximum independent set of G is equivalent to finding the cardinality of the

maximum clique of G.

The most efficient algorithm for finding the maximum clique in the litera-
ture is in Gavril's [62] which runs for O(|N|+|E]) by the application of a lexico-

graphic breadth first search developed by Rose et al. [63].

Example 5.1: (continued)

The maximum clique of G for Figure 5.1 is the set {Nz,Ng, N4}, therefore the

optimum channel routing takes 3 tracks as we show in Figure 5.1.

Algorithm TRACKS:
Input: A set of nets represented by a set of intervals I = § 1,,,,.....1,} in a given

channel.

Output: The number of tracks required for the given channel ( i.e. a(G)).

Method:

(1) Construct the interval graph G=(N,E)
() Generate the perfect ordering of G (by Rose's algorithm [63]).
(3) Find the maximum clique of G (by Gavril's algorithm [62]).

Step (1) takes O (|N|?), while both step (2) and (3) take O (|N|+|E]). In total,
the algorithm takes O (|N|?).
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We then solve (2). Since Gis a comparability graph by definition, a transi-

tive orientation can be assigned to G. Hence, we can define a partial order set

on N (where G=(N,E)).

Theorem 5.4: (Dilworth [64]) Let (N,<) be a partially ordered set. The minimum
number of linearly ordered subsets (called chains) needed to partition N is
equal to the maximum cardinality of a subset of N having no two members com-

parable (called antichains),

Theorem 5.4 assures that the complement graph G can be partitioned. The

minimum partition is the solution of the optimum channel routing.

Algorithm PARTITION:
Input: A set of nets represented by the set of intervals I = { I,,I,,....,I,} in a given
channel.

Output: The minimum width of channel routing for the given channel.

Method;

(1) Construct the interval graph G=(N,E)
(2) Construct the complement graph G.
(3) Find the perfect ordering of G.

(4) Find the minimum number of cliques for G (by Gavril's algorithm [62]).

In both the algorithms TRACK and PARTITION, we apply the algorithm dev-
ised by Gavril [62]. Gavril develops an algorithm to find the maximum cliques of
the so called chordal graph to run in O(|N]+]E]) steps provided that a perfect ord-
ering has been established. He also developed a perfect ordering algorithm to
run in O( t(]N|+[E])+|N|+E]| ) steps, where t{|N|+|E]) is the time required to square
the adjacent matrix of the graph. However, Rose et al. [63] develop an algorithm
using a lexicographic search t§ generate a perfect ordering in O(|N|+|E]) steps.

Therefore both algorithms of TRACKS and PARTITION are used to solve the
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problem of the optimum channel routing without constraints by combining Rose

and Gavril's work.

Note that several people [1], [65] have proposed algorithms solving the
problem of the optimum channel routing without constraints. In the paper [1],

Hashimoto and Stevens devise the so-called Left Edge algorithm.
Left Edge Algorithm: (without constraints)

Fill each track successively by choosing the net with the minimum left end-
point among the eligible set of those which can be fitted to the current

track until the track is full.
Note that in the paper [1], the eligible set

S,1 = f the nets with the left endpoint greater than the right endpoint of the the

last placed net in the current track }.

Although it is a kind of heuristic to select the next candidate by finding the net
with the minimum left endpoint in the eligible set, the Left Edge algorithm does
provide the optimum solution in the non-constraint case. There are several
methods to define the so-called eligible set. The definition of the eligible set
provides a broad basis for devising the heuristic algorithms. In the later sec-
tion, we define the eligible sets and devise the new algorithms based on the eligi-

ble sets for the problem under constraints.

5.2.3. Constraint's Case

Section 5.2.2 deals with the channel routing without any vertical con-
straints. The overlap relations fully characterize the routing problem. In some
cases, however, in order to fully characterize the routing problem we need not
only the overlap relations but also the vertical constraints. Figure 5.3 shows the
case where net N; must be laid upper net N;, net N3 be upper net Np etc. This

kind of geometric restrictions is called vertical constraints. In the next section,
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a directed constraint graph G; is used to model the vertical constraints among
the nets in the channel. The interval graph G; together wit G, fully characterize
the channel routing problem. By following this kind of formulation, there are two
cases to be considered. The cases depend on whether there exists directed

cycles in the graph G;. An example with directed cycles in G; is shown in Figure

5.4.

UPPER ROW

NS Ns

LOWER ROW

Figure 5.3 A Channel with Vertical Constraints.

"UPPER ROW

LOWER ROW

Figure 5.4 An Example for a Channel with Directed Cycle in G
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The minimum number partition of cliques for Gis § IN,, N3Ny}, §Nz,N,}

} , therefore only two tracks are required in the case.

5.2.3.1. Acyclic Constraints

In this section, we first define the constraint graph G,. Then the prablem of
the optimum channel routing with vertical constraints is introduced. A reduced

graph G, is formed by combining both G, and G;. We develop a heuristic chan-

nel routing algorithm based on G, .
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Definition 5.5: N; R, N; if and only if U(N;) \L(N;,##&.

Definition 5.6: The constraint graph is G; (N,E). Where the set N = {N;,Ng,

be the set of nets and K = {(N;,Ny)| for every 1,1,V and | R, I,}.

Example 5.3:

This example shows the interval graph and its complement graph as well

as the constraint graph and its transitive closure of the Figure 5.3.

The interval graph and its complement graph:

G(vE) N Gqve N
N2 NG N2 \ NG
NS N5 N3 N5
N4 N4
The constraint graph and its transitive closure:
Ge(V.E) N GcH(V.E) Ny
et
N /
2f lst sz / 4N6
: : P/ /, :
NS! /) N5 Nsv /// /) N5
p ;) 7
. J
N, N

The problem of the optiﬁum channel routing with vertical constraints is:

Given: N = {N,,.... N, }.

Find: Assign each net in N a track such that
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(1) No two nets overlap each other in the same track.

(%) Net N; should be laid above net N; if N; precedes net N; in the transitive

closure G, .
(3) The number of the tracks in the channel is the minimum.

Definition 5.7: A reduced graph G, is a graph constructed by deleting the edges
from (—:'q when there exists a directed arc between thé pair of nodes in the graph
G, .

The reduced graph G, and the closure of the constraint graph G: fully

characterizes the channel routing problem with vertical constraints. Figure 5.5

shows the reduced graph for Figure 5.3.
Ny

Figure 5.5 The Reduced Graph of Figure 5.3.

Theorem 5.5: The problem of the optimum channel routing with acyclic vertical
constraints is equivalent to finding the minimum cliques partition of the graph

G, under the constraints G, .

Proof:

It is clear that the reduced graph G, is no longer a comparability graph.
There is no efficient algorithm for solving the minimum cliques paftition prob-
lem for G, even for the non-constraint case. It belongs to the class of the most
difficult problems in complexity theory. It is an NP-complete problem [80]. It is

very natural to infer that the minimum cliques partition problem for G, under



89

the restriction G: is also an NP-complete problem. By our formulation, the
problem of the optimum channel routing under vertical constraints is an NP-
complete problem. In the past decade, people simply assume that the optimum
channel routing problem under vertical constraints is an NP-complete problem
and hence search the alternative solutions -heuristic algorithms [1], [66]-[68]
formally showed that the problem is actually an NP-complete problem by reduc-
ing the circular arcs coloring problem to the problem of the optimum channel

routing under consiraints.

Now the fact that the problem of the optimum channel routing with vertical
constraints is indeed an NP-complete problem demands the development of the
heuristic algorithms. There are two classes of algorithms among heuristic algo-
rithms. One is the dogleg version; that is, the algorithm allows the nets to be
divided and assigned into several tracks by inserting jogs [23], [67], [69]-[72].
However, the inserted jogs increase the capacitance of the entire net, and hence
decrease the performance of the circuit. One way to avoid this is to minimize
the inserted jogs. The other way is by using another version of the heuristic algo-
rithms, namely, the algorithms do not allow any inserted jogs in the channel [1],

[59]. The Left Edge algorithm for vertical constraints cases is as follows:
Left Edge Algorithm: (with vertical constraints)

Fill each track successively by choosing the net with the minimum left end-
point among the eligible set of those that can be fitted to the current track

until the track is full.

Here we show how to generate the eligible set. First, we assign a level to

each net by the following algorithm:
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Level Algorithm
Assign a level to each net such that

(1) no two nets are in the same level if there exists an arc from N; to N; in G:

and
(R) level (N;) < level (N;) if there exists an arc from N; to N; in G.).
Then, the eligible set

Sf = f the nets have the properties: (1). They are, if any, in the same level of
the last placed net, otherwise the nets with one level greater than the last
placed one. (). They are the nets with the left endpoint greater than the

right endpoint of the last placed net in the current track }.
Example 5.3: (continued)

The Left Fdge algorithm gives the solution { {N;, N, {Ns Ns} , {Ng, Ng} }
which is shown as Figure 5.3. In this case, the number of the required tracks is

three, and hence is the optimum solution.

Although in some cases the Left Fdge algorithm gives the optimum solution,

Solut'i.onLaﬂ Fdge
So lut'i'on@timu’m

yet, for n nets in a channel, LaPaugh [68] shows that <Vn

where Solutiong,;; g4 means the solution by applying the Left Fdge algorithm,

similarly for Solutiongyimum. Figure 5.6 shows the worst case with

Solutlione s gage

- = Vn', where n = m? is the number of nets to be routed. Fig-
Solution gpiimum

ure 5.7 shows the union of the interval graph G; and the constraint graph G..
The Left Fdge algorithm give a solution with m® tracks while the optimum solu-
tion only need m tracks. Figure 5.8 shows the optimum solution of Figure 5.6.
The reason for the bad performance is that the Left Edge algorithm always looks
for the candidate from the same level or one level higher than the last placed

net. This puts a severe restriction on searching for the next candidate. To
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remove the restriction, we define the eligible sel

SE = i the nets are compatible with the last placed net, and with the left end-

point greater than the right endpoint of the last placed net in the current

track }.

Note that the set SE differs from the set S: by discarding the level restriction in

Sf. and hence enhances the degree of freedom in searching for the next candi-

date. We also like to define the compalible relation.
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Figure 5.6 The Worst Case for the Left Edge Algorithm (taken from [68] )
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Figure 5.8 The Optimum Routing of Figure 5.8

Definition 5.8: Two nets N; and N; are compatible if there exists an edge

between N; and N; in G,

In the algorithm, we dynamically update the reduced graph G, by removing

the edges when there are any new constraints due to the new placed net.

Modified Left Edge Algorithm

Begin



93

Generate the graph G;;
Do until all nets are routed
Start at a new track;
Do until the current track is full
Search another net with the minimum left endpoint in eligible set SE;
Update the reduced graph G,.
End,
End;

End Modified Left Edge;

Example 5.4:

In this example, we use Figure 5.9 to demonstrate how the algorithm works.
Figure 5.10 and Figure 5.11 show the interval graph and the vertical constraint
graph respecfively. Now the reduced graph G, is shown in Figure 5.12. At first
we choose Ny and N, for track 1. Then we need to update the reduced graph G,
as shown in Figure 5.13. Since track 1 is full, we start at track 2 by choosing Ng,
N;, and then choosing N,;5. Note that when we choose N3 and N5, we remove the
following edges: (N;,N;), (N;,Ng), (N;,Ng), and (N;,N;5). Again we need to update
the reduced graph G, as shown in Figure 5.14. Now we choose N; and Ng for

track 3. We keep executing the Modified Left Edge algorithm, and finally get the

following result:
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Figure 5.9 A Channel to Be Routed
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N,
N Niz
Ng Nin
N, Njo
Ns Ny
Neg Nag
N

Figure 5.10 The Interval Graph G; of Figure 5.9.

N,
Ng Njz
y \
N, Nio
Ns Ny
N;\ Na
Ny

Figure 5.11 The Constraint Graph G; of Figure 5.9.



96

Figure 5.13 The Updated Reduced Graph G, ( 1st Iteration )
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Figure 5.14 The Updated Reduced Graph G, ( 2nd Iteration )

The result is the optimum. The major difference between the Left Fdge and
Modified Left FEdge algorithms is the relaxation of the level restriction, and
hence the dynamic updates of the reduced graph G,. Now let us turn to the Lejft

Edge algorithm. First of all, the Level algorithm gives the following result:

Level Nets

NoOO S WD
z
~2

Then we assign N, and N;; to track 1. Next we assign N; and Ng to track 2. Since
the set at level 1 is empty at this point, we move to level 2. Now we can assign

only N3 and N,; to track 3 because that Nj is at level 3 and still not available yet.

The result is as follows:
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Track Nets

Nz- Nll
Ni. Ng
NS’ le

O D~ N
z
[¢)]

The Left Edge algorithm needs 9 tracks while the Modified Left Fdge algo-

rithm only needs B tracks, which is the oplimum.

Left Edge Modified Left | Optimum*
Channel | Nets | Terminals | Algorithm | Edge Algorithm | Algorithm

*x] m? 2m?

m m m
2 8 8 3 3 3
3 12 25 9 8 B
4 5 10 2 2 2
%) Rl 40 14 12 12
6 63 187 22 20 20
7 45 80 18 15 15
B 1) 128 23 2R 17

** the worst case for the Left Edge algorithm
* Branch-and-bound method [86].

Table 5.1 The Experimental Results of the Channel Router

The Modified Left Edge algorithm needs O(n3) steps. An APL version of the
Modified Left Fdge algorithm is in APPENDIX II. Table 5.1 shows some experi-
mental results of the Modified Left Fdge Algorithm. Seven out of eight cases are
the optimum solutions. The results show significant improvement over the lef!

Edge algorithm.
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One extension of the algorithm is to allow doglegs to be inserted. This can
be achieved by dividing each net into several subnets , and then treating the

subnet as an individual net in the algorithm.

5.2.3.2. Cyclic Constraints

If the constraints graph has directed cycles, the channel is no longer rout-
able. The only way to route the channel is to open the directed cycles in the con-
straint graph. There are two wéys to break the cycles. One is to insert doglegs in
the nets; while the other is to stretch a cell (i.e. to insert some space in a cell)
and then insert doglegs. Both cases are very difficult processes. Neverthless,
they are interesting problems, in terms of complexity theory and practical use-

fulness, for finding a good heuristic algorithm to solve them.

5.3. Displacement Problem

Besides good algorithms affecting the width of a channel, the following Dis-

placement Problem also affects the channel width.

. X
;*Axi“*"lu ‘ ;

Yu T

; AW;
E l yi AX=xy%y
P A A AWi=YuY

AX=xy-%y

AW=y, -
- x“l Yo Yo
\ L'
.—
' ‘.] |y“ There exists a AX#AX; such that AW<AW;

Figure 5.15 The Displacement Problem
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Displacement Problem
Given: A set of nets in a channel
Find: The relative displacement AX such that the channel width AW is the
minimum.

Figure 5.15 illustrates the Displacement problem. No quick solution is; avail-
able except the exhaustive search. Since the density of a channel is the lowest
bound of the channel width, we develop an exhaustive method to search f or the
best AX such that the density is the minimum. We make the assumptio n that
every net must have connections in the upper and lower row of the chan nel. In
this case, we only need to search the range -, -—1_$AX$ 1, +1 since the dersity is
always equal to the number of nets in the given channel when AX is outsi de the
range. For the case when AX is within the range, we need to find the mas cimum
density in the channel with length less than [,+I,. For each AX, we nized to
spend (I, +1,)log{l,+L,) in time. Therefore the total time is (I, +I, )*log(liy +4).
The method discussed above is good only if we want to minimized the claannel
density. However, the minimum density, in general, doesn't imply the miriimum
channel width. The general Displacement problem is still an open probleni. For
a special case, Leiserson and Pinter [73] have found the optimum algoritl am for

the river router.

5.4. T Shape Router

The T shape router performs the routing in the T intersection part of two

channels. Figure 5.16 shows a T shape router. The algorithm is:

Algorithm T-Shape Router:

(1) Route the channel A and leave the connecting points around the botindary

of channel B.
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(2) Route channel B.

3 4 1
B
1 4 A o
o 4
5)
2 3
A

Figure 5.16 A T Shape Router

5.5. Cross Channel Router

The router performs the routing of the cross portion of intersection of two

channels. Figure 5.17 shows an example.
Algorithm Cross Channel Router:

(1) Route any one channel first and leave the connecting points around the

boundary of the cross portion.

(2) Route the remaining channel.
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Figure 5.17 A Cross Channel Router



CHAPTER 6

ESTIMATES OF A SINGLE MODULE

6.1. Introduction

The Arithmetic Design System (ADS) supports the exploration of the use of
many non-standard number systems in addition to standard two's complement.
An overview of the ADS is available in [74]. The ADS traverses three levels of
abstraction: a behavioral (application) level, an arithmetic (digit-vector) design
level, and a realization level. At the realization level, time and space complexity

are evaluated in terms of an MOS programmable logic array (PLA) model.

Figure 6.1 shows a PLA floor plan in which input and their complement lines
running vertically through AND-plan, while the product terms are represented
by horizontal 1ineé run through both AND and OR plans. The output lines run
through the OR plan vertically by connecting each output line to a set of selec-

tive product terms. Figure 8.2 shows the electric circuit model.
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Figure 6.1 A PLA Floor Plan
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Figure 8.2 The Electric Circuit Meodel for PLA

We will discuss the area reduction techniques for a PLA in the later sections.
Some of the techniques such as logic minimization and phase selection have
been developed over a long time. On the other hand the techniques such as two
bit decoder and folding were developed recently due to the progress of VLSI
technology. Undoubtedly, most of the available techniques are very compli-
cated, and therefore are time consuming. In other words, the problem sizes in
the VLSI era are too big to get the optimum solution under those techniques in a
reasonable amount of time. A major concern is whether it is worth applying the
techniques to each problem instance. The goal for the techniques mentioned
above is to reduce the area of a PLA. In general, we ask the question "how much
area is saved by these techniques?”. Besides the theoretical interest, the answer
of the question has praqtical implications, It would be useful to find out some
bounds for the amount of area saved by the application of those techniques
before spending a large amount of time and ending up with a tiny amount of sav-
ing. Some research has been done along these lines. Mileto and Putzolu [’?5] find
the average number of minterms in a two level logic minimization given the den-

sity of the logic function. In section 6.3, we develop a simple model to estimate

the area saved by the folding process.
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6.2. Area Reduction Methods for PLA

6.2.1. Logic Minimization

Many research efforts have been devoted to this classical research area.
The problem is given a logic specification, find the minimum cost realization in
terms of the given primitive logic units [76]. However, recently much effort has
been devoted to the minimization problem of multiple outputs functions under
two level restrictions. The result has direct application to PLA realization. The
two level logic minimization of multiple outputs is an NP-complete problem. In
geﬁeral, there are two approaches to tackling the problem. One is to find out all
the prime implicants and then choose a minimal cover set {77], [78]. The other
is to begin at a small set of prime implicants and then either by using expansion

or shrink operations to generate a minimal cover set [79], [80].

6.2.2. Two Bit Decoder

In conventional PLA, input and their complement lines are directly con-
nected to the product terms. The two bit decbder is a way to reduce the number
of the product terms. The two bit decoder first groups each pair of inputs
together and then connects to the lines of the product terms. Suppose that a
function £(A,B,C,D) is given. We can group A and B as well as C and D together
such that f(A,B,C,D) = F(g(A,B),h(C,D)). Note that the two bit decoder doesn't

change the number of input lines of a PLA.
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TWO BIT DECODER

A B
Figure 6.3 A Two Bit Decoder

Figure 8.3 shows a two bit decoder. Example 6.1 shows the application of a two
bit decoder on a full adder. In this case, the two bit decoder reduces the number.
of pfoduct terms from 7 to 4. Paper [B81] carefully studies the techniques of the
two bit decoder. However, the optimum partition of a PLA by using two bit

decoders is very difficult.

Example 6.1:
The truth table and their logic minimization of a full binary adder:
= abc+abe+abc+abe

¢, = ab+abc+abe

PP, OO0

PR, OO~ OO0’
O, O, OF OIn
P OO, QO QOWm
D—‘HHOHOOOP
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The original PLA:
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The PLA with two bit decoder: |
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{
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2.3. Phase Selection

Both the functions f and the complement f can be minimized and with a
different set of product terms. If the set for the complement function f is
smaller than that of function f, then phase selection chooses the complement
function f to be minimized. For example, the minimization of
f(a,b,c) = ¥1(1,4,5,7) = bc+ab+ag, while f= Y(0,2,3,68) = ac+bc. In this case, we

choose f to be minimized.

6.2.4. Partition

Usually, a PLA is very sparse. Partition is a scheme to divide the big PLA
into several small PLAs such that the final total area is less than that of a single

PLA. Note that a portion of area must be set for the connections among the
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small decomposed PLAs. Therefore, the final total area of the small PLAs is not
necessarily less than that of the single PLA. In general, figuring out the connec-
tion area is a difficult problem and needs further study. Here we assume that
the connection area is not the dominating factor. Under this assumption, the fol-

lowing shows why the partition gives a smaller area.

Suppose that in a given PLA, there are n; inputs, n, outputs, and p, product

terms. Then the area of a single PLA is

A'rea'single PLA = (zni"'na )Po = BN;Po +Mo Do
Now suppose that the single PLA can be partitioned into k£ small PLAs. Let
n{, nj, and p; denote the numbers of inputs, outputs, and product terms respec-

tively in the j's decomposed PLA.
Po = P1tPet.... +Dk
N, = Ny +ngt....+n,
ni < n,

Now the final total area of the small decomposed PLAs is

k , .
Are sman pras = 2, (2n+nd)p;
i=1

B
< 2nyp, + 2, nip;
i=1

ES Bnipo +n0po

=Arew gingle PLA

The inequality follows:

k k ko
nep, = 1,nd Yoy = Y ndp;
j=1 j=1 " j=1
Now the PLA partition problem is defined as follows:

PLA Partition Problem

Given: A single PLA with n; inputs, N, outputs, and P, product terms.
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Find: A set of small PLAs which partition the given PLA.
Without introducing the redundancy of the product terms and outputs in

the small decomposed PLA, the problem can be described as

k 3 3
Min ), (Rn{+nd)p;
i=1

-~

k
ZPJ = Do
=1
k
Subject to {),ni =mn, (Partition A)
i =1
ko
_Zlm’ =n
a:

If we removed the redundancy constraints, then the problem can be

described as

k L
Min Y (Bni+nd)p;
j=1

i
3
v
S

M
S,

H
S

Subject to (Partition B)

.,
1l
-

M=
&,
v
s

<
it
s

Both problems are extremely difficult. In the following, we develop an algo-
rithm that decomposes the big PLA into a set of small decomposed PLAs. E.ach
decomposed PLA is a group of outputs when they share the same product terms.
In this case, the constraints in Partition Ais satisfied. Now let's form a bipartite
graph Gp = (V; UVp.E), where V, denotes the nodes set for the outputs, while Vj,
does so for the product terms. Whenever an output is a function of a product
term, there is an edge between the nodes in the bipartite graph. Now we state

the decomposition algorithm as follows:
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Algorithm Decomposition
Input: A bipartite graph Gg = (V, UV, E).
Outpul: A set of small decomposed PLAs.
Methods:
Procedure CONNECTS(Gg)
begin
for i from 1 to |V, | do
begin
visited (i) =0,
end;
for 4 from 1 to [V, | do
begin
if visited(i)=0 then CLUSTER(%);
end;

end CONNECTS;

Procedure CLUSTER(v)
begin
visited(v):=1;
Queue(v),
while Queue#®d do
begin
Degueue (v, Queue);
Jor all vertices w adjacent to v do
begin
if visited(w)=0 then do
begin

Queve (w);
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visited(w)=1;
end,
end;
end;

end CLUSTER;

The functions Queue and Dequeue are the operations on a queue either to
put or to remove an item from it. The worst case of the decomposition algorithm

is O(n;n,p, ). A version of the algorithm in APL is in APPENDIX I1I.
Example 6.2:

A set of equations describing an B-bit multiplier with 40 outputs, B3 pro-
ducts, and 39 inputs are taken from [48]. We apply the decomposition algorithm

to the set of equations and get 33 clusters which are merged together into two

groups:
Group 1:
sl = -MPY(1)*-MPY(R)
sR = -MPY(1)*MPY(2)

s3 = MPY(1)*-MPY(2)

s4 = MPY(1)*MPY(R)
"1 = sl*start

"2 = s3*B(B)

"3 = s4*'10

"4 = 54*-"10

"5 =p*'1l

"6 = p*'l+p*s4d
u7 = p*33+p*"3+p"‘"1+p*82+p"‘"4
"B = p*sR+p*s4

"9 = p*sR+p*'R+p*s4
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"10 = */MCOUNT
"11 = §3+"1

”12

s3+s2+'"4

"13 = sR*BUS(1)+s4*A(8)

"14 = "2+*COUT(1)

CCOUT(1:2) = MCOUNT(1:2)*CCOUT(2:3)
CCOUT(3) = MCOUNT(3)

CSUM(1:2) = MCOUNT(1:2)@CCOUT(2:3)

CSUM(3) = MCOUNT(3)@1D1

Group 2:
COUT(1:7) = R(1:7)*A(1:7)+R(1:7)*COUT(2:8)+A(1:7)*COUT(2:8)
COUT(B) = R(B)*A(B)
SUM(1:7) = R(1:7)@A(1:7)@COUT(2:8)
SUM(8) = R(B)@A(8)@0D1

Note that there are 13 inputs, 24 outputs, and 27 product terms in Group 1,
while there are 24 inputs, 16 outputs, and 54 product terms in Group 2. The total
final area of two small PLAs is 5022 units ws 9784 units of the original PLA. A half

of the original area has been saved through the decomposition algorithm.

6.2.5. Folding

Since the density of PLA is generally very sparse, we can put two rows or
columns of PLA in the same physical line on the floor plan. The process of finding
the set of row pairs or the set of the column pairs to share the same physical
lines is called PLA folding. There are two kinds of folding processes. The
optimum versions for both processes are NP-complete. Since it is impossible to
get the optimum solution , some heuristic algorithm should be developed. A

modified version of the algorithm in [45] has been coded in APL and shown in
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APPENDIX IV. We show two folding processes based on Figure 6.4,
1 2 3 & 5'6 7 8 9

a3a2ala00|sszslso
b3 b2 bl b0 | |
1 ’ '
2 |
3, :
4; )
5
3 -
7 |
f |
AND I OR

Figure 6.4 An Example for PLA Folding

6.2.5.1. Row Folding

The aptimum row folding problem for a PLA is to find a column permufa-
fion which allows a maximum cardinality of row pairs to be implemented in an

array in such a way that each row pair shares the same physical line.

An optimum row folding for Figure 6.4 is shown in Figure 8.5.

6 7 1 2 3 4 5 8 9
| )

\

O\Un~3 0 £
SAG RS

Figure 6.5 An Optimum Row Folding for Figure 6.4

6.2.5.2. Column Folding

The optimum column folding problem for a PLA is to find a row permuta-
tion which allows a maximum cardinality of row pairs to be implemented in an

array in such a way that each column pair shares the same physical line.
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An optimum column folding for Figure 8.4 is shown in Figure 8.6.

7 9 8 3 4 g

A Y
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16 2 3 L g3

Figure 6.6 An Optimum Column Folding for Figure 6.4

6.3. A Model for Predicting Area Reduction due to Folding

6.3.1. Introduction

A theory of VLSI design requires the development of concrete figures of
merit which are computable in a reasonable time even for systems with million
of elements. Analysis of the analog behavior of VLSI circuits, for example, is
emerging to be quite different from classical network theory and requires not
only different analysis techniques but also the asking of fundamentally different
questions [82], [83]._ While eiact calculations of time and/or area complexity
may be practically impossible, useful upper and lower bounds may be computa-
tionally simple. These bounds may be quite adequate to guide the exploration of
a design space in an automated design system. Furthermore in the specific
case considered in this paper, the bounds can be made tighter, and thus serve

as better estimates, by additional computation.

The work described in this section is in this spirit. The optimum PLA folding
is an NP-complete problem. A heuristic procedure for PLA folding, with the worst.
case behavior taking O(N3) steps, has been proposed in [45]. In the Arithmetic

Design System we are interested in estimating the area which can be saved
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through PLA folding without carrying out the full folding procedure. In this sec-
tion, we develop a model base on the well-known Rent's rule to predict the area

being saved. Remember that Rent’'s Rule is

P =kC" , O=r=<l

where P is the average number of terminals required by a group containing an
average of C gates, k is the average number of terminals per gate, and 7 is a
constant relating to the structure of a given logic network. In the next section,

we use both £ and r as parameters of the logic network.

6.3.2. Bound on the Saved Area Ratio for a Row Folded PLA

A Programmable Logic Array (PLA) can be described as a block shown in
Figure 6.7. In the case of a PLA, the parameter C in Rent's rule can be replaced
by ¥, the number of product terms (i.e. P=kW"). The resultant area is defined

as

Aungora = PW.

Since a typical PLA is sparse, it is worth considering area reduction (and
possible time delay reduction) through folding. This analysis is restricted to
(optimal) row folding of the PLA. The optimal row folding problem for a PLA is to
find a column permutation which allows a maximal cardinality of row pairs to be
implemented in an array in such a way that each row pair shares the same phy-

sical line.
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p: # of Inputs and Outputs
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Figure 6.7 PLA Block Structure

The algorithm for the optimal row folding problem of a PLA will transform
Figure 8.7 into Figure 6.8. The resultant area of the folded PLA is Apyq4, Where
S;,0<i<P -1 represents the number of product terms with a physical cut at

column position 1.

1002 3 i p-1 P

Sl

52 I

S3

: ; : Cut-
/

Sp-1 |

50

Figure 6.8 PLA after Row Folding.
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The saved area ratio is defined to be

Arod
nfold

6 =1-I" <where I'=

Figure 6.9 represents a transformation of the structure in Figure 6.8 in
which cuts occurring within a window in the center of the PLA are used to define
two sub arrays with P,, and P,; terminals, respectively, and ¥, terms each. It
serves as an intermediate, conceptual structure in the derivation of the bounds
on the saved area ratio. The rows without any cuts and those with cuts outside
the center window are collected together in the area of Figure 8.9 with Sg termi-

nals. (An ALTO program developed by General Electric can perform this decom-

position [B4].) The area of the PLA in Figure 8.9 is

AP = PZ(W]. + So)

where

P2= Pll + Plz.

P2 P2
——— e P
P
Py 12 P P12
———N TS— — ——
tw W W
W 1
l§ . - o - . .« o M j 1 1 %

Figure 6.9 Partition Model of PLA.

The structure in Figure 6.9 is an intermediate model between the unfolded
PLA and the totally (row) folded structure, and is used to find bounds on § in

terms of the Rent's rule exponent r. It is obvious that

d<

|
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since at best, half of the rows can be folded over the other half. Since the
decomposition algorithm producing the Figure 6.9 structure never produces

fewer rows than that of the optimal structure (Figure 6.8), and generally more,

it also follows that

Ap = Arqq
and therefore that

Ap

o=>1—- .
Aunfol.d

Assuming that the numbers of terminals for the two subarrays in Figure 6.9

are equal, it will now be shown that

Ap
Aungold

IH

=1 -

SN fe-

o

The bounds on the saved area ratio follow immediately.

Given that a logic network can be characterized by k and r it follows that,

-

- is a function of £ and 7, f (k,r), for a given logic network. Figure 6.9
Aunfold

is a special case of the general model of a segmented matrix [B4] and an appli-
cation of _Rént‘s rule on the model can yield a lower bound on f (k,r), and there-
fore one for 6 since f (k,r)<6. We assume that on the average P,;=P,; in the
partition and denote the number of terminals for either sub-array in Figure 6.9
by P;. Note that this assumption implies that the PLA can be partitioned. There-
fore the application of the results derived in this paper are only applicable for
those cases satisfying the assumptions. Obviously, a PLA with a column fully per-
sonalized (sometimes the case for control logic implemented in PLAs) is unfold-

able, in which case these results do not apply.

We have
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Pi = Py = Pje (assumption)
Pz = 2P1
P,=kW'™ 1<i<2 (Rent's rule)

We=So+R2W, (by model)

From (2) and (3) we have

So= Wg —2W,
ir
- [B]7lr -l
g

(a) For the unfolded case:

Aungora = PW2
where

1
2P, |7
Aunfold = 2Pl _k—

(b) For the model in Figure 6.9.

Ap = zpl[wl N 80]

bk 1,
= 2P, T+ [f]’[z'—z]

-1
k
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1
fler)=—
2?
and therefore,

l'_.

<6<

|-

N =

2

Figure 6.10 shows the upper and lower bounds for 6 with respect to Rent's

exponent.

Saved Area Ratio (6)

i & " N " L L . " L " L L L s -Jl I}
.

M '
T 1 | 3 1 \ 1 1 A
L3 9 l .

—
0 1.2 .3 .4 .5 .6 7 .8 0

Figure 6.10 Saved Area Ratio vs Rent's Exponent.

6.3.3. Computation of Rent’'s Exponent r

Although for a Rent's rule analysis £ and 7 are the parameters of a logic

network, the inequality of saved area ratic is independent of k. The computa-

tion to compute 7 requires:
(1) forming the partition as shown in Figure 6.9.

(2) performing a least square fit on the three known points (Pa, Wa), (P, #,),

(k,1) on the P-W plane as shown in Figure 6.11.
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(PZ,WZ)

(P1,w1)
(k,1)

w
Figure 8.11 Log P vs Log W

Since the partitioning in step (1) may require a lot of computation effort,
we propose an approximation of 7 which avoids step (1). Since the values of
(Pg, W) are given, if we can compute k, we would have an approximation by Fig-

ure 6.11. By definition, k is the average number of terminals per gate, there-

fore, can be computed by the formula k& =W1- X (X nonzero connections on the
2

PLA). We know (P3,W3) and (k,1), and therefore, we can compute a value of r.

6.3.4. Example and Refinement

Table 6.1 shows that the actual saved area ratios fit well within the derived
upper and lower bounds. The difference between the actual and the predicted
saved area ratio is introduced since we approximately compute Rent's exponent
r, as outlined in the previous section. To reduce the difference, we need to

spend more computing time to get a third point (P;,#,) in Figure 6.11.
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Input Output Product Predicted Actual
Design Description | Terminals | Terminals Terms Saved Area | Saved Area
Ratio Ratio
Radix-4 Adder 5 3 20 .03 .05
(Figure 8.12)
Four Bit PLA Adder 5 4 B 22 37
(Figure 8.13)
Eight Bit PLA Adder B8 18 22 .28 41
(Figure 6.14)
Eight Bit ALU 23 54 .22 .39

(Figure 8.15)

10

Table 6.1 Comparison Between Actual and Predicted Saved Area Ratio.
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Figure 6.12 Radix-4 Adder.
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Figure 6.13 Four Bit PLA Adder.
Figure 6.14 Eight Bit PLA Adder.
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Figure 6.15 Eight Bit ALU.

6.3.5. Summary and Open Problems

Based on Rent's rule and a simple partition model of PLA, we have

developed a procedure to estimate the bound of the saved area ratio 4.

Two possible extensions are

(1) To derive a tighter upper bound also as a function of Rent's exponent r

(currently the upper bound is a constant -;—).
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(R) To generalize the folding definition in such a way that several product terms
can be arranged in one row [85]. This kind of generalization produces a

bigger saved area ratio.

Another open question is how the folding process interacts with the process
of logic minimization. Consider a system composed of a loegic minimizer and a

folding algorithm, as shown in Figure 6.16.

LOGIC LOGIC UNFOLDED FOLDING FOLDED
SPECIFICATION | MINIMIZER PLA ALGORITHM PLA

Figure 6.16 A PLA Minimization System.

For the logic minimizer, either absolute or near minimization with respect
to some cost flinction can be obtained. Some efficiently computational algo-
rithms have been proposed for the minimization task [78], [79], [86]. However,
if a folding algorithm is cascaded to the logic minimizer, and if two kinds of
| minimization procedures are taken, we get two final folded PLAs which have area
Agoid with absolute minimization  80d  Afoig with near minimization ~ respectively.  Let
0 foid with absolute minimization 8N 01014 with near minimization denote the saved area
ratios corresponding to two minimization procedures. The open question is
whether 0 £ 0id with absolute minimization is greater or less than

0 Jold with naar minimization



CHAPTER 7

CONCLUSIONS

7.1. Contributions

The major problems of the VLSI technology is the management of the com-
plexity of the digital integrated circuit. The design methodologies that help the
designers to speed the design tasks are important. In this thesis, we classify the
approach into two major categories, namely nonautomatic and automatic layout
approaches. FEach approach in the categories is time consuming. Among them,
we study three kinds of layout approaches - gate array, pfogrammable logic
array, and general cell approach. Our philosophy in the thesis is try to estimate
the figures of merit resulting from the design process or subprocess by extract-
ing some characteristics of the design. If the answer is positive, we develop some
model and do the estimates. If the answer is negative, we use a constructive
approach by developing a set of efficient algorithms to estimate or even exactly

compute the desired figures of merit.

Since the processes or subprocesses are time consuming, not every design
instance deserves going through the processes. The first part of the philosophy
has the merit of advising the designer to avoid wasting time by just getting a
small amount of improvement. In this thesis, the results relating to the gate
array and PLA follow this philosophy. The nature of the hierarchical descrip-
tions in ADS cannot fit the gale array and PLA layout approach. We need a gen-
eral model to map the design descriptions into physical structures. This
motivates us to develop the rectangle model which is the same as the general
cell approach. Since the general cell approach is a very complicated process,

this motivates us to use the constructive approach which follows the second part

126
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of the philosophy. In summary, the thesis investigates the techniques for reach-

ing the goal outlined in Chapter 1 under the thesis philosophy in this section. We

discuss the problems associated with the gate array, PLA, and general cell lay-

out method.

(1)

()

(3

The contributions of the thesis are:

the development of a model for estimating the number of the folding pairs
in PLA folding process. By a simple computation on the Rent's exponent 4,
the model can give the lower bound of the number of the folding pairs. It is
very useful to have the lower bound for the result obtained in an NP-

complete problem. Experimental results validate our model.

the identification that both the area ahd interconnection length of a digital
system are function of Rent's exponent of that system under our gate array
model. Our gate array model allows only one track in each vertical or hor-
izontal channel. The digital system with bigger Rent's exponent would have

bigger area and longer interconnection length.

a new proposal‘ for a general cell layout method and rigorous treatments for
parts of the subproblems of general cell layout method. This includes
(a). a new treatment of the routability and channel routing order problem.
The necessary and sufficient condition for the routability test are derived
by using a directed graph model. Based on the model, an algorithm is
developed for thgé generation of the channel routing order.
(b). a new channel router based on the dynamic manipulation of interval
graph and constraint graph in which the channel routing problem is

modeled.

Regarding to the general cell approach, we propose the following layout

approach. Chapter 3,4,5 have detail study for this approach.

(1) Placement
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The goal of the placement is to avoid an unroutable channel and to
make the final area as small as possible. The necessary and sufficient
condition for the routability test provides a guideline for avoiding
unroutable channels. While the global allocation is a process to

minimize the final area.

(2) Routing
The goal of the routing process is to have 100% complete intercon-
nections and make the final area as small as possible. We break the
routing process into the following processes:
(2-1) Finding a legal channel routing order.
(R-2) Performing topblogical net assignments.
(2-3) Solving the displacement problem for each channel.
(2-4) Performing channel routing by following the legal
channel order.
(R-5) Perform’ing the T shape router on each T shape
intersection if any.
(2-8) Performing the cross channel router on each

+ shape intersection if any.

7.2. Future Research

For the PLA approach, we are not able to have a nontrival upper bound. It is
interesting to find a nontrivial upper bound. Interesting extensions for this PLA

folding process are mentioned in section 8.3.5.

For the gate array approach, our model has severe restriction on the avail-
able tracks for every vertical and horizontal channel. To generalize our results

for the model without the track restriction is very useful in practical case,
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With regard to the general cell approach, we propose a layout method and
analyze it theoretically. We have programmed the rotability test, the channel
routing order generation as well as the channel router. Works remain to be done

in order to form a complete system.

In our proposed method, channel router is the major algorithm for detail
routing. In order to use channel router, appropriate channel routing order
should be generated. We treat this problem very formally. In some system, this
problem can be avoided. For example, in MIT's PI system, it divides entire rout-
ing space into a set of rectangles. Each rectangle would be treated as a channel.
However, this approach requires a global crossing placer to decide the termi-
nals’ positions along the boundary in the rectangles. It is intersting to have

comparison on the result obtained from these two different methods.
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APPENDIX 1.
Min-Cut Algorithm

AA PART BB ,HN A,B;N
(1]
B R R R R E R KRR R R R R R A R R R R R R AR R R R R R R R A R B AR R AR AR KR R R R AR RE R

(2] 'TOTAL SET TO BE PARTITIONED:'

[3] 4A,BB

(4] 'INITIAL PARTITION SETS:'
(5] 'SET A4: '.AA

[6] 'SET B: ' ;BB

[7] >(1=pA4)/RETURN
[8] Ne2x(pAA)[1]
[9] HNeN:2
[10] AeAA
(11] B«BB
[12]
LPBEG : ' >>>>>>>5>5>5>55505 5055505500550 30 0550500500050 >55>>> !
3] 'NEW ITERATION BEGINS:'
4] Pel
] AB<A,B
| C<CD[AB;AB]
] AI<(HNep1), (HNpO)
] BI<(HNs0), (HNo 1)
1 APP<HN0
] BPP<HNp 0
21] CH<CD[A;B]
] EA<AI[C+.<BI
1 1A<AL[C+. <Al
] EB<BI|C+.xAl
] IB«BI[C+.xBI
] DA<EA-1A
| DB<EB-1IB
] GA<HNpO
]
]
]
]
]
|
]
]
]
]
]
]

DO M P P b b b b

LPPART :G+DA- . +DB
G<G-2xCH
RET<MAXG G
Al1<RET[1]
B11<RET[2]
APPTP)«Al«A[All]
BPP[P|<Bl<B[Bl11]
GA[P]<RET[3]
> (P=HN) /MAXYES
PeP+1
DA<DA+(2xHNTC[ ;A11))-2xHNTC[ ;B11+HN]
DB<DB+(2 HNLCL,BIITPN]) 2xHNLC] ;A11]
] DATA11]<-99999
2] DBLBzx]e 99999
3] -LPPAR
4] MAXVES KP<IAEXCS
5] '¢a ';¢4A



) e ) T ) T T e T e T e e Y
AN A AN U N G Gt G G G b R R
N LY e GO DD e DO T RWRN RO DO NN

PUNNEN FURINN | SN Y TS { WO L SRS | DU | I | S | SH— | DU Y W— S—E— ) S | BUR R el

[67] AA2«<(HN-2)1B
(68] BB2«(HN+2)!B
(69] AA2 PART BB2
[70]
'e==cm======s========= SUBPARTITION 2 =============
[711 AAl1<(HN-2)1A
[72] BB1<(HN:=2)lA
[73] AAl PART BBl
[74]
D R R R R R R R R AR R R R R R E R KRR A R E ARk AR kR R E R X Rk kR R E X R R R R R R R AR R R RE
[75] RETURN:'=x%% FINAL PARTITIONS: =xx'
[76] 'SET A: *;AA
[(77] 'SET B: ' BB
(78] -0
KPMAXGS
[1] CSUM<HNe0
[2] I+0
[3] KP«250
[4] LPMAXGS :>({I<I+1)>HN)/ENDMAXGS
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'GSUM ' ;GSUM

‘KP ' :KP
»(KP[1]>0)/REAR
>NEXT

REAR: APMAPP[1 TO KP[2]]
BPM<BPP[1 TO KP[2]]

IHNe<(pA)p0

IHN[MAPM]«1

A<( (~IHN)]A) ,BPM

IHN<(sB)p0

IHN[B\BPM]«1

B«((~IHN)/B),APM

‘sxsx INTERMEDIATE PARTITIONS; #xx'
'SET A: 'A

'SET B: ':B

-»LPBEG

NEXT: '>--> FINAL PARTITION: ¢«
‘SET A; ' A

'SET B: ':B

ﬂ'***********##******************#********#***********#**

R R B B SUBPARTITION 1 EoEmsESS=E=S==S===

GSUM[ I J«+/ITGA
>LPMAXGS
ENDMAXCS : [ /CSUM

KP[ 1)1 /CSUM
KP[2]<GSUM\ [ [CSUM
_)

0
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RET<MAXG G
] RET<3p0
2] CMAX«[/1/C
3] ID<C\GMAX
4] RET[1]<1ID+115C
5] RET[2] ((((1TeGC)1ID)=0)x(1TpC))+(11eC)IID

[1
[
[
|
(6] RET[3]CcMAX

TOV<N1 TO N2
[1] TOV«(N1-1)+1(1+N2-N1)
[2] »0
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APPENDIX II.

Channel Router

ROUTER

m THIS IS A CHANNEL ROUTER WHICH IS GOOL FOR

BOTH VERTICAL AND/OR NONVERTICAL CONSTRAINTS.
CONSTRAINTS GRAPH ARE GENERATED BY THE FUNCTIONS
v CONSTRAINTS AND v CLOSURE. THE GRAPH IS STORED
IN ADJACENT MATRIX.

THE INPUT DATA INCLUDE ARRAYS U AND L CONTAINING
THE UPPER AND LOWER TERMINAL DISTRIBUTIONS, ARRAY
NESTDATA CONTAINING THE TWO EXTREME COORDINATES
ASSOCIATED WITH EVERY NET.

n N IS THE NUMBER OF NETS

e
[ -

b I B> S B> S B i}

]
]
] MASKeN» 1
1 MASKTMPNo 0
1 LTRT<0
] IC«0
] MASKAND<MASK
] m START ANOTHER TRACK UNTIL ALL
1 » THE NETS HAVE BEEN ASSIGNED
1 START:>( (v/MASK)=0)/ENDROUTE
] NET«e1l
] » SEARCH ANOTHER NET WHICH IS FEASIBLE
] m TO THE CURRENT TRACK UNTIL IT IS FILLED.
1 TRACK:~( (v/MASKAND)=0) /ENDTRACK
[24] »(LTRT=1)/RICHT
[25]
LEFT INDL<1/ ( (NETDATA[ ; 1]= (| /MASKAND/NETDATA[ ; 1]) ) ~MASK) /AN
[26 ] NETID<NETDATA[INDL ;3]
[27] EXTREMR<NETDATA[INDL:2]
[28] AVNET«((~(VG[NETID:]v{VG[ :NETID]))AEXTREMR<NETDATA[ :1]) /1N
[29] ~DOROUTE
(50 | |
RIGHT : INDL<\ / ( (NETDATA] ;2 ]= (| /MASKAND/NETDATA[ ;21)) xMASK) /AN
[31] NETID<NETDATA[INDL ;3]
(32] EXTREML~NETDATA[INDL ;1]
[33] AVNET«((~(VG[NETID: V§VC[ ;NETID]))AEXTREMLS>NETDATA[ :2]1) /N
(34) DOROUTE :NET<NET,NETID
[35] MASK[NETID]<0
[36] >(0=p AVNET)/ENDTRACK
[37] IDAVNETNETDATA[ ;3 |\AVNET
[38] MASKTMP IDAVNET ]«1
[39 ] MASKAND-MASKAMASKTMP
[40 ] MASKTMP<Np0
(41] A RELATIONSHIP LLIMINATED
[42] TNI<0
[43] TN<(eoNET)-1
"44] PREDID«(VG[NETID]=1)/1N
45) SUCCID«(VC[NETID;]=1)/1N

ﬁﬂﬁﬁrﬂﬁﬁﬁﬁhﬁﬁﬁﬁﬁﬁﬁhr—‘ﬁﬁﬁﬁ
RO BO DO DO Mu b bt s s bt b b e e O 08 N N R W N

Qo B D O 0 N AN WA e O e e
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APPENDIX III.

PLA Decomposition Algorithm

CLUSTER V
[1] »((1iV)=0)/ZERO
(2] VISITEDO[ 11V J«1
[3] -BECIN
ZERO :VISITEDI [ 11V ]«1
BEGIN:Q1<SOL1«p (S<1)
02+SOL2¢p (S«1)
Q101,11
02<Q2, 11V
GO1:->(0=pQ1)/END

NV 11101

NV2<17Q2

011101

02«110Q2

SOL1<SOL1,NV1
SOL2<SOL2,NV2
>(NV2=0)/INV
ADJ<(VOVI[;NV1])[:1]/ VI
G02:5(0=0ADJ) /GO1
NADJ«<1TADJ

ADJ<1lADJ

> (VISITEDI [NADJ ]#0)/G02
01<Q1,NADJ

02<0Q2,0

A ‘g1 Q1

A ‘g2 .02

VISITEDI [NADJ ]«1

»G02

INV :ADJ«(VOVI[NW1;])[1;]/1VO
C022:-(0=pADJ) /CO1 ~
NADJ<1TADJ

ADJ<11ADJ
>(VISITEDO[NADJ]#0)/G022
Q1<Q1,NADJ

02«02, 1

A 'Ql1 ':Ql

A 'Q2 .02

VISITEDO (NADJ ]«1

»C022

END:' OUTPUTS . ' ,SOL2/SOL1
' PRODUCTS: ' ,;(~SOL2)/30L1

>0

L 2N
—

—_ O VNI W ~ OOV UNHR W MOV NAAUB WK O e

M Qo Lo o o Lo o W Wl o do o do o Do Ao Do RO BD hu w v i b b b e bw e \O S8 N QN SN
S Y VU | SO YU GO Y S T U T N CUUN 1 VORS TW SO0 T U [ SN Y SRS TS YU L SRR | AT WU Y SUSUN | SUN | VAR | WIS TRRNS TV Y WU S [ SON | S

[aamun ¥ o Tdetn Yo T s Vo Vs W T e Tosmun Wanmn ¥ ansen P Fonan onsen Vasnens Vs Vo Vo ¥ o Vs Uonns Fane Vs Ve Tonmn Vot Toonms Vo o Ve Vo T . L T e T e Yoy |

CONNECTS
[1] VISITEBOV0p0
[2] VISITEDI<VIpy
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LPELIM:>( (TNI<TNI+1)>TN) /ENDLPELIM
PRED<(VG[ ;NET[TNI]]=1)/\N
SUCC<(VG[NET[TNI];]=1)/N
>((0=pPREDID)v (0=pSUCC)) /LPE2
VG[PREDID ; SUCC ]«1

LPE2 :>((0=pPRED)v (0=pSUCCID))/LPELIM
VG[PRED ;SUCCID]«1

->LPELIM

ENDLPELIM :>TRACK

ENDTRACK : 'THIS TRACK CONTAINS'

NET

IC<IC+1

LTRT<~LTRT

MASKAND<MASK

>START

ENDROUTE : 'TOTAL NUMBER OF TRACKS NEED IN THIS CHANNEL:'

F e e e T T e Y e e e e T T ¥ U Vs ¥ it L Lo T |
A A AT n ¢ndn GO R R R
N WA DO NN R W DO OO

e e I e d e b e e e e e P e e e e e e e e ]

CONSTRAINT
1] m GENERATE CONSTRAINTS GRAPH
2] m THE INPUT ARE THE ARRAY U AND L CONTAINING OF
3] m UPPER AND LOWER TERMINALS DISTRIBUTION
4] ID<(U*0)YA(L#0)
5] IU<IDJU
6] IL<ID/L
7] I<0

8] VG+«(N,N)p0

9] LPCON:>((I<I+1)>pIU)/ENDCON
10] VGIIU[I];IL[1]]«1

11] -LPCON

12

[
[
[
[
[
[
[
[
[
|
[12] ENDCON:-0

] K0

] LPCLOSURE : > ( (K<K+1)>N)/ ENDCLOSURZ
] VGVGv (VG ;K])-.AVG[K; ]

| >LPCLOSURE

] ENDCLOSURE : 50
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I<Ne0

LOOP :>((I<I+1)>V0)/ENDCONN

»(VISITEDO[I]#0)/LOOP

VeI, 1

N«N+1

'CLUSTER NO. ' :N;':'
] CLUSTER V
1 =»LoOP
] ENDCONN: '
] >0

..............................................

Mt b b b O 00 N N O W

G Do e O ey
-
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APPENDIX IV.

PLA Folding Algorithm

FOLD;I1;V VD ,VH

@ INITIALIZATION

A<(N,2)p0

VeNe'l

PAIR«Np 1

VDeNe 0

1«0

VD<(0#G)+.x(Npl)
LOOP1:>((v/(V#0))=0)/END

A SELECT A COLUMN

] VVeV MIN VD
] » POSSIBLE FOLDING CANDIDATES WRT VV
] VH<VV COMPRESS G[VV;]
| VH<VH=xPAIR

] LOOP2:>((v/VH)=0)/ENDL2

] A A FOLDING CANDIDATE WRT VV

] UU<VH MAX VD

] »(UU=0)/ENDL2

] 'LET US TRY THE PAIR ';VV;' "L UU

] I<I+1

] A[I;]<vv,lUu

] G[VV UU]«-1

] m CHECK ALTERNATING CYCLE IN AUGUMENTED GRAPH
3] CHKCY

24] >(CY#0)/DELE

[25]

'"THERE IS A CYCLE AND WE DONT RECOMMAND THE PAIR';VV ;'

[26]

......................................................

[27] VHIUU]+0

(28] A[I;]<0,0

[29] clVV . LU]«0

[30] I<I-1

[31] »LOOP?2

132] m DELETE UU AND VV FROM THE GRAPH

[33] DELE.VIUU]«0

[34] V[VV]e«0

(351 GVV UU]«-1

[36] PAIR VYV ,UU]«0

'37] 'WE SUGGEST THE FOLDING PAIR 4 Y
|

......................................................

(40 ] ENDL2:V VV ]«0

f41] ->LOOP1

(42) END:'THE FOLDING PAIR /RE'
[43] A

......
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[44] IFOLDeI
[45] -0

OUTPLA ORDER; AV ;AU ;NDI
[1] NDI<ND-IFOLD
[2] CUT«<NDIp0

[3] P1<PN<NDIp0

(4] MASK<NDs I
P<(N,NDI)s'X"'

I«0

LPOUT: »( (I«I+1)>IFOLD)/ ENDOUT
VVeA[I 1]
UU@A[I;2]

AV<DATA[ORDER ;VV ]
AU«~DATA[ORDER ;UU ]

MASK[VV ,UUT<0

MED<( (AU T'0"')LAUL'1")-1
P[:1]«(MEDTAV), (MEDLAU)
P1[I]VV

PN[1]<UU

CUT[1]<MED

>LPOUT

ENDOUT :P1[1 UPTO NDI }<PN[1 UPTO NDI ]<MASK/\ND
P[:I UPTO NDI]<MASK/DATA

Pl

~—r—
N
—

AN R WA e D

P

PN
'CUT AT’
cur

20

Bo Do Do Bo DO Ao Do B0 DO b b b b b b b b e e O N

L—JI—JL—';JL——JHL_J!—-JL.JL—JL——J&_—JI—I;JL——JL—JHL‘JL—JH

O B NN W ~OT O N

~
o

OUTPLA ORDER; AV ;AU ;NDI

(1] NDI<ND-IFOLD

[2] CUT<NDIp0

[3] P1<PNeNDIpt

[4] MASK<ND» 1

[5] P«(N,NDI)e'X"

(6] I<0

(7] LPOUT:»((I<I+1)>IFOLD)/ENDGUT
8] VW<A[I ;1]

] Uu<A[I ;2]

0] AV<DATA[ORDER:VV ]

1] AU<DATA[ORDER;UU]

2| MASK[VV ,UU]<«0

[13] MED<( (AU '0' )ALV 1) -1
[14] P[ ;1)< (MEDTAV), (MEDLAU)

s Vannns Tonnae Ui Tonunes Vamun
T b e O
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P1{1]<VV

PN[1]UU

CUT [ ]«MED

->LPOUT

ENDOUT:P1[1 UPTO NDI]<PN[I UPTO NDI |<MASK/\ND
P[ ;I UPTO NDI]<MASK/DATA

Pl
;

PN
'CUT AT’
cur

-0

I T e e E e e e e
oo B Do B DD RO DD DO DN e e e e b
O NI AN R WN WO O O
[ TV S S [ CUUONN T SN SN TG T SO Y NN T MY SR | SRS T W J VA |

ORT VTOP ;1 . W
] NUM[VTOP]«1
| ADITOP«(1=P[VTOP:])/\ND
| NADJTOP<»ADJTOP
] I<0

1 LPSORT:>( (I<I+1)>NADJTOP) /ENDSORT
] weADJTOP[I ]
] >(NUM[W]=1)/ERRSORT
] SORT W
] >LPSORT

0] ERRSORT :>(LAB[W]#0)/LPSORT
1] 'THERE IS A CYCLE'

2| >0

3| ENDSORT :JTOP<JTOP-1

4] LAB[VTOP]JTOP

5| ITOP<ITOP+1

6] ORDER[ITOP]<VTOP

7

8

9

[ S S o T S - IR N B L TURE R /)

(s Tanenn Tanmees ¥ ot Wt Tonaen Vs P Vanens Vasnas Fanan Danass P Vo T Tonns B oum T asmes T ounun |

[ WSS GG | FRORWOW |} SOV ) USRS ) WU | GO [} SES | B S

>0
w
0

1j<1 UPTO J
(1] IJ<(I-1)+\J+1-1

ROV A0
(1] NelTpAO
2] Ge(N,N)p0

3] AN (N
(4] Ce(INFQIN)A((A0)V . NE2O)
5] CYel

(6] m FOLD
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[7] -0

COLM A0

1] Ne1lpAO

G<(N,N)»p0

IN-(1N)-.-\N

G+ (INARIN)A((RAO)V.AAD)
CY«1

FOLD

-0

[
[
[
[
[
[
[

Nyt Wb

YGEN ;I ;L ;K ;CYV .ONEV
] CYV(STH+1)00

1 CYV«(STHTYPATH), S

] ONEV«((sCYV)-1)p0

] 1«0

1 LOOPCY :»( (I«I+1)>STH) / JHPCY
] LeCYV[1]

] KeC¥V[1+1]

1 ONEV[1]<G[L:K]

1 ~LOOPCY

0] JMPCY :CY<+/ONEV

1

C
1
2
3
4
5
6
7
8
9
1
11] -»0

[
[
[
(
[
[
[
[
[
[
[

FLAG<FLIP CYCLE VC;I;AN,ADj ;W ,GFLIP
[1] FLAG<+0
[2] STH-STH+1
[3] PATH[STH]<VC
[4] AVAIL[VC]<0
[5] ANe+/(1=(G[VC:]x(-1)=FLIP))
(6] ADJ«ANo0O
[7] ADJ«(1=(C[VC; ]x(-1)=FLIP))/\N
[8] »(FLIP#0)/BEGIN =
[9] ANe+/(v/((-1)=C[ADJ;]))
[10] ADJ<(v/((-1)=G[ADJ;]))/ADJ
[11] BEGIN:I<0
[12] LOOPC:-((I«I+1)>AN)/END
[13] a 'S ',;8;'ADJ ';ADJ;'VC ',VC;'AVAIL
[14)] WeADJ [ I]
[15] >@W=S)/PATHST
(16] ~(AVAIL[W]=0)/LOOPC
[17] GFLAG«0
(18] GFLIP<~FLIP
(19] CFLAG<GFLIP CYCLE W
[20] FLAG<FLAGVGFLAG
[21] »(CY=0)/ENDCYCLE
[22] »LOOPC

"CAVAIL
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(23] PATHST:'|------- >
(24] 3(STHTPATH),S

[25] FLAG«1

(26] CYGEN

[27] »(CY=0)/ENDCYCLE
(28] »LOOPC

[29] END:»(FLAG=1)/UN
[30] I«0

[31] LOOPB:>((I<I+1)>AN)/END2
[32] w<ADJ[ 1]

[33] »(v/VC=B[W;])/LOOPB
[34] BI<0

[35] BI<IB[W]+I

[36] B[w;BI]<VC

[37] IBW]<BI

[38] »LOOPB

(39] UN:UNMARK VC

[40] END2:STH<STH-1
[41] AVAIL[VC]<1

[42] ENDCYCLE: -0

CHKCY

[1] PATH<Np0

[2] STH<«0

[3] S<0

(4] SNet/v/(-1)=C

[5] LOOPD:>((S<S+1)>SN)/ENDD
[6] @ AVV«(S-1)I1N

(7] m AVAIL<Ne0

(8] m AVAILTAVV |1

(9] AVAIL«Np1

[10] CY«I

[11] B<(N,N)e0

[12] IB«<Npo0

[13] F<0

[14] FFLIP<I

[15] F«FFLIP CYCLE §
(16] >(CY=0)/ENDD

[17] -LOOPD

(18] ENDD:~»0

UNMARK U;J;IIB

AVAIL[U]«1

J<0

W0

11B<IB[U]

LOOPU :>((J<J+1)>IIB)/ENDU
nv«B{U;J] :

B(U;J]«0

IB[U<I3[U]-1

LR L Do ¥ o Vo Vo P §
R N R W~

e e e e e e et
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(9] >(AVAIL[IW]#0)/LOOPU
[10] UNMARK mw

[11] -LOOPU
[12] ENDU: -0

CHKCY
PATH<Np 0
STH<0
S«0
SNe+/v/(-1)=C
LOOPD: > ( (S«<S+1)>SN) /ENDD
A AVV«(S-1)IN
A AVAIL<Np0
A AVAIL[AVV |1
AVAIL«Np 1

CY«1

B« (N,N)p0
IBe«Np0

Fe0

FFLIP«1

F<FFLIP CYCLE §
+(CY=0)/ENDD
->LOGPD

ENDD : >0

=
ey
bt

N
[—

[¥%]
Tt

[ Y onmme Fnmans [ ¥ oumees Damn e ¥ naes T onanes § oumee ¥ anes [ mussees [ s ¥ aeess F s T amene ¥ pumans |
Poat P Pt Pd P b b b e O SO N O\ 0
S 3 ON ol SN e Qe e e

e e e ) b e e b bt

VVeV MIN VD
[1] MI<L/((0#(VDxV))/(VDxV))
[2] VVe(VDxV ) \MI

UU<VH MAX VD

1] »(0=(v/{(0# (VH<VD))))/ENDAAX
] MA<1/((6# (VH=VD))/(VHxVD))
| UU«(VD<VH)\MA
] >0

] ENDMAX : UU«0

] -0

[
[
[
[
[
[

(= % W N ST XY

VH<VV COMPRESS VT
(1] VH<(0=VT)
(2] VH[VV ]«0

ND TOPSORT P:VTOP
[1] LAB<NUH<ORDER<NDp 6
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JTOP<ND+1

ITOP«0

LPTOP: »(0=+/ (0=NUM) ) / ENDTOP
VTOP<NUM10

SORT VTOP

>LPTOP

ENDTOP : ' A SUGGESTED ORDER ARE
ORDER<$ORDER

] ORDER

1 »0
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