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INTRCDUCTION

Any external movement of the gkin constitutes a mechanical input, either
transient or steady-state, into the human body. The basic premise used is that
the human body will respond to the input according to the laws of mechanics
whether or not the human subject has preknowledge of the impeding action. Some
topical examples are: automobile accidents, ejection from disabled aircraft,
manned launchings, and recoveries of space capsules on water or land.

The research results reported here are "theoretical' in nature. The mathe-
matical models developed are such that: (1) most of the essential features in
experimental results are present and accounted for, and (2) no interesting and/
or valuable gqualitative and quantitative results have been overlooked. In short,
the research is aimed at explaining the experimental data as well as suggest
additional experiments to be performed.

No real problem in biomechanics can or even gshould be treated in all its
complexity. Usually, the most that can be hoped for ig the identification of
the more important variables in the problem and their effects on the results of
interest. The process of developing models to describe given physical systems,
such as the human body, which meet this requirement is not easy.

The development of meaningful experiments must necessarily be guided by
some theory, no matter how simple. On the other hand, the congtruction of a
meaningful theory requires the availabillity of experimental data and observa-
tiong. If data are not found or provided, there is always the danger that
theory will be built up from an abstract philosophical viewpoint based more on
how the human body could or should respond rather than how 1t does.

In this initial effort the aim has been to develop those particular problems
which have the most topical relevance and are simple analytically. It was felt
that the most influential parameters and their variations can be reasonably
understood with such a beginning.

The complex real situationg in the biodynamic response of the human body
have also been treated. Numerical methods, e.g., multi-degree-of-freedom lumped
parameter models, finite difference and/or finite element analysis, have been
initiated to tackle problems, which are intractable analytically, While these
techniques are discussed toward the end of this report (see Chapter IV), the
main emphasis has been placed on "severely" idealized models, which are justifi-
able on two counts: (1) they are guides to the most important elements in the
"real" problem, and (2) the mathematical models treated are far superior to those
which have entered the literature in their ability to correlate with experimental

data.



A number of biodynamic problems were considered. From among these, three
significant results and approaches deserve special mention:

(a) A continuum model for the vertical ejection problem was proposed and
solved exactly. The model consists of an elastic rod capped by a mass at one
end and given an impulse at the other, see Figure 1-13. The elastic rod repre-
sents the spinal column and the end mass, either the head or the head, upper
limbs and thoracic cage combination. The results were excellent qualitatively
in that 1t was possible to keep track of the progress of the wave front and its
effects at all locations and times. Quantitatively, however, the results were
on the low side. That this would be the case was anticipated, since the assump-
tion of a linear material (constitutive relationship) was a mathematical con-
venience and does not corresvond to the known load-deformation characteristics
of the human spine. However, the locations of high stress and/or acceleration
became clear, while effects of such parameters as the time of wave travel, the
head to spine mass ratio, etc. became clearly delineated. The effects of visco-
elastic materials are found from the elastic solution through a correspondence
principle.

(b) The problem of head injury received considerable attention. The model
consists of a closed elastic spherical shell filled with fluid subjected to a
blow, Fig. 3-1. Ag a first approximation, the shell is considered to be thin
and elastic, the fluid is inviscid and irrotational while the blow is manifested
by a sudden initial velocity input. Even with these simplifying assumptions,
the problem is quite complex and it was decided to break the problem down to
its constituent components: (1) a rigid closed spherical shell with irrotational
inviscid fluid as the wave guide and (2) the elastic closed spherical shell as
a solid wave guide and finally (3) the effect of the fluid-solid interaction of
the model 1s considered.

(¢) The initiation of "numerical experiments” to ascertain the relative
importance of the various parameters in a given biodynamical problem. The
essential concept here is to collect as much of the available biomechanical
deta and clinical observations as possible, then based on anatomical guildance
construct a rather detailed mathematical model, which because of its complexity
can only be treated numerically. This computer program has merit by itself and
also as a means of checking the validity of various "severely" idealized models.



CHAPTER I

THE EFFECTS OF VERTICAL IMPULSE ON THE HUMAN TORSO

A. THE PROBLEM

Consider a "pilot" to be seated as shown in Fig. 1-1. At time t = O,
he is propelled from the aircraft by an explosive charge, F(t), acting upon
the botitom of the ejection seat. This action can and frequently does lead to,
among other effects, damage of the spinal column. We would like to examine the
biodynamics of the problem.

B. PREVIOUS STUDIES

In 1961, Goldman and Von Gierkel summarized the data on the effects of
shock and vibration on man. In 1964, Von Gierke reviewed the current researches
in the biodynamic responsgse of the human body. These two reviews, with minor
exceptions, are quite complete. Between 1964 and the present date of this report,
two papers have appeared, which supplement the previous two survey articles.
The first, due to Roberts, Stech, and Terry,” reviewed the variety of mathematical
models used, in connection with biomechanics up to 1965. The second by the writer
and Murray, gave a summary of lumped-parameter models and then examined the use
of continuum models in the dynamics of body ballistics. The present chapter
will highlight some of the contents ofh, which appears as Appendix A, and also
report on the progress made since 1ts appearance.

C. LUMPED-PARAMETER MODELS

It might appear far-fetched to model the given problem by a single-degree-
of-freedom lumped-parameter system. Its justification was most succinctly stated
by Payne5:

"For short duration accelerations, however, the soft, low frequency parts
of the body (such as the viscera) do not deflect far enough to load up the
o 1"
spine, ...

The lumped-parameter model is shown in Fig. 1-2. Mathematically, the model
can be represented by the ordinary differential equation:

me + £(x) = -mg(t) , (1-1)
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Fig. 1-2. The lumped-parameter model of vertical acceleration.



where f(x) is the spring force, g(t) is the acceleration pulse applied to the
base, and x is the relative displacement between the base and the articulated
mass, m. The problem is linear or nonlinear according as f(x) is linear or
nonlinear. For the case of a rectangular pulse, ™ showed that in the linear case
the dynamic load factor i1s two while it can be larger than two for the non-
linear case. The dynamic load factor is defined as the ratio of the maximum
dynamic spring force to the static spring force.

Lumped-parameter models have also been used for describing the response
of the human body to steady-state vibrations. Coermann et al., have used a
seven-mass system for predicting the response of the human body in the sitting
or standing position on a platform subject to vertical vibrations at low
frequencies. Dieckmann! has obtained the transmissibility of longitudinal vibra-
tions from a shake table to various parts of the body of a seated human subject
as a function of frequency, as indicated in Fig. 1-3. Observe the resonances
of the head/shoulder and the shoulder/table motions at fairly low frequencies.
It was stated in Ref. 6 that with respect to steady-state vibrations the body
can be described as a lumped-parameter system at frequencies less than 100 cps
but at higher frequencies up to 100,000 cps the body behaves more as a complex
distributed parameter system, the type of wave propagation being strongly in-
fluenced by boundaries and geometrical configurations.

D. EXPERIMENTAL STUDIES, CLINICAL OBSERVATIONS AND BIOMECHANICAL DATA

Lissner and Evans8 measured the response of the human cadaver to static
loading and to caudo-cephalad accelerations. Typical of their results are:
(1) The load-deflection curve of the intact lumbar spine as shown in Fig. 1-k,
Tts "hardening' characteristics is quite evident, i.e., the locad is a monotoni-
cally increasing function of the deformation of the spine. (2) A typical experi-
mental record of the dynamic response of a cadaver, when strain-gage and/or
accelerometer meagurements are made at selected locations of the skeleton, is
shown in Fig. 1-5.

The experimental results when compared to the analytic regponse of a
simple linear spring-mass system show good correlation for motion measured at
the crest of the ilium and at the sternum. The experimental response of the
head, however, indicated much higher accelerations than those predicted by the
simple model. Also, strain-gage measurements made on sgelected vertebrae show
that the locations of maximum strain depend upon the mode of bending of the
vertebral column, bending being more severe in the cervical and thoracic
regions than in the lumbar region. It was concluded that while gross motions
of the body may be approximated by such a simple lumped-parameter model, this
model is inadequate for predicting injury.

Another one degree-of=-freedom, lumped-parameter model was used by Wittman?
in an attempt to determine the influence of the human body on 1ts supporting
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structure. From data collected in drop-tower tests, the parameter values for

a spring-mass-damper system representing the human body were progressively re-
fined (by trial and error) to develop an analytical model capable of predicting
the dynamic response of a drop-tower carriage to which human subjects were
strapped. Figure 1-6 shows a sketch of the carriage and the simple spring-mass-
damper model. For the conditions of the drop tests it was found that analytic
predictions of seat accelerations corresponded well with experimentally measured
geat accelerations if the model of the human body had a natural frequency of 10
cps, a critical damping ratio of 0.30, and a mass equal to the weight of the
test subject. Maximum accelerations varied from 12 to 14 g's, when short- and
long-pulse durations of 55 and 120 msec were used. The above study has shown
that a lumped-parameter model of the human body can be used to determine the
accelerations of a fairly rigid supporting seat assembly subjected to impulsive
loadings.

In the mechanical modeling of the human system one must have access to the
relevant biomechanical data before the modeling process can be meaningful.
Frequently, however, such data is simply not available, or at leagt not in a
form suitable for direct use by the engineer or physical scientist interested
in developing a mathematical model. With regard to the spine, more attention
appears to have been given to the behavior of the cervical and lumbar regions
than to the thoracic region. As will be pointed out later, vertebrae in the
thoracic region are as likely to fracture during pilot ejection as, say, are
the lumbar vertebrae.

Although much of the motivation for performing biomechanical tests on the
vertebrae and the intervertebral discs has been the need to explain such medical
conditions as sciatica and lower back pain, much of the experimental data thus
obtained can be interpreted by the engineer for higs own applications. In some
cases, however, only qualitative properties such as the presence of strain-rate
effects can be gleaned from the experimental evidence presented.

The remainder of this section presents the results of some of the typical
biomechanical tests performed on parts of the spinal column, with representative
data being given.

Hirsch and Nachemsonlo have summarized the condition of the spine of 55
Swedish aviators who were forced to escape from their aircraft by catapult
ejection during the period from 1957 to 1960. Thirteen, or about one fourth,
of the subjects were found to have incurred vertebral fractures. The injuries
were invariably compression fractures of the vertebral bodies. In five cases,
only one vertebra was damaged, whereag eight cases showed multiple fractures.
The incidence, distribution, and level of vertebral fractures that were detected
are summarized in Fig. 1-7. The middle part of the thoracic spine was subjected
to the highest frequency of fracture.

11
Brown and others conducted experiments on the lumbosacral spine (five
lowermost vertebrae with attached sacrum) with particular emphasis on the
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intevertebral discs. They found that the ultimate static compressive load for

the lumbar discs ranges from 1000 to 1300 1b. Figure 1-8 summarizes the findings

of axial compressive tests conducted on five specimens taken fresh from human
cadavers. Stiffness values for these discs range from about 500 to 8000 lb/in.
initially to 12,000 to 20, 000 lb/in. after the applied load reached 200 to 400

lb. A typical load-deflection curve is shown in Fig. 1-8. Failure under axial

load took place invariably in the vertebral end plates even when well-developed
ruptures of the annulus of the discs were present. Failure ranged from imperceptible
cracks to more or less complete collapse of the end plate, depending on the condi-
tion of thée bone and the magnitude of the applied load.

For values of the breaking strength of individual vertebrae of a much larger
number of individuals, see Fig. 1-9, which is taken from Ruff. The units of
failure loads are given in kilograms. It can be seen that age is not a dis-
cernible factor in the strength of the vertebrae and that the data reflects
surprisingly little spread in the failure load for individual vertebrae.

Evans and Lissner8 described the results of axial load and bending tests
on the intact lumbar spine and pelvis. Specimens from fourteen embalmed and
six unembalmed adult human male cadavers were used. Under axial load, the em-
balmed specimens' average maximum load was 882 1b (610-1350), but in the embalmed
specimens it was only 54k 1b (290-690). However, the embalmed specimens absorbed
more energy, 594-in.-1b, compared to the unembalmed specimens which absorbed
on the average only 567- in.-1b. A typical load-deflection curve for the lum-
bar spine is shown in Fig. 1-4. A characteristic bilinearity exists which is
quite similar to the bilinearity of curves obtained for intervertebral discs
taken alone. In the bending tests conducted, the intact lumbar spine was sup-
ported as a simply supported beam with a concentrated load applied (through a
steel cylinder) to the midpoint of the "beam." Five specimens were tested in
anterior bending and four specimens were tested in lateral bending. In anterior
bending little difference was observed between the bending moment at failure for
the embalmed and unembalmed specimens, the average being about 700 in.-1b. The
bending tests of the lumbosacral spine reveal the "integrated" behavior of all
of the constituent elements comprising that part of the spine, thus providing
some over-all phenomenological check on the plausibility of any specific
mechanical models one might propose. For example, we see that the typical
load-deflection curve for the bending tests reflect again the same bilinear
characteristic as do the load-deflection curves for individual intervertebral
discs, see Fig. 1-4. Most of the mechanical properties of intervertebral discs
were obtained under fairly slow rates of strain and thus represent essentially
the static properties of the discs. Hirsch,15 however, has tested discs under
constant load and measured the resulting deformations (creep response) as a
function of time.

A typical creep curve for a disc subjected to a 100 kg load is shown in
Fig. 1-10. Hirsch made the following interesting observations:

11
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(a) the curves are essentially level after 5 to 10 min of load application,
(b) most of the deformation occurs in the first 3 O seconds.

(c) the nature of the curves is independent of the level of load, and

(d) the discs recovered completely after the load was removed.

Unfortunately, the detailed behavior at early times (such as the presence of

an instantaneous elastic response) was not given. Nevertheless, the over-all
behavior of the discs can probably be adequately described by a one-dimensional,
linear viscoelastic model. For example, the creep response of a Kelvin model,
shown in Fig. 1-11, has a striking similarity to the creep response of the inter-
vertebral discs.

E. ELASTIC CONTINUUM MODELS

A continuum model capable of predicting the motion of the head when the
human torso is subjected to longitudinal accelerations has been used by Hess
and Lombard.l They proposed the uniform linear elastic rod model shown in
Fig. 1-12. By varying the wave speed c of the rod they were able to obtain a
"close" fit to the measured response of the head of test subjects. The time of
wave arrival thus determined averaged 25 msec within a range of from 20 to 30
msec. Thus, a very simple continuum model with an adjustable parameter, time
of wave travel, was developed for determining the motion of the head when the
vertebral column is subjected to known longitudinal accelerations at its lower
end. However, since "matching" of experimental data and analytic results was
obtained at only one point on the rod, namely at the head, such a continuum
model cannot be justified as a model for predicting injury to the vertebral
column, not at least by virture of the above study alone.

Carrying the continuum approach further, Liu and Muz“raylL proposed and studied
a model consisting of a uniform rod capped at one end by a rigid mass, Fig.
1-13. The rigid end-mass represents either the head or the head and part of
the upper torso, and the rod represents the spinal column. The longitudinal
motion of the rod is governed by the equilibrium and kinematic equations:

(1-2)
e' = u'_,, (1-3)

where subscripts denote partial differentiation, x' is the longitudinal coordinate,
u' is the displacement, €' is the strain, o' is the stress, p is the mass density,
and t' is the time. The above equations are, of course, independent of material
properties. For the case of the elastic rod, the constitutive equation is

1L
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o' = Ee', (1-4)

where E is the modulus of elasticity of the spine. The combination of (1-2),
(1-3), and (1-4) yields the usual one-dimensional wave equation:

U‘,tvtl = C2 u’xrxv ) (1"5)
where ¢ is the velocity of sound in the elastic medium and is (E/p)l/z, The
boundary and initial conditions of the problem are:

AE u*x,(z,t') = -M u't't,(l,t') (1-6)
u'(o, t') = f£(t")
u'(x',0) = u’t' (x',0) = 0, (1-7)
where A is the cross-sectional area of the spine. Egs. (1-6) and (1-T),
respectively, state that the "head" times its acceleration is equal to the
force at x' = [ and the displacement of the seat is prescribed by f(t').
Introducing dimensionless variables:
u o= u'/L,x = x'/I, t = ct'/1 and N = M/pAl, (1-8)

where N is the "head"-to-stem mass ratio. Substitution of (1-8) into (1-5) to
(1-7) gives the dimensionless form of the equation as:

w, o= u_, (1-9)

with boundary and initial conditions:

-\ utt(l,t)

ux(l,t)

u(0,t) £(t)

17



u(x,0) = ut(x,O) = 0. (1-10)

Taking the Laplace transform of (1-9) and (1-10), we get

1—l'XX.‘ B pzﬁ
i(x,p) = 4? e'pJG u(x,t)dt (1-11)
T (1,p) = -»p° w(1,D)
and
a(0,p) = T(p) (1-12)
Combining (1-11) and (1-12) we get
w(0) = £(p) ([ Pre(p) PP Lre(p) PP 2, (113)

where e(p) = (1-Ap)/(1+\p). Application of the binomial, shifting and Faltung
theorems yield the exact solution, which is given in Ref. 4. We shall only
reproduce the main relevant results here. The nondimensional displacement
solution is

u(x,t) = f£(t-x) + Eﬁ f(t-x-2n) - f£(t+x-2n)
© n Vv
b T ()Y —E— (™) ¥ [e(e-onex) - £(t-2nix)](e-6) e (B Mg
n=1 v=1 Kv(v-l)ﬁ v' o (1)

where £(t) = O for £ < 0. The dimensionless stress field at any time is

G(x’t) = G'(X:t>/E = "U-X(X)t>: (1'15)

18



where u(x,t) is given by (1-14). The acceleration is given by uyt, which at
the "nead" is A to(l,t), see (1-12). Typical stress-time histories with A as
a parameter are given in Figs. 1-14 to 1-16.

A continuum model answers several questions which heretofore have been
unexplained. It is clear from the experimental and biomechanical data that
stress is the cause of injury and not the acceleration directly. These two
quantities are related differently for different boundary wvalue problems. The
use of the maximum value of acceleration as the criterion of tolerance is, by
itself, invalid. Furthermore, the locations of high stress and/or acceleration
become clear and the effects of such system parameters as the time of wave travel,
"head"-to-stem mass ratio, etc., became delineated.

The results are best exemplified by the dimensionless stress-time plot for
a "head"-to-stem ratio of A = 0.5, Fig. 1-15. One unit on the time scale is
physically the time for the impulse to travel the length of the rod, Fig. 1-12.
Notice that the stress at the mass end is zero prior to the arrival of the wave-
front. At the loaded end, the dynamic stress is twice Young's modulus of
elasticity just when the reflected wave has returned to its origin. If there
were no head mass, i.e., A = O, the waves would be bounced back and forth fol-
lowing the dotted lines. The addition of the "head" mass introduces dispersion
into the wave propagation with interesting consequences. Notice that the stress
is not necessarily negligible. Furthermore, there exists a tensile stress at
the head end near t = 6. Such a phenomenon is difficult to realize in a single-
degree-of-freedom, lumped-parameter system. It occurs quite naturally in a
continuum model. As far as the author is aware there is little, if any, data
on the tensile strength of the spine for either the static or dynamic case.
Anatomically, the spine is basically a compression member. It would not be
too surprising if its tensile strength is rather low. Only additional bio-
mechanical data from experiments can confirm or deny such an assertation.

Hirsch and NachemsonlO gave injury statistics of Swedish pilots who were
forced to eject from their aircraft, Fig. 1-7. If the results in Fig. 1-15
are representative of the mechanics of pilot ejection, then one should expect
predominantly compression failure near the lumbar region: Thl2, L1, L2 and 13,
However, the severe and multiple injuries occurred in the thoracic region near
Th5 and 6. This can be partially attributed to the inertial effects of the
"head" mass consisting of the thoracic cage, upper limbs and the head. The
multiplicity of the fracture is probably caused by initial compressive failures
and then the subsequent arrival of the tensile stress.

The simple continuum model given above do yield some guidelines to such
basic questions as where, when and how damage might occur. In some important
cases, it is far easier to derive and solve the partial differential equations
governing the more realistic distributed-parameter model than to create the
equivalent lumped-parameter system and then solve the coupled system of ordinary
differential equations.
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Admittedly, many of the system parameters such as damping, initial crooked-
ness of the spine, nonuniform mass distribution and section properties, non-
linear constitutive equations for material behavior, etc., have not been included.
We shall like to consider some of these effects singularly and in groups.

F. VISCOELASTIC CONTINUUM MODELS

It was pointed out in the previous section that the equilibrium and kinematic
equations, i.e., (1-2) and (1-3), are independent of material properties. For
a linear viscoelagtic rod, the constitutive equation is generally

al dig!
jY

n=0 "n gt 1" m=0 gt !

(1-16)

where the coefficient Pq is usually taken equal to unity. The transformed
solution of (1-16), assuming quiescent initial conditions for both o' and €',
is:

— N n M m
S 2 ws™) = T L, 0y
where
— -gt’
o(x,8) = {Te o(x,t')dt’
Let
M 0 N
Ex(s) = mzb q,8 /n;O p,s” (1-17)
then
o' = E¥(s) €’ (1-18)

Laplace transform equations (1-2), (1-3), and combining with (1-18), we get
the transformed equation for viscoelastic rods

1Tt = g% . (1-19)
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The solution of (1-19) depends on the loading, initial, and boundary conditions.
If these conditions are identical for both the elastic and viscoelastic problems
then their transforms will also be the same. Hence, if E in the transformed
solution of the elastic problem is replaced by E*(s) then the result will be

the transform of the viscoelastic problem. This is the so called '"correspondence
principle” 15’ as applied to the present one-dimensional wave-propagation
problem.

In the present case, we have solved the elastic problem in the previous
section, hence we can apply the correspondence principle to get the transformed
solution to the viscoelastic problem. The greatest difficulties arise in attempt-
ing to invert the transformed solution into the real time domain. Of course,
one can always formulate and solve the viscoelastic problem directly. Two
examples will be given below to illustrate the power of the technique.

Example 1: Kelvin Material, Finite Rod

A vigcoelastic rod made of a Kelvin material of length [ is subjected to
a displacement impulse at one end with the other end free. Use the correspondence
principle to obtain its transformed solutions. The constitutive equation for
a Kelvin material is:

o' = Ee' + ue! (1-202)

~1

G' = (E+us) € = Ex¥(s) €' (1-20Db)

The transformed solution of the corresponding elastic problem, i.e., (1-1%3)
with A = 0, 1is:

p(2-x) -2p-1

U(x,p) = F(p)([e ™ +e&” 1ML+ e ), (1-21)

where the transformed variable p is with respect to dimensionless time, t.
From the definition of the dimensionless parameters, (1-8), the constitutive
equation, (1-20) and the scaling theorem, i.e.,

Llg(at')] = ¢g () (1-22)

we get, after a little menipulation with a = 4/c,
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ulx,s) = ZE(Z 1[1-e }
(1-23)
But
i} 1/2
ts/c = 1s(p/E) . (1-24)
Replacing E by E*(s), (1-24) becomes
Isfc = Is[p/(E + HS)]l/2 (1-25)

Substitution of (1-25) into (1-23) gives the transformed solution in real time
t'., To get the transformed solution in nondimensional time, t, we apply the
scaling theorem once more but with a = ¢/f in (1-22), we get

Klp)x | -X(p)(2-x),, , -2X(p) -1

u(x,p) = f(p)([e 1+ b (1-26)

where
X(p) = p(1 + ep)” 1/2

and

u/plc

m
i

]

Equation (1-26) is a special case (A = 0) of the viscoelastic problem considered
in Ref L. The inversion of (1-26) is, in general, not easy, but if ¢ is con-
sidered small, i.e., € << 1, it was shown in Ref. L that the original partial
differentiation equation leading up to (1-26), i.e.,

3 + - = 0 1=
Uext | Txx Tt ’ (1-27)

is of the singular perturbation type, since € = O reduces the order of the
equation. An order of magnitude analysis was presented in Ref. L4 which showed

that if the assumption that ¢ << 1 is justifiable then the increase in stress
at x = 0 is also of the same order of magnitude.
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Example 2:

Three-parameter viscoelastic rod capped by a rigid mass, otherwise it is
the same as Example 1.

The figure pertaining to the example is the same as Fig. 1-12 except that
the constitutive equation of the material is

o' + o' = qee' *aq €', (1-28)

where pi, 4y, and g; are material constants. Its Laplace transform with respect
to real time t' is

Ex(s) = (a1/pi)[(az/a1) + s1[(1/p1) + s]°° (1-29)

Again applying the scaling theorem, (1-22) to (1-28) yields

&

e-(ﬂs/c)x+€(ls)e—(ls/c)(2—x)

- . Lxds
i(x,s) = =f(%) . e(ig) e—(2£s/c) (1-30)
c
But fs/c = fs/(E/p)l/z and replacing E by E*(s) yields
Is/c = (p!lpl/ql)SE(l/pl)+SJl/2[(qo/q1)+SJ'l/2 (1-31)

To get the transformed solution to the viscoelagtic problem in terms of
dimensionless time, let

ty = cyt'/l vhere cy = <Q1/QP1)1/2 (1-32)

Substituting (1-31) into (1-3%0) and applying the scaling theorem (1-22) once
again, we get

Co_ye -A(p)x, -A(p) (2-x)
Tp) = | ()] stk
[ S 1re(p)eE)

where
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Ap) = p(a1+p)l/2 (a2+p)_l/2

and
o = l/plcv e qoll/qlcV
e(p) = [1-aa(p)I[1+A(p)] ™t

The physical significance of the viscoelastic constitutive equations is
to think of the continuum as consisting of a series of infinitesimal masses,
each one connected to its neighbors by a "stress-strain" unit consisting of
infinitesimal springs and dashpot. By virtue of physical arguments we must
preclude those models which do not return to their original size upon removal
of the stress. A comparison of the propagation characteristics of different
semi-finite viscoelastic rods for longitudinal waves was made by Morrison and
Lee°l6 Thelr conclugiong were that the Kelvin material gives a diffusion pro-
cess that is not a wave motion at all while the three-parameter solid gives
damped waves, which traveled at the elastic wave velocity or a higher velocity
depending on the arrangement of the "stress-strain" units. The solutions given
in Ref. 16 are valid for the duration before any reflection takes place, i.e.,
t < 1.

G. LOVE-RAYLEIGH MODEL

In both the elastlc and viscoelastic models, the lateral effects were
ignored. If it is assumed that plane sections remain plane and that the radial
strains are related to axial strains through Poisson's ratio, then the differential
equations for the rod was shown by Lovel! to be:

- (Vk)z u' = 02 u' toy 2 (1_31’1')

]
v £t x'x't't! X

where v = Poisson's ratio, k = radius of gyration of the cross-sectional area.
It was shown by Plass et al.,18 that the stress at any section is given by:

o(x',t') = oA (vk)Z W g (X5E7) FAE W, (x',%7) (1-35)
For the problem of the rod subjected to a displacement pulse at x' = O and with
a rigid mass attached at x' = £, the boundary conditions at x = [ and x = 0, are:
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a2 ' - 1
PA (vk)= u oprgr PAEUL o= M (1-36a)
u'(o,t') = f£(s') . (1-26b)

The initial conditions are agsumed quiescent. The nondimensional version
of (1-34) and (1-36) becomes

2 = -
3 Wt T Uxx "Wt 0 (1-372)
subject to the boundary conditions

£% u

it (1,t) + ux(l,t> = hu (1,t)3 (1-37D)

where N = M/pAf and & = vk/{. The solution of (1-37) is, in the usual way

w(np) = £(0) (e VP Eeg(p)e RN EH) 3y ()e72N(R) gy
where
e(p) = (1 -xp)/(1 +Np)
1(p) = p(1+ £2 p?)7/ (1-38)

Note that as & + 0, n(p) > p, we obtain the simple elastic model, as we must.
Again, the inversion of (1-38) appears to be a difficult problem.

A theory due to Mindlin and Herrmannl9 accounts for both radial inertia
and radial shear stress and leads to a complicated coupled system of partial
differential equations. No attempt was made to congider this case.

H. A NOTE ON THE INVERSION OF THE TRANSFORMED SOLUTION

In the partial differential equations considered so far, the transforms
of the solutions all have quotients of exponential functions, 1l.e.,
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e-X(p)x+a(p’K)e-X(p)(E-X)

-2X(p)

(1-39)
1+a(p,\)e

In the Table shown below we note the differences in X(p) and o(\,p) between
the various models:

Model X(p) o16:29) §
I. Elastic D [1-2X(p) 1[19X(p)] *
II. Kelvin p(l+ep)_l/2 -do-
. (o +p)i/2
ITT. 3-parameter solid p——————z75 -do-
(axtp)
IV. Love-Rayleigh p(1+§2p2)'l/2 [1-ap][1+ap] ™t

where ¢, A\, 01, Qo are system constants. The quotients (1-%9) can be expanded
in a series of negative exponentials as was done in Ref. 4 and the solutions
obtained from the series term by term. This procedure has the further advantage
of a simple physical interpretation since each term of the series corresponds

to the solution of a related problem for a semi-infinite region, and thus the
solution for the finite region can be interpreted in terms of successively
reflected Wavess2O

As a typical example of such a procedure, it was shown in Ref. L4 that the
Kelvin model with a rigid mass at one end and a displacement input at the other
can be written as:

u(x,p) = f(p){e'X(p)x+n§1(—l)nap(p,x)[e‘X(P)(X+2n)_e-X(p)(x-zn)]]

(1-k4o)

The solubion u(x,p) is such that ep occurs naturally and so if we change the
variable from p to ep and write

x = xfe, t = t/le, n = ep, (1-41)
the solution for u(x,p), (1-40) may be written as

aen) = £(0/e) e M T ()P,

[e-X(n)(X+(2n/€))_e-X(ﬂ)(X"(Zﬂ/G))]} (1-42a)
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where X and M (and hence %) occur naturally and

n(n+l)'l/2

1§

X(n)

[1-3X(n) J[19X ()] " (1-L2b)

1]

afn,\)

In view of (1-42) the appropriate stretched variables are x, t and so the
equation of motion becomes

e Ul - UL = -
uxxt uxx utt 0 (1 AB)
with the boundary conditions
u(o,t) = f£(t) 3 up(%,0) = u(%0) = 0 (1-lkka)
and
1 1~ 1 -
}'Z_E(Ej-t) + u}-z(-e-’t> = -()&/6) u%%(g)t) (loll')'l'b)

We note that for ¢ << 1, (1-27) is certainly of singular perturbation type
(since € = 0 reduces the order of the equation). The first-order singular
boundary conditions are (l-4la) and

u}EE(OO;E) + ux("o;:E) = 0,
which implies that we need consider only
u(x,t) 0, as X »w (1-45)

The latter condition (1-45) merely implies that the first-order singular solu-
tion is the solution of (1-4%) in the case of a semi-infinite rod and so is
given by the first term of (1-42), namely,

u(%,n) = f(n/E)e‘En[”+l]ml/2 (1-46)
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It is in the forms of (1-43) and (1-46) that Morrison21 obtained the exact
solution to the semi~infinite rod problem, i.e., the satisfaction of the boundary
condition (1-L45): u(X,T) + 0 as X » ©. The details are lengthy and are therefore
omitted here.

The sclution for several trangit times become increasingly difficult since
the coefficients of the successive exponentials in the geries for the trans-
forms are progressively more and more complicated functions of p, so that only
the first few terms of the series can be used, see (1-40). Fortunately, these
are precisely the times of most importance in the present problem since it is
within these durations that the maximum stress is attained. A systematic pro-
gram 1s in progress to perform these inversions.

It is to be noted that the remarks above are similarly applicable to all
the models mentioned up Ho this point.

I. THE TAPERED ELASTIC MODEL

Physically this model is identical to the elastic one except now the cross-
sectional area 1s no longer constant but varies according to some distribution,
say

A(x') = A(x'/ke)", (1-47)

where A 1is the area at x' = ki, m is an arbitrary real number and k is an
arbitrary constant added for convenience in prescribing the total amount of
variation of the area in a bar of given length. The bar occupies the region
ki <x' < (ki +{). The differential equation of the rod is given by

u, +tmu, = Eu 1-48a
ST £t (1-48e)
subject to the boundary conditions:

and

u(l,t) = f£(t) (1-48b)
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where

>
!

M/o A IKK  and K (1+k)/x (1-L9a)

and

E=x"/k{ ; u=nu/kl; t=ct'/kl; c%=E/p (1.49b)

The Laplace transform of the equations in the boundary-value problem is given
by

&ag§<a,p) + mﬁgmp) - tp7u(k,p) = O
u(l,p) = f(p)
T, (k,p) = -rp7u(k,p) (1-50)

4

After (1-50) has been solved for T(&,p), then the required response is obtained
by the inversion of T(&,p), which is not an easy task. The level of the diffi-
culty is an order higher than the previous models due to the fact that our
equation of motion, (1-48a), is a linear partial differential equation with vari-
able coefficients restrained by time-dependent boundary conditions. The "cor-
respondence principle" of viscoelasticity still applies because of the linearity
of the governing differential equation.

J, NONLINEAR ELASTIC MODEL
Suppose that in the otherwise simple rod of Section E, we have a non-

linear constitutive relationship for the material properties of the spine,
i.e., functionally:

o' = f(e') (1-51)

In view of (1-2) and (1-3) and letting
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do'/de' = Eg(e') = dffde' , (1-52)
we get the differential equation of motion:

2 N — 1
c g(u’x,)u’x,x, = Wi (1-53)

In the dimensionless variables defined by (1-8), we get

gluu = u, . (1-54)

X’ XX tt

This is a nonlinear partial differential equation because g(u ) is considered
nonlinear. It was pointed out in Section C, that the spine has a hardening
characteristic, i.e., g(e¢) is a monotonically increasing function of .

Many interesting results can be obtained by a qualitative examination of
(1-54). The immediate observation is that a particular form of (1-54) i.e.,

Ju = W, >0 (1-55)

was shown byRosen22 to be formally equivalent to one-dimensional flow of a
polytropic gas. As is well-known, normal shocks develop under these circumstances.
A ghock igs defined here as the accumulation of small effects which produce steep
gradients in the waveguide. The pressure jump at the normal shock in gas dynamics
would correspond to a Jjump in the compressive stress in our problem. It is not
too far-fetched to conjecture that the shock would occur near the mass end since
time and distance are needed for the accumulation of small effects to materialize.
This wag confirmed analytically by Murray23 recently. Of course, 1t is also
possible to use the method of characteristics to compute its approximate location
and magnitude, see either Fox2 or Fong.25

The multiple and severe fractures of the thoracic spine (near Th 5 and 6)
ag reported by Hirsch and Nachemsonl© now can be attributed theoretically to
two causes:

(a) The inertial effects of the "head" mass consisting of the thoracic

cage, upper limbs and the head producing high stress levelsg in the
thoracic region.
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(b) The stress "jump" (due to the hardening nonlinearity) producing initial
compression failure and then multiple overextension or separation upon
the arrival of the tensile wave. There appears to be x-ray evidence
of the same in Hirsch and Nachemson.L©

Although the formal analytical closed-form solution of (1-54) is not expected,
it was possible to gain much qualitative information about the behavior of the
model. Work is in progress to improve these approximate results.

K. EFFECTS OF NONLONGITUDINAL LOADING

In any given ejection problem, either due to practical considerations or
the randomness of the system parameters, the displacement or any other related
input would have a horizontal component. In fact, in military ailrcraft ejection,
an eccentricity of 15° either side of the "vertical,"” is a standard assumption.
Of course, one can formulate this dynamic beam-column problem but it is instructive
to begin with just the horizontal input, both because it is an easier problem
and i1s also meaningful in its own right. Some examples are: the whiplash problem
in rear-end automobile collisions and the seat-belt (lap type) syndrome. These
problems, however, are material for the next chapter.
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CHAPTER II

THE EFFECTS OF HORIZONTAL IMPULSE ON THE HUMAN TORSO

A, THE PROBLEM

Congider a passenger in an automobile constrained by a lap-type seat belt
involved in either a "head-on" or "rear-end" collision. In the former instance,
the action leads to the so-called "seat-belt syndrome" while the latter, to the
well-known whiplash injury of the head-neck region.

B. PREVIOUS STUDIES

The lumped-parameter model shown in Fig. 2-la was used by Martinez et al.,?t
for describing the whiplash phenomenon. The masg of the head is represented
by m; and the neck is represented by the cantilevered spring (of spring constant),
k1. The resistance to rotation of the head relative to the neck is represented
by the torgional spring, k,. The mass of the seat and the body of the passenger
are represented by m, and %he spring constant of the seat back is given by kso.
The vehicle was subjected to a half-sine-wave acceleration pulse, somewhat
indicative of what takes place during a rear-end collision, and the rotational
and translational regponse of the head, and the translational response of the
shoulders (mass mo) were computed. Figure 2-1b gives typical experimental data
and Fig. 2=lc gives typical computed results.

The model hag many limitations. All springs are agsumed to be linear and
the head rotation to be small, thus allowing for linearization of the equations
of motion by fiat. It was indicated in Ref. 1 that these restrictions would
be removed later. Like most lumped-parameters models, the results are applicable
to gross motions only. If there is anything significant about the whiplash
problem, it is that the head rotations are not small. Either an analog or digital
computer solution of the full set of nonlinear equations, (2-4), would have been
more meaningful.

The seat-belt syndrome arises from a front-end collision. The decelera-
tion pitches the head and upper torso forward pivoting about the ball-joint
connecting the pelvis and the femur, producing high tensile and flexural stress
ags on the lumbar spine. As far as the writer is aware no significant analysis
had been attempted for this problem except those due to Aquino,2 which is pre-
sently in progress at the Highway Safety Research Institute of The University
of Michigan, Ann Arbor, Michigan.
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C. LUMPED-PARAMETER MODELS

Using the notation shown in Fig. 2-la one can show easily that the equations
of motion for finite head rotation are:

1] Yo, 1
mpx; + ki(x1-x5) - myl6 sin® + myf cos®@ © = O
ma¥s + ki(xp-x1) + ko(xo-%5) = O
!
78+ k0 - mgl sind + ml cos® = 0, (2-1)

where the springs are all considered to be linear and J, is moment of inertia
about point 0. Let

yi o= Xp - Xg and y» = Xo - Xg (2-2)
then, we get
mijs + ki (yi-vo) - my 262 sine + myf cos® 6 = —mﬁg
moye + ki(yo-y1) + kayo = “ngg
J05 + kt@ - mgl sino + ml§1£ cos® = -mpf cos® %g (2-3)

One obvious generalization would be for the spring to be nonlinear, i.e.,

1" 1o . " )
my: + £(yi1-y2) - m4£6° sin6 + myl cos® 6 = -miXx
5] X i
maye - £(yi-y2) + glyz) = -mzxg
" . " "
J0 + h(6) - mi1gl{ sin® + miy;lcos® = ~my [COSeX, , (2-4)
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where f(y, - yo) and g(ys) and h(©) are all nonlinear functions of their argu-
ments. There is not much hope of solving (2-4) analytically. Either a Runga-
Kutta procedure can be used to obtain a numerical solution or an analog solu-

tion would also be satisfactory.

In its simplest form, the seat-belt syndrome problem, Fig. 2-2, can be
shown to yield the following differential equations of motion:

1 ’

o + (2%6/!) + (7 cos®/1) - (g sino/1)

i
(@]

I+ 7 siné - 162 + [k(£-Lo)/m] + g cos6

]
(@)

where fo is the undeformed length of the spring, (spine) which is rather
difficult to determine. Let

x = 1 -lg+ (mg/k) ; lo = Ly - (mg/k)

and

02 = k02 = g/, (2-6)

(1+20 + 2+ L 550 - ©®2sine = 0
le le  fe o
(2-7)
X +<Di x + 1 sin® - (x+£e)é2 - g(l-cos9) = 0 )

Again, a digital or analog solution seems most appropriate, although the chances
for an approximate solution is decidedly better than in the whiplash problem,

e.g., (2-4). Of course, one can always complicate things by requiring the spring
to be nonlinear.

D. THE ELASTIC BEAM MODEL

The model is the same ag in Fig. 1-1 except that the input is a horizontal
displacement or acceleration, see Fig. 2-%. The elagtic rod represents the
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Fig. 2-2. Lumped-parameter model of the seat-belt syndrome.
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> h(t)

Fig. 2-3. Continuum model of the whiplash problem.
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cervical spine. The obvious deficiency of the model is that the 'real problem
is a so-called mixed boundary-value problem, i.e., as the load is being applied
more and more of the torso comes into contact with the seat surface and thus
redistributes the forces and moments acting on the rod both in space and time.
The justification for our model is that the details of the motion from the time
of impact until the shoulders are in contact with the seat surface is short.

Ag far as the whiplash injury is concerned, we might as well consider everything
below the cervical spine as a lumped mass which moves with the same displace-
ment (or acceleration) as the seat.

Let the end x = O be considered fixed to the seat which is given an_accelera-
tion h _ (t). The formulation of a similar problem was given by Karnopp.” From
Fig. 2-3, we note that the transverse motion of the rod is given by y(x,t). It
is convenient to define a relative coordinate, &(x,t), where

E(x,t) = y(xt) - n(t) . (2-8)

b

The governing differential equation, following” is:

BL e T PR By T PRy (2-9)
The boundary conditions are:
Er e (6t) = Mie (4%) +ak  (48)] +n (8)  (2-10)
BT ¢ (4,8) = -[Mag, (4,t) + (JMa®)e , (4,%) - Man,, (£)],
: (2-11)
and the initial conditions are
e(0,t) = £.(0,8) = 0 (2-12)

where I is the moment of inertia of the beam cross-section, Jc is the polar
moment of inertia of the head about its center of mass and q is the distance
from the atlas (Cl) to the center of mass of the head. Egs. (2-10) and (2-11)
represent the shear force and moment balance at the interface between the rigid
mass and the elastic rod.
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For any given acceleration pulse, hﬁ (t), waves propagate up the rod. For
impact-type loadings, however, the Euler-%ernoulli assumptions leading up to
(2-9) to (2-12) was shown to be inadequate by Lamb™ as early as 1917. He showed
that these assumptions gave the physical untenable result that the effect of a
suddenly applied load is propagated infinitely rapidly. Fliugge and Zajac5 showed
that the inclusion of the effect of rotary inertia and shear deformation, i.e.,
making Timoshenko beam asgsumptions, would free us from the objections of the
elementary theory. The revised problem, although quite complex, nevertheless,
still possesses an additional objection. In the whiplash problem we are dealing
with large deformations and rotations. Our present formulation is valid only
for small deformations even with the Timoshenko beam assumptions. It is desirable
to formulate the problem on the bagis of finite displacements but small strains.
but that will be another story all together. The above remarks are similarly
applicable to the seat-belt syndrome problem.

Because of the enormous difficulties encountered just in the problem formula-
tion, it was decided to initially model the problem as a lumped-parameter system
of many-degrees-of-freedom, capable of both translation and rotation. The ap-
proach is discussed and amplified in Chapter IV. Only after a better under-
standing has been achieved will continuum models be constructed.
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CHAPTER IIT
A MODEL FOR HEAD INJURY—THE AXISYMMETRIC RESPONSE OF A
FLUID-FILLED SPHERICAL SHELL TO A LOCAL RADIAL IMPULSE
Nomenclature

Arbitrary constants (Constants of Integration)

Young's Modulus

External force distribution on the shell

Moment along polar axis

Legendre Polynomials of the first kind.

Associated Legendre Polynomials of the first kind and first order
Midsurface of the shell

Kinetic Energy

Potential Energy

Volumes of fluid and shell resgpectively

Strain energy density

Radius of spherical shell

Coefficients of Legendre polynomial expansion of {
Coefficients of associated Legendre polynomial expansion of
Compressional wave speed in the fluid

Wave velocity, [E/ps(l-vz)]l/2

Shell-fluid parameter
Shell thickness
Spherical Bessel function

Wave number
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Fluid pressure on the surface of the shell
Spherical coordinates of the deformed midsurface
Speed ratio, c/cS

Time

Meridional displacement with respect to center of mass of the shell

Radial displacement, a-r

Radial displacement with respect to center of mass of the shell

Distance from the midsurface

Thickness parameter, h®/12a®

Phase angles (Constants of Integration)

Angle between midsurface normal and radial ray
Midsurface shear strain

Amplitude ratios

Midsurface normal strains

Z-gsurface normal strains

Nondimensional radial displacement, 1/a(a-r)
Nondimensional angular meridional displacement ¢-§
Spherical coordinates of the undeformed midsurface
Midsurface curvature

n(n+l)

Poisson’s»ratio

Mass density of fluid and shell respectively
Normal stresses

Dimensionless time, ct/a
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oL es Pnm Angular frequencies of breathing, composite, and membrane modes
respectively.

Q Nondimensional frequency, @a/c

3 Velocity potential for the fluid
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A. THE PROBLEM AND PREVIOUS STUDIES

We shall attempt to model the situation when the skull is subjected to a
blow. The idealized model consists of a closed elastic spherical shell filled
with fluid, Figure 3-1. As a first approximation, the shell is considered to
be thin and elastic while the fluid is inviscid and irrotational and the blow
is manifested by a sudden initial velocity input. Even with these simplifying
assumptions, the problem is quite complex and it was decided to break the pro-
blem down to its constituent components: (1) A rigid closed spherical shell
with irrotational, inviscid fluid as the wave guide. (2) The elastic closed
spherical shell as a solid wave guide. (%) The fluid-solid interaction of the
complete problem.

Part (1) has had some attention by-Anzeliusl and Gﬁttingerg. They con-
cluded that the initial velocity input produced a compression wave at the point
of impact; however, because the shell was assumed rigid, the effect was instan-
taneously transmitted to the counterpole, whereupon a tension wave is simultane-
ously emitted. The collision of the two waves at the center producing caviation-
type phenomena, which was considered the cause of damage. The obvious defect
in the model led Goldsmith5 to suggest the analytical or numerical solution of
a fluid-filled elastic shell. Goldsmith's paper3 ig both a tutorial and a sur-
vey. An exhaustive review is given of theoretical and experimental approaches
previously (up to 1965) employed to delineate the mechanisms and to measure
mechanical quantities believed to be important in the production of brain trauma.

As a problem in theoretical and applied mecﬁanics, the proposed models
have had a long history. As early as 1882, Lamb wused an extensional formula-
tion in his study of the radial motion of closed spherical shells. Love's?
formulation includes both flexural and extensional effects and this has become
clagsical bending theory of shells now known as Love's approximation. Based
on the extensional theory of Love, Silbiger® obtained certain analytical and
Baker ! some experimental results. Neghdi and Kalnins~ obtained a solution for
the torsionless axisymmetric motion using the classical bending theory and also
made a study of asymmetric motion based on extensional theory. Kalnins9, using
classical theory, explained certain paradoxes in Love's freqguency analysis in
terms of the effects of bending. Recently, McIvor and Sonstegardlo studied the
axisymmetric response of a closed spherical shell to a nearly uniform radial
impulse and the associated parametric stability problem.

The problem of a fluid-filled shell submerged in another fluid has attracted
many researchers, especially in the discipline of acoustics. JUngerll calcu~-
lated both the reflection from an air-filled shell submerged in a fluid and
the transmission through the interior of an incidental plane wave. Goodman
and Sternl2, using elasticity theory, studied a plane wave impinging on a fluid-
filled spherical ghell, which is itself immersed in a fluid. Botht! andl2
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HEAD [NJURY MODEL

LONGITUDINAL SECTION

OF SKULL,

Fig. 3-1. Head injury model.
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are based on the numerical integration of the system of ordinary differential
equations, which were obtained from the wave equations governing the propaga-
tion of disturbances in the 3 different media occupying the eleastic space.

The results were valid for steady state motion since the time-dependent term
e1® nad been assumed for each field variable. Hickling]-3 extended the results
to a pressure pulse emanating from a point source. The transient response to
such an impulsive pressure can be found by integrating, over a suitable range
of frequencies, the product of the steady-state response and the Fourier trans-
form of the applied impulsive pressure. Recently, Rand and DiMaggio™ obtained
frequency equations and mode shapes for the axisymmetric, extensional, torsion-
less vibrations of flulid-filled elastic spherical shells and rigid prolate spheri-
odal shells.

B. THE IN VACUO CASE

The equations of motion for free vibration of a closed spherical shell
may be derived using an energy formulation as was done inlO. 1In this reference,
Lagrangaian representation of spherical sghell deformation was used. If the
undeformed and deformed configurationg of the midsurface are represented by
spherical coordinates: a,1,§ and r,@,¢=respectively, then in the Lagranglan
sense, the deformed state coordinates are taken as functions of initial con-
figuration and time, i.e., r = r(&,n,t). @ = (&, n,t) and 4 = 4(&,n,t). De-
fining the following nondimensional variables:

v = ¢ - t (angular meridional displacement)
¢ = (a-r)/a (radial displacement)
_ _]: L2 1/2 . _ 2 1/2 -
T = a[E/ps(l—v )] if ¢y = [B/pg(1-v7)] then T = cgt/a
of = n®/12a® (a thickness parameter)
For torsionless axisymmetric motion, ¥ = V¥(&,7) and § = ¢(¢, 1) i.e., 3/dq = O.

Denoting J/d¢ by a dot, we get two linear partial differential equations if
both the displacement and its derivative are assumed small:

vy

§ o+ cob & - (v cot®e) - £(1tv) + QRLYH cot & - (vt cot® &) +E

+ ¢ cot £ - é(v + cot? £)] = O3/ /d+° (3-1)
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(1+)( + ¥ cot & =2t) - o2[F + 20 cob & - W(1+v+ cot® £) + ¥ cob & (2-v+ cot2E)

+ Thot cot £ - E(1+v+ cot®e)+ cot E(2-v+ cot® £) = 3PL/drP
(3-2)

Assume the displacements € and ¥ are represented by;

¢ = 2 ay(m)Py(cos &) (3-3)
¥ o= T b,(7) Bilcos £) (3-1)
n=1

where P, (cos &) are Legendre Polynomials of the first kind, (second kind is
singular at the poles) and P)(cos &) are the associated Legendre Polynomials
of the first kind and first order. One can show thatlO the square of the
frequencies are:

o? [2(1+v)] (3-5a)

oP(1-v) + ng(1+veP) + aANE]

20, [1 + v

]

I+

([1+3v - oF(1-v) +r (1+v07) + AAF)°

4[-2(2-v®) (1407) + Ap(1-v7) + o Mp(5-v®) - WP A2

o xg]}l/z

+

; (3-5p)

where positive and negative signs give frequencies Wy and I regpectively
and A, = n(n*l). The amplitude ratios are:

S = ?EQ I 1 _ 1ty - oAl1-v-n(n+1)] (3-60)
- Anm ql““%m wﬁm + (1+of)[1-v-n(n+l)]

_ Bae Py 1ty - oPf[l-y-n(n+l)] .
61’10 ) Bpe o QI'(DﬁC - U%C + (l'*‘O!z)[l-v—n(nﬂ_)] (3-6b)
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The solutions for { and V are:

[e¢]

¢(e, 7) = AgSin(wpTtoag) + nzi (A pSin(e rra ) + AnCSin(thT+ahc)]Pn(cos(§)7 )
3-Ta
v(e, T) = & [6nmAnmSin(mhmT+th) + SHCAncSin(ath+anc)]Pﬁ(cos £) (3-7b)

For this problem, the displacement initial conditions are:

1
@]

t(¢,0) (3-8)

¥(g,0) = 0 (3-8b)
The two velccity initial conditions are not obvious. Its determination
involves several steps:
(1) Express the local velocity input by a series expansion

v (0<E&<E)

a_w [oe]
Ifw = a-r, let X A v P (cos &) = E

0 (g, <t<n)  (3-9)

Multiply both sides of (3-9) by Py(cos &) sin & and integrate, keeping in mind
the orthogrnality of the Legendre polynomials in the interval [-1,1], we get

o
v [, Py(cos &) sin £ 4t
e
v, = (3-10)
o _
J P7 (cos &) sin & 4t
7
Th £r; NE) = [ee(x)ax = — = 0,1,2
e norm of Py; o [ x)ax = —== , n ,1,2...
or
2

(3-11)

N[P,(cos £)] ﬁf—Pﬁ (cos &) sin & dt =

ont+l

From (3-10) and (3-11),
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OO P, (cos &) sin ¢ d¢ (3-12)

However, using the transformation x = cos & in (3-12), it is easy to show that

v, = 32': (1 - cos &)
v, = 3 [P, (cos &) - P, (cos €)] (3-13)

Hence, v, is known for every n.

(2) The linear momentum along the polar axis PP', M,, is the component of the
radial momentum due to initial radial velocity v for O < & < +¢,, see Fig.

3-2. Let vy be the component of v along the polar axis PP', then the linear
momentum along the polar axis is:

M = v, pdV = | e cos £ phdA,
z D.s.v. pP.s.v. ot
where
2
dA = 2ma” sin £ d¢
p.s.v. = partial shell volume.
Or in view of (3-9)
- 2 £ s . )
M, 2naZph 4) n;O thn (cos t) sin & cos & dt . (3-14)

The mass of the shell consgistent with thin shell theory is:

m . n[%ha® + hs] ~ lxpah
total 3 P = e

Hence, the velocity imparted to the center of mass of the shell (in the negative
polar axis direction) is

&,
(m
!nzb VP, (cos &) sin & cos & 4t . (3-15)

o]

N
™ Ii—J_

Using the transformation x = cos &, one can show after a little manipulation that
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Fig. %-2. Momentum considerations for the shell.
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Vo T Vol - eos 28) 4 Tomyg [ eos B 75y - (2n+5)](5’_16)

where use was made of (3-13).
(3) To find the relative distribution of the deformation velocity, divide the
close spherical shell into two portions:

(A) 0< &t < +E (Region where the velocity input is applied)

(B) Outside of region (A) + &, < & <=

For region (A), call the deformation velocity in radial direction dw/dt and in
the meridional direction du/dt, then,

g% = %% - v, cos E = X v, Py (cos &)
- (3-17)
—a—E- = 0-v,sin € = -v, B’ (cos &)
Writing (3-17) more explicitly (using (3-9)), we get
7 ;
% = Yo + (vl-vz) Pi(cos &) + nZs vy P, (cos &) - (3-18a)
du . .
x - v, P1'(cos E) (3-18b)

where v, is determined from (3-13) and v, from (3-16). Initially, for region
(r) the shell suffers only the velocity which is imparted to the center of

mass of the shell in the negative polar-axis directicn. This initial velocity
igs v_. Hence, the two velocity initial conditicns in terms of the variables

of the problem are:

s 1
é%%.@l_-é;g—fg for 0 < & <+ &
a\lféi,o) - _él_»g_g_% for 0 < & <+ &

This completes the determination of the initial conditions.



Application of the initial conditions (3.8a) and (3.8b) into solution
(3-Ta,b) lead to 0y = Quy = e = O. Hence, from (3-Ta,b),

L (E,0 < 1 W

Cgi ) = Ay * ngi [Anmmnm + Anc“hc] Pn(cos §) = cq SE (5-19&)
u(e,0) _ : 13

ST - nél [® P ar®nm® Pncfne®ne 1Bn (cos £) = Cs Ot (5-190)

From (3-18a) and (3%-1%9a), and similarly (3-18b) and (3-19b), one can conclude
that;

Vo
Ay = forn = O
s,
1
Aimim + Ajere = E; (vy - VZ) \L (3-20a)
forn = 1
1 .
Bim Aim Wim * Bic Aic Wic -T5 sz (3-20b)
1 h
Apm ®pm T Ape ®pe = cg 'n (3-21a)
> forn > 2
6nm Anm whm * 5nc Anc ahc =0 (5‘2lb)
4
From (3-20a) and (%-20b), we get
V,+V ) S, AV, +V -5
Are B1m¥3+Vz(1-83m) and Ay, = —3S z{1-8;c)

cSwlm(alm'SlC) Cswlm(alc'glm)

Similarly, from (3-2la) and (3-21b), for n > 2

Sm Vo ne 'n
Anc = (5 5 ) and Apm = (5 5 )
e Cs\Pnm™Cne ®nm Cg\%ne=Cum

Since all the A ., Ay, Ops Opmy Qe 2nd @y, are known, the solutions (3-Ta)

and (3-7b) are completely determinate, i.e., explicitly:
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Vo Bic Vi + vz(1-01c)

t(e, ) = T, Sin wyT * o~ orm (Br0-B1m) sin (wimT) Py(cos &)
© @ ‘ ®
Y = [ eL sin (w,.T) + Lc sin (w__1)] P,(cos &)
n=2 Cs “aye(Bpy=byc) Hoe (Bnc~Bnm)eny i " :
(3.222a)
B1e0 V1 *+ vz(1-810)
T) = =8 gin (wypT) sin &
W, ) i 2T G (o) ‘
. ?l Yy Bpe®pm | sin (w,,7) . sin(wan)ﬁl ncos £ P (cos £)-nP__(cos €
n=2 Cs Wne(Onm=Onc) Cﬁnm(5nc-8nm)‘l sin &
(3.22Db)

where Vg, Vp, Onm and Spe, Wpm and wpe are compubed from Egs. (3-16), (3-13),
(3-6) and (3-5) respectively. It was shown in Ref. [10] that for a/h > 20 and
n > 2, the coefficient in the second term under the summation in (3-22) can be
neglected.

The linear midsurface strain and rotation quantities, in terms of {(&,T)
and V(&,T), are: '

ot = -t (3-232)

midsurface normal strains

eon(€ ) = - § + ¥ cot g (3-23b)
1 2 )

kop(87) = 30+ L+ 53 1 (3-2ka)

1 [ Bifsapines

kon(6:7) = gomg (L + - Vot £) ) ’ (3-2k4p)

_o_ot e
(e, 7) = - Yl the angle between the surface normal
€ and the radial ray. (3-25)

For isotropic and homogeneous continuum, Hooke's Law yields the biaxial
stress-strain relations

(eE + ven) (3-26a)

1-v2

(e + veg) (3-26b)

Q
3
—
uer
-
=
S~
|

1-v2 n
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where €t and en are the z-surface strain quantities. The z-gsurface strain
quantities are:

er(8,7) = egp * 2(koy-g) (Trey) (1-5) (3-27a)

en(87) = g+ aliy sin (¢-p)~g](1+ey ) (1-2) (3-27v)

where
¢<§;T) = 1[!(&,1') +E

Two sets of graphs will be made from (3-26):
(a) Ug(E,T) and on(g,T) will be plotted versus ¢ with a progression in
time 7, i.e., we wish to show the progress of the initial velocity input with

respect to the stresses it creates in the shell.

(v) 0,(t,7) and o_(&,T) will be plotted versus time, T, at a given angular
meridional "displacement, i.e., how the stresses fluctuate at different points
in the shell.

The computations and automatic plotting are presently in progress.
C. THE FLUID-SCLID INTERACTION
(1) Formulation of Equations of Motion

In order to use Hamilton's principle to obtain the governing differential
equations of a fluid-filled spherical shell, it is necessary to calculate the

kinetic and potential energies of the region occupied by an ideal fluid and the
thin elastic shell surrounding it. The potential energy of the region is

v = [, UdS - [ pwdS + [ F_wds + i (ég)zd& (3-28)
S s “a ge [%o 2c® ‘ot O

where
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U = straln energy density per unit area
Py = fluid pressure on the inner surface of the sghell
w = radial displacement of the ghell
Fe = external force distribution on the shell
p, = mass density of the fluid
¢ = compressional wave speed in the fluid
3 = velocity potential for the fluid
S = midsurface of the shell
Vb =  volume of the fluid

The first term in (3-28) is the strain energy of the shell, the second and third
terms are the work done due to the internal fluild pressure and the external pres-
gure pulse regpectively while the last term is compressive strain energy stored
in the fluid.

The strain energy per unit area of the thin shell is well~known, see
Novozhilovl5, i.e.,

_ Eh > a Enh° 5 =
U — 57 - - 2(1- -—)  t————=7l (kotk - 2(1-v)(kekg- .
2(1-1/2)[(6“’ €g)® - 2(1-v)(epeq f)] 2&(1-1»2)[( otkg)= - 2(1-v) (koko-77)]
(3-29)
The midsurface strain-displacement relations in the case of axisymmetric
torsionless motion of the shell are:

. 1,0u 1 % duy
0 = 35 - W o= 2G5
1 » _ cob ¢ ow
€ = =(u coto-w) ky = —=z (5® + )
& = 0 T o= 0 (3-30)
The kinetic energy of the region is:
1 du, Z ow, 2 1 2 ‘
T = E[VLS sl (50 + () Ja¥s *+ 5 [ oo VBl a¥ (3-31)
o)

where Pq and p, are the density of the ghell and fluid respectively. Applying
Hamilton's principle

ts '
5 [2 (T-W)at = 0 ,
Ty

together with eqs. (3-28) to (3-31), results in the equations of motion of the
region along with some natural boundary conditions:
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(l+012)[-\1¢¢-11¢C0t % + (V+ Cotz ¢)u] - Ct2W¢¢¢ - C(2W¢¢ cot ¢ + [dz(cotz ¢+V)+1+V:}W¢

l-V2 2

TTE P %y = O (3-32)

Prigge * 207Ug cot & = [(1+v)(140F) + &P cot® 0y, + [0F cot® o + 307 cot ¢
- (14v)(1407) cot oJu + APluwggeq * 2 cOb ¢ Wogq - (LHvh cot® ¢)wgg

1oy2
+ (2 cot ¢ + cot® ¢ - v cot ¢)w¢] + 2(1+v)w + —Ez— psaewit

1oy
+ E:l aZ[Fe(d);t) - P ®t(aJ¢:t)] = 0 (5-53)
cg[ik (r®0.).. + —t (sin ¢ 3g)e] - @ = 0 (3-3L)
rZ r’r " 2 gin o o/ tt 3-3

where, as before, the subscript notation is used for partial differentiation.
In (3-33), Py = -po®t(a,9,t) is the dynamic fluid pressure acting on shell sur-
face.

(2) The Frequency Equation

From (3-34) the form of velocity potential & can be expanded as

(&)

o(r,9,t) = L cp(t)Pylcos o)y (kr) (3-35)

The boundary condition between fluid and shell can be stated as the continuity
of normal velocities i.e.,

w (0,8) = 0.(a,0,t) (3-36)

Eqs. (3-%2) and (3-33) are nondimensionalized by using ¥ = u/a, { = -w/a,
t = cst/a, where cgy is the wave velocity in the shell. They become

"

Y+ cot & - (vtcot? &) - (l+v)é + a2[$+@cot £ - y(vtcot® ) +‘E + ¢ cot &

- E(vreot? £)] = Py P (3-37)

63



(l+v)($+w cot ﬁ.‘ 2t) - O?[¢;2$ cot & - &(l+v+ cot® &) + ¥ cot & (2-v+ cot? &)
+.E‘+ ot cot £ - E(1+v+ cot® &) + é cot & (2-v + cot® ¢)]

+ — 8§ (a, T) - E“Ll:Zfl Fe(5:77 = Ft/37 (3-38)

pg O Eh

We note that egs. (3-37) and (3-3%8) are idemtical to (3-1) and (3-2) except
for the two terms involving dF/dT and F, in (3-38).

In the absence of the external pressure pulse, we would like to obtain the
frequency equation including the effect of the fluid. Analogous to Section B,
we assume the nondimensional displacements, { and ¥, are expanded as in (5;5)‘
and (3-4). The system of differential equations for the coefficients an(T)
and b, (T) are:

2
forn = O, ﬂ_ggéil - 2§}§2%Q)_J a,(1) = 0 (3-39)

+W—Q

mﬂda”+k+ QP02 - a(1-v) o (1)
form>1, |14 ﬁQJn(QZj - ‘l v) Ay Ay - v jf T
) |
+ (2(1tv) + PNE - A (1-v ]-} (3-140)
d2bn(T)
gz Y (1+v) - PL(1-v) = Ay i{ an(T) = {[(1-v) = N J(1+B)y by(T) = 0,
(3-41)
where f = poa/psh = nondimensional fluid-shell parameter and A, = (n+l)n

We assume the solution of (3-3%9), (3-L40) and (%-41) to be of the form

an (1) = Ay elQST

It

bn(T) = By s ’ (3-42)

where § = c/cS = ratio of the compresgive wave gpeed in the fluid to the wave
gpeed in bending. Substitubion of (3-L42) into (3-39) to (3-L41) yields:
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2( 1+ : \
for n = 0, 02 - *“—J;ﬁ‘%%j“’ = 0 (3-43)

EETRGIE

[1+f Q**T%T] 1-v-A J(1+o?) 2(1+v) oﬁ[x - (1-v)]
forn >z 1 3%34 + )

(l+v){2[l~v-xn](l+a2)+Kn[l+v-Q?(l~v~Nn)}+Q?[A2wkn(l=v)](2wxn)

0%

jn(a):
E$ QJ(Q)

Tt is interesting to note that the limiting cases of egs. (3~4%) and
(3-4L4) agree with the results obtained previously, as it must.

(3-LL)

Cage 1 f = O corresponds to the absence of fluid, i.e., we gel the in-vacuo
case given by eq. (3-35) in Section B.

Case 2 s = 0 corresponds to a rigid shell and the equation degenerates to

which is easily shown to be equal to
@) . (3-L50)

2QJ£+(1/2)(Q) T ne(1/2)

Equation (3-45b) was obtained by Gﬁttinger,2

Case 3 oF = 0 yields the frequerncy equabion corresponding to “he membrane
(extensional) theory.

Work is in progress to obhain extensive numerical resul®ts in the form of

frequency gpectra and mode shapes. These are, of course, a prelude to the
transient response problem.
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CHAPTER IV

NUMERICAL AND ANALOG SIMULATION IN BICMECHANICS

A.  INTRODUCTION AND PREVIOUS STUDIES

The concept of numerical and analog simulation of biomechanics problems
occurred quite naturally because of the apparent complexity of the system.
The type of analyses carried out in Chapters I and through III, despite its
steady improvement, is capable of solving only severely ldealized situations.
For each additional constraint introduced into the boundary value problem, the
intractability of the analysis increases, sometimes by several orders of magni-
tude. It may turn out that this additional constraint might make only a minor
difference in the quantities of interegt. Is there anyway of knowing this a
priori? The answer is a qualified yes.

Before a numerical or analog , computer-based solution of a complex bio-
mechanics problem can be achieved, it is necessary to limit their infinite
degrees-of-freedom to a finite, if large, number of unknowns. One possible
discretization is the concept of the multiple-degree-of-freedom lumped-parameter
system analyses. In this type of approach, one would have available a very
large number of parameters, whether or not the system is linear or nonlinear.
With apparently inexhaustiable combinations and/or permutations of the system
parameters, one can almost always fit any set of data. To avoid such curve-
fitting, which is of dubious value, one can resort to either of the following
techniques:

(1) A careful and systematic compilation or collection of biocmechanical
data of the components of the system. We can then "claim" knowledge of the
system dynamics. Any given input into this system will produce a computable
output. This is the so-called forward analysis or outpub problem.

(2) Having available both the input and output records one is to determine the
intervening system dynamics. This is the so-called identification problem.

This technique demands very carefully planned experiments and fairly good ideas
of the models for the systems dynamics, 1.e., is the system linear or nonlinear?
Most inputs can be classified as either transient, periodic or stochastic.

Typical of the forward analysis problems are simulations due to Coermann
et al.,l and Naab=. In Ref. [1], a seven-mass spring dashpot system was used
t.o represent the low frequency response of a gitting or standing human body.
Experimentally obtained impedance versus frequency curves were given with posi-
tior and muscle btone ag parameter. No athempt was made to correlate the experi-
mental results with the quantitative (numerical) values to be assigned to the
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parameter elements in the system. In Ref. [2], an ll-degree-of-freedom, lumped-
parameter system was used to simulate the automobile crash victim. Unfortunately,
through an oversight, no information was given concerning the range of numerical
values assigned to the system parameters, hence the output is meaningless to the
reader. Any parametric study must be based on some bilomechanical data, no mat-
ter how crude, otherwise it is of little value.

The problem connected with system identification theory has been in the fore-
front of recent research activity in system dynamics. Typical of such researches
in linear, lumped-parameter models is the paper due to Ho and Kalmand. In it,
they gave a new algorithm for the effective construction of a linear, finite-
dimensional dynamical system from its input-output description.

Shinbrotu hag derived a method for determining constant parameters in ordinary
differential equations. Perdreauville and Goodson” have extended Shinbrot's con-
cepts to partial differential equations. Using either the normal operating records
or experimental data, the arbitrary parameters of an assumed (partial differential
equation) model of the physical system can be determined. The method is good
for linear and/or nonlinear equationg with variable coefficients. The accuracy
of the results depends on the "exactness"” of the model, the amount of data used,
the error in numerical integration and the noise in the data.

If the gystem is well defined in terms of differential equations, then dis-
cretizations are possgible. The well-known method of finite differences comes
to mind immediately. There exists a calculus of finite differences, which allows
for the approximate solution of the exact differential equations of motion. On
the other hand, the finite element method® allows for the "exact" solution of
an approximate system of differential equations. Either one of the above tech-
nigques could be used, for example, on possible improvements of the head-injury
problem in Chapter IIT.

B. NUMERICAL SIMULATION OF THE SPINE UNDER VERTICAL IMPULSE

(1) Anatomy

The supporting structure of the body is a Jolned framework of bones called
the skeleton, which assists in body movement, supports the surrounding tissue,
protects the vital organs and other soft tissues, manufactures blood cells and
provides a storage area for mineral salts to supply the body needs.

The vertebral column is the main load-carrying part of the skeleton under
the type of loading associated with the ejection and whiplash problems. A de-
tailed study of the vertebral column reveals it to be an extremely complicated
structure consisting of fairly rigid bone segments, the vertebrae, connected
together by means of ligaments and intervertebral discs. It is an efficient,
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pliable structure, at least under statlc loads associated with an erect posture.
The spine is tapered,being much larger at the base (where it is supported by

the sacrum-pelvis) than at its upper end (where it supports the head). Note in
Fig. L-1 that the spine is far from straight, the curvature in the thoracic
(chest) region being opposite to the curvature in the cervical (neck) and lumbar
(lower back) regions. In the seated position the human frame is supported at

the ischial tuberosities of the pelvis. In this position, the pelvis is subjected
to some rotation since the ischial tuberosities in general do not lie on a plumb
line through the lumbo-sacral joint. However, the presence of a restraint system,
such as lap seat belts, usually restricts rotation of the pelvis so that longi-
tudinal impact to the spine through the pelvic region is transferred to the spine-
proper with little rotational imput. The head is supported by the atlas (first
cervical vertebra) at essentially a hinge. The eccentric mass of the head, Fig.
1-1, is balanced by the muscle tension in the neck muscle.

The intervertebral discs are frequently thought of as the "shock absorbers"
of the spinal column since they have a great capacity to absorb energy. They
comprise about 25 pércent of the total length of the spine between the head and
the pelvis. The vertebrae themselves are quite rigid in comparison to the discs.

(2) Factors Not Previously Considered

The continuum models of Chapter I, even if they can be solved explicitly
can not possibly account for all the factors brought out by even a curscry
examination of the anatomy. There is some question ag to the relative impor-
tance of some of these factors, either singly or in combination. A few examples
of these factors are:

nonuniform distribution of mass and section properties

initial curvature of the spine

viscoelagtic constitutive equations of the intervertebral discs
large deformations

effects of radial inertia and shear deformation

eccentricity of the head and thoracic cage

acceleration pulse shape and rise time
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The answer to this and many other questions requires a thorough parametric
study of a model with enough detail such that predictions of where, when and
how injuries occur would achieve reliability. The model must include much
of the currently available biomechanical data. Obviously, such a model has
merits all its own in terms of the actual solution of a given biomechanics
problem.
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Fig. 4-1. Sketcu of vertebral column curvature.
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(3) The multi-degree-of-freedom lumped-parameter model

This is an articulated system which consists of vertebrae, intervertebral
discs, the head, and perhaps, the pelvis. The vertebrae are considered to be
rigid bodies in which the effective local masses are lumped, and the interverte-
bral discs are the visocelastic restoring elements. The most crucial aspect of
this model is the nature of the kinematical constraints which will be discussed
in some detail below. As in the continuum models, the lumped-parameter gystem
is confined to motion in the sagittal plane, i.e., the plane which passes through
the center of the spinal column and divides the body into two more-or-less symmetri-
cal halves.

The spinal column is initially curved prior to application of external load
to the body. The configuration of the spine at any time can be given by the
coordinates of two points on each of the vertebrae, namely the intersection of
the vertebrae axes with the vertebrae end plates, as shown in Fig. 4-2. These
coordinates thus define the size of both the vertebrae and the intervening discs.

Because the articular processes of the vertebrae prevent translation of one
vertebra relative to the vertebra above or below, the vertebrae are constrained
to move in such a way that the terminal points on the axes of the vertebrae must
move along lines coincident with the axes of the adjacent discs, as is illustrated
in Fig. 4-2. Thus, rotation and compression (or tension) of the discs occur,
but shear deformation in the discs is neglected, somewhat as in the Euler-Ber-
noulll beam theory.

The horizontal, vertical, and rotational motions of the rigid masses are
all coupled because of the nature of the above constraints. This can be seen
by reference to Fig. 4-2 in which only local coordinates are used. For a typical
vertebra, point P is constrained to move along a line passing through PP'.
Similarly Q moves along a line QQ'.

In the figure, the line ! represents the length of the vertebra, © represents
the angle made by the intersection of the axes of two successive discs, and «
is the angle made by the intersection of the axis of the lower disc and the axis
of the vertebra.

The quantities a, b, 6, and ! are fixed and can be computed from the instan-
taneous configuration of the system at any time. Infinitesimal changes in a,
b, and o are coupled as follows:

£ sina = Db sgin ©

so that
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Fig. 4-2. Iumped-parameter deformation models for the vertebral
column (many-degrees-of-freedom).
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doy « £ cos ¢ = sin © db

or
da = ( gin © ) db (4-1)
I cos ¢
Also,
12 = a2 +1% - 2ab cos ©
or,
0 = 2ada + 2bdb - cos © (2adb + 2bda) (L-2)

from which
da =[-(b - & cos 6)/(a - b cos @ﬁdb
Let
Cqp - sin e/1 cos a

a cos 0)/(a - b cos ©)

SDO

o’

1l

J
—
o’

i

Then,
dy = ¢ ab ° db
da = cgy - db (L-3)

Thus, for a typical vertebra, a small displacement Ob at the upper disc is
accompanied by a small displacement da at the lower disc, and a small rigid body
motion dq of the vertebra. The rotation as well as the "axial" displacements
of the vertebra are registed by the discs according to some force-deformation
law which can be derived from the constitutive equation of the discs and the
geometry of the disc cross-section.
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Thus, the equations of motion for the individual masses can be written and
solved numerically for each small time increment during which the displacements
are small. Then, a new configuration must be computed at the end of each time
increment to provide new initial conditions for the subsequent time increment.

Such a computer program is being written as of this writing.
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