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Abstract

Much research in visual scanning has adopted a single task experimental
paradigm. The characteristics of visual scanning in multi-task situations are largely
unknown. This article describes two experiments that were conducted to examine the
relation between visual scanning and concurrent activities, to quantify the effects of
spatial uncertainty in visual scanning on concurrent performance of multiple tasks, and to
address the relation between theories of selective attention and visual scanning and
theories of divided attention and multi-task performance. Subjects were required to
perform a simple information acquisition task in the first experiment and a complex
information integration task in the second experiment. The two types of tasks were
performed either alone or concurrently with a tracking task, and involved either spatial or
verbal material. The location of the relevant spatial and verbal material was displayed
with 4 levels of spatial uncertainty, but with approximately the same expected scanning
distance. The results revealed unique characteristics of visual scanning in multi-task
performance, demonstrated the strengths and limitations of existing theories, and

provided strong support for a queuing network model of human multi-task performance.
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Introduction

Visual scanning is one of the most important attention mechanisms of obtaining
environmental information. In many visual tasks involving a large field of view, the
perceiver has to scan and sample the sources of visual information sequentially in a
selective manner if the acuity demands of the information sources are high, since human
foveal vision has a limited size of about 2 degrees in visual angle. This requirement for
sequential and selective scanning exists in these tasks, no matter whether the nature of
visual attention can be best captured as a searchlight (Wachtel, 1967), which functions in
a focused state, or as a zoom or variable-power lens (Eriksen and Yeh, 1985; Eriksen and
James, 1986), which functions in a continuously adjustable manner with focused state
and widely-distributed state as two extremes.

Researchers have devoted a great deal of attention to the sequential and selective
nature of visual scanning. Patterns and characteristics of visual scanning have been
studied in a large variety of contexts such as reading processes (e.g., McConkie,
Underwood, Zola, and Wolverton, 1985), pictorial processing (e.g., Friedman and
Liebelt, 1981), infant and developmental mechanisms (e.g., Hainline, 1981), static and
dynamic displays (e.g., Moray, 1986), industrial inspection (e.g., Drury, 1990), and
internal mental processing such as mental rotation (e.g., Carpenter and Just, 1978). The
focus of research has been on identifying the psychological and stimulus-related factors
that may affect the temporal and spatial patterns of visual scanning, and on identifying
the potential mechanisms that may affect the perceiver's strategies in visual scanning.
Much research in this area has adopted a single task experimental paradigm, in which no
simultaneous tasks are performed with the task of visual search. The issue of visual
scanning in multi-task situations, in which the perceivers are simultaneously engaged in
other concurrent activities while scanning sources of visual information, has received

little research attention.
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In real-world situations visual scanning is often performed simultaneously with
other tasks. For example, one characteristic of automobile driving is the need to perform a
number of concurrent manual control and decision activities, while selectively and
sequentially scanning physically separated sources of information. Thus, a natural and
important extension to the current visual scanning research is to systematically examine
the characteristics of visual scanning in multi-task environments, and to address the
relation between visual scanning and other concurrent activities.

From the perspective of practical applications, a better understanding of visual
scanning in multi-task environments will prove to be of great value to human-machine
system designers in their analysis of multi-task human-machine interfaces such as driver-
vehicle interfaces and cockpit instrument panels. One important research topic in
addressing the immediate needs of designers of multi-tasking human-machine systems is
to quantify the cost of visual scanning involved in time-sharing between an instrument
panel and the forward view of a roadway or other critical environmental information, and
to identify the critical factors that may affect this cost (Baron, Kruser, and Huey, 1990;
Elkind, Card, Hochberg, and Huey, 1990). Although a substantial amount of data and
knowledge have been accumulated in evaluating the cost of scanning in single task
situations, it is not clear whether or not these results are readily generalizable to muiti-
task situations. For example, converging evidence from a large number of single task
studies indicates that the time required for a complete eye movement cycle is about 200-
250 msec (Bartz, 1962; Dodge and Cline, 1901; Fuchs, 1971; McConkie et al., 1985).
However, it remains to be determined how the rate of scanning in dual task situations
would compare with this single task result, and how the scanning rate may change as a
function of the demands and characteristics of concurrent activities. A major objective of

the present study is to address this issue.
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From a theoretical perspective, studies of visual scanning in multi-task situations
will not only provide unique insights into the nature of visual scanning that cannot be
gained through single task studies, but may also provide a natural link in bridging the
substantial gap that currently exists between studies of selective attention and studies of
di ed attention in investigations of concurrent performance of multiple tasks. There is
an urgent need to address the relation between the serial processing theories of selective
attention and the parallel processing theories of divided attention in the context of
complex task performance (Liu and Wickens, 1989, 1992).

Scanning and sampling behavior has been regarded as one of the direct indicators
of single channel selective information processing, and is an area of research that has
enjoyed great success in theoretical analysis and computational modeling through the
efforts of single channel theorists (Moray, 1986; Sanders, 1983; Senders, 1964).
However, single channel theories have shown no direct consideration of the processes
that are concurrently performed with visual scanning. The effects of concurrent processes
have been treated as additive factors, with no analysis of the possible differential effects
of those processes. Parallel processing theories of divided attention such as the multiple
resources theory (Wickens, 1980), in contrast, have shown no direct consideration of
selective processes such as visual scanning. A typical strategy of investigators in this
research paradigm has been to treat visual scanning as an extraneous factor or to keep the
amount of scanning as small and constant as possible. Since the activity of visual
scanning itself can only be performed in a selective and sequential fashion, but other
concurrent activities of a different nature can be performed simultaneously with the
activity of visual scanning, Liu and Wickens (1989, 1992) proposed that studies of visual
scanning in multi-task situations may serve as a natural experimental paradigm in
addressing the relation between the two schools of theories. Furthermore, based on a

review of research findings on the characteristics of visual scanning, they proposed that
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spatial uncertainty in visual scanning may be a critical factor in analyzing the cost of
scanning.

In an experiment designed to address these issues, subjects were required to
perform a primary tracking task, which was concurrently performed with a secondary
spatial or verbal decision task. The relevant information that was needed to perform the
decision tasks was displayed with or without spatial uncertainty. Converging evidence
from three of a total of four dependent measures (decision accuracy, tracking
performance, and subjective difficulty rating) showed that visual scanning as a spatial
exploratory activity produced greater task interference with concurrent spatial tasks than
with verbal tasks. Spatial uncertainty in visual scanning was identified to be the crucial
factor in producing this differential effect. These results are consistent with the
predictions of multiple resource theories of divided attention (Baddeley, 1986; Friedman
and Polson, 1981; Wickens, 1980). The common belief of these theories is that there exist
multiple parallel processing mechanisms or resources such as spatial and verbal
processing codes, and that task interference will occur only to the extent that concurrent
tasks compete for common processing resources. Since experimental evidence from a
large number of studies has identified visual scanning as a spatial exploratory activity
driven by a perceiver's intentions and strategies for the purpose of reducing scanning
uncertainty (Fisher et al., 1981; Brogan, 1990; Gale and Johnson, 1984), it is not
surprising that visual scanning produced greater task interference with concurrent spatial
tasks than with verbal tasks, particularly when spatial uncertainty was involved in
scanning. Single channel theories of selective attention, with their common serial
processing assumption about human information processing, would have difficulties in
explaining these results.

However, an analysis of additive factors on response time data also showed a

close fit between the experimental results and the data that would be predicted by single
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channel theories of selective attention and eye movement data. Response time was longer
when spatial uncertainty was involved in visual scanning, and the response time functions
were almost identical for both the spatial and the verbal decision tasks. Since scanning
uncertainty introduced additional eye movements, which can only be performed
sequentially, this result was shown as an evidence of the particular strength of single
channel theory in analyzing response time. Thus, the results of the experiment provided
support to both the parallel processing theories of divided attention and the serial
processing theories of selective attention. The results also indicated that when selective
and divided aspects of attention are intertwined with each other, as when visual scanning
is simultaneously performed with concurrent tasks of different nature, neither class of
theories alone is sufficient to make accurate predictions and provide fully satisfactory
explanations (Liu and Wickens, 1989, 1992).

While Liu and Wickens demonstrated the effects of spatial uncertainty in visual
scanning on concurrent decision and manual control tasks, spatial uncertainty was
manipulated at only two levels, i.e., either the presence or absence of uncertainty
regarding the spatial location of the stimulus material. Thus, the data did not provide an
empirical basis for quantifying the effects of scanning uncertainty on concurrent
activities. Another feature of the experiment was that the discrete response tasks were
complex information integration tasks, which imposed simultaneous demands on multiple
information processing systems such as running memory, mental rotation or arithmetic
processing, and choice response. Due to the complexity of the discrete decision tasks
employed, it was difficult to unravel the processes involved and disentangle the effects of
various contributing factors. The present study seeks to quantify the effects of scanning
uncertainty on concurrent task performance, to provide a much stronger test of the
relation among the factors involved in performing these activities, and to further examine

the relation between the single channel theories of selective attention and the parallel
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processing theories of divided attention. Two experiments were conducted to meet these
research objectives.

The experiments required the subjects to perform a discrete response task, which
was a simple information acquisition task in the first experiment and a complex
information integration task in the second experiment. The two tasks were designed in a
way such that the information acquisition task is a component of the information
integration task in terms of the information processing activities involved. The discrete
response tasks in both experiments were performed either alone or concurrently with a
tracking task, and involved either spatial or verbal material. The location of the relevant
spatial and verbal material was displayed with 4 levels of spatial uncertainty, but with
approximately the same expected distance for visual scanning. The purpose of the first
experiment was to quantify the effects of scanning uncertainty on the simple task of
information acquisition in single and dual task conditions. The second experiment
attempts to quantify the effects of scanning uncertainty on the complex task of
information integration in single and dual task conditions. Due to the intrinsic relation
between the two discrete tasks in their information processing requirements, a more
comprehensive view of the role of visual scanning in multi-task environments can be

obtained by comparing the results of both experiments.

Experiment 1
Method
Subjects
Twelve right-handed University of Michigan students (six men and six women)
were recruited as subjects and paid for their participation in the experiment. All subjects

had normal or corrected to normal vision.
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Task and Stimuli

Two types of information acquisition tasks were employed in this experiment.
Both tasks presented stimuli for three seconds, were force-paced at the same rate of six
second stimulus intervals. Both tasks required subjects to make four-alternative
responses manually by pressing one of four right-hand keys on a keyboard.

Spatial information acquisition task, The subjects were presented with a sequence
of organized arrays of circles, each of which carried a vector emanating from the center
of the circle (fig. 1). Upon presentation of each display, the subjects were required to (a)
search for the vector that was displayed with a solid line, and (b) make a four-alternative
response regarding which quadrant that vector was in. The vectors in other circles were
displayed with dashed lines. Visual search was not involved under no-scanning
conditions, in which the subjects were informed about the location of the solid line and
were instructed to fixate that circle before the start of the trials.

Verbal information acquisition task. The subjects were presented with a sequence
of organized arrays of circles, each of which carried a double-digit decimal number at the
center of the circle. Upon presentation of each display, the subjects were required to (a)
search for'the number that was displayed with a slightly greater size than the numbers in
the other circles, and (b) make a four-alternative response regarding the value of the
displayed number. The four response alternatives correspond to a value of smaller than
0.25, between 0.25 and 0.50, between 0.50 and 0.75, and greater than (.75, respectively.
As in the spatial information acquisition task, visual search was not involved under no-
scanning conditions.

Task display and visual scanning. The task display consisted of eight
information display circles and a horizontal tracking display (fig. 1). For explanatory
purpose, the eight information circles are named circles C1 through C8, respectively, as

shown in fig. 1. On a given experimental trial, only one of the eight circles carried the
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information required to make the spatial or verbal decision, which was either a vector
displayed with a solid line or a number displayed with a slightly greater size. The subjects
were instructed to use only the information from the relevant circle, while ignoring the
other circles. The factor of spatial uncertainty in visual scanning was manipulated at four
levels, corresponding to the situations in which the relevant information was equally
likely to be in one of 1, 2, 4, or 8 circles, respectively. For explanatory purpose, the four
uncertainty conditions are referred to as N=1, N=2, N=4, and N=8, respectively, where N
is the number of circles that were equally likely to carry the relevant information. At the
lowest uncertainty level (i.e., the N=1 condition), the relevant circle was always the circle
CS. Under the N=2 condition, the relevant information was in either circle C3 or circle
C7 with equal probability on each trial. Under the N=4 condition, the relevant circle
could be any one of the following four circles with equal probability on each trial: Cl1,
C3, CS, or C7. At the highest uncertainty level, i.e., the N=8 condition, the relevant
information was in any one of the eight information circles with equal probability. It can
be verified through geometric calculation that the expected scanning distances were
approximately the same for the four conditions involving different levels of scanning
uncertainty.

Before the start'of each experimental block, the subjects were always instructed
about the signal display structure, i.e., which circle or circles would be relevant in that
block. The visual angle subtending the centers of two adjacent circles was about 9
degrees, which was the same as that subtending the center of the tracking display and the
center of Circle C1. The subjects were instructed not to make head movements while
they were performing the task. The display was selected according to results from
previous studies (Liu and Wickens, 1992) and observations from testing pilot subjects to
ensure that critical details of the decision stimuli could not be resolved in peripheral

vision. Therefore, visual scanning was necessary to accomplish the tasks.
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Tracking task. A first-order one-dimensional pursuit tracking task was developed
as a simulation of driving down a winding road. Three equally spaced parallel red lines
were used to represent the edges and the center of a lane (shown as the three solid lines
on the horizontal bar in fig. 1). As a simulation of a curved road, a random function was
used to continuously change the lane's position. The subject’s position in the lane was
represented by a black line (shown as the dashed line on the horizontal bar in fig. 1). The
subjects manipulated a computer mouse in the left-right direction with the left hand in
order to minimize the error between their own position (the dashed line) and the center of

the lane (the center solid line).

Design and Procedure

The experiment employed a 4 X 2 X 2 repeated measures design with level of
scanning uncertainty (N=1, 2, 4, 8), decision code (spatial/verbal), and type of task
(single or dual task) as three experimental factors. In the single task conditions, the
decision tasks were pei'formed alone, whereas in the dual task conditions, they were
performed with the concurrent trécking task. The experiment consisted of seven sessions.
The first three sessions were devoted to single and dual task training. The last four
sessions were experimental sessions. Each session included 21 blocks of 90 seconds
each: five no-scanning baseline conditions (spatial or verbal discrete response task
performed with or without concurrent tracking task, and the tracking task performed
alone) and 16 experimental blocks formed by the combination of the 4 levels of scanning
uncertainty X 2 types of decision codes (spatial/verbal) X 2 types of tasks (with or
without concurrent tracking task). Subjects made fifteen decisions of the same type

during each block. When the tracking task was involved in a givén block, subjects
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performed the tracking task continually and were instructed to give attention priority to
tracking performance, which was measured by tracking root mean square error (RMSE).
Decision error was measured by the percentage of incorrect responses. Decision response
time was measured as the duration between stimulus presentation and subject's decision
response. After each block in the experimental sessions, the NASA bipolar workload
scale was used to collect the subject's subjective workload experienced in that block.
This procedure resulted in a weighted workload rating for the subject in each
experimental condition, which was based on the subject's ratings of six subscales and
his/her assignment of importance weights to the different subscales. A detailed
description of the rationale and implementation of the NASA workload scale is provided
by Hart and Staveland (1987). A video camera and a video cassette recorder were used
for a subset of four subjects to record their eye movements while they were performing
the various tasks. The video camera was installed on top of the display monitor. The tasks
were implemented on an Macintosh IIci computer with a 21 inch color monitor, and were
conducted in a sound-attenuated experimental chamber.

For analysis purpose, the expérimental conditions can be classified into four
general classes: no-scanning single or dual task conditions, and single or dual task
¢onditions that involved visual scanning. The purpose of the no-scanning single task
conditions was to establish the difficulty level of the two decision tasks as a basis for
evaluating their effects on performance and workload in other conditions. The no-
scanning single and dual task conditions provided the baselines for determining the
effects of scanning uncertainty on performance and workload in corresponding single or
dual task conditions that involved visual scanning.

No- in

Presented in table 1 are the single task performance and workload measures of the
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spatial and verbal four-alternative decision tasks when visual scanning was not involved
in their performance. Each of the three measures was subjected to an identical univariate
F-test. None of the three dependent measures showed a significant difference between the
two types of decisions (all p' s > 0.10), indicating that the choice of the two types of
decision tasks was successful in equating the performance and difficulty levels of the two
tasks in no-scanning single task conditions. This experimental manipulation was

important for the analysis and interpretation of the results in other conditions.

Presented in table 2 are the performance and workload measures of no-scanning
baseline dual task conditions. Each of the dual task measures was compared with the
corresponding single task data. The result showed that concurrent performance of the
tracking task produced a significant workload increment (E(1,11) = 6.88, p < 0.05), but
none of the other three scores showed a significant difference between the single and the
dual task conditions. Furthermore, none of the four dual task measures showed a

significant difference between the spatial and verbal conditions (all p 's > 0.10).

Performance and workload measures of the single and dual task conditions are
plotted in fig. 2 as a function of scanning uncertainty (on the abscissa), task type (the two
pairs of lines within each panel) and decision code (the two lines within each pairs). The
no-scanning single and dual task data are plotted on the ordinate. Data points and lines

near the top of each graph always indicate poor performance or high workload. Since the
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N=1 condition did not involve scanning uncertainty, each of the N=1 measures was first
compared to the corresponding no-scanning data. The result showed that the scanning
requirement produced a significant increment in response time (E(1, 11) = 8.79, p < 0.05)
and in workload (E(1, 11) = 5.31, p < 0.05), and neither of the increments was affected by
decision code or task type. Decision error did not show any difference for the two
conditions, nor did tracking error (all p's > 0.10).

In order to examine the effects of scanning uncertainty, each of the three decision
and workload measures was subjected to an identical 4 (scanning uncertainty) x 2 (task
type) x 2 (decision code) x 12 (subject) repeated measures analysis of variance
(ANOVAGs), whereas tracking performance was subjected to a 4 (scanning uncertainty) x
2 (decision code) x 12 (subject) repeated measures ANOVA. Where appropriate, as will
be described, these ANOVAs were broken down further for the examination of two-way

interaction effects and simple main effects (Keppel, 1982).

...........................

Response time. A significant two-way interaction between scanning uncertainty
and decision code was found in the dual task condition (E(3,11) = 5.37, p < 0.05), but not
in the single task condition (F(3,11) = 1.35, p > 0.10), resulting in a significant three-way
interaction between the three variables (E(3, 11) = 4.22, p < 0.05). Closer inspection of
the data suggests that this two-way interaction in the dual-task condition is attributable to
the differential behavior of the decision code when scanning uncertainty was at the level
of N=8 compared to the other scanning uncertainty conditions. The results of more
detailed ANOVAs confirmed this speculation. In 3 x 2 x 2 ANOVASs from which the N=§
condition was removed, neither the two-way interaction nor the three-way interaction was

found (all p's > 0.10), but the main effect of scanning uncertainty was not changed by the
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reanalysis. These results, together with paired comparisons between data at adjacent
uncertainty levels within each variable, indicate that in both the single and the dual task
conditions, every increase in scanning uncertainty resulted in a significant increase in
decision response time (all p's < 0.05 for the 12 paired comparisons). Furthermore, when
scanning uncertainty was at the level of N=8, scanning uncertainty produced greater
response time increment when tracking was concurrently performed with the spatial task
than with the verbal task.

Decision error. As suggested by the data in fig. 2, decision error was not
influenced by any of the experimental variables (all p's > 0.10).

Tracking error. As shown in fig. 2, tracking error was greater when scanning
uncertainty was at the level of N=8 than at other levels, which were not different among
themselves (E(3,11) = 14.8, p < 0.001, for the data that includes the N=8 condition;
E(2,11) = 1.73, p > 0.10, for the data that does not include the N=8 condition). Tracking
performance was not influenced by decision code, nor did this variable interact with
scanning uncertainty (all p's > 0.10).

Subjective workload. Every increase in scanning uncertainty resulted in a
significant increase in subjective workload (main effect of scanning uncertainty: E(3, 11)
=21.53, p <0.001; all p's < 0.05 for the 12 paired comparisons between data at adjacent
scanning uncertainty levels within each variable). Subjects also reported higher workload
ratings in dual task conditions compared to the corresponding single task conditions
(main effect of task type: E(1, 11) = 33.98, p < 0.001). No indication for any effect of
decision code was found, nor was any interaction between the experimental variables (all
p's > 0.10).

i f visual ing; fR ion Analysis.
Visual inspection of the performance and workload data shown in fig. 2 suggests

that increases in scanning demand produced linear increases in response time, but non-
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linear increases in tracking performance and subjective workload. The results of the
following regression analysis on the data points corresponding to the four scanning
uncertainty conditions (i.e., when N=1, 2, 4, and 8) lend support to this speculation.

Response time. For the single task data, averaged across the two decision codes,
linear regression provided the best fitting least squares line relating response time (RT) to
scanning uncertainty (i.e., the number of relevant circles: N) in the equation form of (RT
=914 + 132N), with an Adjusted Squared Multiple R of 0.985. This result indicates that
98.5% of the total variation in response time could be accounted for by a linear prediction
from changes in scanning demand. For the dual task data, the best fitting linear model
has the form of (RT =981 + 148N), with an Adjusted Squared Multiple R of 0.986. The
slope of the regression line for the dual task data had a significantly larger value than for
the single task data (slope: {(10) = 2.47, p < 0.05), but the difference between the two
intercepi values did not reach statistical significance (1(10) = 1.77, p > 0.10).

Tracking error. While increases in scanning demand produced linear increases in
response time, data shown in fig. 2 suggests that tracking performance degraded at an
accelerated rate as the demand for eye movement increased. This speculation was |
confirmed by the results of regression anatysis, which indicated that'a power function in
the form of (RMSE =0.209 + 0.003‘N2) accounted for 97.7% of the variance in tracking
RMSE data, whereas the best fitting linear model in the form of (RMSE =0.173 +
0.026N) was able to accourt for 85.2% of the variance.

Workload. Workload increased at a decelerated rate as scanning demands
increased, which was a trend different from both response time and tracking error. Power
functions in the forms of (Workload = 9.083 + 6.844 NO.5 ) and (Workload = 11.951 +
9.751 NO-5) accounted for 96.9% and 94.1% of the variations in workload data in the
single and dual task conditions, respectively, whereas the best fitting linear models in the

forms of (Workload = 15.041 + 1.716N ) and (Workload = 20.582 + 2.407N) accounted
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for 90.8 % and 83.8% of the variances, respectively. All of the regression coefficients for
the dual task data had a significant larger value than the corresponding coefficient for the
single task data (all t's < 0.095).

[t should be noted here that due to the limited number of data points obtained in
the present study, no attempt was made to identify the best fitting exponent of the power
functions, or to identify alternative functions that may fit the data better. The regression
analysis conducted here is a preliminary attempt to quantitatively characterize the
interesting dissociation among the dependent measures observed in the present data, and
to suggest a research topic that is worthy of further investigation.

In the current experiment, both the eye movement recording performed on a
subset of four of the subjects and subjective report indicate that the relevant stimulus
information could not be or was very hard to be determined through peripheral vision. It
was apparent that subjects did not attempt to use peripheral vision or head movement to
locate the relevant stimulus. The close fit between the observed response time data and
the linear model further illustrate this point.

In summary, the results of the first experiment showed that every increase in
scanning uncertainty produced a significant increase in response time and in workload,
and the increase was faster in the dual task conditions than in the corresponding single
task conditions. A two-way interaction between:scanning uncertainty and decision code
was observed in the dual task response time data, indicating that concurrent performance
of the tracking task produced a greater response time increment for the spatial decision
task than for the verbal decision task when the demand for visual scanning was high.

It is reasonable to assume that the spatial and the verbal task employed in the
present study had the same level of task difficulty, considering the no-scanning baseline
single task data that showed the equivalence of all the performance and workload

measures for the two tasks. Therefore, the observed difference in the dual task response
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time data between the spatial and the verbal task when visual scanning was required is
most likely attributable to the difference in the processing materials involved in the two
tasks. The finding that this differential behavior of decision code emerged only in the
dual task when scanning uncertainty reached the level of N=8 indicates that neither the
presence of a concurrent task nor the presence of scanning uncertainty is a sufficient
condition for this interaction to emerge. An interesting question is to predict the situations
in which this interaction will occur and to identify the critical factors that must be
considered in making this prediction. Experiment 2 attempts to address this issue.
Experiment 2

The discrete response tasks employed in Experiment 1 were simple information
acquisition tasks. In order to accomplish the task, the subjects needed to perform two
activities serially: searching for the relevant information, and then making a four-
alternative response regarding the location or value of the stimuli. The two serial
activities were performed with either the presence or absence of a concurrent tracking
task. Experiment 2 extends the scope of study by employing a complex information
integration task as the discrete response task, which by itself required the subjects to
perfarm a number of activities concurrently. An interesting question is the effects of the
concurrent activities embedded within the discrete task, with either the presence or the
absence of a concurrent tracking task, on the subject's scanning behavior and complex
task performance.

Method

The method was basically the same as the method of Experiment 1, except for the
discrete response task employed. Twelve right-handed University of Michigan students
(six men and six women) were recruited as subjects and paid for their participation in the
experiment. All subjects had normal or corrected to normal vision. None of the subjects

had participated in the first experiment.
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Information In ion Task

Two types of information integration tasks were employed in this experiment,
involving either spatial or verbal material. Both the spatial and the verbal tasks imposed
analogous demands on the respective spatial or verbal working memory systems, by
imposing a continuous running memory task with overlapping encoding, storage and
retrieval processes. The processing demands of the spatial and verbal decision tasks were
equated according to the results from previous studies that employed similar tasks (Liu
and Wickens, 1989, 1992; Wickens and Liu, 1988), and on the basis of Experiment 1 and
testing pilot subjects. Both tasks presented stimuli for three seconds, were force-paced at
the same rate of six second stimulus intervals, had both a four-alternative choice
component and a continuous running memory component. Both decision responses were
made manually by pressing one of four right-hand keys on a keyboard.

Spatial information integration task. As in Experiment 1, the subjects were
presented with a sequence of organized arrays of circles, each of which carried a vector
emanating from the center of a circle. However, the integration task required the subjects
to make four-alternative responses based on his/her prediction of the future position of
the displayed vector. Upon presentation of each display, the subjects were required to (a)
search for the vector that was displayed with a solid line, (b) compare that vector's
angular position with the memorized position of the previous vector to make a prediction
about which quadrant the future position of the vector would be in, and (c) remember the
currently displayed vector's position for use in the next judgment. The vectors in other
circles were displayed with dashed lines. Visual search was not involved under no-
scanning conditions, in which the subjects were informed about the location of the solid
line and were instructed to fixate that circle before the start of the trials. The decision rule
is: the angle of clockwise rotation between the "past" and the "current" vectors should

equal the angle of clockwise rotation between the "current” and the "predicted" vectors.
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To accomplish the task then, the subjects need to maintain an analog representation in
spatial working memory, while performing a mental rotation (Shepard and Metzler,
1971). The position vectors were generated randomly, with the restriction that the
"predicted" position (i.e., the one whose position was to be estimated) never fell in the +/-
15 deg area centered on n*90 deg (n is integer). This constraint was imposed to reduce
decision ambiguity in resolving angle differences that were near the boundaries between
the quadrants.

Verbal information integration task. This task required the subjects to make four-
alternative responses based on his/her calculation of a "predicted” value. The subjects
were presented with a sequence of organized arrays of circles, each of which carried a
double-digit decimal number at the center of a circle. Upon presentation of each display,
the subjects were required to (a) search for the number that was displayed with a slightly
greater size than the numbers in the other circles, (b) make four-alternative responses
based on his/her calculation of a "predicted" value according to a decision rule, and (c)
remember the value of the currently displayed number for use in the next judgment.
According to the decision rule, the "predicted" value is always between 0.00 and 1.00,
and should be the summation of the “past" and the "current" number. The requirements
for visual scanning, and the definition and function of "past", "current' and "predicted"
were analogous to those in the spatial information integration task. The four response
alternatives corresponded to a "predicted"” value of smaller than 0.25, between 0.25 and
0.50, between 0.50 and 0.75, and greater than (.75, respectively. If the result of
summation is greater than 1.00, then the ‘predicted’ value is the difference between the
result of summation and 1.00.

Other aspects of the experimental methods, including task display, visual
scanning requirements, the primary tracking task, and the experimental design and

procedure, were the same as in Experiment 1.
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Results and Discussion
No-scanning Single and Dual Task Results

Presented in table 3 are the single task performance and workload measures of the
spatial and verbal four-alternative decision tasks when visual scanning was not involved
in their performance. Each of the three measures was subjected to an identical univariate
F-test. As in Experiment 1, none of the three dependent measures showed a significant
difference between the two types of decisions (all p' s > 0.10), indicating that the choice
of the two types of decision tasks was successful in equating the performance and

difficulty levels of the two tasks in no-scanning single task conditions.

Presented in table 4 are the performance and workload measures of no-scanning
baseline dual task conditions. Each of the dual task measures was compared with the
corresponding single task data. The result showed that concurrent performance of the
tracking task produced significant workload and decision response time increments
(worldoad: E(fh 11)=17.22, p < 0.01; résponse time: E(1, 11) = 8:92, p < 0.05), but did
not result in any change in tracking performance and decision accuracy (both p's > 0.10).
Furthermore, none of tﬂe four dual task measures showed a significant difference

between the spatial and verbal conditions (all p's > 0.10).

E Visual ing: Its of Analysis of Vari
As in Experiment 1, performance and workload measures of the single and dual

task conditions are plotted in fig. 3 as a function of scanning uncertainty (on the
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abscissa), task type (the two pairs of lines within each panel) and decision code (the two
lines within each pairs). Data points and lines near the top of each graph always indicate
poor performance or high workload. A comparison between the N=1 data and the no-
scanning data (on the ordinate) showed that the scanning requirement produced a
significant increment in response time (E(1, 11) = 14.33, p <0.01) and in workload (E(1,
11) = 6.48, p < 0.05), and neither of the increments was affected by decision code or task
type. Decision error did not show any difference for the two conditions, nor did tracking
error (all p's > 0.10).

Each of the three decision and workload measures was subjected to an identical 4
(scanning uncertainty) x 2 (task type) x 2 (decision code) x 12 (subject) repeated
measures analysis of variance (ANOVAs), whereas tracking performance was subjected
to a 4 (scanning uncertainty) x 2 (decision code) x 12 (subject) repeated measures

ANOVA. The following important and salient results emerged.

Response time. ‘The same data pattern depicting a significant two-way interaction
between scanning uncertainty and decision code was found both in the single task and in
the dual task conditions (dual task: E(3, 11) ='10.47, p < 0.01; single task: (3, 11) =
6.04, p < 0.05). Further analysis of the single task data suggests that this two-way
interaction is attributable to the differential behavior of the decision code when scanning
uncertainty was at the level of N=8 compared to the other three levels of scanning
uncertainty. In the 3 x 2 ANOVA of the single task data from which the N=8 condition
was removed, this two-way interaction was not found (E(2, 11) = 2.37, p > 0.10), but the
main effect of scanning uncertainty was not changed by the reanalysis (E(2, 11) =5.44,p

< 0.05). For the dual task data, similar results of reanalysis were observed only in the 2 x
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2 ANOVA from which both the N=4 and the N=8 conditions were removed, indicating
that this two-way interaction emerged in the dual task condition when scanning
uncertainty reached the level of N=4. These results, together with paired comparisons
between data at adjacent uncertainty levels within each variable, indicate that in both the
single and the dual task conditions, every increase in scanning uncertainty resulted in a
significant increase in decision response time (all p's < 0.05 for the 12 paired
comparisons). Furthermore, when scanning uncertainty was sufficiently high (N=8 in the
single task condition, and N=4 in the dual task condition), scanning uncertainty produced
greater response time increments when tracking was concurrently performed with the
spatial task than with the verbal task.

Decision error. In the single task conditions, subjects had more decision errors in
the N=8 condition than in any of the other three conditions, which were not significantly
different among themselves (E(3, 11) = 4.88, p < 0.05, for the data that includes the N=8
condition; E(2, 11) = 3.15, p > 0.05, for the data that does not). Furthermore, this error
increment under the N=8 condition was greater for the spatial task than for the verbal task
(E(1, 11) =6.11, p < 0.05), resulting in a significant two-way interaction between
decision code and scanning uncertainty (E(3, 11) = 3.83, p < 0.05). In the dual task
conditions, a similar two-way interaction emerged when the level of scanning uncertainty
reached the level of N=4 (E(3, 11) =8.99, p <0.01).

Tracking error. Tracking performance showed a significant decrement when
scanning uncertainty reached the level of N=4, compared to the N=1 and N=2 conditions
(E@, 11) =6.77, p < 0.05), which were not significantly different between themselves
(E(1, 11) = 1.08, p > 0.10). When scanning uncertainty reached the level of N=8, tracking
performance showed a further decrement compared to that in the N=4 condition (E(1, 11)
= 35.22, p <0.001). Furthermore, this decrement was greater for the spatial than for the

verbal task (E(1, 11) = 11.24, p <0.01), resulting in a significant two-way interaction
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between scanning uncertainty and decision code (E(3, 11) = 5.89.p < 0.05).

Subjective workload. In both the single and the dual task conditions, every
increase in scanning uncertainty resulted in a significant increase in subjective workload
(all p's < 0.05 for the 12 paired comparisons between data points at adjacent scanning
uncertainty levels within each variable). Furthermore, when scanning uncertainty was at
the level of N=8, subjects reported higher workload when tracking was concurrently
performed with the spatial task than with the verbal task (E(1, 11) =7.62, p <0.05).

Eff Visual ning: Results of ion Analysi

The dependent measures showed a pattern of dissociation similar to that observed
in Experiment 1: increases in scanning demands produced linear increases in response
time, but accelerated increases in tracking error and decelerated increases in workload.

Response time. For the single task data, averaged across the two decision codes,
linear regression provided the best fitting least squares line relating response time (RT) to
scanning uncertainty (i.e., the number of relevant circles: N) in the equation form of (RT
= 1844 + 158N), with 97.1% of the total variation accounted for by this linear prediction.
For the dual task data, the best fitting linear model has the form of (RT = 1952 + 193N),
with an Adjusted Squared Multiple R of 0.964. Both the slope and the intercept of the
regression line for the dual task data had a significantly larger value than for the single
task data (slope: t(10) =.4.66, p-< 0.01; intercept: t(10) = 3.73, p < 0.01).

Tracking error. A power function in the form of (RMSE = 0.223 + 0.005N2)
accounted for 98.6% of the variance in tracking RMSE data, whereas the best fitting
linear model in the form of (RMSE = 0.159 + 0.044N) accounted for 92.8 % of the
variance.

Workload. Power functions in the forms of (Workload = 23.09 + 12.55 N0-3 ) and
(Workload = 28.46 + 18.28N0-5) accounted for 96.9% and 92.7% of the variations in

workload data in the single and dual task conditions, respectively, whereas the best fitting
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linear models in the forms of (Workload = 36.95 + 2.35N ) and (Workload = 42.67 +
5.54N) accounted for 81.6 % and 87.5% of the variances, respectively. All the regression
coefficients for the dual task data had a significant larger value than the corresponding
coefficient for the single task data (all t's < 0.05).

In summary, several major findings of the second experiment are similar to those
of the first experiment: every increase in scanning uncertainty produced a significant
increase in response time and in workload; both the slope and the intercept of the
regression lines for the dual task data were greater than those for the single task data; and
increases in scanning demand produced a linear increase in response time, but an
accelerated increase in tracking error and a decelerated increase in workload.

A salient characteristic of the result of Experiment 2 is that it showed more
evidence of the interaction between scanning uncertainty and decision code than did
Experiment 1. Interestingly, this interaction was found in the single task as well as the
dual task data. Since the single task condition in the second experiment required, by
itself, concurrent processing of multiple activities, this result has particular significance
as an evidence in support of the role of decision code in analyzing scanning costs. The
finding that this interaction emerged at lower levels of scanning uncertainty when the
decision task was concurrently performed with the tracking task further supports this |
argument. The implications of the results of the two experiments will be discussed in the
following section.

General Discussion

One common characteristic of many everyday tasks is the need to scan and search
physically separated sources of information selectively and sequentially, while
performing a number of concurrent manual control and decision activities. The purpose
of the present study is to examine the characteristics of visual scanning in multi-task

environments, to quantify the effects of scanning uncertainty on concurrent task
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performance, and to address the relation between the single channel serial processing
theory of selective attention and the multiple resources parallel processing theory of
divided attention in investigations of concurrent performance of complex tasks. The
results of the two experiments conducted in the present study provide some inspiring
insights into these issues: the data showed close relations between visual scanning and
concurrent activities that could not be revealed through single task studies; neither the
single channel serial processing theory of selective attention nor the multiple resources
parallel processing theory of divided attention could provide fully satisfactory
explanations of the results; but the results do point to a simple, unified account of multi-
task behavior, which will be discussed in the last section of the paper.

Eff vi

In both experiments every increase in scanning uncertainty produced a significant
increase in response time and in workload. This result is not surprising considering the
fact that increases in the spatial uncertainty of the stimulus location introduced additional
eye movements and extra scanning efforts. However, the fact that this increase was faster
when scanning was concurrently performed with other tasks, such as a tracking or a
running memory task in the current study; indicates that concurrent processes may not
simply behave as additive factors in their effects on scanning costs. Thus, visual scanning
data observed in single task environtnents may not be readily generalizable to the analysis
of scanning costs in multi-task environments.

The two-way interaction between scanning uncertainty and decision code
observed in both-experiments suggests that analysis of scanning costs in multi-task
situations should take into account the nature and the characteristics of the concurrent
processing tasks involved. This interaction indicates that increases in scanning demand
produced greater performance decrements and workload increments in the spatial task

than in the verbal task. However, this interaction emerged only when the level of
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scanning uncertainty was sufficiently high. Increases in the concurrent task demands tend
to lower the “threshold level” for this interaction to emerge.

A common and legitimate concern in interpreting the interaction between
processing codes and other experimental factors such as visual scanning is the potential
difference in the level of difficulty of the tasks: a task that demonstrates a greater
interference with other tasks may happen to be a more difficult task. The present study
was successful in addressing this concern. The no-scanning baseline single task data
showed an equivalence of all the performance and workload measures for the spatial and
the verbal tasks in both experiments. This result provides a strong evidence in support of
the interpretation that the observed interaction between decision code and scanning
uncertainty is attributable to the difference in the processing materials involved in the two
types of tasks.

Dissociation among dependent measures

In both experiments increases in scanning demand produced a linear increase in
response time, but an accelerated increase in tracking error and a decelerated increase in
subjective workload. This dissociation among dependent measures was reflected in the
result of regression analysis: A linear models in the form of (a + bN) could provide a
close fit for the response time data, but a power function with an exponent that is greater
than 1.0 (i.e., a function in the form of, a + bN€, c¢>1) could provide a better fit of the
tracking error data than a linear model, whereas subjective workload seemed to follow a
trend that can be better described in the equation form of (a + bN€, c<1). In the above, "a"
and "b" are regression coefficients that have different values for different measures and
for different types of tasks. For the present data, power functions in the form of (a + bN2)
and (a + bN0-5) provided a better fit of tracking error and workload data, respectively,

compared to linear functions in the form of (a + bN).
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The use of power functions have appeared extensively in psychophysics since
Stevens' classic work (Stevens, 1957). The current study suggests that power functions
may also have great potential value in quantifying different aspects of task interference in
multi-task performance modeling. Although the number of data points obtained in the
present study and the post-hoc nature of the analysis can potentially make the
generalization of this finding cumbersome at best, this interesting dissociation does point
to an important research topic that is worthy of further investigation. Further research
should examine the generalizability of this finding, identify the best fitting exponent of
the power functions, or to identify alternative functions that better capture the essence of
task interferences. For example, it is possible that tracking performance decrements
follow an exponential growth function, or that workload increments can be better
described by a logarithmic function. These issues could only be resolved through further
empirical research and the development of related theoretical models. A deeper
understanding of this issue will also prove to be of great practical significance to some
application domains such as aviation and automotive industry.

f ive and divi nti

The results of the current study have significant implications for both the single-
channel queuing theoretic models of selective attention and the multiple resources
parallel processing models of divided attention. The basic premise of serial competition
for processing time adopted by the single channel models of selective attention
demonstrated its value in analyzing and predicting some linear functions observed in the
current data. However, the models can not satisfactorily explain the differential effects of
scanning uncertainty on concurrent spatial or verbal tasks. The multiple resources theory
of divided attention (e.g., Wickens, 1980, 1992) demonstrated its strength in predicting
and explaining this differential effect, but showed limitations in explaining some other

aspects of the data. It is difficult for the theory to explain why the verbal information
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integration task also produced task interference with the tracking task when scanning was
involved, and why this interference was progressively greater when the level of scanning
uncertainty increased, although the rate of progression was smaller than that for the
spatial integration task. The results of an earlier study showed that visual scanning was
not a prerequisite for this interference to occur. In that study, a verbal task produced
significant interference with a tracking task when visual scanning was not involved (Liu
and Wickens, 1992). A critical difference between that study and the current study is that
both the verbal task and the tracking task in that study was harder than the ones employed
in the current study.

While these results posed a challenge to both the single channel theories of
selective attention and the multiple resources theory of divided attention, they lent
support to a queuing network model of human multiple task performance (Liu, 1993),
that was proposed recently as a unified theory and an integrated computational model of
human multi-task performance. Since it is not the purpose of the present article to fully
explicate the model, the following section will discuss this model mainly in the context of
explaining the current results. Potential applications of the model in analyzing many
important aspects of multi-task performance will be briefly referred to in the following
introduction as illustrations.

According to this model, human multi-task information processing system is, in
many respects, analogous to an industrial production system. In general, this system can
be modeled as a network of information processing nodes (called servers), with each node
representing a service facility of some kind. Information processing tasks (called
customers) may enter the system at some node, traverse from node to node in the system,
and depart from some node, not all tasks necessarily entering and leaving at the same

nodes (e.g., inputs from different perceptual modalities), or taking the same path once
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having entered the system. Tasks may return to nodes previously visited (e.g., response
feedback), skip some nodes entirely (e.g., skill and automaticity development), and even
choose to remain in the system for a long time (e.g., memory and rehearsal). Each node
can have a queue formed in front of it, and thus multiple queues may exist simultaneously
in the system (e.g., concurrent performance decrement). Some customers may failed to
enter a busy system (e.g., tunnel vision and cognitive tunneling behavior), leave a busy
system before they have been fully serviced (e.g., performance errors), jockey for
position by switching from one queue to another (e.g., cross-talk), or preempt earlier
customers if the queue discipline allows this to happen (e.g., the alerting behavior of
auditory presentation, and some perceptual dominance phenomena). Multiple queues may
improve their joint performance by adopting some coordinated service schemes (e.g. task
integration), or lose effective communication in the face of overwhelming information
(e.g., confusion and outcome conflict).

This queuing network model provides not only a unified theoretical account, but
also an integrated computational model of human multi-task performance. Queuing
network theory is a fertile and productive area of mathematical research (Bruell and
Balbo, 1980; Cooper, 1981), whose results can be readily transferred to the quantitative
modeling of human multi-task performance, based on this proposed close relation
between the two areas. For example, the time for a customer to traverse portions of or an
entire network is an example of a quantitative index of task performance. One of the
indices of task interference is the increase in a customer's waiting time in front of a
server, due to the simultaneous service demands of other tasks.

There are fundamental differences between the queuing network model proposed
here and the existing queuing theoretic models of selective attention, multiple resources
model of divided attention, network models of human performance, and neural network

models of cognition. Briefly stated, the basic premise of the queuing theoretic models is
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that human information processing system is a single channel system, and that
information processing tasks form a single queue, waiting to be serviced by the system
(Moray, 1986; Senders, 1964). The multiple resources model advocates that two tasks
will suffer performance decrements only when they compete for common processing
resources, and the model does not address the existence and the role of potential serial
processing bottlenecks (Wickens, 1980, 1992). The network models of human
performance do not allow queues to form in a network (Schweickert, 1978). A neural
network model of cognition relies on a dense mesh of a large number of neuron-level
processing units, which only perform primitive computational functions such as
summing, thresholding and nonlinear mapping operations (McClelland and Rumelhart,
1986; Zurada, 1992)

A detailed description of the model is presented in Liu (1993). The particular
strength of this modeling approach can be illustrated through a simple, three-node
queuing network presented in fig. 4 in the context of the present study. This queuing
network model has a parallel processing component and a serial processing component.
The parallel processing component refers to the parallel operation of a "spatial server” (S)
and a "verbal server" (V), analogous to the spatial and verbal processing mechanisms and
resources advocated in the multiple resources theory. The serial processing component
refers to the serial operation from either S or V to the third server, which can be
tentatively referred to as the central server (C). The model assumes that a spatial task
must be serviced by the server S, and a verbal task must be serviced by the server V,

before they receive the required service of the server C prior to their completion.
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[t can be seen easily that, in essence, the multiple resources models of divided
attention and the single channel theories of selective attention become special cases of
this queuing network model. The multiple resources model only considers the parallel
processing component, whereas the single channel model only acknowledges the serial
processing aspect of this model. However, as mentioned above, neither the single channel
model nor the multiple resources model could provide fully satisfactory explanations to
the following important findings of the current study: the verbal information integration
task interfered with the tracking task only when scanning demand was sufficiently high,
and the interference was progressively greater as scanning demands increased, but at a
slower rate than the interference between the spatial information integration task and the
tracking task. It is reasonable to assume that the tracking task, the spatial integration task,
and visual scanning are primarily spatial tasks, whereas the verbal decision task is
primarily a verbal task.

As demonstrated below, these results can be readily explained by the current
queuing network model, with two assumptions about the model. The two assumptions, by
making successful explanations of the results, suggest two important characteristics of
human information processing. The first assumption is that the serial processing
bottleneck (i.e., the central server) has a capacity that is smaller than the sum of the
capacities of the spatial and the verbal server, but greater than the capacity of either of the
two servers. Thatis, C<S+V,C>S,andC> V (e.g., C=7, S§=5, V=5, where C, S, V
refer to the capacity of the three server nodes respectively). The second assumption is that
the cost of waiting in front of S or V is higher than that in front of C. That is, W(S) >
W(C), W(V) > W(C), where W(A) refers to the cost of waiting in front of server A.

The first assumption implies that two tasks will interfere with each other when
their total service demand exceeds the capacity of S or V or both servers (similar to the

predictions of multiple resource model), or that of C (similar to the predictions of single
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channel model), or a combination of both cases. One of the implications of the second
assumption is that a verbal task will interfere with a spatial task when the sum of their
capacity demands is greater than C, and this interference will be progressively greater as
the spatial or the verbal demand increases. However, as long as neither S nor V has
exceeded its capacity, the rate of progression will be slower than that between two spatial
tasks with a total spatial demands greater than S. These predictions are exactly the same
as the results observed in the present study.

In the present study, the total service demand of the verbal information integration
task and the tracking task exceeded the capacity of C, only when scanning demand was
sufficiently high. Thatis, (v+t+sL) <C<(v+t+sH), v<V, (t+sH) < S, in which v,
t, sL, and sH are the processing demands of the verbal integration task, tracking task, and
scanning with low or high levels of uncertainty, respectively. Since the spatial
information integration task, the tracking task and scanning all required the service of the
spatial server, their total demands exceeded the capacity of S in many cases: the spatial
task interfered with the tracking task when scanning demand was at a lower level than
that for the verbal task (i.e., S < (s + t + sL), in which s refers to the processing demand of
the spatial integration task), suffered a performance decrement in the single task
condition when scanning was at a higher level (i.e., (s + sL) < S < (s + sH)), and showed
faster increase in performance decrement than the verbal task, due to a higher cost of
waiting in front of S than in front of C.

The 3-node queuing network, together with the two assumptions, can also explain
the earlier finding that a verbal task interfered with a tracking task when scanning was not
involved (Liu and Wickens, 1992). The verbal task and the tracking task were more
difficult than those in the present study, and thus their total demand exceeded the capacity
of C without the presence of the scanning demand (i.e., C < v + t). Furthermore, this

interference increased when scanning was involved, but with a smaller magnitude than
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that for a spatial task, as predicted by the model described above.

In summary, the present study provides a quantitative evaluation of the relation
between visual scanning and concurrent tasks, and demonstrates the strength of a queuing
network model of multi-task performance in integrating the serial processing models of
selective attention and the parallel processing models of divided attention in explaining

and predicting complex task performance.
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Figure Captions
A pictoﬁal representation of the task display for the dual task condition

showing the horizontal tracking bar and eight information circles.

. Results of Experiment 1: Performance and workload measures as a function of

scanning demand, task type and decision code. (Data points and lines near the top
of each graph always indicate poor performance or high workload.)

Results of Experiment 2: Performance and workload measures as a function of
scanning demand, task type and decision code. (Data points and lines near the top
of each graph always indicate poor performance or high workload.)

A 3-node queuing network model of multi-task performance that consists of a
parallel processing component (S and V) and a serial processing component
(§->C and V->C). Information processing tasks involving two different types of
information materials are represented in the figure as diamonds and circles. The
current results suggest the capacity of C is smaller than the total capacity of S and
V, but greater than the capacity of either server; and the cost of waiting in front of

S or V is greater than in front of C.



Visual scanning

Table 1

Performance and workload measures in no-scanning single task conditions

Measure Decision Task
Spatial Verbal

Error (in %) 4.2 5.8

Response time (in msec) 802 836

Workload (in raw score) 14.1 12.8
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Visual scanning

Table 2

Performance and workload measures in no-scanning dual-task conditions

Measure

Error (in %)
Response time (in msec)

Workload (in raw score)

Tracking (RMSE)

Spatial

6.1
815
19.0
0.222

Decision task

Verbal

4.8
846
18.3
0.227
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Visual scanning

Table 3

Performance and workload measures in no-scanning single task conditions

Measure Decision Task
Spatial Verbal

Error (in % correct) 12.4 9.8

Response time (in msec) 1740 1778

Workload (in raw score) 31.9 33.5
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Visual scanning

Table 4

Performance and workload measures in no-scanning dual-task conditions

Measure

Error (in %)
Response time (in msec)
Workload (in raw score)

Tracking error (in RMSE)

Decision task

Spatial

11.1
1797
38.2
0.220

Verbal

10.4
1827
40.6
0.228
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