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ABSTRACT

This article describes several queueing network
models of human performance and human-computer
interaction that we have developed recently and
illustrates the great value of queueing network
methods in establishing models of human
performance and human-computer interaction at all
analysis levels and in establishing an integrated,
computational framework for unifying some currently
isolated models. The article starts with a theoretical
discussion of the most "micro" level of performance
and presents a queueing network model for reaction
time as a model of elementary mental processes. As a
continuous-flow network model, it includes discrete
serial-stage and continuous-flow overlapping-stage
models as well as discrete network models as special
cases. The second section moves to the more
"macro”, behavioral level and describes a 3-node
queueing network model of multitask performance
that includes single-channel, queueing theoretic
models and parallel-processing, multiple resources
models as special cases. The third section reaches the
level of applications and discusses queueing network
models of human-computer interaction and human-
computer networks and their potential applications in
standalone and networked environments. In order to
illustrate the modeling capabilities of queueing
networks, the first two sections discuss sojourn times
‘and waiting times in an open queueing network, and
‘the last section selects queue length distributions in a
closed network as the tool of modeling.

The computational models of human
performance and human-computer interaction that we
have developed recently and are described in this
article are based on our view that human information
processing system and human-computer systems are,
in many respects, analogous to a queueing network,
in which information processing tasks may assume a
wide range of complex structural and temporal
arrangements. The structural arrangements include
both serial selection and parallel execution, and the
temporal arrangements include both immediate
activities and delayed processing. Queueing network
methods employed widely in industrial engineering
and systems analysis can serve as a valuable tool in

modeling human performance and human-computer
interaction.

The idea of a queueing network arises
naturally when one thinks of a network of service
stations (also called service centers, or simply,
nodes), each of which provides a service of some
kind to the demanders for service (called customers),
either immediately or after a delay. Each center has a
waiting space for customers to wait if they cannot
immediately receive their requested service, and thus
multiple queues may exist simultaneously in the
system. The service centers are connected by arcs
over which customers flow from node to node in the
network. Telephone communications systems,
computer networks and road traffic networks are
examples of queueing networks [1] [2].

It is not difficult to see the close
resemblance between a queueing network and the
current views of a human cognitive system. Before
embarking on a detailed technical elaboration, the
following is a brief illustration of the potential
relevance of queueing network concepts to human
performance analysis.

In a queueing network representation of a
cognitive system, the customers are stimulus
components or information processing tasks, which
may enter the cognitive system at some node, traverse
from node to node in the system, and depart from
some node, not all tasks necessarily entering and
leaving at the same nodes (e.g., the use of different
sensory and motor modalities), or taking the same
path once having entered the system (e.g., the use of
separate memory and decision routines). Tasks may
return to nodes previously visited (e.g., performance
feedback or decision loops), skip some nodes entirely
(e.g., skill acquisition and automaticity), and even
remain in the system for a long time (e.g., memory
rehearsal). Some customers may failed to enter a busy
system (e.g., perceptual tunneling), leave a busy
system before they have been fully serviced (e.g.,
speed-stress induced errors), jockey for position by
switching from one queue to another, or preempt
earlier customers if the queue discipline allows this to
happen (task scheduling). Multiple queues may
improve their joint performance by adopting some



coordinated service schemes (e.g., task integration),
or lose effective communication in the face of
overwhelming information (e.g., confusion, cross-
talk, and outcome conflict) [3] [4].

In order to give mathematical substance to
the models presented in the following sections, we
introduce the following notations, which are now
rather standard in the queueing network literature.
Two sets of notations are needed, the first for
describing a stochastic queueing process at a service
station, and the second for stochastic processes in a
queueing network.

A queueing process at a service station in a
network is described by a series of symbols and
slashes such as A/B/C/D/E, where A indicates the
arrival pattern of customers as described by the
probability distribution for interarrival-time or arrival
rate, B the probability distribution for service time, C
the number of parallel service channels at the station,
D the restriction on waiting room capacity in front of
the station, and E the queue discipline (the manner by
which the customers are selected from the queue for
service). For the most part, this article will focus on
the class of queueing process that has received most
research attention and enjoyed a most fruitful history
of producing usable analytical results. This queueing
process is denoted as M/M/c/eo/FCFS (or M/M/c for
short), representing a queueing process with
exponential interarrival times (also called Poisson
arrival), exponential service times, ¢ identical servers
at a station, no restriction on the maximum number of
customers allowed in the queue, and first-come, first-
served queue discipline. The importance and
justifications of employing this type of queueing
process in performance modeling are discussed in all
standard textbooks on queueing theory [2].

We use the following symbols to represent a
queueing network:

1) K: number of nodes,

2) i: identity of nodes,

3) yi: mean arrival rate to node i from
outside the network (also called external arrival rate),

4) pij: the probability that a customer visits
node j immediately after departing from node i (also
called routing probability or switching probability),
i=1,..., K, j=0,.., K, with pi0 representing the
probability that a customer leaves the network
immediately after visiting node i,

5) A the total mean arrival rate into node i
(from outside and from other nodes), (according to
"traffic equation”, Ai =i + X pjiAj, summed over j=1
to K)

6) ut: mean service rate for each channel of
node i.

For the most part of the paper, we will
mainly be concerned with queueing networks with
the following characteristics:

1. Arrivals from the "outside" to node
i follow a Poisson process with mean rate i,
2. Service times for each channel at

node i are independent and exponentially distributed
with parameter i,

3. The routing probabilities (pij's) are
independent of the state of the system, which is a
vector representing the number of customers at each
station.

Networks that have these properties are
called separable networks or product-form networks.
They are also called Jackson networks, named after
the author who showed that this class of networks
have the following amazing property: the network
acts as if each node can be viewed as an independent
M/M/c queue, with parameters Ai and pi. The joint
probability distribution for the number of customers
at each node can be written as a product of marginal
M/M/c's [5]. This amazing property makes it possible
to derive many important results for the Jackson
network that are often not available or analytically
intractable for other types of networks. Jackson
networks have subsequently received the most
research attention and enjoyed a great success in
model development. The models have also been
successfully applied in diverse areas, because
separable networks can be evaluated quite efficiently.
Furthermore, many authors have demonstrated that
many of the results for Jackson networks provide
close approximations to non-Jacksonian networks [6].
In computer system analysis, the pragmatic,
"operational” framework for queueing network
analysis, pioneered by Buzen and Denning, relies
heavily on the assumption of separable queueing
networks. It has been pointed out that, in practical
applications, inaccuracies resulting from violations of
Jackson's assumption typically are not worse than
those arising from other error sources (e.g.,-
inadequate measurement data) [7] [8].

With these notations and introductions in
hand, we are ready to present a number of queueing
network models for human performance and human-
computer interaction. The presentation proceeds as
follows. We will start with a theoretical treatment of
the most "micro” or "molecular” level of performance
and present the models for elementary mental
processes, and then we move to the more "macro",
"aggregated” behavioral level and describe a 3-node
model of multitask performance. The last section
reaches the level of applications and discusses
queueing network models of human-computer
interaction and human-computer networks and their
potential applications in both standalone and



networked environments. In order to illustrate the
modeling capabilities of queueing networks, the first
two sections focus the discussion on sojourn times
and waiting times in an open queueing network, and
the last section selects queue length distributions in a
closed network as the tool of modeling.

QUEUEING NETWORKS AS MODELS OF
ELEMENTARY PSYCHOLOGICAL
PROCESSES

Why is there a delay between stimulus
presentation and response initiation? This has been
one of the most enduring and fundamental questions
that psychologists have been fascinated with.
Although it appears that everyone can offer an
answer to this seemingly simple question, the exact
nature of and the causes for this delay remain a
mysterious domain. The current belief of cognitive
psychologists is that this delay is a reflection of the
dynamic activities of an underlying mental
architecture that transforms stimulus into response.
And most importantly, since the cognitive system is
not amenable to open inspection, the characteristics
of this delay--also called reaction time (RT)--may
offer important clues to the possible configurations of
the mental architecture.

Theoretical models that use reaction time as
the primary performance measure to infer the general
structure of mental systems are also called models for
RT. Of great interest to the present discussion are two
dimensions along which RT models can be classified.
One of the two is a dynamics dimension
distinguishing discrete-processing from continuous-
flow models, and the other an architectural dimension
distinguishing serial-stage models from network
models. Discrete processing models assume that a
mental process will not transmit its processing output
to other processes until it is completed and it
transmits its output in an indivisible unit. Thus a
process can not begin until all of its preceding
processes are completed. Continuous-flow models
assume that each process transmits its available
partial outputs to other processes continuously rather
than waiting for the full completion of processing,
and thus a process can begin processing even though
its preceding processes are still active. Serial-stage
models assume a serial arrangement, whereas
network models assume a network configuration of
the mental processes. The two dimensions jointly
define four classes of models as shown in Figure 1.

In the top-left quadrant that defines serial
discrete processing models, we find the most
traditional interpretation of information processing.
Donders' subtractive method (1868) and Sternberg's

additive factors method (1969) both assume non-
overlapping durations of serially arranged processes
[9] [10]. This class of models are also referred to as
serial discrete-stage models. Donders assumed that
processes can be added or deleted from the
processing chain while leaving intact the rest of the
chain (called the assumption of pure insertion).
Sternberg assumed that the duration of a process can
be changed by experimental manipulations while this
change will not produce indirect effects on the rest of
the chain (called the assumption of selective
influence). Based on the assumption of selective
influence, Sternberg proposed an additive factors
methodology for RT analysis, according to which
experimental factors that influence a common process
will interact with each other, whereas those
influencing separate. processes will be additive. The
serial discrete-stage model and the additive factors
methodology have been the fundamental basis of a
large body of experimental literature. McGill and
Gibbon (1965) noted that reaction time in a serial
discrete-stage model can be described by the general-
gamma distribution, if the durations of each stage is
exponentially distributed with different duration
means [11].

Series Network
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Fig. 1. Reaction Time Models

Some theorists have studied sequentially
arranged processes that permit temporal overlapping
of process activities. Prominent among the RT
models include McClelland's (1979) Cascade model
[12], and more recently, Miller's (1993) queue-series
model [13]. Both models try to mimic the behavior of
serial discrete-stage models, and examine the
conditions under which the two classes of models
converge or diverge in their predictions. This class of
models belong to the bottom-left quadrant of Figure
1.

Townsend (1972) challenged the notion of



serial arrangement of mental processes and examined
possibility of parallel activities [14] Schweikert
(1978) later developed a class of so-called PERT
networks [15], which assume that mental processes
can be arranged as a network, with serial and parallel
structures as special cases. Although the PERT
models allow processes that are not on the same path
of a network to be active at the same time, they
assume that processes on the same path operate in
strict sequence--a process can not start until all the
preceding processes on the same path are completed.
Furthermore, the PERT method for RT analysis
follows the postulate of selective influence and
assumes that each experimental manipulation
prolongs the duration of one process, but does not
change the duration of any other process. This class
of models can be classified as discrete-network
models and is shown in the top-right quadrant of
Figure 1.

In the following, we present a queuing
network model for elementary mental processes. The
model, in its most general form, is a continuous-flow-
network model. As will be shown below, the model
takes the existing models in the other three quadrants
of Figure 1 as special cases. Furthermore, this model
allows consideration of a broader range of possible
mental structures that can be subjected to empirical
testing. The purpose is to expand the set of modeling
tools available to psychologists and contribute to the
psychological endeavor of discovering new mental
architectures as possible models of cognition.

General description of the model.

General assumptions. The model assumes
that a reaction time task is carried out by a network of
processing centers, each of which provides a distinct
type of information processing service to the
customers (stimulus or task components). Analogous
to other continuous-flow models, the model assumes
that each center can begin processing as soon as it
receives some customer (1 or more stimulus
component) from outside the system or from another
center. A center immediately transmits any available
output (a satisfied customer) to other centers or to the
outside of the network without waiting for the full
completion of its processing of all its customers.
Similar to the cascade model and the queue-series
model [12][13], we assume that there is a separate
response unit at the end of the processing network,
which is activated when it has accumulated N signal
components.

Stimulus components as customers. I will
adopt the term "stimulus components” used in Miller
(1993) to refer to these customers or demanders [13].
The model assumes that a stimulus is composed of a

number, C, of distinct classes of components, with Ni
components of class i, i=1,..., C. In the simplest case,
there is only one class of stimulus components that is
responsible to RT (this is the case considered by
Miller). We may call them signal components. In a
more general case, there may be two classes of
stimulus components-- signal components and noise
components. It will be shown below that this
distinction is critical for queueing network analysis of
some RT behavior such as speed-accuracy tradeoff
(SAT) and violations of the selective influence

- assumption. It is easy to image situations in which a

finer distinction between the classes of stimulus
components is necessary, but this paper will not
extend the discussion further to include those cases.
As nicely summarized in Miller (1993), "the stimulus
components may be regarded as elementary stimulus
features, complex semantic codes, objects, or the
associated neural activations" ([13], p.703), and as in
Miller, this article will not attempt to develop the
empirical means of identifying stimulus components.

Component arrivals and services. As
pointed out by Pachella, the definition of stimulus
onset is not always psychologically obvious [10].
Consistent with the common assumptions adopted in
queueing literature, the model assumes that the
arrival sequence of stimulus components can be
described as a Poisson process. The model assumes
that at the node i, customers have an exponentially
distributed service time requirement with a mean of
1/ui . pi is often referred to as the service rate of node
i. As discussed by numerous authors, this assumption
is not as strong as it appears to be [2], and is also
consistent with one of the most common assumptions
of other RT models [11] [14] [16].

Reaction time as network sojourn time.
From the perspective of RT analysis, the most
interesting performance measure of a queueing
network is customer sojourn time--the time a
customer spends in the network (or part of it). Several
decades of queueing network research has shown that
determining the sojourn time distribution of a
customer in queueing networks is a very complicated
problem and among the hardest in queueing network
theory. For non product-form networks, almost no
explicit results exist. Even for product-form
networks, complicated correlations among waiting
times at various nodes exist and thus very little can be
said about the sojourn times of a customer at
successive nodes. An important exception to this
statement is provided by the sojourn time distribution
of a customer along a path in a product-form network
when the path is "overtake-free", which means that
customers can not overtake or bypass one another.
When this overtake-free condition is satisfied, the
sojourn times of a customer at various nodes along



the path are independent [1] [6] [17]. However, it
should be emphasized here that this independence
does not mean that the sojourn times of successive
customers are independent. As pointed out by Disney
and Konig (1985), the complete characterization of
the joint sojourn times of a sequence of customers is
still an unsolved problem ([1], p.377).

In this article, we only consider the types of
networks in which signal components cannot
overtake each other, although noise components may
overtake signal components (discussed below). For
the models discussed in this article, we assume that
each center has a single processing channel and a
FCFS discipline. The assumption of single channel
processing nodes is similar to that of Miller's queue-
series model and is common in psychological theory.

For this type of networks, the Nth signal
component to depart from the network is also the Nth
signal component to arrive from the outside. Thus,
RT is the sum of the Nth customer's network sojourn
time (T) and the time interval between the first and
the Nth arrival (Ta). For Poisson arrivals, Ta follows
the Erlang distribution and is independent of T, which
means that Ta is neither influenced by nor offering
any insight into the structure of the network. Thus we
only need to analyze the network sojourn time of the
Nth signal component (T). For Poisson arrivals,
signal components arrive at the network
independently with each other, and thus the Nth
signal component (called a tagged component) could
be any of the signal components with equal
probability, and is stochastically indistinguishable
from any other signal components.

Let us use road traffic as an analogy. In
order to study how changes in the traffic environment
(e.g., road structure) influences the traveller
behaviror--in this case the time to reach a destination,
we can either study the travel time of a large number
of customers at once, or study a randomly selected
“"tagged" traveller a large number of times (who is
either the same traveler or preferably randomly
selected each time). We adopt the "tagged" customer
approach, because research results are only available
for this case. Actually, adopting this approach allows
us to model queuing networks that are not single-
channel FCFS-based. But we will not extend the
present discussion into those cases.

With these important results in mind, we can
proceed to analyze some interesting cases and
examine the previous models. We will show that the
discrete or continuous-flow serial models are special
cases of a special type of queueing network called
tandem queues, corresponding to the situation in
which each stimulus activates one or a large number

(possibly infinite) of stimulus components
respectively. PERT networks are shown to be a
special case of another type of queueing network
called acyclic fork-join networks when each stimulus
activates exactly one stimulus component.

Tandem Queues

Network sojourn time in a tandem queue.
A special type of queueing network (also the simplest
type) is a tandem queue, also called a series queue, in
which the service stations form a series system with
flows always in a single direction from the first node
to the last node. Customers may enter from the
outside only at node 1 and depart only from the last
node. If each stimulus activates only 1 component,
then the successive nodes that component has to visit
will operate in strict sequence. In this case, we have a
serial discrete-stage processing system. If it activates
multiple components, successive nodes along the
customer's route will operate with temporal overiap.

More formally, we have a open network

where
Yi = A (i=1)
=0 (elsewhere)
and
pij =1 (=i+l;1<i<k-1)
=1 (i=k, j=0)
=0 (elsewhere)

It has been shown that the network sojourn
time, T, for a M/M/1 tandem queue has as
distribution the convolution [6]

Pr {T<t) = (1- e"(H" Mty

* (1- e-(HgMY, 1520
which has been shown to be the general gamma
distribution:

Fk®)=1-X Cike(H-M (1)
where ’

Cik = [T(Wj-A)/(W-A - (ui-A) (2)

Now let's compare this result with those of the serial
discrete-stage and other continuous-flow models.

Serial discrete-stage model. McGill and
Gibbon (1965) have shown that the general gamma is
the RT distribution of a serial discrete stage model in
which the duration of each stage is exponentially
distributed [11]. More specifically, McGill and
Gibbon showed that in a serial discrete-stage model
with k stages, the RT distribution has the following
form:

Fk()=1-ZCike (Dt (3)
where

1/ui is the mean duration of the
exponentially distributed passage time through stage
1.



Comparing (1) and (3), it is clear that the
general-gamma distribution of RT is not limited to
serial discrete-stage models. Actually, the serial
discrete stage model of McGill and Gibbon can be
treated as a special case of the tandem queuing model
by replacing (ui-A) with pi ((ui-A) is often called the
"effective service rate" of a node). The major
conceptual difference is that the serial discrete stage
model has the largest possible grain size of
transmission (a stimulus is indivisible). Only one
stimulus component is allowed in the tandem
network, and no other components are allowed to
enter the network until the current one has completed
processing (a situation in which A=0 and thus pi-A =
pi). In the tandem queueing model, a stimulus is
regarded as consisting of a number of components,
and they pass through the network like a traffic flow
(A > 0). Furthermore, the tandem queueing model
allows the existence of noise components in the
network. Their main effect on RT is a reduction of
effective service rate and the corresponding increase
in RT. In following analysis of the cascade model, we
will show that the introduction of noise components
facilitates modeling the well-known phenomenon of
speed-accuracy tradeoff.

McClelland's Cascade model. McClelland
proposed a cascade model as a continuous-flow
serial-processing model [12]. The model assumes that
the human information processing system functions
like a series of parallel linear integrators. These linear
integrators take a weighted sum of a subset of the
outputs of the integrators at the preceding level and
produces continuous output that is always available
for processing at the next level. The central
assumption of the cascade model is that the rate of
activation of a linear integrator depends on the
difference between the level its output are driving it
to and the level of activation the unit has already
reached.. A cascade equation--the heart of the cascade
model--was derived based on this assumption, which
gives an expression for the activation of linear
integrator j at processing level n to a stimulus S
presented at time t = 0. The equation has the
following form:

anj/S(t) = anj/s(1 - ZKi ekity (4)
where apj/§ is the asymptotic activation of the linear
integrator that would result if the stimulus were left
on indefinitely, and the kis are the rate constants of
the different processes in the system. McClelland
examined the effects of manipulating rate constants
and asymptotic levels on RT and derived a set of
prediction of RT behavior. Similar to the serial
discrete-stage models, the cascade model shows that
experimental factors affecting the rate of the same
process will interact, whereas those affecting the rates
of different processes are additive. However, the
predictions become more complicated when at least

one of the experimental factors affect the asymptotic
level of activation. A particularly interesting result is
that the cascade model is able to fit the shape of the
well-known time-accuracy curve closely.

The readers may have already noticed the
general-gamma function in equation 4. In fact, a more
general form of the tandem queueing model makes
the same set of predictions as the cascade model.
Instead of allowing the Nth signal component to
activate the response unit unconditionally when it
leaves the last node (always possessing enough
activation strength), the more general form of the
tandem queueing model assumes that the response-
activation strength of the Nth signal component can
be manipulated by experimental factors. Analogous
to the cascade model, we assume that in yes/no
experiments, the response-activation strength of the
Nth signal component is ay/y, and the response-
activation strength of other stimulus components is
ay/n. As in the cascade model, we assume that actual
response execution is a discrete event that adds the
duration of a single discrete stage (e.g., 0.1 sec.) to
the time between the stimulus presentation and the
registration of the overt response. Then for the
tandem queueing model, the observed value of d' at
time t is given by

d'(t) = (ayly - ay/n) Tq[t - .1)/{ 1462(Tq[t -

12172 (5)
This equation is identical to equation (13) of [12],
which has been shown to fit the time-accuracy curve
closely.

The derivation of equation should be the
same as that for equation (13) of [12]. The major
difference between the two continuous-flow models
is in the interpretation of the general-gamma
function. In the cascade model, the general gamma
function, I'n(t), is an activation function and
represents the relative activation of a unit at Level n
at'time t. In the tandem queueing model, the same
function represents the probability that a being-
observed stimulus component has passed through the
last node of the network adn thus reached the
response unit at time t.

Miller's queue series model. Miller's model
considered a special type of tandem queue [13]. In
Miller's model, stimulus components arrive at the
queue series at the same time (called bulk arrival in
queueing literature). Components are not served in
the same order as they arrive at the various servers
(not FCFS). Therefore, the nth customer to depart
from the end of the queue series is not likely to be the
nth to arrive at the front of series. Miller used PERT
representation and numerical simulation to examine
the time for N customers to traverse through the
system and concluded that, within the class of queue




series models he considered, experimental factors
affecting different processing stages always have
additive effects on reaction time with sequential
stages but rarely do so with overlapping stages, and
thus, observations of factor additivity support
discrete-stage models. As Miller stated: "From the
ubiquity of additive factor effects in RT experiments,
it appears that nondiscrete queue-series models must
be regarded as fairly implausible general descriptions
of human information processing”. ([13], p.712).

As mentioned above, virtually no analytical
result is available in the queueing literature about
sojourn times in the type of tandem queue considered
in Miller's model. It appears that Miller's conclusion
should only be restricted to the type of nondiscrete
model he considered, since the nondiscrete M/M/1
tandem queue we considered and discussed above
mimics McGill and Gibbon's discrete serial model
precisely. There are at least two related issues that are
worthy of further exploration. First, in Miller's
simulation, the time for the ith component to pass
through stage j (tij's) were either constants or
independently randomly selected from each of three
distributional families: normal, uniform, or
exponential-plus-constant. However, as mentioned
above, the sojourn times of a customer at successive
non-FCFS stages are dependent random variables,
rather than constants or independent random
variables. Second, the queue-series model follows the
postulate of selective influence--an essential
assumption for discrete models. "In the queue-series
model, a factor affecting stage i changes only the
values of tij" ([13] p.711.). There has been a
substantial amount of debate about how reasonable
this assumption is for discrete models. For a
continuous-flow model, this assumption should be
even more debatable.

Miller has pointed out that although the
queue-series model is able to approximate the shape
of the activation functions of the cascade model, the
two models produce different effects on RT. The
explanation was that the cascade model allows
experimental factors to have downstream effects,
whereas the queueing series model does not consider
such propagation. This could also explain why the
predictions of the cascade model and the tandem
queueing models converge, while both diverge from
the queue-series model. Both models allow the
effects of experimental manipulations to propagate
through the system, and neither model assumes
selective influence. Without a further clarification of
these issues, the following statement should be
regarded as téntative and debatable: "In view of the
prevalence of additivity, then, the most plausible
conclusion is that nondiscrete queue-series models
are generally inappropriate” ([13], p.713).

Acyclic Fork-Join networks

This is a special type of queueing network,
in which a "fork" node simultaneously creates several
new customers, which are sent to separate queues,
and the corresponding join occurs at a "join" node
when the services of all these new customers are
completed. Apparently, just as the serial discrete-
stage model can be treated as a special case of the
tandem queueing model, a PERT network can be
treated as a special case of an acyclic fork-join
network, in which each stimulus activates only one
stimulus component (N=1). No other stimulus
components are allowed to enter the network until the
offsprings of the newly admitted stimulus component
have completed processing.

Stochastic PERT networks and fork-join
queueing networks are both extremely difficult to
analyze. Schweikert considered deterministic PERT
networks [14]. Fisher and Goldstein considered
stochastic PERT networks using a method they
proposed called order-of-processing (OP) diagram
[16]). Fork-join networks is a new research area in the
queueing network research community [18). Future
breakthroughs in the research on stochastic PERT
networks or fork-join queueing networks will
hopefully improve the applicability of these methods
for RT analysis.

Simon-Foley Queueing Network

We have mentioned that if a Jackson
network does not allow customers overtake each
other (e.g., if single-channel Jackson network has
atmost one path from node i to node j for every i, j)
then sojourn times at nodes are mutually independent
and exponentially distributed random variables and
passage time along a path can be described as a
general gamma distribution, which has been shown to
play a central role in the McGill and Gibbon's model,
the cascade model, and the tandem queue model. We
now consider what happens if a network allows
customers to overtake or bypass each other.

A classic example of a non-overtake-free
network is the so-called Simon-Foley network
(Figure 2). Simon and Foley (1979) considered a
three-node Jackson network with single servers at
each node [17]. Customers only enter the system at
node one and exit the system at node three. After
visiting node 1 a customer goes directly to node 3
with probability (1-p), or goes to node 2 with
probability p. If the customer goes to node 2, he goes
directly to node 3 after receiving service at node 2.
Simon and Foley showed that the sojourn time in the
first and the third queue (T1 and T3) are not



independent for those customers who go through the
second queue. T1 and T2 are independent, T2 and T3
are independent, T1 and T3 are independent for those
customers who go directly from node 1 to node 3.
Foley and Kiessler later showed that T3 is
stochastically increasing in T1 for a customer that
goes through node 2, i.e., P{T3 > tIT1} is increasing
in T1. A result that is particularly useful for mean
sojourn time analysis is derived by Walrand and
Varaiya [19], who showed that

E{T3IT1=t'} > E{T3ITI=t}, t>t>0 (6)
where E{T} represents the mean of T.

1-p
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Fig.2. A Simon-Foley Network (The network does
not follow Sternberg's assumption of selective
influence)

These results are important in that they may
suggest a new class of mental architectures that can
be subjected to empirical tests. The test for the
existence of a Simon-Foley arrangement of the
psychological processes makes no more assumptions
than those for testing the validity of the Schweikert's
PERT methodology for RT analysis. It assumes that
we are able to prolong the duration of a process of
interest, and we are able to record time at several
points in the network [15]. According to Equation 6,
if in a task situation in which prolonging a process
produces a corresponding increase in the duration of
‘another process, then there is a great possibility that
the task situation involves a Simon-Foley network of
mental processes, particularly if such a network also "
‘'makes sense' in terms of other knowledge" [9]. For
example, it is possible that in certain task situations
node 1 has the function of distinguishing signal from
noise components. After passing through node 1,
signal components must go through node 2 for a high
level cognitive analysis, while noise components go
directly from node 1 to node 3. Experimental
manipulations that change T1 or p will produce
corresponding changes in T3 that are positively
correlated with changes in T1.

We are in the process of reviewing
published data in the literature to search for possible
evidence of' this mental network. A series of
experiments are also being prepared to test this
method. Results along this line of investigation
should have significant theoretical implications.

Although previous studies have discussed the
possible existence of indirect influence of
experimental factors [9] [10], Simon-Foley network
offers a possible method of testing and quantifying
one possible type of indirect influence. Furthermore,
since Simon-Foley network is among the simplest
continuous-flow network that is neither strictly serial
nor parallel, data collected will provide critical
insights into the architecture and function of human
cognitive system.

In this section, queueing network methods
are applied to the analysis of reaction time and
elementary mental processes. Customers in a network
are indistinguishable components of the same
stimulus or of the same task. The models and the
methods can be extended to situations in which
customers in a network are components of separate
stimuli or parts of separate tasks. The next section
partly illustrate this point through the models of
multitask performance.

QUEUEING NETWORKS AS MODELS OF
MULTITASK PERFORMANCE

This section applies the queueing network
methods to the analysis of human multitask
performance. We are concerned with psychological
behavior at a more macro and aggregated level than in
the previous section. The modeling work has a strong
motive for application, and the approach is engineering
and approximative. A 3-node queueing network model
is described in this section that integrates the concerns
of single channel, queueing theoretic models of
selective attention and parallel processing, multiple
resources model of divided attention. The two schools
of models have fundamental differences in their views
of the nature of multitask performance and in their
research and modeling methodology. The single
channel, serial processing models treat multitask
performance as an issue of task selection -and
scheduling. The multiple resources, parallel processing
models, in contrast, treat multitask performance as an
issue of parallel allocation and division of processing
resources among simultaneous tasks.

From the perspective of computational
modeling, the single channel assumptions have thus far
enjoyed a greater success, as indicated by the existence
of a set of well-established models such as the queueing
theoretic models reviewed in the following section.
These models provide formal mechanisms for
representing and codifying the single channel
assumptions of task selection in computational terms.
The multiple resources models, in contrast, have only
recently started to see some of their concerns being
gradually accommodated in several simulation models



of human performance, and there is still a lack of a set
of computational methods to transform the assumptions
of simultaneous execution and resource allocation into
engineering terms. Furthermore, there does not exist a
set of integrated engineering-based methods to model
the concerns of both schools of models and to bridge
the gap between the two. As indicated in a recent report
of the Committee on Human Factors of the National
Research Council report, "there is no unique method to
model the two most important features of macromodel:
task selection and simultaneous execution ([20], p.40)."
After a brief review of the queueing theoretic and the
multiple resources models, we will illustrate that
queueing networks may provide a useful method for
modeling the two features.

Queueing theoretic models of selective attention

These models postulates that the human
functions like a time-shared computer with a single
central processing unit (CPU), which quickly switches
and allocates its processing capacity among a variety of
tasks in a sequential and all-or-none fashion. The
models view human multitask performance as a single
server queueing problem or multitask sequencing
problem in which multiple tasks or diverse sources of
information are queued for service from the human
information processing system [21].

A number of queueing theoretic models have
been developed, focusing on human visual sampling
and monitoring behavior. Senders (1966) developed a
instrument monitoring model, which integrated the
single channel concept and the sampling theorem of
Shannon's information theory in making its predictions
about the observer's fractional dwell time on each
monitored instrument [22]. Carbonell (1966) proposed a
single server priority queueing model of multi-
instrument visual sampling and used simulation to solve
the 'model [23]. Senders and Posner (1976) further
developed the queuing theoretic approach to instrument
monitoring and provided analytical solutions to a model
that they developed for display sampling [24]. Schmidt
(1978) applied queueing theoretic method to the
analysis of air traffic control task [25].

An extensive effort in applying the queuing
theoretic methods to the modeling of human machine
systems can be found in a series of studies conducted by
Rouse and his colleagues. Rouse (1977) described
human-computer interaction as a queueing system with
the human and the computer as two servers [26]. He
formulated a queueing theoretic model of dynamic
allocation of responsibility between the human and the
computer in multitask situations, and illustrated the
potential utility of this model with simulation
experiments. Chu and Rouse (1979) later investigated
the predictive power of the model with a behavioral

experiment that simulated a multitask flight
management situation [27]. A similar task scenario was
also used in an earlier study by Walden and Rouse
(1978) that investigated the suitability of a single server
queueing model of pilot decision making [28].
Greenstein and Rouse (1982) integrated a pattern
recognition technique called discriminant analysis with
queueing theory methods in their 2-stage model of
human decision making in multi-process monitoring
situations [29].

Although the single channel based models
have demonstrated tremendous success in modeling
visual sampling and task scheduling, "We must
recognize that people in fact can do more than one thing
at a time and normally do (Adams, Tenney and Pew,
1991; [30], p.5)". In multitask situations, single channel
assumptions and the analogy of a single-CPU time-
shared computer or a single server queueing system
may only capture part of the nature of human
performance and may not be adequate to portray the
complex cognitive mechanisms for concurrent
processing. It may be necessary to address the parallel
processing aspect of performance, to consider the
intensity as well as the time characteristics of task
demand, and to analyze the structural similarity of
concurrent tasks. These issues have been the focus of
investigation of models of divided attention.

Muiltiple Resources Models of Divided Attention

In contrast to the single channel assumption
that attention capacity can only be switched in a
sequential and all-or-none fashion among competing
tasks, divided attention theorists have generally
suggested that the limited human information
processing capacity can be simultaneously allocated to
multiple tasks in a graded fashion, and that information
for simultaneous tasks can be processed in parallel as
long as the total processing load does not exceed a
person's processing capacity. Since the 1970s, the
concept of capacity has evolved and become more
commonly known as a "resource”. This concept has
also evolved from referring to a single undifferentiated
pool to models that human information processing
should include multiple pools of resources (Wickens,
1984; [31]). The models suggest that task interference
should only be manifest to the extent that they compete
for the same pool of resource. Of the various definitions
of processing resources that have been proposed so far,
the one that has received the most consensus in the
literature is the definition based on a distinction
between spatial and verbal processing codes. The
dichotomy of spatial and verbal processing codes
distinguishes operations of perception, working
memory and response that have a linguistic and
symbolic base from those that have a spatial analog
base. Ample evidence has demonstrated the role of
processing codes in accounting for variances in task
interference. Recently, several simulation models of



human performance, e.g. the MICROSAINT model
[32] and the WINDEX model [33], have started to
accommodate some of the assumptions of the multiple
resources models.

Since the multiple resources models were
originally proposed to address the characteristics of
parallel allocation of scarce yet divisible processing
resources to concurrent activities, the models do not
provide a formal mechanism to model the serial
processing bottlenecks and the selective and scheduling
aspects of task performance. Thus, a typical research
strategy of investigators in this research paradigm has
been to treat these bottlenecks of serial processing as
extraneous factors or to keep the influence of these
factors as small or constant as possible. However, as
reviewed in the previous section, processing bottlenecks
do exist and play an important role in many task
situations. The next section will argue that the existence
of processing bottlenecks might be a major cause of
interference between tasks that do not use the same
processing code.

A 3-Node Queueing Network Model of Multitask
Performance

- A variety of experimental studies have
demonstrated that task interference is expected to be
greater when concurrent tasks use the same processing
code than when they require separate codes. However,
the data do not indicate that two tasks demanding
separate codes will always be perfectly time-shared
[31]. The data seem to suggest a pattern of task
interference as follows [3]. First, task interference will
not be observed when the total demand of the
concurrent tasks is low, regardless of the processing
codes involved. Second, when the total task demand is
sufficiently high, both within-code and between-codes
interferences could be observed, but within-code
interference is more likely to occur. Third, increases in
task difficulty would produce a faster increase in
within-code than between-codes interference.

It appears that this pattern of task interference
is also consistent with intuition and experiences. For
example, in a perfect driving environment an easy
secondary task can be performed concurrently with the
primary driving task without causing any performance
decrement, no matter whether the easy secondary task
is spatial (e.g., imagining a simple road map or tuning a
radio) or verbal (e.g., recollecting a previous
conversation or talking to a passenger). But under the
same driving condition, a difficult secondary spatial
task (such as mentally "walking" around a complex
spatial layout or using a complicated navigational
device) would be more likely to disrupt driving than
would an equally difficult verbal task (such as reciting a
difficult poem or engaging in a challenging
conversation). As the driving environment becomes
more hostile, a driver would very likely experience
great difficulty in performing even a simple secondary
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spatial task but could still perform a secondary verbal
tasks such as a light conversation. But as the difficulty
of driving further increases--such as driving on a
winding and narrow road in a stormy weather or in a
heavy-traffic area--the driver would have to concentrate
on driving, which could be easily disturbed by a slight
disruption of any kind.

Since the queueing theoretic models have not
attempted to address the parallel and structural aspects
of task demand, it is not clear how the models would
account for differential effects of spatial and verbal

- tasks. A natural approach to this problem from the

queueing theoretic perspective might be to develop a set
of complicated scheduling algorithms that allow the
single server to vary task priorities and service rates
according to the processing codes of the to-be-
processed tasks. But it is not clear whether this is a
feasible approach, and the problem remains until the
algorithms are developed. A concept that might be
invoked by the multiple resource theorists in explaining
the existence of between-codes interference is the
concept of concurrence cost. But the concept appears
limited in this context, since it fails to explain why
between-codes interference could be absent in some
situations, but present in other situations, and perhaps
more importantly, why between-codes interference
could show a pattern of gradual increase as seen in a
performance/difficulty tradeoff, and why the
concurrence costs exist.

While it remains to be seen how the single
channel and the multiple resources models would
address these issues, the following three-node queueing
network model offers a plausible account of the
research findings. This queuing network model has a
parallel processing component and a serial processing
component. The parallel processing component refers to
the parallel operation of a "spatial server” (S) and a
"verbal server” (V), analogous to the spatial and verbal
processing mechanisms or resources advocated in the
multiple resources theory. The serial processing
component refers to the serial operation from either S or
V to the third server, which can be tentatively referred
to as the central server (C).
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Figure 3: A 3-Node Queueing Network Model of
Concurrent Spatial and Verbal Tasks

The model assumes that spatial and verbal
tasks take separate routes of the network: a spatial task
must be serviced by the server S, and a verbal task must



be serviced by the server V, before they receive the
required service of the server C prior to their
completion. The capacity of the servers in meeting the
service needs of the arriving tasks can be represented as
the service rate of the servers (W). (the number of
customers that can be serviced per unit of time). The
model also assumes that a task is composed of a number
of task components, and the arrival rate (A) (the number
of arriving customers per unit of time) of the task
components is a rough measure of the difficulty or the
service demand of a task. As in other queueing theoretic
models of human performance, this model assumes that
there is a performance cost associated with delaying
service to a task (called the cost of waiting).

Using the symbols introduced at the beginning
of the article, the essential constituents of the 3-node
queueing network can be represented as follows:

1) K=3,

2) i=1, 2, 3, representing the spatial, verbal,
and the central server, respectively,

3)yi= A, fori=1,2
=0, fori=3
4)Ai = M, fori=1,2

=Al +A2, fori=3
5)p12=p21=p31=p32=0,
pii =0, for Vi,
p13=p31=1
6) p10=p20 =0, p30=1

A number of performance measures can be
computed using queueing network methods. Of most
interest to the present analysis is the customer waiting
time in front of each server. We continue to assume that
the network is a separable queueing network, and for
this type of network, we have,

Wai = 1/(1i-Ad) - 1/ui,
where Waqi is the mean waiting time of customers in
front of server i, )

Li is the mean service rate of server i,

Ai is the total mean arrival rate at server i.

For separable queueing networks, the arrival
rate at the central server is the sum of the arrival rates at
the spatial and the verbal servers. By making
assumptions about the capacities of each server and the
cost of waiting in front of each server, the queueing
network model allows the modeling of a variety of
patterns of task interference, considering both the
difficulty and the processing codes of concurrent tasks.
We assume that the pMi's are constants, which is an
assumption consistent with one of the most common
assumptions ,in multitask research. The relationship
between waiting time and arrival rate is diagrammed in
Figures 4 and 5. It can be seen that waiting time
increases monotonically as the arrival rate increases,
indicating that performance decrements will increase as
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the difficulty of concurrent tasks increases. Waiting
time approaches infinity as the arrival rate approaches
the service rate, indicating a situation in which the tasks
are too difficult to be performed simultaneously
(beyond the processing limit). Therefore, of most
interest to the model is the change in performance when
A is smaller than p at each server.

As seen in Figure 3, customer waiting could
occur in front of S or V or both servers (similar to the
predictions of the multiple resources models), or in
front of C (similar to the predictions of the single
channel or queueing theoretic models), or a
combination of both cases. A way to model the pattern
of task interference discussed earlier in this section is to
assume that the serial processing bottleneck (server C)
has a capacity that is smaller than the sum of the
capacities of the spatial and the verbal server, but
greater than the capacity of either of the two servers.
That is, uC < uS + uV, uC > uS, and uC > pV. For
example, if we assume that pC=14, uS=10, pv=10,
where UC, uS, pV refer to the capacity of the three
server nodes respectively, then the relationships
between waiting time and arrival rate at the three
servers are shown in Figure 4 and Figure 5. If we
further assume that the cost of waiting in front of the
servers are identical, then the relationship between
performance decrements and task difficulty should
show a similar pattern as Figure 2 and Figure 3.
Different patterns of relationship can be obtained if we
make different assumptions about the cost of waiting.

Four important cases of customer waiting (task
interference) emerge in the 3-node network:

Case 1: This is the case when the customer
arrival rate at each of the centers is significantly smaller
than the service rate (i.e., Al < i) (a situation in which
easy tasks are time-shared with each other). Minimum
waiting is expected, and thus performance decrements
would be minimal in performing the simultaneous
tasks, regardless of whether the same or separate
processing codes are involved.

Case 2: When the customer arrival rate
approaches the service rate of either the spatial (S) or
the verbal server (V) but not that of the central server,
significant waiting is expected in front of S or V,
respectively, but not in front of C (e.g., when As=8,
Av=1, Ac=9). This is the case when within-code
interference is the only source of task interference. This
within-code interference will increase quickly as the
arrival rate to the congested server S or V continues to
increase.

Case 3: When the customer arrival rate
approaches the service rate of the central server but not
that of the spatial or the verbal server, customers are
expected to wait in front of C, but not in front of S or V
(e.g., when As=6, Av=6, Ac=12). This is the case when
between-codes interference is the only source of task
interference. Progressive increase in As or Av will
produce progressive increase in Ac, and produce a



corresponding progressive increase in the between-
codes interference. However, as long as As and Av are
both still much smaller than ps and pv, within-code
interference would be minimal.

Case 4: This is the most general case, in which
performance decrements are caused by a combination
of within- and between-codes interferences (a
combination of Case 2 and Case 3). Due to the heavy
demands of the tasks, queues could be observed in front
of all three servers.
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Figure 4: Relationship between waiting time
and arrival rate at the spatial or verbal server
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Figure 5: Relationship between waiting time
and arrival rate at the central server
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QUEUEING NETWORKS AS MODELS OF
HUMAN-COMPUTER INTERACTION AND
HUMAN-COMPUTER NETWORKS

In essence, models of multitask performance
reviewed in the previous section are also models of
human-computer interaction, although the role of the
computer is not explicitly addressed. In this section,
we consider the joint function of the human and the
computer agents in a human-computer system. The
two types of agents could very well be in charge of
different functions and have different performance
features, and we use queueing networks with
different types of servers as a general modeling
framework, which apparently treats the queueing
theoretic models of a single server or identical servers
as special cases.

Along this line of thinking and modeling
philosophy, we have developed and are currently
validating several queueing network models of
human-computer interaction, both in standalone and
in networked environments. Since the previous two
sections of the paper have demonstrated the value of
sojourn times and waiting times as performance
measures, this section shifts the attention to another
important stochastic process and performance
measure--queue length distributions (or the states of a
queueing network system). Also, since networks in
the previous two sections are both open networks, we
turn to closed networks in this section. However, it
should be obvious that sojourn time, waiting time and
open networks can be similarly applied in modeling
human-computer interaction as well.

In a closed network, the same customers
circulate eternally through the network. A closed
network can also be interpreted as an open network
with the total number of customers held fixed. In this
system, a new customer arrives when and only when
a customer leaves the system. The sliding window
protocol of message communication and the paging
policy in computer memory management are
examples of this type of system.

One of the models we have developed is in
the context of a failure management system (e.g., an
aircraft or a process plant). In the simplest,
standalone situation, a human and a computer work
together to detect and correct system failures. One or
more of the system components could fail (e.g., one
or more engines or one or more boilers). The system
is designed in such as way that when a system
component fails, the computer will work on it first
(e.g., to perform detection, warning and preliminary
analysis functions) and then the human controller will
work on it to perform higher level tasks. After the
human controller have successfully completed his/her



task, the failed component will return to normal
operation. This human-computer-machine system can
be modeled as the simple queueing network model
shown in Figure 6. For the 3-node (machine,
computer, human) closed-series network, the state of
the queueing system at any time instant t is a vector
p(nl, n2, n3), representing the number of customers
at node ni (i=1, 2, 3) at time t. For the system
described above, p(nl, n2, n3) means that there are
nl machine components in normal operation, n2
being serviced by the computer, and n3 by the
human. The total number of customers (denoted by S)
should be a known quantity (e.g., S=k could mean
that there is a total of k engines).
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Fig.6. A closed queueing network model of human-
computer interaction in a failure management system
described in the text

p(nl, n2, n3) can be computed easily with
the following set of equations, derived from the
results of Jackson (1963) [34]:
p(nl, n2, n3IS=k) = w*(n1, n2, n3)/T*(S=k);
@*(n1, n2, n3) = I13;=1TTKE =1 (1/pij);
T*(S=k) = Yw*(nl, n2, n3), summed over
(nl, n2, n3) with S=k;

where pij is the mean service rate of node i when
there are j customers at node i. Apparently, the
“service rate" of the machine (node 1) is the rate at
which it causes machine components to fail. The
values for uij are usually obtainable from
measurements, specifications or historical data.

The above set of equations allow us to
predict a number of interesting performance features
of the system. For example, it is easy to compute the
proportion of time during which the human operator
will have at least one machine component to repair
(Xp(nl, n2, n3), summed over (nl, n2, n3) with n3>0
and S=k), or the proportion of time during which the
machine will have at least two components working
normally (e.g., at least two engines are running)
(Xp(nl, n2, n3), summed over (nl, n2, n3) with n1>1
and S=k).

We have extended the work to modeling
more complicated systems involving more than one

~humans and more than one computers--a human-
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computer network. A specific example is a failure
management system in which there are two type of
machine component failures, each type is handled by
a computer and then by a human operator. A possible
scenario is that two computers and two human
operators work cooperatively in a manner illustrated
in Figure 7, where the "copilot” completes his/her
task alone with a probability of p, but need to forward
the problem to the "pilot” with a probability of (1-p),
before the component is returned for normal
operation. .

In order to compute the queue length
distributions, we need the routing probability of the
customers--pij, the probability that a machine
component will immediately visit node j after
departing from node i, which is specified by the task
structure. In Figure 7, we have,

pl2 = q (the probability that a failure is of
type 1),

p13 = 1-q (the probability that a failure is of
type 2),

p54 = p (the probability that human operator
2 needs help from human operator 1),

p56 =1 - p (the probability that human
operator 2 can complete his/her job alone)

p24 =p35=p46 =p60 =p01 =1

pij =0, for all otheri and j's.

The expected value of the number of
appearances of node i on a routing is computed with
the following recursive equation,

¢ = p0i + X'm=1 (ém Pmi)

With a total of k machine components in the
queueing system, p(nl, n2, n3, n4, nS) can be
computed easily with the following set of equations,
derived from the results of Jackson (1963):

p(nl, n2, n3, n4, nSIS=k) = w*(nl, n2,
n3)/T*(S=k);

o*(nl, n2, n3, n4, n5) =
[Pi=1 M= eifiy);

T*(S=k) = Yw*(nl, n2, n3, n4, n5), summed
over (nl, n2, n3, n4, n5) with S=k; :

A number of question can be answered with
the computed queue length distributional values. The
type of questions include the relative workload of
operator 1 versus operator 2, the proportion of time
during which the machine has at least ¢ components
operating normally, and the effects of changing
network configuration or service rates.

Although the models are presented in the
context of a network of human and computer agents
interacting with each other toward a common goal, an
area known as computer-supported cooperative work
(CSCW). The same methodology can be applied to
the broader area of human-computer networks, which
also includes situations in which competitive or
confrontive agents may compete with each other for



limited network resources and cause delays in
servicing other agents' processing needs.

Computer 1 Human 1
q 1-p
-q p
Machine -

Computer2  Human 2

Fig. 7. A queueing network model of a human-
computer network in the failure management system
described in the text

Although a multitude of human-computer
networking tools and CSCW applications have been
developed, there is a substantial lack of predictive
models and theories. As Schneiderman (1992)
pointed out, this is a "vast uncharted territory:
theories are sparse, measurement is informal, data
analysis is overwhelming, and predictive models are
nonexistent" ([35], p.391). The model presented in
this section illustrates that queueing network methods
could serve as a useful tool for establishing
performance theories and predictive models of
human-computer networks and for establishing
theory-guided, systematic ways of performance
measurement and analysis, particularly the issues of
concern involve timing, scheduling and resource
allocation.

The models presented in Figures 6 and 7 are
currently being evaluated with lab experiments using
a simulated failure management system and human
subjects. We are also in the process of preparing
experiments to validate a model of human-computer
network with competing agents.

We hope that this article has illustrated the
potential power of queueing network methods in
establishing new models of human cognition, human
performance and human-computer interaction on
various analysis levels, and in establishing an
integrated, computational framework for unifying
some currently isolated models.
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