I. INTRODUCTION

Solution of complicated boundary value problems in the
spectral domain is a very well known technique. Several years ago
Itoh and Mittra used spectral analysis to solve planar geometry
problems occurring in microwave integrated circuits, [1]. There
have been numerous papers subsequently published utilizing this
method, [2]. 1In this paper, Fourier analysis is used to formulate
the solution for reflected and transmitted surface current
densities in back to back shielded microstrip structures coupled
by a transverse slot in their common wall. By applying Galerkin's
procedure in the spectral domain on complementary field
quantities, a solvable system of equations containing the desired

reflection and transmission coefficient results.

II. THEORY

Application of the Galerkin method on the spectral domain
electromagnetic quantities supported by the structure illustrated
in Figure 1 requires a matrix equation which expresses electric
and magnetic fields in terms of complement source densities. The

appropriate expression is given in equation (1).
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Explicit expressions for the G (a,P), along with an outline
ij

of their derivation are given in Appendix A. In this derivation,
we have assumed narrow microstrip lines and a narrow coupling
slot. These acceptable restrictions allow us to assume
uni-directional surface current densities which have a Maxwellian
distribution in the direction of their narrow dimension, [3].
Recent theoretical and experimental research by Dunleavy has shown
that the narrow microstrip line current variation mentioned above
is very accurate, [4]. Unfortunately, no such verification exists
for a magnetic current on a narrow aperture. However, since a
narrow microstrip line supporting an electric current and a narrow
aperture supporting a magnetic current are eseentially dual
quantities, [5], it seems that an assumed Maxwellian distribution

for the aperture problem would be accurate.

III. SPECTRAL DOMAIN REPRESENTATION OF CURRENT DENSITIES
The detailed geometry of this problem is given in Figure
2. In the spatial domain the two electric surface current

densities away from the discontinuities are written as:

(2)



2(x'"-x,) _ 24 Y2 W, W
—2— {1 - [ - - —< x'-x, £ —
. W1 2 1 2
(x") ;
g, (x') =
t (1 = a,b)
0 Otherwise

(3)

It should be mentioned that Yf;and.y:s are known constants
a b

for their respective guiding structures. Their values may be
obtained from the literature, [2]. In the vicinity of the
discontinuities, all surface current densities in equation (1)
must be expressed in terms of appropriate basis functions.

Kz(x',ha,z') and Kz(x',-hb,z') are written in the spatial
b

a

domain as
N
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Where the I~ are unknown amplitudes and
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where 1 =2 .,-2 =2-2 ., . The magnetic current on the coupling

aperture is represented as
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where f,(x') and g,(z') are given as equations (7) and (8),

respectively, and the V, are unknown amplitude coefficients.
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We also see that 1y = Xp41 — X5 = X — Xp-1 and

Under these conditions the requirement that the

Xn = (n=1) 1,.
magnetic current is non-zero only on the coupling aperture is

satisfied. The next step in the analysis is to obtain the Fourier
The transforms of interest are written

transforms of (4) and (6).

as:
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To evaluate I, some special considerations are necessary.

I: is written alternatively as



or + 3B z -1, + B z*
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and we assume a lossless system so that yzs is a purely imaginary
a

quantity, yf = j k'° . The Fourier transform of the product of two

Z3

functions is equal to the convolution of the individual Fourier
transforms of the two functions, [6]. Using this idea to evaluate

(18) shows
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From equations (19) and (20) we express I: as
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(17), and (21) into (12) shows:
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In a completely analogous manner Rz KL'*%,ﬂ) is found to be
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The discretized microstrip currents near the discontinuity
region are divided in 'N' partitions in both guides 'a' and 'b'.

More severe disruption of the current occurs in guide 'a' due to

the open end upon which K, is incident. If 'N' partitions are
a

required to accurately characterize K, then the same number will

a

represent K, in its respective discontinuity region.
b

The Fourier transform of Mx(x',O,z') is expressed from (6),
a

(7), (8) and (11) as
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Substituting for f,(x') from equation (7) and evaluating the

result yields
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Finally then, ﬁx (a,O,ﬁ) is written as:
a

j20 Jo(ﬁ ‘2') M ok,
M = V e (28)

X

2
2 (K -a2) n=1

Equations (22), (23), and (28) are very important quantities.

IV. FORMULATION OF THE MATRIX EQUATION

The results obtained in the previous section will allow us
to solve equatioh (1). In the following discussion, spatial
and/or spectral dependence of functions will be implied and not
explicitly written. 1If there is any ambiguity, it will be clearly

explained from equation (1):

E. =G, K +G,M 29
z 11 Tz, 12 Tk, (29)
~(la) ~ ~ ~ ~
H =G, Kza + G, an (30)
~(b) o~ o~ ~ =~
E, = G,, an + Ggg th (31)

Since, from Appendix A we know that E.B = 523 = 531 = 0.

Also, note that the surface current densities are expressed in
terms of summations of appropriate basis functions as derived
earlier. Before going any further with the analysis it will be

~

convenient to write K., K , and M as:
Z, Zy Xa
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where ko, kl, and Kz are easily deduced from (22). k1’ K, and Mx
a b a
are similarly obtained, respectively, from (23) and (28). We next
multiply equation (29) by ﬁ: and integrate from -c to o with
a
respect to & and P for different values of q. This shows:
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but
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. c. s ~q ~ (la) )
Since it is clear that Kz and Eza are complementary in the
a

x~direction. Using (32) and (34), equation (35) becomes:

M
+ K, G, V. M dodfp =0 qg=1,2,...,N
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Performing similar operations on equations (30) and (31) yields:

From (30)
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From (31)

o0 M o0
-7 “ K, Gs; k, dodf + . v ” bi Gy, M, dadp
n=

(38)

q
s G,y bi dadp = 0 qQ=1,2,...,N

N
DS
n=1 b

Equations (36), (37), and (38) represent an inhomogeneous

8 Ly 8
=

system of 2N+M equations containing 2N+M+2 unknowns. We get two

additional relations by the requirement of electric surface
current continuity at (x=h,, z=z,) and (x=-h,, z=-z,). Look at

Figure 2.

From equations (2), (3), (4), and (5) we see

I = e - Re (39%a)

zZ o

I, =Te (39Db)

Equations (39) represent the necessary relations for
solving for R and T. We shall now express (36), (37), and (38)
more compactly:

(36) becomes

N M
Sy=RP_+ Z I, Dy, + Zvﬂ G I=1,2,...N
n=

n=1

where
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N
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n=1 n=1
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qn

qn

(38) becomes
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0=—TUq+ZIn an+zvnan q=1,2,...,N

where

v =l k¥ G, K doadp 42
qn_ zy 33 z, o ( )

V. DISCUSSION OF NUMERICAL SOLUTION

It is clear from the results of the last section that the
problem under consideration is very difficult. Since no numerical
results will be obtained, a discussion of how to do this is in

order. Equations (40), (41), and (42) contain integrals which

must be evaluated from -e» to o with respect to two variables: «o

and B. A brief glance at Appendix A indicates that numerical

integration of these terms will surely be required. Although it
i1 1
132 ' a2
B B

is not obvious, these integrals vary at worst as

’

3/2 2

in one part or another. The squared terms will converge rapidly

and the same can be said for the

and

d”z B”z terms. Ultimately, one

would need to program a computer to do these integrations to find

16



how the convergence progresses. However, in [7], Mittra and Itoh
discuss so called 'numerically efficient techniques' for solving
boundary value problems. The approach used in this report closely
resembles the algorithms discussed there. As a result, it would
seem that satisfactory convergence is obtainable for the equations
derived here. Besides having to evaluate the integrals mentioned,
we must also solve a linear system of equations. There are many
viable alternatives for this part of the problem and no further

discussion is necessary.

VI. CONCLUSION

The solution for reflection and transmission coefficients
in slot-coupled microstrip lines has been formulated in the
spectral domain. Although no numerical‘results have been

obtained, pretinent numerical considerations have been discussed.
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Appendix A

Derivation of the Green's matrix

Hybrid mode analysis with

E(x,y,2) = -jOA + = Vv . A+iVxF
JOUe €
(A-1) '
- - - 1 -
H(x,y,z) = jOF - VW « F + —V x A
JOuE K

Choose 1_\ = z:\Az and E = zAFz where

Az(i) (x,y,2) = 1 2 J‘J‘ Xz(i) @, y,B) o iox e-sz dodp
(2|®) &
(A-2)
Fz(i) (x,¥,2) = - 2 ” g"z(i) TR el dodp
(2r)
(A-3)

~ (i ~
R, - (S%&) WF”’ (¢, y,p) ( = 1la,1b,2a,2b)

(1) (1) .
Azl (x,¥,2) and F, (x,y,z) must satisfy

(1)
, A (x,y,2)
(A-4) (VZ + ki) =0
(1)
Fz (x,¥,2)
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Substituting (A-2) and (A-3) into (A-4) implies:

~ (1)
2 V. (a,y,B)
L (ot + F - 1) -0
ay \Tléi) (&, y, B)
Letting yi = o + [32 - k12 shows
~ (i)
2 , \VA (o, y, B)
(A-5) z Ty =0
Y ‘:I}E(-i) (o, y, B)

Appropriate solutions to (A-5) in each region of the structure
shown in Figure 1 are:

~ (la) ~(la) ) ~(1a)
A = A sinh ('ylay) + B cosh(alay)

~ ~(2
(22 _ pt*® sinh['YZa(y"b)]

I

A
~ (1b) ~(1lb) ~(1b)

(A-6) L'A = A 81nh(ylby) + B cosh(alby)
{'ygzb) =p* sinh['Yzb(Y+b)]

~ ~(la) ~(la)
0 = ¢ sinh(y,y) + D = cosh(ay)

v 15(2&) cosh{ha(y‘b)]

~ (1b) ~(1b) ~(1b)
(A-7) Ve =C sinh(Y,y) + D cosh(a  y)

~ ~ (2b)

\v;,zb) =N cosh[YZb(Y*'b)]

Note: The ~ notation means Fourier transform domain.
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The transformed fields must satisfy

~{1q)

=~ (2q)
E, (o,h_,B)

E,  (o,h,P)

B, " (a,h,B) = E 7 (an,PB)
ﬁz(lq) (o, hqrﬁ) _ ﬁz(zq) (., hqu)
a-8) B *(a,h B - H " (a,h B = X, @h,p)
£ (@0,B) =0
E, " (a,0,B) = H (a,0,B)
(@ = a,b)

Rz(a,hq,ﬁ) is the Fourier transform of the electric surface current
q

on the gth microstrip. &g(a,o,ﬁ) is the Fourier transform of

magnetic surface current on the aperture which is common to the
two microstrip structures.

At this point in the derivation it should be noted that
symmetry about the line x=0, y=0 exists between guides (a) and

({b). In order to derive éu(a,ﬁ) and an(a,ﬁ), we apply the

v ~(la) .
boundary conditions (A-8) and express Eza (a,ha,B) appropriately.
(332((1,[3) and 533((1,3) are obtained from, respectively, (312((1,[3)

and Gn(a,ﬂ) as

é'12(0"’5) l h

G,,(a,B)

a = "hpi kg =Ky

(A-9)

G,,(a, ) = G, (a,B) lh

a = “hyi Kyy = ki
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Consequently, solving for élzux,ﬁ> and aIIUI,ﬂ) yields aaz(a,B)

and Gw(a,ﬁ) in a direct manner. Imposing the boundary conditions

(A-8) and appropriately manipulating terms yields the components
of the Green's matrix as:

2
Gt = s ) (2 87) / {aw( )
2. 2 2 2(.2 2
- ’YjakZa(kla_ B) - ’Yiakla(kZa-. B)
+ 'YlaYza(kia" ﬁz) (kza‘ ﬁz) {kia tanh[YZa(h'b)] coth(Ylaha)

+ k,, tanh('Ylaha) coth[’YZa(ha_b)]} }

]

-jaB(kza— kia) COSh(Ylaha) éll (alﬁ)

"#[YZa(kfa— BZ) tanh[YZa(ha’b)] _ yla(kza_ [32) tanh(ylaha):'

G,, (&, B)

31

&P = cosn(1uhy) - 28k, 87) (- #°) (.- 2.} r((z iz))

I:a(arﬁlha) = Sin(ylaha) {tanh['YZa(ha—b)] [BZYZa(kia" BZ) (kza+ Yia)
ey (-] s oty (e 2) (8- 8) -ty 2 (- 8 ]

2
s eam(nn) [ #) - onir £) (- #)

2

?
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2 —
- o’y 1a(kia+ Y ;a) (kja- ﬁz)] - k:;{layza(k2a - Bz) coth[YZa(ha b)] }

2
+ COSh('Ylaha) I:azﬁzyla(kia— kja) - ‘Yla‘yiakza(kla_ Bz)]

2

2 2
£ 2 2 2 21,2 2 2 o2f.2 2
éa(al BI ha) = azﬁz(kla_ kZa) + kzayza(kla- ﬁ ) + klayla(kZa_ ﬁ )
(e ) (< #) wamlrn) ol 0:2)
+ YL YK Ko p k..~ B°] tanh{Y;,0,) coth Y,.\ a

- YlaYZakfa(kza- Bz) (kia— ﬂz) COth(ylaha) tanh[yza(ha—b)]

G,, (e, B) = fi(a,B) /E(a,B)

where

(@B = -3 { jinh((::ahagz) [Bz(kf; kzz) - (kfa*“ Yia)(oﬁ B) + i 72]

[ezayza(kia - Bz) COth[Yza(ha-b):l - elaym(xga_ﬂz) COth(Ylaha)]}

+ jop '(';;f_ﬁz) cosh(Ylaha) _ iza S("“z(yla;a)) tanh['Yza(ha_b)]

2a
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T(@,B) = jcioszh(V:Z;a) {%‘L [YZa(kia— [32) tanh[’YZa(ha_b)]
Koa~ |

2
2 Zﬁ 2 2 2
- Yla(kZa— Bz) tanh(ylaha)] - a(o (kla_ kZa) / [SZa’Yza(kla— BZ) *
COth[Yza(ha_b)] - 81;:71‘3(}(2&1 - 52) COth(Ylaha)] }
832(0&,[3) is obtained through equation A-9.

G, (a,B) =0

G,,(a,B) =0

533 (a,B) is obtained through equation A-9.
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