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Quantifying and Correcting for the Winner’s Curse in Genetic
Association Studies
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Genetic association studies are a powerful tool to detect genetic variants that predispose to human disease. Once an
associated variant is identified, investigators are also interested in estimating the effect of the identified variant on disease
risk. Estimates of the genetic effect based on new association findings tend to be upwardly biased due to a phenomenon
known as the ‘‘winner’s curse.’’ Overestimation of genetic effect size in initial studies may cause follow-up studies to be
underpowered and so to fail. In this paper, we quantify the impact of the winner’s curse on the allele frequency difference
and odds ratio estimators for one- and two-stage case-control association studies. We then propose an ascertainment-
corrected maximum likelihood method to reduce the bias of these estimators. We show that overestimation of the genetic
effect by the uncorrected estimator decreases as the power of the association study increases and that the ascertainment-
corrected method reduces absolute bias and mean square error unless power to detect association is high. Genet. Epidemiol.
33:453–462, 2009. r 2009 Wiley-Liss, Inc.
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INTRODUCTION

Large-scale genetic association studies are now
commonly used to localize genetic variants that predis-
pose to a wide range of human diseases. In genetic
association studies, once the disease-predisposing variants
are identified, it is of interest to estimate the genetic effect
of those variants on disease risk. The simplest method of
estimating the effect size of the variant is to calculate the
difference of the observed risk allele frequency between
cases and controls or the corresponding odds ratio.
However, these naı̈ve estimators are likely to overestimate
the true genetic effect size as a consequence of the
‘‘winner’s curse’’ [Lohmueller et al., 2003], a phenomenon
first described in the auction theory literature [Bazerman
and Samuelson, 1983]. In auctions, participants place bids
on an item. Even if the bids are unbiased, the winning bid
is likely to overestimate the true item value since it is the
highest among all the bids. In genetic association studies,
an initial positive finding plays the role of the winning bid,
since we generally focus on genetic effect size estimates
only for the variants that yield significant evidence for
association, resulting in effect size estimates that are
upwardly biased. We refer to this bias as ‘‘ascertainment
bias’’ since it is caused by ascertaining only those samples
that result in significant association evidence. If the sample
size calculation for a subsequent study is based on an
overestimated effect size, replication studies are likely to
be underpowered and so more likely to fail. A review of
association studies [Ioannidis et al., 2001] has described

the overestimation in first positive reports, consistent with
the winner’s curse.

This problem has drawn attention from several inves-
tigators in the context of genetic linkage and association
studies [Göring et al., 2001; Siegmund, 2002; Allison et al.,
2002; Sun and Bull, 2005; Wu et al., 2006; Garner, 2007; Yu
et al., 2007; Zöllner and Pritchard, 2007; Ghosh et al., 2008;
Zhong and Prentice, 2008]. Göring et al. [2001] recom-
mended the use of two independent data sets: one for
locus mapping, the other for parameter estimation. An
obvious disadvantage of this strategy is the power loss due
to splitting the sample in two. Sun and Bull [2005]
proposed resampling estimators that employ repeated
random sample splitting of the data via cross-validation or
the bootstrap. Wu et al. [2006] compared their bootstrap
estimators for locus-specific quantitative trait linkage
analysis, and, in the context of two-stage design, Yu et al.
[2007] applied a bootstrap estimator to correct for stage 1
bias and improve sample size estimates for stage 2. Zöllner
and Pritchard [2007] used computer simulation to evaluate
the magnitude of the winner’s curse effect in case-control
studies and proposed a maximum likelihood method to
correct for it. Their method estimates the frequencies of all
genotypes and corresponding penetrance parameters
based on a known population prevalence of the disease
under different inheritance models. Garner [2007] studied
the source of the upward bias in the odds ratio estimate in
genome-wide association studies, but did not propose a
method to correct for it. Zhong and Prentice [2008] and
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Ghosh et al. [2008] recently proposed conditional-like-
lihood-based methods for point and interval estimation of
the (logarithm of the) odds ratio in the context of logistic
regression analysis of case-control status using genotype
categories as a covariate.

In this paper, we take a direct approach to evaluate
and correct for the effect of winner’s curse in the
context of case-control genetic association studies. In
contrast to previous simulation-based evaluations, we
calculate analytically the impact of the winner’s curse
on estimates of the allele frequency difference between
cases and controls and the corresponding odds ratios
as a function of sample size, allele frequencies, and
statistical significance level. We then describe a simple
ascertainment-corrected maximum likelihood method to
estimate the risk allele frequency difference and
odds ratio. Our method is most similar to that of
Zöllner and Pritchard [2007], but in contrast to their
method, ours estimates directly the allele frequency
difference or odds ratio, instead of estimating the
penetrance parameters. We compare the performance
(bias, standard error, and mean square error (MSE)) of
our ascertainment-corrected maximum likelihood estima-
tors (MLEs) to that of the naı̈ve, uncorrected estimators.
We extend these calculations to two-stage association
studies, in which all markers are genotyped on a set of
individuals in stage 1, and the most promising markers are
followed up by genotyping a second set of individuals in
stage 2.

Consistent with Zöllner and Pritchard [2007], we find
that (1) the factors that result in overestimation of the allele
frequency difference can be summarized by study power,
independent of sample size and allele frequency, and that
overestimation decreases as power increases; and (2)
compared to the uncorrected estimator of the allele
frequency difference, the ascertainment-corrected estima-
tor results in reduced absolute bias when study power is
low or moderate, and has comparable absolute bias when
power is high. Further, we find that (3) for the logarithm of
the odds ratio (ln OR), overestimation can again be
summarized by study power, independent of sample size
and allele frequency, and that overestimation decreases as
power increases; (4) compared to the uncorrected estima-
tor, the ascertainment-corrected MLE of the OR generally
results in reduced bias and MSE, and (5) for reasonable
two-stage designs [Skol et al., 2007], results mirror those
for the corresponding one-stage designs. We recommend
use of this ascertainment-corrected maximum likelihood
method for estimation of genetic effect size in large-scale
genetic association studies.

METHODS

ONE-STAGE DESIGN

Model and assumptions. We assume independent
samples of N cases and N controls genotyped at an
autosomal disease locus with alleles D and d. Let p and p1
d (d 6¼ 0) denote the frequency of the risk allele D in
controls and cases, respectively. For a complex disease, we
expect the genetic effect size to be small, so that Hardy-
Weinberg equilibrium predictions provide a good approx-
imation to the genotype frequencies in both controls and
cases. Under this assumption, the counts m0 and m1 of the

risk allele D in controls and cases follow independent
binomial distributions on 2N trials with probabilities of
success p and p1d, respectively.

Let X be the standard Pearson w2 test statistic for
association in a 2� 2 table of allele counts in cases and
controls. Under the assumption of Hardy-Weinberg
equilibrium, X follows a w2 distribution with one degree
of freedom under the null hypothesis of no association
(d5 0). We claim an association significant if X exceeds the
critical value xa at significance level a.

Uncorrected (naı̈ve) MLEs. In practice, investiga-
tors generally estimate the allele frequency difference
between cases and controls by its MLE d̂un ¼

m1=2N �m0=2N, or the corresponding odds ratio by

dORun ¼
m1ð2N �m0Þ

m0ð2N �m1Þ

We call these uncorrected MLEs ‘‘naı̈ve’’ because they
ignore the bias associated with focusing on genetic
markers with statistically significant association results.

To model the impact of the winner’ curse, we calculate
the expected value of the uncorrected MLE d̂un of the allele
frequency difference d conditional on obtaining significant
evidence for association:

Eðd̂unjX4xaÞ ¼

P
ðm0 ;m1Þ2I d̂unPðm0;m1ÞP
ðm0 ;m1Þ2I Pðm0;m1Þ

ð1Þ

and from it the bias of the estimator as Eðd̂unjX4xaÞ � d,
and the proportional bias as ðEðd̂unjX4xaÞ � dÞ=d. Here,
I ¼ fðm0;m1Þ : Xðm0;m1Þ4xag is the set of allele count pairs
that result in statistically significant evidence for associa-
tion and

Pðm0;m1Þ ¼
2N

m0

� �
pm0 ð1� pÞ2N�m0

�
2N

m1

� �
ðpþ dÞm1 ð1� p� dÞ2N�m1 :

ð2Þ

Note that the denominator in (1) is the power to detect
association if we genotype the disease SNP.

The standard error of the uncorrected MLE d̂un can be
calculated as

SEðd̂unjX4xaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðd̂2

unjX4xaÞ � ðEðd̂unjX4xaÞÞ
2

q
ð3Þ

where Eðd̂2
unjX4xaÞ may be calculated by replacing d̂un by

d̂2
un in (1).
We also calculate the absolute bias of d̂un as:

Eðjd̂un � djjX4xaÞ ¼

P
ðm0 ;m1Þ2I

jd̂un � dj � Pðm0;m1ÞP
ðm0 ;m1Þ2I

Pðm0;m1Þ
ð4Þ

Analogous formulae allow us to calculate the condi-
tional bias, standard error, and absolute bias of the
uncorrected MLE of the odds ratio OR, and its logarithm
lnOR.

Ascertainment-corrected MLEs. The naive estima-
tors ignore the fact that we typically are interested in
estimates of the allele frequency difference d and the odds
ratio OR only if we have strong evidence for association.
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To address this, we propose an ascertainment-corrected
maximum likelihood method that conditions on obtaining
evidence for association. To this end, we calculate the
conditional likelihood function

Lðp; djX4xaÞ ¼ Pðm0;m1jX4xaÞ

¼ 1fX4xajm0;m1;Ng
Pðm0;m1ÞP

ðm0 ;m1Þ2I Pðm0;m1Þ

ð5Þ

where the indicator function 1fX4xajm0;m1;Ng equals 1
or 0 depending on whether or not X4xa.

We maximize Lðp; djX4xaÞ as a function of p and d to
obtain the ascertainment-corrected MLEs p̂as and d̂as by
using the Nelder and Mead [1965] simplex method. We
calculate the empirical standard errors of these estimators
based on 1,000 simulation replicates, and the asymptotic-
theory standard errors by calculating the observed
information matrix (see Appendix) evaluated at the
parameter estimates:

Iðp̂as; d̂asÞ ¼ �@
2
p;d log Lðp; djX4xaÞjp̂as ;d̂as

ð6Þ

The covariance matrix for p̂as and d̂as can be approxi-
mated by I�1ðp̂as; d̂asÞ. We take advantage of the invariance
property of the MLE to calculate the ascertainment-
corrected MLEs for the odds ratio and its logarithm, and
apply the delta method [Rao, 1965] to obtain their standard
errors. We calculate the MSE for the estimators by taking
the sum of the variance and the squared bias of the
estimator.

TWO-STAGE DESIGN

Model and assumptions. We next consider two-
stage association studies, in which N1 cases and N1

controls are genotyped for all markers, and only the
most promising markers are genotyped in the second
stage in an additional N2 cases and N2 controls. Let pi and
di be the risk allele frequencies in controls and the allele
frequency difference between cases and controls in stage i.
Given genetic homogeneity between stages 1 and 2,
p1 5 p2 5 p and d1 5 d2 5 d. At each stage, we calculate
the association test statistic using the data only from that
stage

Zi ¼
p̂i1 � p̂i0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½p̂i0ð1� p̂i0Þ þ p̂i1ð1� p̂i1Þ�=ð2NiÞ
p ð7Þ

where p̂i0 and p̂i1 are the naı̈ve MLEs of the risk allele
frequencies in controls and cases respectively, at stage i,
p̂ij ¼ ðmij=2NiÞ ði ¼ 1; 2; j ¼ 0; 1Þ. Under null hypothesis of
no disease–marker association (d5 0), the association test
statistic Zi follows a standard normal distribution with
mean 0 and variance 1.

We employ a joint analysis strategy for this two-stage
study [Satagopan et al., 2002; Skol et al., 2006] by
calculating

Z12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psample

p
Z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� psample

q
Z2 ð8Þ

where psample 5 N1/(N11N2) is the proportion of
individuals genotyped in stage 1. We claim significant
association when both |Z1| and |Z12| exceed the relevant
critical values C1 and C12 in joint analysis. C1 is calculated
so that PðjZ1j4C1Þ ¼ pmarker, where pmarker is the propor-

tion of markers to be genotyped in stage 2, and C12 by
finding the threshold so that PðjZ1j4C1; jZ12j4C12Þ ¼

PðjZ12j4C12jjZ1j4C1Þ � PðjZ1j4C1Þ results in the desired
significance level [Skol et al., 2006].

Uncorrected (naı̈ve) MLEs. The uncorrected
MLE of the risk allele frequency difference for the two-
stage design d̂12 ¼ psampled̂1 þ ð1� psampleÞd̂2, where d̂i ¼

mi1=2Ni �mi0=2Ni; i ¼ 1; 2. The bias of the uncorrected
MLE d̂12 can be calculated exactly as for one-stage
design by formula (1) and similarly the proportional
bias. However, exact calculation becomes computationally
difficult when N1 or N2 is large, so we simulated n 5 1,000
data sets satisfying jZ1j4C1 and jZ12j4C12 and approxi-
mated the expectation and empirical standard error of d̂12

by calculating the mean and the standard error of the
uncorrected MLE of the n simulated data sets:

Eðd̂12jjZ1j4C1; jZ12j4C12Þ � �d12

¼
1

n

Xn

j¼1

ðpsampled̂1j þ ð1� psampleÞd̂2jÞ
ð9Þ

SEðd̂12jjZ1j4C1; jZ12j4C12Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

j¼1

ðd̂12;j �
�d12Þ

2

vuut
ð10Þ

Ascertainment-corrected MLEs. In analogy to the
one-stage design, the two-stage ascertainment-corrected
likelihood

Lðp; djjZ1j4C1; jZ12j4C12Þ ¼ PðmjjZ1j4C1; jZ12j4C12Þ

¼
1fjZ1j4C1; jZ12j4C12jm;N1;N2gPðmÞ

PðjZ1j4C1; jZ12j4C12Þ
ð11Þ

Here, m ¼ ðm10;m11;m20;m21Þ, 1ðjZ1j4C1; jZ12j4C12jm;
N1;N2Þ is an indicator function taking values of 1 or 0
depending on whether or not jZ1j4C1 and jZ12j4C12, and
P(m) is the product of four binomial probabilities.
The denominator of (11) is again the power of the
study, and can be evaluated as described by Skol et al.
[2006]. We maximize the likelihood (11) to get MLEs of
p and d by using the Nelder-Mead simplex approach and
obtain empirical standard errors based on 1,000 simulation
replicates.

RESULTS

ONE-STAGE DESIGN

Bias of the uncorrected MLEs. For a locus show-
ing association (d 6¼ 0), our analytical calculation demon-
strates upward bias in the genetic effect
size by the naı̈ve estimator d̂un of the allele frequency
difference d (Fig. 1). This bias is particularly severe
when power is low, owing to the small sample size
N and/or small allele frequency difference d (Table I,
Fig. 2A). As power approaches one, the bias disappears.
Under the null hypothesis (d5 0), d̂un is unbiased,
since d is equally likely to be over- or under-estimated.
However, the absolute bias of this uncorrected estimator
is extremely high when d5 0 or when d is small (Fig. 1).
Due to approximate symmetry, for the rest of the tables or
figures, we only provide results for d40 (ln OR40).
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Given N 5 1,000 cases and N 5 1,000 controls, allele
frequencies p 5 0.1 and p1d5 0.1258 (OR 5 1.295), and
testing at significance level of a5 10�6 (resulting in
power 5 0.01), the expected value of the uncorrected
estimator of d is 0.0524 compared to the true value

of 0.0258, a bias of 0.0266 and a proportional bias of
103%; similarly, the expected value of the uncorrected
OR estimator is 1.699 compared to its true value of 1.295.
In this case, a follow-up study designed to have 80%
power at significance level a5 0.05 would include 310

Fig. 1. Bias, absolute bias, and mean square error (MSE) for allele frequency difference d and logarithm of odds ratio ln OR with sample

size N 5 1,000 and control allele frequency p 5 0.3. Significance level a 5 10�6.
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cases and 310 controls, but would have actual power of
only 30%.

We found that, for a fixed significance level a, the
proportional bias in the uncorrected estimate of d is solely
a function of power, and is otherwise independent of
sample size, allele frequency, or genetic model [Zöllner
and Pritchard, 2007]. Consistent with intuition, propor-
tional bias decreases as power increases (Fig. 2A), since
the conditioning event becomes increasingly likely. At
significance level a5 10�6, the uncorrected estimator of d
gives a proportional bias of �60% when power is 0.05 but
is nearly unbiased when power is 95%. Interestingly, given
fixed power, the proportional bias of the naı̈ve estimator is
consistently less when a5 10�6 than when a5 10�4 (data
not shown).

We extended our analytical calculation to the
uncorrected MLE of the odds ratio (Table I, Fig. 1),
and observed the same general trend: substantial over-
estimation of the genetic effect given low to modest power
to detect association and no bias given no association
or sufficiently strong association. However, the propor-

tional bias of the OR estimator, dORun, cannot be explained
by power alone, but depends on sample size, allele
frequency, and genetic model (Fig. 2B). Interestingly, the
proportional bias of the logarithm of the OR estimator,

lndORun, is a function of power, and follows a very similar
pattern as the uncorrected MLE of the allele frequency
difference d.

Bias of the ascertainment-corrected MLEs. When
we correct for ascertainment, the absolute bias of the MLE
is substantially reduced (Fig. 1, Table I), and correction
actually results in underestimation unless the genetic

effect size is small or power is very low. For example,
given N 5 1,000 cases and N 5 1,000 controls, allele
frequencies p 5 0.1 and p1d5 0.1258 (power 5 0.01), and
testing at significance level a5 10�6, the proportional bias
of the corrected MLE of d is �7%, compared to 1103%
before correction. In this case, a follow-up study designed
to have 80% power at significance level a5 0.05 would
include 1,350 cases and 1,350 controls and have actual
power 85%, whereas 1,150 cases and 1,150 controls
actually would be sufficient to achieve 80% power. In
the absence of association (d5 0), the corrected MLE is
again nearly unbiased.

Reduction of the absolute bias is most pronounced when
overestimation is most severe, and for fixed significance
level a, bias reduction depends solely on study power. The
relationship between power and proportional bias of
the ascertainment-corrected MLE of d is summarized in

TABLE I. Proportional bias (%) of the uncorrected
(naı̈ve) and ascertainment-corrected MLEs of the allele
frequency difference d and odds ratio OR. Results are
presented only for d40.

p N Power d d̂un�d
d

d̂as�d
d OR

cORun�OR
OR

cORas�OR
OR

0.1 500 0.01 0.0376 101.9 �4.3 1.436 53.3 �1.8
0.10 0.0541 47.9 �12.4 1.640 27.9 �5.7
0.30 0.0665 26.2 �16.1 1.798 17.6 �7.2
0.50 0.0752 16.2 �14.2 1.913 11.9 �6.5
0.80 0.0898 6.0 �8.2 2.108 5.55 �1.7

1,000 0.01 0.0258 103.1 �7.0 1.295 31.2 �1.9
0.10 0.0370 48.1 �15.7 1.429 19.2 �4.2
0.30 0.0453 26.5 �18.3 1.530 12.3 �7.1
0.50 0.0512 16.0 �16.2 1.603 8.36 �6.3
0.80 0.0609 6.1 �9.3 1.726 3.77 �4.1

0.5 500 0.01 0.0576 103.0 �9.0 1.260 27.2 �2.1
0.10 0.0806 48.3 �16.8 1.384 17.3 �5.3
0.30 0.0972 26.3 �18.3 1.483 11.2 �6.3
0.50 0.1086 16.2 �14.3 1.555 7.72 �5.8
0.80 0.1270 6.1 �9.2 1.681 3.51 �3.6

1,000 0.01 0.0405 104.0 �13.1 1.176 18.5 �2.0
0.10 0.0571 48.3 �18.6 1.258 11.8 �4.2
0.30 0.0690 26.4 �18.3 1.320 7.7 �4.9
0.50 0.0772 16.2 �15.0 1.365 5.4 �4.5
0.80 0.0903 6.1 �10.4 1.441 2.4 �3.1

un: uncorrected; as: ascertainment-corrected; p: disease allele
frequency in controls; N: sample size (number of cases and of
controls). Assume testing at significance level a5 10�6.

Fig. 2. Proportional bias versus power for the uncorrected

(naı̈ve) (solid lines) and corrected (dashed lines) estimators of

the (A) allele frequency difference d and (B) odds ratio OR.

Significance level a 5 10�6. Results are presented only for d40.
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Figure 2A. Although the corrected MLE d̂as typically
underestimates d by 10–20% over the power range of
0.001–0.95 given testing at significance level of a5 10�6,
the corrected MLE is considerably less biased than the
uncorrected estimator unless power is high (typically
460%). Even given high power, the magnitude of the bias
of the ascertainment-corrected MLE d̂as is not much greater
than that of the uncorrected MLE d̂un, and it is of opposite
sign. Interestingly, when power is greater than 0.1, the bias
in the corrected MLE d̂as decreases almost linearly as
power increases (Fig. 2A).

The situation for the odds ratio is similar. With
correction, the OR is typically underestimated by
5–10%, and this bias is in general smaller (although
of opposite sign) than that for the uncorrected estimator
for study powers ranging from 0.001 to 0.95 (Table I,
Figs. 1 and 2B). Compared to the corrected MLE
of d whose proportional bias can be approximately
summarized by power alone, the proportional bias for
the corrected OR estimator does depends on sample
size and allele frequency (Fig. 2B), while the proportional
bias of the corrected estimator of the log odds ratio
depends essentially on power alone and displays a very
similar pattern as that of the corrected estimator for d (Fig.
2A). Again, if we focus on the situations in which power
o60%, correction generally results in reduced absolute
bias, and in many cases, absolute bias reduction is
impressive. For example, given N 5 1,000 cases and
N 5 1,000 controls, allele frequencies p 5 0.1 and p1
d5 0.1258 (OR 5 1.295), and testing at significance level
a5 10�6 (resulting in power 5 0.01), the proportional bias
of the corrected MLE of OR is �2%, compared to 131%
before correction.

Standard errors and MSEs of the
estimators. Table II summarizes the standard errors
(SEs) for the MLEs of d. We observed that the
empirical SEs agree well with the asymptotic SEs for the
corrected MLE, and both are two to six times greater than
the SE of the uncorrected MLE which incorrectly ignores
the fact of ascertainment. We also calculated the SE
based on a random sample of the same sample size
without ascertainment. All calculated SEs demon-
strate that the genetic effect size estimates are quite
variable in the settings described. The SEs of the
corrected MLE are typically 1.5–2 times as large as those
for an unascertained independent sample of the same size.
This implies that while the ascertained sample is not as
informative as a new random sample would be to
estimate genetic effect size, the ascertained sample
does provide 50–60% of the information in a new
random sample, without the extra cost of collecting a
new sample. We observed a very similar trend for
SEs for the MLE of the odds ratio and its
logarithm.

The MSE provides a measure of estimator quality
that takes into account both bias and variance. Figure 1
displays the MSE for the naı̈ve and corrected MLEs of d
and lnOR. In general, the naı̈ve estimator has larger MSE
than the ascertainment-corrected estimator unless the
genetic effect size is sufficiently large to result in high
power to detect association. In that case, biases for the two
estimators are similar but the variance of the corrected
estimator is larger than that of the naı̈ve estimator
(Table II).

TWO-STAGE DESIGN

For both the allele frequency difference d and the odds
ratio OR, the naı̈ve and ascertainment-corrected MLEs for
optimal two-stage designs yield very similar results to
those for the one-stage association designs described
above (Fig. 3A). This is hardly surprising, since for optimal
two-stage designs, statistical power is very close to that of
the corresponding one-stage design in which all markers
are genotyped on all samples, and power (approximately)
determines proportional bias for d and ln OR. Even for
non-optimal two-stage designs, this continues to be true,
except that the proportional bias of both the uncorrected
and corrected estimators tends to increase modestly as
psample, the fraction of the sample genotyped in stage 1,
increases (Fig. 3B).

DISCUSSION

In genetic association studies, the genetic effect size for
associated markers tends to be overestimated as a conse-
quence of the winner’s curse. This bias is due to the strong
positive correlation between the association test statistic and
the estimator of the genetic effect and the focus of
investigators on markers that show statistically significant

TABLE II. Standard errors (SEs) for the uncorrected
(naı̈ve) and ascertainment-corrected MLEs of the allele
frequency difference d and for MLE obtained from an
unascertained random sample. Results are presented
only for d40.

SE

p N Power OR d d̂un d̂�as
a d̂yas

b d̂rand

0.1 500 0.01 1.436 0.0376 0.0049 0.0263 0.0307 0.0142
0.10 1.640 0.0541 0.0064 0.0291 0.0315 0.0150
0.30 1.798 0.0665 0.0080 0.0304 0.0307 0.0148
0.50 1.913 0.0752 0.0094 0.0309 0.0291 0.0153
0.80 2.108 0.0898 0.0120 0.0291 0.0244 0.0154

1,000 0.01 1.295 0.0258 0.0032 0.0179 0.0216 0.0099
0.10 1.429 0.0370 0.0043 0.0200 0.0212 0.0103
0.30 1.530 0.0453 0.0054 0.0216 0.0204 0.0099
0.50 1.603 0.0512 0.0063 0.0218 0.0195 0.0107
0.80 1.726 0.0609 0.0081 0.0195 0.0170 0.0102

0.5 500 0.01 1.260 0.0576 0.0069 0.0392 0.0433 0.0215
0.10 1.384 0.0806 0.0091 0.0442 0.0460 0.0214
0.30 1.483 0.0972 0.0114 0.0447 0.0439 0.0229
0.50 1.555 0.1086 0.0133 0.0445 0.0409 0.0221
0.80 1.681 0.1270 0.0168 0.0411 0.0348 0.0222

1,000 0.01 1.176 0.0405 0.0049 0.0280 0.0319 0.0159
0.10 1.258 0.0571 0.0065 0.0310 0.0320 0.0154
0.30 1.320 0.0690 0.0081 0.0325 0.0305 0.0154
0.50 1.365 0.0772 0.0095 0.0325 0.0286 0.0160
0.80 1.441 0.0903 0.0120 0.0281 0.0247 0.0159

un: uncorrected; as: ascertainment-corrected; rand: random
sample without ascertainment; p: disease allele frequency in
controls; N: sample size (number of cases and of controls). Assume
testing at significance level a5 10�6.
aEmpirical.
bAsymptotic.
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evidence of association. In this paper, we studied the bias of
the naı̈ve MLEs for the allele frequency difference and the
odds ratio that ignore this ascertainment; these measures are
routinely used to estimate the strength of the effect in
genetic association studies. We demonstrated that the
proportional bias in the estimators decreases as power
increases. Interestingly, at fixed significance level, the
proportional biases of the allele frequency difference and
the logarithm of odds ratio are functions of power, and
otherwise are essentially independent of allele frequency or
sample size (see also Zöllner and Pritchard, 2007).

We proposed a maximum likelihood method to correct
for this ascertainment bias. The ascertainment-corrected
MLEs for both the allele frequency difference and the (log)
odds ratio are generally less biased than the uncorrected
estimators unless study power is moderate to high
(460%). Since large-scale genetic association studies of
complex traits typically are underpowered owing to small
genetic effect sizes, our method should generally provide
a more accurate estimate of genetic effect size in
the context of genome-wide association studies and
large-scale candidate gene studies. In high power situa-
tions, bias for both the naı̈ve and corrected methods
is small, so that ascertainment correction again is reason-
able. Proportional bias of the corrected and uncorrected
estimators for both the allele frequency difference and the
odds ratio does show modest dependence on significance
level a. For example, when the significance level a5 10�4,
biases for all estimators are somewhat increased compared
to the case of a5 10�6, and the advantage of ascertainment
correction is increased slightly.

Zöllner and Pritchard [2007] used simulations to evaluate
the impact of the winner’s curse effect in genetic association
studies and also proposed a maximum likelihood method
to correct for it. Their method estimates the frequencies
of all genotypes and corresponding penetrance parameters
based on a known population prevalence of the
disease under different inheritance models. In contrast,
our method is simpler and focuses solely on the parameters
of greatest interest: the allele frequency difference and
odds ratio. This advantage of our method does require
the assumption of Hardy-Weinberg equilibrium for our
case and control samples. Such an assumption is
entirely reasonable given the modest locus effect sizes for
complex traits, but would not be reasonable in the context of
a Mendelian major locus.

Our corrected MLEs for the allele frequency difference
and odds ratio generally underestimate the true
genetic effects [Zöllner and Pritchard, 2007]. Using
computer simulation, we note that the empirical
distribution of our corrected MLEs can reasonably be
described as a two-component mixture, with one compo-
nent near zero and the other appearing more nearly
normal. Figure 4 illustrates this for the ascertainment-
corrected estimator of the allele frequency difference. As
power increases, the distribution becomes more nearly
normal, and the asymptotic unbiasedness of the MLE
comes into play.

We investigated the coverage of the asymptotic theory
95% confidence interval for the naı̈ve and ascertainment-
corrected MLEs for the allele frequency difference d. The
coverage of the ascertainment-corrected interval ranged
from 82 to 100% for the cases we considered, reflecting the
distribution and the bias of the ascertainment-corrected
MLE, but still generally better than the coverage for the
naı̈ve estimator, which ranged from 0 to 92%.

Given the usual downward bias of our ascertainment-
corrected estimators, one could consider an ad hoc bias
correction. For the estimators of the allele frequency
difference d and the log odds ratio ln OR, the downward
bias is 5–20% across the situations we considered (control
allele frequency p=0.1–0.5, allele frequency difference
d5 0.018–0.159 (OR 1.11–2.30), case and control sample
sizes 250–2,000, and statistical significance 10�4–10�8), so
that multiplying the resulting estimate by 1.05–1.10 would
generally reduce absolute bias. However, such an

Fig. 3. Proportional bias versus power for the uncorrected
(naı̈ve) (solid lines) and corrected (dashed lines) estimators of

the allele frequency difference d for (A) optimal and (B) non-

optimal two-stage designs. Significance level a 5 10�6. Designs

optimal for multiplicative disease model with disease pre-
valence 0.10, stage 2 to stage 1 genotype cost ratio 30. For non-

optimal designs, pmarker 5 1%, and samples of N 5 1,000 cases

and N 5 1,000 controls. Results are presented only for d40.
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approach is counterproductive when power is very low
(o0.005). The same criticism holds for taking a (weighted)
average of the corrected and uncorrected estimators.
More appealing might be to use an alternative estimation
approach, and we currently are considering an empirical

Bayes method [Carlin and Louis, 2000] that uses
information from genome-wide association studies to help
define a prior distribution for the genetic effect size.

Realistically, precise and unbiased estimation of genetic
effect size will best be obtained by collecting a large

Fig. 4. Distribution of the ascertainment-corrected MLE of the allele frequency difference d for different power levels. Results are

presented only for d40.
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sample specifically for this purpose, should resources be
available to do so. However, given a sample in which an
association is discovered, our ascertainment-corrected
approach provides more accurate estimation of allele
frequency difference and odds ratio than the naı̈ve
approach, and permits better design of subsequent
replication studies or studies focused on estimating
the population effect of the identified variant(s).
Standard errors for the ascertainment-corrected MLEs
were substantially larger than those for the naı̈ve
estimator based on an independent random sample of
the same size, correctly reflecting the information loss
for estimation based on a sample used for association
detection.

In summary, we have presented analytic calculations
that quantify the impact of the winner’s curse in
large-scale genetic association studies, and confirm that
in realistic situations, it can result in substantial over-
estimation of the true genetic effect as measured by the
case-control allele frequency difference or the correspond-
ing odds ratio. We propose a MLE that corrects for
the typical focus on statistically significant results,
and demonstrate that this estimator results in reduced
absolute bias compared to the naı̈ve uncorrected estimator
when study power is low or moderate (o60%), a
range that is typical for most large-scale genetic association
studies, and similar absolute bias when power is high.
Our method does not require specification of a genetic
model and is easy to implement. We extended these
calculations to two-stage association studies, and found
similar results to those for one-stage studies. We recom-
mend the use of this ascertainment-corrected method for
estimation of genetic effect size in large-scale genetic
association studies.

Software that carries out this analysis for case-controls
data is available at http://csg.sph.umich.edu/boehnke/
winner.
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APPENDIX

Calculate the observed information matrix I for one-stage
study:

Iðp; dÞ ¼
a b
b d

� �
;

where

a ¼ �
m0

p2
�

2N �m0

ð1� pÞ2
�

m1

ðpþ dÞ2

�
2N �m1

ð1� p� dÞ2
þ

A2

F2
þ

B

F
;

b ¼ �
m1

ðpþ dÞ2
�

2N �m1

ð1� p� dÞ2
þ

AD

F2
þ

C

F
;

d ¼ �
m1

ðpþ dÞ2
�

2N �m1

ð1� p� dÞ2
þ

D2

F2
þ

E

F
;
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where A, B, C, D, E, and F are calculated as follows:

A ¼
X
ðx0 ;x1Þ2I

x0

p
�

2N � x0

1� p
þ

x1

pþ d
�

2N � x1

1� p� d

� �
Pðx0; x1Þ

� �
;

B ¼
X
ðx0 ;x1Þ2I

x0

p2
þ

2N � x0

ð1� pÞ2
þ

x1

ðpþ dÞ2
þ

2N � x1

ð1� p� dÞ2

 (

�
x0

p
�

2N � x0

1� p
þ

x1

pþ d
�

2N � x1

1� p� d

� �2
!

Pðx0; x1Þ

)
;

C ¼
X
ðx0 ;x1Þ2I

x1

ðpþ dÞ2
þ

2N � x1

ð1� p� dÞ2
�

x0

p
�

2N � x0

1� p

� � (

�
x0

p
�

2N � x0

1� p
þ

x1

pþ d
�

2N � x1

1� p� d

� �!
Pðx0; x1Þ

)
;

D ¼
X
ðx0 ;x1Þ2I

x1

pþ d
�

2N � x1

1� p� d

� �
Pðx0; x1Þ

� �
;

E ¼
X
ðx0 ;x1Þ2I

x1

ðpþ dÞ2
þ

2N � x1

ð1� p� dÞ2

 (

�
x1

pþ d
�

2N � x1

1� p� d

� �2
!

Pðx0; x1Þ

)
;

F ¼
X
ðx0 ;x1Þ2I

Pðx0; x1Þ;

where I ¼ fðx0; x1Þ : Xðx0; x1Þ4xag and Pðx0; x1Þ is calcu-
lated by formula (2) in the paper. Our calculation for the
asymptotic SE for p and d was based on the observed
information matrix evaluated at p̂as; d̂as.
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