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Introduction

In the present article we address numerical solution of Mixed-Discrete Nonlinear
Programming (MDNLP) problems expressed in the mathematical model
minimize f(x)
subject to gj(x) <0 j=1,..,m (D)
li<xi<u; i=1,.,n
x € X € pixged
f: X—>R, gj: X—>RK
where X 1s a design point in a n-dimensional space and consists of d discrete variables
and (n-d) continuous variables. D denotes a discrete set for each of the discrete variables
and R _is the real continuous space.

In a previous article (Loh & Papalambros, 1989), it was shown that for convex
problems, if a sequence of linear approximation problems generates solutions that
converge, then the final solution is the global minimizer of the nonlinear problem
(Algorithm SLP1). The ideas of decreasing step bounds and e-feasibility were introduced
to overcome some convergence difficulties (Algorithm SLP2). Imposition of decreasing
step bounds aims at reaching minimizers that are interior solutions, while reduction of the
e-feasibility aims at forcing the linear approximation algorithm to accept points which are
MDNLP-feasible. As the material described in this article is based on the previously cited
one and to avoid lengthy repetitions, familiarity with the cited reference (including several
definitions) is assumed in the exposition of the following sections.

It is convenient to partition the variables into two sets, discrete and continuous, i.e.
x = {yp, uc}. Thus, x is used to designate the entire vector of variables, yp to designate
the discrete components and uc to designate the continuous components, and the following
definition is stated. Given a MDNLP problem of the form defined by Egq.(1), the
Continuous SubProblem (CSP) at point x is defined as follows:

min f(yp, uc) for a fixed yp
uc

subjectto g(yp, uc) <0 (2)
uce R4

The enhanced algorithm SLP2 has been implemented in a program called MINSLIP
written in standard FORTRAN 77 for the Apollo Domain operating system. The algorithm
can be viewed as a multistage two-phase hybrid of mixed-discrete sequential linear
programming (SLP) and a continuous nonlinear programming (NLP) algorithm. The
mixed-discrete linear programming (MDLP) method solves a linear approximation of the
original problem. The NLP method solves the continuous subproblem, Eq.(2). In the



initial implementation of MINSLIP, the generalized reduced gradient (GRG) method was
chosen for the NLP solution, mainly due to the authors' experience in using GRG
successfully for continuous, small, dense, nonlinear design problems. With the discrete
variables fixed, GRG can reasonably quickly find the optimal values for the continuous
variables, but any other NLP algorithm could also be used. For the MDLP problem, a
version of the simplex method with branch and bound was used as a variant of Dakin's
method (Dakin, 1965), again for reasons of convenience and robustness. If the problem is
purely discrete, the algorithm becomes a multistage two-phase SLP algorithm.

The term 'multistage’ derives from the fact that the reduction of e-feasibility to
remove the MDLP-feasible points that are MDNLP-infeasible may occur in several stages.
In each stage, there are two phases. In the first phase, the algorithm moves the iterate from
an e-infeasible domain to an e-feasible domain without regard to the objective function, and
in the second phase, it strictly improves the objective without losing €-feasibility.

TABLE OF ABBREVIATIONS
CSPp - continuous subproblem
LP - linear programming
GRG - reneralized reduced gradient
NLP - nonlinear programming
MDLP - mixed-discrete linear programming
MDNLP - mixed-discrete nonlinear programming
MIBBGRG - mixed integer branch and bound using GRG
MIBBSLP - mixed integer branch and bound using SLP
MIBBSQP - mixed integer branch and bound using SQP
QP - quadratic programming
RMDLP - restricted mixed-discrete linear program
SLP - sequential linear programming
SQP - sequential quadratic programming
SUMINF - sum of infeasibilities

The next section describes the algorithm in MINSLIP step-by-step, followed by a
section with exampes of small dimension to illustrate the algorithm, and a section on
modeling and parameter selection. A subsequent section gives results on computational
performance with many test problems, taken from Gupta (1980), Cha (1987), Sandgren

(1988), and Duran & Grossman (1986). Three design applications with discrete variables
conclude the article.



Computational Implementation

In this section the major steps of the algorithm in MINSLIP are given and discussed. Table
1 defines the symbols used in the description below.

Tablel. Nomenclature of symbols in Algorithm MINSLIP

8 - parameter value at which convergence is considered achieved (>0)
ey - initial allowable e-feasibility (>0)

ef - final allowable e-feasibility (>0)

dx - difference between the current iterate and the incumbent
f - objective function value

re - rate of reducing e-feasibility (>1)

rr - rate of reducing step bounds (>1)

tg - initial step bounds

t - current step bounds (>0)

uC - continuous variables in the continuous subproblem

x() - inital starting vector

Xp - incumbent vector

Xk - current iterate

Note that, given the MDNLP model, Eq.(1), the restricted mixed-discrete linearized
program (RMDLP) is (Loh & Papalambros, op.cit.)

minimize Vf(xg)Tx

subject to Vg(x0)T(x-xg) + g(x¢) <0 (3)
-to < x-xp < to
x € X

and the sum of infeasibilities at a point x is given by

SUMINF(x1) = Zgj(x1), gj> 0. 4)

Algorithm MINSLIP

1. Given 9, €, €5, to, I1, Ie and initial xg, set € = €g, t = .

2. If x is discrete, set xp = Xg; else, set Xp = round(Xp).

3. If SUMINF(xp) > €, set phase = 1; else, set phase = 2.

4. Construct RMDLP(xp).

5. Solve RMDLP(xp) to get xk.

(Use the simplex method with branch and bound).
6. If problem is mixed discrete, with discrete values of yp fixed by
Step 5, solve CSP by GRG to get better uc.
7. Set dx = xk - xp. If (dx); < d, stop.
8. If phase = 2, go to step 10.



9. If SUMINF(xk) < SUMINF(xp), set xp = Xk, g0 to step 3;

else, go to step 13.
10.  If SUMINF(xk) > €, go to Step 13.
11.  If f(xk) > f(xp), go to Step 13; else, set xp = Xk, go to Step 12.
12.  Set € = max(SUMINF(xk)/1¢, €¢). Set phase = 1, go to Step 3.
13.  Sett=t/r. IfI1t]<3J, stop with error message; else, go to Step 4.

Step 1. This is the initialization step with parameters as defined in Table 1. Note that d is
usually set to a value smaller than the interval of the smallest discretization for purely
discrete problems or to a small value (typically 0.001) for mixed- discrete values. We shall
describe selection of some program parameters in the next section. For the starting point,
X, the minimizer to the problem with the discreteness requirement relaxed provides a good
choice after rounding to a discrete point (usually the nearest one). The linearization
approximates a nonlinear constraint more closely when it is near the constraint than when it
is farther away. Hence, linearization at the rounded minimizer of the relaxed problem will
often yield a good starting subproblem.

Step 2. If x¢ is not discrete, round the necessary components to the nearest discrete values.

Step 3. Check if this initial point is €-feasible. If it is e-feasible, phase is set at 2,
otherwise phase is set at 1.

Step 4. Construct the restricted mixed-discrete linear problem.

Step 5. Solve the restricted mixed-discrete linear problem using Dakin's branch and bound
rules and a LP solver. The specific algorithm for this step is well-known and is omitted
here. (See [Loh, 1989] for a description.) It is only noted that code ZX3LP from the IMSL
Library (1982) is the LP solver used. ZX3LP uses the revised simplex method and was
chosen for its robustness - although some efficiency would be gained by using a dual
simplex method.

Step 6.From the previous step, a candidate iterate was obtained. If the problem is mixed-
discrete, the discrete variables may be at their optimal values but the continuous ones are
probably not. The discrete values are set as parameters for the CSP, which is then solved
by a GRG algorithm. The specific implementation here is the robust code GRG2 (Lasdon,



1980). If the problem is purely discrete, this step is skipped. If GRG2 cannot find a
feasible solution for the CSP, the values for the continuous variables in Step 5 are returned.

Step 7. If the iterate produced from Steps 5 and 6 is within a distance d from the incumbent
Xp, the algorithm has converged. If e-feasibility of this point is less than or equal to &y,
terminate with this value of the incumbent, else terminate with an error message.

Steps 8-11. A new point x is accepted as better than xp, under one of two conditions:

1) if phase is 1, SUMINF(xk) < SUMINF(xp);
or 2) if phase is 2, xi is €-feasible and f(xk) < f(Xp).
In phase 1, we are interested in moving the iterate from an €-infeasible domain towards an
e-feasible domain without regard to the objective function; in phase 2, we accept an iterate
only if it strictly improves the objective without sacrificing e-feasibility.

Step 12. If the point generated improves a phase 2 incumbent, then e-feasibility can be
reduced unless it is already at . We want to reduce €-feasibility to a value such that this
point will be excluded from further consideration. The phase is therefore reset to 1.

Step 13. If the iterate generated is not accepted, the step bounds are reduced. Eventually
one of two things must happen: either a particular linearization will produce an optimizer
that is the same point at which the linearization is made, or the algorithm cannot converge
as we decrease the step bounds to a value lower than the parameter for convergence, 0, and

so it terminates with a error message. In this case, some of the parameters can be reset and
the algorithm restarted.

Some comments are now in order.

In some SLP strategies the successive linearizations are added to the preceding
ones. In convex problems, accumulating each successive linearization generates an
envelope confining the nonlinear feasible domain. Such additions are used, for example, in
generalized Bender's decomposition (Geoffrion, 1972) and in outer-approximation
algorithms (Duran & Grossmann, 1986). MINSLIP does not accumulate linear cuts for
each iteration. In nonconvex problems, the linearization cuts off part of the nonlinear
feasible domain. Accumulating all preceding linearizations cuts off an increasingly larger
part of the feasible region, and the solution may be inadvertedly excluded. The algorithm
will often terminate quickly with suboptimal answers for nonconvex problems. In
MINSLIP, instead of accumulating cuts a new restricted mixed-discrete linear program is



generated at each iteration, so parts of the feasible domain that may have been cut off by a
previous linearization can be reconsidered. This provides an opportunity for finding a better
minimum in nonconvex problems. The acceptance criteria above maintain the algorithm's
good performance on convex problems.

Another comment is that, when a new restricted mixed discrete linear program is
created, the step bounds are restored to their initial values. This strategy works always, but
leads to more iterations. Empirically, it has been found that it is only necessary to restore
the step bounds until they have decreased below four discrete units. Restoring the step
bounds to four discrete units at that time is sufficient, and the number of iterations is
substantially reduced.

Illustrative Examples

In this section, three two-dimensional examples demonstrate the algorithm graphically. In
the first two the algorithm converges to the global discrete minimizer for a convex and

nonconvex problem respectively, and in the third it fails for a nonconvex problem.

Example 1. Consider the following convex problem (Figure 1a)

minimize f=x12-8xy X1 integer

subjectto gj: - 8.63x1 +x23<0 (5)
g2: x1-5<0
g3 %x2-5<0
ga: 05-x1 <0

Linearize initially at (4, 5)T, where f = -7 and SUMINF = 20.85 (infeasible). Set tg; = 4,
go= 1, &= 0.01, and r; = 2. The linearization gives the restricted mixed-integer linear
program (RMILP)

minimize 10xj-8 x» X] integer
subjectto g1 : -8.63x1 + 48xy <128
g x1-5<0
g3 x2-5<0
ga: 0.5-x1 <0
4<x1-5<4 6)
“4<x0-4 <4

with solution (1, 2.846)I. GRG2 is called with x fixed at 1, obtaining the solution (1,
2.051)7 since the continuous subproblem has one less dimension and 2.846 is near 2.051.
At (1, 2.051)T the nonlinear objective value is f = -15.409, and since the point is feasible, it
becomes the incumbent. Linearizing again yields the new RMILP



minimize 2xj - 8 X2 X1 integer
subjectto g1 : -8.63x1 + 12.622x7 < 17.26

g2: x1-5<0
g3: x2-5<0
ga: 05-x1 <0 M
-4<x1-1<4

-4<x7-2051<4
with solution (5, 4.786)T. GRG2 with x; fixed at 3, obtains the point (5, 3.507)7 with
f(5, 3.507) = -3.06, worse than the incumbent. The point is rejected and the step bounds
are reduced. Eventually the bounds are reduced until (2, 2.735) is obtained for the RMILP
in Eq.(7). GRG2 moves this iterate to the point (2, 2.584)7, with f(2, 2.584) = -16.68 and
so the incumbent is replaced. Step bounds are restored to 4. A new linearization gives

minimize 4x1 - 8x7 X] integer
subjectto gj: -8.63x; + 20.036x7 < 34.52
g2: x1-5<0
g3: x2-5<0 (8)
ga: 05-x1 <0
4<x1-2<4

-4<xy-2.584<4
This problem is solved, points with objective values worse than the incumbent are rejected,
and step bounds are reduced twice. Convergence occurs at (2, 2.584)T. The process is
illustrated in Figure 1. ]

Exampie 2. Consider the following non-convex problem (see Figure 2a)
minimize f =-9x;2 + 10x1x72 - 50x] + 8x2+ 460 X1, X2 integer
subjectto g1 : X1 - (0.2768x22 - 0.235x2+ 3.718) <0 9)
g2: x1 - (-0.019x73 + 0.446x72 - 3.98x7 + 15.854) < 0
Linearize initially at (7, 5)7, with tg; = 4, SUMINF =2.271, and f = 59. Letgg = 1, gf =
0.01. The linearization gives
minimize -126x1+78 x» X1, X2 Integer
subjectto gy : x1 +0.945x7 <9.454 (10)
g2 X1-2.533xy <-3.2
-4<x1-7<4
4<xp2-5<4
with solution (5, 4)T. The value f(5, 4) = 217 is worse than the incumbent, but the point is
feasible, so it is accepted and € is set to 0.01. The new linearization gives
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Figure 2. Convergence for a nonconvex problem (Example 2). (a) The mixed-discrete nonlinear
problem; (b) linearization at (7, ST giving (5, #)T as the next iterate; (c) linearization at
(5,4)T giving (5, 3)T, the discrete minimizer.



minimize -100x; + 58 x2 X1, X2 integer
subjectto g1 : X1 + 1.324x9 < 11.15 (11)
g2 x1-1.979x; <-0.71
-4<x1-5<4
4<x7-4<4
The solution (5, 3)T is feasible, and £(5,3) = 159. Being better than the incumbent, it
becomes the incumbent. Linearizing at (5, 3)7 gives
minimize -110x7 + 58 x» X1, X2 Integer
subjectto g1: x1 + 1.817x7 < 12.866 (12)
g2 Xx1-1.425x9 <1.227
4<x1-5<4
“4<xp-3<4
which produces the same point (5, 3)7 and the process terminates (see Figures 2b and 2c).
As seen from Figure 2a, (5, 3)Tis the global discrete minimizer. Notice that if we had
accumulated all linearizations in RMILP Eq.(10) and RMILP Eq.(11), this point would
have been permanently cut off by RMILP Eq.(10). Accumulation of linearizations will have
led to the erroneous conclusion that point (5, 4)7 is the discrete minimizer. l:l

Example 3. Consider now another nonconvex problem (see Figure 3a)

minimize f=-1.5x;-1.2x) X1, X7 integer

subjectto g1 : 4.64 - (x1-6)2- (x2-2.8)2 <0 (13)

g2 x2 - (0.0643x;2 - 0.7564x1 + 6.7857) < 0

Linearize initially at (5, 4)7 with tg; = 4. Going through the same process as for the
ptrevious examples produces iterates (3, 4)7 and (3, 5)7, with convergence at (3, 5)7 where
f =-10.5. However, a better point exists. Point (4, 4)7 has f = -10.8 and is the global
discrete minimizer. Figure 3b illustrates why the sequential linearization did not find (4,
4T The linearization at (5, 3)T is

minimize -1.5x7 + 1.2xp X1, X2 integer
subjectto g1 : 6x1-x72 < 19.56 (14)
g2 0.3706x1 + x9 < 6.207
cuting off (4, 4)T as a feasible solution, and the algorithm fails to find this point. D

Modeling Considerations and Parameter Selection

In most engineering problems, the model is non-convex and convergence to the global
optimizer cannot be guaranteed in general. Proper modeling may assist MINSLIP attain

11



better feasible solutions. Program parameter selection is also often critical for success,
good values usually discovered with experience.

Scaling of Constraints

Scaling of constraints can affect convergence of optimization algorithms in general. In
MINSLIP, constraint scaling relative to each other is important, because convergence
depends on finding successive points within the e-feasible nonlinear domain with
progressive tightening of this e-feasibility. Since e-feasibility is a measure of the domain's
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Figure 3. Algorithm failure for a nonconvex problem (Exampie 3). (a) The mixed-discrete
nonlinear problem; (b) linearization at (5,3)T cuts off (4, 4)T, the discrete minimizer.



enlargement, the size of the enlargement for each constraint depends on the scale of the
constraints. To assist convergence, the constraints should be scaled so that a unit change of
any variable produces a nearly uniform change in the binding constraints.

Scaling of constraints is often needed for structural problems with stress and
deflection constraints of the form G(X) - Gajllowable < 0 and 8(x) - dailowable < 0,
respectively, with Gafjowable Of order 0(106 to 10%) and Saj10wable Of order 0(10-3 to 1).
Usually one of these constraints is binding, and scaling is required.

Constraint Transformation
Consider two inequality constraints with the same feasible domain, if x = 0 is excluded.
g3a:x2-x1 <0
11X
gb:l-4, <0 (15)

Their linearizations are very different. For g3,, the linearization of g3, is g3, itself. For
g3b, its linearization at (2, 5)T is 2x - 5x; + 15 <0 and at (4,2)Tis 2x2-x1-2<0
(see Figure 4a). Notice that g3y, is non-convex and the linearization cuts off part of the
feasible region. The form of constraint g3a is much preferred to that of g3p.
Similarly, the following constraints g4 and g4 have the same feasible domain, if

X7 = 0 is excluded,

g4a: x1-%x2% <0

@bt g -1 <0 (16)
and both forms are non-convex. One form may still be preferred to the other. For example,
linearizing at (1, 2)T gives x1 - 4xp + 4 < 0 for g4a, but x1 - x2 - 2 < 0 for g4y, (see Figure
4b). Linearizing at (2, 1)T gives xj - 2x2 + 1 <0 for g4, and x) - 4x2 + 3 < O for g4p (see
Figure 4c). The linearization cuts off different discrete points for different constraint
forms. Depending on where the optimizer is expected to be, one form may be preferred to
the other. Empirically, it has been found that form g4,, where the variables are not in the
denominator, usually works better.

Selection of Parameters

As mentioned earlier, to choose a starting point it is highly recommended to relax the
discreteness requirement, solve the continuous problem, and use the continuous solution to
start MINSLIP. Of the six program parameters, € and tg are found to have the greatest
influence on robustness and number of iterations. The following guidelines for setting
parameter values are based on experience.

13



Values for g, &f, e Parameter €5 should be strictly greater than 0, the value 0.001 being a
good choice. One way to set g is to take the starting point and vary the variables by one
unit to get an idea of how the e-feasibility is changing. When the algorithm finds a better
phase 2 iterate, the epsilon value has to be reduced. Parameter re should be strictly between
1 and 2.

Values for . If (xi - xp); < 8 for every i, convergence is considered achieved. For purely
discrete problems, setting 6 smaller than the interval of discretization will work. For mixed
discrete problems, d has to be small. Usually 6 = 0.001 to 0.005 is found to work well.
Values for the initial step bounds tg If to is too small, the nonlinear feasible region will
not be covered, while if it is too large more iterations than necessary will occur. The choice
ti = (Xu)i - (X)j has been found generally successful.

Values for r; Choosing a small r; will lead to more iterations. Its value should be strictly
between 1 and 2. The choice ry = 2 has worked well.
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Figure 4. Constraint transformations. (a)Linearization of 1 - (x1/x2) < 0 at two different points;

(b) linearization at (1, 2)7 for constraints 242 and g4p; (c) linearization at (2, DY for
constraints g4, and g4p.
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Computational Tests

In the computational tests, the primary emphasis was on robustness (whether the algorithm
solves the problem) and efficiency (measured roughly by the number of function
evaluations). In MDNLP applications to design, the most comprehensive tests were
reported by Gupta (1980) and Cha (1987) on a variety of problems documented in other
sources (e.g., Himmelblau, 1972; Eason & Fenton, 1974). MINSLIP was tested on these
problems as well as some others.

MINSLIP usually obtained the same mixed-discrete minimizers as those by branch
and bound (Gupta, 1980; Sandgren, 1988), by discrete sequential quadratic programming
approach (Cha, 1987), and by outer-approximation (Duran & Grossmann, 1986). The
number of objective and constraint function evaluations required by MINSLIP compares
very favorably against branch and bound, and is in the same order of magnitude as discrete
sequential quadratic programming. Performance on some other problems from the literature
was also satisfactory.

Performance on Gupta's and Cha's Test Problems

Table 2 summarizes problems documented by Gupta and Cha used for testing MINSLIP.
In all problems, it is assumed that an underlying continuous problem describes the mixed
discrete model, for which only discrete variable values are acceptable solutions. Not all
problems are listed, because (1) there is overlap in the two sets, (2) unconstrained
problems in Gupta's set were discarded, (3) problems not C! continuous in Cha's set
were discarded, and (4) problems in Cha's set where the continuous minimizers are also
the mixed-discrete minimizers were discarded. Gradients of objective and constraints for
the test problems were computed with forward differencing (when the discreteness
requirement is relaxed).

Most problems are nonconvex with no guarantee that any solutions obtained are
global minima. Thus the results reported, including those from MINSLIP, are the best to
date. Also, while these are engineering problems, Gupta and Cha arbitrarily discretized the
variables to demonstrate their approaches, so solutions obtained may not have any
particular physical meaning.

As Gupta did not report number of function evaluations, program MIBBGRG
(Mixed Integer Branch and Bound using the Generalized Reduced Gradient algorithm) was
written to confirm the solutions reported for these test problems and to give an indication of
the number of function evaluations needed by branch and bound. MIGGBRG uses Gupta's
basic branch and bound with GRG2 (Lasdon et al , 1980) instead of OPT (Grabriele &
Ragsdell, 1975) as the nonlinear optimizer. The branching rule in MIBBGRG is the
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Table 2. Summary of Test problems from Gupta(1980) and Cha(1987)

Problem Number of Number of Number of
Variables Discrete Variables Constraints
NG

Guptal
Gupta2
Gupta3
Guptad
Gupta7
Gupta8
GuptalO
Guptall
Guptal2
Guptal3
Guptald
Guptal5
Guptal?
Guptal8
Guptal9
Gupta2l
Gupta22
Chal
Cha2
Cha3
Chad
Cha8
Chall
Chal2
Chal4
Chal5s
Chal6
Chal7
Chal8
Cha20
Cha2$

b
NWPHR =~ b OWLWARINNINIOA LAV HAEWNRDWNDWUVNDOAN

#NNNNO\#MU)(J\NMNM-&WOO@\JWLAMAL»JNUJM#NMNE

bNNNNO\-&-&M'J\NL’INNPNOOO\\!Q)U\LI\-&L»MNLAMNU\Né

best-node-first criterion for node selection and the most-fractional-part criterion for variable
selection. This was reported by Gupta as the best overall strategy. Clearly, the
comparison based on MIBBGRG does not necessarily reflect exactly what results may be
obtained by the program written by Gupta. However, as that was a major early study it
was felt that even an indirect comparison would be useful.

Table 3 summarizes the number of function evaluations needed for MIBBGRG to
find the discrete solution starting from the continuous one. Even for a small number of
discrete variables, the number of function evaluations is relatively large, and increasing
exponentially with the number of discrete variables, to be expected for branch and bound.
Even when solving a subsequent node using information from its predecessor, the number
of function evaluations is large. For example, a typical four variable problem will need 80

to 200 evaluations to arrive at the continuous minimizer, if finite differencing is used for the
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Table 3. Number of function evaluations using Branch and Bound with GRG2

Problem Number of Total Number of
Objective & Constraint Evaluations Objective & Constraint Evaluations
to reach discrete minimizer to fathom all nodes
Guptal 64 139
Gupta2 138 158
Gupta3 37 45
Gupta$ 549 807
Gupta7 5 53
Gupta8 167 180
GuptalQ 52 56
Guptall 190 229
Guptal2 296 339
Guptal3 963 963
Guptal4 158 158
Guptal$5 119 149
Guptal? 4552 4851
Guptal8 2714 2714
Guptal9 4655 5763
Gupta2l 30 88
Gupta22 769 823
Chal 62 90
Cha2 43 S5
Cha3 ’ 112 112
Chad 36 36
Cha8 273 273
Chall 55 S5
Chal2 404 438
Chal4 622 663
Chals 616 659
Chal6 54 101
Chal?7 99 111
Chal8 77 100
Cha20 32 52
Cha25 216 216

gradient. Branch and bound typically would require 300 to 800 more evaluations to obtain
the mixed-discrete optimizer and fathom all nodes.

Table 4 compares results for MIBBGRG and MINSLIP for Gupta's test set.
MINSLIP obtains the same minimizers as MIBBGRG in most problems but needs far
fewer function evaluations. For Problems 17, 18 and 19, MINSLIP could not find the
same minimizer as branch and bound. These are not real-world engineering problems, but
randomly generated (Rosen & Suzuki, 1964). The objectives and constraints are highly
nonlinear and nonconvex with only one constraint binding for the seven, six, and eight
variables, respectively. These problems essentially behave as highly nonconvex
unconstrained problems with six, five, and seven dimensions, respectively, so the
sequential linearization approach is less effective. For each problem, however, MINSLIP
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was able to find a minimum that is close to that reported, see Table 5. The number of
function evaluations required in each case is still substantially reduced (Table 4).

Table 4. Results and Comparison with Branch and Bound for Gupta's test set [Gupta 1980]

Prob MIBBGRGI MINSLIP
No. NE/N NF NC NGRG
1 139 16 12
2 158 9 7
3 45 11 8
5 807 46 38 285
7 53 13 10
8 180 35 28 72
10 56 51 40
11 229 55 45
12 339 50 42
13 963 65 56
14 158 9 7
15 149 31 25
17* 4851 71 63
18* 2714 82 72
19* 5763 56 50
21 88 13 10 20
22 823 50 42

NC - Number of constraint function evaluations

NF - Number of objective function evaluations

NGRG - Number of objective and constraint function evaluations used by GRG2 in CSP

* MINSLIP did not get the optimizer obtained by MIBBGRG but the optimum is close to
that obtained by branch and bound (see Table 5.4)

Table 5. Comparison of objective function values for Problems 17, 18 and 19 (Gupta, 1980)

Problem No. MIBBGRG MINSLIP
17 -1100.4 -1067.0
18 -778.4 -767.8
19 -1098.4 -1082.8

Table 6 shows results obtained by MIBBGRG, MINSLIP, and DRQP (Cha,
op.cit.). For the reasons mentioned earlier, some of Cha's problems were not appropriate
for testing MINSLIP. Cha also reported results on several problems (Nos. 4, 7, 8, 11, and
14) with discretization interval 0.001 that is in the same order of magnitude as the accuracy
obtained from a typical continuous optimizer, making a discrete solution rather
meaningless. Three problems (Nos. 16, 17, and 18) had irregular interval of discretization,
but MINSLIP testing was performed with interval of discretization changed to 1.

For problems with the same intervals of discretization, MINSLIP obtained the same

minimizers except for Problem 12. For this problem, DRQP reported a minimizer at (12,
0.5625, 55, 0.375, 0.713)T with f=47005.3; MIBBGRG obtained a minimizer at



Table 6. Results and comparison with Cha's test set [Cha 1987]

Prob MIBBGRG | DRQP [ MINSLIP

No. NE/NC I NF NC | NF NC NGRG
1 90 18 25 11 18

2 55 27 34 21 16

3 112 58 58 17 14

4# 36 28 30 31 24

8*# 273 30 74 81 70

11# 55 112 123 49 40

12@ 438 74 107 46 39 41
14# 663 869 1276 57 48

15 659 124 165 19 16

16# 101 16 21 26 20

17# 111 17 20 26 20

184 100 11 15 21 16

20 52 21 30 41 32

25 216 32 41 29 24

* MINSLIP did not get the optimizer obtained by MIBBGRG

# The interval of discretization is changed to 1 for MIBBGRG and for MINSLIP
@MINSLIP obtained an answer better than both MIBBGRG and DRQP

Note: The starting point for the program DRQP is different from those of MIBBGRG and

MINSLIP. The comparison here only gives a rough estimate of the number of function
evaluations needed

(10, 0.4375, 55, 0.4375, 0.733)T with f = 45543.9; and MINSLIP obtained a better
minimizer at (10, 0.5, 55, 0.375, 0.733)T with f = 42866.7. This problem is non-convex
and the local search in DRQP appears unable to leave the neighborhood of the continuous
minimizer. For the same reason of nonconvexity, the bounding rule in branch and bound
fathoms a node it should not. For problems with different discretization intervals, we can
compare only solutions by MINSLIP and MIBBGRG. MINSLIP obtained the same
minimizers as MIBBGRG except for Problem 8. In this problem, MINSLIP obtained the
minimizer (3, 2, 4, 4, 5)T with f = -30.0; MIBBGRG reported a better minimizer (3, 3, 4,
4, )T with f = -32.0. MINSLIP fails to find (3, 3, 4, 4, 3)T because the constraints are

non-convex and the last linearization at (3, 2, 4, 4, 5)T cuts off the true minimizer.

In general, MINSLIP outperforms MIBBGRG in terms of function evaluations.
From Cha's reported results, in DRQP the number of function evaluations is not very
sensitive to the interval of discretization. This being the case, Table 6 indicates that
MINSLIP is only slightly more efficient than DRQP for most problems. A newer version

of MINSLIP handles irregular intervals, but new tests on these problems have not yet been
conducted.
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Other Test Problems
Some other demonstration problems were reported by Duran (1984) and Sandgren (1988),
but without data on number of objective and constraint function evaluations.

Duran & Grossmann (1986) reported an outer-approximation algorithm for a
special class of MDLP models. The MDNLP model class for which MINSLIP was
designed is a more general one, so one would expect that MINSLIP should solve problems
in that special class but less efficiently. Indeed MINSLIP produced the same minimizers as
those given in Duran's thesis (1984), but since function evaluation data were not given by
Duran, further comparison is not possible. See Table 7.

Table 7. MINSLIP results for Duran's problems (Duran, 1984)

Duran Problem 1
Minimizer ©, 1,0, 1.301,0,n)T
Objective Function 6.010
NF 28
NC 24
NGRG 27
Duran Problem 2
Minimizer ©,1,1,1,0,0, 2, 0.652, 0.326, 1.078,1.078)T
Objective Function 73.035
NF 57
NC 52
NGRG 200

Sandgren (1988) used a branch and bound approach similar to Gupta but with an
SQP method for the continuous optimizer. Results on five problems were reported, but
there were sufficient numerical data for replicating only two of them. MINSLIP produced
better results than those reported (Table 8). MIBBGRG was then used for confirmation
and the same solutions as MINSLIP were produced. Table 9 shows the number of
objective and constraint function evaluations required for MIBBGRG and MINSLIP.

Again, this information is not available in the cited reference.

Table 8. Comparison with Sandgren's results (Sandgren, 1988)

Minimizer Objective
Gear Train Problem
MINSLIP (19, 16, 42, 50)T 0.233E-6
Sandgren's B&B (18, 22, 45, 60)] 5.700E-6
Pressure Vessel Problem
MINSLIP (1.125, 0.625, 58.290, 43.693)T 7179.7
Sandgren's B&B (1.125, 0.625, 47.7008, 117.70DT 8129.8
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Table 9. Comparison with Branch and Bound for Sandgren's problems

MIBBGRG | MINSLIP
Problem NF/NC | NF NC NGRG
Gear Train 207 64 — —
Pressure Vessel 147 15 12 60

Branch and Bound with Different Continuous Optimizers

One may argue that the inferior performance on function evaluations observed for
MIBBGRG is due in part to the inefficiency of GRG for the types of problems solved. To
investigate this possibility empirically, two other branch and bound programs were
developed and tested on a sample of Gupta's and Cha's examples. They were based on
MIBBGRG, with GRG2 replaced by another nonlinear continuous optimizer. Program
MIBBSQP used the SQP algorithm NLPQLD (Schittkowski, 1985), and program
MIBBSLP used the SLP algorithm SEQLI2 by Post & Bremicker (Eschenauer et al.,
1988).

Table 10 shows comparisons among MIBBGRG, MIBBSQP, MIBBSLP and
MINSLIP. Using a method other than GRG did reduce the number of function evaluations
for several examples, but this was not always true (Gupta7, Guptall, Cha2, Cha3, and
Chag). Also, MIBBSQP and MIBBSLP found solutions worse than those by MIBBGRG
for some of the problems (Gupta3, Guptal7, Guptal9, and Cha3). NLPQLD and SEQLI2
are not as reliable as GRG2 in finding a feasible solution for each of the continuous

Table 10. Comparisons using different continuous optimizers for branch and bound

Prob MIBBGRG | MIBBSQP {  MIBBSLP ! MINSLIP
No. NE/NC I NF/NC l NE/NC I NF/NC
Guptal 139 108 66 16/12
Gupta2 158 155 69 977
Gupta3 45 45* 39 11/8
Gupta7 53 30 176 13/10
Guptall 229 129 250 55/45
Guptal7 4851 3513 2106* 71/63*
Guptal9 5763 3437* 5569* 56/50*
Cha2 55 65 56 21/16
Cha3 112 497* 251 17/14
Cha8 273 126 1406 81/70*

* The program found a worse solution than that obtained by MIBBGRG

subproblems. So for these problems, nodes are fathomed when a feasible solution cannot
be found by NLPQLD or SEQLI2, when in fact the discrete minimizer is in one of these
nodes. MINSLIP needed fewer function evaluations than the other programs (Table 10),
and one may conclude that the reduction in number of function evaluations achieved
throughout the reported tests comes mainly from the linearization strategy in MINSLIP.
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22
Three Design Applications
In this chapter, we use MINSLIP to solve three design problems with discrete variables.

More design applications of MINSLIP can be found in Loh (1989), and in Bremicker,
Loh, and Papalambros (1989) where structural problems are examined in some detail.

Presssure Vessel Design

A horizontal pressure vessel for storage of liquid butene and mounted on two equidistant
saddle supports (Nguyen & Mistree, 1986) is to be sized minimizing cost of manufacture
and using the ASME code stipulations as constraints. The vessel has a hollow cylindrical
body (shell) of 50 feet length and 5 feet diameter, capped by two ellipsoidal ends (heads),
see Figure 5. Two saddles support the vessel, 6 feet from each end. Saddle and vacuum
rings strengthen the shell and provide stiffness at partial vacuum conditions. Wear plates
are placed on the saddles to reduce local stress concentration.

L Ly

[\ [\

AN

~<@—vear plate

Figure 5. Horizontal pressure vessel on two saddle supports

Vessel thickness is assumed small relative to other dimensions and thin-wall theory
applies. Design variables are thicknesses for head (Ty), shell (Tg), saddle ring (TsR),



vacuum ring (Tyg) and wear plate (Typ). They are formed from plates available only in

thickness increments of 1/16 inch. Material chosen for shell, head and wear plate is SA-

516-70 steel and for ring and saddles is SA-36. The cost of manufacture 1s estimated to
vary linearly with Tg, Ty and Tywp and quadratically with respect to Tgg and Tyg.

The mathematical model is given below.

minimize = 19380 + 32154Tg + 13189Tg + 2376Typ + 5329(Tyr2+2Tsg2)

subject to
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where the intermediate variables DOS, DOH, Lgg, Q, s, Asr, L, Lp» Isr, Avrs lvrs
IyrM are defined by the formulae below:

DOS = D+2Tg

DOS = D+2Ty

LRR = 0.5(12L)-L 5

Wves =1.1p4(121 DL(Tg+Tp)+2.16D2 (TH+TcA))

WIiq = pp(3nD2L+0.262D3)

Q= (Wves +Wliq)/2

Xie = nTg(D+2Tg)%/8 (18)

Wu = 2Q/(12L+4H/3)

8s = Wu(12L-2LA)2(5 (12L-2L.4 )2 -24(2H/3+L 5) D/(384E y Xie)

Ay = (Tgp+1.56\RTg)Ts

Ay =8TgR?

AR = A1+A2

Le = A1 Tg/2 + Ap(Tg+4TgR)/ASR

Lp =Tg+8Tgr-LC

Hy =Lo-Tg/2



Hy = Tg+ 4TgR-LC

IgR = A1H 2+AoH)2+A 1 Tg2/12+ TgR(8TgR)3/12

Ay = 1.56Tg\RTg

Agy = 8TyR?

AyR = Ay+Agy

Lev = AvTs/2+Aoy(Ts+H4TyR)/AyR (18, Cont'd)
Lpy = Tg+8TyRr-Ley

Hiv=Lcy -Ts/2

Hyy = T+ 4Tyr-Ley

IyR = AjvH v2+AsyHoy24A 1y T 2124 Ty 8TyR)3/12
IyrM = 0.12798D3(Tg+AyR/LrR)(Tg/DOS)1 -3

The parameter values for this problem are

oA = 17500 D =120 Kg = 0.340 R =60

OAR =12700  Eg=085 K10 =0.053 Tca=0.125
oAs = 12700 Ey = 29*100 Kqp =0.204 Twgg = 0.5

Gy =38000 H=30 L=50

OyR = 36000 K3=0319 LA =50

ps =028 K4 =0.880 Pe=5

pp = 0.0216 K7 = 0.760 P; =50 (19)

Constraints 1 to 12 limit tensile bending stresses, compressive and shear stresses at
various locations. Constraint 13 gives allowable deflection at midspan as 2.4% of the
length. Constraints 14 and 15 are for ease of fabrication. Constraint 16 requires the wear
plate thickness to be larger than the shell thickness. Constraints 17 and 18 require that for
the stress analysis to be valid, shell and head thicknesses must be less than one-fifth the
radii. Constraints 19 and 20 set the minimum allowable moment of inertia for vacuum and
saddle rings. Constraints 21 and 22 guard against yielding under partial vacuum.

Using branch and bound, the minimizer ( 5/16, 3/16, 9/16, 18/ 16)T is found, with f
= 47,818. With the continuous optimizer as a starting point, MINSLIP converges to the
same answer obtained by branch and bound. However, MINSLIP needs 17 objective
function and 14 constraint function evaluations, compared with 395 objective and
constraint function evaluations by branch and bound. Note that starting at (8/16, 8/16,
18/16, 29/16, 11/16)T, the algorithm converges to (5/16, 4/16, 9/16, 18/16, 5/16)T, f=
48,642. The global minimizer is missed, because the linearization at (5/16, 4/16, 9/16,
18/16, 5/ 16)T cuts it off. The algorithm still produces a series of feasible designs (see Table
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11). This feature of MINSLIP, producing a sequence of feasible discrete intermediate
designs, is clearly a very desirable one for design applications.

Table 11: Intermediate feasible solutions for the pressure vessel design

(T, Ts.Tsg.Tvr. Twp)?  Objective

8§ 8 18 29 11T

616 16 16 16 90,687
6 5 18 22 6.7
16’ 16 16" 16 16 63,344

S 4 1418 5T
6 16 16 16 16 51,037
5 4 11 18 5T
6 16 16 16 16 49475
4 10 18 5. T
6 16" 16 16 16 49,038

Selection of Bolts in Standard Sizes

This problem concerns selection of standard size bolts to fasten flange joints of a
pressure vessel undergoing rapid pressure fluctuation. An even number of bolts are placed
uniformly at diameter distance of 350mm around a cylindrical pressure vessel of 250mm
internal diameter. Internal gage pressure fluctuates rapidly between 0 and 2.5 MPA. The
pressure vessel is made of cast iron (E = 100GPa), and the cover plate is made of
aluminum (E = 70GPa). The bolts are made of Class 88 steel with a fatigue-limiting value
of alternating norminal stress of 69MPa. The governing design equations can be found in
Juvinall (1983). We are interested in selecting the number of standard-sized bolts from
Table 12 to minimize total cost. This cost is the sum of two components: price of bolts
(CostB), and labor cost for drilling holes and installing the bolts (CostL).

Selection of a bolt from the above set is done by considering two series, one series
for bolts with diameter from 3mm to 8mm, and the other from 10mm to 24mm. Three
discrete variables are used to describe bolt selection and one discrete variable to represent
the number of bolts: x1 is a binary variable denoting whether the bolt comes from the first
or second series; X2, X3 are the diameters of bolts chosen from the first, second series,
respectively; x4 denotes an even number of bolts.

The nominal diameter d is modeled by

d =x1x2+ (1 - x1)x3 (20)
The effective stress area is approximated (Figure 6) by a quadratic polynomial:
A =2.857 - 1.0692d + 0.6562d2 (21)
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Table 12. ISO metric coarse screw threads

Curve fitting causes slight, but acceptable, errors in determinating stress areas (Table 13).

The model is thus
minimize

subject to

f=CostB +CostL=12dn+19n

Bolt Nominal Stress Cost per Bolt

Diameter (d) Area (A) (Costpb)
M3x0.5 3 5.03 15
M4x0.7 4 8.78 16
M5x0.8 5 14.2 17
Mé6x1 6 20.1 18
M7x1 7 28.9 19
M8x1.25 8 36.6 20
M10x1.5 10 58.0 22
M12x1.75 12 84.3 24
M14x2 14 115 26
M16x2 16 157 28
M18x2.5 18 192 30
M20x2.5 20 245 32
M22x2.5 22 303 34
M24x3 24 353 36

;E 400

5 A =2.8457 - 1.0692d + 0.657624"2

<

2

n

10 20
Nominal Diameter (d)

Figure 6. Stress area versus diameter.

gl

g2
g3
g4

xi<1

:(FKRnA) -o< 0
: (C/nd) -10<0
: 5-(C/nd) <0

(22)
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where n = 2x4, d = x1x2 + (1 - x1)x3, A = 2.857 - 1.0692d + 0.6562d% K = 0.3333,F =
245400, ¢ = 69, C = 350x.

Table 13. Fitted stress area for ISO coarse screw threads

Diameter Fitted Stress Area (A)
3 5.55
4 9.08
5 13.9
6 20.6
7 27.5
8 36.3
10 57.8
12 84.5
14 116

16 153

18 196

20 244

22 297

24 355

The feasible design of selecting twelve M12x1.75 bolts (Juvinall, 1983) is chosen
as a starting point (1, 5, 6, 6)7. MINSLIP obtained the minimizer (1, 3, 10, 3)], i,
selecting six M20x2.5 bolts, with cost reduction from 516 to 306, after 22 objective and 18
constraint function evaluations. Branch and bound found the same answer after 232 sets of
objective and constraint function evaluations.

This problem also demonstrates the importance of choosing a particular form of the
nonlinear constraints. Using the model

g1 x1<1 g3: 1-108d-10_<_0
g (5= -nA) 0001 <0 g 229120
(23)
the solution at (1, 3, 10, 3)T with f = 306 was obtained, while using the model
gl x1<1 g3:nid-1050
gzz—zF—nISK~050 g4:5-—nc—:—dg() (24)

MINSLIP converged to the feasible point (1, 3, 7, 4)T with f = 360 instead. In the model
of Eq.(24) when the linearization at point (1, 3, 7, 4)T is performed, the minimizer (1, 3,
10, 3)" is cut off.
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Bracket Design
The bracket shown in Figure 7a is modeled as in Figure 7b.This structural optimization
problem requires finite element analysis to provide stress and deflection information, so

MINSLIP was interfaced to the finite element program FEM2 (Kikuchi, 1986). There are
three discrete variables: xj is the dimension of the section which fits into a prefabricated

Table 14. Material properties of Aluminum, Brass and Steel

Aluminum Brass Steel
Modulus of Elasticity E (GPa) 71 106 200
Yield Strength (MPa) 186 416 1020

metal strip with slots at regular intervals 5 mm apart; x» is the dimension of the mid-section
in multples of 1mm due to manufacturing limitations; X3 is a variable for selecting one of

three materials: aluminum, brass, or steel. Material properties are given in Table 14.

}‘ 200 mm ~%
IEBEEREERE
40mm1 j ‘

xa T

;{:e*f:::camgmings 1 x

—
i 100 mm ‘.L-
(a) (b)

Figure 7. Bracket design. (a) The bracket; (b) the analysis model.

The objective is to minimize material cost subject to stress and deflection
constraints. Allowable deflection is 2 mm. With a safety factor of 1.5, the material must
not yield or shear under the design load. The maximum shear stress theory (Shigley, 1985)
is used for a conservative design. Two cost functions are considered (see Table 15). Since

Table 15 . Two sets of material costs

Aluminum Brass Steel
Cost Function C1($/m2) 12 14 17
Cost Function C2($/m?) 12 14 18




MINSLIP requires gradient information with respect to all variables, gradient information
for x3 is obtained from curve fitting the material properties by quadratic functions:
E = (95 - 53.5x3 + 29.5x32)103 MPa

Yield strength = 330 - 331x3 + 187x32 MPa

Cl = 11 + 0.5x3 + 0.5x32
C2=12-x3+x32

(25)

The finite element program solves for stresses and displacements using 4-node plane stress

elements.

With a starting point of (10, 50, l)T, the results obtained are given in Table 16.
MINSLIP indicates selecting a different material for each of the two cost functions.
MIBBGRG obtained worse results for both cost functions.

Table 16. Results for the bracket design

MINSLIP MIBBGRG
~ Cost C1 Cost C2 Cost C1 Cost C2
x1 (mm) 7 15 15 15
x2 (mm) 40 40 45 45
x3 (material) 3 2 2 2
f£($) 0.6868 0.7000 0.7420 0.7420
NF 43 37 334 305
NC 35 30 334 305

Solve this problem separately for each of the three different materials, gives the same
results as MINSLIP (Table 17), but is less efficient. Therefore it may be worthwhile to
incorporate a material selection variable into an overall model instead of solving for each

material separately.

Table 17. Solving for the three materials separately

Aluminum Brass Steel
x] (mm) 20 15 7
x2 (mm) 55 40 40
X-sectional Area (mm2) 6500 5000 4040
Total Cost at C1 0.7800 0.7000 0.6868
Total Cost at C2 0.7800 0.7000 0.7272
NF (using MINSLIP) 16 16 26
NC (using MINSLIP) 12 12 20

Conclusion

MINSLIP is an attractive algorithm in both aspects of performance, i.e., robustness
and efficiency. The computational results from both test problems and design applications
confirm the expectations of good performance, as well as the limitations in solving
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nonconvex problems. Results from a variety of structural design problems, reported
elsewhere as cited earlier, are particularly encouraging for solving models with extensive
monotonicities and nearly constraint-bound solutions. As experience accumulates, some
further empirical enhancements are possible and are currently under implementation.
Complete listing of the program and data files for all problems reported here can be found
in Loh (1989).
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