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CHAPTER 1

Introduction

Wireless Sensor Networks (also known as sensornets or WSNs) are a useful tool to sense and

analyze both the physical world and human spaces. Sensors each of which combine sensing,

computation, and communication into a resource-constrained device can form an ad hoc network

to collect and disseminate information, providing versatile scopes into both physical environments

and human activities. While the capabilities of an individual node are limited, the cooperation

among hundreds of nodes enables information collection and dissemination for a wide array of

applications, such as wild habitat monitoring [1], battlefield surveillance [2, 3], asset tracking [4],

road condition and traffic monitoring [5, 6], and people’s presence sensing [7, 8].

A representative application of WSNs is environment monitoring. Sensors periodically sense

the environment and then aggregate the samples along a spanning tree rooted at a gateway using

in-network processing [9, 10, 11, 12]. For example, more than a hundred of MICA mote sensors

formed a mesh network to monitor the temperature and humidity of a wildlife habitat [1].

With recent miniaturization and subsequent introduction of sensors into popular consumer elec-

tronics, such as cell phones (like Google’s G1 and Apple’s iPhone) and PDAs (like Apple’s iPod

Touch), wireless sensor networks have been developed to sense, analyze, and share information

about humans, the community, and the way humans live and interact with each other. For example,

smart phones are exploited to add sensing presence to people’s social network experiences [13],

and to monitor road and traffic conditions [5].

The sensor hardware platforms also differ significantly in processing power, radio capabil-

ity and storage space. For example, a Mica mote has an 8-bit, 4MHz processor, 20Kbps radio

bandwidth, and 512 KB storage space, while a G1 has an 32-bit, 528MHz processor, 54Mbps
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bandwidth, and a few Gigabytes of storage. However, these battery-powered devices have limited

power supply. The lifetime of a Mica sensor is bounded by the capacity of two AA batteries, and

cell phones are usually recharged daily or every other day. Although the sensors have been de-

signed with low-power components, it is very challenging to achieve high application performance

while minimizing energy consumption.

To meet this challenge, this dissertation has developed energy-efficient information collection

and dissemination protocols and systems for WSNs. Specifically, it has explored energy-efficient

solutions to the following four problems.

1. Data Aggregation: is crucial for environment monitoring and surveillance applications. Pre-

vious studies [9] show that in-network data aggregation — intermediate nodes compute par-

tial aggregation results and propagate them towards the base station (BS) or the data sink —

is significantly more efficient in terms of communication cost and energy consumption than

collecting all sensor readings to the BS which then processes them.

Aggregation accuracy is affected by the fidelity of computation and communication within

the network, but the existing approaches fail to achieve a good combination of both aspects,

increasing inaccuracy. TAG [9] computes intermediate aggregation results accurately, but

suffers from message losses. Stretch [10] and SD [11] are very robust to message losses, but

incur non-trivial computation error.

In Chapter 2, we explore the design space of data aggregation and develop a novel method

for opportunistic data aggregation (OPAG) with zero computation error and good tolerance

to moderate message losses, as most of real-world networks have been designed, deployed,

and maintained to operate under reasonably good conditions.

OPAG opportunistically uses multi-path routing to compensate for communication losses

and achieve better energy-efficiency than the other schemes using retransmission. This is

attributed to a key observation that, when sending a message, the radio (e.g., CC2420, a

widely-used, low-power, and high-speed radio) may consume much more energy for idle

listening during the backoff period and the time of awaiting the acknowledgment than trans-

mitting the bits. Then, retransmitting a message is not energy-efficient because it incurs

more idle listening on backoff and more time to wait for the acknowledgment.
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2. Post-Deployment Performance Debugging: besides collecting information about the exter-

nal world, a sensor network may have to diagnose its own “health” after deployment by

disseminating debugging commands and collecting debugging information to locate perfor-

mance problems. Post-deployment performance debugging is often more difficult and more

expensive than pre-deployment debugging in a laboratory setting. When a WSN applica-

tion exhibits poor performance, users (i.e., programmers and administrators) usually do not

know which nodes in the network, nor which pieces of debugging information, should be

examined closely to determine the causes of the problems.

Having every node record and report detailed debugging information (as in Sympathy [14]

and MintRoute [15]) may consume a lot of battery power and shorten the network lifetime.

It may also cause distraction from the effort of locating the problem sources, and interfere

with execution of the underlying applications. NMS (Network Management System) [16]

requires users to interrogate individual nodes. But, without any clue regarding the causes of

the problems, they may have to query a large number of nodes before locating and isolating

the problems, thus taking a long time and consuming a significant amount of energy.

Therefore, in Chapter 3, we present a data-centric approach called post-deployment perfor-

mance debugging (PDPD or PD2 for short), which helps users locate where performance

problems occur, and provides hints for fixing or further investigating the problems. PD2 fo-

cuses on the data flows that a WSN application generates, and relates “poor performance” of

the application to significant data losses or latencies of some data flows (i.e., problematic data

flows) as they go through the software modules on individual nodes and through the network.

Based on the data dependencies between different software modules and between different

nodes, PD2 derives a few inference rules, and uses them to trace back each problematic flow.

PD2 turns on performance monitoring of, and collects debugging information from, only

those modules and nodes that the problematic flows go through. Lastly, PD2 visualizes the

debugging information to locate the dominant sources (i.e., some software components on

certain nodes) of significant data losses and latencies on the data flows.

3. Location Service Protocol: some applications, such as battlefield surveillance, may require a

sensor network to detect and report events of interest, like presence of poisonous chemicals,
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to mobile data sinks, such as soldiers or vehicles that move within the deployment area.

Maintaining a high packet-delivery ratio becomes more difficult as the network gets bigger

and the mobile moves faster.

Using location service protocols, a mobile periodically reports its location to selected nodes,

called location servers. Other nodes can then acquire the mobile’s location from one of

its location servers and deliver data to the mobile sink using location-based routing meth-

ods [17, 18, 19, 20]. There are hierarchical location service protocols (such as GLS [21]

and DLM [22]) which construct a hierarchy of location servers over a grid structure, and

centralized protocols (such as GHLS [23]) which select a single location server. As the net-

work size increases, the former scales better than the latter, but incurs much higher energy

consumption.

In Chapter 4, we develop a distributed location service protocol (DLSP). DLSP can sustain

a high packet-delivery ratio in large-scale networks with higher mobile speeds, and incur

lower overhead (i.e., lower energy consumption) than other approaches. Through a rigorous

analysis, we derive the condition under which a high data-delivery success rate is achieved,

and show how to configure the protocol parameters to ensure the scalability of location

service. Furthermore, we find that, in order to guarantee a high data-delivery ratio, the

mobile’s speed should be below a certain fraction of the packet-transmission speed. For

example, if the movement threshold for the lowest-level location servers is the same as the

node’s radio range, the mobile’s speed limit is a one-tenth of the packet-transmission speed.

The theoretical speed limit is a one-fifth of the packet-transmission speed beyond which

DLSP does not scale regardless of the movement threshold. These analysis results can be

used for configuring the low-power duty cycles of the sensor nodes when the limit of mobile

speeds is known.

Like GLS, DLSP incurs a high location-update overhead. To lower the overhead, we propose

an optimization, called DLSP with a Selected Neighbor (DLSP-SN), in which the mobile

updates the location server in at most one neighbor square at each level. The neighbor

square is selected based on the mobile’s trajectory. As a result, DLSP-SN achieves both high

success rates and low overhead.
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4. Location Privacy: by exploiting personal mobile devices as sensors, WSNs provide an ex-

tensive view of human spaces. Such a sensing model, called people-centric sensing, is used

for people and communities’ benefits.

While people-centric sensing can significantly enhance our understanding about human ac-

tivities and improve user experiences, it raises the concern about users’ privacy. Each mo-

bile device can potentially capture a lot of user information, such as activities, habits, and

surroundings, from the camera, microphone, GPS, accelerometer, and information on the

phone, such as the calendar, music playlists. In particular, a person’s location traces may be

associated with sensitive places s/he has visited, from which, for example, medical condi-

tions, political affiliations, religious preferences could be inferred.

To protect users’ location privacy, two types of approaches have been proposed. The first

type introduces the uncertainty of user identity by masking location information [24, 25].

Specifically, a user’s location, cloaked by a geographic area and a timewindow, is k-anonymous

if and only if this user and at least k−1 other users were present in the area during that time
window. So, attackers cannot distinguish among k or more users. The second type introduces

“unlinkability” between different pseudonyms of a user via mix zones [26]. Users change

to new, unused pseudonyms whenever they enter a mix zone, thus mixing their identities.

This way attackers cannot link people going into the mix zone with those coming out of it.

Both methods require a trustworthy third-party server to count the number of users inside

a cloaked or mix zone and ensure that the uncertainty of user identities or the degree of

unlinkability between pseudonyms is met.

In Chapter 5, we explore the tradeoff between privacy preservation and energy consumption,

and propose a new approach for protecting location privacy in the context of location-based

services. Our approach, called Location Information ScrAmbler (LISA), protects location

privacy of mobile users using m-unobservability. It prevents the distinguishability of a

mobile’s points of interest (POIs), thereby weakening attackers’ ability to infer the user’s

private information or mobility patterns. LISA adjusts the location noise level in location

service queries and ensures that the uncertainty of the attackers’ location estimation satisfies

m-unobservability. LISA protects location privacy locally on each mobile user’s handheld
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devices and therefore eliminates the need for trustworthy third-party servers. Lowering the

trust requirement reduces the risk of leaking privacy information and facilitates deployment

of LBSs. However, this also incurs extra energy consumption on mobile devices, so LISA

explores the trade-off between the estimation uncertainty and the energy consumption to

achieve both strong privacy preservation and efficient energy conservation. Our extensive

evaluation using real-world traces of human and vehicle mobility patterns demonstrates the

efficacy and efficiency of LISA.

The main contributions of this dissertation are summarized as follows.

• We develop a novel method for opportunistic data aggregation in WSNs, which achieves
both high aggregate accuracy and good energy efficiency.

• We propose a data-centric approach for post-deployment performance debugging in WSNs,
which helps users locate performance problems effectively and consumes energy efficiently.

• We design a distributed location service protocol (DLSP), which achieves a high packet-
delivery ratio in larger networks and at higher mobile speeds, and incurs lower overhead

(i.e., lower energy consumption) than other location service protocols.

• We propose a location privacy protection approach called Location Information Scrambler
(LISA), which protects the location privacy of mobile users effectively and uses battery

power of their handheld devices efficiently.

The dissertation is organized as follows. First, Chapter 2 presents the opportunistic data ag-

gregation (OPAG) scheme. Then, Chapter 3 describes a post-deployment performance debugging

tool (PD2). Next, Chapter 4 details a distributed location service protocol (DLSP). Finally, Chap-

ter 5 discusses Location Information ScrAmbler (LISA). In Chapter 6 we summarize our main

contributions and discuss future directions.

6



CHAPTER 2

Opportunistic Data Aggregation

2.1 Introduction

In a large-scale wireless sensor network (WSN), data aggregation (such as averaging temper-

ature readings across a network’s coverage area) is crucial for such applications as environment

monitoring and surveillance. Previous studies (e.g., [9]) show that in-network data aggregation

— intermediate nodes compute partial aggregation results and propagate them towards the base

station (BS) or the data sink — is significantly more efficient in terms of communication cost and

energy consumption than routing all sensor readings to the BS which then processes them.

Data-aggregation accuracy in a WSN is affected by the fidelity of both computation and com-

munication within the network. First, computation of aggregation results may be exact or approx-

imate, incurring zero or non-trivial computation error. Second, intermediate aggregation results

may be routed via a spanning tree or multiple paths, resulting in different degrees of tolerance to

message loss. Figure 2.1 shows different data-aggregation schemes in the design space.

On one side of design space, TAG [9, 27] and Cougar [28] construct a spanning tree rooted

at the BS. Each node in the tree combines its own sensor values with the data received from its

children, and send the accurate aggregate result to its parent. This spanning tree scheme is simple

and works very well for distributive and algebraic aggregates such as MIN, MAX, COUNT and

AVG under ideal network conditions. However, its aggregation accuracy degrades significantly

when messages are lost during communication. This is because losing a data message from a node

leads to the loss of all sensor readings or partial aggregation results from the sub-tree rooted at the

node. In order to reduce data loss, each node may dynamically select appropriate parent nodes to
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Figure 2.1: Design space of in-network data aggregation according to computation error and tol-
erance of data message loss. OPAG aims to achieve zero computation error and high tolerance to
moderate message losses

avoid using poor-quality links [9], and retransmit lost messages, consuming much more energy.

On the other side of design space, Sketch [10], Synopsis Diffusion (SD) [11], and Tributary-

Delta (TD) [12] aggressively exploit multi-path routing to combat message losses. A sensor read-

ing may be aggregated with other readings along multiple paths before it reaches the BS, in con-

trast to the case of using just one path on the spanning tree. Because of high communication

redundancy, Sketch and SD are highly loss-tolerant. However, their multi-path routing is uncon-

trolled— each node has no or little control of which nodes get to aggregate its data, and therefore,

a partial aggregation result may be aggregated multiple times into the final result. To deal with

duplicate-sensitive aggregates, such as COUNT, SUM, and AVG, statistical counting [29] is used

to encode a partial result into a bitmap (a.k.a. Sketch or SD), and convert duplicate-sensitive ag-

gregates to duplicate-insensitive OR of such bitmaps. The bitmap obtained at the BS provides an

estimate of the aggregation result. The estimation error is non-negligible, and in particular, the

variation of estimation is quite high. Compared to other schemes, Sketch and SD work well under

a very poor network condition. However, they do not work well for networks under a relatively

good condition—which are more common in real-world—because the estimation error persists

irrespective of the network condition.

We would like to develop a data-aggregation scheme with both high accuracy and good tol-

erance to moderate message losses because most of real-world networks have been designed and
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deployed to operate under reasonably good conditions. Moreover, the network condition may be

improved by adding or upgrading hardware, dynamically switching to channels with less interfer-

ence, or even altering the deployment. A majority of wireless links are reported to have 0.8 or

better delivery probability in both sensor networks [30] and wireless mesh networks [31]. As elab-

orated on in Section 2.4, our experience with Motelab [32], theWSN testbed at Harvard University,

also confirms this observation.

Opportunistic Data Aggregation (OPAG) is a new data-aggregation scheme designed to take

advantage of relatively good network connectivity, wherever possible. OPAG allows a node to

autonomously choose a Data-Aggregation Node (DAN) within a few hops of itself. Then, if the

successful delivery ratio over multiple paths to the DAN is above a given threshold, the node

has the DAN aggregate its partial results. The DAN aggregates the partial results accurately, so

as to avoid computation error, while the other nodes on the multiple paths just relay it. Such

controlled multi-path routing is likely to be as loss-tolerant as the uncontrolled under a relatively

good network condition, although it does not provide as much path redundancy. If there is not

enough path redundancy to provide a satisfactory success ratio, the node sends the partial results

to its parent node as in TAG, and compensates for communication loss by retransmitting them.

OPAG opportunistically uses multi-path routing to compensate for communication losses and

achieve better energy-efficiency than other schemes using retransmission. This is attributed to a

key observation that, when sending a message, the radio (e.g., CC2420, a widely-used, low-power,

and high-speed radio) may consume much more energy for idle listening during the backoff period

and the time of awaiting the acknowledgment than transmitting the data bits. Then, retransmitting

a message is not energy-efficient because it incurs more idle listening on backoff and more time of

waiting for the acknowledgment.

In order to avoid extra idle listening, OPAG uses multi-path routing that differs from traditional

multi-path routing. Each node dynamically pads multiple partial results and/or sensor readings in

a message, i.e., a message may carry multiple partial results each of which traverses a different set

of paths. Every receiver disassembles the message and processes the partial results separately— it

may aggregate, forward, or discard a partial result, depending on the specified DAN. A node may

sometimes have more data to forward than the maximum message payload size, and therefore,

has to select a subset of sensor readings or partial results, and drop the rest. A simple selection
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strategy may be prioritization of each partial result according to its contribution to the final result

—the number of readings over which the partial results are aggregated. However, this may not

achieve good aggregation accuracy because high-priority partial results are favored by all forward-

ing nodes, generating unnecessarily high data redundancy, while low-priority results are unlikely

to be forwarded. We analyze the relationship between the data redundancy and the success ra-

tio over multiple disjoint paths, and derive the optimal degree of redundancy, given the accuracy

requirement and the number of disjoint paths. Based on this analysis, we design a data-selection al-

gorithm that leads to the optimal redundancy on high-priority partial results and provides as much

message space as possible for low-priority results.

This chapter makes the following contributions.

• Development of a new data-aggregation approach, OPAG. OPAG achieves improved ag-

gregate accuracy and provides good tolerance to moderate message losses. It opportunisti-

cally uses the multi-path routing to compensate for communication losses and achieve better

energy-efficiency than those using retransmission.

• Derivation of optimal data redundancy. We analyze the relationship between the data redun-

dancy and the successful delivery ratio over a set of disjoint paths, and derive the optimal

degree of redundancy with regard to the success ratio threshold and the number of paths.

Based on the analysis of this optimal redundancy, we design a data-selection algorithm,

which makes a significant improvement of aggregation accuracy.

• Prototype implementation and experimentation on a real-world testbed and TOSSIM. We

implemented OPAG on TMote Sky motes [33] and conducted experiments on Motelab [32]

and simulations over widely-varying network conditions. The results show that OPAG per-

forms much better than TAG and Sketch/SD under relatively good network connectivity.

The rest of this chapter is organized as follows. Section 2.2 illustrates the basic idea of OPAG

with an example network. Section 2.3 presents the detailed design of OPAG with emphasis on the

energy efficiency. Section 2.4 describes our prototype implementation and presents the experimen-

tal results on Motelab, and Section 2.5 presents the simulation results on a large network setup.

Section 2.6 discusses the related work. Finally, Section 2.7 concludes the chapter.
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Figure 2.2: Each edge (e.g., N10 → N2)in the overlay tree shown at the aggregation layer may
correspond to multiple paths at the routing layer (N10 → N6 → N2 and N10 → N7→ N2).

2.2 Basic Idea

OPAG divides in-network data aggregation into two layers: data aggregation and data routing.

At the data-aggregation layer, the aggregation results are computed along an overlay spanning

tree. Underneath the routing layer, network nodes may opportunistically send intermediate/partial

results via multi-path routing.

Figure 2.2 shows an illustrative example. At the routing layer, the solid edges in the figure

indicate child–parent relationships in the spanning tree. Besides the parent node, each node may

also communicate with the other neighbor nodes at a lower level in the tree, as indicated by the

dotted edges. At the data-aggregation layer, each link in the overlay tree corresponds to a child–

parent link or the multiple paths from this node to its DAN.

Neither the spanning tree nor the overlay tree is stored on any node. Instead, it only keeps

two data structures that only contain local information. For routing, it keeps a neighbor table

that stores a list neighbor nodes and their link quality. The link-quality information is used for

computing the delivery probability of forwarding paths. For data aggregation, every node has a

list of DAN candidates that are within limited hops and selects the best candidate as its DAN. The

details of DAN selection will be presented later.

Suppose N10 selects N2 as its DAN. There are two paths from N10 to N2: N10 → N6 → N2 and
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N10 → N7 → N2. Therefore, N2 may receive two copies of N10’s data. The multi-path routing uses

data redundancy to combat message losses along either of the two paths. In its partial results, N10
specifies N2 as its DAN. After N6 receives N10’s message, it extracts the partial results, because

the message may contain other partial results forwarded by N10 (in this example, we assume N10’s

message only contains its own result). Likewise, N6 receives the data messages from N9 and N11.

N6 checks each partial result it receives, and aggregates those that specified N6 as the DAN. Then,

N6 sends the partial results that it should forward as well as its own—N10, N11, and N6. It discards

the partial result of N9 as N9’s parent node N5 is to aggregate its partial result. N9 does not choose

N1 or N0 to aggregate its partial results because the multiple paths from N9 to N1 or N0 do not

provide a satisfactory successful delivery ratio.

After N2 receives N6’s message, it aggregates the data from N10 and N11 with its own, because

these two data entries specify N2 as the DAN. Then, N2’s message contains the data of N6, N7,

as well as the intermediate result of aggregating its own reading and the data from N10 and N11.

Duplicate data are ignored by N2.

Because of message space multiplexing, each partial result has more opportunities to reach

a specified aggregation node. Thus, OPAG can tolerate message losses without incurring any

computation error.

2.3 Design of OPAG

Environment monitoring is usually a long-term application. To achieve a prolonged network

lifetime with battery-powered sensors, energy-efficiency is essential to data aggregation, and hence

our focus in the design of OPAG.

2.3.1 Energy Cost of Multi-Path Routing and Message Retransmission

Both the multi-path routing and retransmission require the transmission of more bits to tolerate

communication losses. So, a natural question is: which one is more energy-efficient?

We use the following example to compare the energy consumption of these two choices. Fig-

ure 2.3 shows the energy-consumption breakdowns of multi-path routing and retransmission.

We break down a sender’s energy consumption. When an outgoing message is posted on the
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Figure 2.3: The energy costs of the multi-path routing and retransmission using the CC2420 radio
stack in TinyOS-2.0.1.

radio stack, the radio is turned on and set to the RX mode for sensing the channel condition (indi-

cated by “backoff”). When the channel becomes clear, the radio starts transmission of the message

header (indicated by “h”) and the data (indicated by “d1”). After completing the transmission, the

sender may turn off the radio, or wait for an acknowledgment (indicated by “ack”) if the message

is unicast and configured to be acknowledged.

The back-of-the-envelop calculation of the energy costs are based on our experiments using

the popular CC2420 radio on the Motelab testbed. We measured the time for the initial backoff,

transmitting the payload, and waiting for the acknowledgment. We find that Tbacko f f = 7.6ms,

Tack = 2.9ms, and the time of transmitting d bytes is d ∗ 0.035ms. Based on the CC2420 radio
datasheet, Prx = 31.3mW and Ptx = 35.5mW . Therefore, Ebacko f f = 238μJ, Eh = 25μJ, Ed1 = 12μJ

(assuming each partial result has 10 bytes), and Eack = 9μJ.

In the multi-path routing, node 1 broadcasts a message consisting of a common header (h) and

its partial result (d1) after a backoff period of waiting for clear channel. Then, the forwarding

nodes 2, 3, and 4 broadcast d1 together with their own data (d2, d3, and d4, respectively). Because

the forwarding nodes need to send their own data anyway, the backoff and header costs incurred

by their data messages are not charged to node 1. Therefore, the total energy cost for d1 is Emp =
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Ebacko f f +Eh+4∗Ed1 = 311μJ.

Using retransmission, if the acknowledgment is not received before the ack timeout, the sender

retransmits the message. The sender turns off the radio if the acknowledgment is received, or the

retransmission limit is reached. Suppose node 1 does two retransmissions. Then, the total energy

cost is Eretx = (Ebacko f f +Eh+Ed1+Eack)∗3= 852μJ.

These numbers show that transmitting a few extra bytes consumes much less energy than idle

listening during the backoff and the wait for an acknowledgment. Therefore, OPAG chooses the

multi-path routing over retransmission, if the multiple paths can achieve a delivery probability

above a certain threshold; otherwise, OPAG resorts to retransmission.

The energy consumption on the receiver side depends on receivers’ duty-cycling. Previous

results [34, 35, 36] have shown that the energy cost of receiving messages depends on a few

MAC parameters, such as the preamble length, the polling interval, and the synchronization period.

Particularly, with periodic traffic, receiving data may consume about the same amount of energy

as sending it. Moreover, the energy consumption of other radio operations, such as turning on/off

the radio and switching the radio between RX/TX mode is negligible. Therefore, in this chapter,

we focus on the energy consumption of sending data in different data-aggregation schemes.

2.3.2 Selection of Data-Aggregation Node

We now describe how each node selects its DAN. Each node maintains a small list of DAN

candidates. A candidate entry contains four attributes: <id>, <level>, <p>, and <flist>. The

attributes <id> and <level> are the candidate’s ID and level in the underneath spanning tree, re-

spectively. <p> is the probability that a candidate node’s data is successfully delivered to the data

sink through a routing path, and <p> is recursively computed based on the delivery probability

of the candidate’s DAN, as we will describe later. <flist> is a list of forwarding entries, each of

which has two fields: <fid> and <p f>. <fid> is the ID of a neighbor which can forward this

node’s partial results to the aggregation candidate, and <p f> is the probability that the neighbor

successfully sends partial results to the candidate. Algorithm 1 formally describes the selection

process.

We use the example in Figure 2.2 to illustrate how each node maintains its DAN list and

selects its DAN. Assume p(N1,N0) = 0.9, p(N2,N0) = 0.9, p(N3,N0) = 0.8, p(N6,N1) = 0.8,
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Algorithm 1 Select a data aggregation node.
Input: A list of DAN candidates (L).
Output: dan, which is the selected DAN.
1: pmax⇐ 0
2: dan⇐ null
3: for all candidate c in L do
4: p0⇐ 1
5: for all forwarding node f in c.flist do
6: /*get the link quality to the neighbor, fid*/
7: p1⇐ getNbrOutLQ(f.fid)
8: pc⇐ 1− p1 · f .p f
9: p0⇐ p0 · p1
10: end for
11: p0⇐ (1− p0) · c.p
12: if p0≤ pmin then
13: dan⇐ c
14: pmin⇐ p0
15: end if
16: end for
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p(N6,N2) = 0.8, p(N6,N3) = 0.9. N6 receives < 0,0,1.0,0.9>, and < 1,1,0.9,1.0> from N1;

< 0,0,1.0,0.9 >, and < 2,1,0.9,1.0 > from N2; and < 0,0,1.0,0.8 >, and < 3,1,0.8,1.0 >

from 3. Therefore, N6 has four candidates: < 0,0,1.0,{< 1,0.9 >,< 2,0.9 >,< 3,0.8 >} >,

< 1,1,0.9,{< 1,1.0>} >,< 2,1,0.9,{< 2,1.0>}>, and< 3,1,0.8,{< 3,1.0>}>. The proba-

bility that N6’s partial results are successfully delivered via these multiple paths to N0 is p f = 0.98

(Algorithm 1, line 4–10). So, if N6 selects N0 as its DAN, the probability that its partial results are

successfully delivered to the sink is p = p f ∗N0.p = 0.98 (Algorithm 1, line 11), which is more

than using any other candidate. Note that N6’s parent node (can be N1, N2, or N3) is also considered

in the selection process.

DAN lists are maintained via DAN announcements, using Algorithm 2 and 3. A node N’s

DAN announcement contains a few DAN candidates that it wants to advertise. Each entry in the

announcement has <id>, <level>, <p>, and <p f>. The first three fields are from the corre-

sponding DAN entry, and <p f> is computed using the forwarding list and the neighbor table

(Algorithm 2, line 3–9). A DAN is re-announced only if the change of delivery probability is

above a certain threshold (Algorithm 2, line 14–16) and the announcement propagates upward

limited hops (Algorithm 2, line 17–19), in order to to control storage and communication over-

heads. If the DAN candidate is 3 or more more hops away, then the paths from N to the candidate

may not be disjointed. Because exact calculation of the aggregate probability of the forwarding

paths is complicated and requires propagation of additional topology information, which incurs

extra energy cost, we treat them as disjointed and then discount the resulting probability by a fac-

tor of 0.8 (line 20-22). Each node also announces itself as a DAN candidate (Algorithm 2, line

29–33). Its own delivery probability is calculated based on the delivery probability of its current

DAN (Algorithm 2, line 10–13).

Each node should only consider the DAN announcements from other nodes of a lower tree

level, and ignore the announcements from nodes of the same or higher level (Algorithm 3, line

1–3), because only a lower-level node can be its DAN. For example, N1’s announcement should be

processed by N9, but ignored by N2.
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Algorithm 2 Create and send DAN announcements
Input: A list of DAN candidates (L) and the current level of the node, l, my current DAN dan, the

limit of hops within which the announcements propagate, hd , and the threshold of probability
difference, pd .

Output: none
1: msg = null
2: for all candidate c in L do
3: p0⇐ 1
4: for all forwarding node f in c.flist do
5: p1⇐ getNbrOutLQ(f.fid)
6: pc⇐ 1− p1 · f .p f
7: p0⇐ p0 · p1
8: end for
9: p f ⇐ (1− p0)

10: if c is dan then
11: Me.p⇐ c.p · p f
12: Me.p f = p f
13: end if
14: if (c.p · p f − c.prevp) ≤ pd then

15: continue
16: end if
17: if (c.level− l) ≥ hd then
18: continue
19: end if
20: if (c.level− l) ≥ 3 then
21: p f ⇐ p f ·0.8
22: end if
23: /*this candidate should be re-announced*/
24: c0⇐ (c.id,c.level,c.p, p f )

25: insert c0 into the current beacon message or msg has space (create a new message if msg is
null)

26: c.prevp⇐ c.p · p f
27: end for
28: /* announce this node as a candidate */
29: if (Me.p−Me.prevp) > pd then

30: c0⇐ (Me.id,Me.level,Me.p,1)

31: insert c0 into the current beacon message or msg has space (create a new message if msg is
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Algorithm 3 Process a DAN announcement
Input: a DAN candidate c and the current level l
Output: none
1: if c.level ≥ l then
2: ignore c
3: end if
4: insert c into the candidate list

2.3.3 Selection of Partial Results

The maximum message payload size limits the number of partial results that can be “padded”

in a single message. When a node has more results than the message space permits, how does it

choose which results to pad in the message? A simple answer to this question may be prioriti-

zation of each partial result according to its contribution to the final aggregation results (i.e., the

content of the field <Count>), thus favoring the partial results with higher priority (i.e., larger

counts). However, this may not achieve good aggregation accuracy since some partial results with

large counts may be favored by all forwarding nodes, resulting in unnecessarily high degree of

redundancy, while those with small counts have little chance to be forwarded. In order to allocate

resource (i.e., message space) efficiently, we need to find the relationship between the redundancy

and the successful delivery ratio over multiple paths.

Suppose there are k independent (or disjoint) paths from node N and its DAN. Let p be the

success probability over the paths (i.e., the probability that N’s results are successfully received

via at least one of the paths), and d the redundancy (i.e., the average number of duplicates that the

DAN receives). The successful delivery probability of the i-th path is denoted as pi (i= 1,2, · · · ,k).
Then, we have p= 1− ∏

i=1,··· ,k
(1− pi) and d = ∑

i=1,2,··· ,k
(pi). The mean and standard deviation of

p are, respectively:

μk(p) = ∑
R

(1− ∏
i=1,2,··· ,k

(1− pi))

σ2k(p) = ∑
R

(pk(d)−μk(d))2

where R= {p1, · · · , pk|d = ∑
i=1,2,··· ,k

(pi) ∧ 0≤ pi ≤ 1(i= 1, · · · ,k)}.
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Figure 2.4: μp with regard to d and k, where 1≤ k ≤ 8 and 0≤ d ≤ 3
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Figure 2.5: σp with regard to d and k, where 1≤ k ≤ 8 and 0≤ d ≤ 3
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Since no closed-form solutions for μk(p) and σk(p) exist, we find numerical solutions, as shown

in Figures 2.4 and 2.5.

Our observation from the analysis is the existence of appropriate redundancy that can guarantee

a given success ratio, and message space is wasted if this redundancy limit is exceeded. Therefore,

we can set the success ratio for a partial result using its contribution to the final result, and then

set the forwarding probability, FP, on each forwarding path to enforce the appropriate redundancy

for that partial result. FP= RDD
d , where RDD denotes the appropriate redundancy to achieve the

given success ratio. If multiple paths favor a certain partial result, its redundancy at the DAN d

may exceed the redundancy limit. Then, FP < 1.0, which throttles the paths to probabilistically

drop the partial result to achieve the optimal redundancy. When d ≤ RDD, the optimal redundancy

has not yet been achieved. Then ,FP = 1, letting every path attempt to achieve as high a success

ratio as possible.

To enforce the appropriate redundancy, OPAG takes the following steps.

1. After a node computes its partial result, it evaluates the importance of the result based on its

tree level and other results it receives, then decides a target success ratio (p) according to the

importance—the number of sensor readings the partial result has aggregated.

2. It selects the best DAN from the candidate list and counts the number (i.e., k) of paths via

which the DAN can be reached, and estimates the expected redundancy, using the informa-

tion in the candidate list and the neighbor table (i.e., d).

3. With p and k, the target redundancy RDD can be looked up from a table like Table 2.1—the

rows show different success ratios and the columns indicate the number of disjoint paths.

Path disjointness holds if the DAN of a node is restricted to be within 2 hops. Otherwise, we

get an estimate using neighbor table information and some heuristics.

4. FP is set to RDD/d if RDD≤ d, or 1 otherwise.

5. A forwarding node prioritizes the partial results by the COUNT field. Then, it starts from

the partial result with the highest COUNT, and selects each partial result according to the

probability, FP.
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k 1 2 3 4 5 6 7 8
ds(p= 0.95) 0.95 1.5 1.8 1.9 2.1 2.2 2.3 2.3
ds(p= 0.9) 0.9 1.4 1.5 1.6 1.7 1.8 1.9 2.0
ds(p= 0.8) 0.8 1.1 1.2 1.3 1.3 1.4 1.4 1.4

Table 2.1: The appropriate redundancy for three target success ratios with different numbers of
paths. The numbers are extracted from Figure 2.4.

Applying the same probability FP on every path is a simple way of enforcing the appropriate

redundancy. We can improve the efficiency of message space by considering the uneven utilization

of each path, but exchanging relevant information for the optimization may incur extra overhead.

2.3.4 Overhead of Maintaining the Overlay Tree

OPAG incurs both communication and storage overheads in maintaining the overlay tree of

data aggregation.

The communication overhead represents the DAN announcement messages. This overhead is

very small when the network connectivity is relatively stable. This is because the total number of

DAN announcements is significantly reduced by using the threshold of the delivery probability and

most DAN announcements can be piggybacked in beacon messages. When the network condition

becomes more dynamic, more announcements need to be sent to maintain the overlay tree.

The storage overhead incurs for the DAN candidate list and the data buffers. OPAG only keeps

a few good DAN entries, so the space cost is small. Each node needs a data buffer to store the

partial results it has to forward. Since all DANs are within a few hops, there are only a limited

number of partial results a node may need to forward. In very dense networks, a node can randomly

pick a few partial results it may consider to forward based on the availability of space.

2.4 System Implementation and Evaluation

This section first details the architecture of our implementation of OPAG, then describes our

evaluation methodology and experimental setup, and finally presents our experimentation results.
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Figure 2.6: Architecture of OPAG implementation on TMote Sky Node.

2.4.1 Implementation Details

We implemented OPAG on the TinyOS 2.0.1, and TMote Sky platform which is equipped with

an 8MHz TI MSP430 processor, 10K RAM, and a 250Kbps Chipcon radio operating at 2.4GHz.

It supports various sensors, such as light, temperature, and humidity.

Our implementation of OPAG is based on the Collection Tree Protocol (CTP) in TinyOS-2.x

source[37]. As shown in Figure 2.6, OPAG consists of four major components: TopoMgt (Topol-

ogy Management, a modified version CtpRoutingEngine), NbrTable (Neighbor Table, slightly

modified from LinkEstimator), DanMgt (Data Aggregation Node Management), and DataMgt

(Data Management, modified from CtpFowardingEngine).

Like CtpRoutingEngine, TopoMgt estimates and exchanges link-quality information by peri-

odically broadcasting beacon messages. Then, based on the link-quality information, TopoMgt

forms a spanning tree. However, the three changes that TopoMgt makes to CtpRoutingEngine are:

(1) each beacon message bears the current clock to achieve a loose time synchronization; (2) the

beacon timer is modified so that each node only broadcasts beacons during the beacon slots, and

after each beacon message, a DAN announcement message is sent; (3) in addition to using bidirec-

tional link quality, TopoMgt skips those neighbors with poor outgoing link quality when selecting

a parent node.
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DataMgt extracts the partial results from incoming data messages, and then processes them in

three different ways: (1) if a partial result’s DAN is the current node, DataMgt aggregates it; (2) if

the result’s DAN is in the DAN candidate list, DataMgt discards it, because this node would have

received some advertisements of the DAN if it is on a forwarding path; (3) for the other partial

results, DataMgt selectively forwards some of them, depending on the availability of space in the

message payload field.

DanMgt maintains a list of DAN candidates and computes the probabilities to select the best

DAN. NbrTable maintains the neighbor table and link-quality information, just like LinkEstimator.

Because multi-path routing is more energy-efficient than retransmission, a node exploits the

multi-path routing opportunistically. If the best DAN can meet a given probability requirement, it

sends its partial result in a broadcast message, and therefore, the partial result may be forwarded

via multiple paths; otherwise, it sends the partial result in a unicast message to its parent node. In

the former case, broadcast messages are not acknowledged; in the latter case, the parent node only

sends an acknowledgment if it successfully receives the child node’s partial result, rather than the

entire message.

To support the acknowledgment of a specific partial result rather than the entire message, we

added in the CC2420 radio stack a segment CRC checking [38]: instead of having one CRC

checksum for the entire message, a 1-byte CRC checksum is added to each of the partial results

within the message. The original CRC checksum only verifies the message header. Upon receiving

a unicast message from a child node, the parent node first checks the header’s CRC. If the header

is corrupted, the whole message is dropped. If the child’s partial result was received correctly, the

parent node sends an acknowledgment. Other partial results, if received correctly, are processed

as usual, or discarded if corrupted. The child node needs to retransmit the unicast message unless

it receives the acknowledgment of its partial result or the retransmission limit is reached. Other

nodes overhear the unicast message and process the partial results individually.

Aggregation query and accuracy: In this chapter, we focus on commonly-used, duplicate-

sensitive aggregates, such as COUNT, SUM, and AVG. The size of a partial result for these simple

aggregates is usually small, so a data message can hold several partial results, thereby making

message multiplexing possible. In our experiments, we run the COUNT aggregate over the entire

network, i.e., counting the number of live sensors in the network.
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We use the relative error to evaluate the performance of different aggregation approaches. The

relative error is defined as |x−x̂|
|x| , where x̂ is a result and x the true value. In the figures of aggregation

accuracy, unless otherwise noted, we show the median values as well as the 5 and 95 percentiles.

We do not use the percentage contribution because it does not reflect the computation error incurred

by statistical counting in SD.

For complicated queries, such as histogram and Sketch of the light readings of the entire net-

work, the size of a partial result may vary, depending on the amount of data involved and the

accuracy of the partial result [39, 40]. So, there is contention for limited message space between

the accuracy of a partial result itself, and the need for message multiplexing to tolerate message

losses. Extension of OPAG for complicated queries is left as our future work.

Energy-efficiency: Each node stays awake throughout the beacon slot and its receiving slot, and

hence the difference is the energy it spends on sending data messages. So, we measured the time

of sending data messages and converted it to energy consumption.

We timestamped a few points in the CC2420 radio stack and measured the time each node

spends in the TX/RX mode during the sending slots. To obtain the energy consumption, we multi-

ply the time spent in the RX mode by Prx = 35.5mW (i.e., the receive power), and the time in the

TX mode by Prx = 31.3mW (i.e., the maximum transmit power). We also used a lower transmit

power, Ptx = 22.5mW in our evaluation.

2.4.2 Experimental Setup

For the purpose of performance comparison, we implemented OPAG, OPAG-RC (OPAG with

the redundancy control, i.e., using the data-selection scheme), TAG (TAG’s tree-based approach),

TAG-RETX (TAGwith retransmission), and SD (Synopsis Diffusion over the ring structure), based

on the CTP source. Because the level-1 nodes are just one hop away and cannot establish multiple

paths to the BS, SD allows these nodes to send each data message three times [11]. For a fair

comparison, the level-1 nodes in TAG also send each data message up to three times. TAG and SD

do not retransmit lost messages except for the level-1 nodes. TAG-RETX retransmits a message

unless it is acknowledged or there have been 4 retransmissions. We do not include Sketch, because

it is almost identical to SD, except that SD uses 32-bit bitmaps, while Sketch uses 16-bit bitmaps.
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To compensate for message losses, OPAG and OPAG-RC use multi-path routing if the redun-

dant paths give a success ratio no less than p, and use retransmissions if there is no redundant path

or the multiple paths yield a success ratio less than p. A node sets p to 0.95 if it has aggregated the

sensor readings of more than 3 nodes, and 0.9 otherwise. Therefore, the partial results with more

contribution to the final aggregation result are unlikely to be lost.

All of the approaches under consideration follow the same schedule as follows. Each epoch is

120s long and consists of 24 slots. A common slot is assigned for all nodes to exchange beacon

messages. Each node is assigned a receiving slot to receive partial results from other nodes, and a

sending slot to send its own partial result (and the partial results it has to forward under OPAG and

OPAG-RC), depending on the node’s level in the topology.

To evaluate our implementation, we used Motelab, the WSN testbed at Maxwell Dworkin Lab-

oratory of Harvard University. Motelab has about 190 Tmote Sky nodes scattered across a number

of rooms on three floors, and about 65 nodes can be programmed. The environment should have

enough multi-path effects from obstacles and interference from other wireless communications as

a realistic WSN deployment does.

Each node uses a CC2420 radio operating at the default radio frequency—channel 11 of IEEE

802.15.4 (2.405 GHz) with the maximum transmit power. It uses the CC2420 radio stack in

TinyOS-2.0.1, which sends 802.15.4-compliant packets, but does not implement the 802.15.4

MAC protocol. The physical header and the MAC header use 20 bytes. The message payload

length is limited by the size of the physical data buffer (120 bytes). We set the maximum payload

size to 60 bytes. Each partial result is 10 bytes long, including 1-byte filtering probability (FP) and

1-byte CRC checksum.

For the results presented in this chapter, all DAN advertisements are propagated within 2 hops

for the following reason. When the DAN is located 3 hops or more away, the multiple paths from

a node to that DAN are very likely braided. Instead of deriving the accurate success ratio over the

braided paths, we simply multiply 0.8 to the ratio, assuming that the paths are independent of each

other. Then, using the estimated success ratio, a node very rarely selects its DAN from 3 hops or

more away.

We ran each test 5 times, and each run lasted about 25 minutes. The first 5 minutes is the

warmup period, in which nodes build up a spanning tree. Then, the COUNT aggregate query runs
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for 8 epochs, each lasting 2 minutes.

2.4.3 Experimental Results

Aggregation Accuracy

We used two transmit powers: 22.5 mW and 31.3 mW (i.e., maximum transmit power), cor-

responding to -7 dBm and 0 dBm, respectively. With the maximum transmit power, 59 nodes

join the spanning tree, while using a lower transmit power, 42–49 nodes join the tree, depending

on different runs. Therefore, we have a topology of relatively strong connectivity (Topology-S)

with an average node degree of 9.7, and a network diameter of 6, and another of relatively weak

connectivity (Topology-W), with an average node degree of 6.3 and a network diameter of 9.2.

Figures 2.7(a) and 2.7(b) show the aggregation accuracy of the five schemes. In both topolo-

gies, TAG has the worst average relative error due to message losses. Using retransmissions, TAG-

RETX can reduce the error by 50-65%, as compared to TAG. Compared to TAG-RETX, OPAG

and OPAG-RC incur a slightly higher error in Topology-S and a comparable error in Topology-S.

This is because in Topology-S, the nodes have better connectivity and thus provide more redundant

paths, and OPAG and OPAG-RC use multi-path routing more aggressively. Therefore, with a small

probability, a partial result may be lost on all paths, leading to a slightly higher aggregation error,

as compared to TAG-RETX. By contrast, in Topology-W, OPAG and OPAG-RC exhibit a relative

error similar to that of TAG-RETX, because the nodes are less connected and thus less likely to

use multi-path routing.

In both topologies, OPAG and OPAG-RC incur a similar error because there is plenty of mes-

sage space, i.e., a message can hold as many as 6 partial results. So, the redundancy control makes

little difference in aggregation accuracy.

SD is very insensitive to the change of topology and network connectivity because (1) its multi-

path routing is extremely aggressive, and (2) the variance of estimation is large. More than 5% of

the estimated results differ from the true value by more than 20%.
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(a) Topology-S

(b) Topology-W

Figure 2.7: Aggregation accuracy

Energy-Efficiency

Before analyzing energy-efficiency, we first show the breakdown of time and energy spent in

sending a message in Topology-S by using the number of retransmissions in Figures 2.8(a) and

2.8(b), respectively. It illustrates that the energy cost increases significantly as more retransmis-

sions are attempted. In fact, as shown in Figure 2.8(b), idle listening (in the backoff and the ack

waiting) takes more than 90% of the energy cost, and sending a message with 4 retransmissions

consumes 7 times more than sending a message without retransmission. Similar results are ob-

tained for Topology-W.

Because the time for transmitting data is much less than the backoff time and the time for wait-
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(a) Time Breakdown

(b) Energy Breakdown

Figure 2.8: The time and energy breakdown with different # of retransmissions in Topology-S

ing for acknowledgments, it is more energy-efficient to let the forwarding nodes on the multiple

paths send a few extra bytes than retransmitting the lost messages.

In Figures 2.10(a) and 2.10(b), we show the distribution of transmitted messages with the num-

ber of retransmissions. In both topologies, about 88% of messages are sent successfully without

retransmission. Due to better connectivity in Topology-S, OPAG and OPAG-RC can take advan-

tage of multi-path routing and increase this percentage to about 95% at the expense of slightly

lower accuracy. The energy cost is reduced by about 33% compared to TAG-RETX, and is about

the same as SD, as shown in Figure 2.9(a). This indicates that our opportunistic schemes can cut

the aggregation error by half at roughly the same energy cost in networks of good connectivity. In
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(a) Topology-S

(b) Topology-W

Figure 2.9: The average energy consumption for sending data per epoch per node

Topology-W, because there are less opportunities to exploit multi-path routing, the energy cost is

only down by about 14% as shown in Figure 2.9(b).

In Topology-S, OPAG-RC consumes a little less energy than OPAG because the redundancy

control can slightly reduce the amount of data some forwarding nodes have to send. In Topology-

W, the difference between OPAG and OPAG-RC is negligible because there is less chance of using

multi-path routing and therefore, the redundancy control is less involved.

In both topologies, TAG consumes the least amount of energy because each node sends one

short message without retransmission. SD consumes more energy than TAG because it needs to

transmit more bytes in each message.
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(a) Topology-S

(b) Topology-W

Figure 2.10: The distribution of retransmission

Moreover, Figures 2.8(b) and 2.10(a) show the ability of OPAG and OPAG-RC to balance

the energy consumption, because some nodes can avoid retransmissions which incur much higher

energy consumption, and the forwarding nodes only need to consume a little more energy for

transmitting more bits than retransmitting messages.

Effectiveness of Redundancy Control

To evaluate the effectiveness of redundancy control, we set the maximum number of partial

results packed in one message to be 5, 4, 3, 2. Figure 2.11(a) shows the relative errors of OPAG

and OPAG-RC. For Topology-S, the redundancy control makes a noticeable difference at the limit

of 3 and 4, because several level 2 and 3 nodes need to forward the partial results of about 4 or 5

nodes. In fact, a majority of forwarding nodes only need to send 2 or 3 partial results. At the limit
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(a) Topology-S

(b) Topology-W

Figure 2.11: The effectiveness of the redundancy control scheme

of 1 and 5, the message space is either scarce or abundant, the redundancy control is not effective.

In Figure 2.11(b), for Topology-W, multi-path routing is less likely used, so there is little com-

petition for message space, and the redundancy control rarely gets involved.

2.5 Simulation Results

In order to evaluate its performance under widely-varying network conditions, we simulated

OPAG using the TinyOS simulator (TOSSIM) [41].

400 nodes are placed evenly in an 80m×80m grid with node 0 (a.k.a. the BS) at the center, and
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Figure 2.12: Effect of link quality on the aggregate accuracy.

all nodes have a 10m radio range. Then, in level 1 there are three times as many nodes as in level

2. Even if a node at level 2 only uses 2 forwarding nodes in level 1 (i.e., two paths to reach the BS)

on average, each node in level 1 has to forward 6 partial results. Therefore, due to limited message

space, level-2 nodes are more restricted than those in other rings in exploiting multi-path routing,

So, we placed 20 more nodes in the BS’s radio range, which basically doubles the node density in

level 1. Deploying more nodes around the BS can be justified as they usually drain their batteries

faster than those in the rest of the network.

Message size and transmission model: For TAG and SD, the message payload size is 48

bytes, as in previous studies. For OPAG and OPAG-RC, the payload size varies to be 38 bytes, 46

bytes or 54 bytes which hold 4, 5, and 6 data entries, respectively.

We use the bit-level lossy model in TOSSIM, meaning that the size of the message affects the

packet loss ratio. Specifically, given the bit-error probability, eb, the packet loss ratio is modeled

as ep = 1−(1−eb)L, where L is the total number of bits in a message, including the preamble and

the message header.

2.5.1 Effect of communication loss

Figure 2.12 shows the effects of link loss on the aggregate accuracy of different aggregation

schemes. We only present the results of OPAG and OPAG-RC with the message payload size of

46 bytes, which is close to the payload size (48 bytes) used in TAG and SD.
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Figure 2.13: Effect of link quality on the overhead of maintaining the overlay tree in OPAG.

We can see that the median relative error for OPAG and OPAG-RC is below or around 0.1 until

the link loss rate increases to 0.5. This shows that OPAGs are robust to moderate message losses.

The performances of OPAG and OPAG-RC are similar in these tests because the message payload

size (46 bytes) accommodates up to 5 data entries, so contention for message space is relatively

modest and the data-selection scheme makes little difference.

SD is even more robust to message losses—its median relative error remains around 0.1 even

when nearly a half of messages are lost. This is because SD aggressively exploits the multiple

paths from each node to the BS, which are much wider (i.e., contains more paths) than the paths

from a node to its DAN in OPAG and OPAG-RC. However, due to the estimation error, the relative

error does not decrease as the network condition is very good. Because TAG does not deal with

messages losses at all, the error increases significantly as the network condition gets worse.

Figure 2.13 shows the effect of network condition on the communication overhead of DAN an-

nouncements. The overhead is measured by the average number of DAN advertisement messages

per node per epoch, excluding the DAN advertisements during the warmup period. As the average

link loss rate increases, the link quality suffers greater fluctuations because the radio model in our

simulation randomly “corrupts” packets based on the loss rate. The figure confirms that more fluc-

tuations trigger more updates. As the link quality continues to degrade, the overhead decreases,

because many links are labeled as poor links, which are simply ignored in the neighbor tables and

therefore, do not trigger any announcements.
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Figure 2.14: Node densities 1
64 ,

1
32 , and

1
16 indicate about 5, 10, and 20 neighbors, respectively.

2.5.2 Effect of node density

To evaluate the impact of node density, we vary the total number of nodes without changing the

deployment region. Also, the node density applies to the entire region except for the area within

the BS’s radio range, in which the density always doubles. Figure 2.14 shows that both OPAG

and OPAG-RC are more sensitive to node density than SD for two reasons. First, SD exploits

multi-path routing more aggressively than OPAGs. Second, SD’s statistic counting is relatively

insensitive to data losses due to its estimation error. From Figure 2.14, we find that OPAG performs

well when each node has 10 or more neighbors.

2.6 Related Work

A number of researchers studied data aggregation in WSNs [9, 27, 28, 42, 11, 10, 12]. Their

approaches use a tree topology (value-splitting can be considered as a special approach based

on a tree topology) with exact computation of aggregate results, a ring topology with statistical

estimation, or both. The tree-based approaches [9, 27, 28, 42] do not incur any computation error,

but are not robust to message losses. In contrast, the ring-based approaches [11, 10] are very robust

to message losses by aggressively exploiting multi-path routing, but their statistical estimation

leads to significant result inaccuracy.

To combine the advantages of tree topologies and multi-path routing, Tributary-Delta (TD)[12]
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allows a WSN to form a hybrid topology, visually termed as tributary-delta, where a tributary

refers to an area where nodes in a very good condition form a sub-tree, and the delta refers to

the area where the BS and some nodes form a multi-path sub-graph. When the network condition

changes, the delta area and the affected tributary areas can be adjusted adaptively subject to the

restrictions of topological correctness. TD can significantly improve the accuracy of aggregate

results over that of Sketch/SD only if the BS receives exact partial aggregate results that make up

a good portion of the final result. This requires the BS to be fed directly by some sub-trees which

cover a large part of the network. However, with strict restriction of topological correctness, such

scenarios are unlikely to hold in the real world.

OPAG is a new data-aggregation scheme with zero computation error and good tolerance to

moderate message losses. It separates in-network data aggregation into two layers: (1) at the

data-aggregation layer, aggregation results are computed exactly along an overlay tree; and (2) at

the underneath routing layer, a node opportunistically uses multi-path routing to send its partial

result to a data-aggregation node (DAN). Also, the multi-path routing in OPAG differs from that

of Sketch, SD and TD.

GRAB [43] proposes a credit-based forwarding scheme to control the redundancy of multiple

paths between a data source and a data sink. Each sensor node is assigned a cost, which is the

minimum energy to forward a packet from this node to the sink. Every packet is broadcast with

a credit, and only the neighbors whose costs are below the credit re-send the packet. Therefore,

the amount of credit determines the redundancy of the forwarding mesh. In contrast, OPAG is

motivated to control the redundancy of data entries rather than that of the paths. We analyze

the relationship between the data redundancy and the success ratio, and then design an algorithm

that probabilistically forwards the data entries with minimum redundancy while retaining a given

success ratio.

Boulis et al. [44] study the tradeoff between the aggregation accuracy and the energy consump-

tion by taking advantage of the spatial-temporal correlation among sensor values. The idea is to

create a system-level energy vs. accuracy knob whereby the less accurate the aggregation results,

the less sensor values are used to estimate the aggregate results by using the data correlation more

aggressively, and therefore less messages need to be exchanged. This approach is orthogonal to

OPAG, as OPAG takes advantage of good network connectivity rather than data correlation. A
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proper combination of the two approaches may achieve better accuracy-energy tradeoff.

In the context of splitting a packet over a number of disjointed paths with forward error correct-

ing (FEC) codes, Dulman et al. [45] analyzed the relationship between the number of successfully

delivering paths and the overall success probability of restoring the packet. By contrast, OPAG

delivers each data entry via a set of paths without splitting it, and its analysis focuses on the rela-

tionship between the data redundancy and the success ratio of data delivery.

Parametric Probabilistic Routing [46] is a multi-path routing scheme for one-to-one communi-

cation in WSNs. Instead of specifying the paths between a source and a sink, the scheme allows

each neighbor to forward packets with a certain probability based on the hop counts between the

source, the sink, and the forwarding node. OPAG deals with in-network data aggregation, and the

forwarding probability of a data entry is based on the data redundancy and the given threshold of

success ratio.

Directed Diffusion [47] proposes a data-driven communication paradigm for WSNs. A data

sink distributes a sensing task in the sensor network as an “interest,” and the distribution process

sets up gradients which are used to forward data from the data sources to the sink along multi-

ple paths. Ganesan et al. [48] addresses the DD’s drawback on energy-efficiency—DD requires

periodic flooding to notify the sink and other nodes of available paths, and proposes a localized

algorithm for setting up and maintaining alternative paths in advance. It also studies the tradeoff

between the maintenance overhead of alternative paths and the resilience to node failures. These

two schemes are not tailored to in-network data aggregation, and do not explore the relationship

between the data redundancy and the success ratio, either.

Dozer [36] presents a data-gathering system which achieves impressive power efficiency—in

the magnitude of 0.2% radio duty cycles. It uses a spanning tree topology and coordinates the

communication between a parent and its children nodes by a TDMA protocol. Because wireless

communication is inherently lossy. OPAG can complement this approach in reducing the number

of retransmissions and lowering the energy consumption further.
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2.7 Concluding Remarks

In this chapter, we presented a novel approach, calledOpportunistic Data Aggregation (OPAG),

for in-network data aggregation with no computation error and tolerance to moderate message

losses in wireless sensor networks. By space-multiplexing messages, OPAG divides in-network

data aggregation into two layers: (1) at the data-aggregation layer, intermediate aggregation results

are computed exactly along an overlay tree; and (2) at the underneath routing layer, a node may

send intermediate results to its aggregation node via multiple paths.

OPAG opportunistically uses multi-path routing to combat communication losses and achieve

better energy-efficiency than using retransmissions. This is based on the observation that, when

sending a message, the radio (e.g., the widely-used CC2420 radio) may consume much more

energy in idle listening during the backoff period and the time in waiting for the acknowledgment

than transmitting data bytes. Retransmitting a message is not energy-efficient because it incurs

more idle listening on more backoffs and more time of waiting for an acknowledgment. In order to

avoid extra idle listening, OPAG uses a multi-path routing scheme that differs from the traditional

multi-path routing.

In order to use message space efficiently, OPAG uses a data-selection scheme that leads to

optimal redundancy on high-priority partial results and provides as much message space as possible

for low-priority results. The algorithm is based on an analysis of the relationship between the data

redundancy and the success ratio over multiple disjoint paths.

We implementedOPAG on TinyOS-2.x and the TMote Sky node, and evaluated its performance

on the Motelab Testbed, and TOSSIM. Experimental and simulation results show that OPAG per-

forms much better than TAG and Sketch/SD under relatively good network connectivity, and the

data-selection scheme provides improved performance when contention for the message space is

moderate.
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CHAPTER 3

Post-Deployment Performance Debugging

3.1 Introduction

Those who have been developing wireless sensor networks (WSNs) may sometimes observe

poor application performance that was not seen in pre-deployment simulation or laboratory exper-

iments. Such performance degradation may be attributed to several factors, such as different radio

channel conditions, changed network topologies, undetected program bugs exposed in different

execution environments, and the sensor instability caused by a harsh physical environment (e.g.,

temperature, humidity and vibration).

Post-deployment performance debugging is, therefore, very important, but often more difficult

and more expensive than pre-deployment debugging in a laboratory setting. When a WSN appli-

cation exhibits poor post-deployment performance, users (i.e., programmers and administrators)

usually do not know which nodes in the network, nor which pieces of debugging information,

should be examined closely to determine the causes of the problems. A common way of handling

this problem, such as Sympathy [14] and MintRoute [15], is to make every node record detailed de-

bugging information and send it to a data-sink node which then analyzes the information collected

from all nodes. However, this approach may collect a large amount of information irrelevant to the

observed problems, wasting battery energy on the sensor nodes and hence shortening their lifetime.

It may also cause distraction from the effort of locating the problem sources, and interfere with ex-

ecution of the underlying applications. Other approaches, such as NMS (Network Management

System) [16], require users to query individual nodes interactively and iteratively. But, without

any clue for the causes of the problems, they may have to query a large number of nodes before
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locating and isolating the problems, thus taking a long time and consuming a significant amount

of energy.

We argue that post-deployment performance debugging should focus on performance-in-the-

large rather than the performance of individual nodes or even individual software modules for the

following two reasons. First, the performance problems in a large WSN usually cannot be di-

agnosed by focusing on individual nodes or components. Second, post-deployment performance

debugging is energy-expensive, and should, therefore, be turned on only when the overall applica-

tion performance is unacceptably poor.

Our goal is to design, implement and evaluate a tool that helps users find the nodes and the

software components that performance degradation can be ascribed to, and provides preliminary

debugging information, such as the data loss rates and latencies on the nodes and components.

According to the information, users can zoom in on these and nearby nodes, and extract more

detailed debugging information, such as the neighbor table and the node state, to identify the causes

of the problems using other debugging tools, like NMS [16], Sympathy [14], Dustminer [60] and

PAD [61].

To achieve this goal, we propose a data-centric approach called post-deployment performance

debugging (PDPD or PD2 for short). PD2 focuses on the data flows that a WSN application gen-

erates, and relates “poor performance” of the application to significant data losses or latencies of

some data flows (i.e., problematic data flows) as they go through the software modules on individ-

ual nodes and through the network. Based on the data dependencies between different software

modules and between different nodes, a few inference rules are derived for tracing back in each

problematic flow. PD2 turns on performance monitoring of, and collects debugging information

from, only those modules and nodes that the problematic flows go through. Then, PD2 visualizes

the debugging information to locate the dominant sources (i.e., some software components on cer-

tain nodes) of significant data losses and latencies on the data flows, and hence, helps users locate

performance problems.

PD2 can be applied to a wide range of WSN applications, in which users can express their ex-

pectation of the application performance with respect to message loss and/or latency of data deliv-

ery, and data routing paths (i.e., data flows) are relatively stable, such as data collection/aggregation,

and event-driven applications with mobile data sinks.
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PD2 is an automatic, efficient, and effective debugging tool for WSNs:

• Automatic: PD2 requires very small changes to application source codes and minimal human
intervention in collecting the debugging information;

• Efficient: PD2 incurs minimal overhead when the application does not exhibit any perfor-
mance problem, and avoids collection of irrelevant information and condenses redundant

debugging information when it does;

• Effective: PD2 helps isolate the nodes and the software modules on these nodes where the
problems occur.

The rest of this chapter is organized as follows. Section 3.2 describes the system model, the

performance metrics of interest, and the goals of this work. Section 3.3 presents an overview

of PD2, and Section 3.4 provides its detailed architecture. Section 3.5 experimentally evalu-

ates PD2’s performance on a real testbed. Section 3.6 discusses the generalizability and limitation

of our approach. Section 3.7 discusses related work. Finally, we discuss future work and conclude

the paper in Section 3.8.

3.2 System Model, Metrics, and Goal

This section describes the system model and performance metrics we will use, along with the

goals of PD2.

3.2.1 Data-Centric Model

Wemodel each WSN application as a directed graph, in which a node corresponds to a software

component within a sensor node, and an edge indicates a potential data flow from one component

to another, where the two components may reside in the same sensor node or two different sensor

nodes. The application generates some data flows, each running on a causal path—a sequence of

nodes traversed—in the graph.

For example, TestCollection, a WSN application in the TinyOS-2.x source, runs the Collection

Tree Protocol (CTP) [37], in which the network forms a spanning tree rooted at the data sink, and

each of the other nodes periodically sends its data to the sink via its parent. Figure 3.2 illustrates
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Figure 3.1: Each circle represents a node. A dashed edge from N1 to N2 indicates that N2 can hear
N1. A solid edge from N1 to N0 indicates that N1 selects N0 as its parent node in the Collection
Tree Protocol (CTP). N0 is the data sink.

the graph of TestCollection running on the network topology shown in Figure 3.1. This example

assumes the TelosB mote platform with the CC2420 radio [49], but the model is applicable to any

other platform. On each node, the sensor software is divided into three layers. At the top, the

application layer has a component, TestCollection. In the middle, the network layer has six com-

ponents: CtpForwardingEngine, CtpQueueSend, CtpRoutingEngine, LinkEstimator, AMSender,

and AMReceiver. At the bottom, the MAC layer has one component, CC2420ActiveMessage.

TestCollection generates two types of data flows: data and beacon. The thick dotted curve

represents the causal path for a data message from N3 to N0. In Figure 3.2, TestCollection on

N3 initiates a data flow, and calls the send function provided by CtpForwardingEngine on the

same node. CtpForwardingEngine sets the destination address to the parent node ID, and passes

it to CtpQueueSend.1 CtpQueueSend may buffer a number of messages, and send them one at

a time by calling the send function of AMSender. AMSender, as a multiplexed sender, calls

the send function of CC2420ActiveMessage to send it via the air. Upon receiving the message,

CC2420ActiveMessage on N1 notifies CtpForwardingEngine through AMReceiver, a multiplexed

interface. Likewise, CtpForwardingEngine continues to forward it to N1’s parent, N0. When the
1The original implementation of CTP in TinyOS-2.x embeds a send queue into CtpForwardingEngine. We separate

the two for finer modularization and debugging, which will be discussed later.
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Figure 3.2: Each solid square represents a software component, and each directed edge indicates
a possible data flow from one component to another. Each solid oval represents a virtual node
of the radio channel. CC2420 radio is assumed, and the entire radio stack is considered as one
component. A thick dotted curve represents the causal path of a data message, and a thick dashed
curve represents the causal path of a beacon message. This figure only shows one data flow (from
N3 to N0 via N1) and one beacon flow (from N3 to N1 and N2), and omits the other data/beacon
flows for clarity.
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Figure 3.3: We assume low-power listening is disabled, and omit a few optional modules, such
as CC2420AckLpl, PacketLink and CC2420TinyosNetwork. The thick dotted and thick dashed
curves in Figure 3.2 show how a message traverses the radio stack.

data message reaches CtpForwardingEngine of N0, it is passed up to TestCollection because N0 is

the sink.

The thick dashed curve in Figure 3.2 represents the causal path for a beacon message from

N3 to N1 and N2. The CtpRoutingEngine component initiates the task of broadcasting a beacon

message, and calls the send function provided by the LinkEstimator. LinkEstimator passes it to

AMSender, which then sends it out through CC2420ActiveMessage. When receiving a beacon

message, CC2420ActiveMessage of N1 (and N2) passes it up to AMReceiver, LinkEstimator, and

finally, to CtpRoutingEngine. Beacon messages are used to estimate and exchange the link-quality

information, which CtpRoutingEngine uses to choose the parent in the data-collection tree.

In our model, a “component” is a target entity of performance debugging, and may consist of

one or multiple TinyOS nesC modules [50]. Whether or not to group several correlated modules

into one component depends on the need of performance debugging. For example, the CC2420

radio stack consists of multiple nesC modules. If we need not look into the internal details

of MAC, we can treat the entire radio stack as one component, CC2420ActiveMessage; other-

wise, we decompose it into six components: CC2420ActiveMessage, UniqueSend, CC2420Csma,

CC2420Transmit, UniqueReceive, and CC2420Receive, as shown in Figure 3.3.
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3.2.2 Performance Metrics

Performance evaluation is subject to the nature of the application under debugging. The pre-

sentation of our approach confines its scope to data-collection applications in which each node

periodically sends data to the sink. In Section 3.6, we will discuss how our approach can be ap-

plied to other applications.

We consider the sequence of data each node sends to the sink during a time-window as a data

flow, and evaluate two performance metrics: the loss rate and latency of each data flow. The loss

rate is the fraction of data that were sent but not received by the sink, i.e., lost or dropped along the

corresponding causal path. The latency is the average delay from the time of data production to

the time of its successful reception by the sink. Note that the latency is closely related to the loss

rate. For example, radio retransmission can reduce the loss rate at the expense of longer latency.

We assume that the loss rate and latency of each data flow can be ascribed to the traversal of

nodes along the causal path. More importantly, locating the traversal of nodes that contributes

significant data loss and latency can help isolate the causes of performance problems. Note that

the same node may incur different loss rates or latencies. For example, the radio component,

CC2420ActiveMessage, is likely to incur higher loss rates and shorter latencies to the messages

allowing only one retransmission than those allowing three retransmissions.

3.2.3 Goals of PD2

Our goal is to create a debugging tool and methodology that helps locate performance problems

in a WSN application. Specifically, this tool should, in the context of our model,

G1. identify the causal path patterns—the repeated causal paths that account for significant data

losses, and high latencies;

G2. locate the nodes and components on the causal paths that contribute to significant losses and

high latencies; and

G3. deal with the resource constraints and the scalability issues of sensor networks.

Our tool is not for automating performance diagnosis, but for locating the causes of poor per-

formance with the debugging information presented to us.
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Figure 3.4: Node 3 suffers from radio interference, and consequently, its average loss rate and
latency seen at the sink, N0, are considerably higher than those of other nodes.

3.3 Overview of PD2

How can a tool locate performance problems in a sensor network application without the global

knowledge of the network? Our approach models the data flows generated by the application

as node traversals in a directed graph of software components, and uses the data dependencies

between components to trace back the causal paths (i.e. data flows) incurring high data losses or

latencies. The performance of the components on the causal paths are monitored and reported

to the sink. Then, the collected debugging information is visualized to help users diagnose the

problems or examine closely the components with high losses and latencies using other tools.

Figure 3.4 shows an example that the application, TestCollection, exhibits poor performance

because N3 suffers from radio interference. For bookkeeping performance, N0 computes the aver-

age loss rate and latency for each of the other nodes in the network. When it sees N3’s loss rate is

above a user-defined threshold 0.2, “poor performance” is alerted, and then PD2 is automatically

invoked: (1) starting from TestCollection on N0, it traces back the causal path to TestCollection

on N3 (shown as the left graph in Figure 3.5); (2) on each node in the reverse direction of a causal

path, it turns on the debugging—letting the corresponding component record the loss rate and la-

tency as the data goes through the component in both send and receive directions (shown as the

right graph in Figure 3.5). PD2 periodically sends the average loss rates and latencies to the data

sink, and helps us identify the communication from N3 to N1 as the dominant source of the loss

and latency (indicated by the dark grey boxes). After a pre-specified duration, all components turn
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Figure 3.5: This figure illustrated how to trace back the causal path, and how to record the average
loss rate and latency in both down and up directions. rx lr, tx lr, and tx lt represent the receive loss
rate, the send loss rate, and send latency respectively. The receive latencies on all components are
zero, and thus omitted.

off debugging, hoping that enough debugging information has been collected. If poor performance

persists and the source has not yet been isolated, users may allow PD2 to turn on debugging again.

Figure 3.5 shows the CC2420 radio stack as one component. However, if users need to analyze
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what contributes most to the latency of the MAC, it is decomposed into several components, and

more detailed information is thus collected.

Our approach consists of the following three phases:

P1. Define the debugging components and the causal relationship between the components man-

ually or through a compiler. In this phase, we (the programmers and administrators) need to

decide which nesC modules should be debugged, and define the components as a module or

a group of several related modules. Then, we run a script which adds a few lines of simple

instrumentation code into the corresponding modules, so that PD2 can record, at runtime,

the loss rates and latencies when needed.

P2. Turn on debugging by tracing back the causal paths when poor performance is alerted. After

deployment, the application performance is monitored at the sink node. If poor performance

is alerted, i.e. above a user-defined threshold, PD2 traverses the casual paths in the reverse

direction, and activates debugging on the components (modules) along the paths. The ac-

tivation also specifies the frequency that the average loss rates and latencies are computed

and reported to the sink, and the time when debugging is turned off. As the debugging data

converge towards the sink, they may be condensed to reduce traffic load.

P3. Visualize the collected debugging information. As the debugging information comes in, it is

visualized on the sink—we assume the sink has enough resources like a PC has. If we can

isolate the modules/nodes that cause poor performance, we may sometimes infer the problem

causes ourselves or by using a decision tree as Sympathy [14]. Or, we can use NMS to query

specific information on the suspicious modules/nodes. Otherwise, we may have to reiterate

the debugging process, refining the source modules and the debugging components, and

repeating the three phases.

3.4 Architecture

When a WSN application exhibits poor performance, the sink initiates performance debugging

by sending a triggering message to the Performance Debugging Communication (PDC) module,

which triggers the Performance Debugging Engine (PDE) to turn on performance monitoring on
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Figure 3.6: The architecture of PD2

the software component that is the endpoint of the causal path. PDE iteratively infers the previous

component(s) on the path by using a set of triggering rules. If the previous component resides at a

different node(s), PDE sends a triggering message via PDC to the node(s). With debugging of the

software components on the causal paths turned on, PDE monitors the loss rates and latencies as

data passes through the components, and stores them in the Performance Debugging Buffer (PDB).

Then, PDE periodically sends, via PDC, the performance information to the sink. Figure 3.6

depicts the architecture of PD2.

3.4.1 Derivation of Triggering Rules

Triggering rules are derived from the causal relationships between components. Typically, if

traversing component C1 causes the traversal of component C2, the corresponding rule specifies

that turning on the debugging of C2 triggers the debugging of C1. In order to systematically derive

the triggering rules, we classify the casual relationships as follows.

• Pass-Down: An upper-layer component passes the data to a lower-layer component. For

example, TestCollection calls the send command of CtpForwardingEngine.
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• Pass-Up: A lower-layer component hands the data off to an upper-layer component. For

example, CtpForwardingEngine signals the received event of TestCollection.

• Send-Receive: A component of one node sends out the data to a component of another

node. For example, a data message sent by CC2420ActiveMessage of N3 is received by

CC2420ActiveMessage of N1.

• User-Defined: This class of causal relationship is entirely up to users. However, users should

be prudent to avoid arbitrary interpretation of causality between components.

The relationships, Pass-Down and Pass-Up, are easy to identify, because we only need to look

for the components connected by Send, AMSender, and Receive interfaces. Send-Receive is al-

ways applied to the communicating components on different nodes. For example, if we treat the

CC2420 radio stack as one component, they both are a CC2420ActiveMessage; if we are interested

in the internal workings of the CC2420 radio stack, the CC2420Receive on one node may trigger

the CC2420Transmit on another node.

3.4.2 Performance Debugging Engine

At the core of PD2 is the Performance Debugging Engine (PDE) which provides two interfaces:

PdeTrigger and PdeMonitor. The former is used for interaction between PDE and PDC, while the

latter is used to monitor the performance of software components.

The most important function of PDE is to infer the previous component(s) on the causal path.

Upon receiving a triggering message from the sink or the PDC of another node, PDC turns on per-

formance monitoring on the component as specified in the message. Then, PDE iteratively applies

a set of triggering rules to infer the next component to be triggered, i.e., the previous component

on the path. If the next component(s) resides at a different node(s), PDE signals an event to PDC,

which then broadcasts triggering messages to notify the component of those neighbors on the data

path. A data path may be labeled along the forwarding nodes by saving the origin id or using a

blooming-filter[52].

Suppose N3 suffers from significant data loss. Then, the sink triggers debugging on the com-

ponent, TestCollection on N0 with the dependency, Pass-Up which indicates incoming data with
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regards to N0. By iteratively applying the appropriate rules, PDE triggers the components, Ctp-

ForwardingEngine, and CC2420ActiveMessage (AMReceiver is a trivial interface component, and

thus omitted). When CC2420ActiveMessage is triggered, PDE changes the data dependency to

Send-Receive, because the data must be from a neighbor(s). Then PDC broadcasts a message to

trigger CC2420ActiveMessage of its neighbors. Note that not all neighbors send N3’s data to N0,

i.e., not all neighbors are on the causal path. Each neighbor (N1 or N2) checks if it has sent N3’s

data by a sent-cache or a bloom-filter bitmap which records the IDs of the origins of the data it has

forwarded. N2 ignores the triggering request because it is not on the causal path.

CC2420ActiveMessage on N1 is triggered with the dependency Pass-Down which means out-

going data with regards to N1. Then, PDE of N1 triggers the component, AMSender, CtpQueue-

Send, and CtpForwardingEngine using the rules. As a forwarding node, N1 changes the incoming

data from N3 to outgoing at CtpForwardingEngine. Accordingly, PDE has a user-defined rule to

change the data dependency from Pass-Down to Pass-Up. By Pass-Up, CC2420ActiveMessage of

N1 is then triggered.

Similarly, N1 broadcasts a triggering message to its neighbors. N0 just ignores the message

because it is a duplicate triggering request. PDE of N3 then triggers the component, AMSender,

CtpQueueSend, CtpForwardingEngine, and finally, TestCollection, which is the starting point of

the data path.

As data goes through a component with debugging turned on, it signals an event to report its

action on the data to PDE. Then, PDE stores the debugging information in PDB, which has an entry

for each component for each flow. PDE sends the debugging information every period (specified

in those triggering messages). Debugging is turned off after a specified duration, and only the

components on the causal paths report debugging information. This reduces the energy cost of,

and the distraction by, irrelevant information.

3.4.3 Grey-box Performance Monitoring

We consider each debugging component as a grey-box: we only record the loss rate and the

latency that the module imposes, and ignore the internal workings; if the internal states are needed

for diagnosis, we decompose the component into several finer subcomponents.

Three operations are monitored: send, sendDone, and receive. A message is considered suc-
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Figure 3.7: Monitoring of latency

cessfully sent if the command send is executed successfully and the event sendDone is notified

successfully. So, the send loss rate of a component is one minus the number of successful sends

over the total number of sends. On the receiving side, the receive loss rate of a component is one

minus the number of receive events over the total number of messages sent out (calculated from

the message sequence numbers).

Simple instrumentation codes are inserted by a preprocessing script, which goes through the

configuration files that wire different components. If a component in a configuration file is labeled

to be instrumented, the script inserts the instrumentation code to the appropriate locations in the

corresponding module file.

Figure 3.7 shows how the latency is monitored. Basically, the send latency of a component is

the time between send and sendDone minus the latency of its lower component. For example, the

latency incurred by CtpForwardingEngine is the time between CtpForwardingEngine’s send and

senDone minus the time between CtpQueueSend’s send and sendDone.
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Figure 3.8: Each circle represents a node. The solid curve indicates the data flow, and the dotted
arrows indicate the propagation of triggering messages. The number enclosed in each circle is the
gradient of the node.

3.4.4 Communication of Performance Debugging Information

PD2 does not assume any routing scheme, because routing itself may cause performance prob-

lems. When propagating the triggering messages, PDC simply broadcasts them to all neighbors;

each neighbor decides whether or not to continue propagation of the triggering messages based on

if they are on the causal paths.

Sending debugging messages to the sink is more complicated. We need a reliable and simple

routing scheme that incurs low data loss and low complexity. Flooding is an option, and may

perhaps become a good option when the network suffers from significant message losses. The

shortcoming of flooding is that it generates lots of traffic and consumes a significant amount of

energy.

We use the simplest gradient-based, multi-path routing. As triggering messages propagate

along the reverse direction of casual path, each node finds the hop-count distance between itself

and the sink, as shown in Figure 3.8. The hop count is used as the gradient of that node. Each

node broadcasts its debugging messages to all neighbors, and only those neighbors with smaller

gradients re-broadcast the debugging messages.
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3.4.5 Aggregation of Debugging Messages

The goal of aggregating debugging messages is to condense uninteresting debugging informa-

tion, while extracting and preserving useful information. If none of the components on a node

contributes to significant data losses or latencies, we can suppress their debugging information

into a more succinct “OK” message. Moreover, a relay node can merge multiple OK messages to

further reduce the amount of uninteresting debugging traffic. In order to aggregate as many OK

messages as possible, the nodes closer to the sink wait for a certain amount of time before sending

out the merged OK message.

3.4.6 Handling Incomplete Debugging Information

What if the collected debugging information is incomplete due to radio loss? In the worst case,

what if the radio is so jammed that some nodes cannot report any debugging information? There

are two ways to deal with incomplete debugging information: visualization and delayed reporting.

We visualize both useful debugging messages and OK messages. If certain nodes report much

less debugging information than others, we label them with lighter colors. We should then see

void areas or holes in the network. With this knowledge, we can switch to flooding, or use other

debugging tools, such as NMS[16], to query key information of specific nodes, e.g. the neighbor

table, the radio state, and the average backoff time. If these nodes are not reachable, we will be

able to see the changes of network topology to avoid the jammed areas.

Delayed reporting assumes that severe communication loss is transient. The nodes store the

debugging information in flash memory, and attempt to send them when the network condition

improves.

3.4.7 Visualization of Results

We first filter out duplicate information from the debugging information delivered to the sink,

and then use graphical tools to visualize it.

On top of a network map, we plot the components next to each sensor node, then draw edges

between the components based on the causal relationship contained in the debugging information.

Then, we label the performance metrics next to each component. An example figure is shown
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in Figure 3.9. CtpForwardingEngine of Node 1 sends about 17 messages because TestCollection

of Node 1 (not shown in the figure ) generates 10 messages. The dotted entries do not show

significant loss rates or latencies, and therefore they are not sent to the sink in order to reduce

debugging overhead.

3.5 Evaluation

We implemented PD2 on the TMote Sky platform [33] and evaluated it on Motelab [32] at

Harvard University. We first present implementation details. Then, we describe our evaluation

methodology and experimental setup. Finally, we present the experimental results.

3.5.1 Implementation Details

We implemented PD2 on the TinyOS 2.0.1 and TMote Sky platform, which is equipped with

an 8MHz TI MSP430 processor, 10K RAM, and a 250Kbps Chipcon radio operating at 2.4GHz.

It supports various types of sensors, including light, temperature, and humidity sensors.

PD2 assigns an ID to each of the following components: TestCollection, CtpForwardingEngine,

CtpRoutingEngine, CtpQueueSend, LinkEstimator, AMSender, CC2420ActiveMessage. Each

component, except for CC2420ActiveMessage, has two entries, one for Pass-Down and the other

for Pass-Up. Each entry records the total number of messages the corresponding component sends

(Pass-Down) or receives (Pass-Up), the loss rate, and the latency of successful send or receive.

CC2420ActiveMessage may store multiple entries, because it may receive or send (using unicast)

messages to different nodes — in TestCollection, a node may receive data from multiple child

nodes, and may send data to a different parent node that may change, depending on link quality. A

buffer is allocated to store at most 30 entries. When the buffer is full and a new entry needs to be

added, the entry with the least loss rate is replaced.

PD2 has a 30-byte bitmap to store the data-path information. That is, a node hashes into an

index the origin ID of each message it forwards and sets the corresponding bit in the bitmap.

Therefore, in the triggering process, PD2 can determine if a node is on the data paths by checking

that bit. The original implementation of CtpForwardingEngine maintains a message queue so that

it may buffer the messages from its child nodes. For finer debugging, we create a new component,
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Figure 3.9: Visualization of debugging information. LR and LT indicate the loss rate and latency
respectively. # of messages means the number of messages a component sends or receives. nid is
the ID of the sender ( incoming data) or receiver (outgoing data).
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CtpQueueSend, which keeps the message queue and interacts with the lower-level communication

component, AMSender. The “thiner” CtpForwardingEngine basically calls the send function of

CtpQueueSend to send its own data or forward the data from a child node.

3.5.2 Evaluation Methodology

The effectiveness of PD2 hinges on the premise that it can accurately locate the “problem”

node(s) and software component(s). To evaluate this premise, we inject into the network the fol-

lowing three types of sources of performance problems.

1. Code bug: after CtpQueueSend sends a message, it does not put the message buffer back

into the message pool, and therefore runs out of message buffer quickly.

2. Weak link: a node uses a low transmission power so that it has a relatively weak link to its

parent node.

3. Radio interference: a node creates radio interference by continuously sending messages.

We ran the data-collection application, TestCollection on Motelab, which has about 160 Tmote

Sky nodes scattered across a number of rooms on three floors. The environment should have

enough multi-path effects from obstacles and interferences from other wireless communications as

in a real sensor network.

Each node uses a CC2420 radio operating at the default radio frequency—channel 11 of IEEE

802.15.4 (2.405 GHz) with maximum transmission power. It uses the CC2420 radio stack in

TinyOS-2.0.1, which sends 802.15.4-compliant packets, but does not implement the 802.15.4

MAC protocol. The physical header and the MAC header use 20 bytes. The maximum mes-

sage payload length is 50 bytes. In TestCollection, each node sends its data to the sink (node 2)

every 30 seconds. The period for collecting debugging information is set to 5 minutes. The energy

consumption is estimated by the number of messages transmitted,
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Figure 3.10: The left portion of the second floor in the building where the Motelab testbed is
deployed.

3.5.3 Experimental Results

Three types of performance problems

We copy the map of the testbed from the testbed web site, and visualize the debugging infor-

mation on top of the map. Figure 3.10 shows a portion of the testbed for the purpose of illustration.

Figure 3.11 shows the debugging information on top of the map (the room arrangement in the

background is removed for better readability, but the network topology is retained), with the queue

bug injected into node 63. The sink, node 2, finds that both node 72 and 68 exhibit relatively high

loss rates, as indicated by the stars. PD2 traces one possible problem at a time, e.g., node 72. Node

72 has two paths to the sink due to change of its parent node, so both paths are traced. As a re-

sult, debugging of TestCollection, CtpForwardingEngine, AMSender, and CC2420ActiveMessage

on node 2, 77, 63, and 71 is turned on, and they report the debugging information as shown in

the figure. Node 71 and 77 only report OK messages, because none of the components on the

two nodes recorded any significant loss. Node 63 reports one entry in the format of node ID,

direction of the data (Up or Down), component ID, loss rate, latency, the number of messages,
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Figure 3.11: Node 63 with a queue bug injected cannot forward messages. However, its data can
be sent without any problem.

and the ID of the sender (Up) or receiver (Down) (for CC2420ActiveMessage only). CtpQueue-

Send records a loss rate of 0.65, because only the forwarded messages need to be buffered in the

message pool. The node’s own data is created by TestCollection(TC), then passed down to the Ctp-

ForwardingEngine (CFE), CtpQueueSend (CQS), AMSender (AMS), and CC2420ActiveMessage

(C2A) without causing any data loss. The other entries of node 63 are not reported because they

do not record any significant loss.

Figure 3.12 visualizes the debugging information after lowering the transmission power of

node 69. As a result, node 69 may select node 65 or 64 as its parent, and therefore its outgoing

messages are split between the two possible parents. Both links suffer a loss rate of about 0.18.

Due to retransmission within the MAC, the latency increases to about 2-3 times of the latency

without retransmission. At each receiver, the debugging entry records the loss rate and the number

of messages received. Node 81 and 61, albeit with debugging turned on, only report OK messages

because they do not record any high loss rate.

Figure 3.13 visualizes the debugging information after node 64 generates radio interference.

Several nodes may be affected, but we only show node 63 and 81 in the figure. The difference
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Figure 3.12: Node 69 uses a lower transmission power, and hence, its links to possible parents are
relatively weak.

between radio interference and weak links is that the former leads to a longer backoff (waiting for

a clear channel), and thus a longer latency. Although radio interference tends to affect more nodes

than the previous two cases, we can still isolate an area of interference.

Overheads

Adding PD2 to a sensor network application incurs overheads in terms of extra network traffic

and code size.

The additional network load incurred by PD2 consists of triggering and debugging messages.

If the tree topology of the data-collection application changes over time, a data flow may take a

few different data paths. If the source of a performance problem is far away from the sink, then

the data paths are long. To evaluate how both factors affect the overhead of PD2, we run the

data-collection application as follows. First, all nodes, after their boot-up, are given 3 minutes to

warm up their neighbor table and build a tree topology. Then, we pick a node k (k = 1,2,3,4)

hops away from the sink, and inject a queue bug into that node. The tree topology may change

(Variable-Topo), or remain fixed (Fixed-Topo). The debugging messages are held for 1 second for
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Figure 3.13: Node 64 creates radio interference by continuously sending messages.

possible aggregation. For comparison, we also ran tests which require all nodes to report debugging

information to the sink. All communication overheads are normalized to that of Fixed-Topo with

aggregation.

Figure 3.14 shows that PD2 incurs 5–10% of the overhead of collecting the debugging informa-

tion from all nodes, depending on how far away the injected problem is from the sink. Changes of

the tree topology increase the network overhead significantly, because data flows along a braided

path rather than a single-threaded path, and more nodes need to report debugging information to

the sink.

Figure 3.15 shows that, as each node waits longer, aggregation of more debugging messages

is more likely. One second of waiting allows aggregation of the debugging messages within a few

hops, and reduces the overhead by 35%. Five seconds of waiting does not save as much, because

the message space limits the amount of debugging information that can be aggregated.

The network overhead also depends on the period of collecting debugging information. Since

PD2 computes the averages of loss rate and latency during each period, the period should not be

too long; otherwise, it may be difficult to capture transient performance problems. We find setting

the debugging period as long as 10–20 data collection periods works well.
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Figure 3.14: By selectively collecting debugging information, PD2 incurs about 10% or less of the
overhead of collecting information from all nodes.

Figure 3.15: A node may wait some time before sending its debugging information. A longer wait
allows aggregation of more debugging messages, thus reducing the network overhead further.
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PD2 consumes about 800 bytes of RAM space and 600 bytes of code space. The RAM space is

used for bookkeeping the time and return status of send, sendDone, and receive calls by different

components, and storing the performance metrics. We argue that, by keeping per-component sta-

tus and debugging information, PD2 is able to collect debugging information from selective nodes

rather than the entire network, and trades memory usage for significant reduction of the communi-

cation overhead. With the recent-generation sensors, such as TMote (10KB RAM)[49] and iMote

(64KB RAM)[53], memory is not as scarce as battery power. Hence, a slight increase of memory

usage for energy savings (via reduction of communication overhead) is an acceptable tradeoff.

3.6 Generalizability

So far, we have considered a broad class of applications which collect data in WSNs based on

the spanning tree routing. Furthermore, PD2 can be adapted to other applications in which users

can express their expectation of the application performance with respect to message loss and/or

latency of data delivery, and data routing paths (i.e., data flows) are relatively stable. In this section,

we first exemplify the generalizability of PD2 through two important classes of applications: data

aggregation and event-driven applications with mobile data sinks. Then, we discuss the limitation

of PD2.

3.6.1 Data Aggregation

Data aggregation, an important category of sensor network applications, requires the base sta-

tion to compute the aggregates (such as average and count) of sensor readings by a sensor net-

work. Instead of directly collecting all sensor readings and computing the aggregation results at

the base station, in-network aggregation approaches, such as TAG [9], Stretch [10] or SD [11]

and OPAG [54] allow the sensor data to be aggregated as they are routed towards the base sta-

tion. In-network data aggregation significantly reduces communication traffic and improves overall

energy-efficiency [9].

The main performance metric of data aggregation is aggregation accuracy, which depends on

how many data samples contribute to the aggregation results — the less communication loss, the

more data samples are aggregated, and the more accurate aggregation results become. Therefore,
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the application performance can be expressed by the loss of data samples at the base station.

When a user perceives the loss of data samples above a certain threshold (e.g., 20% of the total

network), s/he can send a triggering message to the PD2 on the base station. Based on the send-

receive dependency rule, the base station propagates the triggering message to all child nodes. If a

child node suffers from loss of data samples above the threshold (e.g. 20% of the sub-tree rooted

at the child node), it turns on debugging and continues to propagate the triggering message to

its children; otherwise, it ignores the triggering message. In this way, the triggering message is

propagated along those routing-aggregation paths (i.e., data flows) that suffer significant loss of

data samples.

The main difference between data aggregation and data collection is how an intermediate node

handles the data it receives. In data aggregation, it aggregates all the intermediate results from its

child nodes and then sends the new intermediate results to its parent node, while, in data collection,

it lets each data flow from a child node go through by simply forwarding the intermediate results of

the child to its parent. However, because data dependency is retained as data flows are aggregated,

PD2 can be applied to debug data aggregation applications.

3.6.2 Event-Driven Applications with Mobile Data Sinks

Many event-driven applications operate on a hybrid network of many stationary sensors and

a few mobile sinks. Each sink may subscribe to certain interesting events and expect to receive

notifications from the sensors which detect those events. The application performance is usually

determined by the latency and loss rate of the notification messages.

Because the mobile sink moves around, the routing paths from a sensor source (which detects

an event of interest) to the mobile may change continuously. Then, how can a triggering message,

initiated by the mobile, trace back the routing paths (i.e. data flow) to the source?

Fortunately, the changing routing paths to the mobile sink usually share significant common

parts. Some routing protocols for mobile data sinks, such as GPSR [17, 18], Landmark Rout-

ing [19], and Beacon Vector Routing (BVR) [20] exploit certain location service protocols, for

example, GLS [21] and DLSP [55]. The basic idea is that a mobile sink periodically publishes its

location (or virtual coordinate) to a set of sensor nodes, called location servers (which are elected

according to some well-known rules). Notification messages are first routed to a nearby location
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server by the rules, then to the known location of the mobile, which is updated to the server. Even

as the mobile moves, the segment of the routing paths from the source to the location server do not

change. Therefore, PD2 can be used to debug the latency and the message loss on that segment

(the mobile can send a triggering message directly to the location server using user-defined depen-

dency, and the location server can propagate the triggering message in the reverse direction along

the routing path to the source).

If the mobile moves relatively slowly, the mobile does not update the location servers fre-

quently, and the segment from the location server to the known location stored on the server does

not change for a while. Then PD2 can also be used to debug the latency and loss of notification

messages on that segment of the routing path. For optimization, a source may cache a location

of the mobile within a timeout period, so the notification messages during the period need not go

through the location server every time. Then PD2 can be used to debug the routing path from the

source to the cached location during the period (in this case, the mobile sends a triggering message

directly to the node closest to the location, which then propagates it back to the source).

If the mobile moves fast, it becomes difficult to identify and debug the segment from the loca-

tion server to the mobile. A simple and effective way is probably to turn on debugging on all nodes.

The performance monitoring and debugging information collection of PD2 are still applicable.

Other approaches, such as TTDD [56], establish a grid infrastructure to disseminate informa-

tion of events. A mobile sink floods a request within a local grid to reach a data dissemination

node. PD2 can be used to debug the data dissemination within the grid infrastructure.

3.6.3 Limitation

The main limitation of PD2 is its reliance on relatively stable data flows. If the data flows

generated by an application change radically and frequently (e.g. when a mobile data sink moves

very fast), PD2 cannot effectively identify the data flows and turn on debugging on the nodes

along the data paths. Instead, it is better to turn on debugging on all nodes, because the data flows

probably go through many nodes anyway.

The debugging information PD2 collects is preliminary. It does not provide the extensive de-

bugging information that other tools collect, and therefore may not be directly helpful in identifying

complicated problems, such as race condition or other problems that crash a node. However, it is
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useful in isolating the problematic components and nodes so that users can zoom in and closely

examine them using other debugging tools.

3.7 Related

The state-of-art of WSN debugging relies on simulation, monitoring & logging, and visualiza-

tion. Programmers and well-known debugging tools, such as Sympathy, use all these techniques.

Simulation [51, 41, 57] is useful for shortening the development cycle, repeatable execution,

and particularly, easy evaluation of various network deployment scenarios. But it cannot substitute

debugging on real devices because it is usually not possible to accurately simulate the real-time

dynamics of the channel condition and the physical environment, nor the hardware-related details,

such as timing and radio activities. Monitoring and logging [14, 15, 16] are the basic means of

debugging on real devices. Programmers must be prudent of where and what to monitor, but may

still be obfuscated by excessive and irrelevant information. Visualization [58] is to graphically

present the debugging information from simulation, or monitoring and logging on real devices,

and help programmers understand the debugging information and locate the problems.

NMS [16] facilitates the monitoring of a WSN application by providing access to the counters

and statistics instrumented in TinyOS nesC modules. To reduce the amount of debugging traffic,

programmers query a node or a group of nodes through the data sink by using the dissemination

protocol, and the node(s) may then read the counters, compute the statistics, and report them to

the sink. Moreover, NMS lets each node log unexpected events in a persistent local storage (flash

memory), and programmers can then issue commands to retrieve the logs on any specific node.

Sympathy [14] lets each node actively report a carefully-selected set of metrics to the data sink

once everymetric period. Given the debugging information collected at the sink, Sympathy detects

failures and determines their causes by using a decision tree. MintRoute [15] also includes periodic

reports of the neighbor table for debugging at the sink, but does not automate failure detection and

cause analysis.

Declarative Tracepoints (DT) [59] introduces TraceSQL to program the debugging actions as

tracepoints and allow addition and deletion of tracepoints at runtime. It provides a systematic

framework where multiple debugging techniques can co-exist. Dustminer [60] and PAD [61] are
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diagnosis tools that analyze the collected debugging information (events) to uncover causes of

performance degradation.

Performance debugging for distributed systems of “black boxes” (PDB) [62] motivated our

work, although it was proposed to deal with generic distributed systems consisting of “black-box”

(closed source) components. PDB models application activities as node traversals in a graph of

communicating components. Given a trace of messages, PDB proposes two algorithms to de-

termine the causal relationships among messages, and then isolates the performance bottlenecks.

PD2 proposes a similar model for WSN applications, but the causal relationship is determined

by the compiler or defined by the programmer—it is known to PD2 because there are no black-

box components. The focus of PD2 is to use the causal relationships to automatically trigger the

relevant components on a selective set of nodes to log and report debugging information to the

sink.

Visibility [63] proposed a different angle to debugging sensor network protocols: increasing

the visibility of the network protocols in their designs. Visibility is defined as the energy cost of

diagnosing the cause of a behavior in a protocol, and used as a quantitative metric to evaluate and

compare protocols. By considering the new design metric, sensor network protocols can be made

more debugging-friendly.

Interface contracts for TinyOS [64] proposed a static-checking approach to specifying and

enforcing pre- and post-conditions on function calls provided by a component. Some bugs in

TinyOS 1.x were actually caught by this tool.

Passive Distributed Assertions (PDA) [65] allows developers to assert certain properties of

a distributed system, and the assertions are inserted into the program code like in C programs.

To verify the assertions, the affected sensor nodes broadcast some status information, which is

collected and analyzed through a separately-deployed sniffer network.

3.8 Concluding Remarks

In this chapter, we proposed a data-centric approach to post-deployment performance debug-

ging (PD2) of WSN applications. Our goal is to help users locate where performance problems

occur and provide useful hints for fixing them or closer examination.
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PD2 focuses on the data flows that a WSN application generates, and models them as causal

paths in a graph of software components. PD2 relates poor application performance to significant

data losses or latencies of some data flows (problematic data flows) as they traverse the software

components on individual nodes and through the network. PD2 derives a few inference rules based

on the data dependencies between different software components, as well as between different

nodes, and uses them to trace back each problematic flow. When tracing back the data paths,

PD2 turns on the performance monitoring of, and collects debugging information from, only those

modules and nodes that the problematic flows go through. Finally, PD2 visualizes the debugging

information to locate the dominant sources (i.e., some software components on certain nodes) of

data loss and latency on the data flows. PD2 does not intend to solve the performance problems, but

helps users identify or further investigate the performance problems by locating them efficiently

and accurately.

We have implemented PD2 on TinyOS and evaluated it on a real WSN testbed. Our experimen-

tal results show that PD2 can provide useful information to locate performance degradation caused

by code bugs, weak links, and radio interference. Its energy cost is shown to be only 5–10% of

that of collecting debugging information from all nodes.
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CHAPTER 4

Distributed Location Service Protocol for Networked
Stationary Sensors and Mobile Actors

4.1 Introduction

Many sensor network applications, such as habitat monitoring [1], emergency rescue, battle-

field surveillance, border monitoring [66, 67], require interaction between stationary sensor nodes

and mobile actors— a large number of resource-limited sensor nodes are deployed in a certain geo-

graphical area for physical-environment monitoring, and some mobile actors may move within the

terrain and receive notification of events from the sensors. For example, in the emergency-rescue

or military applications, emergency rescuers/vehicles or soldiers/military vehicles, as mobile ac-

tors, need to rescue missing people or track enemies. While moving inside the field, they interact

with the sensor nodes to retrieve the location information of missing people or enemies.

Although mobiles often have a longer radio communication range than that of sensors, they

may or may not form a connected graph/network, depending on their density and movement.

Therefore, sensor networks should provide a routing mechanism to forward the sensing data to the

mobiles, and the routing mechanism should perform well for a wide range of the mobiles’ speeds.

For example, foot-emergency-rescuers or foot-soldiers may move at low speed while ambulances

or fire trucks, or military vehicles may move at high speed.

4.1.1 Background

There are two types of approaches to routing sensed data to a mobile actor (a.k.a. mobile

sink): (1) TTDD [56] and Bread Crumb Routing [68] that do not require the knowledge of the
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mobile’s whereabout, and (2) GPSR [17, 18], Landmark Routing [19], and Beacon Vector Routing

(BVR) [20] that require the knowledge of the mobile’s location.

In (1), TTDD allows data sources (i.e., sensors) to proactively build grid structures over the

entire network to disseminate the sensed data, so the overhead of publishing data may be amortized

when there are many mobile sinks. Bread Crumb Routing assumes a mobility model under the

constraint that the sensors marked by the mobile sink must form a connected path. However, in

the above-mentioned scenarios, this path may be disconnected because (i) the mobile fails to leave

marks on sensors as a result of message loss; (ii) the path may run through a deployment hole, and

thus, the sensor marked by the mobile cannot communicate directly with any of previously-marked

sensors; (iii) a sensor node on the path may fail or be destroyed.

In (2), the mobile needs to periodically report its geographic location or virtual address to

selected nodes, called location servers, in order to use GPSR, Landmark Routing, or Beacon Lo-

cation Service (BLS) [69]. Other nodes can acquire the mobile’s location from one of its location

servers and then deliver data to the mobile sink using one of these routing methods.

A number of location-service protocols have been proposed for mobile ad hoc networks (MANETs).

GLS [21], DLM [22], HLS [70], and MLS [71] are hierarchical location service protocols, i.e., the

mobile sink constructs a hierarchy of location servers over a grid structure. XYLS [72] lets the

mobile sink select a thick column of nodes as its location servers. Twins [73], Home-Zone-Based

Location Service [74], and GHLS [23] all use hash functions to select a centralized location server.

Particularly, GHLS hashes the ID of the mobile sink into a geographic location, and the node clos-

est to that location serves as the central location server for the mobile. Compared to XYLS and

GLS, GHLS has the advantage of simplicity and very low overhead, and outperforms GLS for

networks of up to 25,000 nodes, even though GLS asymptotically scales better [23].

These location service protocols, however, are not applicable to sensor networks due to the

usually high per-hop latency in a sensor network which ranges from a few hundred milliseconds

to a few seconds [75, 76], while that of a MANET is an order-of-magnitude lower (tens of ms)

[77, 78]. The high per-hop latency in a sensor network can be attributed to scheduling delay

and transmission time. First, wireless communication consumes much more energy than other

operations for (severely energy-constrained) sensor nodes. Hence, energy-efficient MAC protocols

avoid idle listening and overhearing by scheduling transmission and listening periods (e.g., S-
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MAC [79] and T-MAC [80]), or low-power channel polling (e.g., WiseMAC [81] and BMAC [34]),

or both (e.g., SCP [75]). As a result, the radio’s duty cycle can be limited to a few percentages.

Thus, a packet has to be held for a certain period of time before taking its next hop. Second,

a sensor node’s radio usually has a lower bandwidth, incurring a longer transmission time. For

example, Mica2 (MicaZ) has a bandwidth of 19.5 kbps (250 kbps), while MANETs typically use

wireless LAN cards of 11 Mbps or 54 Mbps.

This high per-hop latency makes packet transmission in a sensor network much slower than

in a MANET. Moreover, a sensor network is usually of much larger scale than a MANET. There-

fore, the location-service protocols intended for MANETs are unlikely to perform well in sensor

networks, because, while a message is being delivered from its source to a location server, then to

the mobile receiver’s location obtained from the location server, the mobile could have moved too

far away to receive the message directly as in GHLS or even by using forward pointers as in GLS.

This problem becomes more evident as mobile moves faster.

4.1.2 Proposed Approach

In this chapter we present a distributed location service protocol (DLSP) for a hybrid wire-

less network of stationary sensors and mobile actors. Like GLS, DLSP is built on a hierarchical

grid structure. A mobile selects multiple location servers at each level of the hierarchy, and sends

location updates more frequently to the lower-level location servers than the higher-level ones.

A location query (that also contains a data packet to be delivered) may take multiple rounds of

“lookup-and-chase” to reach the mobile receiver. Through a rigorous analysis, we derive the con-

dition under which a high query-delivery ratio (i.e., the data-delivery success rate in DLSP) is

achieved, and show how to configure the protocol parameters to ensure the scalability of the loca-

tion service. Here ‘scalability’ means that, as the network size increases, the location service proto-

col preserves the high query-delivery ratio and the protocol overhead is proportional to O(log(N)),

where N is the network size. We find that, in order to preserve a high query-delivery ratio, the mo-

bile’s speed should be below a certain fraction of the packet-transmission speed, which depends on

the underlying movement threshold. For example, if the movement threshold for the lowest-level

location servers is the same as the node’s radio range, the mobile’s speed limit is a one-tenth of

the packet-transmission speed. The theoretical speed limit is a one-fifth of the packet-transmission
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speed beyond which DLSP does not scale regardless of the movement threshold.

Like GLS, DLSP incurs a high location-update overhead because a mobile needs to update

multiple location servers at each level with its location information. To alleviate this problem, we

propose an optimization, called DLSP with a Selected Neighbor (DLSP-SN), in which the mobile

updates the location server in at most one neighbor square at each level. A neighbor square is

selected based on the mobile’s trajectory. DLSP-SN achieves a significant reduction of update

overhead. However, due to the gridding effect,1 DLSP-SN may incur more rounds of lookup-

and-chase than DLSP, thus making the average path length of location queries greater than that of

DLSP and increasing data-delivery cost. In order to make a tradeoff between location-update and

data-delivery costs, we present a greedy adaptation mechanism, called DLSP-ASN, to improve the

overall energy-efficiency.

The contributions of this chapter are summarized as follows.

• Design of DLSP: We design a novel hierarchical location service. In DLSP, location-updates
are published to hierarchical location servers, and location-queries are processed recursively

using these hierarchical location servers. DLSP can efficiently provide mobiles’ location

information with wide range of mobiles’ speeds even in the presence of sensor node failures.

• Optimization of DLSP: We provide two optimized algorithms for DLSP, DLSP-SN and

DLSP-ASN. The former focuses on reducing the location-update overhead, while the lat-

ter makes a good balance between the location-update overhead and the data-delivery ratio.

• Evaluation of DLSP: We rigorously and throughly evaluate DLSP and its optimizations.
First, we derive the condition under which DLSP guarantees a high data-delivery ratio using

a mathematical analysis. Second, we extensively simulate DLSP with various scenarios and

parameters to show its performance in diverse environments.

The rest of this chapter is organized as follows. Section 4.2 describes the details of DLSP. Sec-

tion 4.3 derives the condition for DLSP to achieve a high packet-delivery ratio, while Section 4.4

analyzes the overhead of DLSP, and presents an enhanced version of DLSP, called DLSP-SN.
1‘Gridding effect’ means that the source and destination nodes across but close to the boundary of a high-level

square may require the query to travel many hops upward (in the hierarchy) to the common (parent) square containing

both nodes. Both GLS and DLSP-SN suffer from the gridding effect, but DLSP does not.
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Section 4.5 proposes a greedy adaptation mechanism, DLSP-ASN. In Section 4.6 we use simula-

tion to evaluate the performance of location services. We conclude the chapter and discuss future

directions in Section 4.7.

4.2 Distributed Location Service Protocol

We now present the details of DLSP. We assume that a large number of stationary sensors have

been placed randomly and uniformly in a field of interest and a relatively smaller number of mobile

actors move around within the field. Geographic routing (e.g., GPSR [17]) is used for multi-hop

routing. Each sensor node can determine its location by using a GPS receiver or a localization

service [82, 83]. Likewise, each mobile either is equipped with a GPS receiver or can estimate its

location using the neighbor sensors’ location information.

Table 4.1 lists the notation used in this chapter.

4.2.1 Selection and Update of Location Servers

A sensor network is assumed to have been deployed in a square field as in GHT [84]. Similar

to GLS [21], the entire square field is partitioned into a grid as shown in Figure 4.1. Four level-0

squares make up one level-1 square, four level-1 squares make up one level-2 square, and so on.

To avoid overlap between two squares of the same size, a particular level-k square is part of one

and only one level-(k+1) square. For simplicity, we assume that the field is perfectly gridded, i.e.,

the field is a square of edge length L = 2h�. We will discuss how this restriction can be relaxed

in Section 4.6. Each node is pre-loaded with h, �, and the location of the lower-left corner of the

field, and it can calculate the entire grid structure using this information.

Suppose a mobileR needs to send its location updates at time T (we will later elaborate on when

to send location updates). It selects a location server in its level-0 square and also the neighbor

squares, denoted as LS0, j(R,T) ( j = 0, . . . ,8). To randomize the selection, R uses a common hash

function2 to compute a location in a square, and the sensor node closest to that location is chosen

as the R’s location server. A neighbor square is omitted if it is outside of the field boundary. At

level-1, R picks a location server from each of the neighbor squares, S1, j(R,T). There is no location

server in S1,0(R,T), as it is fully covered by the level-0 location servers, and so on.
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Figure 4.1: The location servers selected at three levels of the grid

Location servers at different levels are updated at different rates. Suppose at time T , R has sent

a location update (i.e., P(R,T)) to level-k location servers. It will then send the next update to the

level-k servers at T +ΔT if and only if dist(P(R,T),P(R,T +ΔT )) ≥ 2k−m� (i.e., the movement

threshold) or ΔT ≥ 2kτ (i.e., the timeout). R sets the lifetime of its location servers to be slightly
larger than ΔT = min(2kτ, 2

k−m�
v̄ ). If a location server does not receive a new update from the

mobile R before this lifetime expires, it is no longer a location server for R.

The hash function lets different mobile sinks choose different sensor nodes as their location

servers. As a result, the protocol evenly distributes the workload and energy consumption among

the sensor nodes.

4.2.2 Processing of Location Queries

When a sensor node S sends a data message to R, it only knows R’s ID. First, it tries to find

R’s location from its neighbor’s table and local location cache (i.e., it is a location server for R). If

R’s location is not found, S encapsulates the data into a location query, and sends it to a location
2The hash function can be defined in many different forms. For example, H(R,Sq) = ( fx(R) · 2k�, fy(R) · 2k�),

where fx and fy are uniform distribution functions within the interval (0,1), and Sq is a level-k square. Note that the

hash function computes a relative location inside Sq.
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Figure 4.2: Round 1 of location query processing

server. Once R’s location is found, the data message is sent to that location using geographic-

location-based-routing. This lookup-and-chase process is illustrated by an example in Figures 4.2

and 4.3.

In Figure 4.2, S first assumes that R has visited somewhere nearby — R and S are in the same

level-0 square or two adjacent level-0 squares. Formally, S assumes L0, j(R,T ) to be L0,0(S). So, the

location query is sent to LS0,0(R,S). However, LS0,0(R,S) does not have R’s location information,

so it tries to find R’s location in a larger square by sending the query to LS1,0(R,S), and so on.

Eventually, LS2,0(R,S) has R’s location information at time T1 (i.e. LS2,0(R,S) is also LS2,4(R,T1))

, denoted as P(R,T1), so it sends the query to P(R,T1). This process of looking for the location of,

and chasing, the mobile is called a round.

If R moves fast and if S and R are far apart, by the time the location query reaches the location

P(R,T1), R could have moved too far away from P(R,T1) to receive the location query. In such a

case, the query will be received by the node A closest to P(R,T1). Unlike GLS, A does not maintain

any forward pointer under DLSP. Instead, it starts a new round. As shown in Figure 4.3, the query

first goes to LS0,0(R,A), then to LS1,0(R,A) (i.e., LS1,6(R,T2)), which has more recent R’s location

information, P(R,T2). Finally, the query catches up with R near P(R,T2).

After receiving the query, R may decide whether or not to send its location information to
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Figure 4.3: In round 2, only the location server in the shaded level-1 neighbor square is visited

S, which caches the location for later queries. Such a decision should depend on the sender’s

transmission rate, as discussed in Section 4.5.

4.3 Conditions for High Packet-Delivery Ratio

In this section, we first derive the condition for achieving a high packet-delivery ratio under

DLSP. Then, we discuss how to configure the parameters of DLSP to make it scalable. DLSP is

found to be scalable if the mobile’s speed is lower than a certain fraction of the packet-transmission

speed, which depends on the movement threshold used. Finally, we present the condition for

achieving a high packet-delivery ratio in GHLS, and also show that GHLS is not scalable.

4.3.1 Conditions for High Packet-Delivery Ratio under DLSP

Our analysis of DLSP consists of the base case and the inductive step. The base case analyzes

how a location query can catch up with the mobile receiver after obtaining its location information

from a level-0 location server. The inductive step analyzes how the location query can get closer

to the mobile by completing each round.
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Figure 4.4: The timeline of events for location query processing at level-0.

The Base Case

Suppose, at time T1, R sends its location, P(R,T1), to a level-0 location server, LS0, j(R,T1),

j ∈ {0,1, . . . ,8}. The location server receives the location update at time T3. At time T4, it receives
a location query and forwards the query to P(R,T1). The location query reaches location P(R,T1)

at time T2. The timeline of these events are shown in Figure 4.4.

In order to have R receive the query at T2, the following condition must be satisfied:

dist(P(R,T1),P(R,T2)) ≤ r. (4.1)

Suppose ΔT = T2−T1, then dist(P(R,T1),P(R,T2)) is bounded by ΔT v̄, because the distance

is maximized when R moves on a straight line between T1 and T2. The average speed is computed

as the length of the trajectory curve between T1 and T2 over ΔT . ΔT can be broken into three

components, T3− T1, T4− T3, and T2− T4. T3− T1 denotes the average latency of the location

update from P(R,T1) to LS0, j(R,T1); T4−T3 represents the average obsoleteness of the location

information at the location server; T2−T4 denotes the average latency of the location query from

LS0, j(R,T1) to P(R,T1).

Let d0 be the average distance betweenR and a level-0 location server, i.e., dist(P(R,T1),L0, j(R,T1).

Then, considering R as a random point in an �× � square, and the location server as a random

point in the same square or one of the eight adjacent squares, we get d0 ≈ 1.27� according to a

numerical analysis. Also, we let t0 be the update interval for level-0 location servers. We have
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T3−T1 = T2−T4 = d0
p th, and T4−T3 = 1

2t0 because T4 ranges from T3 to T3+ t0. So,

ΔT =
1
2
t0+2

d0
p
th. (4.2)

Also, from Section 4.2, we have

t0 =

{
τ if v̄< 2−m�

τ
2−m�
v̄ if v̄≥ 2−m�

τ .
(4.3)

From Eq. (4.3), we have

v̄t0 ≤ 2−m�. (4.4)

Therefore,

dist(P(R,T1),P(R,T2)) ≤ 1
2
t0v̄+2

d0
p
thv̄ (4.5)

In order to satisfy Eq. (4.1), we simply let 12t0v̄+2d0p thv̄≤ r. That is,

{
τv̄+ 5.08�

p thv̄≤ 2r if v̄< 2−m�
τ

2−m�+ 5.08�
p thv̄≤ 2r if v̄≥ 2−m�

τ .
(4.6)

Approximately, Eq. (4.6) can be satisfied if

2−m�+
5�
p
thv̄≤ 2r. (4.7)

Analysis of the Inductive Step

Consider the case of requiring multiple rounds of lookup-and-chase. Suppose the query looks

up R’s location from a level-ki location server in round i, and from a level-ki+1 server in round

i+1. To ensure the query makes progress toward R, we need to satisfy

ki+1 ≤ ki−1. (4.8)
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Suppose the query returns R’s location information, P(R,T ′
1) in round i and reaches P(R,T ′

1) at

time T ′
2. ki+1 ≤ ki−1 holds if the following inequality holds:

dist(P(R,T ′
1),P(R,T ′

2)) ≤ 2ki−1�. (4.9)

Eq. (4.9) bounds the distance between the known location of round i and that of round i+1, so

the two locations are at most in two adjacent level-(ki−1) squares. Therefore, the location server
visited at round i+1 is at most of level-(ki−1).

Similar to Eq. (4.2), we get

ΔT ′ = T ′
2−T ′

1 =
1
2
2kit0+2

2kid0
p

th. (4.10)

So, we have

dist(P(R,T ′
1),P(R,T ′

1)) ≤
1
2
2kit0v̄+2

2kid0
p

thv̄ (4.11)

In order to satisfy Eq. (4.8), we simply let 122
kit0v̄+22

ki d0
p thv̄≤ 2ki−1�. That is,

{
τv̄+ 5.08�

p thv̄≤ � if v̄< 2−m�
τ

2−m�+ 5.08�
p thv̄≤ � if v̄≥ 2−m�

τ .
(4.12)

Again, due to Eq. (4.4), Eq. (4.12) can be satisfied if

2−m�+
5�
p
thv̄≤ �. (4.13)

4.3.2 Configuration of Protocol Parameters for DLSP

The above analysis provides insights into which parameters affect the packet-delivery ratio and

how they can be configured to achieve the scalability of DLSP with respect to query delivery.

Configuration of �

Consider the condition of the base case, Eq. (4.7), and that of the inductive step, Eq. (4.13).

The condition of the base case is stronger than that of the inductive step if � ≥ 2r. Moreover, both
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Eqs. (4.7) and (4.13) are independent of the field edge length, L. Therefore, as long as data can be

delivered within a small region (level-0 squares) of edge length � ≥ 2r, it can be delivered from an
arbitrarily far away node. In fact, we need

� = 2r (4.14)

because the overhead of location updates increases as � increases (in Section 4.4).

Configuration of m

In Eq. (4.7), 5�p thv is always positive since th is not negligible. So, m must be a positive integer.

Again, the overhead of location updates is proportional to 2m when the mobile’s speed is above the

threshold. Therefore, m should be set to 1, and the movement threshold is r.

Mobile’s Speed Limit

From Eq. (4.7), if m = 1, v̄ < r
5�

p
th = p

10th , which is a one-tenth of the packet-transmission

speed. If the movement threshold for location updates gets smaller, the location updates become

more frequent, and the mobile is allowed to move faster. However, v̄< 2r
5�

p
th must always hold, and

the speed can never be greater than p
5th . So, the mobile’s theoretic speed limit is a one-fifth of the

packet transmission speed, no matter how frequently the location servers are updated.

4.3.3 Choice of Design Paradigm

GHLS (i.e., a centralized paradigm) can be considered as a trivial case of DLSP (i.e., a hier-

archical paradigm), in which � = L. The analysis of GHLS is the same as that of the base case in

DLSP, except that d0 ≈ 0.5L because the mobile and its location server are considered two random
points in the L×L square.

Suppose the movement threshold for updating the location server is v̄t0 ≤ d. We need to satisfy

d+
2L
p
thv̄≤ 2r. (4.15)

When th is not very small, Eq. (4.15) may not hold for large networks and fast mobiles.

Based on Eqs. (4.15), (4.4), and (4.14), we can conclude that, regardless of the mobile’s speed,
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the conditions of GHLS (i.e., the centralized paradigm) are stronger than those of the hierarchi-

cal paradigm if L < 2.5l. So, the centralized paradigm is favorable for low mobile’s speed, very

low per-hop packet latency, or small/ median networks because of its simplicity and lower over-

head [23]. For large networks with high mobility and non-trivial packet latency, the hierarchical

paradigm should be used.

4.4 Analysis of Location-Service Overhead

In this section, we first analyze the overhead of location updates under DLSP and then propose

a design optimization, called DLSP with a Selected Neighbor (DLSP-SN), which significantly

reduces the location-update overhead.

4.4.1 Analysis of Location-Update Overhead

Let U denote the total overhead of location updates, and uk the overhead of updating a level-k

location server. The location-update frequency for level-k location servers is tk = 2kt0. The average

distance between R and a level-k location server (LSk, j(R,T) is 1.27 ·2k�, and that between R and
the level-0 location server LS0,0(R,T) is 0.5�. Since there are at least 3 neighbor squares at each

level except the highest, we have

U ≥
h−1
∑
k=0
3 ·1.27 ·2k� 1

tk
+0.5�

1
t0

≥ (3.8h+0.5)
2mv̄
p

(4.16)

where h = O(log(L×L)), and the total number of nodes, N, is proportional to L×L for a given
node density. So, U = O(log(N)). That is, DLSP is asymptotically scalable w.r.t. the protocol

overhead. However, like GLS, DLSP suffers from high update overhead because there are multiple

location servers at each level of the hierarchy.
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Figure 4.5: R sends updates to two level-1 location servers at P(R,T2), because P(R,T3) is in the

selected neighbor square of P(R,T2).

4.4.2 Optimization of DLSP

Our optimization goal is to reduce the location-update overhead while preserving the high

packet-delivery ratio. The key observation is that it is unnecessary to update the location servers

in all neighbor squares. This is because, as a location query “chases” the mobile receiver, the

mobile’s trajectory determines which location servers to communicate with.

This observation is illustrated in Figure 4.3. At time T2, R updates the five location servers in

the neighbor squares. Therefore, at round 2, the query can obtain a more recent location, P(R,T2),

and catch up with R. Since A is in S1,6(P(R,T2)), the query relayed by A can only go through

LS1,6(R,T2), not the other four level-1 location servers. That is, only the update to the location

server in the neighbor square, S1,6(R,T2) is useful for delivering this query. So, the design opti-

mization is called Distributed Location Service Protocol with a Selected Neighbor (DLSP-SN).

To illustrate how DLSP-SN works, let us zoom in the lower-left level-2 square of Figure 4.3

in Figure 4.5. Suppose R needs to send location updates to level-1 location servers at P(R,T1),

P(R,T3), and P(R,T2) consecutively. At P(R,T3), it checks if its previous location P(R,T1) was in

the level-1 square, S1,0(P(R,T1)). If so, it only updates LS1,0(R,T1) (i.e., LS1,6(R,T2). At P(R,T2),

R finds that its previous location P(R,T3) is in the neighbor square, S1,6(P(R,T2)), so it sends

updates to both LS1,0(R,T2) and LS1,6(R,T2). Note that the locations of two consecutive level-k
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updates must be in the same level-k square or two neighbor level-k squares, because the movement

threshold for level-k updates, 2k−m�, is strictly less than the edge length of level-k square, 2k�.

The difference between DLSP and DLSP-SN is summarized as follows. First, suppose the

highest level is h. Then, DLSP updates LS0, j1(R,T) ( j1 = 0,1, . . . ,8), and LSk, j2(R,T) (k =

1,2, . . . ,h− 1 and j2 = 0,1, . . . ,8). DLSP-SN updates LSk,0(R,T) (k = 0,2, . . . ,h), as well as

the location server in the selected neighbor square. Second, suppose ki and ki+1 are the levels of

location servers DLSP and DLSP-SN obtains location information at rounds i and i+ 1. DLSP

requires ki > ki+1, but DLSP-SN does not have this restriction. To avoid endless chasing, DLSP-

SN requires that, at each round, the query get more recent location information than the previous

round.

DLSP-SN is less restrictive in the sense of obtaining location information, because it selects

much fewer location servers than DLSP. As a result, DLSP-SN incurs more rounds and longer

query paths.

4.5 Adaptation of Location Service

DLSP-SN reduces its update overhead, but may extend the query path length, increasing the

data-delivery cost. This increase of data-delivery cost may become significant in case of continuous

data streams commonly seen in sensor network applications. To achieve overall energy-efficiency

with DLSP-SN, we propose an adaptive location-update scheme in which a mobile adaptively

sends its location updates based on the varying distribution and rate of the data sources. We

then analyze the parameter configuration for the adaptation to ensure a high query-delivery ratio

and present a greedy algorithm to improve overall energy-efficiency. Finally, we summarize the

comparison among the hierarchical location service protocols, DLSP, DLSP-SN, DLSP-ASN, and

GLS.

4.5.1 Adaptive Location Updates

In MANETs, most data communications are one-to-one. After the mobile receives a location

query, it can periodically send location updates directly to the source node. The source can cache

the location information and send data directly to the mobile until the location information expires.
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Figure 4.6: Location queries (or data packets) from S1 and S2 travel less hops during round 1 with
adaptive location updates.

In a hybrid wireless network of stationary sensors and mobile actors, however, a mobile may

receive data from multiple data sources located in the areas of interest. If the mobile receiver

has to send location updates to each of these data sources, the location-update overhead can be

prohibitive. Fortunately, the data sources in an area of interest may be spatially close to one

another. Therefore, the mobile can send updates to only a few location servers shared by the data

sources.

Figure 4.6 provides an illustrative example. Suppose sensor nodes, S1 and S2, reside in the

same level-0 square S0,0(P(S1)), and continuously report data to a mobile R. Instead of sending

location updates to S1 and S2 individually, R picks an adaptive location server, ALS0(P(R,S1), in

Sk,0(P(S1)), and periodically sends updates to it as well as to the other location servers. When S1
or S2 sends R data, a location query is processed exactly the same as in Section 4.2 except for the

first round. R’s location can be obtained from ALS0(R,S1), instead of from the level-2 location

server, LS2, j(R,T1), as shown in Figure 4.2. Thus, the data-delivery cost is reduced at the expense

of extra adaptive location updates.
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4.5.2 Condition for High Query-Delivery Ratio

Suppose R updates ALS0(P(S1), IDR) at time T ′
1, and the location query reaches P(R,T ′

1) at

time T ′
2. Let Ta = 2kat0 be the period of location updates to ALS0(R,S1), and D be the distance

between L(R,S1) and P(R,T ′
1).

Similar to the analysis of Eq. (4.10), we get

ΔT ′ = T ′
2−T ′

1 =
1
2
2kat0+2

D
p
th. (4.17)

We simply let ΔT ′v̄≤ D
2 . That is,

2ka−1t0v̄+2
D
p
thv̄≤ D

2
. (4.18)

In Section 4.3, we derived Eq. (4.4) and the speed limit, v< p
10th with the movement threshold

r. In order to satisfy Eq. (4.18), we need

2ka−2�+
D
5
≤ D
2

. (4.19)

ka ≤ log2(
D
�
). (4.20)

When ka is small, there is higher update overhead but lower data-delivery cost; when ka is

large, there is less update overhead but higher data-delivery cost. So, ka needs to be configured to

achieve overall energy-efficiency.

4.5.3 Analysis of Overall Energy-Efficiency

Let E denote the energy-efficiency without adaptive location updates, and Ea denote the effi-

ciency with adaptive location updates. The mobile maintains a moving window to compute the

average data rate, Rdata, the average hop count,Chops, and the average distance, Dsrc, from the two

sources.

ΔE = Rdata ·
(
Chops− Dsrc

p

)
− Dsrc

p
1
2kat0

(4.21)
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A mobile periodically searches for ka in [0, log2
(D

�

)
] such that ΔE is maximized, or Ea is

minimized.

In general, the rate and distribution of data sources cannot be described in a simple form. It is,

therefore, very difficult to compute the optimal solution that combines data sources and sets ka for

each combination. The mobile can use some simple heuristics to find good solutions. For example,

only the data sources in the same level-0 are combined at their level-0 location server. We can then

use the above analysis to set ka for each level-0 location server.

4.5.4 Comparison of Hierarchical Location Services

Different hierarchical location services are compared and summarized in Table 4.2.

4.6 Evaluation

We have performed extensive simulation to comparatively evaluate the performance of location-

service protocols. For this purpose, we have implemented the DLSP protocols (DLSP, DLSP-SN)

and GHLS in ns-2 [85], and also have ported GLS to the same version of ns-2 we used for other

protocols.

The following metrics are evaluated for the location service protocols: (1) Query Delivery

Ratio—the percentage of location queries successfully delivered to the mobile receiver; (2) Up-

date Overhead—the number of update packets transmitted with each hop counted as one packet

transmission; (3) Query Path Length—the number of hops each successfully-delivered query takes.
3In GLS, one square considers its three adjacent squares belonging to the same parent square as its neighbors; in

DLSP protocols, all the eight adjacent squares are considered neighbors.
4‘Gridding effect’ means that the source and destination nodes across, but close to, the boundary of a high-level

square may require the query to travel multiple hops upward in the hierarchy to the common parent square that contains

both nodes.
5Restrictions: (1) The query needs to obtain a newer location of the mobile at each round; (2) the query does not

proceed if the location is obtained from a level-0 location server in the previous round; (5) the level of the location

servers gets lower as the round progresses.
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4.6.1 The Simulation Setup

The transmission range for radio communication is set to 100m based on the characteristics of

MicaZ [86] devices. We assume the radio link is symmetric, and only collision may cause message

loss. Typically, the raw radio of sensor nodes (e.g., Mica2, MicaZ) is lossy and asymmetric,

but the underlying MAC or routing protocols provide reliable transmission via scheduling and

retransmission. We use both 802.11 MAC and S-MAC in our simulation.

Sensors are uniformly deployed over a square area, with density of 6.25 nodes per 100×100m2.
This high node density is chosen because in low node-density networks, geographic routing (e.g.,

GPSR) suffers from relatively high packet losses, which may distract the readers from our main

focus on the performance of location services. Given this high node density, the average per-

hop progress is approximately 0.7r or 70m. Our tests are run on networks of 400× 400, 800×
800, 1200× 1200, and 1600× 1600m2, which include 100, 400, 900, and 1600 sensor nodes,
respectively. Since interactions among mobiles are not considered, only one mobile is simulated in

our evaluation, and its movement follows the modified random way-point mobility model [87] in

our base-case scenarios. The mobile’s speed ranges from 4 to 40m/s, and its pause time is set to 0.

We also simulate DLSP with random walk and Guass-Markov mobility models [88] to confirm that

the proposed protocol functions regardless of the mobiles’ movement pattern. We also simulated

DLSP using the scenarios with 100× 100 and 200× 200 m2 void areas to show its resilience to
node failures.

The beacon period is set to 10s for stationary sensor nodes and 1s for the mobile. When a

sensor node receives a beacon from the mobile, it replies with a beacon after a random delay

ranging from 0 to 1s. The movement threshold for triggering location updates in DLSP, DLSP-SN,

GHLS, and GLS is set to 100m (i.e., m = 1). The timeout for triggering location updates for the

location service protocols except for GLS (i.e., τ) is 8s. GLS does not have any timeout. Instead of

using its instantaneous speed, the mobile uses its average speed over a moving window. Suppose

R sends two consecutive updates to its level-k location servers at time T and T ′. The average speed

v̄ = dist(P(R,T),P(R,T ′))
T ′−T , although R’s trajectory may follow an arbitrary curve. To determine the

timeout for the location information sent to a level-k location server, the mobile uses the average

speed to predict the update interval tk = 2kt0 with Eq. (4.3).
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Figure 4.7: The query-delivery ratio of DLSP is higher than 96% for all network sizes if the

mobile’s speed ≤ 15m/s. The speed limit from our analysis is 14m/s.

The edge length of the smallest square in the DLSP protocols (i.e., �) is 200m. In GLS, the

smallest square size is set to 100m, because all nodes in the same smallest square should be within

two hops. The network size we tested, 1200×1200m2, does not result in a perfect grid structure.
In such a case, if an intended level-k square is not within the network boundary, it is substituted

by a neighbor level-k square inside the boundary. For example, the level-2 square may be out-

side the boundary when the mobile is located at (900m,900m). Then, the level-2 square {(0,0),
(800m,800m)} becomes its replacement.

Ten sensor-node deployments are generated for each network size. With each deployment, we

generate a movement scenario for each speed. All test results are the averages of 10 runs on all the

deployments. Since the mobile’s ID is the same in all tests, a seed is randomly generated in each

run so that a sensor node can hash the mobile’s ID into a different value for DLSP and GHLS. As

for the workload, a sensor node is randomly chosen to send a location query to the mobile once

every 2s during a period of 200s, i.e., 100 queries are sent. All tests for the same network size

use the same workload. In GLS, every node should publish its location information to its location

servers for the correct functioning of GLS. For fair comparison, we modify GLS such that the

sensor nodes publish their location only during the initial warm-up period of 120s. These location

updates during the warm-up period are not counted in the update overhead.

For all protocols, the workload starts at 120s and the simulation ends at 300s. The surplus of
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Figure 4.8: The query-delivery ratio of DLSP-SN is close to that of DLSP below the speed limit,
and noticeably better in case of high speeds.

80s allows the last few queries to be delivered.

4.6.2 Simulation Results Using 802.11 MAC

Using the 802.11MAC in ns-2, the transmission time plus the backoff delays ranges from 0.001

to 0.02s. Without a low-power MAC at hand, we add a fixed link-layer delay of 0.5s (or 0.25s).

Thus, the actual per-hop latency ranges from 0.5 to 0.52s (or 0.25 to 0.27s), which resembles the

per-hop latency in low-power MACs [75, 76]. Because the average per-hop progress of a packet

is about 70m, the average packet-transmission speed is calculated to be 140m/s. Based on our

analysis, the speed limit with the movement threshold of 100m is 14m/s.

Query-Delivery Ratio

Figure 4.7 shows that DLSP scales well if the mobile’s speed ≤ 15m/s. In the network of

1600 nodes, the delivery ratios of both DLSP and DLSP-SN drop below 90% beyond the theoretic

speed limit, 28m/s. We have also run tests with different per-hop latencies and different movement

thresholds. The results are consistent with our analysis, and thus omitted.

The query-delivery ratio of DLSP-SN, as shown in Figure 4.8, is close to that of DLSP below
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Figure 4.9: There is no single speed limit for different network sizes in GHLS because it does not
scale.

20m/s and even higher than that speed because DLSP requires the query to obtain location infor-

mation from a lower-level location server than the previous round, but DLSP-SN does not have this

restriction and can take more lookup-and-chase rounds. Figure 4.9 shows that the delivery ratio of

GHLS degrades significantly as the network size and the mobile’s speed increase. This is because,

as the per-hop latency is non-trivial, the term 2L
p thv̄ easily exceeds the bound, 2r, in Eq. (4.15).

When the query reaches the location obtained from the location server, the mobile has already

moved too far away from that location to receive the query, and hence the message is dropped.

The delivery ratio of GLS, shown in Figure 4.10, degrades significantly as the network size and

the mobile’s speed increase, also because the mobile has moved too far away to receive the query

when it reaches the location. In GLS, the mobile attempts to leave a forwarding pointer in the

grid of which it moves out, so that a query may follow the mobile using the forwarding pointers.

But the messages containing the forwarding pointers are likely to get lost, particularly when the

mobile moves fast, because the destination of these messages (i.e., the grid it moves out of) is in

the opposite direction of the node’s movement. By geographic forwarding, the mobile selects the

neighbor closest to the destination. But such a neighbor is most likely to be out of the mobile’s

radio range. When a forwarding pointer is lost, the chain of forwarding pointers is broken, and the

query has to be dropped.
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Figure 4.10: The delivery ratio of GLS degrades because many forward pointer messages are lost.

GLS also suffers some performance degradation at a low speed for the following reason. Unlike

the other location protocols we evaluate, location updates are triggered only by the movement

threshold in GLS. So, when the mobile’s speed is low, the update period is very long, especially

for high-level location servers in large networks. Then, loss of a location update can cripple these

location servers for a very long time. Queries will be dropped if they reach these servers. At

high speeds, the delivery ratio of small networks is noticeably better than that of large networks,

because it is easier for a query to catch up with the mobile within smaller areas.

Location-Update Overhead

Because GHLS is shown in [23] to incur the least update overhead, we normalize the update

overheads of DLSP, DLSP-SN, and GHLS with respect to that of GHLS, as illustrated in Fig-

ures 4.11–4.13. We obtained the results from the same tests for the query-delivery ratio. All the

normalized overheads are relatively insensitive to the mobile’s speed, since the tests of all protocols

use the same movement threshold for triggering location updates. As the mobile’s speed increases,

the update overhead increases accordingly for all protocols.

Compared to DLSP, DLSP-SN reduces the update overhead by at least 70%, as shown in Fig-

ures 4.11 and 4.12. More importantly, the normalized overhead of DLSP-SN decreases as the net-

90



Figure 4.11: DLSP incurs a very high update overhead because there may be as many as 8 location
servers at each level.

work size increases because the normalized overhead of DLSP is O( log(N)
N ) (overhead of DLSP-

SN is O(log(N)) and that of GHLS is O(N)). For this reason, GLS exhibits a similar trend in

Figure 4.13. However, the trend is not clear for DLSP, which can be explained as follows. Because

of the network boundary, the number of location servers at any level increases as the network size

grows. For example, the average number of level-0 (level-1) location servers increases from 4 to

6.25 (from 0 to 3) as N changes from 100 to 400. So, the trend is offset by the increase of overhead

due to additional location servers.

In Figure 4.13, the overhead of GLS increases almost linearly at low speeds for the following

reason. GLS does not use any timeout for sending updates, so its update overhead always increases

linearly with the mobile’s speed. In GHLS, the timeout is 8s and the movement threshold is 100m,

and hence, at low speeds, the mobile sends location updates every 8s, and the overhead of GHLS

is constant even when the mobile’s speed increases. Therefore, the normalized overhead of GLS

increases linearly at low speeds. Let’s compare GLS with DLSP-SN. The overhead of DLSP-

SN is at least 75% less than that of GLS, since it updates less location servers at each level and

incurs less updates when the mobile crosses a square boundary. Let’s compare GLS with DLSP in

Figures 4.13 and 4.11. GLS is shown to incur a much higher overhead than DLSP for 400×400m2
networks, because GLS updates the same number of level-0 location servers (4) as DLSP does for
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Figure 4.12: DLSP-SN reduces the update overhead by 70% or more. Its overhead is comparable
to that of GHLS in a network of 900 nodes or more.

this network size, and it incurs more overhead in case of boundary-crossing. As the network size

grows, DLSP selects more location servers than GLS, so its overhead catches up with or exceeds

that of GLS.

Query-Path Length

The results plotted in Figure 4.14 are also from the same tests for the query-delivery ratio. Due

to the gridding effect, the query-path length of DLSP-SN is 40−45% longer than that of DLSP in

large networks.

In Figure 4.14, the query-path length of GHLS decreases sharply beyond the mobile’s speed of

10m/s, because more than 30% of queries (most of them take long paths) are dropped and thus not

counted. Similarly, the query-path lengths of DLSP and GLS decrease noticeably at 30 and 40m/s.

These speeds are consistent with Figures 4.7, 4.9 and 4.10. DLSP-SN results in longer query-paths

than GLS, because DLSP-SN uses less location servers than GLS. So, DLSP-SN suffers more from

the gridding effect. The results of smaller networks show the same trend with smaller gaps.
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Figure 4.13: GLS incurs a very high update overhead because each level has 3 location servers,
and boundary-crossing incurs additional overhead.

Adaptation

To evaluate how DLSP-ASN improves overall energy-efficiency over DLSP-SN, we use the

same deployments and movements as in previous tests, but change the workload such that only

two sensor nodes in the same level-0 square send data to the mobile at the same constant rate.

Figures 4.15 and 4.16 show the results from a network of 1600 nodes and the data rate of 0.5

message per 1 second for each node.

Figure 4.15 shows that, with adaptive location updates, DLSP-ASN has a slightly higher de-

livery ratio than DLSP-SN, because, in the first round, each query travels less hops in DLSP-ASN

than in DLSP-SN. So it takes less time for a query to reach the mobile’s known location, and thus,

the mobile moved away less from the location. Starting at the second round, the query has a higher

chance to be delivered successfully. Figure 4.16 shows the total energy cost normalized by the total

cost of GHLS. The adaptive mechanism can improve the overall energy-efficiency by as much as

40%. For the range of 4 to 15m/s, the total energy cost of DLSP-ASN is comparable to, or even

lower than, that of GHLS. This is because most queries are delivered in one round. During the first

round, a query obtains the mobile’s location information within a small square in DLSP-ASN, but

in GHLS, it has to travel more hops to a randomly-picked location server within the largest square.
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Figure 4.14: DLSP-SN has longer query paths due to gridding effect.

As the speed increases, the improvement diminishes because DLSP-ASN also needs to take more

rounds to deliver the queries. In the tests of smaller networks and lower data rates, DLSP-ASN

shows less improvement on overall efficiency as expected.

4.6.3 Simulation Results Using S-MAC

In order to validate our analysis of DLSP on a MAC with real low-power duty cycling, we

simulated DLSP using S-MAC [79]. S-MAC is inspired by PAMAS [89] and uses RTS-CTS to

reduce channel contention. S-MAC periodically sleeps, wakes up to receive and transmit packets

if any, and then returns to sleep. Each active period is a constant period, and thus, the length of the

sleep period determines the length of each frame (i.e., the active period plus the sleep period). To

match the per-hop latency with our 802.11 MAC-based simulation, we set the sleep period such

that the length of S-MAC duty cycle is 0.5s. Other parameters of S-MAC such as slot time are kept

as default, resulting in 20.8% duty cycle. This duty cycle is rather high, but we keep the default

parameters of S-MAC while setting the per-hop delay as 0.5s for a fair comparison.

Moreover, because S-MAC is designed for static sensor networks, we need to slightly modify it

to deal with mobility— if a sensor node receives a beacon from a mobile, it stays awake for a short

period (in our simulation, this period is 2.5s). With this modification, the neighbor sensors of the

mobile are given enough wakeup time to send their replies and avoid severe collision, which could
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Figure 4.15: The delivery ratios of DLSP and GHLS match the results in previous figures.

occur without the modification. The mobile sink does not observe S-MAC sleep-scheduling, so it

can communicate with sensor nodes with different sleep schedules. This may be justified because

the mobile is usually much less power-constrained than sensors.

If a packet is lost, the sender tries to send it again (up to 3 times) in the next active period.

Therefore, the actual per-hop latency varies with sleep scheduling and packet retransmission. The

results presented next are from the test runs using same deployments and movements as in the

previous simulation.

Unlike the DLSP simulation with 802.11 MAC with fixed delay of 0.5s, DLSP with S-MAC

can have a delay shorter than its frame length (which is set to 0.5s) for the following reasons.

First, the sensors surrounding the mobile sink stay awake longer than other sensor nodes, so the

latency between these sensors and the mobile is much less than that between two sensors under

low-power duty cycling, which is approximately 0.5s. Second, at the origin of each packet, the

per-hop latency is on average, a half of duty cycle. As the network size increases, location updates

and queries take more sensor-to-sensor hops, so the average per-hop latency increases. The mean

and standard deviation of the per-hop latency, and the speed limit derived from Eq. 4.13 are shown

in Table 4.3.

Figures 4.17–4.19 plot the query-delivery ratio of DLSP, DLSP-SN, and GHLS, respectively,

using S-MAC. With S-MAC, the performance of DLSP protocols (DLSP and DLSP-SN) also
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Figure 4.16: The energy cost of DLSP-ASN is even less than GHLS when the speed is below
15m/s, when both provide high packet-delivery ratios.

validates our analysis — DLSP protocols scale well if the mobile’s speed is under the limit as

shown in Table 4.3, and degrade as the mobile’s speed grows beyond the movement threshold.

Compared to Figures 4.7, 4.17 shows that the performance of DLSP with S-MAC is slightly better

than that of DLSP with 802.11-MAC, while the performance of DLSP exhibits similar trends

regardless of the underlying MAC protocol. This performance improvement is attributed to the

fact that the per-hop latency with S-MAC is below 0.5s.

4.6.4 Results with Additional Mobility Models

We also evaluated DLSP with two additional mobility models: random walk mobility model

and Gauss-Markov mobility model [88]. The random walk model has strong randomness as in the

random way-point model. However, in the random walk model, mobile nodes randomly choose

their speed and direction at each fixed interval instead of randomly choosing the destination in the

random way-point model. In the Gauss-Markov mobility model, the speed and direction of mobile

nodes are correlated over time and modeled as a Gauss-Markov stochastic process. The temporal-

dependency of the Gauss-Markov model is determined by two parameters: σ is the standard de-

viation of the randomly-generated speed and direction at each interval, and α is the memory-level
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Figure 4.17: The query-delivery ratio of DLSP with S-MAC in a 1600m×1600m network. DLSP
with S-MAC scales well if the mobile’s speed is below the threshold shown in Table tab:dlsp-smac-
delay.

parameter which determined the randomness of the mobility model. The details of these mobility

models can be found in the survey paper [88].

Figures 4.20 and 4.21 plot the performance of DLSP with different mobility models. Here we

present a subset of our test results to show the effect of different mobility models with different

parameters. For the random walk model, the interval duration is set to 20s and 40s and the interval

duration is set to 10s to 20s with α = 0.5 and σ = π/2 for the Gauss-Markov model. The mobile’s

speed ranges from 4 to 40m/s as in our previous simulation. It is shown in Figures 4.20 and 4.21

that DLSP scales well if the mobile’s speed is under the threshold with any mobility model, which

confirms our analysis.

However, at a high speed, it is observed that the degree of performance degradation differs from

one mobility model to another, and from one configuration to another, because the performance of

location services is affected by other parameters of mobility models, even if the (average) speed is

the same. For example, the duration of interval of the random walk model affects the performance

of the protocol; the longer the duration of the interval, the further the mobile moves. Then, location

queries that have been forwarded to the mobile’s previous location will be less likely to be in the

proximity of the mobile, and the delivery ratio may degrade. This effect is more pronounced when
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Figure 4.18: The query-delivery ratio of DLSP-SN with S-MAC in a 1600m×1600m network.
DLSP-SN with S-MAC also scales well if the mobile’s speed is below the movement threshold.

a mobile moves at a high speed in a large network, in which it hits the network boundary less

frequently. For example, in Figure 4.21, it is shown that the random walk mobility model with a

20s duration (RW20) outperforms the same model with a 40s duration (RW40) at 40m/s. So is the

Gauss-Markov mobility.

There are previous efforts on developing the common metrics that can interpret the parameters

of different mobility models [90, 91], but not a single good metric has been developed yet, and

most of them focused on routing protocols, not on location services. Development of a universal

measure of mobility models for location services is beyond the scope of this chapter.

4.7 Concluding Remarks

In this chapter, we presented a distributed location service protocol (DLSP) which considers

the non-trivial per-hop latency caused by low-power duty cycling in sensor networks. Through a

rigorous analysis of DLSP, we derive the condition for achieving a high packet-delivery ratio, and

show how to configure the protocol parameters to ensure the scalability of DLSP. DLSP is shown

to be scalable if the mobile’s speed is below a certain fraction of the packet-transmission speed,

which depends on a movement threshold. The theoretical mobile’s speed limit is a one-fifth of the
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Figure 4.19: GHLS with S-MAC shows a similar trend as GHLS with 802.11 MAC. Since there
is no single speed limit for different network sizes in GHLS, the performance degrades even at a
lower speed for large networks.

packet-transmission speed.

We evaluate DLSP with extensive simulation using two MAC protocols and three mobility

models. The evaluation results confirm our analysis. We also proposed an optimization technique,

DLSP-SN, that can reduce the location-update overhead by 70% or more, while its query-delivery

ratio is even better than DLSP when the mobile’s speed is high. In order to make a tradeoff between

update and data-delivery costs, we presented a greedy adaptation mechanism, DLSP-ASN, which

can significantly improve overall energy-efficiency.
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Figure 4.20: The random way-point model (RWP), the random walk model (RWP) with the du-
ration of 20s (RW20) and 40s (RW40), and the Gauss-Markov model with the duration of 10s
(GM10) and 20s (GM20) are simulated with DLSP in an 800m×800m network.
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Figure 4.21: The random way-point model (RWP), the random walk model (RWP) with the du-
ration of 20s (RW20) and 40s (RW40), and the Gauss-Markov model with the duration of 10s
(GM10) and 20s (GM20) are simulated with DLSP in an 800m×800m network.
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P(S),P(R,T ) Location of a stationary sensor node S,

or of a mobile node R at time T
Sk, j(S),

Sk, j(R,T )

Sk,0(S) is the level-k square the sensor

S resides, and Sk,0(S) ( j = 1, · · · ,8) are
the eight level-k neighbor squares adja-

cent to Sk,0(S). Sk, j(R,T ) is the level-

k square the mobile R resides at time

T , and Sk, j(R,T ) ( j = 1, · · · ,8) are the
level-k neighbor squares

LSk, j(R,S),

LSk, j(R,T )

R’s level-k location server in the square

Sk, j(S), or Sk, j(R,T )

h Level of the largest square, i.e., the en-

tire deployment field
� Edge length of a level-0 square
m Movement threshold for level-0 loca-

tion servers 2−m�

τ Time threshold for location updates at

level-0 location servers
th Average per-hop latency, including

transmission/retransmission time, and

scheduling delay
p Average per-hop progress, or decrease

of Euclidean distance to the destination
for each hop taken

r Radio range
v̄ Mobiles’ average speed
dist(P1,P2) Distance between two locations, P1 and

P2

Table 4.1: List of symbols

101



Protocols DLSP DLSP-SN DLSP-ASN GLS
ID-to-LS
mapping

Hash the mobile
node ID into a
location within a
square, and the

node closest to
the location be-
comes a location
server

Same as DLSP Same as DLSP Select the node
whose ID is clos-
est to the mobile
node ID within a
square

LS in
neighbor
squares

One LS in each of
the eight neighbor
squares

At most one loca-
tion server from a
neighbor square

Same as DLSP-
SN

One LS from each
of the three neigh-

bor squares
Cross-
boundary

updates

Location updates

can only be trig-

gered by timeouts

or exceeding the

movement thresh-
old

Same as DLSP,

but the selected
neighbor depends

on whether or
not a boundary

of certain level is
crossed

Same as DLSP-
SN

Need to update

the three neighbor

location servers3

from level-0 to
level-k if the
boundary of a

level-k square is

crossed
Data
source
adaptive-
ness

No No Yes A mobile
may send addi-

tional location
updates to the

location servers
near the data
sources accord-
ing to a greedy

algorithm

No. A mobile
node may send

its location to the
data sources at a
fixed rate

Griding

effect4
No Yes Not after the addi-

tional location up-

dates are sent out

Yes

Multi-
rounds

Yes, with restric-

tions (1-3)5
Yes, with restric-

tions (1-2)5
Same as DLSP-
SN

No

Table 4.2: Comparison of hierarchical location services
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Network size Average
per-hop
latency

Standard
devia-
tion

Movement
thresh-
old

400m × 400m 0.251s 0.271 27.9m/s
800m × 800m 0.373s 0.281 18.8m/s
1200m × 1200m 0.410s 0.280 17.1m/s
1600m × 1600m 0.439s 0.313 16.0m/s

Table 4.3: Average per-hop latency of DLSP using S-MAC. The average per-hop latency and its
standard deviation vary with the network size. The movement thresholds can thus be derived from
our analysis using Eq. 4.13 for different network sizes.
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CHAPTER 5

Location Information Scrambler: Privacy Protection for
Smartphone Users

5.1 Introduction

As GPS-integrated smartphones, such as Apple’s iPhone 3G and Google’s G1, are increasingly

popular, location-based services (LBSs) are becoming a new buzz in the IT industry, attracting sig-

nificant attention from mass media [92, 93], financial investors [94], companies [95, 96, 97, 98],

and potential customers. LBS is an information or entertainment service that exploits knowledge

about users’ geographic locations to deliver highly personalized information tailored to the users’

needs, for example, restaurants, gas stations, and other points of interest (POIs) within certain

proximity of the mobile users. According to a report by Computer Science and Telecommuni-

cations Board [99], LBSs are expected to be seamlessly and ubiquitously integrated into future

computing environments and users’ daily lives.

However, with the growing deployment and use of LBSs, mobile users are increasingly en-

ticed to reveal their location information, thus becoming vulnerable to malicious attacks on their

location privacy. This is mainly because the location information is usually communicated via

open wireless networks and stored in the LBS providers. Adversaries can acquire unauthorized

access to users’ location information by eavesdropping on the communications between users and

servers, or compromising the location servers. In general, there are two types of location privacy

attacks: location disclosure [100, 101] and movement tracking [102, 103]. Location-disclosure

attacks occur when attackers utilize users’ location information to infer a wide range of the users’

personal information, such as home location, personal habits/preferences, and medical conditions,
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for unwanted and/or malicious purposes (e.g., unsolicited advertisements). Movement-tracking at-

tacks occur when attackers infer a user’s daily routes and future locations, which may even cause

physical harassments to the user, such as those in stalking or illegal surveillance [104].

To protect users’ location privacy, two types of approaches have been proposed. The first

type introduces the uncertainty of user identity (ID) by cloaking location information [24, 25].

Specifically, a user’s location, masked by a geographic area and a time window, is k-anonymous if

and only if this user and at least k−1 other users were present in the area during the time window.
So, attackers cannot distinguish among k or more users. The second type introduces “unlinkability”

between different pseudonyms of a user by using mix zones [26]. A mix zone is defined as an area

where user IDs are “mixed” and users change to new, unused pseudonyms whenever they enter a

mix zone. This way attackers cannot link people going into the mix zone with those coming out

of it. Both approaches require a trustworthy third-party server so that they can count the number

of users inside a cloaked or mix zone and ensure that the uncertainty of user IDs or the degree of

unlinkability between pseudonyms is met.

In this chapter, we propose a new approach, called the Location Information ScrAmbler (LISA),

to protecting the location privacy of mobile users, using m-unobservability. The key idea behind

LISA is to disable the distinguishability of each user’s POIs, and therefore, weaken the attackers’

capability of inferring the user’s private information or mobility patterns from his locations. LISA

achieves m-unobservability by intentionally introducing measurement noise into the location in-

formation provided to a location server, such that the users’ locations estimated by attackers are

m-unobservable—at least m POIs can be related to each estimated location. By using a simple yet

general object tracking model based on an extended Kalman filter [105], LISA adjusts the location

(measurement) noise to obtain the covariances of location estimation that meet m-unobservability.

Since LISA performs such “noise-level tuning” locally on individual mobile devices, it elimi-

nates the reliance on trustworthy third-party servers required by other approaches. In LISA, mobile

users need to trust only their handheld devices and can set up personalized privacy requirements.

This simplifies trust relationships and improves configuration flexibility, thereby significantly re-

ducing the complexity in the design of location servers and their deployment. In contrast, the

trust relationship between third-party servers and mobile users in previous approaches is often es-

tablished through policy restrictions, making no guarantees on the protection of users’ location
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privacy against malicious attacks.

The advantages of LISA are three-fold as follows.

• It introduces a new, orthogonal dimension of uncertainty and can be combined with existing
approaches to provide stronger location privacy protection.

• It prevents leakage of mobile users’ privacy information as a result of compromised third-
party servers, and limits privacy attacks to individual cell phones, thus significantly reducing

the impact of attacks.

• It lowers the trust requirements from mobile users, thus simplifying the implementation and
deployment of LBSs.

The chapter is organized as follows. Section 5.2 describes our threat model, and Section 5.3

introduces the privacy model and metrics used in LISA. Section 5.4 presents the details of LISA,

and Section 5.5 describes two optimization techniques for performance improvement. Section 5.6

discusses our evaluation methodology and results. Section 5.7 compares LISA with other related

work. Section 5.8 discusses future work and concludes the chapter.

5.2 System and Threat Model

We assume that an LBS system consists of smartphones, wireless networks, a proxy server,

and LBS servers, as shown in Fig. 5.1. A smartphone user who wants to access a location-based

service sends a service query to the proxy server through a wireless network, such as AT&T and T-

Mobile. The service query includes information about the user’s current location, obtained through

an integrated GPS or triangulation of nearby radio towers, and the types of service he/she likes to

access, so that the proxy server can pass it to appropriate LBS servers. The LBS servers then return

the responses to the user through the proxy server. The communication between the mobile device

and the proxy server goes through encrypted connections to prevent unauthorized eavesdropping.

Here we adopt a threat model in which users do not need replies from trustworthy third-party

servers (such as the location server [25] or the anonymity server [24]) to protect location privacy.

LISA assumes that a user’s own handset is trustworthy, and neither the proxy server nor the LBS

servers are trusted. Hence, adversaries may compromise the untrustworthy hosts to access any
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Figure 5.1: The architecture of a typical LBS system

information in users’ LBS service queries, such as their IP addresses, current locations, and past

trajectories. This model removes the dependency on a trusted entity and is more realistic and

attractive in that (1) it is very expensive and difficult, if not impossible, to perfectly secure a public

server, and (2) many data breaches occur due to compromised servers, dishonest insiders, and

accidental loss or improper disposal of storage media.

In addition, as in previous work [25, 24, 106], we also assume adversaries only read the location

information in the compromised servers and do not attempt to manipulate the query results sent

from LBS servers to mobile users. This is because attackers’ main purpose is to learn users’

location privacy information. Modifying or faking query responses not only provides few or no

benefits for attackers to achieve the goal but also add much risk of getting detected, as users can

verify the server responses with their observation.

Third, we assume that the adversaries use the source IP addresses in the service queries to track

the users’ movement. Although IP addresses assigned to each cell phone are usually dynamically

allocated by wireless carriers, our experiments demonstrated that the IP address assigned to a user

often remains unchanged for an extended period of time and IP collision, i.e. different users get

assigned the same IP address, rarely happens, as shown in Fig. 5.2.

The data in Fig. 5.2 was collected from the experiment we ran from 9:00AM to 2:30PM on

a normal workday using 2 T-Mobile G1s phones. In this experiment, one cellphone initiated a

TCP connection through the T-Mobile EDGE network to a server every 1 minute, while the other
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Figure 5.2: The IP addresses T-Mobile assigned to two G1 phones. The X-axis indicates the time
an IP was assigned, and the Y-axis indicates different IPs.

turned off the radio, then turned it back on and made a TCP connection every 1 minute in order

to force an IP re-assignment from the carrier network, T-Mobile. The IP addresses of both phones

are depicted in Fig. 5.2. It shows that the first G1 phone always acquired the same external IP from

T-Mobile, as indicated by the straight line (labeled as “Periodic Usage”). the second G1 phone

was never given the first phone’s IP, as shown by the data points of “Toggle GSM.” Each point

along the contour curve means a new IP assigned by T-Mobile, and each point below the contour

represents the reuse of a previous IP.

Based on this experimental result, attackers may very likely identify a sequence of service

queries from a user and construct a trajectory which potentially can leak more privacy information.

5.3 Privacy Model and Metrics

A survey by Pfitzmann and Koehntopp[107] generalizes and formalizes the terminology on

anonymity and related topics as follows.

• “Anonymity is the state of being not identifiable within a set of subjects, the anonymity set”

• “Unlinkability of two or more items (e.g., subjects, messages, events, actions, ...) means
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that within this system, these items are no more and no less related than they are related

concerning the a priori knowledge.”

• “Unobservability is the state of IOIs being indistinguishable from any IOI at all”, where IOI
stands for item of interest.

Using this terminology, Gruteser and Grunwald [25] proposed k-anonymity, which quantifies

location privacy as the uncertainty of user identity. Specifically, a user’s location information,

specified by a geographic area and a time period, is said to be k-anonymous if and only if this

user and at least k−1 other users were present in the area during the given time period. Beresford
and Stajano [26] proposed mix zones to achieve unlinkability between different pseudonyms of a

user. Users change to new, unused pseudo names whenever they enter a mix zone, so that attackers

cannot link people going into the mix zone with those coming out of it.

Following the same terminology, we proposem-unobservability to quantify the uncertainty of a

user’s location. Items of Interest (IOIs) can be assigned various meanings, such as point of interests

(POIs) in the context of location-based services. We define that the estimation of a user’s location,

specified by a mean vector (μ) and a covariance (Σ), is m-unobservable if and only if it can be

related to at least m points of interest. Specifically, assuming μ= (x̄, ȳ) and

Σ =
(

δ2x δxy
δyx δ2y

)

, and f (x,y) is the probability density function of the location estimation

‖Pi | POIPi falls into the areaD‖ ≥m (5.1)

where D= {(x,y) | |x− x̄| < α∗δxand|y− ȳ| < α∗δy } and α satisfies
RR
D

f (x,y)dxdy≥ 0.9.

The intuition behind the m-unobservability is that if there are at least m POIs in the proximity

(restricted by probability 0.9) of the mean estimated location, attackers cannot relate any particu-

lar POI to the estimated location, and thus, their ability to infer the user’s private information is

significantly weakened. For example, a bus rider may provide his location to a real-time campus

bus schedule system in order to obtain the bus arrival times at nearby bus stops, and therefore, all

campus buildings and bus stops are considered as POIs. If the rider’s location information can be
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related to m different buildings or stops, an attacker will not be certain of which building or stop

the rider visits.

Moreover, the set of POIs that supportsm-unobservability depends on the application scenarios

and users’ needs. Using the above example, if a user is concerned about being stalked by strangers,

only the bus stops are accounted for, so a potential stalker cannot determine to which bus stop the

user goes.

The m-unobservability also provides a measure for location uncertainty—the larger m, the

higher the degree of location uncertainty and location privacy. Because attackers may obtain a

sequence of location service queries as the user moves around, our approach aims to protect the

privacy of his location and movement trajectory. Therefore, our privacy metric is the average

entropy of the sequence. Formally, for any user u,

H̄u =
1
n ∑li∈L

Hu
i (5.2)

and

Hu
i = −

mi
∑
j=1

p j log(p j) = log(mi) (5.3)

where L = l1, l2, · · · , ln is the sequence of locations where u accesses some location services, and
mi is the number of POIs that attackers can relate to the estimated location at li. Eq. (5.3) is derived

from the general privacy entropy definition [108] by assuming each of themi POIs in the proximity

is equally likely to be related to the user, i.e., pi = 1/mi.

5.4 Protection of Location Privacy Using m-unobservability

This section details our approach. We first state our design goals (Section 5.4.1), then outline

the architecture of a LBS system (Section 5.4.2), and finally, describe how to protect location

privacy.
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Figure 5.3: The POI database at the proxy server

5.4.1 Design Goals

Our approach should meet the following two goals.

• Privacy Protection: it must protect users’ location privacy even when attackers compromised
the proxy server and the LBS servers.

• Resource Constraints: the software running on smartphone clients must operate under vari-
ous resource constraints, especially battery and processor capability constraints.

5.4.2 LBS Architecture

As mentioned in Section 5.2, an LBS system consists of smartphones, wireless networks, a

proxy server, and LBS servers. Each LBS provider maintains a list of POIs and certain information

about the POIs that users may query. For example, GasBuddy keeps a list of gas stations in a

number of cities and up-to-date gas price at each station. SmartBus has a list of campus buildings

and bus stops and the bus arrival time(s) at each stop. When an LBS provider subscribes to the

system, it provides its POI list to the proxy server, so that the proxy can build a POI database, as

shown in Fig. 5.3.

On each smartphone, Query Composer is responsible for sending location-service queries to,

and receiving responses from the proxy server. Suppose a user wishes to query the gas prices near

the current location (x,y), or specifically, in the rectangular area, (x−L,y−L,x+L,y+L). If (x,y)

is sent to the proxy and GasBuddy, the user’s location privacy may be risked. Instead, the Privacy

Protection Engine computes a scrambled location, (′x, ′y), such that it is m-unobservable, where
m is determined by the user’s privacy requirement. For example, the user may prefer that at least
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Figure 5.4: The Privacy Protection Engine

10 POIs can be related to the scrambled location. To count nearby POIs, each handset maintains a

local POI database, by querying the proxy’s POI database with certain constraints, such as the city

where the user lives or visits.

With privacy protection, the location-service query contains a rectangle region (′x−αδx −
L, ′x+αδx + L, ′y−αδy− L, ′y+αδy + L). Upon receiving queries from the client, the proxy

server passes them to the plugin handler, which selects the right plugins to communicate with the

corresponding LBS servers, and then returns the response to the client handset. The handset locally

filters out the results outside the rectangular area (x−L,y−L,x+L,y+L).

5.4.3 Location Privacy Protection Engine

Location information is scrambled by the Privacy Protection Engine, as detailed in Fig. 5.4.

We first introduce a mobility model the Engine adopts, then present the three key data structures—

Privacy Zone List, KF0 and KF1—and finally, describe how the Engine scrambles a user’s location

information.
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Mobility Model

To track a user’s movements, the Engine adopts the Wiener-sequence acceleration model [109]

which assumes each acceleration increment is an independent (white noise) process. Let xk denote

the state variable and yk the observation (a.k.a. measurement) variable at time tk. In fact, the process

state, xk, is a vector in the form of (x,vx,ax,y,vy,ay)′, which represents the location, velocity, and
acceleration of a user on the X and Y axes. The mobility model is given by

xk+1 = Ak(Δtk)xk +G(Δtk)wk (5.4)

yk = Cxk+ vk (5.5)

where

Ak(Δtk) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 Δtk Δt2k/2 0 0 0
0 1 Δtk 0 0 0
0 0 1 0 0 0
0 0 0 1 Δtk Δt2k/2
0 0 0 1 Δtk
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Gk(Δtk) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Δt2k/2
Δtk
1

Δt2k/2
Δtk
1

⎞
⎟⎟⎟⎟⎟⎟⎠

C =
(
1 0 0 0 0 0
0 0 0 1 0 0

)

and wk are both random variables for the process (system) noise and the observation (measurement)

noise, respectively, and Δtk = tk+1− tk. Therefore, a Kalman filter1 [105] based on the mobility
1The filter is sometimes called Stratonovich-Kalman-Bucy filter because it is a special case of a more general,

non-linear filter developed earlier by Ruslan L. Stratonovich.
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model is summarized as follows. The predicted process state is:

x̂k+1|k = Ak(Δtk) x̂k (5.6)

and the predicted estimate covariance is:

Pk+1|k = Ak(Δtk)Pk|k Ak(Δtk)′+Qk (5.7)

where the process noise covariance is:

Qk(Δtk) = cov(Gk(Δtk)wk) =

var(wk)

⎛
⎜⎜⎜⎜⎜⎜⎝

Δt4k/4 Δt3k/2 Δt2k/2 0 0 0
Δt3k/2 Δt2k Δtk 0 0 0
Δt2k/2 Δtk 1 0 0 0
0 0 0 Δt4k/4 Δt3k/2 Δt2k/2
0 0 0 Δt3k/2 Δt2k Δtk
0 0 0 Δt2k/2 Δtk 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For measurement updates, the Kalman gain is:

Kk = Pk+1|kC′ [CPk+1|kC′+Rk+1]−1

, the updated state estimate is:

x̂k+1|k+1 = x̂k+1|k +Kk+1[yk+1−C x̂k+1|k
, and the updated estimate covariance is:

Pk+1|k+1 = [I6−Kk+1C]Pk+1|k. (5.8)

Next, we will discuss how this model is used in the description of KF0 and KF1.

Three Key Data Structures

The Privacy Zone List keeps a number of places where a user’s location privacy needs to be

protected, because protecting location privacy consumes extra resources, particularly battery power
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of the handset, and therefore, a user may want to specify where and how his location privacy should

be protected. For example, based on the user’s preference, the list may include the user’s home

location and the hospital he often visits. Moreover, the degree of privacy protection may vary from

one place to another, such as 10-unobservability for home and 5-unobservability for the hospital.

The engine can then look up the local POI database, and find a privacy zone that covers the home

(hospital) location and includes 10 (5) relevant POIs. Here relevant POIs are meant to confuse

attackers. For example, only apartments and residence buildings should be counted for protecting

the privacy of home.

KF0 denotes the extended Kalman filter that the Engine uses to track the user’s movement.

Such tracking is necessary for the following two reasons. First, location measurements through

radio tower triangulation is inaccurate, and the filter can be used to reduce measurement errors.

Triangulation is still useful for smartphones without an integrated GPS (A-GPS), such as the first-

generation iPhone, and for saving battery power even in phones with GPS [110]. Second, the

Engine needs to predict the user’s movement (using Eq. (5.6)) to improve privacy protection and

reduce energy consumption. The look-ahead optimization based on movement prediction is de-

tailed in Section 5.5.

KF1 denotes the extended Kalman filter that the Engine uses to scramble the user’s accurate

location information. Given a location, (x,y), a scrambled location, (x′,y′) is a random variable

following the normal distribution with mean μ=(x,y) and covariance Σ. In fact, Σ is the covariance

of the measurement noise that the Engine injects to confuse attackers. Then, from the attacker’s

perspective, a scrambled location is a location measurement with some significant measurement

noise, which can be filtered or reduced using some mobility model. Hence, the role of KF1 is to

examine a scrambled location and determine how much noise is needed to achieve the location

uncertainty (given by Eq. (5.8)) that satisfies the privacy requirement.

Location Scrambling

The Privacy Protection Engine scrambles the user’s location information in six steps, as illus-

trated in Fig. 5.4.

S1. When the user wishes to access an LBS, the Request Composer tells the Engine the LBS’s

name and the types of POIs that support unobservability.
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S2. The Engine then gets a location measurement from one of the location information providers,

such as A-GPS or radio tower triangulation. Assuming that the measurement is timestamped

at tk, the engine updates the parameter matrices of KF0 and KF1 using Δtk = tk− tk−1, and
uses KF0 to estimate the current location (xk,yk).

S3. With the current location (xk,yk), the Engine searches the Privacy Zone List, and verifies if

the location is inside any of the privacy zones derived from the user’s preference. If so, the

Engine gets the privacy requirement in the form of m-unobservability. If the location within

multiple zones, the Engine gets the largest m.

S4. With m, the Engine looks up the local POI database and finds the rectangular region, (xk−
d,yk−d,xk +d,yk +d), such that there are at least m POIs of the specified types inside the

region.

S5. With d, the Engine gets δx = δy = d/2. Here α = 2 because, using the Kalman filter KF1, the

location estimation follows a normal distribution with μ= (xk,yk) and

Σ =
(

δ2x δxy
δyx δ2y

)

. We have
Z xk+2δx

xk−2δx

Z yk+2δy

yk−2δy
f (x,y)dxdy≥ 0.9

, where f (x,y) denotes the pdf of the normal distribution.

S6. Let Rk = r I2. The Engine adjusts r such that Pk(1,1) ≥ d2/4 and Pk(3,3) ≥ d2/4. Then,

it generates a random noise (ex,ey) (i.e., a location offset) that follows a normal distri-

bution ((0,0)′,r2 I2. Therefore, the scrambled location sent to the Request Composer is
(xk+ ex,yk + ey) if ex,ey ≤ 2r, or (xk +2r,yk+2r) otherwise.

5.5 Optimizations

In this section, we propose two optimizations, look-ahead and de-randomization, to improve

location privacy protection.
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5.5.1 Look-ahead

In the previous section, we showed that KF1’s state transition matrix, Ak, and process noise

covariance, Qk, are both determined by the inter-arrival time between consecutive LBS queries,

Δtk. Specifically, as Δtk gets smaller, Ak and Qk both become smaller. As a result, the prior

estimation error covariance Pk+1|k approaches 0 and so does the Kalman gain, Kk. Then, the

location measurement is trusted less, while the predicted location is trusted more. In this case, if

Pk|k is also small (i.e., not in any private zone), increasing Rk+1 cannot effectively increase Pk+1|k+1,

and thus cannot satisfy m-unobservability.

The look-ahead optimization alleviates this problem by predicting the location privacy require-

ment in the next step and adjusting the measurement noise in the current step to meet the require-

ments in both steps.

First, the Engine needs to predict the location privacy requirement in the next step. If the inter-

arrival times of LBS queries, Δtk(k = 1,2, · · ·), are fixed at Δt, replacing Δtk with Δt in Eq. (5.6)
leads to the predicted location, which is then used by the Engine to search the Privacy Zone List

and obtain the privacy requirement.

If the inter-arrival times follow some distribution (e.g., exponential distribution) with f (t) as

its pdf, then the next location x̂k+1|k = A(t) x̂k with probability f (t). Therefore, the mean privacy

requirement is given by
R t0
0 p(t) f (t)dtR t0
0 f (t)dt

, where p(t) is the privacy requirement at the predicted location A(t) x̂k, and t0 specifies how far

in future the prediction goes. Obviously, t0 should not be too large because the prediction can go

very wrong.

Next, the Engine searches for the measurement noise covariance for this step and the next

step, Rk+1, R− k+2, that satisfies both the privacy requirement of this step and the predicted

requirement of the next step, such that Rk+1+R− k+2 is minimized.
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5.5.2 De-randomization

Another issue about the model in the previous section is that it does not consider movement

between two LBS queries. If a user moves very little in a private zone but keeps sending LBS

queries, his true locations may be disclosed even though the queries only contain scrambled loca-

tions. The reason is simple: if a sequence of scrambled locations are based on a true location, the

average of the scrambled locations converges to the true location as the sequence gets longer.

Our solution is to de-randomize the scrambled locations. Specifically, when the Engine detects

less than minimum movement by a user inside any private zone, it reuses the previous scrambled

location rather than generating a new one. This way, attackers do not get new information even as

the handset continues to send LBS queries, and therefore, the user’s location privacy is protected.

5.6 Evaluation

We now evaluate LISA on G1 smartphones using real-world GPS traces of different movement

patterns. First, we measure the energy consumption of a few benchmarks on a G1 phone. We

then describe the traces collected for the evaluation, including walking, driving, riding a bus, and

combinations thereof. Finally, we thoroughly analyze how LISA performs for the collected traces

in terms of privacy protection and energy consumption.

5.6.1 Measurement of Energy Cost

To quantify the energy cost of LISA on the G1, we implemented a benchmark software on the

Android platform, and used a digital multimeter to measure the electric current the phone drew

when running one of the following benchmarks: baseline (the normal background activities such

as radio beacons, the Android OS, and the screen), GSM receive, GSM send, Toggle GSM (turn

on/off the GSM radio), GPS (get a location reading from the integrated GPS), and Kalman Filter.

We did not consider the T-Mobile 3G network due to lack of coverage in our town. Because these

benchmarks represent all constituent activities of LISA, their energy consumptions are used to

estimate the energy consumption of our system.

Typically, a LBS query ascribes its energy consumption on a smartphone to the following parts:

(1) getting the current location, (2) scrambling the location using the extended Kalman filters, (3)
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sending the query to the proxy server, and (4) receiving the returned POI information (GSM). Such

fine-grained measurements also enable us to evaluate the relative significance of each hardware

component’s energy cost and efficiently arrange different tasks to achieve the desired privacy level

with minimum energy cost.

We set up experiments as follows. A 5V DC adapter was modified to power the G1, avoiding

the variability of the battery’s output voltage over time. The main battery was removed to avoid

effects of charging battery during the experiments. We cut the power cord and connected an Agilent

34401A Digital Multimeter to measure the electric current drawn by the phone. The multimeter

is capable of sampling system current at the rate of 10-20 samples per second. The multimeter

was connected to a laptop which logged the time-stamped readings of instantaneous current. The

G1 phone executes only one benchmark at a time for multiple times. For instance, the “GSM

send” benchmark periodically transmits network packets of different sizes (ranging from 500 to

1M bytes) to a remote server through the T-Mobile GSM network. However, the measurement

is not only the cost for GSM transmission but also for those background processes. To estimate

the net energy cost, we measured the baseline energy consumption when the G1 executed a “null”

task.

Experiment Average Energy
Consumption (Joules)

GSM Receive 500 bytes 3.05843
1000 bytes 4.16094
10000 bytes 5.67318
50000 bytes 8.45077
100000 bytes 12.4134
500000 bytes 38.3875
1000000 bytes 75.0637

GSM Send 50 bytes 4.66598
200 bytes 4.67434

Toggle GSM 26.9085
GPS 2.1
Kalman Filter 0.00075
Baseline with screen off (per second) 0.028

Table 5.1: Energy consumption of different benchmarks on a T-Mobile G1 phone
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y = 0.1481*x4 − 5.29*x3 + 69.87*x2 − 402.6*x + 856.2

Energy Measurement

Curve Fitting with a 4th degree Polynomial

Figure 5.5: Average energy cost for receiving packets through the T-Mobile GSM network and
curve-fitting them with a cubic polynomial.

The measurements of energy consumption are summarized in Table 5.6.1. Because the size

of responses from the proxy can vary over a wide range, we curve-fit the energy consumptions of

GSM receive on different sizes of packets, as shown in Figure 5.5.

5.6.2 Real-world Trace Collection

To collect real-world traces, we also implemented a GPS trace collector on the Android plat-

form. G1 phones have a built-in GPS receiver, and the Android system provides APIs for querying

GPS records in real time. Hence, the collector can obtain updates of the mobile phone’s current

location every 1 or 2 seconds. Note that in a real application, a location is only needed when the

mobile is requesting some LBS services in order to conserve the battery power. In our experiments,

we record the GPS readings at a much higher frequency so that we can mimic different user request

patterns. For example, we model the arrival time of LBS queries with Poisson distributions with

different mean intervals.

We carried the G1 phone on three daily routines: walking between home and office, taking

a campus bus (that includes both walking and driving), driving around the town. The traces are

shown in Figures 5.7, 5.9 and 5.11, where each red triangle represents a POI. These three patterns

can represent user movements under a wide range of application scenarios.
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Figure 5.6: Each POI is shown as a pushpin on the map

Because our traces were collected on campus, we obtained a geo-database of over 500 campus

buildings, and added all campus bus stops into the database. Figure 5.6 shows the POIs in a sub-

area of our campus.

5.6.3 Simulation Setup

In this subsection, we evaluate the performance of LISA via Matlab-based simulation. Al-

though we have implemented LISA on the G1 phone, we decided to use simulation instead of field

tests because (1) performing field tests are time-consuming and the results are difficult to repro-

duce; (2) the simulation allows us to easily adjust a variety of parameters (e.g., inter-arrival time

between successive location updates) to create different scenarios and repeat each scenario mul-

tiple times; and (3) the simulation results should match those of field tests, because we have the

same implementation in Matlab as in the G1 phone, use the real-world traces and the POI database

to drive the simulation, and estimate the energy consumption using benchmark measurements on

the G1.

The system parameters used in the simulation are listed in Table 5.2 and detailed below.

• To simulate the usage of LBS services, we assume that the number of LBS queries a mo-
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Figure 5.7: Traces of walking between home and office

Parameter Default value
mean inter-arrival time of LBS queries (λ) 60 seconds

look-ahead window size (t0) 0.5λ
Total number of POI 590

Anonymity Requirement 10-unobservability
Entropy threshold 3.321928
LBS query range (L) 400m

Range of observation deviation (r) [10m, 1000m]

Table 5.2: Default values for simulation parameters

bile user initiates is a Poisson process with the default mean inter-arrival time (1/λ) equal

to 60 seconds. Then, the query arrival pattern can be generated as follows. First, the sim-

ulation engine loads a GPS trace file containing a sequence of GPS locations (pi) and their

corresponding timestamps TPi . Next, the engine generates a series of time points t j where

t = t j− t j−1 follows an exponential distribution f (t) = λe−λt . Last, the first GPS location pi

with TPi ≥ t j is selected as the location where the mobile user submits the j-th LBS query.

• The look-ahead window determines how far in future the movement prediction goes. We set
it to be proportional to the mean inter-arrival time.

• The local POI database has 590 entries, covering a region of about 70km2 and the average
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Figure 5.8: Location entropies of walking traces

POI density is 8.4 per km2.

• A mobile user needs to scramble his location inside pre-defined privacy zones. Each zone
has a privacy requirement based on the user’s preference. The privacy requirement is defined

in terms of the m-unobservability or the entropy log(m) (see Section 5.3). In the simulation,

the default anonymity requirement is set to 10-unobservability that corresponds to an entropy

value of 3.321928. This means that attackers can relate the mobile user’s locations to at least

10 POIs.

• Each LBS query has a range, L = 400m. That is, the query region is a rectangle (x−L,y−
L,x+L,y+L) if the user’s location (x,y) is not scrambled, or a rectangle (x′−2δx−L,y′−
2δy− L,x′+ 2δy + L,y′+ 2δy +L) if the location is scrambled as (x′,y′) and the standard
deviation of location estimations along X-axis and Y-axis are δx and δy, respectively.

• In our simulation, the default limit of r (Section 5.4 S6) between 10m and 1km.

In the rest of this section, we evaluate the effectiveness and efficiency of LISA.We also evaluate

the impact of the above parameters on LISA’s capability in scrambling the location information.

Unless otherwise stated, the system parameters are set to their default values.
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Figure 5.9: Traces of taking a campus bus

5.6.4 Performance Metrics

The main metric for privacy protection is the average location privacy entropy along each

movement track. We need to look at an entire track because the location privacy at t j depends on

the privacy at t j−1. Additionally, because the goal of LISA is to keep the privacy entropies above

the requirements, it is important to evaluate the percentage of times the requirement can be met.

Hence, we define the protection success rate as the percentage of LBS queries sent from private

zones that satisfy the privacy requirements.

The direct measure for energy efficiency is energy consumption in Joules. We consider the

energy consumption of the entire system, including the Kalman filter computation, GPS readings,

and communication over the GSM network. To compare the communication costs, we also com-

pare the size of the LBS query rectangles and the number of POIs returned to account for uneven

distribution of POIs.

5.6.5 Evaluation Results

We compare the performance of LISA and its optimization (LISA-lookahead) with a naive

approach (Naive), which always uses the maximum r to maximize unobservability.
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Figure 5.10: Location entropies of bus traces

Privacy Protection

In the experiment, we randomly pick a privacy zone with the default privacy requirement, and

simulate LBS queries using a Poisson distribution. When the mobile user enters the private zone,

LISA scrambles the location information to satisfy the privacy requirement. To evaluate the ef-

fectiveness of LISA, we simulate a location privacy attack against the mobile user as follows.

Attackers are assumed to have gained access to all the history LBS queries from the mobile user.

Their goal is to estimate the current location of the mobile user inside the private zone from a

sequence of the user’s history locations (those sent in the private zone are scrambled, and rest are

not), and thereby infer the POIs to which the mobile user is related. The results of attacks are

quantified by the location entropy computed from Eq. (5.3), i.e., the smaller the location entropy,

the less location privacy is protected. For each LBS query issued within the private zone, a success

is counted if the location entropy of attackers’ estimation is above the privacy requirement prede-

fined by the user (Table 5.2). We repeat the experiments 50 times for each of 3 trace types and

compute the success rates as the number of successes over the total number of LBS queries.

Table 5.3 compares the success rates of different traces across three approaches (LISA, LISA-

lookahead and naive). We also collect all the location entropy values and plot their CDFs (cu-

mulative distribution functions) in Figures 5.8, 5.10 and 5.12. The average location entropies for

different traces are also summarized in Table 5.4.
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Figure 5.11: Traces of driving around the town

From Tables 5.3 and 5.4, we can make the following observations. First, LISA and its look-

ahead optimization can satisfy the privacy requirement by 70-90%. This is also demonstrated by

the average entropy values in Table 5.4 which all exceed the user requirement, 3.32. Second, the

look-ahead optimization provides, on average, 5% improvements in success rate over the original

LISA for walking and campus bus traces. However, very little improvement is made for driving

traces. This is because the look-ahead optimization relies on accurate prediction of the user’ en-

trance into the private zone so that it can adjust the location uncertainty beforehand. In the driving

traces (Figure 5.11), the car took many sharp turns and moved faster than pedestrians or a campus

bus, so location prediction becomes very inaccurate and the optimization makes no improvement.

Third, the naive approach which adopts the maximum query range provides the highest protection

of location privacy, as indicated by near-perfect success ratios. However, there is a trade-off be-

tween the communication cost and the energy consumption incurred by the naive approach as we

will show later.

Success Rate
LISA LISA-Lookahead Naive

Walking 0.92 0.973333 1
Campus Bus 0.683333 0.726667 0.99
Driving 0.795294 0.796471 0.998824

Table 5.3: Success rates for different types of traces using different algorithms
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Figure 5.12: Location entropies of driving traces

Average Entropy
LISA LISA-Lookahead Naive

Walking 3.774122 3.800483 7.095277
Campus Bus 3.165494 3.346328 4.705274
Driving 3.637652 3.618186 6.993945

Table 5.4: Success rates for different types of traces using different algorithms

Figure 5.13 shows the success rate of the three approaches while varying the query interval.

The success rate is shown (on y-axis) for different mean intervals of LBS queries. As the interval

increases, both Ak and Gk increase, the prediction covariance Pk+1|k increases significantly, mean-

ing that the location predictions becomes more inaccurate as indicate by Eq. (5.7). Therefore, it

becomes very difficult for the lookahead optimization to correctly predict if the user enters a private

zone at the next step, and thus, loses its advantage and even gets worse due to incorrect prediction,

as the interval increases.

As shown in Figure 5.14, the overall average entropy decreases as the interval increases. This

is because, with the POIs clustered rather than evenly distributed, it becomes more likely that the

user enters a private zone at the two ends of the track (walking) where POIs are sparse, as the

interval increases.

Figure 5.15 shows how the success rate changes as the maximum observation deviation, r,
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Figure 5.13: Success rates for different λ

increases. When r is small and the variance of the location estimation is bounded by r, the success

rate is limited. As the deviation bound grows, the variance of location estimation also increases,

allowing larger uncertainty regions to satisfy the privacy requirement. However, as the deviation

bound continues to grow, even larger uncertainty regions do not improve the success rate. This is

because we have a limited set of POIs, and the expanded areas do not cover more POIs.

Figure 5.16 depicts the relationship between the success rate and the look-ahead window size.

The look-ahead window size determines how far in the future LISA predict a mobile user’s move-

ment. At a small window size, LISA estimates the user’s location only in the near future (e.g., a

few seconds into the future) and may fail to predict the situation when the user enters the private

zone. In such cases, the look-ahead optimization provides no additional benefits. As the window

size grows close to the mean interval between two consecutive LBS queries from the user, LISA’s

prediction accuracy also increases. Because success prediction allows LISA to proactively adjust

the location uncertainty, an appropriate window size will improve LISA’s success rate. However,

as the window size continues to increase, LISA tends to over-predict the distance that the mobile

user may travel before s/he sends the next LBS update. This often degrades the prediction accuracy

and negatively affects the success rate, for example, when the window size equals 1λ or 1.25λ in

Figure 5.16

Finally, we evaluate the effectiveness of the de-randomization optimization by comparing the

LISA’s success rate when the optimization is enabled, with the success rate when it is disabled.
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Figure 5.14: Location entropies for different λ

Figure 5.15: Success rates for different r values (maximum observation deviation)

We simulate the scenario where a mobile user stays at the same location inside the private zone

for a long time period during which s/he issued 40 LBS queries out of 70 in total. LISA without

the de-randomization optimization handles the queries in normal way where, for each query, LISA

manipulates the location uncertainty by generating a random location offset. On the other hand,

LISA with the optimization sends the same location information as the last LBS queries as long as

the mobile user stays at the same position. The experimental results are summarized in Table 5.5,

showing that the de-randomization optimization significantly improves the success rate. This is

because by sending the same location updates, a mobile user does not leak additional information to

the any unauthorized party, and thus stands a better chance to successfully protect his/her location
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Figure 5.16: Success rates for different look-ahead window sizes

No De-randomization De-randomizationNo Lookahead Lookahead Naive
Success Rate 0.769 0.772 0.937 0.917

Average Entropy 3.543 3.543 6.832 5.660

Table 5.5: Effectiveness of de-randomization optimization

privacy.

Energy-Efficiency

In this subsection, we comparatively evaluate LISA’s energy-efficiency, using three metrics: (1)

expansion of the query region (km2), (2) additional POIs in the query responses, and (3) additional

energy consumption. LISA expands the region in the location queries to scramble the mobile user’s

true location. However, a larger query region implies a higher energy cost because more POIs

may be found in a larger query region, and sending them back to the mobile user incurs a higher

communication overhead. LISA tries to balance the privacy protection and energy consumption

by searching for a minimum possible query region that satisfies the m-unobservability so that the

extra energy cost can be minimized. Figure 5.17 plots the CDF of additional query regions and

Table 5.6 presents the average values. One can see that, even though the naive approach provides

the strongest privacy protection, it leads to the query region that are 10 times larger than LISA. As
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Figure 5.17: CDF of expanded query range

a result, about 5 times more POIs2 are transferred back to the user. In addition, it is also shown that

LISA-lookahead receives the smallest number of POIs, due mainly to the prediction mechanism

in lookahead optimization. Finally, we compute the additional energy consumption incurred by all

three approaches with the measured benchmark values. The average additional energy cost and the

CDF functions are summarized in Table 5.6 and plotted in Figure 5.18, showing that LISA incurs

less than 100 joule additional energy consumption for each track, and the look-ahead optimization

reduces the additional energy cost by 37% over the non-lookahead LISA and 52% over the naive

approach. As a result, LISA can achieve strong location privacy protection while consuming a

reasonable amount of energy.

LISA LISA-Lookahead Naive
average number of extra POIs 1128 735 1416

average area of the extra query range (km2) 3.95 3.48 38.1
average energy cost (Joule) 83 52 108

Table 5.6: Communication and energy cost of three approaches

2The number in Table 5.6 is the total number of POIs returned along an entire trace rather than in a single LBS
query response
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Figure 5.18: CDF of additional energy cost

5.7 Related Works

In this section we discuss prior work on location privacy in three aspects: threats, metrics, and

protection.

5.7.1 Location privacy threat

Prior work has raised two types attacks: location disclosure, and movement tracking. In the

former, Hoh et al. [101] and Krumm [111] show that a driver’s home location can be inferred from

GPS data collected on his vehicle even though the location data is pseudonymized. Moreover,

Matsuo [112] uses indoor location information of a user to infer a variety of personal information,

such as work role, smoker, coffee drinker, and even age. In the latter, Gruteser and Hoh show that

coherent, individual tracks can be reassembled from completely anonymized GPS data from three

or even five users [102, 103] by using Multiple-Hypothesis Tracking.

5.7.2 Location privacy metrics

There is not yet a standard for quantifying location privacy, but most of the location privacy

metrics are uncertainty-based. That is, a user’s location privacy is protected better if attackers

are more unsure about differentiating the user from others within an anonymity set [25, 24, 106],

linking two pseudonyms of the person uses outside a mix zone or in a wireless LAN [26, 113], or
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distinguishing certain POIs related to the user in our approach. Hence, the level of location privacy

is determined by the size of the anonymity set, the number of users in the mix zone, or the number

of POIs that can be related to the user’s location.

Entropy is just another form of representing uncertainty. Jiang [113], Hoh [106] and we adopt

entropy, as it is a more convenient form in the individual application scenarios.

Aside from uncertainty-based metrics, Hoh et al. [103] also used the expected error between

the attackers’ estimation and a user’s true location to measure location privacy.

5.7.3 Location privacy protection

There have been many computational measures proposed and tested for protecting location

privacy, which are based on anonymity, unlinkability, and unobservability, according to the termi-

nology proposed by Pfitzmann and Koehntopp [107].

In the first class, location privacy is quantified as the uncertainty of user identity. By spa-

tially [25] or temporally [106] cloaking a user’s location information, or both [24], the user cannot

be distinguished from at least k−1 other users. The higher k is, the more the user’s location privacy
is protected.

The second class unlinks the two pseudonyms of a user, so attackers cannot accumulate enough

history on the user to infer any personal information. Beresford and Stajano [26] proposed a mix

zone in which a number of users change to new, unused pseudo names, so that attackers cannot

link people going into the mix zone with those coming out of it. Jiang and Wang [113] unlink

different pseudonyms of the same user with silent periods between different pseudonyms, which is

planned using well-known user mobility patterns.

In the third class, our approach scrambles a user’s locations such that the estimated location

is m-unobservable, i.e., it can be related to at least m points of interests. Hence, attackers cannot

relate any particular POI to the estimated location, and thus, their ability to infer the user’s private

information is significantly weakened.

LISA introduces a new dimension of uncertainty, and can be combined with the approaches in

the other two classes to enhance privacy protection.

Additionally, LISA does not rely on a trustworthy third party server like in [25, 24, 26]. This

limits privacy attacks to individual cell phones, thus significantly reducing the impact of attacks,
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and lowers the trust requirements from mobile users, thus simplifying the implementation and

deployment of LBSs.

Our work is motivated by Hoh and Gruteser [103], who studied the movement tracking attack

that exploits multiple hypothesis tracking (MHT) to identify completely anonymized GPS traces

from multiple users. Their solution was perturbing the original locations by the radius R, such

that two original paths that are approximately parallel become intersected. Therefore, attackers are

confused at which user takes on which path. This is similar to Meyerowitz and Choudhury’s [114]

creating confusion at crossroads.

5.8 Conclusion

We have proposed a new approach, called the Location Information ScrAmbler (LISA), to

protecting the location privacy of mobile users. The key idea is m-unobservability, which disables

the distinguishability of the POIs near each user, and therefore, weakens the attackers’ capability of

inferring the user’s private information or mobility patterns from his locations. Based on a simple

mobility model, LISA achieves m-unobservability by adding measurement noise to the location

information provided to the proxy server or LBS providers.

LISA introduces a new, orthogonal dimension of uncertainty, and can be combined with previ-

ous approaches to enhance location privacy. Moreover, it eliminates the need for any trustworthy

server, thus lowering the risk of attacks and simplifying the implementation and deployment of

LBS systems.

We evaluated the performance of LISA using both experiments on T-Mobile G1 and Matlab

simulations. The results show that LISA can effectively protect location privacy with good energy

efficiency.
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CHAPTER 6

Conclusions and Future Work

This dissertation has focused on how to build energy-efficient information collection and dis-

semination systems in wireless sensor networks. We first summarize our main contributions and

then discuss the future work.

6.0.1 Main Contributions

This dissertation makes the following contributions.

• In-network data aggregation. We propose a new approach, called the Opportunistic Data
Aggregation (OPAG), to in-network data aggregation with zero computation error and good

tolerance to moderate message losses in wireless sensor networks. By multiplexing message

space, OPAG opportunistically exploits multi-path routing which is more energy-efficient

than the usual scheme based on retransmissions. This is motivated by a key observation that,

when sending a message, the radio may consume much more energy for idle listening dur-

ing the backoff period and the time to wait for its acknowledgment than transmitting the data

bits. We implemented OPAG on TinyOS-2.x and the TMote Sky node, and evaluated its per-

formance on the Motelab Testbed, and TOSSIM. Experimental and simulation results show

that OPAG consumes much less energy than TAG and Sketch/SD while incurring similar

aggregation error under relatively good network connectivity, and the data selection scheme

is effective when contention for the message space is moderate.

• Post-deployment debugging. We propose a data-centric approach called post-deployment
performance debugging (PD2). PD2 focuses on the data flows that an application generates,
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and relates poor application performance to significant data losses, energy consumptions, or

latencies of some data flows (problematic data flows) as they go through the software mod-

ules on individual nodes and through the network. PD2 derives a few inference rules based

on the data dependencies between different software modules, as well as between different

nodes, and use them to trace back in each problematic flow. Then, PD2 turns on the per-

formance monitoring of, and collects debugging information from, only those modules and

nodes that the problematic flows go through. Finally, PD2 provides the debugging informa-

tion to help users isolate the causes of poor performance. Our approach can be applied to

various sensor networks applications, such as data collection/aggregation and event-driven

applications with mobile data sinks. We have implemented PD2 on TinyOS and evaluated it

on a real WSN testbed. Our experimental results show that PD2 can help users quickly lo-

cate the possible sources of problems, such as code bugs, weak links, and radio interference.

Depending on the hop-count distance between the source of the problem and the data sink,

PD2’s energy consumption (communication overhead) is shown to be only 5–10% of that of

collecting debugging information from all nodes.

• We propose a distributed location service protocol (DLSP) for hybrid networks. Through
a rigorous analysis of DLSP, we derive the condition for achieving a high packet-delivery

ratio, and show how to configure the protocol parameters to ensure the scalability of DLSP.

DLSP is found to be scalable if the mobile’s speed is below a certain fraction of the packet-

transmission speed which depends on the underlying movement threshold. For example, if

the movement threshold for the location servers at the lowest level in the hierarchy is set

to the radio range, the mobile’s speed limit is one-tenth of the packet-transmission speed.

The mobile’s theoretical speed limit is one-fifth of the packet-transmission speed, beyond

which DLSP cannot scale regardless of the movement threshold. These analysis results are

confirmed by extensive simulation. We also introduce an optimization technique that sig-

nificantly reduces the protocol overhead and a greedy adaptation mechanism that improves

overall energy-efficiency. We evaluate DLSP with extensive simulation using two MAC

protocols and three mobility models. The evaluation results confirm our analysis. We also

proposed an optimization technique, DLSP-SN that can reduce the location-update over-

head by 70% or more, while its query-delivery ratio is even better than DLSP when the
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mobile’s speed is high. In order to make a tradeoff between update and data-delivery costs,

we present a greedy adaptation mechanism, DLSP-ASN, which can significantly improve

overall energy-efficiency.

• As use of location-based services (LBSs) is becoming increasingly prevalent, mobile users
are more and more enticed to reveal their location information to untrustworthy third parties,

making it very difficult to protect their location privacy. To cope with this problem, we pro-

pose a new privacy protection approach based on m-unobservability, called the Location In-

formation ScrAmbler (LISA) that prevents the distinguishability of points of interest (POIs)

to a mobile user, thereby weakening attackers’ ability to infer the user’s private information

or mobility patterns. LISA adjusts the location noise level in location service queries and

ensures that the uncertainty of the attackers’ location estimation satisfies m-unobservability.

By protecting location privacy locally on each mobile user’s devices, LISA eliminates the

need for the trustworthy third-party servers in previous approaches, thus facilitating deploy-

ment of LBSs. However, this also incurs extra energy consumption on mobile devices, so

LISA explores the tradeoff between the estimation uncertainty and the energy consumption

to achieve both strong privacy preservation and efficient energy conservation. Our extensive

evaluation using real-world traces of human and vehicle mobility patterns demonstrates the

efficacy and efficiency of LISA.

6.0.2 Future Work

Our work on energy-efficient information collection and dissemination in wireless sensor net-

works can be extended in the following aspects.

• In-network data aggregation. In Chapter 2, OPAG only handles simple aggregate queries,
such as sum, average, and count. Many sensor network applications involve complex queries,

such as histogram and sketch. We will investigate the tradeoff between the accuracy of

the intermediate results and the degree of tolerance to message loss by space-multiplexing

messages for these complicate queries.

• Post-deployment debugging. In Chapter 3, we proposed PD2 for debugging data collection
applications. We will enhance PD2 to accommodate applications other than data collection,
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especially event-driven applications. PD2 can be extended to “record and replay” the data

flow triggered by an event and then treat it as a special data-collection application.

• Location service protocol. In Chapter 4, we presented a distributed location service protocol
(DLSP) which let sensor nodes query the location of a mobile sink for every data message.

In future we would like to study how location caching can affect the performance and energy

efficiency of the location service.

• Location privacy protection. In Chapter 5, LISA exploits a simple mobility model. We

will explore other mobility models, and let LISA adaptively choose appropriate models to

improve its overall performance.
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