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ABSTRACT

The shell considered is thin-walled, having a circular cross section and
an arbitrary length. Boundary supports permit radial and circumferential dis-
placements while requiring the slope in the longitudinal direction and the
axial displacement to vanish at the ends. The material is linear and elastic.
nder a uniform radial impulsive loading, this shell responds with simple har-
monic radial motion, independent of circumferential and axial location. The
principal issue of the investigation is the stability of this motion.

The strain measures are nonlinear functions of midsurface displacements
and displacement gradients. The longitudinal, circumferential and radial
displacements are taken as double Fourier series satisfying the boundary con-
ditions. Lagrange equations are developed for the time-dependent coefficients
of the series after the energy has been expressed in terms of them. The re-
sult is an infinite set of second order, coupled, nonlinear differential
equations. The initial conditions consist of the uniform radial impulse with
a superimposed spatial perturbation.

The equations of the nonlinear problem may be uncoupled by neglecting
tangential inertia. To evaluate the quality of this approximation, a study is
made of the linear problem. The exact linear solutions are compared with the
approximate linear solutions. The agreement is excellent for purely radial
loading.

For the initial behavior, the perturbation-dependent flexural terms ap-
pearing in the breathing mode equaticn may be neglected. By retainirg only
nonlinear terms which are products of fundamental and flexural coefficients
in the differential equations for the flexural coefficients, the results is
a set of Mathieu equations. The excitation of particular "unstable" modes is
Jetermined from an evaluation of an equation's parameters. These are func-
tions of both the shell geometry and the initial perturbational velocities.

For a study of long-time behavior, consideration is given only to the
breatring mode and those flexural modes whose excitation is predicted by the
shert-term analysis. The resulting nonlinear differential equations are
integrated numerically. The response is characterized by a cyclic energy
exchange between the various modes. Cenerally the long-term behavior is
dcminated by a few flexural modes having the highest growth rates.

I'f flexural motion is excited, it gives rise to stresses that are far
in excess of those associated with the basic motion of the shell.

viii



CHAPTER I

INTRODUCTION

The response of a thin-walled elastic cylindrical shell of finite length
to a uniform radial impulse is a simple harmonic motion in which the cross
section remains circular, periodically expanding and contracting. The longi-
tudinal variation of the radial displacement depends upon the boundary condi-
tions; the amplitude depends upon the particular shell geometry, material prop-
erties, and the intensity of the loading. The stability of this motion is the
central issue in this investigation.

The given motion 1s unstable if in the presence of small irregularities
in the initial loading, the subsequent motion deviates significantly from
the unperturbed response. Such deviations may occur because of the nonlinear
coupling between the modes of oscillation. A number of predominantly flexural
modes can be parametrically excited to rather large amplitudes. Energy is
extracted from the initial or basic response and cyclically exchanged be-
tween the modes exhibiting significant growth.

In Chapter II a nonlinear formulation of the shell problem is derivéd.
The analysis of the nonlinear problem can be simplified considerably by neg-
lecting tangential inertia in the equations of motion. The appropriateness
of this approximation 1s ascertained by studying the linear vibrations of the
shell in Chapter IIT.

A criterion for the stability of the basic response is obtained in

Chapter IV, and its dependence upon the shell geometry is established. 1In



addition, those flexural modes which may exhibit significant growth are iden-
tified. With the critical modes determined, the nonlinear equations for a
given problem can be integrated numerically to obtain the finite time re-
sponse of the shell. In the present study a number of specific examples are
considered. The displacements and stresses are much larger than those as-
sociated with the unperturbed motion. Finally the examples serve to delineate
the perturbation sensitivity of the response.

In related problems, Bolotinl* presented a formulation for the dynamic
stability of the thin cylindrical shell. Unlike the present investigation
in which the source of excitation is internal, i.e., pulsating membrane
forces, in Bolotin's case the excitation source was external. The particular
loadings considered by Bolotin were axial compression and radial pressure,
both simple harmonic functions of time.

Goodler and McIvor2 have analyzed the cylindrical shell loaded by a
nearly uniform radial impulse., The investigation was restricted to the case
of plane strain, i.e., requiring generators of the shell to remain straight
and parallel to the axis. The analysis that follows in this thesis considers
displacement variations along the length of the cylinder.

The simply supported cylindrical shell subjected to a suddenly applied
pressure has been considered by Bieniek, Fan, and Lackmanj using Galerkin's
method. From a short term analysis, the growth of displacement perturbations
is predicted. The influence of length upon the short term response is not

discussed nor is the long term motion analyzed.

*A raised number is a Bibliographical entry.



CHAPTER IT

FORMULATION OF THE PROBLEM

A. STRAIN-DISPLACEMENT REILATIONS

The cylindrical shell considered is shown in Fig. 1. The constants de-
noting the length, thickness, and midsurface radius are £, h, and a, respec-
tively. With the origin at one end of the midsurface, the coordinates in the
longitudinal, circumferential, and radial directions are x, © and z, and the

corresponding displacement components of a generic point are u, v, and w.

I\

Fig. 1. Shell geometry and coordinate system.

To develop a nonlinear shell theory appropriate for the ensuing stability
analysis, it is necessary to retain quadratic terms in the strain-displace-
ment relations. But in the motion of thin shells, the tangential components
of the displacement are generally small compared to the radial component.

Thus quadratic terms involving only w and its derivatives are retained. With



this, the strain components at a typical point are

1) @1

€z = %fﬁ- -g—:—)e (2.3)

xo = g‘?Z*(_a%z‘)" %S-> + (aiz)(%%)(%) (2.4)
€y = %+@_Z) %—g-xua—ga—f (2.5)
Gy = DT TN (2.6)

In the work that follows, a bar over a gquantity will denote its midsur=-
face value. For thin shells the functional dependence of the displacements
upon the thickness coordinate may be prescribed by introducing the Kirchhoff-
Love approximation. Essentially this requires that the strains €,, €gg, and

€, vanish. Setting the normal strain €; equal to zero gives

Setting eg, equal to zero and making use of (2.7a) gives

Ad = ow _1 + f(x,0)
(a+z) 00 (a+z)

It follows that



f(x,8) = i (v + %g )
Thus
- z 7. Ow
v = Ta+2) - G (2.70)

Similarly requiring the shearing strain €,x to vanish yields

4 = T~z %% (2.7¢)

The strain components are now expressed in terms of midsurface guantities

-1
by substituting (2.7) into (2.1), (2.2), and (2.4). Further, (a+z) and

-2
(a+z) are replaced by expansions of z up to and including second-order terms.

The resulting expressions are

Ex = Eyx v Zky (2.8a)
co = To + zhg * 78, (2.8v)
€x = Exg * Zrxg * ZPlyg (2.8)
where
2 - 2.1 gf (2.92)
ky = - izg (2.9v)

N - 1(%2] 2 0d)
kg = —a—2— W+Sé—2"+-a-§é- (2.9d



_ % 13T, 1w
€X9 = Bx + o 8@ + I 8@] (2=9f>
1(ov 3% 137 1Ovow
o " ;[:-Em-;a-;:sﬂ (2.98)
1 (1o w7 . 1oow
0 W W OW
o = E[15 5t EY (2.90)

B. ENERGY OF THE SYSTEM
Since the material is assumed to be isotropic and linearly elastic with

modulus of elasticity E and Poisson's ratio v, the strain energy has the form

(1-v)
o

s . _E f2n fﬂ fh/2

[e2 + €2 + 2ve e +
(1-3) o o =-hf2 X e X0

eie](a+z)dzdxd9
(2.10)

The integration over the thickness can be carried out after substituting from
Egs. (2.8). Consistent with the retention of second-order thickness terms in

(2.8), fifth-order terms are discarded here. Then

2n b -
U = B [ [ a {?[e + € +2vE T + (1-v) Eie]
2(1-v2) o © 2
n — —
t 5 (k2 + &g + PHgtg + 2VElg *+ 2VKyKg
" 1"'V) ( 2 + 2— )]
o “x0 *x0H %0
,2
+ 1_2' [QEXK‘X + 2€QKG + QVEXKG + 2V€eK.X

+  (l=v)eygryel > dxde (2.11)



Equation (2.11) may be rewritten in terms of midsurface displacements using
Egs. (2.9). The result is simplified slightly by neglecting the square of
the thickness-to-radius ratio compared to unity. With this, the strain

energy can be separated into its membrane and bending components. Thus

b
where
7 v T e
K 2n 4 |, =2 6 E — 0"6 e
Un = 2 £ £ [Eaux 2 Ta 2 el e T )
_ .2
- _ UyW _ 2 _=
+ v(2uyvg + 2uyw + X0, VgWy + Wiy)
) a¥ TNV W, L
+ (1-v) Eg + —= + UgVy + °ex® , waxwéj] dxde (2.12a)
D fﬂfﬂ — - e Voo Eweei”g
Uy, = > L -2UyWyy + aWgy + 5 + 2 05 + "
W W, VAW, W W
— =2 Xx"60 0" xx XX §>
- + 2 — - 2 +
WXXW;> v </ a 5 22
( ) aéﬁke vkwke + D Wie + wkewkﬁb axde (2.12b)
+ l=-v —gg—— -3 5 5 Y= X .
K = Fh/(1-v2) (2.12%a)
D = En®/12(1-V®) (2.1%Db)

In (2.12) a subscript denotes partial differentiation with respect to the co-
ordinate.

The kinetic energy is



1 2n 4 h/2 oW’
T = 5P £ ! -h/2 [: ) (’ <§t>%](a+z)dzdxd9 (2.14a)

where o and t denote the material density and time, respectively. Introducing
the midsurface expressions, performing the integration through the thickness,

and neglecting terms that involve the thickness-to-radius ratio gives
- h u v =
T =07 (f) £ l\g—t +<5—-JC +(5¢) | ax ae (2.14p)

C. ERUATTONS OF MOTION
The three displacement components are expressed as double Fourier series

having time-dependent coefficients. Their expansions are

[o0] 0
u = Z Upo (t) sin mx .y % Upp (£) sin X cos né
m=1 b4 m=1 n=1 (2.15a)

T o= X Von(t) sin n® + 2 2 an(t)cos X sin ne
n=1 m=1 n=1 ’ (2.15b)
- mrx
w o= Wbo(t) + 2 wﬁo<t) cos == + Won(t)cos ne
m=1 n=1
s . mrx
+ mzi ngl Wmn(t) cos —= cos ne (2.15¢)

At each boundary of the shell, the slope OW/dx and the axial displace-
ment vanish while the radial and circumferential displacements do not. The
effective radial and circumferential shear per unit length are zero at the
boundaries. Although these boundary conditions appear arcane, in the present

problem they give rise to energy expressions which are more tractable than



those following from more common geometric constraints. Thus they permit the
analysis of finite length sheils without undue complication.

The energy is expressed in terms of the Fourier coefficients by substi-
tuting Egs. (2.15) into (2.12) and (2.14b) and integrating over the mid-
surface. Treating the coefficients as generalized coordinates, the associated
Lagrange equations are three systems of second order, ordinary, nonlinear dif-
ferential equations for the U, V, and W terms. Fach eguation is coupled in-
ternally to members of its system and externally to members of the other two
systems. Reasonable approximations must be made before useful solutions can
be obtained. For this reason an analysis of the linear problem is undertaken

in the following chapter.



CHAPTER ITI

ANALYSIS OF THE LINEAR PROBLEM

A, SOLUTION FOR THE DISPLACEMENTS

The analysis of the nonlinear problem is facilitated by the use of un-
coupling conditions for the differential equations. Such conditions can be
obtained by introducing approximate relations between the tangential and ra-
dial Fourier coefficients. To determine the validity of these relations, the
response of the shell governed by linear equations of motion is considered
here. Approximate solutions obtained by introducing two different uncoupling
relations are compared to the exact solution. In both cases excellent agree-
ment is found for purely radial loading.

As discussed in Chapter II, Lagrange equations can be written for the

Fourier coefficients U Vins &nd W, . Neglecting quadratic terms in the

mn?’

coefficients, these equations are

2 2

Lo (8)+ S22 (8 (3 - 20502 (3 (3)) b -

. 2 -
G, + | x2n2 <%> . (Q-v) n%] U, + n(1+v)mn (i) Vo,

(3.1a)
\{;mn +E12 . naﬁ;ﬁ‘n?‘ %)gj Vo + i \_;r‘vjmh (%\) Uy
2(2 - )Pn /hCra )
+ [n + af._%m (g)@)] Wy = O (5.10)

10



¢ [om () 2 (2F (8" - xlazgpmn( <>jm [ Lt
(F (5 v o [o + S22 T (3 + 2IER(Y o =
(g;f (%j%J Yo = 0 (3.1c)

where
(") = a()/ar
T = ct/a
¢ = [E/o(1-v3)]*/2

Equations (3.1) will be rewritten as

Upy + Cilmn + CoVym + CaWgn = O (3.2a)
Vpn *+ CaVyq + C2Upy + CsWyy = O (3.20)
Wy + CeWypy + Calpy + CsVyy = O (3.2¢)
where
¢, = %i + 2m2 <%)2 (3.3a)
0o = 2“;“(%) (3.30)

RO S CEORE JOIONENCES

Co = 12 +“§_m2<%)2 (3.3d)



Cs = “Zmz ()( (3-3¢)
o R B - EQY LY b

in which Poisson's ratio has been taken as 1/3.
The solutions are simple harmonic functions of time. Introducing this

form into the differential equations leads to the frequency equation

F® - (C14C4+Cg)F* + (C1C.+C,Ce+C,Ce-Co-C5-C2)F2

+ (-C1C40a+C102+0g08-2050505+C,C5) = O (3.4)

In increasing magnitude, F,, Fo, and Fz will denote the three distinct
frequencies for each m and n. Generally the frequencies Fp and Fg are of com-
parable magnitude, being both much larger than F; and insensitive to changes
in the shell thickness. The lowest frequency depends upon the radius-to-

thickness ratio. Tun Fig. 2 the three frequencies are displayed on a logarith-

mic scale as functions of a/h for a number of modes.
If the shell is subjected to a radial impulse, the three displacement

components and the tangential velocities are initially zero. This requires

me) = V(o) = Wy(o) = Uy (o) = V(o) = 0 (3.5)

The value of wmn(o) can be obtained from the initial radial velocity
w(x,8,0) = L L Wy (o) cos Eﬁﬁ cos n® = f(x,6) (3.5b)

m=0 n=0

In general f(x,@) would be derived from the initial impulse. In the work that
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F(0,4)

FREQUENCY F(m,n)

F(0,2)

3 I I I
0 100 200 300

(a/h)

Fig. 2. Three frequencies of the linear problem vs. radius-to-thickness ratio.



1k

follows it will be treated as a given initial velocity.

where

Under these conditions, the solution to Egs. (3.2) is

Cr

mn

mn

= F;FoF3[C11(C10-Cg) + C12(Ce-Cio) + C13(Co-Ca)]

Ce

Ay sin Fy1 + A4 sin Fot + A7 sin Fart

Ap sin Fi7 + Ag sin Fot + Ag sin Far

As sin Fy7 + Ag sin FoT + Ag sin Far

Ag

= Wmn(o)Fngce(Clo'Cs)/C7
= W, (0)F2F3(C10-Cs)/Cr
= W, (0)F2FsC12(Ca-Cs)/Co
= Wmn(o)FlFsclo(CS‘cs)/CT
= Ty (0)F1Fa(CeCa)/Cy
= Wmn(o)FlFBClB(CS'CS)/C7
= Wmn(O)Flecs(Ce‘Clo)/CV
= W (0)F3F2(Ce-C10)/Cr

mn

= Wmn(o)FlFECll(Clo'CQ)/C7

[(C1-F3)C5-CaCs) /[ (C4-F5)C5-CaCs]

(3.6b)

(3.6c)

(3.6d)

(3.6e)

(3.61)
(3.63)
(3.6k)

(3.6%£)
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Co = [C2C3-(C1-F5)Cs1/[C2Cs-(Ca-F5)Cs] (3.60)
Cio = [CoC3-(C1-F8)Cs])/[CaCs-(Cy-FE)Cs] (5.6p)
Ci1 = (C2Cg+C1-F3)/Ca (3.6q)
Ciz = (CaCotC1-F§)/Cs (3.67)
Cis = (C2C10+C1-FB)/Ca (3.6s)

In general the amplitude of a low frequency component such as As, is much
larger than the amplitudes of the companion high frequency components such as
Ag and Ag. This is shown in Fig. 3. As previously mentioned, the amplitudes
A3, Ag, and Ag of the radial coefficient Wyn are greater than the corresponding
amplitudes of the tangential coefficients Upp and Vp,. A comparison of the
largest amplitudes A,, Ap, and Az is made in Fig. 4 for a number of modes.

Similar observations have heen made by Arnold and ‘/Jar’bur‘bon.”r

B. APPROXTMATE SOLUTION NEGLECTING HIGH FREQUENCY TERMS
The differential equations of the nonlinear problem may be uncoupled by

defining a dependence of Up, and Vp, upon Wp,. The high frequency terms make

n
a negligible contribution to the total displacement of the shell and can be
discarded. Thus the first approximation considered is to assume that the

Fourier coefficients are related in the same manner as the amplitudes of their

largest components A, Ap, and Ag. The exact linear solution requires that

Ay = -Ag3/Ci2 (3.7a)
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6

Fig. 3. Ratios of the amplitudes of the high frequency to low
frequency components of Wyn vs. longitudinal wave number,
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Fig. 4. Ratios of the largest amplitude of Uy, and Vpp that of
Wmn vs. longitudinal wave number.
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Az = -AgCs/Cip

where Cg and Cio are defined in (3.6).

The approximation is

Umn/wmn = Al/AS = -1/012

Von/Vp = A2/As = -C/Ciz

(3.70)

(3.8a)

(3.80)

The relationships (3.8) can be substituted into the differential equation for

Wy to obtain

Wy + (Ce=Ca/C12-CsCs/C12 )Wy, = 0

The initial radial displacement is zero, requiring W, (o) to vanish.

(3.9)

The

value of W, (o) can be obtained from the initial radial velocity (3.5b). With

these conditions, the solution to (3.9a) is

. N
Wyn = sin Fr

where

1/2

Fo= (Ce-C3/C12-C5Ce/C12)

From (3.8), the longitudinal and circumferential coefficients are

Wpn (o) ~
Um = = —= sin Fr
FCi2
Wy (0
Vom = - ,fn Cosin Fr

(3.90)

(3.9¢)

(3.94)
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The amplitudes and frequency of (3.9) are compared to the three largest
amplitudes and lowest frequency of the exact linear solution in Figs. 5 and 6,
respectively. The modes chosen span a range that will be of interest in the

work that follows.

C. APPROXIMATE SOLUTION NEGLECTING IN-PILANE INERTIA

A second approximation can be used for uncoupling the differential equa-
tions. For the geometry and loading considered, the response is characterized
by a strong radial motion; this suggests neglecting tangential inertia terms
in the equations of motion. This approximation was introduced by Reissner.5

With this simplification, the linear differential equations (3.2) become

CUpy + CoVyp + CaWpy = O (3.10a)
CaVyy + CoUp, + CsWp = 0 (%3.10b)
Won + CeWgn + Calpn + CsVpy = O (3.10c)
These can be rewritten as
Upy = Wyp(C2Cs=CaCa)/(C1Ca-CB) (5.104)
Vg = Wmn(CZCS’ClcS)/(01C4'C§) (3.10e)
Wy + F2Wpn = O (3.10f)

where

Fo= {ce-c§/01+(cgcs-clcs)2/01(02-0104)]1/2 (3.10g)
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The initial conditions are the same as in the approximation of the pre-

ceding article, that is, a zero value for Wmn(o) and a definite value for

Wyn(o). The solution to (3.10) is

(CaCs5-C4Cq )Wmn(o) sin RIg-r
(c,Cq-C2)F

mn

C5Ca-C1C )W, (o0
v = (C2C5-Ca05 )W (o) sin 1

e (C,C4-CB IF

The radial Fourier coefficients and frequencies obtained from this approx-

(3.11a)

(3.11p)

(3.11c)

imation and that of the preceding article are compared to the exact results in

Figs. 5 and 6. The two approximations give very comparable results for the

frequencies. Both approximations give very good results for the amplitudes

with the second approximation uniformly producing one half of the error of the

first approximation. Thus for the analysis of the nonlinear problem tangen-

tial inertia is neglected.
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Fig. 5. Ratlos of approximate amplitudes to exact amplitudes vs.
the longitudinal wave number.
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Fig. 6. Ratios of approximate frequenciles to exact frequencies
vs. the longitudinal wave number.



CHAPTER IV

SOLUTION OF THE NONLINEAR PROBLEM

In this chapter both the stability of the response to a uniform impulsive
pressure and the long term motion of the shell are considered. If the initial,
nearly uniform, radial impulse is of a sufficiently short duration, it can be
considered equivalent to an initial, nearly uniform, radial velocity, i.e., a
uniform velocity with a superimposed spatial perturbation. For small values
of time the growth characteristics of the displacements are examined. The
basic response is considered stable if the motion associated with the pertur-
bation remains of perturbational magnitude. The fundamental motion is un-
stable if a growth in one or more of the perturbed modes is predicted. For
the long term study it 1s assumed that the modes exhibiting growth characterize
the response of the shell. If a mode remains of perturbational size in the

initial analysis, it will be neglected in the long term study.

A. SHORT TERM ANALYSIS

The nonzero initial conditions can be expressed as

T T T Ta TG em 1)

where vy << ¢ and €y, << 1 for all pairs of m and n except (o,o); Vo 1is the
initial uniform radial velocity imparted to the shell.
The differential equation for the basic response as affected by the

perturbation is
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For small values of time, the summations appearing in (4.2) involve products

of coefficients of perturbational magnitude and may be neglected. With initial

conditions (4.1), the solution is the basic response

WoolT) = v—gimn T (L.3)

Using the energy expressions of Chapter II, the lagrange equation for
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The equations for the other Fourier coefficients are structurally similar to

(4.4). For small values of time these equations can be approximated by re-

taining only those quadratic terms which involve Woo and either U, , V. or
Wo- The results are
U * CaUpp *+ CaVyy + CaWpy = O (4.5a)
Vo * CaVy, + CaU + CsWpy = O (4.5p)
e Woo | 2 |, m2x2 (a
Won + C3Upp + CsViyp + Wy {Ce + - |t 2 (z) =0 (4.5¢)

where C; through Cg are as defined in (3%.3) In Chapter III it was shown that
a good approximation to the linear response 1s obtained by neglecting tan-
gential inertia. Extending this conclusion to the motion considered here

yields from (4.5a and (L4.5b)

_ (CoCs5-CaCa)
Umn - o Wmn
(C1C4-C5)

(k.ba)
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v, = {2Ca=Cils) y (4.6b)
(C1C4-CE)

Introducing these together with W,y from (4.3) into (4.5c) gives

Wy + (Q+ psin T)W,, = 0 (b.6c)
where
2 2
Q0 = Ce Cs (CaC4=C2Cs) (4.64)

Cs  Cu(CE-C1C4)

v, m?nz a 2
= Eﬁ = <Z>] (4.6e)

Equation (k.6c) is Mathieu's equation, whose properties and solutions are

ke
1

extensively recorded such as in Ref. 6. The character of the solutions is
determined by the parameters  and u. Figure 7 shows the Mathieu stability
diagram. If a point (Q,u) falls within a shaded region, the solution is bounded
or stable; if the point falls within an unshaded region, the solution exhibits
exponential growth. In the present problem the amplitude of a given mode will
remain pgrturbational in size whenever its corresponding parameter point falls
into a stable region., But significant growth may be expected in a mode whose
parameter point falls in an unstable region.

The first unstable region, in the vicinity of Q = l/h, will be of par-
ticular interest since it is "most open" for a reasonable bound on p. In this
zone the values of | will be practically limited by the shell geometry and
initial velccity. While it appears that p can have an arbitrarily large value

in this first region by simply increasing m and n, 1t should be noted that Q
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behaves as (m*+n*) for large m and n while p behaves like (m2+n2), i.e., a
large value of i corresponds to a much greater value of Q.

Generally, in an unshaded zone, the farther a point is from the stable
boundary, the faster the solution will grow. For points centrally located
in the first and second open regions at equal values of u, the growth rate
for the point in the second region will be negligible compared to that of the
first.

The dependence of () and u upon geometry is shown in Figs. 8, 9, and 10.
Figure 8 shows data for (a/4) = 1 and (a/h) = 100. If the thickness is in-
creased, fewer points will fall into an unstable region as shown in Fig. O.
If the shell is lengthened, more points move into the first zone from the right
which can be seen by comparing Figs. 8 and 10. As the length becomes arbi-
trarily large, for each n the points for all values of m coalesce to the
m - O point.

In a particular problem, a large number of points may be located in the
first unstable region. It 1s expected that the modes with high growth rates
will dominate the response. Thus many of the unstable modes may be neglected
based upon a comparison of their growth rates. As will be seen, the accuracy
of this approximation can be evaluated in the long term analysis.

The study of the initial response of the shell has allowed the determina-
tion of those modes which may be strongly excited. The subsequent behavior

of these modes will characterize the finite time response of the shell.

B. IONG TERM ANALYSIS

To obtain solutions to the nonlinear differential equations for the
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Fourier coefficients, it is necessary to consider specific problems. The shell
geometry and initial velocity distribution will be prescribed in the examples
that follow.

Since not all possible "unstable" modes will be included in the analysis,
the accuracy of the solutions will be ascertained by computing the strain en-
ergy and kinetic energy of all participating modes and comparing the sum to the
kinetic energy initially imparted to the shell. In addition, the energy of
the slowest growing of the selected modes should be essentially negligible com-
pared to the initial energy to assure that the excluded modes have an insig-

nificant effect upon the solutions.

1. Example 1

The geometry is prescribed by (a/£) = 1.0 and (a/h) = 100. The stability
diagram in the viciﬁity of O = l/h is shown in Fig. 11. Ten modes are suscept-
ible to excitation. The initial motion of the perturbed modes is determined
from (4.6c)., For the modes with parameter points in the unstable zone, the
solution is of the form ekT¢(T) where ¢(7) is periodic. Iso-k curves are shown
in the diagram. The four fastest growing modes, (0,13), (1,13), (0,14), and
(2.11), are included in the analysis. The governing differential equations

are

“60 + Eé9-+ & {}15) ﬁf;la + (14) - ﬁ;iki + ﬁf%la (1252 * ﬂZ(ljz.(éjfT

g 2
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Equatvions (4.6a) and (4.6b) are used to express Uy, 0d Vo in terms of

mn”

In this example, the initial conditions selected are

_ T (4.8a)

wmn(o) Vo A

a T ¢ (nP+n2) mn >0 (4.80)
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in which vo/c <1, A K 1.

The Fourier coefficients obtained from the numerical integration of (4.7)
using (4.8) are shovn in Fig. 12. The response is characterized by a cyclic
exchange of energy between the various modes. The largest amplitude is
reached by mode (1,13); this is also the first mode to reach its maximum
value.

The ratio of the total energy in each mode to the original kinetic energy
of the shell was computed and is shown in Fig. 13. The mode with the slow-
est growth rate, (2,11), participates with almost negligible energy during the
initial exchanges and never contains more than 15% of the total energy for the
values of time considered. The maximum difference between the sum of the en-
ergies in the participating modes and the original kinetic energy does not ex-

ceed one half of 1% in this example.

2. Example 2
Here a second perturbation is considered with the same geometry as in
Example 1. The initial radial velocity distribution is assumed to be a con-

stant perturbed by a parabelic variation expressed as

v _ Yo x\2 h92> s T
g (X)eyo) = o E"' A <z‘)< = ;;:I; - 55952
_ Yo T 35
T c gieig—‘ (4.9)

in which vy/c << 1, A << 1.

The initial values of the coefficients are
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The differential equations (4.7) have been integrated numerically with
these initial conditions. The solutions for the displacement coefficients are
displayed in Fig. 1k. Although the coefficient for mode (0,14) reaches its
maximum magnitude first, the largest amplitude is attained by (1,15) a few
cycles later when essentially all of the energy in the fundamental mode has
been extracted.

In comparing the results of the two examples, the fact that mode (0,1k4)

reaches its maximum value first in the second example can be attributed to

the relative size of the perturbations. In Example 1 the perturbations re-
ceived by each mode were of comparable magnitude, while in Example 2 the ini-
tial velocity for mode (0,14) was approximately 15 times as strong as that
for mode (1,13). The maximum amplitudes of these modes are rather insensitive

to changes in the perturbation.

3. Example 3

The geometry is modified by specifying (a/£) = 1/2 and (a/h) = 100. The
Mathieu stability diagram in the vicinity of Q = 1/4 is shown in Fig. 15. Of
the 16 modes that may be classified as unstable, the six modes assumed to

dominate the motion are (0,13), (1,13), (2,13), (3,12), (4,11), and (0,1k).
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The differential equations for the Fourier coefficients are
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For this problem the initial conditions will be the same as for Example

2, that is
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The solutions for the displacement coefficients are shown in Fig. 16.
Thé response is dominated by modes (0,13), (1,13), and (0,14). The amplitudes
of modes (2,13), (3,12), and (4,11) are in fact too small to record on the
diagram. For example, the ratio of the maximum amplitude of the coefficient

of mode (3,12) to that of mode (1,13) is approximately 1.5x10"%. The fact
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that the perturbation magnitude is not an important issue for the slow growth
modes can be emphasized in this case by noting that the coefficient for mode
(3,12) received an initial velocity 10 times as large as (1,13).

The shell used in Example 3% was twice as long as that of Example 2 while
the velocity perturbations were the same for each case. Although a greater
number of flexural modes were classified as initially unstable for the longer
shell, the long term response was essentially dominated by the same three

flexural modes in both examples.

L. Axial and Circumferential Normal Stress

The large displacements which develop in the finite time response of the
shell are accompanied by comparably magnified stresses. In many applications,
the stress level would be of prime importance.

For a state of plane stress the normal stress in the circumferential

direction is

00 o) W.. 2 2 2_1
- —E 3 % ii[:l-g-(l-j-izv“;‘)j
(l-qu) i= J=O a
V. . Us - R
+ -—5— + ivr (%) —;—l} cos 1_2_)(_ cos JO . (k.13a)

The axial stress is

_ VYV, e _ W
l=v
%] [e's} W ) 2_
- B[ (e )
1-v2) 1i=0 j=
U, . V. . .
+ ix (%) =L ¢ 5 —%i cos i%ﬁ cos j@ . (4.13b)
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For the unperturbed or fundamental motion of the shell, the circumferen-

tial stress at the outer surface is

W
oy = B Moo ( - (4.1h)
(1-v2) a 2a,
and the maximum vélue of this function is
v
o¥ = £ © (} - b (4.15a)
© (1-v2) ¢ 28

The amplitude of the axial stress for the fundamental motion is

Evv, h
o; = —02 (1-= (L.15b)
(1-v2)c 2a
The circumferential and axial stresscs at a typical polnt, x = 0, € = O,

z = h/2, are computed for Example 2(a/f = 1, a/h = 100, v = 1/3). Equations
(L.13) are written as finite sums for the fundamental mode (0,0) and the ex-
cited modes (0,13), (1,13), (0,14), and (2,11). The ratios of these stresses
to the maximum values obtained from the fundamental motion, (L.15) are shown
in Fig. 17. In thils example the circumferential and longitudinal stress ratios

reach extreme values of 5 and 10, respectively.
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CHAPTER V

CONCLUSIONS

The stability of the motion resulting from the application of a uniform
radial impulse to a finite-length cylindrical shell has been analyzed. It
has been shown that an unstable response is characterized by the excitation
of flexural modes which exchange energy with the basic motion in a cyclic
manner. A criterion has been established for the identification of the strongly
excited modes. The possibility for such a response is increased both by length-
ening the shell and decreasing its thickness.

The growth rates of the perturbed modes can be determined from a short
term analysis. Generally the long term behavior is dominated by a few flexural
modes having the highest growth rates. The motion is sensitive to changes in
the initial perturbations received by these high growth rate modes but is in-
sensitive to changes in the initial values of the slow growth modes. The
flexural mode which initially exchanges energy with the basic motion can be
changed by modifying the initial perturbation. The meximum amplitudes of the
high growth rate modes are essentially unaffected by variations in the mag-
nitudes of the velocity perturbations.

Finally it has been shown that if flexural motion is excited, it gives
rise to stresses that are far in excess of those associated with the basic

motion of the shell.

b7



BIBLIOGRAPHY

Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day,
Inc., San Francisco (1964), pp. Le2-L26.

Goodier, J. N. and McIvor, I. K., "The Elastic Cylindrical Shell Under
Nearly Uniform Radial Impulse,” J. Appl. Mech. 31, 259-266, 196L.

Bieniek, M. P., Fan, T. C., and Lackman, L. M., "Dynamic Stability of
Cylindrical Shells," AIAA J. L, No. 3, 495-500, 1966.

Arnold, R. N. and Warburton, G. C., "Flexural Vibrations of the Walls of
Thin Cylindrical Shells Having Freely Supported Ends," Proceedings of the

Royal Social (London), Series A, 197, 23%8-256, 19k9.

Reissner, E., "On Transverse Vibrations of Thim, Shallow Elastic Shells,"
Quarterly of Appl. Math. 13, No. 2, 169-176, 1955.

Mclachlan, N. W., Theory and Applications of Mathieu Functions, Dover
Publications, Inc., New York (1964).

L8






