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CHAPTER I

Introduction

Networks are an important part of everyday life. Friends, family, and co-workers

comprise our network of social interactions. The simple act of clicking on a link to a

web page allows us to traverse the complicated network of the world wide web. The

hierarchy of who eats who in the animal world is described by a network known as a

food web. In all of these cases, I’ve described a network that can be classified by its

nodes (elements) and the links between them (interactions). This allows us to speak

of the topology, or structure, of the network: the specific way in which the nodes

are connected. The nodes of the network can also have properties which change

over time, leading to the observation of network dynamics. For example, consider

the spread of a computer virus over the internet; the computers are the nodes of

the network, and the state of the computers (infected, susceptible, protected, etc.)

describe dynamics of the network as they change over time as the virus spreads and

software to protect against the virus is installed.

In the examples above, not only are the elements of the network different (people,

web pages, animals, computers), but the types of interactions connecting them are

different as well. In certain cases, the link between the two nodes might only exists in

one direction: the snake eats the mouse, but the mouse will never eat the snake. In
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this case, we refer to the network as being directed, meaning that each link between

nodes contains additional information about the direction of the interaction. Links

can also be weighted in which case the weight of the link can give information about

the strength of the interaction.

In considering the topology of a network, we must also question what happens to

this structure as a function of time. If the topology of the network is approximately

constant over the time scales that we are interested in studying, we call this network

a static network, in which the connections and connection strengths between nodes

do not change. An example of this type of network would be the air transporta-

tion network in which cities are connected if there is a direct flight between them.

Because the flight schedules are highly correlated with social and economic factors

which evolve on large time scales, this network can be considered to be largely con-

stant over time [52]. If the topology of the network is not constant over the time

scales in which we are interested, we call this an evolving network. (These networks

are also sometimes referred to dynamic networks, but we will use the phrase evolv-

ing networks to avoid confusion with networks comprised of dynamical elements as

discussed below.) For example, recent work has investigated the effects of the ad-

dition and deletion of email addresses over time to the structure of the network of

email address books [146]. This changing structure has important implications in

the spread of computer viruses through email.

Finally, it is important to remember that many networks exist to perform a specific

function, and often we must concern ourselves with the properties of the individual

nodes in addition to how they are connected. Specifically, we are interested in the case

in which the network is composed of dynamical elements whose properties change

as a function of time. As a simple case of a dynamic network, consider a network
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composed of oscillators. If the links between the nodes represent coupling between

the phases of the oscillators, then it becomes clear that the specific topology of the

network will affect the phases of the individual oscillators. In fact, much work has

studied the effects of network topology on the synchronization properties of oscillators

[101, 16, 9].

In this dissertation, I will be interested in networks whose connections can evolve

over time and whose nodes are dynamical. While there are multiple examples of

evolving dynamical networks, I will focus much of the work presented here to a

specific class: networks of neurons.

1.1 The brain: a complicated network of neurons

The human brain is a prime example of a complicated, evolving and dynamic

network. The brain is comprised of two types of cells: glial cells and neurons. Glial

cells help provide support and nutrition for the neuronal network which is responsible

for information processing. Thus, to study brain function, we are interested in the

neuronal network where the nodes of the network are neurons, and the synapses

between neurons provide the links. A schematic of a typical neuron can be seen

in Fig. 1.1. The dynamics of the neurons are characterized by the voltage of their

cell membrane and the firing of action potentials. An action potential is an all or

Pre-synaptic neuron
Post-synaptic neuron

Soma

Dendrites

Axon

Propagation of 

action potential
Synapse

Figure 1.1: Schematic of a neuron. Neurons are connected through synapses forming a complicated
network through which action potentials can be transmitted.
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nothing event that lasts 1-2 ms and is characterized by the rapid depolarization and

subsequent hyperpolarization of the cell membrane as seen in Fig. 1.2. The generation

of an action potential is often referred to as a spike or firing of the neuron. Upon

firing, a neuron will go into a short refractory period during which it cannot fire

another action potential.

Action potentials are the result of changes in ion concentrations within the cell

body that control the membrane potential of the cell. The cell membrane of a neuron

is comprised of multiple ion channels which control the flux of various ions through

the membrane. These channels are ion specific and voltage gated, meaning that they

open and close depending upon the potential of the membrane. An action potential

can largely be characterized by examining the flux of Na+, K+, and Ca2+ through

the channels. When a neuron receives input from other neurons, the cell membrane

of the soma becomes depolarized, and if this depolarization exceeds some threshold

amount, a rapid opening of Na+ channels occurs, leading to an influx of Na+. This

depolarization also activates K+ channels on a slower time scale which causes an

outflux of K+, corresponding to the hyperpolarization of the membrane. The opening

of Na+ channels also corresponds to an opening of Ca2+ channels causing an influx

of Ca2+ which helps to open the K+ channels and aid the repolarization of the cell.

While the intracellular changes in Na+ and K+ concentrations are negligible overall,

there is a considerable increase in the Ca2+ concentration. Thus by monitoring the

Ca2+ within the cell as a function of time, one can observe the firing activity of

the cell. However, the Ca2+ dynamics operate on a much slower time scale than

the action potential so Ca2+ signals cannot necessarily be used to distinguish single

spikes if a neuron fires repeatedly.

Neurons communicate with each other through the firing of these action potentials.
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Figure 1.2: Schematic of an action potential. When a neuron receives enough input to depolarize its
membrane past some threshold amount, the membrane potential will undergo a rapid
depolarization followed by a rapid hyperpolarization due to the flow of ions through
the voltage-gated channels in the cell membrane. This all or nothing event is called an
action potential and travels down the axon of the neuron where it can be transmitted
to other neurons through synapses.

An action potential is generated in the soma of a neuron and travels down the axon

and through synapses to the dendrites of other neurons. The transmission of the

signal through the synapse can be electrical in which case the synapse is called

a gap junction, but most synapses are chemical synapses. In this case, the axon

and dendrite of the two neurons are separated by what is called the synaptic cleft,

which is simply the name given to the physical space separating them. When the

action potential reaches the synapse, it initiates the release of neurotransmitters that

diffuse into the synaptic cleft and bind to receptors on the post-synaptic terminal.

This initiates the opening of ion channels in the post-synaptic cell which will either

cause that cell to depolarize (an excitatory synapse) or hyperpolarize (an inhibitory

synapse). The post-synaptic cell integrates the input from all of its connections and
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then, dependent on the resulting polarization, will generate an action potential and

continue the transmission of the signal.

1.1.1 Anatomical structure influences dynamics

Since a neuron determines if it will fire an action potential based upon the input

it receives from other neurons, the specific topological or anatomical structure of the

network will greatly impact the firing patterns of the neurons. Due to the fact that

many network topologies cannot be analytically studied, much work initially focused

only on networks with either local or all-to-all coupling. For example, consider the

Hopfield neural network model [58] which traditionally involves symmetric all-to-all

coupling. Only recently have mathematical tools been developed that allow this

model to be studied analytically for topologies with neither all-to-all nor sparse cou-

pling [149]. Random graphs are also attractive to study because analytical solutions

can be obtained [137], but random graphs do not describe most real-world network

structures [95]. A more realistic topology is given by a small-world network (SWN).

In fact, it has been shown that the anatomical structure of the neuronal network

of C. elegans has small-world properties [148]. These networks are characterized by

high clustering with a short path length, and much recent work has focused on their

synchronization properties [147, 57, 78, 9].

To study the effects of synchronization under different topologies, consider a net-

work of neurons positioned on a 2D lattice and examine the dynamics of the network

as we transition the connections between neurons from local to random. To do this,

we will use the idea of a Watts-Strogatz SWN [148]. A neuron initially sends con-

nections to neurons located within a certain radius. Each of these connections is

then rewired with a probability, p. Thus, by varying p from 0 to 1, it is possible to

transition the structure of the network from purely local connections to an entirely

6



random connectivity. For intermediate values of p, the network will exhibit small-

world properties: high clustering due to local connections, but a small path length

due to the addition of global random connections. The dynamics of the network will

also vary according to the connectivity of the network. For a purely local network

with p = 0, if we stimulate a group of neurons in the center of the network, the activ-

ity will propagate outward in a circular traveling wave. For SWNs, we will see a very

different behavior. The network will display sustained asynchronous activity with

small clusters of neurons active at any given point in time. This behavior changes

yet again for a random network, as all of the neurons will synchronize their activity

and fire in entire network bursts.

Different parts of the brain perform different functions based on different types

of neural activity patterns, thus it is not surprising that the anatomical structure

of different brain regions is also varied. For example, the neocortex is composed of

cortical columns whose neurons have similar responses to incoming stimuli. These

columns combine to create the various functional regions of the cortex [64]. While

the functional regions of the cortex are connected locally through interneurons, few

long range connections exist between functional regions, giving the neocortex a small

world structure [22].

The connections between regions of the cortex tend to be bi-directional, but the

hippocampal formation, which is associated with learning and memory, has a different

type of gross neuronal organization. Here, connections between areas tend to be uni-

directional, forming loops with important applications for information processing.

In a somewhat simplified description of hippocampal structure, sensory information

from the cortex enters the hippocampus through the entorhinal cortex. Cells in this

region project their outputs to the dentate gyrus which in turn sends its output to
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the CA3 region of the hippocampus. From here, the cells project to the CA1 region,

which sends output back to the entorhinal cortex both directly and though a structure

called the subiculum [4]. The difference in structure between the hippocampus and

other neocortical regions is largely believed to be derived from the fact that the type

of information processing done in the hippocampus is different from that in other

brain regions.

There are also observed differences in anatomical brain structure between healthy

and pathological cases. For example, epilepsy is often associated with mossy fiber

sprouting and the re-organization of axons in the dentate gyrus [103]. Here, the

axons of neurons in the granular layer of the dentate gyrus grow aberrant connec-

tions to neighboring cells, resulting in a re-organization of network structure that has

been associated with an increased excitability (ease of firing) of the network [134].

This increased excitability is associated with the abnormal hypersynchronous activ-

ity of neurons during seizures. Patients with Alzheimer’s disease also show structural

changes in the brain characterized by an overall excess atrophy of the cortex, specifi-

cally in the mesial and lateral temporal lobes [83]. Additionally, Alzheimer’s disease

can be predicted by the amount of shrinkage of the hippocampus as a function of

age, as this structure shows considerable loss in those who develop the disease [56].

It should also be noted that individual neuron properties can also influence neu-

ronal dynamics. While in certain cases of epilepsy the observed increase in excitabil-

ity has been associated with structural changes due to mossy fiber sprouting, the

excitability of a neuron is also due to variables not associated with structure. The

excitability of a neuron can be thought of in terms of the resting potential of the

neuron and the threshold value which much be crossed for the generation of an action

potential. Thus, the raising (lowering) of the resting potential or lowering (raising)
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of the threshold value will have implications on the dynamics of the neuron, as it

changes whether or not a neuron will fire based on a specific amount of input. This,

in turn, will affect the overall network dynamics and propagation of action potentials.

1.1.2 Dynamics influence anatomical structure

In addition to the anatomical structure and dynamic properties of neurons in-

fluencing their firing patterns, the specific temporal firing relationship between two

neurons can also impact the strength of the connection between them. The famous

phrase summarizing the work of Hebb: “Neurons that fire together wire together.” is

a prime example of how related firing patterns between a pair of neurons is linked to

the strength of the connection between the neurons. Here, I refer to a phenomenon

called synaptic plasticity [55]. The strength (efficacy) of a synapse connecting two

neurons change can change over time, dependent upon the firing patterns of the

neurons. Thus, in an excitatory connection, if the efficacy of the synapse is in-

creased, the firing of the pre-synaptic neuron will have a larger depolarizing effect

on the post-synaptic neuron, making it more likely for that neuron to fire. This idea

has been further developed into a theory known as spike time dependent plasticity

(STDP) [1]. Here, the strength of a synapse is increased if a post-synaptic neuron

fires within some small window of time after the pre-synaptic neuron. However, if

the post-synaptic neuron fires before the pre-synaptic neuron, the strength of the

synapse is decreased. Thus, the brain is an evolving network whose evolution is

dependent upon its dynamics.

1.1.3 Functional structure

The ability of a synapse to evolve through STDP has important implications

for learning and memory, as it provides a mechanism for the brain to change its
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properties and store new information. But how does the brain code this information?

One hypothesis which again emphasizes the importance of firing patterns of neurons

is the temporal correlation hypothesis [51, 124]. In this case, correlated activity

of neurons allows for feature binding and coding of objects. An example of this

mechanism can be seen in Fig. 1.3. Different subsets of neurons code for different

attributes (features) of an object, such as shape or color. Thus in order to identify

the purple circle of Fig. 1.3(a), the groups of neurons that code for purple and for

a circle will show correlated activity in their firing patterns. If instead the brain

wishes to code for the purple rectangle of Fig. 1.3(b), the group of neurons that

code for purple will show correlated activity with the group of neurons that code

for a rectangle. Similarity, to code for the green circle in Fig. 1.3(c), the activities

of neurons coding for a circle and those coding for green will become correlated.

Other hypotheses involve coding schemes based upon the firing rates of neurons

where different rates of firing code for different stimuli, and it is likely that both

types of coding schemes are present in neural activity [99, 82]. Regardless of the

specific coding schemes involved, populations of neurons are likely to be involved in

the coding as the brain is robust to noise, individual neuron response variability, and

changes in the specific network structure [74].

This leads to the classification of a different type of network structure called func-

tional structure. In this case, similarities between the dynamics of nodes determine

the links of the network. This means that neurons with highly correlated firing

patterns or rate variations could be considered to be functionally connected. Thus,

while the nodes are the same as in the anatomical network, the links between the

nodes have a different meaning, implying that the structure of the functional net-

work can be different than the structure of the anatomical network. Since we have
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Figure 1.3: An example of the temporal correlation hypothesis. Here different subsets of neurons
fire with correlated activity patterns to bind various features such as shape and color
to code for an object. The groups of neurons which will fire with correlated activity are
shown in red for (a) a purple circle, (b) a purple rectangle, and (c) a green circle.

11



already determined that anatomical structure influences network dynamics, it seems

reasonable to assume that there is a link between the anatomical structure and the

functional structure. However, how to determine this link is unclear, especially given

that individual neuron properties also influence network dynamics.

We’ve seen that the relationships between firing patterns of neurons can have

important implications in normal brain activity during memory and learning. How-

ever, neuronal dynamics are important under pathological conditions as well. For

example, epilepsy is characterized by the repeated occurrence of seizures, which are

the result of the hypersynchronous firing of groups of neurons. In a common form of

epilepsy called focal epilepsy, a seizure starts in a specific area of the brain, known as

the focal region, before spreading to other areas of the brain. The ability to identify

this focal region has important implications for the treatment of the disease, which

often requires the surgical removal of the focus. Thus the detection of the functional

structure of the network is essential, as this allows for the identification of the focal

region and treatment of the disease.

1.2 Linking structure and dynamics

We have now clearly identified three interconnected features of neuronal networks

in which we are interested: anatomical structure, dynamics, and functional structure.

The question therefore becomes: How can we gain information about one area, given

information about another? The human brain contains ∼1011 neurons, each of which

has ∼104 synapses connecting it to other neurons. This makes determining the

anatomical structure of the brain nearly impossible. Additionally, we know that the

connections between neurons are dynamics themselves, changing over time through

processes such as STDP. Moreover, the average person loses ∼3×107 neurons each
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year, indicating that the structure of the brain must be robust to the loss of any single

neuron. It is also now known that new neurons are created through neurogenesis in

certain brain regions, resulting in an ever changing anatomical structure.

As a result, what one often observes when studying the brain is not the underlying

structure of the neurons, but the dynamics of populations of neurons or firing patterns

of small samples of individual neurons. Advances in recording techniques such as

fMRI allow for one to observe large scale interactions between activity in different

brain regions. Technology such as EEG recordings allows for the observation of

the average activity of smaller populations of neurons. Finally, recent advances

involving the placement of tetrodes into brain tissue of freely moving animals allow

for the identification of the firing patterns of single neurons. Recent advances in

optical imaging techniques also allow for the identification of single neuron dynamics,

although the time scales involved make single spike detection not always feasible.

With the above types of information about the dynamics of our system, we can

start to determine the functional structure of our network. However, in order to do

this, we must have measures that quantify the temporal relationships between the

firing patterns of neurons and develop methods for determining when to place a link

between nodes of our functional network. Additionally, we would like to have some

way of relating the functional structure of our network to the anatomical structure.

Figure 1.4 shows the interaction between the different types of structure and

dynamics in neuronal networks. This dissertation lays a framework for investigating

the relationships between these different but related features of the network. I present

new techniques for detecting functional structure from network dynamics and employ

these techniques to analyze both experimental and model derived data. The use of

modeling along with the analysis of experimental data allows for the comparison of
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Figure 1.4: The relationships between different types of structure and dynamics in neuronal net-
works.

network dynamics and functional structure with the underlying network topology and

neuronal properties. As the amount of information about neuronal networks grows,

the methodology presented here will be useful in linking the elements of structure

and dynamics in these complex systems.

1.2.1 Data analysis: relating dynamics to functional structure

In the second chapter, I present a new algorithm for extracting functional struc-

ture from networks with nodes whose dynamics can be characterized by discrete

events in time. This algorithm is called the Functional Clustering Algorithm (FCA)

and utilizes the fact that the nodes of the network are dynamic in order to group

nodes with similar temporal representations. The advantage of this algorithm is that

no prior knowledge of the number of functional groups is needed, as the procedure

progressively combines data traces and derives the optimal clustering cutoff in a sim-

ple and intuitive manner through the use of surrogate data sets. The algorithm is
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presented in the context of grouping spike train data, as it is particularly useful in

detecting functional groups of neurons based on the temporal relationships between

their firing events. I also introduce a new similarity metric called the average min-

imum distance (AMD) that is designed to detect co-firing events in neural data. I

compare the performance of the FCA and AMD to that of the gravitational method

which was also designed to detect functional groupings in spike train data, and a stan-

dard hierarchical clustering algorithm combined with a calculation of modularity. I

show that in both cases, the FCA performs better than the previously established

methods when applied to simulated spike train data with a known structure.

The third chapter focuses on the analysis of data using the FCA and a metric

called causal entropies (CE) which detects directional relationships between firings

of neurons. I apply these metrics to both experimental and model derived data in an

attempt to link anatomical network changes with observed changes in neuronal dy-

namics during hippocampal memory formation processes. In the experimental case,

I analyze spike train data obtained from the hippocampus of freely moving mice as

they explored and learned a novel environment. I observe state-dependent clustering

patterns and the development of directional relationships that are consistent with

known neurophysiological processes involved in memory consolidation. When the

measures are applied to simulated data from a simple STDP motivated model of

memory formation, I show that the model provides a consistent explanation of the

anatomical network modifications which underlie the activity changes observed in

the experimental data.

These two chapters are a combination of work published in [37] with Jack Wad-

dell, Vaughn Hetrick, Joshua Berke, and Michal Zochowski and work submitted to

Philosophical Transactions A [38] with Jane Wang, Vaughn Hetrick, Joshua Berke,
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and Michal Zochoswki. The model data in the third chapter comes from Jane who

is also a member of the Zochowski lab, and the tetrode data comes from the Berke

laboratory in the Psychology Department at the University of Michigan.

1.2.2 Modeling: relating anatomical structure to dynamics

The fourth chapter presents a model of coupled networks as a simple model to

explore network interactions in focal epilepsy. In this case, the anatomical structure

of the networks is known and can be linked to the resulting dynamics. However,

the effects of the properties of the neurons on the network dynamics can also be

studied. Here, I vary the properties of the neurons in one network and study how

changes in the dynamical properties of the nodes can affect the overall network

dynamics. I observe that the networks progress through resonance and driving dy-

namics, dependent upon the properties of the neurons. Through studying the phase

synchronization between the collective signals of the two networks as they transition

between these states, I attempt to explain a seemingly paradoxical result observed in

epileptic patients indicating that the level of phase synchrony declines below normal

levels during the state preceding seizures (preictal state).

One network is chosen to be the focal network and slowly transitioned from normal

activity to a bursting state mimicking a seizure through an increase in the excitability

of neurons in that network. I show that the transition from the interictal (between

seizures) to preictal (preceding a seizure) and then to the ictal (seizure) state may be

divided into separate dynamical regimes: the formation of slow oscillatory activity

due to resonance between the two interacting networks observed during the interictal

period, structureless activity during the preictal period when the two networks have

different properties, and bursting dynamics driven by the network corresponding to

the epileptic focus. Based on this result, I hypothesize that the beginning of the
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preictal period marks the beginning of the transition of the epileptic network from

normal activity towards seizing. I also show that this effect is robust over a large

range of coupling strengths and delays between the two networks, indicating that, in

this case, the dynamics of the neurons affect the overall functional structure of the

network more than the specific anatomical structure.

The EEG data presented in this chapter comes from Klaus Lehnertz, Florian

Mormann, and Hannes Osterhage at the University of Bonn in Germany, and this

work was published with the above collaborators and Michal Zochowski in [36].

1.2.3 Experiments: relating dynamics to both anatomical and functional structure

In the fifth chapter, I discuss experimental results obtained from dissociated rat

hippocampal cultures. Dissociated cultures are a good reduced system in which

to study neuronal networks because the individual properties of the neurons are

retained, but certain gross properties of the network structure can be controlled

and monitored and the resulting neuronal dynamics can be recorded. I present an

analysis of cultures grown under two different conditions: a high glial group where

the glial cells in the culture are allowed to divide and multiply, and a low glial group

in which the glial network remains constant over time. I show that the resulting

dynamics between the two groups are different, indicating that the glial network has

an impact on neuronal dynamics. Additionally, the cultures are studied as they age,

and the changes in dynamics are linked to changes in both the glial and neuronal

networks.

I then use the FCA presented in Chapter II to study the functional groupings

resulting from the neuronal activity under the different growth conditions. I show

that neuronal activity in the high glial group shows increasing global synchronization

as opposed to local synchronization displayed by the low glial group. Additionally,
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the levels of this synchronization are explored as the cultures age and the dynamics

evolve. Finally, the FCA is used to explore the functional groupings at different

temporal levels within network bursts.

The work presented in this chapter is currently being prepared for publication.
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CHAPTER II

Functional Clustering: methodology

The detection of structural network properties has been recently recognized to be

of great importance in aiding understanding of the properties of a variety of man-

made and natural networks [133, 3, 95, 120]. However, two significantly different

notions of network structure have to be identified. One is the physical (or anatomical)

structure of the network. In this case, community structure refers to groups of nodes

within a network which are more highly connected to other nodes in the group than

to the rest of the network. Multiple techniques exist which utilize a knowledge of the

network topology (adjacency matrix) to extract this hidden structure [49, 72, 96, 26].

The other type of structure is functional structure, which refers to a commonality

of function of subsets of units within the network, generally observed by monitoring

the similarities in the dynamics of nodes [39, 43]. Thus the structural proximity (i.e

existence of physical connection between the network elements) is replaced with the

notion of functional commonality (or proximity), which can rapidly evolve based on

the observed dynamics. The concept of identifying functional relationships between

nodes has been gaining popularity [47, 127, 31], as many networks with dynamic

nodes (e.g., genetic, internet, neuronal, etc) exist with the goal of uniting to perform

a specific task or function.
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In order to successfully capture the (physical or functional) community structure

of a network, a clustering algorithm should have two important properties: the

ability to detect relationships between nodes in order to form clusters, and the ability

to determine the specific set of clusters which optimally characterize the network

structure. While some clustering methods have been designed to extract the structure

directly from the dynamics of the neurons [46, 5, 28, 76, 47, 119], most methods

rely on using a similarity measure to compute distances in similarity space between

neurons, and then use structural clustering methods to determine the functional

groupings [19, 17, 13, 65, 102, 31]. However, a major problem becomes identifying

statistically significant community structures from spurious ones. To achieve this

goal, current structural clustering techniques involve an optimization of the network

modularity [94, 97] or require a prior knowledge of the number of communities [95,

49, 40, 152, 93, 8].

In this chapter, we develop a novel clustering method that does not depend on

structural network information, but instead derives the functional network structure

from the temporal interdependencies of its elements. We refer to this method as the

Functional Clustering Algorithm (FCA). The key advantage of this algorithm is that

it incorporates a natural cutoff point to cease clustering and obtain the functional

groupings without an a priori knowledge of the number of groups. Additionally,

the algorithm can be used with a variety of different similarity measures, allowing

it to detect functional groupings based on multiple features of the data. While the

algorithm is generic and applies to any type of discrete event data, we introduce

the algorithm in the context of an application to spike train data as the inspiration

for the algorithm comes from neuroscience, and spike trains are a simple example of

discrete event data.
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2.1 The Functional Clustering Algorithm

Here we introduce the Functional Clustering Algorithm (FCA) which is tailored to

detect functional clusters of network elements. The FCA dynamically groups pairs of

spike trains based on a chosen similarity metric, forming progressively more complex

spike patterns. We will also introduce a new similarity measure which is used for

the data analyzed in this dissertation, but any pairwise similarity measure can be

chosen. The specific choice of the metric should depend on the nature of the data

being analyzed and the type of functional relationships which one chooses to detect.

A general description of the FCA is as follows (see the subsequent sections for

detailed descriptions and Fig. 2.1 for a schematic of the algorithm):

1. We first create a matrix of pairwise similarity values between all spike trains.

2. We then use surrogate data sets to calculate 95% confidence intervals for each

pairwise similarity. These significance levels are used to calculate the scaled sig-

nificance between each pair of similarity values (see Sect. 2.1.2 for the definition

of scaled significance).

3. The pair of trains with the highest significance is then chosen to be grouped

together, and the scaled significance of this pair is recorded. A unique element

of the FCA is that the two spike trains which are grouped together are then

merged by joining the spikes into a single new train (see Fig. 2.1(a)). This

allows for a cumulative assessment of similarity between the existing complex

cluster and the other trains.

4. The trains which are being joined are then removed, the similarity matrix is

recalculated for the new set of trains, new surrogate data sets are created, and

a new scaled significance matrix is calculated.
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δ δ

Figure 2.1: Functional Clustering Algorithm. (a) An example of the algorithm applied to four spike
trains. Two trains are merged in each step by selecting the pair of neurons with the
highest scaled significance value and effectively creating a new neuron by temporally
summing their spike trains. The procedure is repeated until one (complex) spike train
remains. (b) We cease clustering when the trains being grouped are no longer significant;
here the dotted red line denotes the significance cutoff. (c) The subsequent dendrogram
obtained from the FCA. The dotted line denotes the clustering cutoff. (d) Schematic
of the average minimum distance between spike trains.
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5. We repeat the joining steps (3− 4), recording the scaled significance value used

in each step of the algorithm until the point at which no pairwise similarity is

statistically significant, indicating that the next joining step is not statistically

meaningful. We refer to this step as the clustering cutoff (dashed red line in

Fig. 2.1). At this point, the functional groupings are determined by observing

which spike trains have been combined during the clustering algorithm.

A key advantage of this algorithm is that the ongoing comparison of the similarity

metric obtained from the data with that from the surrogates causes the algorithm to

have a natural stopping point, meaning that one does not need an a priori knowledge

of the number of functional groups embedded in the data. Gerstein et al [47] also

developed an aggregation method based on grouping neurons with significant coin-

cident firings, but this method results in the formation of strings of related neurons

which must be further parsed to determine functional groupings. We now discuss

the details of the implementation of the FCA in the following sections.

2.1.1 Average minimum distance

For the data presented here, we use a new similarity metric which we call the

average minimum distance (AMD) to determine functional groupings. The AMD is

useful in capturing similarities due to coincident firing between neurons. Note that

other metrics could be chosen, depending upon the nature of the recorded data. To

compute the AMD between two spike trains Si and Sj, we calculate the distance δtin

from each spike in Si to the closest spike in Sj as shown in Fig. 2.1(d). We then

define

Dij =
1

Ni

∑
n

δtin(2.1)

Dji =
1

Nj

∑
n

δtjn(2.2)
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where Ni/j is the total number of spikes in Si or Sj respectively. Finally, we define

the AMD between spike trains Si and Sj to be

(2.3) Θij =
Dij + Dji

2
.

2.1.2 Calculation of Significance

In order to determine the significance between two trains, we create 5,000-10,000

surrogate data sets and calculate pairwise similarities for each surrogate set. The

surrogate spike trains are created by adding a jitter to each spike in the train. This

jitter is drawn from a normal distribution [113], similar to the technique developed

by Date [27]. The method of adding jitter to spikes (also known as dithering or

teetering) to create surrogate data sets is commonly used when analyzing neural

data and has been shown to eliminate correlations between spike timings [122, 107].

Creating the surrogate trains in this manner preserves the frequency of each train

while keeping the gross properties of the interspike-interval distribution.

We examine the distribution of similarity values and create the cumulative dis-

tribution function (CDF) to determine the 95% level of significance. The scaled

significance (Fig. 2.2) is measured in units defined as the distance from the midpoint

of the CDF to the 95% significance cutoff. Thus, a scaled significance value equal

to one denotes the 95% significance level, and values higher than one are significant

while values lower than one are deemed insignificant.

2.2 Comparison to Other Algorithms

In order to verify the performance of the FCA and compare it to that of exist-

ing clustering methods, we created simulated spike trains with a known correlation

structure. Specifically, we created a set of 100 spike trains derived from a Poisson

distribution that consist of four independent groups, 20 spike trains each, and 20
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uncorrelated spike trains. The spike trains within these four groups are correlated

(see Fig. 2.2(a)). To create the correlated groups, we first created a master spike

train and used this train to create new trains by randomly deleting spikes from the

master train with a certain probability. Thus, the resulting train was also a Poisson

process with a firing rate dependent upon the deletion probability. The master train

was 5000 time steps long, with each neuron spiking an average of 250 times during

the duration of the train. To further randomize the timings of the spikes copied from

the master train, we added jitter (drawn from a normal distribution with a standard

deviation of 1) to the spike times. Each correlated group was composed of 20 trains

from the same master. The average correlation within the group was computed by

first calculating the pairwise cross-correlations between all trains and then averaging

over the group. The firing rate of the independent trains was set to match that of

the correlated trains.

We first applied the FCA to the simulated data described above (Fig. 2.2(b-c))

using a jitter drawn from a normal distribution with a standard deviation of 10 to

create the surrogate data. In Fig. 2.2(b), we show the scaled significance at each

joining step in the algorithm. The dashed red line marks the significance cutoff

(single 95% confidence interval); points above this line are statistically significant,

and the clustering cutoff is given by the point where the curve drops below this line.

Fig. 2.2(c) shows the resulting dendrogram with the dashed red line denoting the

clustering cutoff. The algorithm correctly identifies the 4 groups of neurons as well

as the 20 independent neurons.

2.2.1 Comparison to the Gravitational Method

We then compared the performance of the FCA to that of the gravitational method

[46, 5, 28, 76]. This method performs clustering based on the spike times of neuronal
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Figure 2.2: Performance of the FCA on simulated data. (a) The cross-correlation matrix showing
the correlation structure of the simulated data. (b) The scaled significance used in each
step of the FCA. The dashed red line denotes the point at below which clustering is no
longer significant. (c) Dendrogram resulting from Functional Clustering. The algorithm
easily identifies the correct groups.

firings by mapping the neurons as particles in N-dimensional space, and allowing

their positions to aggregate in time as a function of their firing patterns. Particles

are initially located along the trace of the N-dimensional space and given a ‘charge’

which is a function of the firing pattern on the neuron. The charge qi on a particle

is given by

(2.4) qi (t) =
∑

k

K (t − Tk) − λi

where K(t) = exp (−t/τ) for t > 0 and K = 0 otherwise, Tk are the firing times

of the neuron, and λi is the firing rate of the neuron, normalized so that the mean

charge on a particle is zero. The position vector, x, of the particle is then allowed to

evolve based upon the following rule:

(2.5) xi (t + dt) = xi (t) + κdt
∑
j �=i

qiqj
xj − xi

|xj − xi|

where κ is a user defined parameter that controls the speed of aggregation. One then

calculates the Euclidean distance between particles as a function of time and looks

for particles which cluster in the N-dimensional space (i.e., the distance between the

particles becomes small).

Fig. 2.3 depicts the results of applying the gravitational method to the simu-
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lated data described above for cases of high correlation (C ≈ 0.63) within groups

(Fig. 2.3(a,c)) and also for low correlation (C ≈ 0.13) within clusters (Fig. 2.3(b,d)).

In Fig. 2.3(a-b) we plot the pairwise distances between particles as a function of time

in the algorithm. Blue traces denote distances between intra-cluster trains, green be-

tween inter-cluster ones, and red between any train and an independent train. To

visualize the results of the method, we have sliced these plots as indicated by the

dashed vertical line and represent the distances at this point in time as matrices

in Fig. 2.3(c-d). While, for the case of high correlation between the spike trains,

the algorithm separates the 4 groups correctly (black squares in Fig. 2.3(c)), one is

unable to distinguish between inter and intra-cluster trains for the low correlation

case. Furthermore, these plots must be visually inspected for the cutoff (i.e. time

point at which they stabilize) and the clustering results may significantly depend on

its position, as the algorithm has no inherent stopping point and the rate of aggre-

gation is parameter dependent. Even then, the detection of the formed clusters may

require the application of an additional N-dimensional clustering algorithm to detect

the clusters formed in the N-dimensional space. Another drawback of this method is

that as the particles aggregate into clusters, the clusters start interacting due to the

nature of the algorithm, causing inter-cluster distances to become significantly lower

than those with random trains, which does not match the correlation structure of

the data.

The FCA performed the correct clustering of the data for the case of the high

correlation and only made an occasional error for data with the low correlation.

2.2.2 Comparison to Complete Linkage and Modularity

We next compare the performance of the FCA to a method which maps spiking

dynamics onto a structural space and then uses a structural clustering method to
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Figure 2.3: Application of the gravitational method to simulated data. (a,b) Pairwise distances as
a function of time in the stimulation for high correlation within clusters (a) and low
correlation within clusters (b). Blue traces: intra-cluster distances, green traces: inter-
cluster distances, red traces: distances between any train and an independent train.
(c,d) Matrix version of distances for the point in time denoted by the dashed vertical
line in (a),(b) respectively. Note that for the low correlation case, one can not detect
the formation of individual clusters.
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determine functional groupings. The structural clustering method used is a standard

hierarchical clustering technique called complete linkage. Since this algorithm has no

inherent cutoff point at which clustering is stopped, we combine it with a calculation

of the weighted modularity [97], which is a commonly used measure to determine

the best set of groupings when dealing with hierarchical clustering methods. We

have also tried other methods (single-linkage, GN algorithm [19, 49]), but complete

linkage gave the best results of the other methods attempted. Please see [17, 19] for

a review of standard hierarchical clustering techniques.

The complete linkage algorithm again clusters trains based upon a similarity mea-

sure. In this algorithm, a similarity matrix is created and the elements with the

maximum similarity are joined. However, the clusters are formed through virtual

grouping of the elements and there is no re-calculation of the similarity measure; the

similarity between clusters is simply defined to be the minimum similarity between

elements of the clusters. For the data presented in this paper, we use the absolute

value of the normalized cross-correlation matrix as our similarity matrix, since this

is what is commonly used to do examine community structure in neuroscience ap-

plications. To compute this matrix, spike trains are first convolved with a gaussian

kernel and the signal is demeaned (the mean value of the signal is subtracted). The

cross-correlation is given by

(2.6) Ĉ (Si, Sj) =

∣∣∣∣∣ C (Si, Sj)√
C (Si, Si) · C (Sj, Sj)

∣∣∣∣∣ ,

where C is the linear cross correlation function

(2.7) C (Si, Sj) =

∫ ∞

−∞
Si (t) Sj (t) dt.

Since the complete linkage algorithm has no inherent method of determining the

clustering cutoff, we compute the (weighted) modularity [97] for each step of the
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algorithm. The modularity measure was originally tailored to detect the optimal

community structure based upon structural connections between nodes (i.e. adja-

cency matrix), however it can also be used to detect optimal clustering based on not

structural, but dynamical relations, where the adjacency matrix is substituted with

the correlation matrix. The modularity is given by

(2.8) Q =
1

2m

∑
ij

(
Aij − kikj

2m

)
δ (ci, cj)

where Aij is our similarity matrix, ki =
∑

j Aij, m = 1
2

∑
ij Aij, and δ (ci, cj) = 1 if

i and j are in the same community and zero otherwise. The maximum value of the

modularity is then used to define the clustering cutoff.

The complete linkage dendrogram is shown in Fig. 2.4(b) and the modularity

for this clustering is plotted in Fig. 2.4(a). The clustering cutoff is defined as the

maximum of the modularity [94, 97], however the scaling of the modularity, even

in this simple case, provides ambiguous results. The numerical maximum of the

modularity is observed for the clustering step marked by the dashed red line in

Fig. 2.4 - significantly above the clustering step that starts linking random spike

trains. Even if we relax this definition and assume that the set of high modularity

values is equivalent, the exact location of the cutoff is ambiguous as shown by the area

enclosed in the transparent red box. Note that the FCA does not have this ambiguity,

as the cutoff is quite clear and the algorithm correctly identifies the groups embedded

in the spike train data.

To further explore the performance of the FCA in comparison with complete link-

age and modularity, we monitor the performance of both methods for progressively

lower correlations within the four clustered groups (Fig. 2.5). We did not perform

this analysis for the gravitational method since that algorithm has no predetermined

stopping point and cluster identification must be assessed by the user. As before, the
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(a) (b)

Figure 2.4: Comparison with complete linkage and modularity. (a) Modularity calculation for the
clustering obtained using complete linkage. The transparent red box marks the am-
biguous cutoff area. (b) Dendrogram indicating clustering by complete linkage. Here
the clustering cutoff is ambiguous and the algorithm fails to identify the appropriate
structure.

inter-cluster correlation is controlled through progressive, random deletion of spikes

from a master train. In order to compare the performance of the two algorithms, it

is necessary to compare the obtained clusterings to the known structure of the data.

To assess the correctness of the retrieved clusters as compared to the actual structure

of the network, we calculate the normalized mutual information (NMI) [42, 26] as

a function of the average correlation within the constructed groups. The NMI is a

measure used to evaluate clustering algorithms and determine how well the obtained

clustering, C ′, matches the original structure, C. To compute the NMI, one first

creates a matrix with c rows and c′ columns, where c is the number of communities

in C and c′ is the number of found communities in C ′. An entry, Nij, is defined

to be the number of nodes in community i that have been assigned to the found

community j. If we denote Ni/j =
∑

j/i Nij and N =
∑

ij Nij then we can define

(2.9) NMI (C, C ′) =
−2

∑
i

∑
j Nijln

(
NijN

NiNj

)
∑

i Niln
(

Ni

N

)
+

∑
j Njln

(
Nj

N

) .
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Figure 2.5: Normalized mutual information as a function of average group correlation. The mea-
sure takes a maximal value of one when the established clustering structure matches
the predetermined groups and NMI → 0 when the obtained clustering structure is in-
dependent of the original groupings. Functional Clustering identifies the correct group
structure for almost all values of correlation while complete linkage and modularity
consistently create erroneous structure.

This measure is based on how much information is gained about C given the knowl-

edge of C ′. It takes a minimum value of 0 when C and C ′ are independent, and a

maximal value of 1 when they are identical.

In Fig. 2.5 we use the NMI to compare the obtained clustering with the known

structure of the simulated data. As shown in the figure, complete linkage and modu-

larity consistently fail to identify the correct structure. This is because the maximum

of the modularity occurs for a point in the algorithm where various independent spike

trains have been joined, creating erroneous group structure. However, the FCA cor-

rectly identifies neurons for almost all values of correlation. Please note that the

80% level of correctness using complete linkage and modularity for higher interclus-

ter correlation values is due to the fact that we had only 24 independent groups (20

spike trains + 4 independent clusters) in the tested network. A higher number of

independent neurons would lead to a poorer performance of that method (due to the
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erroneous grouping of independent neurons) and thus higher relative effectiveness of

the FCA.

2.3 Summary

In this chapter, I presented a new Functional Clustering Algorithm to perform

grouping based on relative activity patterns of discrete event data sets. The FCA

has many advantages over many traditionally used clustering methods as it directly

detects functional groupings based on temporal relationships between network events.

The FCA also incorporates the use of surrogate data sets to determine the significance

of the obtained groupings, giving the algorithm a natural stopping point. This

means that no a priori knowledge of the number of functional groups is required.

The calculation of the significance used at each clustering step of the algorithm also

provides information quantifying the relationship between neurons in each of the

joined groups.

The algorithm was applied to simulated neural spike train data with a known

correlation structure and shown to perform better than existing algorithms that did

not have a natural stopping point (the gravitational method) or provided ambigu-

ous results about when to cease clustering (complete linkage and modularity). The

algorithm also consistently performed better than complete linkage and modularity

as the correlation structure of the simulated data was progressively weakened.

Additionally, it should be emphasized that the algorithm is generic and can be

applied to any network whose nodes participate in discrete temporal events. Pos-

sible other networks to which the algorithm could be applied include networks of

oscillators where the trajectory passes through a Poincaré section, failure events on

networks of routers, or fluctuation events in a power grid network. Thus, the Func-
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tional Clustering Algorithm is a valuable new method for the detection of functional

groupings in dynamic network data as will be demonstrated using experimental and

model derived neuronal spike train data in the next chapter.
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CHAPTER III

Functional Clustering: applications to brain dynamics

In the previous chapter, I introduced a new algorithm and similarity metric de-

signed to detect functional groupings in discrete event data. In this chapter, I will

use the developed methods to analyze both experimental and model derived data to

explore the relationship between structure and dynamics during brain function.

The problem of understanding neuronal correlates of brain function has been

addressed extensively over many decades but still remains unsolved. While a vast

amount is known about the basic anatomy and physiology of the brain, the dynamics

and interactions of neuronal ensembles which underlie various cognitive tasks are yet

to be understood. This is largely due to the anatomical complexity of the neuronal

networks which comprise the brain. The cortex alone contains 1010 neurons and

1.5×1014 synapses, making it impossible to derive any detailed properties of its con-

nectivity. It is not even clear that having a detailed knowledge of the connectivity

would be sufficient to understand brain function, as it significantly evolves on times

scales ranging from tens of milliseconds to years, through processes such as constant

rewiring [129] (i.e. creation, annihilation and modulation of synapses), neuronal loss

and/or adult neurogenesis [2]. Additionally, even if the anatomical connectivity were

known, this would not necessarily lead to an understanding of the spatio-temporal
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patterning of neural activity which is the basis of function [44]. It therefore becomes

imperative to define other approaches which rely more on functional commonality

(i.e. coding the same aspects of cognitive tasks) as opposed to anatomical connectiv-

ity. Moreover, since it is known that brain function is distributed over large neuronal

ensembles, or even more globally, between different brain modalities, it is impor-

tant to understand how these ensembles self-organize to generate desired functions

(movement, memory storage/recall, etc.) [55, 47, 125, 151].

From the experimental perspective, the emergence of new multiunit electrophys-

iological and/or optical imaging techniques has been crucial as they provide (ex-

tremely sparse) information on distributed neural activity during various cognitive

tasks. Thus, the research task has been partially redefined to first understand the

functional (dynamical) network correlates which underlie given cognitive phenomena,

and then based on these, to understand the anatomical structures and physiological

processes which lead to them. Thus, in short, we are asking two questions: what

macroscopically observed neural interactions are the hallmark of a given cognitive

process, and, what anatomical or pharmacological environment underlies these inter-

actions? This, in turn, requires the formulation of new metrics that will allow for the

identification of emerging dynamical patterns during brain function. However, since

it is quite difficult to experimentally link the observed dynamical changes to the un-

derlying structural changes, extensive modeling efforts must also be done where one

can directly observe how known structural changes induce differences in functional

relationships between neurons. While the knowledge gained from this modeling does

not give direct evidence linking the experimentally observed changes in functional

behavior with underlying structural changes, it can provide confirmation that the

experimental data is consistent with certain hypotheses.
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In order to define these new metrics, we must turn back to cognitive sciences to

identify which dynamical neuronal patterns are important. It is assumed that func-

tional neural ensembles form and disintegrate dynamically [84, 34, 141, 126], through

spatio-temporal patterning of spiking activity of many individual neurons. The tem-

poral correlation hypothesis [140, 51, 124, 33] postulates that correlated neuronal

activity mediates rapid feature binding and thus the formation of intermittent func-

tional ensembles in the brain. Therefore, the identification of these functional neural

ensembles can potentially be reduced to the identification of temporally correlated

groups of neurons. However, it is also clear that the formation of these ensembles

is mediated through rapid anatomical/physiological changes. It has been estab-

lished that the temporally ordered co-activation of neural populations leads to rapid

synaptic changes via spike timing dependent synaptic modification (STDP) processes

[15, 129, 1, 130]. Since these synaptic modifications are directional, one would also

expect changes in directional relationships between firing patterns of neurons.

Here, we focus on the formulation of quantitative links between the anatomical

and dynamical macroscopic network processes which underlie initial memory forma-

tion in the brain. We analyze hippocampal tetrode recordings obtained from freely

moving mice which are exposed to a novel environment and look for two effects: 1)

the enhancement of directional timing relationships between neuronal pairs, and 2)

a decrease in the overall temporal distance between firings of subpopulations of cells

during memory formation. Based on previous work [142, 30], we hypothesize that

an increase in the number of pairs showing significant directional interdependencies

is indicative of the strengthening of direct connections between interacting neurons,

whereas a decrease in the temporal distance indicates an overall increase of fidelity

of neuronal representation of the new environment through the increase in the cor-
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relation of their activity [100]. Finally, we link these two effects in a modeling effort

and show that the formation of heterogeneities in the anatomical connectivity of the

network, due to the addition/strenghtening of a relatively small number of neural

connections, can lead to the rapid formation of co-activating discrete neuronal ensem-

bles, as well as their reactivation during sleep. This in turn, we hypothesize, leads to

the formation of a distributed memory representation as is observed experimentally.

Specifically, we show that an increase in directional relationships between neurons

corresponds to changes in neuronal dynamics that are apparent in the functional

clustering of data obtained the mice as they learned a new environment. The di-

rectional interactions will be detected using causal entropies (CE) and clustering is

determined by the FCA presented in the previous chapter. The use of the AMD in

the algorithm allows for the calculation of distances within functional clusters and is

used to quantify changes in clustering associated with memory consolidation. The

measures are also be applied to data obtained from a simple STDP derived model of

memory storage. The observed dynamical changes in the model data can be directly

linked to the known structural changes in the model, suggesting that the measures

are detecting the development of similar structural changes in the experimental case.

3.1 Methods: metrics and analysis

3.1.1 Directional interactions: causal entropies

We monitor the directional interactions between neurons over time using causal

entropies (CE) [143, 153, 30]. CE are an asymmetric, time-adaptive metric, con-

structed to detect asymmetric locking between two spike trains based on the intervals

between spiking events [142]. They are computed by first constructing two time-

adaptive histograms of the inter-event intervals between the spike trains (Pij and,

separately, Pji), then calculating the Shannon entropy.

38



(a)

Sj:

Si:
Δtij

(b)

Sj:

Si:

Δtji

(c)

Pij Pji

Figure 3.1: Example CE calculation. (a) Sample calculation of Δtij from spikes in train i to train
j. (b)Sample calculation of Δtji from spikes in train j to train i. (c) Sample histograms
for spike trains in which spikes in j lead spikes in i but there is no consistent relationship
from spikes in i to spikes in j.

Briefly, let tin be the time of the nth spike for neuron i and τj(n) be the last time

that neuron j fired before tin. We then calculate Δtij(n) = tin − τj(n). Note that if

neuron i fires multiple times, Δtij(n) is only calculated between the closest spike of

neuron i and the previous spike of neuron j. Please see Fig. 3.1(a) for a schematic.

We separately calculate Δtji (from spikes in j to spikes in i) in the same manner as

shown in Fig. 3.1(b).

At tin, we update the histogram Pij by adding ΔP to the bin corresponding to

Δtij(n) and then renormalizing the histogram. The parameter ΔP is a free pa-

rameter which controls the effective length of history of the time-adaptive measure

[142]. This process establishes an exponential attenuation to the memory of the his-

togram, allowing it to adapt to changes in synchrony over time. The causal entropy
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CEij(n) = −∑
k Pij(k) · log(Pij(k)) is then computed, where k indexes the bins of

the histogram. We then separately calculate CEji through the same procedure as

above, interchanging the i and j in the prior description.

The advantage of CE is the ability to detect asymmetric locking between pairs

of neurons. If neuron i regularly fires shortly after neuron j, but j does not regularly

follow i, then CEij will become small, while CEji will remain relatively large. There-

fore, one may take the causal entropy difference CEDij(n) = CEij(n) − CEji(n) to

measure the degree and direction of locking between the two neurons. (See Fig. 3.1(c)

for an example of histograms depicting this behavior.) For a detailed description of

CE, see [142].

We track the number of significant CE pairs over time by computing CEDij(n)

and comparing this to the same measure computed for surrogate data sets. Please

see Sect. 3.1.4 for a description of the surrogate data. Significance is determined

as being two standard deviations away from the mean. For the experimental data

analyzed in the chapter, we calculated histograms for Δt within a window of 500

ms, using a bin size of 10 ms and Δp = 0.05. The model data was analyzed using a

window of 400 time steps, a bin size of 1 time step, and Δp = .005.

3.1.2 Correlated activity: Functional Clustering Algorithm

In order to detect functionally correlated groups of neurons, we implement the

Functional Clustering Algorithm (FCA) as described in the previous chapter. We

again choose the AMD as our similarity metric in order to study the changes in

functional distances between elements of the functional groupings throughout the

learning of the environment.
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3.1.3 Correlated activity: adjusted average minimum distance

One feature of the FCA is that the similarity associated with each joining step

of the algorithm can be compared between different applications of the algorithm.

When using the AMD as the chosen similarity measure, we must first introduce a

frequency correction during the calculation of the Dij values as this measure scales

with the number of spikes in the trains otherwise. (Note that the effect of spiking

frequency in the measure is accounted for in the algorithm through the comparison

to surrogate data.)

Here, we normalize these distances by the average expected distance obtained

from uniformly distributed spike trains having the same spike frequency: Dunif
ij/ji =

(ΔT )/(Nj/i + 1), where ΔT is the train length. Thus,

(3.1) D̃ij/ji =
Dij/ji

Dunif
ij/ji

.

We then define the ÃMD between trains Si and Sj to be

(3.2) ÃMDij =
D̃ij + D̃ji

2
.

Lower values of ÃMD indicate tighter functional clustering between the cells.

In Fig. 3.2 we show the average AMD and ÃMD values calculated between two

random poisson trains as a function of the total number of spikes within the trains

averaged over 100 trials. In this case, one spike train has a constant value of 50 spikes

and the other train is varied from 2− 200 spikes over a constant window of time. In

Fig. 3.2(a), we show the original AMD calculation between the trains. As expected,

the AMD scales approximately as 1/N where N is the total number of spikes. In

Fig. 3.2(b) we show the ÃMD calculated for the same spike trains. One can see that

this first order correction effectively eliminates the dependence on spiking frequency

as the measure is approximately constant over all frequencies.
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Figure 3.2: AMD and ÃMD comparison. (a) AMD and (b) ÃMD calculated between two random
poisson trains as a function of the total number of spikes in the trains. One spike train
contained a constant number of 50 spikes while the spiking frequency in the other was
varied between 2 and 200 spikes. While the AMD scales with the number of spikes in
the trains, the ÃMD remains constant as the number of spikes is varied.

3.1.4 Creation of surrogate data

In order to determine the significance of the above measures, we create surrogate

data sets by adding a jitter to each spike in the train. This jitter is drawn from a

uniform distribution [27] within a given window around each spike. This destroys

correlations between firing events of neurons while preserving the number of spikes

and average properties of the interspike interval distribution. For the experimental

data, a jitter window of 2 s was used for the CE analysis, and a window of 20 s

was used for the FCA analysis, with the exception of the data presented in Figs. 3.5

and 3.7, for which the jitter was drawn from a normal distribution with a standard
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deviation of 10 s. For the model data, a window of 400 time steps was used for both

calculations.

3.1.5 Experimental protocol

The experimental data presented in this paper was recorded using tetrode methods

[14] from the hippocampus of freely moving mice as they explored a novel environ-

ment. The mice were placed in a novel rectangular track in which they underwent

periods of exploration and sleep. The environment contained a textured floor and

specific scent in order to ensure its novelty. Spatial cues were given by the location of

the door through which the mouse entered. When placed in the track environment,

the animal typically explored by running laps and then alternated between periods

of exploration and sleep. Here, we analyze data from 77 pyramidal neurons in mouse

1 (42 CA1; 21 CA2; 14 CA3) and 28 pyramidal neurons in mouse 2 (14 CA1, 14

CA3). All animal experiments were performed in the laboratory of Joshua Berke at

the University of Michigan and approved by the University of Michigan Committee

on the Use and Care of Animals. The early exploration window was taken to be 100

s of exploration when the animal was initially placed in the environment whereas

late exploration was defined to be 100 s of data taken from the end of the session

after the animal had slept in the environment.

3.2 Modeling: understanding the structural basis of the observed tem-
poral patterning

It has been shown that the hippocampus can rapidly form new memory repre-

sentations and in a very short time period is able to generate experience-dependent

reactivation during various stages of sleep [66, 18, 150, 21] and quiet waking periods

[41]. During this reactivation, the spatio-temporal patterning of neuronal activity
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is correlated with the patterning of the preceding awake activity [77]. Furthermore

the correlation between cells co-active during waking is also higher during sleep

[150, 106, 111]. We used a simple integrate-and-fire based model to show that local

strengthening of network connectivity underlies the formation of localized network

heterogeneity which, in turn, leads to rapidly increasing neuronal co-activation and

potential formation of distributed memory representation. Furthermore, changes of

global network excitability, driven, for example, through changes in the neurochem-

ical environment during sleep [18, 80], can produce spontaneous reactivation of the

previously co-active network regions. Thus, the structure of the activating regions in

the network are inherently determined by the heterogeneities in network topology.

Here, we show that this simple model coupled with an STDP based learning rule

phenomenologically captures the processes observed experimentally.

3.2.1 Model details

The model uses leaky integrate-and-fire neurons given by

(3.3) τm

dV j
i/e

dt
= −αjV

j
i/e + Ii/e +

∑
k

wjkIk
syn

to represent the dynamics of the network elements, the e/i denoting either an ex-

citatory or inhibitory neuron. V j
i/e is the membrane voltage of the j’th neuron; αj

is the membrane leak rate constant randomly distributed such that αj ∈ [1, 1.3];

τm = 30 ms is the membrane time constant; Ik
syn is the incoming current to the j’th

neuron from the k’th neuron; and wjk is the connection strength between neurons j

and k. The excitatory subnetwork of 500 cells is in a one-dimensional small-world

formulation with periodic boundaries and has connectivity radius Re = 3. Addition-

ally, pe
g = 0.15 is the rewiring parameter defining the fraction of the number of local

connections to the number of random, long-range ones, with connections of strength
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wex = 2. The inhibitory interneuron subnetwork of 100 cells has Ri = 1, pi
g = 1, and

win = 10, forming a random graph network. Every inhibitory cell receives input from

nei = 5 neighboring excitatory neurons with strength wei = 4, and every excitatory

neuron receives input from nie = 10 random inhibitory ones with strength wie = 2.

Synaptic strengths were chosen to balance number of incoming connections so that

the total possible input to all cells remains the same. The external current Ie/i is uni-

form over the entire excitatory/inhibitory network and functions as a global control

parameter that controls response transitions from low-frequency random activity, to

spontaneous activation of localized network regions, and finally to global bursting.

This network architecture promotes global inhibition driven by focal excitation that

creates selective, persistent reactivation patterns [63]. For the simulations presented

in this chapter, Ie = 0.65 and Ii = 1.2.

When the membrane potential of a given cell reaches a maximum value of Vreset =

1, the neuron emits an action potential, its membrane potential is reset to Vreset = 0,

and the neuron enters a refractory period for τrefr = 10 ms. The synaptic current

emitted by spiking neuron (k) is of the form

(3.4) Ik
syn(t) = A ∗ exp(

−(t − tkspike)

τs

) − exp(
−(t − tkspike)

τf

),

where (t − tkspike) is the time since neuron k last spiked, A = 1 is the amplitude,

τs = 1.5 ms is the slow time constant, and τf = 0.15 ms is the fast time constant.

In addition to the synaptic current from other cells, all neurons have a pfire = 10−3

probability of firing spontaneously per millisecond.

The excitatory subnetwork undergoes synaptic modification based on spiking

activity of these cells. This subnetwork is composed of 25% non-modifiable, ho-

mogeneous, active connections with strength wex = 2, in addition to 75% modifi-

able synapses, which are connections initially with weight 0 but can modulate their
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strength based on neuronal activity between wex = 0 and wex = 2 [61]. The changes

in synaptic strength of modifiable synapses are implemented based on a simplified

neurobiological rule of spike timing dependent plasticity [12, 15, 79, 73]. Upon firing

of neuron k, synaptic strength from neuron j to neuron k is incrementally increased

if neuron j (pre-synaptic cell) fires before neuron k (post-synaptic cell) within a

set interspike interval (ISI) of TL = 20 ms. At the same time, synaptic strength

from neuron k to neuron j is decreased by the same amount. Additionally, synap-

tic efficacy from the pre-synaptic to the post-synaptic cell is decreased by a smaller

amount when the two cells do not activate congruously, i.e. their ISI is above the set

threshold TF = 200 ms. Formally,

(3.5) Δw∗
jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

wex

τlearn
if tj − tk < TL ;

− wex

τforget
if tj − tk > TF ;

0 if TL < tj − tk < TF .

(3.6) Δw∗
kj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− wex

τlearn
if tj − tk < TL ;

0 otherwise.

The w∗
jk indicates the weight of the modifiable synapse from neuron j to neuron k,

wex = 2 is the strength of non-modifiable synapses in the excitatory network, tj − tk

is the ISI between neurons j and k, and τlearn = 20 and τforget = 70 are the rates

of learning and forgetting in the network. For comparison purposes, learning is not

turned on until 3 s into the run. Calculations are performed using Euler’s method

and time steps of 0.05 ms.

To simulate external sensory input, a constant current of value 0.9 is fed into a

localized subgroup of 100 neurons in the excitatory neuronal network (neuron IDs
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201-300) at times 2-6 s and 9-12 s. A period of sleep is implemented between 6.5-8.5

s by raising Ie to 1.05 to represent biological neuromodulatory mechanisms during

sleep.

The early plasticity window analyzed in the paper was defined to be from 3-4 s,

just after plasticity had been turned on in the simulation. This was done in order

to mimic the early exploration window for the mice when they were initially placed

in the environment. Late plasticity was defined as 10-11 s (after the sleep period),

again for comparison to the late exploration window in the experimental data. This

model data was provided by Jane Wang in the Zochowski lab at the University of

Michigan.

3.3 Results

We analyzed both experimental and model derived data to explore changes in

network structure and dynamics as a result of synaptic modifications during exposure

to a stimulus. In the experimental data, we analyze spike train data obtained from

tetrode recordings of freely moving mice (see Sect. 3.1.5) as they learned a novel

track environment. An example raster plot of the obtained recordings along with

the mouse’s behavioral state can been seen in Fig. 3.3(a).

This data is of interest for two reasons. Firstly, there are established differences in

the functional organization of hippocampal networks between active exploration and

slow-wave sleep [23]. These include the joint activation of pyramidal cell ensembles

at timescales corresponding to gamma frequencies during awake movement [54], and

the high speed replay of pyramidal cell sequences within ripple events that occur

preferentially during slow-wave sleep and rest [41]. Secondly, the mouse learned a new

spatial representation during exploration of the novel environment (as indicated by
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Figure 3.3: Experimental data and number of significant CED pairs. (a) Example raster plot of
recordings from mouse 2 as it explores and sleeps in a novel environment. (b) Number
of significant CED pairs as a function of the mouse’s time in the environment. The
rise in the number of significant pairs indicates the formation of directional lead/lag
relationships between neurons as the mouse sleeps and continues to explore the envi-
ronment.

the formation of “place fields” [14]) and the subsequent epoch of slow-wave sleep has

been hypothesized to be a period of memory consolidation [21, 66], that is presumed

to involve alterations in structural and thus functional network connectivity. These

structural alterations involve the strengthening of existing monosynaptic connections

between the neurons. Furthermore, recent experimental findings have shown that

memory consolidation of the neural representation of novel stimuli results in two

changes: neurons that are correlated during initial exposure progressively increase

their co-firing, while the neurons that have shown a loose relation become further

de-correlated [100]. In terms of network reorganization, this should lead to the

tightening of the cluster of cells involved in the coding of the new environment and,

at the same time, a functional decoupling from the other cells.

Given these functional differences between the various behavioral states of the

mouse, we expected to see different clustering patterns during the exploration and
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sleep phases, due to the known differences in network dynamics between these be-

havioral states.

To better understand the structural network changes which underlie the observed

changes in dynamics, we also analyze data from a model of hippocampal mem-

ory formation (see Sect. 3.2). An example raster plot of the model data can be

seen in Fig. 3.4(a). In this model, memories are formed by the stimulation of a se-

lected group of neurons with modifiable synapses that can be strengthened/weakened

through a learning rule implemented to simulate STDP processes. The modifiable

synapses were initially silent [61] and became selectively active, driven by an activity-

dependent synaptic modification process. After stimulation starts at 2 s, the external

input given to neurons 201-300 induced these neurons to fire with spatio-temporal

patterning that induced rapid strengthening of synapses when synaptic plasticity is

turned on at 3 s. The synaptic plasticity continues until the stimulation is ceased at

6 s.

Below we compare and quantify the changes in directional neural interactions and

evolution of functional clustering for the experimental data and model data.

3.3.1 Directional interactions

In order to quantify the changes in directional interactions between neurons in

both experimental and model data, we analyzed pairwise interactions between neu-

rons using causal entropies (see Sect. 3.1.1). This measure detects directional lead/lag

patterning between spiking of neurons as a function of time. In Figs. 3.3(b) and 3.4(b)

we show the number of significant CED pairs as calculated for the experimental and

model data, respectively.

In the experimental data, we see that the number of significant CED pairs begins

to grow during the first period of sleep and continues to increase as the mouse
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Figure 3.4: Model data and number of significant CED pairs. (a) Example raster plot of model
data. Neurons 201-300 receive external input to simulate the presence of a stimulus as
indicated by the red bar. An STDP rule is applied for the period marked by the green
bar, and a global external input is applied to simulate sleep as indicated by the blue bar,
causing reactivation in the previously stimulated neurons. (b) Number of significant
CED pairs. Once plasticity is turned on, we see a rise in the number of significant
directional relationships between neurons which continues to increase during the sleep
period and persists during further stimulation.

further explores and learns the new environment. This corresponds to an increase in

the number of significant directional (lead-lag) relationships between neurons, which

is consistent with the development of enhanced connectivity between cells during

memory consolidation [142].

We also see an increase in the number of directional relationships between neurons

in the model data once plasticity has been turned on. Here, we calculate pattern-

ing only between the pairs of stimulated neurons. As the neurons comprising the

memory are stimulated, the standard STDP rule strengthens directional connections

between pre and post-synaptic neurons, leading to more reliable lead/lag patterning

between the firing of the neurons. The increase in the number of significant CED

pairs is thus a direct result of these known structural changes in the model topology.

During the simulated sleep environment, the heterogeneity formed during the initial
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Table 3.1: Percentage significant CED pairs and change in FCA significance
CED: early CED: late FCA:

exploration/plasticity exploration/plasticity significance change
experiment 1.8 ± 0.6% 7.5 ± 1.5% 0.54 ± 0.46

model 8.3 ± 1.5% 56.4 ± 9.1% 0.57 ± 0.03

stimulus presentation is more excitable as compared to other network regions and

thus mediates reactivation. This reactivation exemplifies itself as an occurrence of

synchronized bursts. As the stimulated region is reactivated during the sleep pe-

riod, we see further increases in these interactions and these directional relationships

persist through the second period of stimulation after sleep.

In table 3.1, we further quantify the increase in directional relationships by calcu-

lating the percentage of significant CED pairs during early exploration/plasticity and

during late exploration/plasticity (after sleep). The data was averaged over N = 2

experimental trials and N = 4 simulated trials. The number of significant CED pairs

was determined by the point at the end of the window designated as the early/late

exploration/plasticity period described in Sects. 3.1.5 and 3.2.1. In both the experi-

mental and model data, we see substantial increases in the percentage of significant

CED pairs during the late exploration/plasticity stages, quantifying the increase of

directional relationships between neurons as a result of memory consolidation and

learning.

3.3.2 Functional groupings

In order to study the changes in functional groupings of neurons before and after

learning, we implement the Functional Clustering Algorithm with the AMD similar-

ity metric designed to detect co-firing events in neuronal activity. This algorithm

not only parses the data into functional groupings, but also assigns values of sim-

ilarity and significance to each joining step that combines groups of neurons (see
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Figure 3.5: The scaled significance used in clustering calculated for novel exploration and the first
sleep. Data is shown for mouse 1. The significance cutoff is shown by the dashed line.
The FCA is able to detect the greater number of neurons involved in joint firing known
to occur during sleep.

Sect. 3.1.2). It is therefore relevant to compare the properties of the similarities

and significance for the joining steps in the algorithm during different stages of the

mouse’s behavior.

In Fig. 3.5 we show the scaled significance used in the FCA during the initial

exploration as well as the first sleep period for mouse 1. The cutoff point in the

algorithm occurs when the scaled significance drops below the dashed red line. The

step in the algorithm at which this cutoff occurs indicates the number of neurons

involved in the clustering. Thus, if a cutoff occurs for a late (as opposed to early)

step in the clustering, more neurons are recruited into the clusters. One can see that

there is an increase in the number of significant pairs being clustered during the sleep

period (due to the later stage of cutoff), consistent with the increased co-activation

of neurons known to occur during sleep ripples.

We also compare the scaled significance used in the clustering during the initial

exploration and an exploration period that occurs later in the same trial, after a num-
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ber of quiet waking and sleep periods. As functional groupings become increasingly

coordinated in their activity, we expect to observe an increase in the significance of

the joining steps indicating the decrease in temporal distance between firing times.

Alternatively, neurons which become increasingly de-correlated in their activity will

be indicated by a decrease in the amount of significance.

In Fig. 3.6(a), we plot the scaled significance used in each joining step of the FCA

when applied to the data shown in Fig. 3.3. Examination of the scaled significance

for this experimental data shows that we indeed see a change in the slopes of the

curve between early and late exploration. The amount of significance increases for

the initial steps of the algorithm which are indicative of the joining of correlated

neurons. However, later in the algorithm (during the joining steps which are deemed

insignificant, representing neurons which are less correlated), we see a decrease in

the amount of significance. This indicates the expected loosening of functional in-

teractions between neurons not involved in the coding of the environment.

In Fig. 3.6(b), we show the scaled significant for the early and late plasticity

windows of the model data shown in Fig. 3.4. We again see that the amount of

significance increases for the late plasticity window, indicating a tighter relationship

between the firing of neurons.

We quantify the effect of the increase in functional correlations by measuring

the area between the significance curve and the clustering cutoff line for the signifi-

cant joining steps of the algorithm. This area is indicated by the shaded regions of

Fig. 3.6(b). In order to normalize between data with different numbers of neurons,

we quantify the change by calculating (Alate −Aearly)/(Alate + Aearly). This measure

is contained within [−1, 1] and positive values indicate an increase in the scaled sig-

nificance used to cluster the neurons. We show the results of this calculation for both
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Figure 3.6: Scaled significance for early and late exploration periods. (a) The scaled significance
used to join trains plotted as a function of joining steps in the FCA for the experimental
data presented in Fig. 3.3 during the early and late exploration periods. (b) The scaled
significance used in the FCA for the model data presented in Fig. 3.4 during early and
late plasticity. The dashed grey line denotes the clustering cutoff. Values above this line
are significant steps while values below this line are insignificant. The shaded regions
denote the area between the significance curve and the clustering cutoff used to quantify
changes in the amount of significance as described in the text.

experimental and model data in table 3.1. In both cases we are able to quantify the

increase in significance used in the clustering steps of the algorithm.

It is also of interest to study the AMD values associated with the joining steps

of the FCA before and after the environment has become familiar. We therefore

compared the initial exploration of the novel environment to a subsequent exploration

of the same environment (after the sleep epochs). Here, we hypothesized that, due to

memory consolidation and the associated changes in correlations between neurons,

we would observe a selective drop in the joining AMD when comparing the initial

exposure to a novel environment to a subsequent exposure once the environment has

become familiar. This drop should occur for initially small AMD values (initially

correlated neurons) as these neurons become further correlated. However, for initially

large (insignificant) AMD values, we expect an increase in the AMD values when

comparing novel and familiar exploration. This growth occurs as the neurons with

low correlations become further uncorrelated.
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To assess any changes in the AMD values between initial (novel) and familiar

exploration, we examine the ÃMD values (see section 3.1.3) used in the joining steps

of the FCA when applied to data from each epoch. In Fig. 3.7(a), we show changes

of the average ÃMDs used to cluster the neurons for the clustering steps which have

a significantly lower ÃMD than that obtained from surrogates (i.e. co-firing cells),

during novel exploration and a subsequent familiar exploration of mouse 1. We indeed

see that the average ÃMD value is lower for neurons during the familiar exploration

indicating that the firing patterns of the neurons are more tightly correlated. Thus,

as in the case of [100], the observed decrease of the ÃMD during the subsequent

presentation of the novel environment occurs for neurons which fire in the same

spatial locations of the maze. In Fig. 3.7(b), we show the average ÃMD distances

for the non-significant clustering steps during the novel and familiar exploration.

These distances are greater during the familiar exploration as the activity of the

neurons having low correlation becomes even less correlated.

3.4 Discussion and summary

The observed changes in the neural patterning during the experiments support

the underlying hypothesis is that as the mice explored the track, they learned a new

spatial representation of the novel environment. While in the track, the mice un-

derwent periods of sleep, followed by further exploration of the environment. These

epochs of slow-wave sleep have been hypothesized to be a period of memory con-

solidation [21, 66], that is presumed to involve further alterations in structural as

well as functional network connectivity. These structural alterations involve both

the strengthening of existing monosynaptic connections between the neurons as well

as the development of new connections. As a result of these changes, we observed
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Figure 3.7: Changes in ÃMD values between novel and familiar exploration. (a) Comparison of the
ÃMD averaged over significant clustering steps from novel exploration and a subsequent
familiar exploration. We observe a decrease in this value during the familiar exploration
as correlations between neurons become tighter. (b) Comparison of the ÃMD distances
averaged over non-significant clustering steps during novel and familiar exploration.
Here we see an increase in this value during familiar exploration as neurons which were
uncorrelated become further de-correlated.

an increase in directional lead-lag patterning between cells as the mice learned the

new environment. Since sleep is thought to play a focal role during memory consol-

idation, this directional patterning could appear during sleep phases and continue

beyond them, as was observed in the data.

Additionally, recent experimental findings have shown that two changes in neural

firing patterns correlate with the memory consolidation of neural representations

of novel stimuli: neurons that are correlated during initial exposure progressively

increase their co-firing, while the neurons that are initially less correlated in their

activity become further de-correlated [100]. As predicted by this results we observe

a tightening of functional interactions between initially correlated neurons as the

neurons which code for the environment increase their co-firing activity.
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In the model data, we show how the addition of an STDP motivated learning

rule leads to synaptic modifications which, in turn, give rise to changes in neuronal

dynamics. Here, a subset of the population is stimulated and the plastic synapses are

allowed to evolve under the learning rule. The strengthening/weakening of synapses

within this discrete region effectively creates a structural inhomogeneity of the net-

work connectivity. Sleep is modeled as a global increase of network excitability, and

during this period, the previously stimulated region is able to reactivate while sup-

pressing surrounding areas due to the topological nature of the network which allows

for focal excitation as well as global, random inhibition. The observed reactivation

also allows synapses to further strengthen. When this external stimulation is re-

peated, we observe even further strengthening of synapses. These known changes in

the network structure give rise to changes in neuronal dynamics which match the

observed changes in the experimental data.

As the amount of experimental data depicting neural interactions during various

cognitive tasks increases, it is becoming essential to develop metrics which quan-

tify neural relationships during different behavioral states. Equally important is the

ability to link these changes in neural relationships to underlying structural and/or

neurobiological changes. This task of linking observed changes in dynamical behav-

ior to structural changes implies a need to combine experimental data with extensive

modeling where structural changes can be directly linked to dynamical changes. In

this chapter, we have presented new methods which when applied to both experimen-

tal and model data, depict changes in neural dynamics and allow for explanation of

the underlying structural changes which give rise to the observed dynamical changes.

Specifically, we tried to link the progressive functional clustering observed during

exposition to a novel environment with the underlying structural network changes.
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To do so we used two measures developed to: 1) quantify the emergence of directional

dynamical interdependencies in the network which are indicative of the enhancement

of network connectivity and, 2) monitor the emergence of functional clusters based

on activity patterning of neurons. We applied these two measures to experimental

data where they detected increases in directional relationships between neurons and

a tightening of functional clusters as the mice explored, slept, and learned a novel

environment. We then implemented the same measures in a simple model which

implemented STDP processes during exposure to an external stimulus and periods

of sleep. We observe very similar changes in the number of significant directional

pairs as well as the emergence of of functional clusters during both stimulus presen-

tation and sleep. These results are consistent with the hypothesis that the observed

dynamical changes are a result of underlying structural changes induced through

STDP processes as a function of learning.
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CHAPTER IV

Interacting networks: a model of focal epilepsy

In the last chapter, I discussed the use of modeling to demonstrate the interplay

of anatomical structure and neuronal dynamics through STDP. The behavior of the

model was then compared to that of experimental data in an attempt to link changes

in dynamics to underlying structural changes. In this chapter, I will again explore

the relationship between structure and dynamics, this time through varying the

neuronal properties (excitability) along with the network structure. This will be done

in the context of a simple model of two coupled networks designed to study phase

synchronization in focal epilepsy. In this case, I will show that the overall dynamics

are robust to structural changes in the network coupling and largely determined by

the relative relationship between the excitability of the networks. However, in this

case, the excitability of each network is determined by the dynamics of the neurons

within that network as opposed to the individual network structure. This result

confirms that directly linking anatomical and functional structure is a non-trivial

task.

Epilepsy, one of the most common neurological disorders, is characterized by the

sudden onset of recurrent seizures due to a hypersynchronous firing of populations of

neurons. Due to the debilitating nature of seizures and the fact that approximately
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1% of the world population suffers from epilepsy, much research has investigated the

dynamics of the onset of seizures with the hopes of developing methods of seizure

prediction [85]. One of the most common types of epilepsy is focal epilepsy in which

seizures originate from a circumscribed region within the brain. Since only about 2/3

of epilepsy patients will respond to medication, surgery to remove the focal region

is another option for treatment [35]. In order to locate the focus, clinicians rely

on information from electroencephalogram (EEG) recordings combined with various

imaging techniques. The availability of EEG data from these patients has allowed

researchers to study the dynamics of the EEG signal before and during a seizure in

hopes of better understanding the seizure generating process with the ultimate goal

of predicting seizures.

Through the analysis of EEG recordings, it has recently been shown that one can

identify a preictal period before the onset of a seizure during which various properties

of the EEG time series differ from those during interictal (activity between seizures)

and ictal (seizure) periods [88]. Attempts have been made to characterize this preictal

period using, among others, the largest Lyapunov exponent [60], correlation density

[81], correlation dimension [71, 32], and dynamical similarity measures [68, 69, 90].

Other recent approaches utilize measures of phase synchrony which determines the

degree of phase locking between two oscillatory signals. Although the concept of

phase synchronization has long been known [59], it is only recently that it has been

applied to nonlinear time series analysis [114] and biological data in the analysis

of Parkinson’s patients [136], the cardiovascular and respiratory systems [118], the

calcium oscillations of epileptic cultures of astrocytes [6, 7], and in EEG recordings

[89, 86, 87, 70].

Measures of phase and lag synchronization show a rather unexpected effect: a
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significant decrease in synchronization between certain EEG channels during the

preictal period. The patterning of channels that exhibit this drop is quite complicated

and is not necessarily dependent upon spatial structure. It has been hypothesized

that this is due to the fact that the spatial and functional structure of the brain do

not overlap [87]. Specifically, structures that are far in terms of Euclidian distance

may have strong functional links, while neighboring regions may be functionally

independent. This leads one to believe that the drop in synchronization occurs in

weakly connected, functionally different regions of the brain. Thus, while the cause

of this decrease is unknown, it has been hypothesized [89, 87] that the recordings are

performed in separate regions of synchronized activity where one site has become

involved in the synchronous activity associated with the epileptic focus and onset of

the seizure, while the other site has yet to become enveloped in this activity.

Testing this hypothesis experimentally as well as understanding its dynamical

underpinnings is difficult since the EEG records the activity from a population of

neurons, and while EEG recordings give important information about neural activity,

the recorded signal can not be directly linked to the underlying dynamics of the

brain. We thus turn to a modeling approach to gain further insight into the possible

mechanisms for the increased synchrony observed during interictal periods as well as

the drop in synchrony during the preictal period.

We study a computational model in which two coupled networks of integrate-

and-fire neurons model separate EEG recording sites. We choose one network to

be associated with the seizure generating region (epileptic focus) of the seizure and

slowly drive this pathological network into a bursting (seizing) state by increasing the

excitability of the neurons within that network over time. This method of transition

into a seizure is chosen to mimic a class of cellular mechanisms thought to lead to a

61



seizure [50]. A model of this type allows for analysis of the levels of synchronization

over the total population of the networks (similar to using intracranial EEG) as well

as at the level of the individual neurons.

We observe changes within the collective dynamics of the pathological network as

the neurons transition from the globally asynchronous firing state which we consider

to represent normal neural dynamics into the bursting state of a seizure. If the

collective dynamics of the networks share gross dynamical properties (i.e., the same

excitability), the networks will enter a resonance state. This leads to an amplification

of the intrinsic oscillatory rhythm and increased levels of locking between collective

signals of the networks. However, as the network corresponding to the epileptic

focus begins its transition into the seizing state (but before the network begins to

burst), the networks stop resonating, resulting in an elimination of the oscillatory

patterning and a subsequent drop in phase synchrony that marks the beginning of the

preictal period. During this time, the neurons of the pathological network continue

to fire asynchronously but begin to increasingly lock their frequencies. Once the

pathological network reaches the bursting state, it begins to drive the other network

into a bursting state and we again see the high levels of synchronization characteristic

of the ictal period.

We thus postulate that the preictal period marks the beginning of the transition

from normal neural dynamics into bursting dynamics, which is characterized by the

steady increase and locking of neuronal frequencies that eventually leads to bursting.

This transition in the “focal” network is accompanied by an initial lack of a similar

transition in the “normal” network, which causes the divergence of intrinsic network

properties and a drop in the phase synchrony between the two networks.
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4.1 Methods

4.1.1 The model

The system studied in the paper consists of two inter-connected small-world net-

works (SWN) of integrate-and-fire neurons. Each network consists of 225 neurons

situated on a 2D square lattice with a lattice constant of a = 1 and periodic bound-

ary conditions. Neurons are initially locally connected to neighbors within a radius

of k = 2. The connections are then rewired with a probability of p = 0.3, con-

sistent with the Watts-Strogatz SW model [148]. The small-world architecture has

been shown to produce self-sustained activity [117], increase the network’s ability to

synchronize [98, 9], and has previously been used for models of epileptic behavior

[91, 108, 123].

We introduce connections between the two networks by selecting a fraction f = 0.5

of the neurons in each network to send synaptic current to a randomly chosen m

neurons in the other network. Unless stated otherwise, m = 15. Connecting the

networks in this manner causes the neurons in one network to receive, on average,

seven random connections from the other network, representing the average activity

of that network.

The dynamics of each neuron are governed by

(4.1) τm
dVi

dt
= −αiVi(t) +

∑
j∈δ

Jij(t) + B
∑
k∈γ

Jik(t) + ξi(t) + E

where τm = 20 ms, αi is the leakage coefficient which is uniformly distributed in

[1, 1.1], δ represents the intra-network connections, γ represents the inter-network

connections of the ith neuron and we sum over the incoming synaptic current, J .

B is the coupling parameter between the networks. For the simulations, we used

B = 0.4 unless otherwise noted. The noise variable for each neuron ξi(t) is uniformly
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distributed in [0, 0.5] and E is the excitability parameter which is constant for each

neuron in a given network, but is allowed to vary between the networks. The neural

excitability determines the amount of synaptic input needed to cause the neuron to

fire and acts as a control parameter between the asynchronous firing of neurons within

a network and bursting behavior where the population of neurons fires collectively.

We use this parameter to induce bursting in one network by slowly raising its value

over time, bringing the network from a non-bursting state into a bursting state. The

level of excitability at which the network transitions into the bursting state is referred

to as the bursting threshold. We will denote the two networks as N1 and N2 with

respective excitability parameters E1 and E2.

Equation 4.1 was integrated using Euler’s method and a neuron was said to fire

an action potential when the membrane potential, V , reached a threshold value of

1. At this point, the neuron emits a spike of synaptic current that is sent to the

neurons to whom it is connected. For this reason we use the term ‘spike’ to refer to

the firing of a neuron. The incoming synaptic current to the ith neuron from the jth

neuron is given by

(4.2) Jij(t) = A

[
exp

(
−t − tj

τs

)
− exp

(
−t − tj

τf

)]

where tj denotes the last time at which the jth neuron spiked, τs = 0.2 ms is the

slow time constant, and τf = 0.02 ms is the fast time constant. These two time

constants determine the spike shape and are chosen to approximate a biological

action potential [48]. The parameter A = 1.8 sets the amplitude of the spike. After

firing, the membrane potential is reset to 0, and the neuron enters a refractory period

of 8 ms under which it does not integrate incoming current. Moreover, when out of

the refractory period, a neuron only integrates synaptic current if the total value is

above a threshold level of 0.4. Each network has an intra-network synaptic delay of
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0.6 ms and unless stated otherwise, the inter-network delay is 0.8 ms. These two

constants define the spatial extent and the distance between the two networks.

For comparison with EEG recordings, we here consider the total current signal of

each network which we define to be the sum of all synaptic currents of the neurons

within the network at each point in time, as this tells us the collective activity of a

population of neurons. We can then look at measures of phase and lag synchrony

between the total current signals of our networks while varying their relative prop-

erties and compare the results to those obtained from EEG recordings of epileptic

patients. Our model also allows us to monitor the firings of the individual neurons

within the network and to study how the synchronization of the individual neurons

leads to the observed signal. This allows for insight into the mechanisms behind the

synchronization of the two networks on the neuronal level which is difficult to obtain

from actual EEG recordings.

4.1.2 Mean phase coherence

We first examine the mean phase coherence in our system which is a measure

of phase synchrony. Phase synchrony refers to the state where the phases of two

oscillators become locked while their amplitudes remain uncorrelated [110]. This

generally occurs in systems of weakly coupled, non-identical oscillators. We consider

the brain to be an example of such systems, as a first order approximation, since

each neuron is different, and the total number of synapses a given neuron has is

small compared to the total number of neurons in the brain. The general definition

of phase locking in noisy oscillators is

(4.3) Δφ1,2 = |kφ1 − lφ2| ∼= constant

65



where φ denotes the phase of the oscillators and k and l are integers (here we use

k = l = 1). The mean phase coherence examines the angular distribution of the

difference in phase between two oscillators and is defined [89] as

(4.4) R =

∣∣∣∣∣ 1

N

N−1∑
j=0

eiΔφ1,2(jΔt)

∣∣∣∣∣
where N denotes the number of samples in a discrete time series and 1/Δt is the

sampling rate. This definition restricts R ∈ [0, 1] and phase locking occurs for R = 1

while R = 0 implies unsynchronized signals.

To calculate R for our simulations, we used a moving window technique in accor-

dance with [86] with k = l = 1. The time series of the collective signal was divided

into a series of windows composed of 4096 points or 819.2 ms with an overlap of 20%.

First, the data in each window was demeaned (the mean value of the signal was sub-

tracted, eliminating any DC component of the signal), and a Hanning window was

applied. We then used the Hilbert transform [116] to define the analytic signal and

calculate the instantaneous phase of the signal.

The Hilbert transform of a signal s(t) is given by

(4.5) s̃(t) =
1

π
P.V.

∫ ∞

−∞

s(τ)

t − τ
dτ

(where P.V. denotes the Cauchy principal value) and the analytic signal is then

defined as

(4.6) ζ(t) = s(t) + is̃(t).

From this, we can uniquely define the instantaneous phase of our signal as

(4.7) φ(t) = arctan

(
s̃(t)

s(t)

)
.
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Finally, 10% of the signal was discarded at both ends to minimize the edge effects

caused by applying the Hilbert transform to a finite signal. The resulting phases were

used to calculate the phase difference between signals and the mean phase coherence.

4.1.3 Maximum linear cross correlation

We also examine the lag synchronization of the total current signal. Lag synchro-

nization refers to the case when the state variables of two signals are the same but

offset by a constant time lag [115]. A measure of lag synchronization between two

signals, s1,2 (t), at a time lag, τ , is the normalized cross correlation given by

(4.8) Ĉ (s1, s2) (τ) =

∣∣∣∣∣ C (s1, s2) (τ)√
C (s1, s1) (0) · C (s2, s2) (0)

∣∣∣∣∣ ,

where C is the linear cross correlation function

(4.9) C (s1, s2) (τ) =

∫ ∞

−∞
s1 (t + τ) s2 (t) dt.

In order to measure the lag synchronization of our system, we look at the maximum

linear cross correlation [86] defined as

(4.10) Cmax = max
τ

{Ĉ (s1, s2) (τ)}.

As with the case of the mean phase coherence, Cmax ∈ [0, 1], and Cmax = 1 implies

complete lag synchronization while Cmax = 0 for unsynchronized signals. We use the

moving window technique described above to calculate Cmax over each window.

4.2 Results

We observe three different types of behavior in the total current signal of the

modeled network as seen in Fig. 4.1. In an uncoupled system, the network will

undergo random firing for low values of E as seen in Fig. 4.1(a). As the value of

E is increased and the mean firing rates of the neurons increase, the network enters
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Figure 4.1: Examples of the different types of behavior of the collective current trace of a single,
uncoupled network. (a) Random firing behavior seen below the bursting threshold.
E = 0.85 (b) Fast oscillatory modulation just before the transition to bursting. E = 0.95
(c) Bursting behavior observed above the bursting threshold. E = 1.1

an oscillating stage where the total current signal undergoes oscillatory modulation

as in Fig. 4.1(b). When E is increased further, the network reaches the bursting

threshold where the neurons begin to fire synchronously, and the network enters the

bursting stage of Fig. 4.1(c).

These results are consistent with the findings of [91], who studied single 1D SWN

and induced bursting behavior by adding additional long range connections to the

network while holding the excitability of the neurons constant. Here, we hold the

topology constant and induce the transition to bursting by increasing the excitability

of the neurons to mimic the transition from interictal to ictal dynamics. It has been

shown [29] that slices from the CA3 region of the hippocampus exhibit population

bursts when the mean firing rate of the neurons within a driver site is increased above
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a threshold level. It has been hypothesized that bursting behavior within a neural

network is thus the result of the increase in the mean firing rate of the neurons within

a given region above some frequency threshold. This is precisely what we observe

when increasing the excitability parameter due to the link between the excitability

parameter and the firing rate of the neurons. In Fig. 4.2(a), we show this relationship

between the average firing rate of 5 neurons and the excitability parameter. As we

raise the excitability of the network, the neurons begin to fire more rapidly and the

network enters a bursting state. As a result, there is also an increase in the mean

current output by the network (Fig. 4.2(b)).

In a coupled network system, the excitability of N2 is held constant at E2 = 0.8,

representing a local network which is not a part of the epileptic focus. Conversely,

N1 represents a local network that is part of the epileptic focus, and we step up

the excitability of this network from E1 = 0.75 to E1 = 1.1 to obtain the transition

to bursting, seizure-like dynamics. In Fig. 4.3 we show the mean phase coherence,

R, and the maximum linear cross correlation, Cmax, plotted as a function of the

difference in excitability between the networks, ΔE = E1 − E2, averaged over one

hundred simulations. The average value of R and Cmax were calculated for each

simulation by iterating for 10 s at each value of ΔE and disregarding a transient

time of 4 s.

We focus on the three dynamical regimes, when: (A) both networks are well

below bursting threshold and have the same properties (same excitability, ΔE = 0),

(B) both networks are below bursting threshold and ΔE �= 0, and (C) the neural

excitability of N1 is above the bursting threshold.

For low values of E, below the bursting threshold, when E1 = E2, the total

current signal of both networks remains asynchronous but exhibits slow oscillatory
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Figure 4.2: Effects of changing the excitability. (a) Relationship between the excitability parameter
of a single network and the average firing rate of five different neurons within the
network. Increasing the excitability of the network causes the neurons to fire more
rapidly and to synchronize. (b) The average total current in a single network as a
function of the excitability. As the excitability is increased, the total synaptic current
in the network will raise. The dotted line denotes the bursting threshold.

modulation as observed in a single network for relatively high network excitability.

However, the oscillatory modulation observed here is due to the resonance drive of

both networks through the inter-network coupling. We associate this regime with

the interictal dynamics observed in the epileptic brain.

When the networks are below the bursting threshold but have significantly dif-

ferent properties such that E1 �= E2, even though the total input from N1 to N2 in-

creases significantly as E1 is increased, both networks still may exhibit asynchronous
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Figure 4.3: Average phase coherence and maximum cross correlation coefficient as a function of the
mismatch between the excitability parameters in the networks. Values were averaged
over one hundred simulations as described in the text. Sample current traces are shown
for the different types of behavior seen during the resonance (A), random firing (B),
and bursting regimes (C).

dynamics and, furthermore, the slow oscillatory modulation is abolished. We link

this regime to the preictal state.

When N1 is above the bursting threshold, the bursting of that network will induce

bursting behavior in N2. This driving interaction that occurs during the bursting

regime represents the spread of bursting behavior throughout different regions of the

brain during a seizure (the ictal state).

We thus observe a typical resonance curve centered on ΔE = 0 which is where

we see the oscillatory behavior of the networks that gives rise to the higher levels

of synchronization. As ΔE is further increased, the frequency response of the two

networks becomes mismatched, the slow oscillatory modulation is abolished, and

there is a drop in the synchronization. The measures of synchronization rise again

for large values of ΔE, as this is the region where E1 crosses the bursting threshold

and the networks enter the bursting regime, with N1 driving the bursting in N2.

We then studied the role of the coupling and delay between the networks on the

observable drop of phase synchrony during the preictal period. Figure 4.4(a) shows
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the average values of R and Cmax for ΔE = 0 (upper lines) and ΔE = 0.1 (lower

lines) calculated over twenty simulations in which the coupling parameter B was var-

ied while number of connections between the networks was held constant at m = 15.

As the coupling in the network increases, the level of synchrony at the resonance in-

creases and for high levels of coupling, the synchrony during the parameter mismatch

increases as well. We calculated the differences, ΔR = R (ΔE = 0) − R (ΔE = 0.1)

and ΔCmax = Cmax (ΔE = 0) − Cmax (ΔE = 0.1) in Fig. 4.4(b). The peak in this

curve is due to the interplay between the level of synchrony at resonance and the

spread in the range of oscillations as the coupling is increased. We see that the

difference between the synchrony at resonance and away from resonance remains

high over a large range of coupling parameters. A similar effect was observed when

we varied the number of connections, m, between the networks and kept the inter-

network coupling strength constant at B = 0.4 (Fig. 4.4(c)-(d)). For large m, we see

a decrease in the difference between synchrony levels. This is to be expected since

as we add more inter-network connections, we are effectively losing the distinction of

having two separate networks. We study the effects of inter-network delays on the

observed phenomenon in Fig. 4.4 (e) and (f). Here we hold the coupling parame-

ters constant at B = 0.4 and m = 15. One can see that as the delay between the

networks is increased, there is a decrease in the observed resonance peak. However,

the behavior is observed over a significant range of delays indicating that the two

interacting networks can be positioned relatively far apart.

In order to better understand the behavior of the networks in terms of the under-

lying neuronal dynamics, we examined the behavior of the individual neurons within

each network. Figure 4.5(a) and (d) show histograms of the interspike intervals (ISI)

of the individual neurons within each network for four different values of ΔE in a
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Figure 4.4: Synchronization as a function of network coupling. (a, c, e) Average synchronization
as a function of the coupling parameters during two regimes: ΔE = 0 - upper lines
and ΔE = 0.1 - lower lines. (b, d, f) Difference between the level of synchronization
between the two regimes. (a) and (b) Calculated as a function B, with m = 15. (c)
and (d) Calculated as a function of the number of connections between networks, m,
with B = 0.4. (e) and (f) Calculated as a function of inter-network synaptic delay with
B = 0.4 and m = 15 with a constant intra-network delay of 0.6 ms.

system with B = 0.4 and m = 15. We also performed a peak detection to detect

bursts in the total current signal of each network (Fig. 4.5(b) and (e)) to create his-

tograms of the interburst intervals (IBI). The peak detection was done by smoothing

the signal over a window of 1.8 ms and a burst was said to occur when the smoothed

signal increased above a threshold value of 3. These histograms of the networks’

collective behavior are shown in Fig. 4.5(c) and (f). A bin size of 1 ms was used to

create the histograms.

We first focus on the behavior of the network for values of E1 below the bursting

threshold. For the case of ΔE = 0, we see that the ISI histograms of neurons in each

network as well as IBI of each network have a similar distribution. The networks are

operating at the same frequency. We observe slow oscillatory modulation in the total
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Figure 4.5: Interspike interval and interburst interval histograms. Panels (a)-(c) show the analysis
for N1, panels (d)-(f) show the analysis for N2. (a) and (d) Interspike interval (ISI)
histograms for each neuron shown for 4 levels of excitability mismatch. (b) and (e)
Samples of corresponding collective signals. (c) and (f) Interburst interval (IBI) his-
tograms of the collective signal during the same intervals as in (a) and (c). Histograms
were created by running a peak detection program on the collective signal to determine
population spikes. Note that the ISI and IBI histograms do not necessarily correspond
indicating that the phase of the neuron plays a large role in the behavior of the network
as a whole.
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activity of the networks and consequently increased phase synchronization between

the networks. When ΔE = 0.1, we observe a different type of behavior. Although

the individual neurons in N1 are firing at an approximately locked rate leading to

the narrow ISI distribution, the total current signal of the network shows a broad IBI

distribution indicating that the neural activity remains asynchronous, and the total

current signal of the network undergoes occasional random, low activity bursts. The

neurons in N2 show a virtually unchanged, wide distribution of ISI. The distribution

of IBI is similar to that observed previously, but the slow oscillatory component in

the total activity is no longer observed. Thus, the asynchronous dynamics of the

first network do not significantly alter the temporal dynamics of the second network.

This is due to the fact that the neurons in N2 receive a current input from N1 which

increases, but remains temporally unstructured.

When the value of E1 is above the bursting threshold we observe different behavior.

Both networks start to burst with evolving locking patterns. In the case of ΔE =

0.4, the ISI distributions of neurons in both N1 and N2 are highly peaked and

the peaks correspond to those of the IBI distributions in the total activity of their

respective networks, indicating that the neural populations within the networks are

highly synchronized, and each network is now undergoing coherent bursting behavior.

However, the value of ISI and IBI is different as the networks enter a 2:1 locking

regime.

When E1 is further increased (ΔE = 0.65) , we observe a transition to another

type of behavior. The neurons in N1 remain synchronized and the network bursts

at a higher frequency due to the increase in the excitability. The neurons in N2

become unsynchronized and fire roughly at multiples of the period of the neurons in

N1. This leads to relatively weaker bursting, as a limited numbers of neurons fire in
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each cycle, but 1:1 locking can be observed.

Thus, even though the frequency of spiking and the average magnitude of the

mean-field signal of N1 increases monotonically with changes of neuronal excitabil-

ity, the slow oscillatory patterning in network activity observed when the networks

have the same properties is initially abolished before the transition into bursting.

This results in the drop of synchrony in the transitional period, before the onset of

bursting. We thus hypothesize that the observed preictal drop in phase synchrony

of the EEG is due to the abolition of resonant interaction between the two networks

caused by changes in the frequency response of network that is associated with seizure

generation. Therefore, we postulate that the observed drop in synchrony is in fact

an early signature of the pathological changes in the dynamics of the focus that

eventually lead to seizure-type dynamics.

To demonstrate this transition from normal to pathological dynamics, we hold

the excitability of N2 constant at E2 = 0.8 and slowly increase the excitability

of N1 from E1 = 0.75 to E1 = 1.1 as shown in Fig. 4.6. The progression of the

changes in synchrony, driven by incremental changes in excitability of N1, mimics

those observed in epileptic patients during transitions from interictal to preictal and

preictal to ictal states.

In Fig. 4.7 we show, for comparison, the temporal course of the mean phase coher-

ence R estimated from EEG time series that were recorded intrahippocampally from

an patient suffering from mesial temporal lobe epilepsy during the phase preceding

an epileptic seizure. EEG signals were sampled at 260 Hz using a 12 bit analog-to-

digital converter and filtered within a frequency band of 0.5 - 85 Hz. R values were

calculated (see Sect. 4.1.2) using a moving-window technique with non-overlapping

segments of 15.8 s corresponding to 4096 data points. In contrast to our model simu-
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Figure 4.6: Measures of synchronization. The vertical dashed line represents the bursting thresh-
old. (a) Excitability parameters as a function of time. N1 - black, N2 - gray. (b) Phase
coherence, R, as a function of time. (c) Maximum cross correlation coefficient, Cmax,
as a function of time. High levels of synchronization occur during the region of param-
eter matching and during bursting behavior, while other regions exhibit low levels of
synchronization.

lations, in the experimental setting we do not have access to the actual excitabilities

of the network dynamics assessed by the respective EEG recordings. Nevertheless,

we might speculate that the time course of R – in general – reflects fluctuations of

the excitabilities of the network. Interestingly, during the time frame -100 to 0 min

the course of R and the fact that a seizure occurs is consistent with what we observed

in our model when monotonically increasing the excitability of the “focal” network.

Thus here we define the preictal length to be the time it takes for the networks to

transition from the resonance state into the bursting state and study the distribution

of these lengths over multiple realizations of a given network (i.e., different instances

of a network with the same global statistical properties). This can be seen in Fig. 4.8

for four runs on 12 different network realizations. The start of the preictal period
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Figure 4.7: Comparison to experimental data. Profile of the mean phase coherence R for a pair of
intrahippocampal EEG recordings from a patient suffering from mesial temporal lobe
epilepsy. Seizure onset is at t = 0.

was marked by the point at which the mean phase coherence dropped below one

standard deviation of its average value during the resonance state, and the end of

preictal period was defined to be a point at which the networks first entered the

bursting state. We see that although each realization displays the transition from

resonance to bursting, the time course varies for different realizations. This variance

in preictal lengths between patients has also been observed experimentally [86].

4.3 Discussion and summary

We have used a simple toy model of coupled networks to investigate the dynami-

cal underpinnings of the drop in phase synchronization that is observed in epilepsy

patients before a seizure. The observed regimes of high synchronization are the re-

sult of two types of interacting dynamics: a resonance interaction between the two

networks when their properties are similar, and directional driving when the network

associated with the focus drives the bursting in the other network.
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Figure 4.8: Calculated preictal lengths for 12 different realizations of a network. Four simulations
were run for each network realization and the preictal length was calculated as described
in the text.

We equate this resonance interaction between our networks to the normal dy-

namics of the brain during the interictal period and the directional driving to the

propagation of the seizure during the ictal period. In between these two dynami-

cal regions, we have an intermediate state which we equate to the preictal period

where the dynamical properties of the interacting networks are mismatched, and the

resonance interaction is abolished, while the directionally driven bursting is not yet

present. While during both the resonance state and the driving state we see high

levels of synchronization between the networks due to their similar dynamical prop-

erties, it is the mismatch of properties during the intermediate preictal state that

leads to the observed decrease in the phase synchrony between the two networks.

We therefore compare the transition out of the resonance state and into the burst-

ing state to the transition from normal neuronal dynamics to the pathological dy-

namics of a seizure. This implies that the observed drop in phase synchrony between

certain EEG channels that defines the preictal period could be a result of the initial

biological changes in the neurons associated with the focus and generation of the
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seizure that occur long before the system actually reaches the seizing state.

For this transition scenario to happen one has to assume that in the interictal pe-

riod the focal and normal networks in the brain have similar gross dynamic properties

so that they enter the oscillatory resonant state. There is experimental evidence from

phase synchronization measures that interictal synchronization is high between elec-

trodes placed within the same structure of the brain [89]. Such interactions are also

observed between the focus and other brain regions during the interictal period [67].

Furthermore, it has become an accepted view in neuroscience that “the perpetual

interactions among the multiple network oscillators keep cortical systems in a highly

sensitive ‘metastable’ state and provide energy-efficient synchronizing mechanisms

via weak links” [22].

Although we have used a very simple model to explore a possible explanation for

the underlying dynamics governing different areas of the brain before a seizure, our

model shows the same behavior as observed in EEG recordings and has allowed us

to make valuable insights at the neuronal level which can not be done through the

analysis of EEG recordings. We conclude that it is possible that the observed preictal

period is a manifestation of initial biological neuronal changes that begin before the

start of seizing behavior and encourage further experimental work to explore this

hypothesis.
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CHAPTER V

Experimental approaches: glial and neuronal network
interactions

In the previous chapters, I have analyzed experimental data recorded from tetrodes

of freely moving mice (see Chapter III) and compared modeling results with EEG

data recorded from epilepsy patients (see Chapter IV). In both of these cases, only

the dynamics could be obtained experimentally; no structural data or properties of

the neurons could be obtained due to the nature of the experiments. Thus, in order

to explain the experimental results, I used modeling techniques to link structural

or neuronal network changes with the observed changes in dynamics. However, it

is imperative to also develop an experimental model in which structural network

properties can be directly compared with neuronal dynamics. In this chapter, I will

discuss experimental work from dissociated rat hippocampal cultures. Dissociated

cultures are a good reduced system in which to study neuronal dynamics because

they maintain many properties of neuronal interactions, but also have the advan-

tage of the relative ease of structural and pharmacological manipulation. The gross

structural properties of the culture can be observed using labeling techniques and

dynamics of single neurons can be electrically recorded. They are therefore a useful

tool to simultaneously study how anatomical connectivity, functional structure, and

brain dynamics relate.
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In this type of culture preparation, a single cell suspension of hippocampal cells

is plated onto a culture dish. The neurons will attach to the surface of the dish

and start to grow processes, forming synapses with other neurons and creating a

two-dimensional network of neurons. After 3-7 days, these neurons will begin to

spontaneously fire action potentials, and as the cultures age, the neural activity

evolves into highly synchronous activity in the form of network bursts, during which

almost all neurons will fire action potentials [25, 144]. The dynamics of these network

bursts have been studied to examine burst patterning [113, 11, 53, 112, 104], learning

[62, 75, 121, 10], and with pharmacological manipulation as a model of epilepsy

[128, 132, 45].

The single cell suspension of hippocampal cells used to make these cultures is

composed of both neural and glial cells. Neurons are the cells of the brain responsible

for the firing of action potentials and processing of information, while the glial cells

are generally considered to be the support cells for the neurons (‘glia’ is Greek for

glue). In fact, there are 10-50 more glial cells than neurons in the brain [64]. The

most common form of glial cells are called astrocytes. These cells can be identified

by their star shaped cell body (as opposed to the round cell body of a neuron) and

are thought to be important for the blood brain barrier and providing nutrition to

neurons. It is also known that neurons need the presence of these glial cells to survive

[64], and glial cells have been shown to aide neuronal development in vitro [109].

Because of the important supporting role played by the glial cells, neuronal cul-

tures must be co-cultured with these cells. While neurons do not multiply, the glial

cells do, and thus the glial cells initially plated with the neurons will quickly multiply,

creating a confluent layer of support cells for the neurons. However, it is possible to

inhibit the division of these cells through the addition of chemical blockers [145] or
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type of media (nutritious solution in which the cultures are grown) used [20]. Differ-

ent groups have studied the dynamics of the neurons in cultures grown under both

types of conditions, although many studies allow the glial cells to multiply in order

to provide a continuous layer of support for the neurons, [144, 53].

While the dynamics of the network bursts produced by the neurons in these cul-

tures are often investigated, the impact of the glial network on the neuronal dynamics

is less studied. The presence of glial cells is known to impact the development of

neurons [109], which will certainly affect their dynamics, but astrocytes have also

been shown to exhibit calcium oscillations which can affect intracellular calcium dy-

namics in neurons [92, 105, 138, 139]. As it was discussed earlier, calcium plays a

role in the production of neuronal action potential, so these calcium oscillations likely

contribute to the activity of the neurons. We are therefore interested in studying

differences in the dynamics of the neuronal network in the presence of either a low

or high density of glial cells.

In this chapter, I will present work relating differences in gross structural network

properties to observed differences in neuronal dynamics for cultures grown with either

a high or low density of glial cells. I show that the average neuronal process length is

similar between the two conditions as the cultures age, indicating that the differences

in the dynamics are likely due to the changes in the glial network as the glial cells

multiply. I will then apply the Functional Clustering Algorithm presented in Chapter

II to analyze the resulting functional structure obtained under the two conditions

as the cultures age and relate this to observed structural changes. Finally, I show

that the FCA can be used to study the temporal time scales involved in the bursting

dynamics of the culture.
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5.1 Experimental Setup

The cultures studied in this experiment were obtained from dissociated hippocam-

pal cells of Wistar rats. For a complete description of the experimental protocol,

please see Appendix A. Cells were plated at a density of 1400 cells/mm2 on either

culture dishes for structural staining, or on multi-electrode arrays (MEAs) which

allow for the recording of neural dynamics. MEAs are glass dishes with embedded

electrodes that record the local field potentials derived from the activity of neurons

near the electrode. The recording region consists of 60 electrodes arranged in a

square grid (8 x 8 grid with the corners removed). Electrodes are spaced 200 μm

apart and have a 30 μm diameter, allowing for the detection of action potentials

from ∼1-3 neurons per electrode. Upon plating, the neurons in the cultures begin

to grow processes, forming a network, and between 3-7 days in vitro (DIV), the cells

will begin to spontaneously fire action potentials. We recorded the dynamics from a

total of 9 cultures at 8, 11, and 13 DIV. Recordings consisted of 5 minutes of spon-

taneous activity, which occurred in the form of network bursts. A typical recording

of a network burst from 8 DIV can be seen in Fig. 5.1. In this figure, each window

represents a 500 ms local field potential recording. The spatial organization of the

pictures matches the placement of the electrodes on the array.

In order to analyze this data, spike detection was done on the recorded potentials

using a threshold detection method. The threshold for spike detection was set to

be 5 standard deviations above or below the baseline noise of the signal. Since we

were interested in analyzing cumulative spiking patterns, no attempt was made to

discriminate between multiple neurons recorded from the same electrode. Cultures

used in structural staining were fixed at days 8, 11, and 13 to correspond to the
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Figure 5.1: Example of a typical network burst. Recording taken from an MEA in the high glial
group at 8 DIV. The signals are local filed potentials as recorded over 500 ms for the
electrodes embedded in the MEA. The spatial organization of the windows represents
the spatial layout of the electrodes on the array.

periods of recording.

The cultures were divided into two groups: a high density glial group (referred

to as the high glial group, 5 MEAs) and a low density glial group (low glial group,

4 MEAs). Cultures in the high glial group were grown in Neurobasal media supple-

mented with horse serum which allows for the division and multiplication of glial cells

[20], while cultures in the low glial group were grown in a sera-free media. Sera-free

media has been shown to stop the multiplication of glial cells in the culture [20],

meaning that the glial network remains constant over time. Neurons do not multiply

over time, so their numbers are constant between the two groups.

5.2 Results

5.2.1 Anatomical Structure

We first examined the anatomic structural properties of the cultures. Although it

is not feasible to determine the exact structure of the cultures (despite the reduction

of the system, the resulting network is still quite complex), we are capable of studying

gross properties of the network structure which could lead to differences in dynamics.
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As discussed previously, it is known that the glial cells in the high glial group will

multiply over time, while those in the low glial group will not. Although the neurons

do not multiply over time, they do grow processes and synapses, changing the network

structure as the cultures age. We therefore measured the average process length as a

function of DIV for both groups using a fluorescent dye called di-I. The dye diffuses

through the membrane of the cell, allowing for the staining of the cell body and

processes of single neurons. The di-I was dissolved in oil and a micro-droplet of the

dye was injected into a small cluster of neurons. After 5 days of diffusion, the cells

were imaged and the process length of a neuron was measured to be the radius of a

circle that was centered on the cell body and enclosed the processes.

Example images of staining for the two groups as a function of time can be seen

in Fig. 5.2(a). The processes can be seen to grow over time, allowing the neurons to

form increasingly global connections with other neurons. In Fig. 5.2(b), we quantify

this affect, averaging over 4 stainings for cultures from 8, 11, and 13 DIV in each

group. Both groups show an increase in process length over time. This increase

in length of processes between days of recording should lead to a re-organization of

network structure which will influence the dynamics over time.

It is also important to note that no difference was observed between the average

process length of neurons between the two culture groups. This finding is indicative

that the neuronal networks in the different culture groups are similar, meaning that

differences in observed dynamics between groups is likely due to the known differences

in the glial networks.

5.2.2 Dynamics

We studied the dynamics of the cultures as a function of age to determine the

effects of the changing glial network and growth of neuronal processes. Cultures were
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Figure 5.2: Di-I staining as a function of DIV for the two culture groups. (a) Example images of
staining after 5 days of diffusion for cultures fixed on 8, 11, and 13 DIV for both high
and low glial groups. (b) Quantification of the average process length as a function of
DIV, averaged over 4 stainings for each group. The average process length increases
over time, but shows no difference between neurons in the different groups.
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recorded from at 8, 11, and 13 DIV as described in Sect. 5.1. Spike detection was

done on the recorded signals and the resulting spike activity was analyzed as follows.

Visual observation of the recording sessions shows that cultures in the high glial

group tend to persistently fire in network bursts with short silences in between bursts,

while those in the low glial group tend to fire in longer bursts with longer quiescent

periods between bursting events. These quiescent periods grow in length over time.

We show these differences in dynamics by examining the interspike interval (ISI)

as calculated for the net spiking activity in each culture. This result is shown in

Fig. 5.3. In this plot, we examine the interspike interval of cultures as a function

of DIV. The width of the ISI distribution for each culture group was increased for

visualization purposes. Cultures from the high glial group are plotted in shades

of red, and cultures from the low glial group are plotted in shades of blue. The

shade of the dot indicates data from a specific culture within the respective group.

Note the semi-log scale for visualization purposes of longer ISI events. Initially, the

distributions are uniform, showing a mix of short and long ISI values. However, over

time, one can see that in the low glial group (blue shades), the distribution becomes

increasingly bi-modal. This indicates that firing events are consistently occurring

within the bursts on short time scales, while the time between bursting events is

becoming more polarized, with either short or long intervals between bursts and few

quiescent periods of medium length. The cultures in the high glial group maintain a

more evenly distributed arrangement of ISI times, although some polarization begins

to appear at 13 DIV.

We then looked at the number of active electrode channels as a function of DIV.

An active electrode was defined as a channel from which reliable spiking activity

could be detected using the thresholding method. It should be noted that in order
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Figure 5.3: ISIs plotted as a function of DIV for high and low glial groups. The width of the
distributions was increased for visualization purposes. Shades of red indicate data from
the high glial group while blues denote the low glial group. The specific shade denotes
data from a given culture in the group. One can see that the cultures in the low glial
group show an increasingly polarized distribution of ISI indicating the development of
long quiescent periods in between bursting events.

to record the activity from a neuron, the neuron must lie very near to the electrode

and be well attached to the surface of the dish. As the network ages, some neurons

die and others begin to fire, meaning that the active electrodes can change over time.

However, one expects the overall number of active electrodes to increase over time as

the neuronal processes increase in length, allowing for more neurons to be recruited

into spontaneous activity. The number of active electrodes is plotted for both the

high and low glial groups in Fig. 5.4(a). In both groups this number increases over

time, yet is consistently higher for the high glial group. This indicates that the higher

number of glial cells allows for the recruitment of more spatially separated sites into

the bursting activity.

In Fig. 5.4(b), we plot the average number of spikes per active electrode as a

function of time. Interestingly, we see no differences between the number of spikes

emitted per channel between the two groups, indicating that unlike the number of

89



A
ve

ra
ge

 N
um

be
r o

f 
A

ct
iv

e 
El

ec
tr

od
es 30

20

10

0

DIV
14121086

High Glial Group
Low Glial Group

A
ve

ra
ge

 N
um

be
r o

f S
pi

ke
s

2000

1500

1000

500

0

DIV
14121086

High Glial Group
Low Glial Group

(a)

(b)

Figure 5.4: Number of active electrodes and spikes per active electrode as a function of DIV. (a)
Number of active electrodes as a function of time for both high and low glial groups.
While this number grows over time for both groups, it remains smaller for cultures in
the low glial group indicating that the glial network seems to influence the recruitment
of sites in the neuronal network. (b) Average number of spikes per active electrode as a
function of DIV. This number grows as the culture becomes more active over time but
is similar between the two groups of cultures, corresponding to changes in the neuronal
network.
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active sites, this value does not directly depend on glial interactions. Instead, it

corresponds to the changes in neuronal network re-organization through the growth

of neuronal processes.

5.2.3 Functional Structure

Since we observe difference in dynamics as a function of DIV as well as between

culture groups, it is interesting to ask how these differences will be embodied in

the functional structure of the network. To study the functional groupings of active

sites, we implemented the FCA as described in Chapter II. We are therefore grouping

electrodes based on synchronous activity within the network bursts. Unless otherwise

stated, the jitter window used to create the surrogate data sets was a uniform window

of 70 ms. The obtained clustering is shown for one culture from the high glial group

and one culture from the low glial group.

We first explore the clustering as a function of time for cultures within each

group. In Fig. 5.5(a) we show the spatial layout of the functional groupings. In this

figure, each square represents the spatial location of an electrode as in the case of

Fig. 5.1. Colored squares represent active electrodes, and squares of the same color

belong to the same functional group. The dendrograms corresponding to the spatial

clustering shown for the high glial group at 8 and 13 DIV are shown in Fig. 5.5(b-

c) respectively. For the case of the high glial culture, we see that, initially, the

culture contains multiple groups that largely represent local regions of the MEA.

This indicates that only local groups of neurons are involved in synchronous activity

during network bursts. However, as the culture ages, the synchronization becomes

increasingly global, and more neurons are recruited into the largest cluster.

To quantify this effect, the percentage of electrodes that participate in the largest

cluster is plotted as a function of DIV in Fig. 5.6. We do not see this increase in
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Figure 5.5: Functional groupings obtained from the application of the FCA to culture data. (a)
Spatial representation of functional clusters. Colored squares indicate active electrodes
and squares of the same color belong to the same functional group. The clustering
becomes increasingly global over time for the high glial culture, while the clustering of
the low glial culture becomes increasingly fragmented. Examples of the dendrogram
corresponding to the spatial map are shown in (b-c) for the culture from the high glial
group at 8 DIV (b) and 13 DIV (c).
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Figure 5.6: Percentage of electrodes participating in the largest functional cluster. The percentage
increases over time for the high glial culture indicating the spread of global synchro-
nization while this number decreases for the low glial culture as the groupings become
increasingly fragmented.

cluster size in the case of the culture from the low glial group, as the clustering instead

becomes fragmented over time as seen in Fig. 5.5. This increased fragmentation

corresponds to the decrease in the percentage of electrodes that participate in the

largest cluster seen in Fig. 5.6.

We are also interested in quantifying the level of synchronization present in the

detected functional groupings. This is done through the examination of the scaled

significance used in the joining steps of the FCA (please refer to Sect. 2.1.2). A higher

scaled significance indicates a tighter relationship between spikes of electrodes. In

Fig. 5.7(a-b), we show the scaled significance as a function of the step of the algorithm

for clustering of the high and low glial cultures respectively. The dashed red line

marks the clustering cutoff. These results are shown for the obtained clustering for

each recording day (8, 11, 13 DIV). Note the different scaling on the y-axes of the

figures. In each condition (high and low glial), the scaled significance used to group

electrodes increases between recordings indicating that the firings of the neurons

within the functional groups are becoming increasingly synchronous as the cultures
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age. In Fig. 5.7(c) we show the average scaled significance used in the significant

clustering steps (above the dashed red line) as a function of DIV for both the high

and low glial cultures. The average scaled significance is greater for the high glial

culture on each recording day, indicating that the high glial culture shows a tighter

relationship between firing events during the bursts.

The analysis presented thus far has been done using a jitter window of 70 ms to

create the surrogate data used to determine the significance of the clusterings in the

FCA. This window size corresponds to timescales associated with the duration of

network bursts. However, by varying the size of the jitter window, we can control

the time scales involved in the detection of functional groupings due to the fact that

the size of the jitter window determines the time scales of the correlations that are

destroyed in the surrogate data [113, 107]. Thus, as we decrease the jitter size, we are

able to examine the finer intraburst structure. In Fig. 5.8(a) we show the evolution

of functional groupings for different sizes of jitter windows for the high glial culture

recorded at 8 DIV. Functional groupings were analyzed for jitter windows of 20,

30, 40, 50, 60, and 70 ms. Again, the obtained clusterings are indicated by similar

colors on the spatial representation of electrodes. For a small jitter window of 20

ms, we see many small functional groupings, indicated by the many colors on the

map. As the jitter window is increased to 30 ms, we see that the previously obtained

clusters begin to merge. For example, the electrodes that were previously light blue,

indicating their own functional cluster, have now become part of the cluster labeled

in orange. Additionally, two previously independent clusters have now joined to

form a new cluster colored in neon blue, and the light green cluster now includes

two previously independent electrodes. The dark blue cluster merges with the pink

cluster at a jitter window of 40 ms and then this configuration is relatively stable.
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Figure 5.7: The scaled significance used to create functional groupings for the high and low glial
cultures. (a) Scaled significance as a function of joining step for the different recording
days of the high glial culture. (b) Scaled significance as a function of joining step
for the different recording days of the low glial culture. Note the different scaling on
the y-axis. The dashed red line denotes the clustering cutoff. (c) The average scaled
significance used in the significant clustering steps of the data shown in (a) and (b). The
significance increases as a function of time, indicating an increase in the synchronization
of spiking within network bursts. The high glial culture also shows increased significance
(synchronization) compared to the low glial culture.
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We quantify this observation by plotting the number of independent clusters as a

function of the jitter window size in Fig. 5.8(b). This indicates that while the bursts

themselves are synchronized, there exists an additional hierarchy of temporal levels of

synchronization within the bursting events. Previous work analyzing network bursts

has also seen the emergence of different functional interactions between small and

large time scales within the network bursts [135, 113].

5.3 Discussion and Summary

While previous work has studied either structural properties of cultured networks

or analyzed the dynamics of these cultures, there is little work which attempts to link

changes in structural network properties to the resulting dynamics and functional

interactions. The work that has been done has focused on the effects of different

substrates used to coat the dishes [131] or on patterned plating of cultures [24, 11].

Here we studied cultures grown with either a high density of glial cells or a low

density of glial cells in order to relate the influence of the glial network on neuronal

dynamics as a function of time (and therefore increasing density of glial cells). We

showed that the average process length of the neurons appears constant between the

two groups but grows over time, which can explain changes in neuronal dynamics

over time, but not differences between the two culture groups. Thus, the observed

differences in neuronal dynamics between the high and low glial groups is likely due

to the influence of the glial network on the neuronal network.

Both culture groups displayed synchronized activity in the form of network bursts,

but the specific form of these bursts varied between the two groups. The high glial

cultures had more active electrodes, however, the total number of spikes per electrode

was similar between the two groups for each recording session. The cultures became
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Figure 5.8: Functional groupings for different time scales of correlation within network bursts. (a)
Spatial representations of obtained clusterings for different sizes of the jitter window
used to create surrogate data sets. Squares of similar color indicate electrodes involved
in the same functional group. As the jitter window increases, correlations are destroyed
on larger time scales and we see the merging of functional clusters. These clusters
become stable for larger jitter windows. This corresponds to the decrease in the total
number of clusters detected as shown in (b).
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increasingly active over time as seen in the rise of active electrodes and total spikes

per electrode. However, the cultures from the high glial group displayed persistent

bursting activity with a varied distribution of interspike intervals. Cultures from the

low glial group displayed spiking patterns that became increasingly polarized towards

either short or long intervals between spiking events, corresponding to an increase in

the spiking frequency during a burst with larger intervals between bursting events.

The changes in neuronal dynamics over time led to a difference in functional clas-

sifications. We applied the FCA to detect neuronal groupings over time for a high

glial and low glial culture. The high glial culture initially showed the formation of

local clustering which became more global over time. The low glial culture showed

a different behavior as the groupings became increasingly fragmented over time.

These functional differences indicate that the cultures from the high glial group dis-

play bursting events which become increasingly globally synchronous while bursting

events are consistently composed of smaller groups of synchronous activity in the

low glial culture. We also quantified the amount of synchronization present within

the functional clusters by comparing the scaled significance used in the joining steps

of the FCA. Cultures from the high glial group showed greater values of significance

indicating that the firing events within the bursts are more highly synchronized. The

fact that these cultures have a higher glial density indicates that the glial network

aids in the synchronization of the neuronal network. The significance used in clus-

tering increased as a function of DIV in both groups indicating that as the neuronal

networks evolve, the firing events become increasingly correlated. Thus the over-

all observed synchronization of bursts is the result of changes in both the neuronal

network and the underlying glial network. We were also able to show that synchro-

nization of these bursts is composed of hierarchy of synchronous activity operating
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on multiple time scales as can be seen when varying the size of the jitter window used

to determine the significance of the functional groupings obtained using the FCA.

Despite the fact that dissociated neuronal cultures are a simplified system and

their structure and dynamics cannot be directly linked to brain dynamics, we have

shown that they are a good reduced system in which to study the interplay of struc-

ture and dynamics in neuronal networks. Unlike neuronal data recorded from the

intact brain of humans or animals where it is difficult to study the properties of

the underlying network structure, we are able to manipulate gross properties of the

anatomical network structure and observe how these changes affect neuronal dynam-

ics. We can then apply methods developed to detect functional structure (such as

the FCA) and relate the differences in the obtained clusterings to the known struc-

tural changes. This allows for the discovery of the important parameters that affect

the relationships between structure and dynamics which can later be used to make

inferences about network properties that can direct research in more complicated

systems such as the brain.
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CHAPTER VI

Summary and conclusions

The brain has an incredibly complex anatomical structure (even the small hip-

pocampus of a rat contains ∼106 interconnected neurons), making it incredibly dif-

ficult to study at the single neuron level. The synapses between neurons are plastic,

neurons die, and new neurons are integrated into the existing network, adding to

the difficulties in determining anatomical structure. Much work has thus focused on

identifying gross structural properties between brain regions, but often one instead

observes network dynamics since recent advances in recording techniques has made

the identification of individual neuronal firing patterns possible. The recording of

action potentials from single neurons involves only information from a sparse sample

of neurons, but has the advantage that it is now possible to record from these neurons

while an animal moves and performs certain tasks. This means that it is now pos-

sible to obtain dynamical information relating to specific features of brain function.

It also introduces the need to develop new tools to extract functional relationships

from observed neuronal dynamics.

In this dissertation, I’ve discussed the interplay between three features of neuronal

networks: anatomical structure, neuronal dynamics, and functional structure. The

anatomical structure provides the physical building blocks of the network in terms
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of the properties of the connectivity between neurons. Since the neurons commu-

nicate through the firing of action potentials, which are transmitted through these

physical connections, the anatomical structure impacts how information is passed

through the network and therefore the dynamics of the network. Additionally, the

firing patterns of the neurons can have an affect on atomical network structure, since

neuronal synapses are plastic and can be modified through mechanisms such as spike

timing dependent plasticity. The functional structure is obtained from the dynamics

through the detection of correlated activity in the firing patterns, and is therefore

coupled directly to the dynamics and indirectly to the underlying anatomical struc-

ture. However, it is important to remember that dynamical properties of neurons

such as their excitability also have an influence on neuronal dynamics, meaning that

it is not always straightforward to link functional and anatomical structure.

In Chapter II, I introduced a new algorithm called the Functional Clustering Al-

gorithm designed to detect functional groupings from discrete event data. The FCA

can be used with a variety of different similarity metrics, allowing the user to tailor

the algorithm to detect specific temporal relationships between network elements.

It also uses a comparison to surrogate data to determine the significance of the ob-

tained groupings, giving the algorithm a natural stopping point. This also means

that, unlike with many traditional clustering algorithms, no a priori knowledge of

the number of functional groupings is required. Using simulated spike train data

with a known structure, I compared the FCA to the gravitational method of clus-

tering which looks for groups of neurons with similar firing patterns and clusters

these particles in N-dimensional space. I showed that the lack of a stopping point

and difficulty in visualizing the N-dimensional space makes the gravitational method

difficult to utilize, especially in cases of low correlations between firing patterns. I
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also used a standard hierarchical clustering method combined with a calculation of

the modularity to determine functional groupings of the simulated data. Despite the

clear correlation structure in the data, the modularity gave an unclear stopping point

for the algorithm, as it is not optimized for all-to-all network connectivities. The

FCA was able to correctly identify the known embedded clusters in the simulated

data without any of these difficulties. This algorithm thus provides a novel method

for linking neuronal dynamics to functional network structure.

After the FCA was verified on simulated data, the next step was to use the FCA

to analyze neuronal dynamics and extract functional structure in experimental data.

In Chapter III, I utilized the FCA along with causal entropies (a measure to detect

the development of directional lead/lag relationships) to analyze experimental data

obtained from the hippocampus of freely moving mice as they explored and learned

a new environment. I showed that the FCA can detect a known increase in co-firing

events due to ripple events during sleep periods, and that these periods of sleep also

correspond to an increase in directional relationships between neurons that persists

after the sleep period has ended. The FCA also showed an increase in the amount of

scaled significance used in the joining steps of the algorithm when comparing early

and late exploration periods (after sleep). This is representative of the tightening

temporal correlations as the animal learned the environment. I showed that the av-

erage minimum distance used to cluster the data between the initial exploration of

the environment and a separate familiar exploration decreases for significant cluster-

ing steps between initial and familiar exploration. These significant clustering steps

correspond to neurons that were initially significantly correlated during the initial

exploration. However, examination of the unsignificant clustering steps (neurons

with low initial correlations) showed an increase in the AMD, representing that their
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firing patterns were becoming increasingly uncorrelated. This finding is consistent

with other recent experimental results [100] that have shown an increasing polarity

between correlations of firing patterns as a result of memory consolidation.

I also applied the above methods to a simple model of memory formation. Since

we are unable to obtain information about the underlying anatomic changes in net-

work structure as a result of learning, the use of modeling is necessary to understand

the structural changes that lead to differences in observed neuronal dynamics. When

modeling, we can simultaneously monitor both network structure and dynamics un-

der different conditions and link the changes in dynamics to those in structure. This

can then be compared to similar changes in dynamics observed experimentally. In

this model, synapses were plastic and allowed to evolved based on a simple STDP

motivated learning rule in response to a stimulus. I showed that the development of

lead/lag relationships and increase in significance of clustering was similar to that

observed experimentally. This leads one to believe that the experimentally observed

changes in dynamics and resulting functional groupings are due to synaptic modifi-

cations through STDP as a result of learning.

Although these results suggest that neuronal dynamics and underlying anatomical

structure are always linked, the work of Chapter IV shows that the relationship is

not as simple. Here, I studied two coupled networks as a model of focal epilepsy. One

network represented the focus of a seizure and the excitability of the neurons in this

network was increased over time, bringing the network from an asynchronous state

to a bursting state representing a seizure. No anatomical structural changes were

involved in this change of network dynamics. When the focal network was coupled to

the other network, three different states of dynamics were observed through examina-

tion of the phase synchronization between the activity of each network: a resonance
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state, a transition state, and a driving state. The resonance state occurred when the

excitability of the networks was the same, and the transition state occurred when

there was a mismatch in excitability between the networks before the focal network

entered the bursting state. The driving state began when the focal network began to

burst, as the bursting in this network drove the other network to a bursting state as

well. These results were robust over a large range of network coupling parameters,

meaning that structural modifications had little impact on the network dynamics.

This indicates that one must be cautious when attributing changes in neuronal dy-

namics to changes in the underlying structure as other factors can contribute to

network dynamics as well.

The above studies emphasize the fact that when analyzing brain dynamics, it is

difficult to obtain simultaneous information about both anatomical structure and

dynamics. It therefore becomes essential to use modeling techniques in an attempt

to understand structural and neuronal effects on dynamics. Dissociated cell cultures

offer an alternative scenario. Although the anatomic structure of cultures does not

resemble that of the brain, the properties of the neurons are preserved, and upon

plating the cells, the neurons will grow into a network and begin to fire action

potentials. In Chapter V, I presented work studying dissociated rat hippocampal

cultures. Cultures were divided into two conditions: a high glial group in which glial

cells were allowed to divide and multiply, and a low glial group in which the number

of glial cells was held constant. The dynamics of the cultures were recorded using

multi-electrode arrays, and di-I staining was used to determine the average process

length of neurons on days 8, 11, and 13 after plating. Differences in dynamics

between the two groups could be linked to differences in the glial network, and the

evolution of the dynamics as the culture aged corresponded to a growth of neuron
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processes. I also used the FCA to study the functional structure resulting from the

different conditions. Cultures in the high glial group showed an increase in global

synchronization as the cultures aged, while those in the low glial group remained

locally synchronized. The total level of synchronization in the high glial group was

also shown to be stronger by examining the scaled significance used by the FCA to

join groups. Additionally, the FCA proved a useful tool to investigate the dynamics

of network bursts in the culture because by varying the size of the jitter window used

to determine the significance of clustering, the different temporal levels of functional

groupings could be determined.

Taken together, these projects address the need to develop new methods and tools

to analyze the vast amount of data becoming available as new experimental tech-

niques are developed to explore features of neuronal networks. The recent availability

of tetrodes to record neuronal activity of freely moving animals and advances in fMRI

technology have emphasized the importance of functional structure. The FCA pro-

vides a powerful tool to explore functional groupings in neuronal data. While all of

the work presented in this dissertation used the AMD as a similarity metric to detect

co-firing events in spike train data, the algorithm is not limited to the detection of

co-firing events. For example, the CE metric used in Chapter III to detect directional

relationships between pairs of neurons could be applied in the algorithm to detect

sequences of neuronal activity. Other metrics could also be used, depending on the

nature of the data and desired functional relationships.

This dissertation has also presented a methodology that combines both modeling

and experimental approaches to explain observed relationships in neuronal dynamics.

This combination of techniques and ideas will be essential to guide the efforts of un-

derstanding brain function and neuronal interactions. It is clear that there is much to
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be learned about the complex network that comprises a brain, and our knowledge of

the workings of neuronal networks and brain function is quickly evolving. This work

presents a framework in which to link the important features of neuronal networks

into a coherent whole.
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APPENDIX A

Dissociated culture protocol

A.0.1 Cell Culture Preparation

Dissociated cell cultures were prepared from neurons (and glia) obtained from

the hippocampus of P1 Wistar rats (Harlan). Within 24 hours of birth, pups were

decapitated and the hippocampi were removed and placed in 8 mL of cold PBS

(Phosphate Buffered Saline with 20mM glucose). To aid in dissociation, 2 mL of

trypsin (Sigma, St. Louis MO) was added (resulting in a .25% concentration of

trypsin) and the solution was placed in a 37◦C heat bath for 16 minutes, followed by

the addition 2 mL of horse serum to stop the chemical digestion. The supernatant

was then removed and replaced with warm PBS. Cells were mechanically dissociated

through titration first with a 10 mL plastic pipette and followed by a flamed pasteur

pipette. Cells were centrifuged and re-suspended in Neurobasal-A Medium (Gibco)

supplemented with B-27, 5% heat activated horse serum, 0.5mM L-Glutamine, and

10mM HEPES. The solution was filtered using a 70μm strainer followed by a 40μm

strainer. The cell density was determined using trypan blue (Invitrogen, Carlsbad,

CA) staining and a Reichert counting chamber (Fisher Scientific, Chicago, IL). The

density was adjusted by the addition of media such that the density upon plating

would be ∼1400 cells/mm2.
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The cell suspension was plated on MEAs (Multi Channel Systems, Reutlingen,

Germany) which had previously been coated with 0.05% poly-ethylene-imine (Sigma)

in borate buffer followed by 20 μg/mL laminin (Roche Applied Science, Indianapolis,

IN) solution in media. Cultures were maintained in a humidified incubator with a

95%O2/5%CO2 saturated atmosphere at 37◦C.

Between 24-36 hours after plating (once cells had adhered to the surface of the

MEA), cultures were split into high and low glial groups. Neurobasal-A media sup-

plemented with horse serum as described above was added to cultures in the high

glial group to allow for the proliferation of glial cells, while the media of the low glial

group was replaced with Neurobasal-A media that had not been supplemented with

horse serum. Following this, half of the media was replaced with fresh media once

each week.

A.0.2 MEA Recordings

Cultures were recorded at 8, 11, and 13 DIV. During recordings, media was re-

placed with a recording buffer (140mM NaCl, 5 mM KCl, 1.5 mM CaCl2, 0.75 mM

MgCl2, 1.25 mM NaH2PO4, 20 mM glucose, 15 mM HEPES/NaOH adjusted to

7.4pH) to maintain the pH of the culture. Cultures were recorded at 25 kHz using

a Multi Channel Systems data acquisition card and MC-Rack software. During the

recordings, cultures were maintained at 37◦C and each recording lasted 5 minutes.

A.0.3 Spike Detection

The local field potential potential recorded from each electrode was assessed for

spiking activity and active channels were selected for spike detection. Signals were

first filtered through a high pass Butterworth filter at 250 Hz. Spike detection was

done using a thresholding method, using 5 standard deviations of the baseline noise
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as the threshold value. No attempt was made to distinguish between single neurons

recorded by the same electrode. Spike times were saved and analyzed as described

in Chapter V.

A.0.4 Di-I Staining

Cultures used in staining studies were fixed in 4% paraformaldehyde in PBS for

15 minutes at either 8, 11, or 13 DIV to correspond to the days of recordings. Di-I

(1,1’-dioctadecyl-3,3,3’,3’-tetramethylindo-carbocyanine perchlorate, Sigma) crystals

were then dissolved to in cod liver oil to form a saturated solution. Micro-droplets of

the oil solution were injected into cell bodies of neurons, and the dye was allowed to

diffuse through the cell membrane for 5 days, staining the cell bodies and processes of

single neurons. Cultures were then imaged using a fluorescent microscope (Olympus

X-71). Pictures were analyzed using ImageJ software and average process length

was determined to be the radius of a circle that was centered on the cell body and

enclosed the processes.
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