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CHAPTER I

Introduction and Dissertation Outline

Many problems in Commutative Algebra have been successfully attacked with

techniques using the Frobenius endomorphism of a ring of positive prime character-

istic. Surprisingly, these methods often also yield results in characteristic 0. The

tight closure theory created by Hochster and Huneke in the 1980s is now the main

characteristic p method and one of the central tools in commutative algebra. It has

provided simple proofs for a number of deep results that didn’t seem to be particu-

larly related before. For example, tight closure theory methods were used to prove

the local homological conjectures for equicharacteristic cases (see, for instance, [13]),

several extremely powerful vanishing results on maps of Tors (e.g., in [15]), the fa-

mous invariant theory result of Hochster-Roberts (e.g. in [14]and [19]), which asserts

that the ring of invariants of a linearly reductive algebraic group acting on a regu-

lar ring is Cohen-Macaulay, and a great deal more. The proofs obtained via tight

closure theory appear simpler and lead to much more general results (e.g., a series

of “Briançon-Skoda theorems”; see, for instance, [14], [4], [25], [26]). There are lots

of parallels and connections of tight closure with integral closure and multiplicities.

Other strong results obtained or inspired by tight closure methods include the fact

that for an excellent local domain of positive prime characteristic p the absolute
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integral closure R+ is a big Cohen-Macaulay algebra ([17]), a uniform version of the

Artin-Rees theorem ( see e.g. [2] and references therein) and comparison theorems

on ordinary and symbolic powers ([18]), just to name a few. There are also important

connections between the ideas of tight closure in characterstic p and singularities of

algebraic varieties in characteristic 0. Tight closure theory continues to be an area of

very active research that has a deep influence on and is an immensely fruitful source

for ideas in commutative algebra itself as well as in its neighboring fields such as

Algebraic Geometry.

In its simplest form, tight closure is a closure operation for submodules of a mod-

ule over a ring of finite prime characteristic (although a big part of the theory also

works for rings containing the rationals).

Let R be a Noetherian ring of positive prime characteristic p and let N ⊆ M be

R-modules. For every integer e ≥ 0 the eth power of Frobenius endomorphism maps

R to itself by x 7→ xq where q = pe. Let Se denote R considered as an R-algebra

via the eth power of Frobenius. The Peskine-Szpiro functor, F e is Se⊗R, a covariant

functor from R-modules to Se-modules. Since Se = R this is actually a functor from

R-modules to R-modules.

We say that x ∈ M is in the tight closure of N (denoted by N∗
M), if there exists

c ∈ R that does not belong to any minimal prime of R and such that in F e(M) we

have cxq ∈ im(F e(N) → F e(M)) for all q À 0. Here xq stands for the image of x

under the natural map M → F e(M) that takes m 7→ 1⊗m.
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This dissertation is centered around two important themes from tight closure the-

ory: phantom homology and existence of test elements. In the next two sections we

will outline the main results of this work and some related questions.

1.1 Results related to Phantom Homology

One of the most beautiful notions emerging from tight closure theory is that of

phantom homology, introduced by Hochster and Huneke in [14]. Roughly speaking,

the idea is to consider projective resolutions that are “almost acyclic”: instead of

requiring that the boundaries are the same as cycles, as is the case for the usual

acyclic resolution, it is assumed that they are the same “up to tight closure”.

Specifically, let

P• : . . . → Pn → Pn−1 → . . . → P1 → P0 → 0

be a complex of finitely generated projective R-modules, where R is a Noetherian

ring of positive prime characteristic p. We say that P• has phantom homology at

the ith spot if the cycles at that spot lie inside the tight closure of the boundaries

within the ambient module Pi: that is, Zi ⊆ (Bi)
∗
Pi

. If P• has a phantom homology

at the ith spot for all i ≥ 1 then we say that P• is phantom acyclic. If not only P•,

but also all of its Frobenius iterates F e(P•) are phantom acyclic for all e ≥ 0, then

P• is called stably phantom acyclic. In this last case P• is called a phantom reso-

lution of the augmentation module H0(P•) = M (assuming that the augmentation

module M is nonzero). The length of the shortest finite stably phantom projective

resolution of M , if one exists, is called the phantom projective dimension of M over

R and is denoted by ppdR(M). For the zero module M = 0 we define ppdR(M) = −1.
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It turns out that a module M having at least one phantom projective resolution

will necessarily have a finite one as well (see Theorem 2.1.7 in [1]). Thus ppdR(M)

is a well-defined natural number when M has any phantom projective resolution;

otherwise, we define ppdR(M) = +∞.

Phantom resolutions are really not too exotic and arise very naturally. An im-

portant source of phantom resolutions is base change: if M is a module of finite

projective dimension, then any of its resolutions tensored with a module-finite ex-

tension S of R produces a phantom resolution of S⊗RM(under mild conditions on the

ring R; e.g., it is enough to assume that R is excellent, equidimensional and reduced).

Phantom homology turned out to be a very fruitful idea and was developed in a

number of papers (see, for instance, [1], [3], [15], [20]). The class of modules of finite

phantom projective dimension over a fixed ring R includes those of finite projective

dimension but is usually larger (these two coincide for Cohen-Macaulay rings). There

are lots of results on modules of finite phantom projective dimension that parallel

the results for the usual notion of projective dimension. Just to name a few, the

Buchsbaum-Eisenbud Acyclicity Criterion for finite complexes of free modules (see

[7]) has a phantom analogue with depth conditions replaced by the height condi-

tions (see, for instance, Theorem 9.8 in [14]), Auslander-Buchsbaum’s formula that

expresses the projective dimension via depths has a very similar version for phantom

projective dimension and phantom depth (see Theorem 3.2.7 in [1]), an extension

of the regularity theorem by Auslander-Buchsbaum-Serre for a local ring holds with

finite phantom projective dimension (see Theorem 2.4.1 in [1]), etc. These phantom
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homology ideas were used to give extremely powerful results on vanishing of maps of

Tors (see Section 4 in [15]). Another reason to be interested in phantom projective

resolutions stems from a result in [3], which gives an instance when tight closure

commutes with localization: that is, under mild conditions on the ring R, for a pair

of finitely generated modules N ⊆ M for which ppdR(M/N) < ∞ and for any mul-

tiplicative system W in R we have W−1(N∗
M) = (W−1N)∗W−1M (see section 5 in [3])

Tight closure does not commute with localization in general, as shown recently by

Brenner and Monsky (see [5]).

Nevertheless, the notions of phantom projective dimension and phantom depth

do not enjoy all the good properties of the usual ones. One of the most important

reasons for that is that when one is given a module of finite phantom projective

dimension, there is no canonical “constructive” way to build up a phantom resolu-

tion. For a module of finite phantom projective dimension different resolutions can

even fail to be chain-isomorphic. Also, the behavior of such modules in short exact

sequences is more complicated (e.g., it can happen that for R-modules N ⊆ M we

have ppdR(M) < ∞, ppdR(M/N) < ∞ but N has no finite phantom resolution).

My results include the demonstration of further instances of “bad” behavior for

modules of finite phantom projective dimension that are not parallel to what happens

with modules of finite projective dimension. In [1], the following natural conjecture

was posed:

Conjecture 1.1. Let R be a Noetherian ring of prime characteristic p and let M be

a finitely generated R-module. Then ppdRM < ∞ if and only if ppdRmMm < ∞ for
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all maximal ideals m of R.

The “only if” part of this conjecture is trivial, since the phantom acyclic (and

stably phantom acyclic) resolutions are preserved by flat base change (in particular,

by localization). One of the main results in my dissertation is the construction of

a counterexample to the “if” part of this conjecture. Specifically, I have been able

to show the following (essentially all of Chapter III is devoted to proving this; see

section 3.1 for more details):

Theorem 1.2. Fix an arbitrary field k of positive prime characteristic p. Let

z, v, a, x, y be indeterminates over k. Consider the following subring R of the lo-

calized polynomial ring k[
√

z, v, a, x, y]z:

R = k[z, z−1, v, a, vx, vy, ax, ay, x2, y2, (1− a)x
√

z, (1− a)y
√

z ]

Take the R-module M to be M = R/(vx, vy). Then for every maximal ideal m of R

we have ppdRm(Mm) = 2 but M does not have a finite phantom projective dimension

over R.

This example came out from an attempt to obtain a ring in which, after local-

ization either at a or at 1 − a, complexes similar to Koszul complex give phantom

resolutions; however, they cannot be modified to “patch” together to give a global

phantom resolution over R.

I will sketch the main points of the proof. Verification of the fact that ppdRmMm <

∞ for every maximal ideal m of R is relatively easy. We have a phantom resolution
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of Ma over Ra

(∗) 0 → Ra




y

−x




−→ R2
a

[
vx vy

]

−→ Ra → 0

and a phantom resolution of M1−a over R1−a

(∗∗) 0 → R1−a




y
√

z

−x
√

z




−→ R2
1−a

[
vx vy

]

−→ R1−a → 0

Each of (∗) and (∗∗) is a phantom resolution by the Phantom Acyclicity Criterion.

Any maximal ideal m of R necessarily misses at least one of the elements a and

b = 1 − a. So localizing the corresponding resolution (∗) or (∗∗) at m we obtain

phantom resolution of Mm over Rm.

The difficult part of the proof is to show that M does not have finite phantom

projective dimension. In short, the proof goes as follows: assume that there is a

phantom resolution P• of M over R. First, by using various tricks we reduce to the

case when the resolution has a specific form

(†) 0 → P → R2 (vx,vy)−→ R → 0

This part of the proof actually does not depend on the specific ring R and R-module

M . The techniques developed are useful also in more general cases, when one needs

to reduce a phantom resolution to a simpler form.

Next, we translate the question of the existence of a projective module P that

makes (†) a phantom resolution into a question about the existence of a very special
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projective ideal of R. Finally, we explicitly find all possible choices for P after lo-

calizing at the elements a and 1− a, by computing certain Picard groups, and then

show that these possible choices for Pa and P1−a cannot patch together properly to

give the projective module P required in resolution (†).

This counterexample gives rise to several other negative results. First, after some

adjustments of R and M from above, I was also able to provide a counterexample to

another conjecture posed in [1].

Conjecture 1.3. Let R be a Noetherian ring of characteristic p and let M and N be

finitely generated R-modules. Then ppdR(M ⊕N) < ∞ if and only if ppdR(M) < ∞

and ppdR(N) < ∞

The “if” part is trivial, since the direct sum of phantom resolutions is still a

phantom resolution. However, a phantom resolution of M ⊕N does not necessarily

decompose into direct sum. Specifically, I have shown the following (see section 4.1

for further details):

Theorem 1.4. Fix an arbitrary field k of positive prime characteristic p. Let

z, v, a, x, y, t11, t12, t21, t22 be indeterminates over k. Consider the following subring

R of the localized polynomial ring

k[
√

z, v, a, x, y, t11, t12, t21, t22]z(t11t22−t12t21)2:

R = k[z, z−1, v, a, vx, vy, ax, ay, x2, y2, (1− a)x
√

z, (1− a)y
√

z ,

tijx, tijy, t2ij, atij,
1

(t11t22−t12t21)2
, (1− a)tij

√
z ]

where 1 ≤ i, j ≤ 2. Take the R-module M to be M = R/(vx, vy). Then we have

ppdR(M ⊕M) < ∞ but M does not have a finite phantom projective resolution.
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This question is still open in the local case: I conjecture that it is false there as well.

Another corollary is related to the question of finding a homological character-

ization of the phantom projective dimension. There are classical homological cri-

terions for determining the finite projective dimension and the depth for a finitely

generated module M over a Noetherian ring R. The projective dimension of M

is finite if and only if the modules Exti
R(M, N) vanish for all R-modules N for

some i ≥ 1 (or in the local case this can be checked by verifying the vanishing of

Tori(M,k), where k is the residue class field of R), whereas the depth is determined

as depthIM = inf{j : Extj
R(R/I, M) 6= 0}. So it is natural to try to find similar

homological characterizations of finite phantom projective dimension and phantom

depth. In [1], the following result was proved:

Theorem 1.5. Let R be a Noetherian ring of positive prime characteristic p. Let

P• be any projective resolution of M . If M has finite phantom projective dimension

then F e(P•) has phantom homology at the first spot for all e ≥ 0.

It was conjectured that the converse is also true, which would have given a nice

homological characterization of finite phantom projective dimension. However, the

counterexample above shows that this is not the case, since the phantomness of the

homology can be checked locally.

1.2 Results related to Test Elements for Tight Closure

Another part of the dissertation concerns the existence of test elements. In the

definition of the tight closure given in the introduction it is possible that the element

c of R, that was used to establish that x is in the tight closure of N in M , can depend
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on the choice of N , M and x. It turns out that for large class of rings there exist

elements c in R that can be used for all tight closure tests. For such an element c

cuq /∈ N [q] for even one value of q shows that u /∈ N∗
M . Such elements are known to

exist in many cases: e.g., when R is excellent local (for some versions, see section 6 in

[14]), when R is F -finite (i.e., when R considered as an R-algebra via the Frobenius

endomorphism is a finite R-module), as well as in the case of algebras essentially of

finite type over an excellent semilocal ring (see Theorem 6.20 in [16]) and for the case

of excellent domains of dimension at most 2 (see Theorem 1.3 in [2]). In the cases

above the test elements for the tight closure were arising as powers of non-zerodivisor

elements of the defining ideal of the singular locus of R. It is still an open question

whether test elements exist for excellent rings of finite Krull dimension ≥ 3 without

any extra hypotheses.

In [2] (Theorem 1.2) it is shown that (under mild conditions on the domain R) the

test elements for the tight closure can be obtained as powers of the test elements for

the Frobenius closure. Recall that for the ideal I of the ring R of prime characteristic

p its Frobenius closure consists of all x such that xq ∈ I [q] for some q. Therefore

one possible approach suggested in [2] is to show that every nonzero element of the

defining ideal of the singular locus of an excellent domain has power that is test

element for Frobenius closure (see the last paragraph in section 2.5 for the relevant

definitions). Unfortunately, this seems as difficult as finding tight closure test ele-

ments outright.

The main result of Chapter V (Theorem 5.1)came out from an attempt to find

Frobenius closure test element. It says that for obtaining these elements it is enough
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to deal only with module-finite ring extensions of R within R
1
p vas opposed to dealing

with much larger ring R
1
p . In this case the condition for being a test element for

tight closure is equivalent to a splitting-type condition on such subrings of R.

Theorem 1.6. Let R be an excellent approximately Gorenstein normal domain of

prime characteristic p. Let c 6= 0 be an element from the defining ideal of the singular

locus of R (so that Rc is regular). Consider the following properties of the element

c:

(i) For any subring S of R1/p such that S is module-finite over R, there exists an

R-module map θ : S → R such that θ(1) = c.

(ii) c is a test element for tight closure.

(iii) For any ideal I ⊆ R and for any subring S of R1/p such that S is module-finite

over R we have cIS ∩R ⊆ I.

We have the following implications:

(A) c satisfies (i) =⇒ c3 satisfies (ii)

(B) c satisfies (ii) =⇒ c satisfies (iii)

(C) c satisfies (iii) =⇒ c satisfies (i)

The heart of the proof is the following result which is interesting in its own right

(see Chapter V, Theorem 5.2):

Theorem 1.7. Let R be a reduced excellent approximately Gorenstein ring, S be a

ring containing R as a subring which is finitely generated as an R-module and c ∈ R

be a nonzerodivisor on S. Then the following are equivalent:
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(i) There exists an R-module map θ : S → R such that θ(1) = c.

(ii) For every ideal I ⊆ R we have c(IS ∩R) ⊆ I.

(iii) For every ideal I ⊆ R primary to a maximal ideal of R we have c(IS ∩R) ⊆ I.

This result suggests that for constructing test elements in the excellent case it

might be enough to work towards proving ”milder” versions of F -finiteness that ap-

pear in part (i) of the Theorem 1.6.



CHAPTER II

Technical Background and Notation

2.1 Basic Conventions

In this chapter we will establish some notation to be used throughout this work, as

well as outline the basic standard facts from tight closure theory and other theories

needed for reading this thesis. Throughout, all rings are assumed to be commutative

and with multiplicative identity 1, and all modules are assumed to be unitary. All

rings are also assumed to be Noetherian.

By a local ring (R, m) (or (R, m, k) we mean a Noetherian ring whose unique

maximal ideal is m that has residue class field R/m = k. If (R, m) is local we denote

the m-adic completion of R by R̂. For an arbitrary ring R we will denote by Rred

the homomorphic image of R by its nilradical.

Additionally, we will assume that all rings under consideration have positive prime

characteristic p. Recall that the ring R is said to have (finite) characteristic p if p

is the smallest positive integer such that p · 1 = 0 where p · 1 = (1 + 1 + . . . + 1) (p

times). If no such integer p exists, then characteristic of the ring is defined to be 0.

For an integral domain R the characteristic is clearly either 0 or a prime number p.

13
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While many “natural” rings such as the ring of polynomials over the real or complex

numbers have characteristic 0, there are many powerful techniques that enable one

to prove theorems about rings containing a field of characteristic 0 by first proving

the corresponding theorem about rings of prime characteristic p > 0.

We shall use the notation for powers of the characteristic that by now has become

quite standard in tight closure theory when dealing with rings of positive charac-

teristic. Specifically, whenever R has positive prime characteristic, we will always

denote this characteristic by p, e will always denote varying natural number and we

will denote powers of characteristic by q = pe for e ∈ N. Thus, the statement “for

all q À 0” will always mean “for all q = pe À 0”.

If R is a domain then by adjoining p-th roots of all elements of R (say in algebraic

closure of the fraction field of R) we obtain a ring which we denote by R1/p that

contains R as a subring and is naturally isomorphic to R. This definition extends

easily to the reduced case as well. By adjoining all pe-th roots of all elements of R

we can similarly define the ring R1/pe
for all e ≥ 1.

For any ring R and any ideal I of it we denote by I [q] the ideal of R generated

by q-th powers of all elements of I. In general this “bracket” power is much smaller

than the usual power Iq. The Frobenius closure of I, denoted by IF , consists of all

elements x ∈ R such that xq ∈ I [q] for at least one q (note that once it holds for some

fixed q it will hold also for all larger values of q as well). It is clear that we have

IF =
⋃

e(IR1/pe ∩ R). IR1/p ∩ R is a part of the Frobenius closure IF ; following [2]

we will call it the p-th root closure of I. Note that p-th root closure is not an honest
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closure operation in a sense that it is not idempotent: iterating it usually produces

larger and larger ideals.

The Krull dimension (or just the dimension of the ring R, dim(R), is defined to

be the supremum of the lengths of strictly increasing chains of prime ideals of the

ring: here the chain P0 ⊂ P1 . . . ⊂ Pn has length n. It is possible for the Noetherian

ring to have infinite dimension (see Example 1 of Appendix 1 in [24]). A local ring

always has a finite Krull dimension.

We shall say that the local ring (R, m) is equidimensional if for every minimal

prime P of R we have dim(R/P ) = dim(R). A Noetherian ring is called locally

equidimensional if its localization at every maximal ideal is equidimensional.

For a local ring (R, m) of dimension d elements x1, . . . , xd are called a system of

parameters for R if R/(x1, . . . , xd) has dimension 0. Every local ring has a system

of parameters.

We say that elements x1, . . . , xn in a Noetherian (not necessarily local) ring R are

parameters if for every prime ideal P of R containing them ther images in RP are

part of system of parameters for RP .

We recall that an element x of a ring R is called integral over ideal I of R if it

satisfies an equation of the form

xk + i1x
k−1 + . . . + ik = 0

where ij ∈ Ij for all 1 ≤ j ≤ k. The set of elements integral over I is an ideal in R
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denoted by I and called integral closure of I.

2.2 Regular, Cohen-Macaulay, Gorenstein and Approximately Goren-
stein Rings

We shall say that the local ring (R, m, k) of Krull dimension d is regular if

dimk(m/m2) = n. A Noetherian ring is regular if its localization at every maxi-

mal ideal is regular. Examples include polynomial and power series rings in finitely

many variables and their localizations.

We shall say that the local ring (R, m, k) of dimension d is Cohen-Macaulay if

some (equivalently, every) system of parameters x1, . . . , xd is a regular sequence on

R, i.e. x1 is a nonzerodivisor on R and each xi is a nonzerodivisor on R/(x1, . . . , xi−1)

for all 2 ≤ i ≤ d. A Noetherian ring is Cohen-Macaulay if its localization at every

maximal ideal is Cohen-Macaulay.

We shall say that the local ring (R, m, k) of dimension d is Gorenstein if it is

Cohen-Macaulay and for some (equivalently, every) system of parameters x1, . . . , xd

we have dimk(AnnR/(x1,...,xd)(m)) = 1. A Noetherian ring is Gorenstein if its local-

izations at all maximal ideals are Gorenstein.

Properties of being regular, Cohen-Macaulay, Gorenstein pass to all localizations.

We have the following implications: regular =⇒ Gorenstein =⇒ Cohen-Macaulay.

All these implications are non-reversible.

A local ring (R, m) is called approximately Gorenstein if every power of m con-
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tains an irreducible m-primary ideal. E.g. every complete Noetherian reduced ring

is approximately Gorenstein (see Theorem 5.2 in [12]), so this class of rings is also

not too restrictive.

2.3 Excellent Rings

We will sometimes impose the condition of excellence for the rings under consid-

eration. An excellent ring is a Noetherian commutative ring with many of the good

properties shared by finitely generated algebras over a field or over integers Z and by

complete local rings. This class of rings was defined by Grothendieck and excellence

of a ring is closely related to the resolution of singularities of the associated scheme

(see, for instance, Chapter 13 in [22] for details). The formal definition is quite

technical (we will present it below). Most Noetherian rings that occur in algebraic

geometry or number theory are excellent, so it is also not too restrictive a condition.

A ring R containing a field k is called geometrically regular over k if for any finite

extension K of k the ring R⊗k K is regular.

A homomorphism of rings from R to S is called regular if it is flat and for every

prime P of R the fiber S⊗R RP /(PRP ) is geometrically regular over the residue field

RP /(PRP ) of RP .

A ring R is called a G-ring (or Grothendieck ring) if it is Noetherian and for any

prime P of R the map from the local ring RP to its completion is regular in the sense

above.
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A ring R is catenary, or has the saturated chain condition if for any pair of prime

ideals P , Q of R, the maximal strictly increasing chains of primes from P to Q all

have the same length. A ring is called universally catenary if all finitely generated

algebras over it are catenary.

A ring R is called excellent if it is a universally catenary G-ring and for every

finitely generated R-algebra S, the singular points of Spec(S) form a closed subset.

As mentioned above, most naturally occurring commutative rings in number the-

ory or algebraic geometry are excellent. Examples of excellent rings include complete

local rings (in particular all fields), Dedekind domains of characteristic 0 (in particu-

lar the ring Z of integers is excellent). Any localization of an excellent ring is excellent

and any finitely generated algebra over an excellent ring is excellent. Hence, all local-

izations of finitely generated algebras over a complete local ring or over a Dedekind

domain of characteristic 0 are excellent.

2.4 Matlis Duality

If (R, m, k) is a local ring we will let ER(k) denote the injective hull of the residue

class field. The functor HomR(−, ER(k)) is exact since the module ER(k) is injec-

tive. The following result, known as Matlis Duality, will be used in the last chapter

of the thesis:

Theorem 2.1. Let (R, m, k) be a complete local ring, let M be an Artinian R-module
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and let W be a finitely generated R-module. Let ER(k) denote the injective hull of

the residue class field k and let (−)∨ denote the functor HomR(−, ER(k)).

(a) R∨ = ER(k) while ER(k)∨ = R.

(b) W∨ is Artinian while M∨ is finitely generated.

(c) There are natural isomorphisms (W∨)∨ ∼= W and (M∨)∨ ∼= M .

(d) The functor (−)∨ establishes an anti-equivalence between categories of modules

with ascending chain condition and modules with descending chain condition.

For the proof and necessary background see, for instance, 3.2.13 in [6].

2.5 Tight Closure and Test Elements

Tight closure was introduced in series of papers by Hochster and Huneke (see e.g.

[14], [20] and references therein) and since then was developed by a very large num-

ber of people in numerous papers. We shall now briefly review some basic facts from

the tight closure theory, especially those related to test elements. Although a big

part of the theory also works for rings containing the rationals, we will be interested

only in finite characteristic case here.

Tight closure in its simplest form is a closure operation for ideals of of a ring con-

taining a field, but it easily extends to submodules of a module. The word “tight”

refers to the fact that for ideals the tight closure is contained inside the integral

closure but is often much smaller.

Specifically, let R be a Noetherian ring of positive prime characteristic p, let M

be an R-module and let N be an R-submodule of M . For every integer e ≥ 0 the eth

power of Frobenius endomorphism maps R to itself by x 7→ xq where q = pe. Let Se
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denote R considered as an R-algebra via the eth power of Frobenius. The Peskine-

Szpiro functor, F e is Se⊗R, a covariant functor from R-modules to Se-modules. Since

Se = R this is actually a functor from R-modules to R-modules. For any R-module

M we have a(b⊗m) = (ab)⊗m and b⊗ am = (baq)⊗m in F e(M). It is easy to see

that explicitly the action of F e on a finite presentation of an R-module is as follows:

if M = coker(aij)t×s then F e(M) = coker(aq
ij)t×s.

We will denote by R◦ the complement of the union of all minimal prime ideals of R.

We say that x ∈ M is in the tight closure of N , if there exists c ∈ R◦ such that

in F e(M) we have cxq ∈ im(F e(N) → F e(M)) for all q À 0. Here xq stands for the

image of x under the natural map M → F e(M) that takes m 7→ 1⊗m.

We say that N is tightly closed in M if N∗
M = N . We say that the ring R is

weakly F -regular if every ideal of R is tightly closed. We say that R is F -regular

if RP is weakly F -regular for all prime ideals P of R. Quite recently Brenner and

Monsky have shown that tight closure does not commute with localization; but it

is still not known whether the notions of F -regularity and weak F -regularity coincide.

The tight closure of the R-submodule N of the module M is denoted by N∗
M or

just by N∗ when it is clear what M is; note that the tight closure does depend on

which ambient module we are taking it in. It is customary to denote by N
[q]
M the

submodule of F e(M) generated by the image of F e(N), i.e. im(F e(N) → F e(M)).

Clearly, N
[q]
M is the R-submodule of F e(M) generated by all {xq : x ∈ N}. In the

special case M = R and N = I an ideal of R it agrees with the usual “bracket”
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power: F e(R) = R and Iq
R is the ideal of R generated by all {iq : i ∈ I}.

The following proposition summarizes some of the basic properties of the tight

closure:

Proposition 2.2. Let R be a Noetherian ring of finite prime characteristic p, let M

be an R-modules and let I be an ideal of R.

(a) For any R submodule N of M , N∗
M is an R-submodule of M that contains N .

For finitely generated M we have (N∗
M)∗M = N . If N1 ⊆ N2 are R-submodules

of M then (N1)
∗
M ⊆ (N2)

∗
M .

(b) If R is regular, then all ideals of R are tightly closed, i.e. R is F -regular.

(c) Let R be a weakly F -regular ring. Then every submodule N of a finitely generated

module M is tightly closed in M .

(d) If R ↪→ S is an integral extension, then (IS)∗ ∩R ⊆ I∗.

(e) Let R is local ring of dimension d which is a homomorphic image of a Cohen-

Macaulay ring and let x1, . . . , xd be parameters in R. Then (x1, . . . , xi) : xi+1 ⊆

(x1, . . . , xi)
∗ (“Colon Capturing”).

(f) If l is the minimal number of generators of ideal I of positive height then we

have I l ⊆ I∗ ⊆ I.

(g) Let φ : R → S be a homomorphism of Noetherian rings of characteristic p

and let I be an ideal of R. Assume that R is essentially of finite type over an

excellent local ring. Then φ(I∗) ⊆ (IS)∗(“Persistence of Tight Closure”).

Proof. For (a)-(c) see Proposition 8.5, Theorem 4.6, Proposition 8.7 in [14]. For

(d), (e) see Theorems 1.7 and 3.1 in [20]. For (f) see Theorems 5.2 and 5.4 in [14].
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For (g) see Theorem 2.3 in [20].

In the definition of tight closure the element c can depend on x,N, M . It turns

out that in many instances this element can be chosen so that it works for all tight

closure tests. The existence of test elements in interesting in its own right but also

makes it possible to prove many results that do not seem very related to tight clo-

sure. For example, existence of test elements enables one to prove a uniform version

of Artin-Rees property for large class of rings (see, for instance, [20] and [2]).

We say that an element c ∈ R◦ is a test element for the reduced ring R if for

any finitely generated R-modules N ⊆ M we have x ∈ N∗
M if and only if cxq ∈ N

[q]
M

for all q. We say that c is locally (respectively, completely) stable test element if its

image in (respectively, in the completion of) in RP is a weak test element for RP for

every prime ideal P of R.

In [16] the following fundamental result was proved:

Theorem 2.3. (a) Let (R, m, k) be a reduced local ring of characteristic p such that

R → R̂ has regular fibers and let c ∈ R◦ be any element such that Rc is regular.

Then c has a power that is a completely stable test element for R.

In particular, if R is a reduced excellent local ring, such elements c always exist,

so R has a completely stable test element.

(b)Let R be a reduced algebra essentially of finite type over a local ring B such

that B → B̂ has smooth fibers (e.g., in case when B is excellent). Let c ∈ R◦ be an

element such that Rc is regular. Then c has a power that is a completely stable test

element for R.
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The proof is quite technical and is done essentially by reduction to F -finite case,

for which existence of test elements is relatively easier to prove (F -finite means that

R is a finitely generated R-module under the Frobenius map). It is quite natural to

expect that test elements should exist for all sufficiently good rings. For excellent

rings of finite Krull dimension less or equal than 2 the existence of completely stable

test elements was proved in [2]. It is still an open question whether or not all excel-

lent rings of dimension ≥ 3 have a test element.

It is clear that if c is a test element then for every ideal I of R we have cI∗ ⊆ I.

By analogy, we we will call an element c ∈ R◦ a test element for the Frobenius closure

(respectively, a test element for p-th root closure) if for every ideal I of R we have

c(IF ) ⊆ I (respectively, c(IR1/p ∩R) ⊆ I).

2.6 Phantom Homology and Phantom Projective Resolutions

In this section we will outline the basic definitions and results relevant to phan-

tom homology. The notion of phantom homology was introduced by Hochster and

Huneke in [14] and further developed in a number of papers (see, for instance, [1],

[3], [15], [20], [9], [10]).

Let

P• : . . . → Pn → Pn−1 → . . . → P1 → P0 → 0

be a complex of finitely generated projective R-modules, where R is a Noetherian

ring of positive prime characteristic p.
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We shall say that P• has a phantom homology at ith spot if the cycles at that

spot lie inside the tight closure of the boundaries within the ambient module Pi:

Zi ⊆ (Bi)
∗
Pi

. If P• has a phantom homology at ith spot for all i ≥ 1 then we say that

P• is phantom acyclic. If not only P•, but also all of its Frobenius iterates F e(P•) are

phantom acyclic for all e ≥ 0 then P• is called stably phantom acyclic. In this last

case P• is called a phantom resolution of the augmentation module H0(P•) = M .

The length of the shortest stably phantom projective resolution of M is called the

phantom projective dimension of M over R and is denoted by ppdR(M).

If M is a module of finite projective dimension, then under mild conditions on

the ring R (e.g., it is enough to assume that R is excellent, equidimensional and re-

duced) any of its resolutions tensored with a module-finite extension S of R produces

a phantom resolution of S ⊗R M over S.

Roughly speaking, the phantom resolutions are “almost acyclic”: at each spot

the module of cycles lies between the module of boundaries and its tight closure. In

other words, the modules of cycles and boundaries are the same “up to tight clo-

sure”. The word “phantom” refers to the fact that the original homology vanishes

after tensoring with weakly F -regular ring.

One of the beautiful results in this area that we will employ a great deal is the

following criterion for the phantomness of a finite free resolution over a Noetherian

ring of characteristic p (with mild conditions on the ring) which is analogous to the

Buchsbaum-Eisenbud criterion (see [7]) that deals with “honest” acyclicity. In its

simplest form the criterion says the following (see [14], [15], [3] for proof and gener-
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alizations):

Theorem 2.4. (Phantom Acyclicity Criterion)

Let R be a reduced Noetherian ring of characteristic p. Suppose that R is a

homomorphic image of a Cohen-Macaulay ring and is locally equidimensional. Let

G• : 0 → Gn
dn→ . . .

d1→ G0 → 0

be a complex of finitely generated free R-modules. Denote bi := rank(Gi) for 1 ≤ i ≤

n. Suppose that bi = rank(di)+rank(di+1) for 1 ≤ i ≤ n and suppose that the height

of the ideal Ii = Irank(di
is at least i for 1 ≤ i ≤ n. Then G• is stably phantom acyclic.

Conversely, if G• is stably phantom acyclic then the above-mentioned conditions on

rank and height hold.



CHAPTER III

Finite Phantom Projective Dimension Locally Does Not
Imply Finite Phantom Projective Dimension Globally

3.1 Statement of Conjecture, Counterexample and Sketch of Proof

We are going to construct a counterexample to the following conjecture posed in

[1]:

Conjecture. Let R be a Noetherian ring of prime characteristic p and let M be a

finitely generated R-module. Then ppdRM < ∞ iff ppdRmMm < ∞ for all maximal

ideals m of R.

The preservation of the phantom homology by flat base change (see (2.1.3.) in

[1]) makes the “only if” part trivially true. We will construct a counterexample to

the “if” part.

Fix an arbitrary field k of positive prime characteristic p. Let z, v, a, x, y be

indeterminates over k. Consider the following ring:

R = k[z, z−1, v, a, vx, vy, ax, ay, x2, y2, (1− a)x
√

z, (1− a)y
√

z ]

which is a subring of the localized polynomial ring k[
√

z, v, a, x, y]z. Take the R-

module M to be M = R/(vx, vy). We denote b := 1− a.

26
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Note that the normalization of R, i.e., the integral closure of R inside its field of

fractions frac(R) = k(
√

z, x, y, a, v), is S = R[
√

z ] = k[
√

z,
√

z −1, a, v, x, y]. Indeed,

the square of the element

√
z =

((1− a)x
√

z)v

(1− a)(vx)

of frac(R) is in R and R[
√

z ] contains the elements
√

z −1 = z−1 · √z , and

x = (ax) +
√

z −1((1− a)x
√

z)), y = (ay) +
√

z −1((1− a)y
√

z))

Therefore S = R[
√

z ] = k[
√

z, 1√
z
, a, v, x, y] is a subring of frac(R) that is integral

over R and is integrally closed (since it is the localization of the polynomial ring

k[
√

z, a, v, x, y] at the element
√

z ), so it is indeed the integral closure of R inside

frac(R).

First, let us verify that in fact ppdRmMm < ∞ for every maximal ideal m of R.

We have a phantom resolution of Ma over Ra

(∗) 0 → Ra




y

−x




−→ R2
a

[
vx vy

]

−→ Ra → 0

and a phantom resolution of Mb over Rb

(∗∗) 0 → Rb




y
√

z

−x
√

z




−→ R2
b

[
vx vy

]

−→ Rb → 0

(note that y = 1
a
· (ay) and x = 1

a
· (ax) are in Ra and y

√
z = 1

1−a
· ((1− a)y

√
z) and

x
√

z = 1
1−a

·((1−a)x
√

z ) are in Rb). Each of (∗) and (∗∗) is a phantom resolution by

the Phantom Acyclicity Criterion (see e.g., (3.21) of [15]): the ranks of all the rele-

vant matrices are 1 and they add up correctly, ht(vx, vy) ≥ 1 in both domains Ra and
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Rb, htRa(x, y) = 2 via the chain of primes (0) ⊂ (x) ⊂ (x, y) in Ra, and for any prime

p ⊇ (x
√

z, y
√

z) of Rb and any prime q of Sb lying over it we have ht(p) ≥ ht(q) ≥ 2

(in S the same chain of primes works for q : q ⊇ (x, y) ⊃ (x) ⊃ (0)). Thus each of (∗)

and (∗∗) is a phantom resolution of the corresponding augmentation module. Any

maximal ideal m of R necessarily misses at least one of the elements a and b = 1−a.

So localizing the corresponding resolution (∗) or (∗∗) at m we obtain phantom reso-

lution of Mm over Rm (again by (2.1.3.) in [1]). Thus we have ppdRmMm = 2 for all

maximal ideals m of R.

It remains to show that M does not have a finite phantom projective dimension

over R. The proof is rather long and takes the rest of this chapter. Briefly, it goes as

follows: assume that there is a phantom resolution P• of M over R. First, by using

various tricks we reduce to the case when the resolution has a specific form

(†) 0 → P → R2 (vx,vy)−→ R → 0

Then we translate the question of existence of P that makes (†) a phantom resolution

into the question of the existence of a very special projective ideal of R (this among

other things requires determining the module of relations on vx, vy over R). Finally,

we explicitly find all possible choices for P after localizing at a and b = 1 − a (by

computing certain Picard groups) and show that these possible choices for Pa and

Pb cannot patch together properly to give the projective module P required in the

resolution (†).

3.2 Reduction to a Simpler Phantom Resolution

Now assume ppdRM < ∞ and let
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P• : 0 → Pn → Pn−1 → . . . → P1 → P0 → 0

be a phantom projective resolution of M .

3.2.1 Reduction to resolutions of the form 0 → P
g−→ Rn f−→ Rm ⊕R → 0

First, we will make the resolution as short as possible with all but one of the

modules in the resolution free.

Lemma 3.1. Let R be a Noetherian ring of positive prime characteristic p and let

M be an R-module such that for some fixed positive integer n we have ppdRmMm ≤ n

for every maximal ideal m of R. If ppdRM < ∞ then M has a phantom projective

resolution of length ≤ n.

Proof. Fix any finite phantom resolution P• of M . For every maximal ideal m

of R (P•)m is a phantom resolution of Mm over Rm (by (2.1.3) in [1]). ppdRmMm ≤ n

implies that (P•)m splits from nth spot on (by (2.1.5) and (3.1.1.) in [1]). A map of

finitely generated R-modules that splits locally splits globally (see Lemma 1 in [11]

and the remark after its proof) so P• is a direct sum of a split exact complex and a

phantom resolution of length ≤ n. 2

Lemma 3.2. Let R be a Noetherian ring of positive prime characteristic p and let

P• be a phantom projective resolution of M of length n. Then M has a phantom

projective resolution of the same length in which every module except for the leftmost

one is free.



30

Proof. Let P• be a phantom resolution of M :

P• : 0 → Pn → Pn−1 → . . . → P1 → P0 → 0

where all Pi are finitely generated projective modules. Choose a finitely generated

projective module Q0 such that P0 ⊕ Q0 is free of finite rank, and then for each

i = 1, . . . , n − 1 choose a finitely generated projective module Qi such that Pi ⊕

Qi−1⊕Qi is free of finite rank. Taking direct sum with trivial complexes of the form

0 → Qi
id→ Qi → 0 does not affect any of the homology modules. The resulting

complex

0 → Pn → . . . → P3 → P2 → P1 → P0 → 0

⊕ ⊕

0 → Q0
id→ Q0 → 0

⊕ ⊕

0 → Q1
id→ Q1 → 0

⊕ ⊕

0 → Q2
id→ Q2 → 0

. . .

is still a phantom resolution of M of length n where every module except for the

leftmost one is free. 2

We can say more about the last map in this phantom resolution for a cyclic mod-

ule M .

Lemma 3.3. Let R be a Noetherian ring of positive prime characteristic p and let

I be an ideal of R such that ppdRR/I = d ≥ 2. Then R/I has a phantom projective
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resolution of length d

0 → P → Rn → . . .
f−→ Rm ⊕R → 0

where all modules except possibly the leftmost one are free and the image of the

rightmost map is im(f) = Rm ⊕ I.

Proof. By Lemma 3.2 we can assume that the augmented phantom resolution of

R/I has the form

0 → P → . . . → Rn f→ Rm g→ R/I → 0

Take the direct sum of this complex with the trivial complex 0 → R
idR→ R → 0.

As a result, we get a complex of the form

0 → P → . . . → Rn ⊕R
f⊕idR−→ Rm ⊕R

g⊕0R−→ R/I → 0

It is clear that the homology at spots i > 0 is unaffected and the augmen-

tation module is still R/I, so we again have a phantom resolution of R/I. Let

e1, . . . , em, em+1 be the standard basis in Rm⊕R. The generators e1, ...em map to ele-

ments t̄1, . . . , t̄m of R/I such that there is an R-linear combination r1t̄1+...+rmt̄m = 1

in R/I, whereas em+1 maps to 0 in R/I. Let ti be a lift of the element t̄i to R for

i = 1, . . . ,m.

It is clear that the element bm+1 = em+1 +
∑m

i=1 riei maps to 1̄ in R/I, and so the

elements bi = ei − tibm+1 for i = 1, . . . ,m map to 0̄. Change the basis in Rm ⊕R to

b1, . . . , bm, bm+1. In this new basis, the last map in the augmented phantom resolu-

tion has a kernel Rm ⊕ I. 2

In the previous section we have shown that ppdRmMm = 2 for every maximal ideal

m of R. By Lemma 3.1 and Lemma 3.3 we can assume that the phantom resolution
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of that specific cyclic module M has the form

0 → P
g−→ Rn f−→ Rm ⊕R → 0

with im(f) = Rm ⊕ (vx, vy).

3.2.2 Reduction to resolutions of the form 0 → P
g−→ Rn f−→ R → 0

Now we will need the following lemma:

Lemma 3.4. Let R be Noetherian ring of prime characteristic p and let M be a

finitely generated R-module with ppdRM < ∞. Assume that we have fixed a stably

phantom acyclic projective resolution of M :

P• : 0 → Pn
dn→ . . .

d2→ P1
d1→ P0 → 0

and a surjection θ : G → Im(dk), where 1 ≤ k ≤ n − 1 and G is a projective R-

module. The projectivity of G implies that θ will lift to a map θ̃ : G → Pk. We can

modify P• by changing the modules at k-th and k + 1-th spots as following:

(P•)θ,θ̃ : 0 → Pn
dn→ . . .

dk+2→ G⊕ Pk+1
f→ G⊕ Pk

g→ Pk−1
dk−1→ . . .

d2→ P1
d1→ P0 → 0

where f |Pk+1
= dk+1, f |G : m 7→ m ⊕ (−θ̃(m)) and g|Pk

= dk, g|G = θ. Then the

complex (P•)θ,θ̃ is also a stably phantom acyclic resolution of M .

Proof. The fact that (P•)θ,θ̃ is still a complex is immediate from the defini-

tions of the maps f and g. Denote by G′ the image of G under f . f |G is clearly

injective so G′ ∼= G. Note that G′ ∩ Pk = 0: m ⊕ (−θ̃(m)) ∈ Pk implies that

m ∈ Pk ∩ G = 0. Also every element in G ⊆ G ⊕ Pk can be rewritten as follows:

m⊕ 0Pk
= (m⊕ (−θ̃(m))) + (0G ⊕ θ̃(m)) ∈ G′ + Pk. Therefore G⊕ Pk = G′ ⊕ Pk.
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Denote Bi = im(di+1), Zi = ker(di). Using the identification G ⊕ Pk = G′ ⊕ Pk

we see that in (P•)θ,θ̃ the boundaries at the kth spot are imf = f(G) + f(Pk+1) =

G′+Bk = G′⊕Bk (the last internal sum is direct because Bk ⊆ Pk and G′∩Pk = 0)

and the cycles are G′ ⊕ Zk; therefore we have phantom homology at that spot:

(G′⊕Bk)
∗
G′⊕Pk

⊇ G′⊕Zk since, by the phantom acyclicity of P•, we have Zk ⊆ (Bk)
∗
Pk

.

θ is an onto mapping, so the image at (k − 1)th spot is also unaffected. Thus at all

spots of (P•)θ,θ̃ we have phantom acyclicity.

It remains to show only that (P•)θ,θ̃ is stably phantom acyclic. Applying F e to

P• gives a stably phantom acyclic resolution of F e(M). Note that F e(θ) is still a

surjection of F e(G) onto F e(im(dk)), F e(θ̃) still lifts F e(θ) to F e(Pk) and we have

F e(P•)F e(θ),F e(θ̃) = F e((P•)θ,θ̃). Therefore the same argument as above applied to

F e(P•)F e(θ),F e(θ̃) shows that the resolution F e((P•)θ,θ̃) is still phantom acyclic. 2

Take θ : Rm ⊕ R2 → Rm ⊕ (vx, vy)R = im(f) to be the map that is the identity

on Rm and maps the standard basis elements of R2 to vx, vy. By Lemma 3.4 we get

a phantom resolution of M of the form

0 → Rm ⊕R2 ⊕ P
g̃→ Rm ⊕R2 ⊕Rn f̃→ Rm ⊕R → 0

with f̃ |Rm⊕R2 = f . Let e1, . . . , em, em+1, em+2, u1, . . . , un be the standard basis of

Rm ⊕ R2 ⊕ Rn and let f̃(ui) = ai ⊕ ri where ai ∈ Rm and ri ∈ (vx, vy)R. Replace

the standard basis by e1, . . . , em, em+1, em+2, (−a1)⊕ 0R2 ⊕ u1, . . . , (−an)⊕ 0R2 ⊕ un.

Since f̃(ei) = ei⊕ 0R for i = 1, . . . , m and f̃((−ai)⊕ 0R2 ⊕ui) ∈ 0Rm ⊕ 0R2 ⊕ (vx, vy)
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the resolution in this new basis looks like

Rm idRm−→ Rm

⊕ ⊕

0 → Rm ⊕R2 ⊕ P
g̃→ R2 ⊕Rn α−→ R → 0

It is clear that im(α) = (vx, vy). Note that im(g̃) ⊆ ker(f̃) = ker(α) ⊆ R2 ⊕ Rn

so Rm⊕R2⊕P maps into R2⊕Rn under g̃ and therefore we can remove the trivial

complex Rm id→ Rm and we will still have a phantom resolution.

So without loss of generality the phantom resolution of M has the form

0 → P1
g−→ Rn1

f−→ R → 0

where im(f) = (vx, vy). Here n1 = n + 2 and P1 = Rm ⊕R2 ⊕ P .

3.2.3 Reduction to resolutions of the form 0 → P
g−→ R2 (vx,vy)−→ R → 0

Let θ : R2 = Re1 ⊕ Re2 → R be the R-module map taking e1, e2 respectively to

vx, vy. Again, applying Lemma 3.4 we get a phantom resolution of M of the form

0 → R2 ⊕ P
g̃→ R2 ⊕Rn f̃→ R → 0

with f̃ |Rn = f . By changing the standard basis e1, e2, u1, . . . , un of R2 ⊕ Rn to

e1, e2, u1−a1e1−b1e2, . . . , un−ane1−bne2 where f(ui) = ai(vx)+bi(vy) for i = 1, . . . , n

with ai, bi ∈ R, we can assume that ker(f̃) = W ⊕Rn where W = syz1(vx, vy) ⊆ R2

is the module of relations on vx, vy over R. The phantomness of the resolution means

that im(g̃) ⊆ W ⊕ Rn ⊆ (Im(g̃))∗R2⊕Rn . Now we want to see that in this case im(g̃)

has a very specific form. We will need the following lemma:

Lemma 3.5. Let R be a Noetherian ring of prime characteristic p and let W ⊆ Rh,

V ⊆ Rn ⊕Rh be submodules such that V ⊆ Rn ⊕W ⊆ V ∗
Rn⊕Rh. Then there is a split
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exact sequence

0 → V ∩Rh → V → Rn → 0

and (V ∩Rh)∗
Rh ⊇ W . Also, if V is projective, then so is V ∩Rh.

In order to prove the Lemma 3.5 we shall need to use the following

Lemma 3.6. Let R be Noetherian ring of prime characteristic p and let N ⊆ M be

R-modules such that N∗
M = M . Then N = M .

Proof. It is enough to check M = N locally, since (Nm)∗Mm
⊇ (N∗

M)m = Mm.

So without loss of generality we can assume that (R, m, K) is local. The canonical

composition p : M ³ M/N ³ K ⊗R M/N ∼= K l maps N to 0. N∗
M = M implies

that 0∗ = K l (for every m ∈ M ∃c ∈ R◦ such that cxq ∈ N [q]; now mapping by

p⊗ F e we get p(m) ∈ p(N)∗ = 0∗) which is possible only if l = 0, i.e. M = N .2

Proof of Lemma 3.5. Consider the projection map π : Rn ⊕ Rh −→ Rn. For any

x ∈ Rn, x⊕0Rh ∈ Rn⊕W ⊆ V ∗
Rn⊕Rh so there exists c ∈ R◦ such that for all q = pe À 0

we have c(x⊕ 0Rh)q ∈ V
[q]

Rn⊕Rh . Taking images under π ⊗ F e we get cxq ∈ (π(V ))
[q]
Rn

for all q À 0 so that x ∈ (π(V ))∗Rn . Therefore we have (π(V ))∗Rn = Rn which implies

π(V ) = Rn by Lemma 3.6. Thus the projection map V ⊆ Rn ⊕ Rh −→ Rn is sur-

jective with kernel W0 := V ∩ ker(π) = V ∩ Rh. This gives the required short exact

sequence. Rn is projective, and so the sequence splits. In particular, V ∩Rh will be

a direct summand of V from which the very last statement of the lemma follows. It

remains only to show that (W0)
∗
Rh ⊇ W .

Since π(V ) = Rn and V ⊆ Rn ⊕ W we have that for every i = 1, . . . , n there
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exist wi ∈ W such that ei ⊕ wi ∈ V (here e1, . . . , en denotes the standard basis

for Rn). Clearly we have V =
∑

R(ei ⊕ wi) ⊕ W0. Take an arbitrary w ∈ W .

0Rn ⊕ w ∈ V ∗
Rn⊕Rh so there exists c ∈ R◦ such that for every q = pe À 0 there are

ri ∈ R and δ ∈ (W0)
[q]

Rh for which

c(0Rn ⊕ w)q =
n∑

i=1

ri(ei ⊕ wi)
q + δ

Taking the image of this equation under π ⊗ F e we get 0 =
∑n

i=1 rie
q
i , which neces-

sarily gives ri = 0. Hence the equation above is just cwq =
∑n

i=1 riw
q
i + δ ∈ (W0)

[q]

Rh

so that w ∈ (W0)
∗
Rh . 2

The Lemma 3.5 and its proof show that im(g̃) = W0 ⊕
∑n

i=1 R(ui ⊕ wi) with

wi ∈ W and W0 such that W0 ⊆ W ⊆ W ∗
0 . Replacing the basis elements ui by

ui ⊕ wi we can assume that in the resolution of M we still have ker(g̃) = W ⊕ Rn

and im(f̃) = W0 ⊕Rn with W0 ⊆ W ⊆ (W0)
∗
R2 .

We have now reduced to the case when the phantom resolution of M has the form

0 → P
f→ Rn ⊕R2 g→ R → 0

where g(Rn) = 0, g|R2 : R2 (vx,vy)−→ R, so that ker(g) = Rn⊕W , where W is the module

of relations on elements vx, vy over R, and where im(g) = Rn ⊕W0 with W0 ⊆ W .

Now add a copy of Rn to P mapping identically to a copy of Rn in Rn ⊕R2; clearly

all images and kernels are unchanged and so we still have a phantom resolution of

M :

0 → P ⊕Rn f⊕idRn−→ Rn ⊕R2 g→ R → 0

Since P is a projective R-module, we can choose an R-module Q such that P⊕Q =
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Rm is free. Now, take the direct sum with the trivial complex 0 → Q
idQ→ Q → 0

(with the first Q appearing at spot 3) to get a phantom resolution of the form:

0 → Q
id→ P ⊕Rn ⊕Q

f⊕idRn⊕0−→ Rn ⊕R2 g→ R → 0

where P ⊕Rn⊕Q = Rm⊕Rn is mapped onto Rn⊕W with Rn mapping identically

on Rn ⊕ 0R2 . Therefore, by changing the basis u1, . . . , um, e1, . . . , en in Rm ⊕ Rn we

can assume that Rm is mapped to R2, so that the resolution has the form

Rn id→ Rn

⊕ ⊕

0 → Q → Rm → R2 (vx,vy)→ R → 0

After removing the trivial complex Rn id→ Rn we still have a phantom resolution of

M . ppdRmMm = 2 for every maximal ideal m of R so the proof of Lemma 3.1 shows

that the leftmost map of this resolution splits.

Thus, we have reduced to the case when the phantom resolution of M has the

form

0 → P
g→ R2 (vx,vy)−→ R → 0

Note that g is actually injective: the phantomness of the resolution implies that

ker(g) ⊆ 0∗P . But P is projective and the tight closure of 0 in a projective module

over a domain (or even the tight closure of 0 in a bigger free module containing

the projective as a direct summand) is 0. Hence, P is a projective submodule of

N = syz1(vx, vy) ⊆ R2 such that P ∗
R2 ⊇ N . We will need to know the generators of

N specifically, so we digress here for the computation of the module of relations on

vx, vy over R.
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3.3 Computing the module of relations on vx, vy

We will compute the module of relations N ⊆ R2 on the elements vx, vy over the

ring R = k[z, z−1, a, v, ax, ay, vx, vy, x2, y2, (1−a)x
√

z, (1−a)y
√

z ]. More specifically,

we will show that N is generated as an R-module by the following 6 elements:

(−ay, ax) (−(ax)y2, (ay)x2)

(−vy, vx) (−(vx)y2, (vy)x2)

(−(1− a)y
√

z, (1− a)x
√

z) (−(1− a)x
√

z · y2, (1− a)y
√

z · x2)

The projection onto the second coordinate pr2 : R2 → R is injective when re-

stricted to N since vx is a non-zerodivisor on R.The image under pr2 of N is clearly

(vx :R vy) = {r ∈ R|∃r1 ∈ R such that rvy = r1vx}.

Recall that the normalization of R is S = R[
√

z ] = k[
√

z,
√

z −1, a, v, x, y]; S is

clearly a UFD so rvy = r1vx implies that x|r in S. Thus we have

(vx :R vy) = {r ∈ R|( r

x
)y = r1 ∈ R} ∼= {s ∈ S|xs ∈ R, ys ∈ R} =: T

where the last R-module isomorphism takes r ∈ pr2(N) to r
x
∈ S. It is clear that for

any element r in

{a, v, (1− a)
√

z, axy, vxy, (1− a)
√

zxy}

we have rx, ry ∈ R, so the R-submodule

aR + vR + (1− a)
√

zR + axyR + vxyR + (1− a)
√

zxyR

of S is contained in T . To show the other containment, note that there is a natural

N3×Z grading on S = k[a][x, y, v,
√

z ] via degrees in x, y, v,
√

z (we give a degree 0).

Since R ⊆ S is compatible with that grading, we have T ∼= AnnS/R(x) ∩ AnnS/R(y)

is also N3 × Z-graded. So it is enough to show that for the general homogeneous
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element r = xmynvl(
√

z)tf(a) of S where m,n, l ∈ N, t ∈ Z and f(a) ∈ k[a],

satisfying rx, ry ∈ R we necessarily have

r ∈ aR + vR + (1− a)
√

zR + axyR + vxyR + (1− a)
√

zxyR

This last check is rather long but quite straightforward; we need to consider 8 cases

of parity of t, m, n.

Case when t is even, m is even, n is even

We have in this case r = (x2)
m
2 (y2)

n
2 vlz

t
2 f(a).

If l > 1 then

rx = (x2)
m
2 (y2)

n
2 vl−1z

t
2 f(a)vx ∈ R,

ry = (x2)
m
2 (y2)

n
2 vl−1z

t
2 f(a)vy ∈ R

and

r = (x2)
m
2 (y2)

n
2 vl−1z

t
2 f(a) ∈ Rv.

If a|f(a) we have

rx = (x2)
m
2 (y2)

n
2 vlz

t
2 (

f(a)

a
)ax ∈ R,

ry = (x2)
m
2 (y2)

n
2 vlz

t
2 (

f(a)

a
)ay ∈ R

and

r = (x2)
m
2 (y2)

n
2 vlz

t
2 (

f(a)

a
)a ∈ Ra.
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Assume now that l = 0 and a - f(a). Then in the presentation

rx = (x2)
m
2 (y2)

n
2 vlz

t
2 f(a)x ∈ R

as a product of homogeneous elements of R none of the elements ax, ay, vx, vy can

appear; so rx can be rewritten as

rx = (x2)N1(y2)N2((1− a)x
√

z)N3((1− a)y
√

z)N4zNg(a)

where Ni ∈ N , N ∈ Z and g(a) ∈ k[a] with a - g(a). Comparing these two presen-

tations of rx we see that the power of x in rx m + 1 = 2N1 + N3 should be odd so

N3 is odd. The power of y in rx n = 2N2 + N4 is even so N4 is even. But the power

with which z appears t/2 = (N3 + N4)/2 + N should be integer for even t which is

not the case with odd N3 and even N4.

Case when t is even, m is even, n is odd

Now we have r = (x2)
m
2 (y2)

n−1
2 vlz

t
2 f(a)y. Note that in this case we always have

ry = (x2)
m
2 (y2)

n−1
2 vlz

t
2 f(a)y2 ∈ R. Assume that rx = (x2)

m
2 (y2)

n−1
2 vlz

t
2 f(a)xy ∈ R.

rx has odd power in x, so in the representation of rx as a product of homogeneous

elements of R at least one of ax, vx, (1− a)x
√

z should appear with positive degree.

Similarly, since rx has odd power in y at least one of ay, vy, (1− a)y
√

z should also

appear with positive degree. Thus the following cases arise:

If ax and ay appear, then a2|f(a) and we have that

r = ((x2)
m
2 (y2)

n−1
2 vlz

t
2 (

f(a)

a2
)ay)a ∈ Ra

If ax and vy appear or, if vx and ay appear, then we have a|f(a) and l ≥ 1 so
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that

r = ((x2)
m
2 (y2)

n−1
2 vl−1z

t
2 (

f(a)

a
)vy)a ∈ Ra

If vx and vy appear, then l ≥ 2 and we have

r = ((x2)
m
2 (y2)

n−1
2 vl−2z

t
2 f(a)vy)v ∈ Rv

If none of ax, vx, ay, vy appear then rx ∈ R can be rewritten as

rx = (x2)N1(y2)N2((1− a)x
√

z)N3((1− a)y
√

z)N4zNg(a)

where Ni ∈ N, N ∈ Z and g(a) ∈ k[a] with a - g(a); the considerations above show

that in this remaining case N3 ≥ 1 and N4 ≥ 1 so N3 + N4 ≥ 2. In particular

(1− a)2|f(a) so that

r = (x2)
m
2 (y2)

n−1
2 vlz

t
2 (

f(a)

(1− a)2
)
1

z
((1− a)y

√
z)((1− a)

√
z) ∈ R(1− a)

√
z

Case when t is even, m is odd, n is even

This case is done exactly as the previous one with roles of x and y interchanged.

Case when t is even, m is odd, n is odd

We have in this case r = (x2)
m−1

2 (y2)
n−1

2 vlz
t
2 f(a)xy. Assume that rx, ry ∈ R. If

a|f(a) we have

r = ((x2)
m−1

2 (y2)
n−1

2 vlz
t
2 (

f(a)

a
))axy ∈ Raxy.

Similarly, if l ≥ 1 then we have

r = ((x2)
m−1

2 (y2)
n−1

2 vl−1z
t
2 f(a))vxy ∈ Rvxy
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Assume now that a - f(a) and l = 0. Then in the representation of rx ∈ R as

a product of homogeneous elements of R neither of the elements ax, ay, vx, vy can

appear. Thus we can write it as

rx = (x2)N1(y2)N2((1− a)x
√

z)N3((1− a)y
√

z)N4zNg(a)

where Ni ∈ N, N ∈ Z and g(a) ∈ k[a] with a - g(a). rx has an even power

m+1 = 2N1 +N3 in x so N3 is even. y appears in an odd power n = 2N1 +N4 in rx

so N4 is odd. But the power of z appearing in rx (N3 +N4)/2+N should be integer

t/2 which is not the case for even N3 and odd N4.

Case when t is odd, m is even, n is even

In this case r = (x2)
m
2 (y2)

n
2 vlz

t−1
2 f(a)

√
z. If rx ∈ R we must have (1 − a)|f(a)

(because the homogeneous element of R can contain fractional power of z only if it

is a multiple of either (1− a)x
√

z or (1− a)y
√

z). Then we have

r = ((x2)
m
2 (y2)

n
2 vlz

t−1
2 (

f(a)

1− a
))(1− a)

√
z ∈ R(1− a)

√
z

Case when t is odd, m is even, n is odd

In this case we have r = (x2)
m
2 (y2)

n−1
2 vlz

t−1
2 f(a)

√
zy. Since a fractional power

appears in rx ∈ R just as in the previous case we necessarily have (1− a)|f(a).

If l ≥ 1 we have

rx = (x2)
m
2 (y2)

n−1
2 vl−1z

t−1
2 (

f(a)

1− a
)((1− a)

√
zy)vx ∈ R,

ry = (x2)
m
2 (y2)

n−1
2 vl−1z

t−1
2 (

f(a)

1− a
)((1− a)

√
zy)vy ∈ R
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and

r = (x2)
m
2 (y2)

n−1
2 vl−1z

t−1
2 (

f(a)

1− a
)((1− a)

√
zy)v ∈ Rv.

Similarly, if a|f(a) we have

rx = (x2)
m
2 (y2)

n−1
2 vlz

t−1
2 (

f(a)

a(1− a)
)((1− a)

√
zy)ax ∈ R,

ry = (x2)
m
2 (y2)

n−1
2 vlz

t−1
2 (

f(a)

a(1− a)
)((1− a)

√
zy)ay ∈ R

and

r = (x2)
m
2 (y2)

n−1
2 vlz

t−1
2 (

f(a)

a(1− a)
)((1− a)

√
zy)a ∈ Ra.

Assume now that a - f(a) and l = 0. Then in the representation of rx ∈ R

as a product of homogeneous elements of R none of the elements ax, ay, vx, vy can

appear. Thus we can write

rx = (x2)N1(y2)N2((1− a)x
√

z)N3((1− a)y
√

z)N4zNg(a)

where Ni ∈ N, N ∈ Z and g(a) ∈ k[a] with a - g(a). rx has an odd power

m + 1 = 2N1 + N3 in x so N3 is odd. y appears in an odd power n = 2N1 + N4 in

rx so N4 is odd. But the power of z appearing in rx (N3 + N4)/2 + N should be the

non-integer t/2 which is not the case for odd N3 and N4.

Case when t is odd, m is odd, n is even

This case is again the same as the one immediately above with the roles of x, y

interchanged.

Case when t is odd, m is odd, n is odd
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We have r = (x2)
m−1

2 (y2)
n−1

2 vlz
t−1
2 f(a)

√
zxy. Again, as in the three previous

cases, (1− a)|f(a). Then we have

r = ((x2)
m−1

2 (y2)
n−1

2 vlz
t−1
2 (

f(a)

1− a
))(1− a)

√
zxy ∈ R((1− a)

√
zxy)

So in all cases whenever r ∈ T we have

r ∈ aR + vR + (1− a)
√

zR + axyR + vxyR + (1− a)
√

zxyR

so we are done.

3.4 Continuation of the Proof

Now we continue with the proof that M is actually a counterexample for the “if”

part of the Conjecture. Recall that we have reduced to the case when the phantom

resolution of M has the form

0 → P0 ↪→ R2 (vx,vy)−→ R → 0

where P0 is a projective submodule of N = syz1(vx, vy) ⊆ R2 such that (P0)
∗
R2 ⊇ N .

We computed the R-module generators of N explicitly above. The projection onto

the second coordinate pr2 : R2 → R is an injection on N since vx is a non-zerodivisor

on R. So P0 ⊆ N are isomorphic as R-modules via pr2 to some ideals I ⊆ J of R.

N ⊆ (P0)
∗
R2 means that for every n ∈ N ∃c ∈ R◦ such that cnq ∈ (P0)

[q]

R2 for all

q À 0. Taking the images under F e(pr2) we get c(pr2(n))q ∈ I
[q]
R so that J ⊆ I∗R.

Recall that the normalization of R is S = R[
√

z ] = k[
√

z,
√

z −1, a, v, x, y] which is

regular (since it is a localization of the polynomial ring).
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Lemma 3.7. Let R ⊆ S be Noetherian rings of prime characteristic p such that S

is integral over R and S is F -regular. Let I ⊆ J be ideals in R. Then J ⊆ I∗ if and

only if IS = JS.

Proof. First note that for any ideal P of R we have P∗
R ⊆ (PS)∗S (persis-

tence of tight closure) and (PS)∗S = PS (because S is F -regular). Thus we have

P∗
R ⊆ PS ∩ R and the opposite inclusion holds since S is integral over R. Thus we

have P∗
R = PS ∩R for any ideal P of R. Now the “if” part is immediate: IS = JS

implies I∗ = IS∩R = JS∩R = J∗ so that J ⊆ J∗ = I∗. Conversely, J ⊆ I∗ = IS∩R

implies that JS ⊆ IS and the opposite inclusion is true by assumption I ⊆ J . 2

The explicit computation of N made in previous section gives

J = pr2(N) = (ax, vx, (1− a)x
√

z, (ay)x2, (vy)x2, ((1− a)y
√

z)x2)R

We have JS = xS: clearly JS ⊆ xS and x = ax + (
√

z −1)((1 − a)x
√

z) ∈ JS. So

by the lemma above, we will be done after proving the following

Proposition 3.8. Let R = k[z, 1
z
, a, v, ax, ay, vx, vy, x2, y2, (1−a)x

√
z, (1−a)y

√
z ];

the normalization of R is S = R[
√

z ] = k[
√

z, 1√
z
, a, v, x, y]. Then there is no projec-

tive ideal P of R such that P ⊆ (ax, vx, (1− a)x
√

z, (ay)x2, (vy)x2, ((1− a)y
√

z)x2)

and PS = (x)S.

Proof. To show the non-existence of P satisfying the given conditions we shall

first do some reductions: namely, we shall show that it is enough to show the non-

existence after killing y and v. We will need the following two lemmas first.

Lemma 3.9. Let R be any domain and P ⊆ R be an ideal. Then P is projective as

an R-module iff there exists a non-zero ideal Q ⊆ R ideal such that PQ is principal

ideal of R.
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Proof. See e.g., (11.3) in [21].

Lemma 3.10. Let R be a Noetherian domain such that the normalization S of R

is module-finite over R and is a UFD. Let g ∈ R − {0} be such that Rg = Sg. Let

t ∈ S − {0} be prime element in S such that gcd(t, g) = 1 in S. Let I ⊆ R be an

ideal in R and assume that there exists ideal A of R such that IA is principal. Then

there exists an ideal B of R such that B * tS and A = B · f for some f ∈ frac(S)

(of course in that case IB will also be principal).

Proof. Rg = Sg and S is module-finite over R so there exists an integer N such

that gNS ⊆ R. S is a UFD so there exists the largest integer k such that A ⊆ tkS

(it can be 0 and in that case we are done by taking B = A). Then we have A ⊆ tkS

and A * tk+1S. So R ⊇ A = tkB0 where B0 is an R-submodule of S with B0 * tS.

Now, gNA = tk(gNB0) and gNB0 ⊆ R by choice of N . Take B = gNB0 = gN

tk
A.

B is clearly subideal of R and B * tS since B0 * tS and gcd(t, g) = 1. 2

Applying Lemma 3.9 and Lemma 3.10 for the given R, S with g = vx · (1 − a),

t = y and I = P we get that for some ideal B of R, PB is principal and the image of

B in R/(yS ∩R) is non-zero. Clearly P * yS because of PS = xS. Therefore after

killing yS in S and yS∩R in R the image P̂ of P is still invertible ideal. So we get to

the following setup: for R1 = k[z, 1
z
, a, v, ax, vx, x2, (1 − a)x

√
z ] with normalization

S1 = R1[
√

z ] = k[
√

z, 1√
z
, a, v, x] we have the ideal P1 ⊆ (ax, vx, (1− a)x

√
z) which

is still invertible (projective) and P1S1 = xS1.

Now apply the same two Lemmas again for R1 ⊆ S1 now with g = (1−a)(ax) and

t = v. By the same reasoning as before, after killing vS1 in S1 and vS1∩R1 in R1 we
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reduce to the case of the ring R2 = k[z, 1
z
, a, ax, x2, (1− a)x

√
z ] with normalization

S2 = R2[
√

z] = k[
√

z, 1√
z
, a, x] such that the image P2 of P1 in R2 is still invertible

and satisfies P2 ⊆ (ax, (1− a)x
√

z )R2 and P2S2 = xS2.

So it remains only to prove the simpler proposition:

Proposition 3.11. Let R = k[z, z−1, a, x2, ax, (1 − a)x
√

z ]; its normalization is

S = R[
√

z ] = k[
√

z,
√

z −1, a, x]. Then there is no projective ideal P of R such that

P ⊆ (ax, (1− a)x
√

z)R and PS = (x)S.

Proof. The main idea of the proof is to find all such ideals P after localizing at

the elements a and b = 1− a separately and then to show that these “do not patch

together” to give a projective ideal we need over R.

Assume for the moment that we have proved Pic(Ra) and Pic(Rb) are both triv-

ial (these computations are rather long; they are done in the next section). We

have Ra = k[z, z−1, a, a−1, x, (1 − a)x
√

z ] and its normalization is Sa = Ra[
√

z ] =

k[
√

z,
√

z −1, a, a−1, x]. We want to find all projective subideals Pa ⊆ (x, (1−a)x
√

z)Ra

such that PaSa = xSa. Since Pic(Ra) = 0 the projective rank 1 ideal Pa is actually

free: Pa = uRa for some u ∈ Ra. The condition PaSa = uSa = xSa implies that

u = x · τ where τ is a unit of Sa. The units of Sa are elements of the form α(
√

z)man

for α ∈ k−{0} and m,n ∈ Z so the only possible way for u to be in Ra is u = xαam

so that Pa = xRa.
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On the other hand, localizing at the element b gives

Rb = k[z, z−1, a, (1− a)−1, ax, x
√

z ]

(x2 = 1
z
(x
√

z)2 is automatically inside the ring) with normalization

Sb = k[
√

z,
√

z
−1

, a, (1− a)−1, x].

We want to find all the projective subideals Pb ⊆ (ax, x
√

z)Rb such that PbSb = xSb.

Again Pic(Rb) = 0 gives that Pb = wRb for some w ∈ Rb and the condition

PbSb = wSb = xSb implies that w = x · τ0 for some unit τ0 of Sb. The units of

Sb are elements of the form α(
√

z)m(1 − a)n for α ∈ k − {0} and m,n ∈ Z so the

only possible choice for w to get in Rb is u = xα(
√

z)2m+1 so that Pb = x
√

zRb.

Thus we have Pa = xRa and Pb = x
√

zRb, so localizing further gives Pab =

xRab = x
√

zRab. Therefore x = x
√

z · γ where γ is a unit of Rab. Units of Rab are

elements of the form αzman(1 − a)t for α ∈ k − {0} and m,n, t ∈ Z. This gives

x = x
√

zαzman(1− a)t i.e.
√

z = α−1z−ma−n(1− a)−t which is not possible even in

Sab. Thus Pa and Pb “do not patch together” properly to give a projective ideal P

of R. 2

3.5 Computing the Picard groups of Ra and R1−a

3.5.1 The Technique Used for Computing the Picard Groups

We will make considerable use of the following fact:

Lemma 3.12. Let S be any UFD. Then every invertible ideal I of S is principal.

In particular, the Picard group of S is trivial.
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Proof. See e.g., (20.7) in [21]. 2

For computing the Picard groups we shall use the Mayer-Vietoris exact sequences

arising from the fiber squares (see [8] and [23] for details). Recall that a commutative

diagram of rings and ring homomorphisms

R
α1−−−→ R1

α2

y
yβ1

R2
β2−−−→ S

is a fiber square if the map (α1, α2) : R → R1 ⊕ R2 identifies R with {(a1, a2) ∈

R1 × R2| β1(a1) = β2(a2)} and at least one of the maps β1, β2 is surjective. Then

there is an exact Mayer-Vietoris sequence of groups with natural maps

0 → U(R) → U(R1)⊕ U(R2) → U(S) → Pic(R) → Pic(R1)⊕ Pic(R2)

where U(R) denotes the group of units for R .

We will use the Mayer-Vietoris sequences arising from the fiber squares of two

particular forms:

1. For an arbitrary ring R and its two ideals I, J the commutative diagram with

natural maps
R/(I ∩ J) −−−→ R/Iy

y
R/J −−−→ R/(I + J)

is a fiber square.

2. Let R be any Noetherian domain and let S be its normalization. Let c be the

conductor of S into R. Then the diagram with natural maps

R −−−→ Sy
y

R/c −−−→ S/c
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is a fiber square, and the vertical map on the right is surjective.

3.5.2 Computation for Ra

We have Ra = k[z, z−1, a, a−1, x, (1 − a)x
√

z ] and its normalization is Sa =

Ra[
√

z ] = k[
√

z, 1√
z
, a, 1

a
, x]. First note that the conductor c of Sa into Ra is

c = ((1− a)x)Sa = ((1− a)x, (1− a)x
√

z)Ra

Indeed, we have

c = (Ra :Ra Sa) = (Ra :Ra Ra[
√

z ]) = (Ra :Ra

√
z)

so clearly (1− a)x, (1− a)x
√

z ∈ c. Every element of

Ra = k[z, z−1, a, a−1, x][(1− a)x
√

z ]

can be written in the form r = p + q(1 − a)x
√

z with p, q ∈ k[z, z−1, a, a−1, x]; in

particular a fractional power of z can appear only with a factor (1 − a)x. Thus, if

r
√

z = q(1 − a)xz + p
√

z ∈ R we will necessarily have (1 − a)x|p in Sa. Therefore

r = p + q(1− a)x
√

z ∈ ((1− a)x)Sa.

Now let us compute the Picard group of

Ra/c = k[z, z−1, a, a−1, x, (1− a)x
√

z]/((1− a)x, (1− a)x
√

z) =

k[z, z−1, a, a−1, x]/((1− a)x)

Taking T = k[z, z−1, a, a−1, x], I = (1− a)T and J = xT , we get the fiber square:

T/(I ∩ J) = T/(IJ) = Ra/c −−−→ T/I = k[z, z−1, x]y
y

T/J = k[z, z−1, a, a−1] −−−→ T/(I + J) = k[z, z−1]
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As both T/I and T/J are UFDs, their Picard groups are trivial. So part of the

corresponding Mayer-Vietoris sequence looks like

U(T/I)⊕ U(T/J) → U(T/(I + J)) → Pic(T/(IJ)) → Pic(T/I)⊕ Pic(T/J) = 0

and it follows that

Pic(Ra/c) = U(T/(I + J))/im(U(T/I)⊕ U(T/J))

But the units of the ring T/(I + J) = k[z, z−1] are all the elements of the form αzk

where α ∈ k− {0} and n ∈ Z and they all are images of units of T/I and T/J ; thus

Pic(Ra/c) = 0.

Now in the fiber square coming from the conductor c of Sa into Ra

Ra −−−→ Say
y

Ra/c −−−→ Sa/c

we have Pic(Ra/c) = 0 by the previous computation and Pic(Sa) = 0 since Sa is a

UFD. Thus part of the corresponding Mayer-Vietoris sequence is

U(Ra/c)⊕ U(Sa) → U(Sa/c) → Pic(Ra) → Pic(Sa)⊕ Pic(Ra/c) = 0

and this gives that

Pic(Ra) ∼= U(Sa/c)/im(U(Ra/c)⊕ U(Sa))

But again all the units of Sa/c, namely {αzman|α ∈ k − {0},m, n ∈ Z}, are images

of units of Sa, so that Pic(Ra) = 0.
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3.5.3 Computation for R1−a

The computations for are very similar. The localization of R at b = 1 − a is

Rb = k[z, z−1, a, (1− a)−1, ax, x
√

z ] and its normalization is

Sb = Rb[
√

z ] = k[
√

z, (
√

z)−1, a, (1− a)−1, x]

The conductor d of Sb into Rb is d = (ax)Sb = ((ax, ax
√

z)Ra. Indeed, we have

d = (Rb :Rb
Sb) = (Rb :Rb

Rb[
√

z ]) = (Rb :Rb

√
z)

so clearly ax, ax
√

z ∈ d. Conversely, every element of

Rb = k[z, z−1, a, (1− a)−1][ax, x
√

z ]

can be written as r =
∑

pm,n(ax)m(x
√

z)n where (m,n) varies over finite subset

of N × N and pm,n ∈ k[z, z−1, a, (1 − a)−1]. If r ∈ d then we also have that

r
√

z =
∑

pm,n(ax)m(x
√

z)n
√

z ∈ Rb. The terms of r involving ax and the terms

p0n(x
√

z)n such that a|p0n in k[z, z−1, a, (1 − a)−1] are automatically in (ax)Sb. If

there were a term p0n(x
√

z)n of r such that a - p0n in k[z, z−1, a, (1 − a)−1] then

the term p0n(x
√

z)n
√

z of r
√

z ∈ Rb cannot arise from any polynomial in x
√

z with

coefficients in k[z, z−1, a, (1− a)−1].

Now let us compute the Picard group of

Rb/d = k[z, z−1, a, (1− a)−1, ax, x
√

z]/(ax, ax
√

z) = k[z, z−1, a, a−1, x
√

z]/(a(x
√

z))

Taking T = k[z, z−1, a, (1 − a)−1, x
√

z], I = (a)T and J = (x
√

z)T we get the fiber

square:
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T/(I ∩ J) = T/(IJ) = Rb/d −−−→ T/I = k[z, z−1, x
√

z]y
y

T/J = k[z, z−1, a, (1− a)−1] −−−→ T/(I + J) = k[z, z−1]

As both T/I and T/J are UFDs, their Picard groups are trivial. So the same

argument as for Ra/c shows that Pic(Rb/d) = 0.

Now in the fiber square coming from the conductor d of Sb into Rb

Rb −−−→ Sby
y

Rb/d −−−→ Sb/d

we have Pic(Rb/d) = 0 by the previous computation and Pic(Sb) = 0 since Sb is a

UFD. Thus part of the corresponding Mayer-Vietoris sequence

U(Rb/d)⊕ U(Sb) → U(Sb/d) → Pic(Rb) → Pic(Sb)⊕ Pic(Rb/d) = 0

gives that

Pic(Rb) ∼= U(Sb/d)/im(U(Rb/d)⊕ U(Sb))

Again, all the units of Sb/d, namely {αzm(1− a)n|α ∈ k−{0},m, n ∈ Z} are images

of units of Sb so that Pic(Rb) = 0 as well.



CHAPTER IV

Finite Phantom Projective Dimension Does Not Pass to
Direct Summands

4.1 Statement of Conjecture, Counterexample and Sketch of Proof

The techniques developed in the previous chapter enable us to construct a coun-

terexample to yet another conjecture posed in [1], namely:

Conjecture. Let R be a Noetherian ring of characteristic p and let M and N be

finitely generated R-modules. Then ppdR(M ⊕N) < ∞ if and only if ppdR(M) < ∞

and ppdR(N) < ∞

The “if” part is again trivial, since the direct sum of phantom resolutions is still a

phantom resolution. However, a phantom resolution of M ⊕N does not necessarily

decompose into direct sum.

The main idea for constructing counterexample to this conjecture is roughly the

following: take a direct sum of two copies of Koszul complexes of length 2, with a

ring R very similar to the one in the previous chapter,

54
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0 → R




y

−x




−→ R2

(
vx vy

)

−→ R → 0

⊕ ⊕ ⊕

0 → R




y

−x




−→ R2

(
vx vy

)

−→ R → 0

and make a “generic” change of basis in the leftmost copy of R2 via an invertible

matrix of indeterminates (tij)2×2. As a result of this basis change, the augmentation

module will still have a finite phantom projective dimension, however the matrix

(tij)2×2 “mixes” this phantom resolution enough so that it does not decompose. The

proof heavily relies on the counterexample of the previous chapter and techniques

developed there.

Specifically, fix an arbitrary field k of positive prime characteristic p and let

z, v, a, x, y, t11, t12, t21, t22 be indeterminates over k. Consider the following ring

R = k[z, z−1, v, a, vx, vy, ax, ay, x2, y2, (1− a)x
√

z, (1− a)y
√

z ,

tijx, tijy, t2ij, atij,
1

(t11t22−t12t21)2
, (1− a)tij

√
z ]

where 1 ≤ i, j ≤ 2. It is a subring of the localized polynomial ring

S = k[
√

z, v, a, x, y, t11, t12, t21, t22]z(t11t22−t12t21)2

Take the R-module M to be M = R/(vx, vy). We claim that ppdR(M ⊕M) < ∞

but M does not have a finite phantom projective resolution.
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The proof we present will actually show that the module M also has finite phan-

tom projective dimension locally but not globally, so it provides a counterexample

for both conjectures. I was not yet able to construct a counterexample for the case

of a local ring R.

4.2 M
⊕

M has Finite Phantom Projective Dimension

First, note that the normalization of R, i.e., the integral closure of R inside its

field of fractions frac(R) = k(
√

z, x, y, a, v, t11, t12, t21, t22), is

S = R[
√

z ] = k[
√

z,
√

z −1, a, v, x, y, t11, t12, t21, t22]z(t11t22−t12t21)2

Indeed, the square of the element

√
z =

((1− a)x
√

z)v

(1− a)(vx)

of frac(R) is in R and R[
√

z ] contains the elements
√

z −1 = z−1 · √z , and

x = (ax) +
√

z −1((1− a)x
√

z))

y = (ay) +
√

z −1((1− a)y
√

z))

tij = (atij) +
√

z −1((1− a)tij
√

z))

Therefore

S = R[
√

z ] = k[
√

z,
1√
z
, a, v, x, y, t11, t12, t21, t22]z(t11t22−t12t21)2

is a subring of frac(R) that is integral over R and is integrally closed (since it is the lo-

calization of the polynomial ring k[
√

z, a, v, x, y] at the element
√

z (t11t22− t12t21)
2),

so it is indeed the integral closure of R inside frac(R).
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Now let us verify that M ⊕ M has finite phantom projective dimension. The

complex mentioned above (direct sum of two Koszul complexes modified via “generic”

change of basis) provides the appropriate phantom resolution:

(†) 0 −→ R2 A−→ R4 B−→ R2 −→ 0

where the matrices

A =




y 0

−x 0

0 y

0 −x




·




t11 t12

t21 t22


 =




t11y t12y

−t11x −t12x

t21y t22y

−t21x −t22x




and

B =




vx vy 0 0

0 0 vx vy




have entries in R.

It is clear that (†) is indeed a complex with augmentation module M
⊕

M . Its

phantomness follows again from the Phantom Acyclicity Criterion (see e.g., (3.21) of

[15]). By computing determinants it is clear that the ranks of the relevant matrices A

and B are both 2 and so they add up correctly. htI2(B) = ht((v2x2, v2xy, v2y2)) ≥ 1

in the domain R, and for any prime p of R containing I2(A) = (x2 ·∆, xy ·∆, y2 ·∆)R

(where ∆ = det(tij)2×2) and any prime q of S = R[
√

z ] lying over it we have

ht(p) ≥ ht(q) ≥ 2 (in S ∆ is a unit so the prime ideal q contains the elements

x2, xy, y2 and therefore q ⊇ (x, y) ⊃ (x) ⊃ (0)). Thus (†) is a phantom projective

resolution of M ⊕M .
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4.3 M Does Not Have Finite Phantom Projective Dimension

The ring R and the R-module M are very similar to ones in the previous chapter.

So it is not at all surpsising that that the proof of M having no finite phantom projec-

tive dimension follows very closely the one given in the previous chapter. Specifically,

the same argument as in section (2.1) shows that

(∗) 0 → Ra




y

−x




−→ R2
a

(
vx vy

)

−→ Ra → 0

and

(∗∗) 0 → Rb




y
√

z

−x
√

z




−→ R2
b

(
vx vy

)

−→ Rb → 0

are phantom resolutions of Ma over Ra and M1−a over R1−a respectively (here

b := 1− a), so that for every maximal ideal m of R we have ppdRmMm = 2.

Assume now that M is of a finite phantom projective dimension. Exactly the

same argument as the one in section (2.2) shows that we can reduce to the case

when the phantom resolution of M has the form:

0 → P
g→ R2 (vx,vy)−→ R → 0

where g is an injection and P is a projective submodule of N = syz1(vx, vy) ⊆ R2

such that P ∗
R2 ⊇ N .

We need to know the generators of N explicitly: we claim that N as an R-module
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is generated by the following elements:

(−ay, ax) (−(ax)y2, (ay)x2)

(−vy, vx) (−(vx)y2, (vy)x2)

(−(1− a)y
√

z, (1− a)x
√

z) (−(1− a)x
√

z · y2, (1− a)y
√

z · x2)

(tijy,−tijx) ((tijx)y2,−(tijy)x2)

where 1 ≤ i, j ≤ 2.

The computation of the module of relations on vx, vy over R is almost verbatim

the same as in section (2.3). First note that we can “un-localize” by forgetting that

the element (t11t22−t12t21)
2 is invertible in R: more precisely, the module of relations

on vx, vy over our ring

R = k[z, z−1, v, a, vx, vy, ax, ay, x2, y2, (1− a)x
√

z, (1− a)y
√

z ,

tijx, tijy, t2ij, atij,
1

(t11t22−t12t21)2
, (1− a)tij

√
z ]

is the localization at (t11t22 − t12t21)
2 of the module of relations on vx, vy over the

ring

Ř = k[z, z−1, v, a, vx, vy, ax, ay, x2, y2, (1− a)x
√

z, (1− a)y
√

z ,

tijx, tijy, t2ij, atij, (1− a)tij
√

z ]

Then the rest of the computation is similar to one in (2.4) yet a bit longer: we need

to consider more cases according to not only the parity of the powers of x, y,
√

z but

also the parity of powers in which tijs appearing in the homogeneous elements.

Then, as in section (2.4), the projection of R2 onto the second coordinate defines

an isomorphism of P0 ⊆ N with some ideals I ⊆ J of R. By Lemmas (2.7) and

(2.9) we reduce to proving that there is no projective subideal P ⊆ (ax, vx, (1 −

a)x
√

z, tijx, ayx2, vyx2, (1 − a)y
√

zx2, tijyx2)R such that PS = JS = (x)S (here
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S = R[
√

z ] is the normalization of R). Argument after Lemma (2.10) works again,

so that we can kill y and v.

Now it remains to prove only that there is no projective ideal P ⊆ (tijx, ax, (1−

a)
√

zx) in the ring

R = k[z, z−1, a, ax, x2, (1− a)x
√

z, tijx, t2ij, atij,
1

(t11t22 − t12t21)2
, (1− a)tij

√
z ]

such that PS = (x)S where S = R[
√

z ] is the normalization or R. The proof is

literally the same as the proof of Proposition (2.11) under assumptions Pic(Ra) =

Pic(Rb) = 0. The latter assumptions are checked similarly to ones in section (2.5):

the presence of tijs just adds extra elements to the conductors, but the computations

stay virtually the same.



CHAPTER V

Characterization of Test Elements for Tight Closure and
Frobenius Closure in Terms of Module-Finite Ring

Extensions of R within R
1
p

Completely stable test elements for tight closure are known to exist in quite large

classes of rings: e.g. for excellent local rings, for F -finite rings, and, by reduction to

this case, for all reduced rings essentially of finite type over sufficiently nice semi-local

rings (see Theorems 6.1, 6.2 in [16]; the semi-local case follows by combining these

with (6.1a) in [14]). The main source of motivation for the results stated in this

chapter comes from an attempt to show existence of test elements for tight closure

in excellent domains of finite Krull dimension (in the non-local case).

In [2] it is shown that (under mild conditions on the domain R) the test elements

for tight closure can be obtained as powers of the test elements for p-th root clo-

sure. Recall that for the ideal I of a reduced ring R of prime characteristic p, its

p-th root closure is defined to be IR
1
p ∩ R. We will call c ∈ R◦ a test element for

p-th root closure if c(IR1/p ∩ R) ⊆ I for all ideals I of R (following terminology in

[2]). The main result of this chapter says that for obtaining these elements, it is

enough to deal only with module-finite ring extensions of R within R
1
p , as opposed

to dealing with the much larger ring R
1
p itself. Moreover, in this case the condition

61
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for being a test element for tight closure is equivalent to a splitting-type condition on

such subrings of R
1
p . The main result we have in this direction is as follows (see sec-

tions 2.2 and 2.3 for the definitions of excellent and approximately Gorenstein rings):

Theorem 5.1. Let R be an excellent approximately Gorenstein normal domain of

prime characteristic p. Let c 6= 0 be an element from the defining ideal of the

singular locus of R (so that Rc is regular). Consider the following properties of the

element c:

(i) For any subring S of R1/p such that S is module-finite over R, there exists an

R-module map θ : S → R such that θ(1) = c.

(ii) c is a test element.

(iii) For any ideal I ⊆ R and for any subring S of R1/p such that S is module-finite

over R we have cIS ∩R ⊆ I.

We have the following implications:

(A) c satisfies (i) =⇒ c3 satisfies (ii)

(B) c satisfies (ii) =⇒ c satisfies (iii)

(C) c satisfies (iii) =⇒ c satisfies (i)

Remark 1. If R is any domain of prime characteristic p, then for all ideals I ⊆ R,

the Frobenius closure is inside the tight closure: IR1/pe ∩R ⊆ I∗ for all e. Indeed, if

x =
∑

ijr
1/q0

j for some q0, then for all q = pe ≥ q0 we have 1xq =
∑

iqjr
q/q0

j ∈ I [q], so

that x ∈ I∗. So in particular, test elements for tight closure are moreover test

elements for Frobenius closure (and of course for even smaller p-th root closure). I.

Aberbach has proven a partial converse to this in [2]: if c is a test element for the
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p-th root closure then c3 is a test element for tight closure. This sheds light on

where condition (A) comes from.

Remark 2. The condition of normality of R is not too restrictive as the question of

existence of test elements is easily reduced to this case (see e.g. [2] for details).

The heart of the proof is the following result, which is also interesting in its own

right:

Theorem 5.2. Let R be a reduced excellent approximately Gorenstein ring, let S be

a ring containing R as a subring which is finitely generated as an R-module and let

c ∈ R be a nonzerodivisor on S. Then the following are equivalent:

(i) There exists an R-module map θ : S → R such that θ(1) = c.

(ii) For every ideal I ⊆ R we have c(IS ∩R) ⊆ I.

(iii) For every ideal I ⊆ R primary to a maximal ideal of R we have c(IS ∩R) ⊆ I.

Remark. Note that c being a nonzerodivisor on S implies c(IS ∩R) = cIS ∩ cR, so

we can rewrite the conditions in (ii) and (iii) as cIS ∩ cR ⊆ I.

Proof.

(i) =⇒ (ii) Pick an element u ∈ IS ∩ R. u ∈ IS implies θ(u) = θ(
∑

j ijsj) =

∑
j ijθ(sj) ∈ I for some ij ∈ I and sj ∈ S. We also have u ∈ R so that θ(u) =

uθ(1) = uc. Thus cu ∈ I.

(ii) =⇒ (iii) is trivial.

(iii) =⇒ (i)
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Consider the R-linear map ϕ : HomR(S, R) → R given by f 7→ f(1). Proving (i)

is the same as proving that c ∈ Im(ϕ). Assume this is not true.

We will first reduce to the case when R is complete local. We can choose a max-

imal ideal m from the support of the nonzero R-module (cR + Imϕ)/(Imϕ). S is

finitely presented over R so the flat base change R → Rm gives (HomR(S,R))m =

HomRm(Sm, Rm) and also (Imϕ)m = Im(ϕm). Therefore (cRm + Im(ϕm))/Im(ϕm) =

((cR + Im(ϕ))/Im(ϕ))m 6= 0, so that c /∈ Im(ϕm). Let’s check that the condition

(iii) also holds for the rings R,S replaced by Rm,Sm. Since every ideal of Rm is an

extension from its contraction to R, it’s enough to check the condition (iii) for the

ideals IRm, where I ⊆ m is an m-primary ideal of R. We have cIS ∩ cR ⊆ I (by

Remark above); flat base change commutes with finite intersections so localizing at

R − m gives cISm ∩ cRm ⊆ IRm. Clearly c is nonzerodivisor on Sm, Rm ⊆ Sm and

Sm is finitely generated as Rm module. Also Rm is reduced, excellent, approximately

Gorenstein (because R is). Now, the map Rm → R̂m is faithfully flat so exactly

the same argument as above shows that after the base change Rm → R̂m we have

(cR̂m + Im(ϕ̂m))/Im(ϕ̂m) = ((cR + Im(ϕ))/Im(ϕ)) ⊗R R̂ 6= 0, so that c is not in

the image of ϕ̂m and the condition (iii) still holds for the rings R,S replaced by R̂m,

R̂m⊗Rm S (because every m̂-primary ideal of R̂ is extended from an m-primary ideal

of R ). R̂m is reduced, excellent, approximately Gorenstein (because Rm is) and c

is nonzerodivisor on R̂m ⊗Rm S. Therefore without loss of generality we can assume

that R is complete local.

Let W be the cokernel of the map ϕ. We have the exact sequence

HomR(S,R)
ϕ→ R → W → 0.
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Denote by E = ER(K) the injective hull of the residue class field K of R. R is

complete local, so applying the Matlis dual functor ∨ = HomR(—, E) to the exact

sequence above produces the exact sequence

(5.1) 0 → W∨ → E
λ→ S ⊗R E

(to see that (HomR(S, R))∨ = S ⊗R E, it is enough to see that their Matlis duals

are isomorphic:we have (S ⊗R E)∨ = HomR(S ⊗R E, E) = HomR(S, HomR(E, E)) =

HomR(S, R)). Note that the map λ acts as λ : e 7→ 1 ⊗ e. We want to show that

c ∈ R kills W , or equivalently that c kills ker(λ) = W∨ (cW = 0 ⇐⇒ cW∨ = 0;

actually AnnRW = AnnRW∨).

R is approximately Gorenstein so there exists a sequence I1 ⊇ I2 ⊇ . . . ⊇ It ⊇ . . .

of irreducible m-primary ideals that are cofinal with powers of m. The injective hull

of the residue class field of R will be ER(K) = lim−→R/It. Thus (5.1) becomes

0 → lim−→Wt → lim−→R/It
λ→ S ⊗R lim−→R/It

where Wt = ker(R/It → S ⊗R R/It). If c kills Wt for all t then c will also kill all of

W∨. So it is enough to show that c kills every Wt.

Note that R/It is Gorenstein of dim 0 so that R/It is injective as a module over

itself. In particular, we have AnnER(K)It
∼= ER/It(K) ∼= R/It. For every mod-

ule M killed by It (in particular, for modules R/It, S ⊗R R/It and Wt) we have

Hom(M, ER(K)) ∼= Hom(M, R/It). Thus, by taking Matlis duals again, it suffices

to show that c is in the image of HomR(S, R/It) → R/It (where again f 7→ f(1))

which in turn is equivalent to HomR(S/ItS, R/It) → R/It having c in the image.

Since R/It is injective as a module over itself we need to show only that the R/It-
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cyclic submodule of S/ItS generated by 1 can be mapped to R/It so that 1 7→ c ⇐⇒

R/(ItS∩R) can be mapped to R/It with 1 7→ c⇐⇒ c(ItS∩R) ⊆ It, and we are done.

Proof of Theorem 5.1.

(A) It is enough to show that c kills the p-th root closure, i.e. that c(IR1/p∩R) ⊆ I

for any ideal I = (f1, . . . , fk) of R (by Theorem 1.2 of [2] we will then have that

c3 is a completely stable test element for R). Pick any u ∈ IR1/p ∩ R so that

u =
∑k

i=1 fir
1/p
i for some ri ∈ R. Let S = R[r

1/p
1 , . . . , r

1/p
k ] . By the hypothe-

sis (i) we have an R-module map θ : S → R such that θ(1) = c. Then we have

cu = θ(1)u = θ(u) = θ(
∑k

i=1 fir
1/p
i ) =

∑k
i=1 fiθ(r

1/p
i ) ∈ I.

(B) Assume that c is a test element for R. Fix an ideal I ⊆ R and a subring S of

R1/p that is finitely generated over R. We have IS ∩ R ⊆ IR1/p ∩ R ⊆ I∗ (the last

inclusion holds by the Remark right before the proof) so that c(IS ∩ R) ⊆ cI∗ ⊆ I

(last inclusion holds since c is a test element). Note that c(IS ∩R) = cIS ∩ cR (be-

cause c is nonzerodivisor in R1/p), and that cS ∩ R ⊆ cR1/p ∩ R ⊆ (cR)∗ (again

by the Remark above). But (cR)∗ = cR (by [14] Corollary 5.8]) and R being

normal guarantees cR = cR, so that cS ∩ R ⊆ (cR)∗ = cR. Therefore we get

cIS ∩R = (cIS ∩ cS) ∩R = cIS ∩ (cS ∩R) ⊆ cIS ∩ cR ⊆ I.

(C) Again fix an ideal I ⊆ R and a subring S of R1/p that is finitely gener-

ated over R. c(IS ∩ R) = cIS ∩ cR (because c is a nonzero divisor on S) so that

c(IS ∩R) = cIS ∩ cR ⊆ cIS ∩R ⊆ I. Now apply the part (ii) =⇒ (i) of the Lemma.



CHAPTER VI

Some Relevant Open Questions

The counterexample to Conjecture 4.1 that we constructed is “extremely non-

local”, so to speak. It heavily uses the fact that the module M has finite phantom

projective dimension locally. So a natural question would be to prove or disprove

this conjecture under the additional assumption of R being local. This is still an

open question. I believe the answer in this case is also negative.

There is a uniqueness property for projective resolutions: any two projective res-

olutions are quasi-isomorphic, and in the local case it is possible to single out a

canonical one - the minimal resolution. In the case of phantom resolution the sit-

uation is much more complicated because there is no “canonical” one to start with

(even though the minimal resolutions in the local case are defined, they do not have

to be chain isomorphic; the length of the minimal resolution and the Betti numbers

are unique though -the proof of all these statements can be found in [2]). However,

any two minimal phantom projective resolutions become chain isomorphic after ten-

soring with an appropriate module-finite extension of R. This is among the main

difficulties in attacking the problem of finding good homological characterization of

modules of finite phantom projective dimension.

67
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Note that for any projective resolution P•, Hi(F
e(P•)) can be viewed as TorR

i (M,e R),

where eR is R viewed as an R algebra via eth iteration of the Frobenius endomor-

phism. Vanishing of these Tors unfortunately does not give a homological criterion

for ppdRM < ∞, as the remarks after Theorem (1.5) show. I believe that such a cri-

terion might be obtained if we allow module-finite extensions in the definition of the

phantom resolution in some neat way. The idea comes from the fact that tensoring

a phantom resolution with a balanced big Cohen-Macaulay module R+ makes the

resolution exact.

Another natural direction to work in would be to modify the definition of finite

phantom projective dimension, so that it becomes local and stable under taking di-

rect summands, and generalize the existing theory to this case.
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