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CHAPTER 1

Overview

This dissertation studies unit-price procurement auctions, focusing on the struc-

tural impacts of suppliers’ capacity and of system uncertainties. My interest in this

research area was directly motivated by my two-year involvement with a major energy

company at Michigan. I was part of several projects including capacity investment in

storage and transmission systems, bidding in procurement auctions, and integrating

decisions related to natural gas inventory and financial hedging.

The energy industry can be characterized by complex market mechanism, intense

competition, and also voluminous data, resulting in significant number of interesting

questions. Analysis of such industry naturally leads to a broad range of methodolo-

gies. I specifically embrace stochastic optimization, game theory, and econometrics,

when attempting to answer the questions I outline below. The managerial insights,

while derived in the context of energy industry, can be generalized and applied in

other related fields, including supply chain management, procurement management,

and auction design.

Chapter 2 is motivated by the high price volatility in wholesale electricity markets

and by the different formats of auctions observed in electricity markets, emphasized

by the ongoing debate about their advantages and disadvantages. Our objectives

are to interpret the high price volatility in the wholesale electricity auctions and

to compare two prevailing market designs, discriminatory and uniform ones, used

in the United Kingdom and the United States respectively. Two interrelated ques-

tions are examined: (a) how price volatility is related to industry capacity structure

and demand uncertainty; (b) how to compare the performance of a uniform auction
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(charging all suppliers a uniform market-clearing price) and a discriminatory auction

(charging each supplier a price equal to her/his bid), in terms of both average price

paid by the auctioneer and price volatilities.

We consider a basic model with multiple symmetric bidders as well as a model

with two asymmetric bidders. We show that, in the absence of exogenous sources

of uncertainty such as asymmetric information and random demand, price may not

be constant and price dispersion may stem endogenously from electricity producers’

randomized bidding due to the prevalence of a mixed-strategy equilibrium. The bid

distribution and consequent price variance are mainly determined by system utiliza-

tion. Introduction of demand uncertainty increases the likelihood of price dispersion

(due to a wider range of system utilizations that lead to mixed-strategy equilibria),

but not necessarily the magnitude of price variability. Numerical studies further il-

lustrate that demand uncertainty has a secondary contribution to price dispersion,

compared with system utilization. Based on the model of conditional price dispersion

that we propose, the empirical study on the New England Power Pool qualitatively

supports our theoretical predictions.

The comparison between the uniform and discriminatory auctions indicates that,

at symmetric equilibria, they yield the same average price but the discriminatory

auction results in lower price volatility. This lesson continues to hold for the auctions

with uncertain demand and well describes the cases with two asymmetric bidders.

In contrast to the two schools of auction theorists who argue one auction’s efficiency

superiority over the other, our results suggest that the two auctions have the similar

efficiency but the discriminatory auction has lower volatility. These insights are also of

practical value for the procurement managers in other industries who face competitive

suppliers with capacity constraints.

In Chapter 3, we continue to study the effect of capacity constraints, but in more

realistic, and thus more complicated settings. We focus on discriminatory auction and

extend Chapter 2 by considering multiple asymmetric bidders. The contributions are

both methodological and in providing economic insights.

The game we consider is equivalent to the Bertrand-Edgeworth competition (ca-
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pacitated suppliers competing in price) with inelastic demand. We derive the equilib-

rium structure, which can be characterized as follows. Pure-strategy equilibrium is

achieved only under restricted system conditions. Otherwise, a mixed-strategy equi-

librium prevails. In these cases, we show that (a) all active suppliers randomize their

bids within their price intervals, (b) for suppliers with the same cost, their bidding

intervals have a nested structure, (c) there exists a market leader whose bidding in-

terval covers those of the other players and she is usually the one with the highest

capacity, (d) when demand increases, the lower bound of market leader increases

continuously, while the upper bound jumps from one discrete cost level to another;

thus, the price range expands and contracts alternately.

Based on the structural results, we propose a numerical algorithm to compute

the bid distribution at equilibrium. Our numerical tests provide new insight about

a result in Kreps & Scheinkman (1983) that lower capacity yields more aggressive

pricing behavior (as indicated by stochastically lower prices). We demonstrate that,

while the result always holds in two-player games, in multiple-player settings, both

costs and capacities influence the bidding strategy. If the capacities are identical, a

player with lower cost will indeed bid more aggressively. In general, however, the

equilibrium has a nested structure in which a low-capacity player prices within the

range chosen by a high-capacity player, given that their costs are the same. Finally,

we prove that the structural properties of equilibrium are robust and can be extended

to games with price-elastic demand. Since the properties above are also new in price-

elastic setting, this chapter extends the analysis of Bertrand-Edgeworth oligopoly

competition.

The fourth chapter extends the basic model by including asymmetric information

about suppliers’ costs and capacities. It also compares the efficiency of discriminatory

and uniform auctions under this more general setting. The setup of the game is

similar to the previous chapters. Multiple suppliers, with their individual costs and

capacities, submit price bids. We continue to assume that each supplier submits

a single unit price, which allows for analytical tractability and new economic and

managerial insights. We analyze two models: one where production cost is private
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information, and another where capacity is private information.

When each supplier’s cost is privately known, we show that the equilibrium bid-

ding strategy is jointly controlled by (a) the marginal contribution of a supplier’s

capacity in satisfying demand, and (b) the probability distribution of uncertain costs.

We establish an efficiency equivalence outcome between discriminatory and uniform

auctions, which generalizes revenue equivalence in auction literature (Vickrey 1961)

and payment equivalence in unit-price auction with complete information (Chapter

2). Numerical study indicates that, in a discriminatory auction, a supplier’s bid is

increasing in its cost and system utilization; while in a uniform auction, the mono-

tonicity in utilization rates holds in two regions, but is disrupted at the transition

point.

When a supplier’s capacity is private information, we separately analyze discrim-

inatory and uniform auctions. For discriminatory auctions, monotone equilibrium

always exists, where supplier’s bids decrease in capacity and the revenues increase in

capacity. For uniform auctions, monotone equilibrium always exists for two-bidder

case, but may not exist for three or more suppliers. If it exists, the behavior is similar

to the discriminatory auction (decreasing bids and increasing revenues), but revenue

equivalence does not hold. An interesting implication of revenue monotonicity is that

it is incentive compatible for firms to bid full capacity (in contrast to capacity with-

holding). Numerical study indicates that, if monotone equilibrium exists for a certain

demand level, it also exists for all higher demands.

The next three chapters consist of the three essays.

4



CHAPTER 2

Price Dispersion in Electricity Auctions

2.1 Introduction

Since the year 2000, high price volatility, including occasional extreme price shocks,

has been the most prominent characteristic of wholesale electricity markets. Figure

2.1 displays hourly spot electricity prices in the New England market (NEPOOL)

over the period January 2004 through June 2006, with prices ranging from $0/MWh

to large price spikes above $200/MWh. The price behavior observed in NEPOOL

is far from unique. For the same time period, the prices in other major electricity

trading hubs (PJM, NYISO, and MISO) range from -$10/MWh1 to above $250/MWh,

including NYISO, the New York City hub, where price has a record low of -$279/MWh

and a record high of 1894/MWh.

In this paper we focus on wholesale markets, where retailers are facing price

insensitive demand and suppliers have constant costs and capacities. While many

examples have some features of such markets, its extreme case is deregulated wholesale

electricity market, which both motivated this study and is our focus throughout the

paper.

Major electricity buyers are the energy distributors who procure power from

wholesale markets and transmit it to their customers (residential, commercial, and

a portion of industrial users). The retail prices paid by electricity end-consumers

are regulated and, thus, very stable in short-to-medium term, with instantaneous

demand almost inelastic to the wholesale prices. On the supply side, each electricity

1Negative electricity prices may result from suppliers’ incentive to maintain power generation in
order to overcome high start-up costs.
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Figure 2.1. NEPOOL Hourly Electricity Spot Prices (Jan.2004-Jun.2006)

generation unit with specific technology has a fixed capacity associated with it and

a fairly stable variable cost.

Our first objective is to characterize the drivers and structural reasons behind

price variability. In order to understand their significance, we examine effects of in-

dividual factors such as capacity, end-customer demand variability, and suppliers’

asymmetry. Our approach is to answer these questions through a theoretical model

that captures the critical inter-dependencies of energy market. While previous mod-

els assumed a competitive equilibrium outcome, where all suppliers are pricing at

their marginal costs, we relax this assumption and examine whether price dispersion

is driven by structural factors and whether it might exist even without demand un-

certainty (critical for the existing models). Later we use data from wholesale energy

markets to evaluate how consistent they are with our theoretical model.

Our second objective, that builds on the structural form of pricing strategies, is to

evaluate and compare two dominant forms of auctions, uniform and discriminatory,

in order to provide justification which of them is more appropriate for electricity

markets, with emphasis both on efficiency (average prices) as well as price disper-

sion (price volatility). This is motivated by recent policy changes and the debates

surrounding energy market. Specifically, in March 2001, seeking a better market

6



performance, the British government implemented a radical reform in the electricity

trading arrangements, and replaced uniform auction (UA) with a discriminatory (or

pay-as-bid) auction (DA). Also, in November 2000 during the California crisis, the

California Power Exchange appointed a panel of significant auction theorists to in-

vestigate a similar proposal, which suggested that UA action is preferred. This view

is not, however, uniformly shared in literature.

To answer these two questions we model a procurement auction where demand

is price-independent and suppliers have fixed capacities and constant marginal pro-

duction costs. All information about generators’ costs and capacities is public. Each

supplier submits a bid, which is the price for operating her/his generation unit. If

bid is accepted, full capacity or any portion of it can be dispatched.2 Both types

of auctions, uniform and discriminatory, have the same allocation scheme: system

operator admits the suppliers one by one, according to increasing bid prices, until

either demand is satisfied or all suppliers are dispatched. In case of a price-tie, each

supplier has the same probability to be selected first.

The above model simplifies real electricity auctions for analytical tractability.

First, we assume symmetric information about suppliers’ costs and capacities among

auction bidders.3 Second, we assume constant marginal production costs. Since one

firm may own multiple plants with different generating technologies, this assumption

implies that the generating plants are the actual auction bidders and they operate as

separate profit units. We also omit the startup costs. Arguably, the supplier’s unit

variable cost may be viewed as a startup-adjusted average cost. Since the demand

pattern has strong intraday and weekly patterns and weather forecast is publicly

available, the short-term load profile is fairly predictable. Upon bidding, a supplier

has a good estimate of how long her generation unit will be used, if the bid is admitted.

2In other words, we purposefully rule out the possibility of strategic withholding, which has been
identified as a possible measure for suppliers to exercise their market power. It is a relevant issue,
but outsides the scope of this paper. See Hogan (2001) for some related discussion. This setup
allows us to concentrate on the effects of capacity structure on price dynamics.

3Consequently, we do not study information asymmetry, which is central to significant portion
of research in auction theory.
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Finally, we restrict supplier’s bid to be only one price and impose that the total

capacity must be fully committed.

The main contributions of our paper are as follows. From technical point of view,

the paper completely characterizes the equilibrium structure for N-bidder symmetric

auctions. The extensions include random demand and two-bidder asymmetric cases.

Our discussion, under both auction schemes, focuses on probabilistic properties of

the unit prices paid by the electricity buyers and on comparison of DA and UA.

With respect to our first objective, interpreting and characterizing price dispersion,

we show that price dispersion may stem from suppliers’ strategically randomized

bidding. The factors directly influencing it are: capacity structure, cost structure,

average capacity utilization, and demand uncertainty. Higher capacity utilization

yields higher expected price, while price variance is maximized at intermediate levels

of capacity. Introduction of demand uncertainty increases the chance of price disper-

sion (i.e., manifesting itself through mixed-strategy equilibrium), but not necessarily

the magnitude of price variance. In order to test the robustness of the above lessons

in asymmetric settings, we consider the asymmetric two-bidder case as an extension.

The numerical studies indicate that, for given system utilization, increasing capacity

asymmetry leads to a higher expected price and an initial increasing and possibly an

eventual drop of the price variance.

The second area of our interest, comparison of the performance of DA and UA,

also leads to interesting findings. (Our paper is the first analytical paper to compare

the price volatilities resulting from the two auctions.) Most importantly, for N-bidder

symmetric auctions with deterministic demand, the unique symmetric equilibria for

DA and UA correspond to the same expected price, while DA results in lower price

variance. While with no uncertainty other equilibria may exist, reasonably levels of

demand uncertainty imply uniqueness of equilibrium for a UA and this unique equi-

librium is symmetric. Our conclusions about average prices and their volatility are

robust throughout the whole range of possible uncertainty as we focus on symmet-

ric equilibria. Through a numerical study we examine asymmetric two-bidders cases

with random demand and show that buyers, on average, pay similar prices under
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both market designs but UA, in majority of cases we observed, yields higher price

variance than DA.

Since the original motivation came from highly volatile electricity market, we at-

tempt to illustrate our theoretical findings using empirical data. As we do not have

access to DA for U.K. market, we look at the nature of price dispersion for the US

market. Since Quantile-Regression (Q-R) model allows to characterize price disper-

sion more comprehensively, compared to conditional-moment models, we implement

this tool to demonstrate the price dispersion conditional on system demand. The

empirical observation seem to be consistent with our structural results for price pre-

diction. While we do not have access to any data that would allow comparison of

two auction formats, we review a closely-related field – experimental economics, and

point that it provides direct support for our conclusions.

The remainder of the paper is organized as follows. Next section describes the

relevant literature, Section 2.3 describes the model. In Section 2.4 we derive solution

for auctions with symmetric bidders and formally establish that the average prices are

the same for DA and UA while variability is smaller for DA. Section 2.5 investigates

two extensions – impacts of random demand and asymmetric bidders. Section 2.6

presents the preliminary empirical tests of price dispersion, and Section 2.7 concludes

the paper and discusses its practical and policy implications.

2.2 Literature Review

Our focus is on two research questions (a) existence of price dispersion and (b) a com-

parison of two auction formats. Each of these two questions has its own stream of

research associated with it. Two substreams, dealing with price dispersion in whole-

sale electricity markets, are within financial engineering and economics literature,

respectively.

The financial engineering literature directly models the electricity price dynamics

as continuous-time diffusion processes, and calibrates the models by fitting actual

price data. For modeling the price process, mean-reverting model with jumps has

been a popular choice (Kaminski 1997 and Deng 2000). For estimating and forecasting
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price volatilities, conditional autoregressive heteroskedasticity (ARCH) model and its

variations (GARCH, EGARCH, etc.) are widely used (Duffie et al., 1998, and Goto

and Karolyi, 2003). For quantifying the probability of extreme events in the electricity

markets, extreme-value theory (EVT) is introduced in Bystrom (2005). The above

models have a common objective – to capture the probabilistic properties of electricity

price dynamics. While they are very popular in firms dealing with risk management,

as pointed out by Duffie et al. (1998), changes in volatility are not generated by a

mathematical model, but rather by real-world events that have significance which may

at first only be apparent to engineers, geologists, economists or geopolitical analyst.

Our paper differs with these papers in that we intend to identify the structural reasons

for electricity price dispersion rather than to statistically describe the phenomena.

Within economics literature, there are two groups of relevant papers. Those that

consider price dispersion based on competitive equilibrium and those where price

dispersion is based on and explained within the framework of mixed strategy. Our

paper belongs to the second group.

Within the first group, while not concentrating on price dispersion itself, several

papers on energy market economics provide insights into the possible reasons for price

dispersion. The inelasticity of both electricity demand and supply is identified as a

key driver of the volatile prices (Borenstein, 2002 and Wilson 2002). The argument

assumes, however, a competitive equilibrium outcome, where all suppliers are pricing

at their marginal costs. Switching on new generation units clearly leads to kinks

in marginal cost curve, and the changing demand drives price volatility, as different

marginal cost of unit called into operation. Our paper does not use competitive

outcome (does not assume price is equal marginal cost) and price dispersion exists

even with deterministic demand.

Papers in the second group allow suppliers to price strategically and typically

consider mixed-strategy equilibria. The primary mechanism behind their argument

is that suppliers may randomize their bids (as a result of mixed-strategy equilib-

rium) above their costs. In other words, suppliers exercise their market power in the
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competition. 4

The first relevant papers are Varian (1980) and Burdett and Judd (1983). They are

first to directly use mixed-strategy equilibrium to interpret (spatial) price dispersion

in retail markets. In Varian (1980), the existence of uninformed customers provides an

incentive to randomize prices. In similar spirit, in Burdett and Judd (1983) customers

observe a limited number of price quotes, which leads to price dispersion. The critical

element, costly search (or customers not observing all prices) does not take place in

our paper. Instead, limited capacity plays a pivotal role.

The possibility that capacitated firms may play mixed pricing strategy is first

documented in the literature of Bertrand-Edgeworth game – see Vives (2000) for a

comprehensive review of the related papers. While the focus of their paper is on

deriving equivalence of two pricing games, Kreps and Scheinkman (1987, KS) was

the first that presented a complete duopoly solution with asymmetric capacities.

FFH (2006) considers both discriminatory and uniform auction, both for two firms.

Their results for DA are similar to B-E solution in KS. Similarity is expected as the

discriminatory unit-price auction model can be viewed as a B-E game with inelastic

demand (Chapter 3). We extend the solution for DA and for UA to symmetric

oligopoly. Chapter 3 analyze asymmetric oligopoly for DA.

FFH and Chapter 3 are clearly the closest papers to ours. Chapter 3 considers DA

for asymmetric oligopoly with deterministic demand and provides several properties

of equilibrium outcomes. These generalize the results for DA listed in this paper.

Chapter 3, however, does not study the impacts of demand uncertainty, does not

consider UA, and does not compare auction formats. We compare our paper with

FFH in more detail below, since it is also relevant to our second research objective.

The paper’s second objective is to compare the performance of two prevailing

market designs for trading energy within wholesale market, discriminatory auctions

(DA) and uniform auctions (UA).

The importance of this question is emphasized not only by volume of relevant

4Market power is defined as the capability of a firm to raise the market price above the industrial
marginal cost level.
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papers, but also by a public debate. In the process of global energy deregulation,

uniform auction has become dominantly adopted electricity procurement mechanism

and, as mentioned in the introduction, in March 2001, to improve market efficiency,

the British government replaced uniform auction (UA) with a discriminatory auction

(DA). However, during the California crisis, the panel of significant auction theorists

(Kahn, Cramton, Porter, and Tabors, 2001) (KCPT) rejected discriminatory auction

by predicting that the change would introduce new inefficiencies. The panel’s predic-

tion was not, however, based on any specific model of interactions. Similar message

is expressed in Wolfram 1999. Other theoretical literature (e.g., Febra et al 2006)

predicts that DA auctions are more efficient. The question thus remains open.

The two auction formats have been studied in multi-unit and shared auction

literature, motivated by the treasury auctions, where both auction formats have been

implemented. The theoretical analysis focuses primarily on revenue of auctioneer

and allocation efficiency (i.e., whether the goods are awarded to the buyers with

highest valuations, or in procurement setting the suppliers with the lowest costs).

Binmore and Swierzbinski (2000) and Ausubel and Cramton (2002) both point out

that the efficiency and revenue ranking of the two auctions is ambiguous and may be

influenced by equilibrium selection, bidders’ valuation structure, and asymmetry of

the system. Krishna and Perry (1998) establishes revenue equivalence in multiunit

auctions. The key distinction of these papers from ours is that they focus on the

impacts of asymmetric information. The dominance of auctions is primarily driven

by the information rents. Our paper assumes complete information, so the issue of

information rents does not exist.

Wilson (1979) and Wang and Zender (2002) consider these two auctions under the

setting of perfectly divisible goods. Wang and Zender show that in symmetric-bidders

setting, there always exist equilibria of uniform auction with lower expected revenue

for the auctioneer, implying superiority of discriminatory auction. As illustrated by

Wilson (1979), when allowed to submit continuous demand schedule, bidders can

reduce the intensity of their competition and therefore reduce the revenue of the

auctioneer. Simply, continuous schedule reduces the benefits (to the auctioneer) of
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undercutting. In electricity auctions, since a supplier’s bidding decision is restricted

to limited number of price-quantity pairs, the nature of the competition is significantly

different from the Wilson and Wang and Zender’s models, which limit the application

of their results.

Our paper formally models the two auction formats and confirms Wilfram (1999)

and KCPT (2001)’s argument that bidders will bid (stochastically) higher in DA

than in UA. However, this does not imply that the prices paid will be higher. Our

analytical results for symmetric settings (and numerical study for asymmetric ones)

suggest that the average prices in both auctions are the same (very close to each

other).

Since FFH is very close to our paper, we describe it in more detail. Most im-

portantly, FFH argues that uniform auctions result in higher average prices than

discriminatory auctions. Our paper does suggest that DA is a better market design,

but not due to average price but due to price variability, i.e., both auctions have the

same average price but DA yields lower price variances. The difference is driven by

different objectives, slightly different setting, and significantly different equilibrium

selection criterium. Specifically:

- FFH concentrate on market efficiency and compares average prices, while we

compare the stochastic performance of both auctions.

- FFH focuses on duopoly case. Since most deregulated electricity markets are

largely decentralized, with no suppliers (or hardly any) dominating the pricing com-

petition, we focus on oligopoly settings, which is more realistic and highlights the

role of relative influence of suppliers on pricing policy.

- For UA we select a different equilibrium. FFH’s choice requires some form

of pre-game communication, while our criterium is based on independent bidding

assumption. This leads to important differences.

Extending on the last point: in UA, outside of perfectly competitive solutions,

FFH select pure-strategy equilibria, where one player prices at the market cap (chosen

by regulator), while the other players set their prices very low. Demand is cleared

at price cap and all players are paid at the price equal to market cap. While the
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predictions of FFH is that market price is always a cost or price cap, in practice a

range of market prices is observed. Also, with some randomness, the pure-strategy

equilibrium does not exist. Our selection of symmetric equilibrium allows for a con-

sistent choice of equilibrium for cases of no randomness, small randomness, and high

randomness of demand. The range of predicted prices is also more consistent with

reality (allowing many prices between cost and price cap). Importantly, we disagree

with FFH’s equilibrium selection, since such a price outcome is a violation of inde-

pendent bidding assumption in auction setting – the pure-strategy equilibrium needs

pregame communication among all suppliers, which is clearly prohibited by anti-trust

law.5

The empirical literature on the treasury auctions is summarized in Binmore and

Swierzbinski (2000) and it seems to be inconclusive with respect to ranking of the two

auction formats. For example, Simon (1994) estimates that switching from DA to UA

in 1970’s resulted in large loss of revenue for the US Treasury; Nyborg and Sundaresan

(1996) estimate the effect between a small loss and moderate gains; while Malvey and

Archibald (1998) claim small gains. Empirical comparison of the two auction formats

in electricity markets could be conducted only in UK and the findings (Evans and

Green 2002, Newbery 2003 and Fabra and Toro 2003) are also controversial, due to

major structural changes of the markets taking place during the switch from uniform

auction to discriminatory auctions.

The comparison of two auctions formats was also studied in the laboratory set-

tings. Motivated by the electricity auctions, Mount et al. (2002) reports that “both

uniform auction and discriminatory auction produce average prices fifty percent above

the competitive levels. However, the prices for the uniform price auction are more

volatile with many price spikes.” Similar test was conducted by Rassenti et al. (RSW,

2001), and their experiments indicate that (a) a DA consistently generates lower price

volatility; (b) the average prices of the two auctions have no significant difference for

5While relative benefits are not modeled neither in our paper nor in FFH, the asymmetric equi-
librium analyzed in FFH puts the price setter at a relative disadvantage due to not using whole
capacity.
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high demand, but (c) DA yields higher average price for low demand. 6 Our paper is

the first analytical paper to compare the price volatilities resulting from the two auc-

tions. Our analytical results provide direct support to the cited above experimental

papers dealing with electricity auction design.

2.3 The Model

Game Description. Consider wholesale electricity procurement auction with

N potential suppliers. Supplier i is assumed to have unit variable cost ci ≥ 0 and

production capacity ki > 0, for i = 1, 2, . . . , N , which are common knowledge. The

random electricity demand ξ is generated by price-insensitive consumers and the auc-

tioneer procures electricity from suppliers to satisfy the demand as much as possible.

The suppliers compete to serve demand by submitting unit prices.

The sequence of events is as follows. Distribution of demand ξ is known to all

suppliers. During the auction, suppliers independently submit (sealed) prices {pi}N
i=1

to the auctioneer. It is assumed that supplier i’s bid price pi is bounded by price

cap B, imposed by the regulator, i.e., pi ∈ [0, B]. After demand is realized and

aggregated, the auctioneer calls suppliers into operation based on their bids. The

lowest-bid supplier is admitted first. If her capacity cannot cover the demand, the

auctioneer moves to the next lowest-bid supplier, and so on, until the demand is

filled or no capacity is left. We assume ties are broken by first granting orders to

the efficient suppliers (those with lower production costs). If suppliers with the same

costs form a tie, each supplier gets a demand share proportional to her capacity.7

The following notation is used throughout the paper. Let p−i ≡ (p1, . . . , pi−1,

pi+1, . . . , pn) and supplier i’s realized sales as zi(pi,p−i) = kiri(pi,p−i), where ri is

the fraction of her bid quantity accepted by the auctioneer. The above assumptions

6Here both “low” and “high” demand sustain pure-strategy equilibria with competitive price
level, so they can be both viewed as low-demand state.

7The mixed-strategy equilibrium solutions are independent of such rules, since any forms of
rationing will eliminates the chance of price-tie at equilibrium. For Bertrand-like pure-strategy
equilibrium to sustain, the more efficient supplier must possess higher priority. See Deneckere and
Kovenock (1996) for a discussion of rationing rules in Bertrand-Edgeworth games with asymmetric
unit costs.
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lead to

ri(pi,p−i) = 1 ∧ [ξ −∑
n �=i knδ(pn<pi) −

∑
n �=i knδ(pn=pi,cn<ci)]

+

ki +
∑

n �=i knδ(pn=pi,cn=ci)
,

where δ(A) = 1 if A is true, 0 otherwise. To investigate a supplier’s sales at the

proximity of a certain price, we define r−i and r+
i , and simplify8 them as

(a) r−i (pi,p−i) ≡ lim
p↑pi

ri(p,p−i) = 1 ∧ [ξ −∑
n �=i knδ(pn<pi)]

+

ki
, (2.1)

(b) r+
i (pi,p−i) ≡ lim

p↓pi

ri(p,p−i) = 1 ∧ [ξ −∑
n �=i knδ(pn≤pi)]

+

ki
.

It is easy to verify that r−i (pi,p−i) ≥ ri(pi,p−i) ≥ r+
i (pi,p−i).

Two auction types are considered in our paper. In a discriminatory auction (DA),

an admitted supplier is paid at her bid price, while in a uniform auction (UA), all of

the selected suppliers are paid at a uniform price equal to the highest bid admitted

(i.e., the highest price among all admitted suppliers). We use superscripts (or sub-

scripts when convenient) d and u to denote the two auction formats. Under each of

the two auction formats, supplier i maximizes his expected payoff, where

(a) Rd
i (pi,p−i) = (pi − ci)kiri(pi,p−i),

(b) Ru
i (pi,p−i) = (max

n
{pn : rn(pn,p−n) > 0} − ci)kiri(pi,p−i).

Note that r−i (pi,p−i) �= ri(pi,p−i) (or ri(pi,p−i) �= r+
i (pi,p−i)) only if pi = max{p−i :

rn(pn,p−n) > 0}. Hence, we have the following useful observation, for both DA and

UA,

R−
i (pi,p−i) − Ri(pi,p−i) = (pi − ci)ki[r

−
i (pi,p−i) − ri(pi,p−i)] (2.2)

Ri(pi,p−i) − R+
i (pi,p−i) = (pi − ci)ki[ri(pi,p−i) − r+

i (pi,p−i)]

where R−
i (pi,p−i) ≡ limp↑pi

Ri(p,p−i) and R+
i (pi,p−i) ≡ limp↓pi

Ri(p,p−i).
9

As we show in Section 2.4, pure strategy equilibria exist only under restricted

conditions. In general, suppliers are forced to play mixed strategies. Mixed strategies

8Equations (2.1) follow limp↑pi δ(pk<p) = δ(pk<pi), limp↓pi δ(pk<p) = δ(pk≤pi), and
limp→pi δ(pk=p) = 0.

9By (2.2), the existence of R−
i (p) and R+

i (p) for both UA and DA follows (i) boundedness and
monotonicity of ri(p) in pi, (ii) continuity of pi−ci, and (iii) continuity of max {pn : rn(p) > 0}−ci

in pi.
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also fit the practitioner’s opinion about the situation they face, which is discussed in

Section 2.7.

Mixed Strategies. The corresponding notation related to mixed-strategy equi-

librium analysis is introduced here. Supplier i’s mixed-strategy is denoted by σi, a

random variable with support [0, B]. Define Fi(p; σi) ≡ Pr{σi ≤ p} as the cumula-

tive distribution function for σi and mi(p; σi) ≡ Pr {σi = p} the probability mass at

price p. Denote pi(σi) ≡ inf{p : Fi(p; σi) = 1} and p
i
(σi) ≡ sup{p : Fi(p; σi) =

0} as the upper and lower pricing bounds for σi. Given the opponents’ mixed-

strategy σ−i ≡ (σ1, . . . , σi−1, σi+1, . . . , σn), supplier i has random sales and payoff

when choosing price p. Let ẑi(p, σ−i) ≡ Eσ−i
[zi(p, σ−i)], r̂i(p, σ−i) ≡ Eσ−i

[ri(p, σ−i)],

and R̂i(p, σ−i) ≡ Eσ−i
[Ri(p, σ−i)] represent her expected sales, expected sales fraction,

and expected payoff, respectively.

Denote σ∗ ≡ (σ∗
1, σ

∗
2, . . . , σ

∗
n) as a mixed-strategy equilibrium and ERi(σ

∗) ≡
R̂i(σ

∗
i , σ

∗
−i) supplier i’s expected equilibrium payoff. For simplicity, we suppress the

equilibrium-associated notation by omitting σ∗. For example, Fi(pi) = Fi(pi; σi = σ∗
i )

and pi = pi(σ
∗
i ). Similarly, we use shorthand notation ẑi(pi) = ẑi(pi, σ

∗
−i), r̂i(pi) =

r̂i(pi, σ
∗
−i), R̂i(pi) = R̂i(pi, σ

∗
−i), and ERi = ERi(σ

∗). Corresponding to (2.1), we also

define r̂−i (pi) ≡ limp↑pi
r̂i(p) and r̂+

i (pi) ≡ limp↓pi
r̂i(p). R̂−

i (p) and R̂+
i (p) are defined

similarly. As ri(p) ∈ [0, 1] for all p, applying bounded convergence theorem, we have

r̂−i (p) = Eσ∗
−i

[r−i (p)] and r̂+
i (p) = Eσ∗

−i
[r+

i (p)]. The following observation is very useful:

for any mixed-strategy equilibrium,10

(a) mi(p) > 0 implies R̂i(p) = ERi; (2.3)

(b) Fi(p) > Fi(p
′) for all p′ < p implies R̂−

i (p) ≡ lim
p′↑p

R̂i(p
′) = ERi;

(c) Fi(p) < Fi(p
′) for all p′ > p implies R̂+

i (p) ≡ lim
p′↓p

R̂i(p
′) = ERi.

10Part (a) is obvious. For part (b), the monotonicity of Fi at p’s left neighborhood implies
Pr {σ∗

i ∈ [p − Δ, p)} > 0 for any Δ > 0, and consequently, p̃ ∈ [p − Δ, p) exists such that R̂i(p̃) =
ERi. [Otherwise, if R̂i(p′) < ERi for all p′ ∈ [p − Δ, p), we must have Pr {σ∗

i ∈ [p − Δ, p)} = 0,
which contradicts to the initial assumption.] As Δ converges to zero, we have R̂−

i (p) = ERi where
existence of R̂−

i (p) follows Footnote 9. Similarly we can show part (c).
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2.4 Symmetric Auctions with Deterministic Demand

This section derives both key results of the paper in symmetric oligopoly case. We

characterize when suppliers have incentive to randomized prices for each auction

type. We show that price dispersion may stem endogenously from suppliers’ strategic

bidding behaviors even in a deterministic economic system. We derive the distribution

of prices and show how it depends on capacities and costs. Understanding pricing

strategies for both types of auctions allow us to compare them from point of view

of prices that buyers pay. We show that they result in the same expected price,

but the same variance. The equilibrium structures identified in this section and the

following insights are robust and will be extended later to more general settings with

asymmetric bidders and random demand.

Our basic model assumes symmetric bidders and deterministic (or perfectly fore-

seeable) demand. These assumptions make the analysis tractable and yield closed-

form equilibrium solutions. Specifically, here we assume ki = k and ci = c for all

i = 1, 2, . . . , N and seek Nash equilibria for both types of auctions. The analysis for

symmetric DA and UA relies heavily on the order statistics of bids. We introduce

the common notation here. Denote b(N)
m the m-th lowest bid among N bids and G(N)

m

its c.d.f. Reversely, denote b
(N)
(m) the m-th highest bid and G

(N)
(m) its c.d.f. Clearly,

b(N)
m = b

(N)
(N+1−m) and G(N)

m = G
(N)
(N+1−m). Superscript (N) is omitted for simplicity

when context is clear and especially when other superscripts are needed. In the fol-

lowing subsection, we separately analyze DA and UA, which allows us later compare

their performances. We omit those analytical derivations that are well established in

theory of order statistics.

2.4.1 Equilibrium Analysis

We first analyze discriminatory auction and show general structure of equilibrium

(symmetry and uniqueness), then we derive the exact analytical form of equilibrium.

Later we follow with the analysis of uniform auction.

Discriminatory Auction. Pure-strategy equilibrium can be achieved only un-

der restricted market conditions. For high demand ξ ≥ Nk, all suppliers price at the
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cap B. Thus, they have the maximal possible market power. On the other hand, for

low demand ξ ≤ (N − 1)k, the auction becomes very competitive and the demand

is cleared at price equal to cost c. If a supplier prices c, the remaining suppliers can

still satisfy the whole demand, so the deviation cannot bring any profit. Clearly,{
pd∗

i = c
}N

i=1
is the only symmetric equilibrium.11

For the intermediate demand (N − 1)k < ξ < Nk, pure-strategy equilibrium

does not exist. This results from three incompatible tensions in the competition.

First, if different prices are chosen, supplier i who prices lower than the highest bid

will have an incentive to raise price as close as possible just below the highest bid,

because ri(pi) = 1 for all pi < max {p−i}. Second, if all suppliersprices are extremely

close, the highest-price supplier has an incentive to set her own bid slightly lower

than next highest price to achieve r−(p) = 1 > r(p), which collectively causes the

highest price to drop. Third, if a uniform price p∗ = c is shared by all suppliers or

everybody prices very close to the cost c, everyone obtains a zero payoff, so supplier

i will be better off choosing pi = B, because Ri(B) = (B − c)[ξ − (N − 1)k] > 0.

The above three tensions lead to the formation of a mixed-strategy equilibrium. The

most important implication is that price dispersion may happen in a DA without

exogenous randomness (like demand uncertainty or information asymmetry). The

fundamental driver is the imperfect competition among oligopolistic suppliers. While

mixed strategies were analyzed in oligopolistic competition (e.g., KS), we use the

concept in auction setting and show that it explains price variability when demand

and supply are price insensitive. The randomization of the bidding price is consistent

with conversation we heard from traders. The following proposition describes full

structure of the equilibrium.

Proposition 1 A symmetric DA has a unique symmetric Nash equilibrium. (a) For

ξ ≥ Nk, it is a pure-strategy equilibrium with {pd∗
i = B}N

i=1; (b) For ξ ≤ (N − 1)k, it

is a pure-strategy equilibrium with {pd∗
i = c}N

i=1; (c) For (N − 1)k < ξ < Nk, it is a

11Note that when demand ξ is less than (N − 2)k, the equilibrium is sustained even if certain
player chooses a price higher than c. It only requires 	ξ/k
 + 1 bidders choosing c where 	x
 ≡
min {i ∈ Z : i ≥ x}. Hence, multiple equilibria may exist, but they are all payoff-equivalent (zero
profit for everyone).
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mixed-strategy equilibrium, with equilibrium distribution function

F d(p) = (
k

Nk − ξ

p − pd

p − c
)

1
N−1 for p ∈ [pd, B], (2.4)

where pd = c + (B−c)[ξ−(N−1)k]
k

.

Below we outline the critical element of the proof (simple derivations and alge-

braic steps are omitted). According to Theorem 6 in Dasgupta and Maskin (1986)[?],

a symmetric mixed-strategy equilibrium exists. To derive the equilibrium distri-

bution F d, we first establish that, for any symmetric mixed-strategy equilibrium

{σ∗
i = σ∗

d}N
i=1, the equilibrium distribution function F d must be continuous and strictly

increasing (Lemma A1). It implies that, according to (2.3-b,c), any p ∈ [pd, p̄d]∩(c, B]

yields the expected equilibrium payoff R̂(p) = ERd = R̂(p̄d) = (p̄d − c)[ξ − (N − 1)k].

The optimality of ERd requires p̄d = B and ERd = (B − c)[ξ − (N − 1)k] > 0. By

(2.3-c), we have R̂+(pd) = ERd > 0, implying pd > c and therefore m(pd) = 0. It fol-

lows that r̂+(pd) = r̂(pd) = 1, and pd can be derived from ERd = R̂+(pd) = (pd − c)k.

For p ∈ [pd, B], F d(p) must satisfy

R̂(p) = (p− c)
N−1∑
n=0

(N−1
n )F d(p)nF̄ d(p)N−1−nzn = ERd with zn = k ∧ [ξ − nk]+. (2.5)

It is possible to show that the unique solution to (2.5) is equation (2.4) above, which

completes the proof of the proposition. Note that cdf of price F does not have mass

point at the price cap B (by the same logic as for lack of mass points within the price

range).

Notice that, the equilibrium outcomes presented in Proposition 1 are determined

by five factors {k, ξ, N, c, B}. Define ρ ≡ ξ
Nk

as the aggregated utilization, and the

determinant factors become {ρ, N, c, B}. The three cases in Proposition 1 correspond

to (a) ρ ≥ 1, (b) ρ ≤ N−1
N

, and (c) N−1
N

< ρ < 1, respectively. For case (c), the

equilibrium distribution function can be expressed as

F d(p) = [
1

N(1 − ρ)

p − pd

p − c
]

1
N−1 = [

B − c

p − c
− B − p

N(1 − ρ)(p − c)
]

1
N−1 for p ∈ [pd, B]. (2.6)

Since all marginal costs are c, any price above c is a manifestation of pricing

power. From equation (2.6), the equilibrium bids are stochastically increasing in
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ρ and stochastically decreasing in N . It suggests that suppliers’ pricing power is

primarily determined by system utilization, represented by ρ, and market decentral-

ization (delegated by N). Higher utilization gives higher pricing power to suppliers,

while increasing number of suppliers dilutes it. While Proposition 1 considers only

symmetric solution, it is possible that asymmetric equilibrium can exist. Proposition

11 in Appendix A.2, however, excludes such a possibility. We now are ready to move

to analysis of uniform auction. As opposite to discriminatory auction, asymmetric

equilibrium can exist and our analysis need to be more detailed.

Uniform Auction. The existence of a symmetric mixed-strategy equilibrium for a

UA follows again from Dasgupta and Maskin (1986) Theorem 6. For high demand

ξ ≥ Nk or low demand ξ ≤ (N − 1)k, the symmetric solution reduces to the same

pure-strategy equilibria achieved in a DA, with all suppliers pricing at B or c. For

intermediate demand (N − 1)d < ξ < Nk, there is no symmetric pure-strategy

equilibrium due to the same incentive to undercut other suppliers as in a DA.

Despite the above similarities, the competitive nature of DA and UA is different.

In a UA, those suppliers who price below the highest dispatched bidder have no

incentive to raise price, enjoying the benefits of a “ free ride” as price takers; while

in a DA, a low-price bidder always has an incentive to increase price as long as she

can maintain a sales fraction of 1. For (N − 1)k < ξ < Nk, this difference matters

— unlike DA, a UA has multiple asymmetric pure-strategy equilibria. Consider the

following bidding outcome. One bidder chooses B, while the rest of the bidders price

at cost c. The high bidder’s payoff is R(B) = (B − c)[ξ − (N − 1)k] > 0. If she

deviates to any price p ∈ (c, B), her sales is still the same, but the profit margin

(p − c) is strictly decreased. A price cut to c or below increases her market share

but reduces the price margin to zero. Hence pricing at B is her optimal strategy.

For other bidders, given that the demand is cleared at price B, the profit equals to

monopoly-equivalent payoff (B− c)k. Thus, a pure-strategy equilibrium is sustained.

Note that the price takers may raise price above c, as long as it is not high enough

to trigger the price maker’s defecting from B. A comprehensive characterization of
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the asymmetric equilibria is presented in the following lemma.

Lemma 1 For a symmetric UA with (N−1)k < ξ < Nk, a pure-strategy equilibrium

must satisfy bu
(1) = B and bu

(2) ≤ c + (B−c)[ξ−(N−1)k]
k

.

Note that the upper bound for bu
(2) is equal to pd, the lower pricing bound of the

mixed-strategy equilibrium in a DA, because it is the lowest price securing the highest

bidder’s profit at price B.

Similarly to DA, also for UA we can describe the structure of symmetric Nash

equilibrium. The impacts of market power can be characterized by ρ and N .

Proposition 2 A symmetric UA has a unique symmetric Nash equilibrium. (a) For

ξ ≥ Nk, it is a pure-strategy equilibrium with {pu∗
i = B}N

i=1; (b) For ξ ≤ (N − 1)k, it

is a pure-strategy equilibrium with {pu∗
i = c}N

i=1; (c) For (N − 1)k < ξ < Nk, it is a

mixed-strategy equilibrium, with equilibrium distribution function

F u(p) = (
p − c

B − c
)

ξ−(N−1)k
(N−1)(Nk−ξ) = (

p − c

B − c
)

Nρ−N+1
N(N−1)(1−ρ) for p ∈ [c, B]. (2.7)

Let us sketch the justification of Proposition 2. Clearly, from Lemma 1, all pure-

strategy equilibria are asymmetric for ξ ∈ ((N − 1)k, Nk). Thus, the existing sym-

metric solution must be a mixed-strategy one. Similarly to DA, we can show that

a symmetric mixed-strategy equilibrium must have F u(p) continuous and strictly

increasing in p ∈ [pu, p̄u] ∩ (c, B]. The continuity and monotonicity of F u implies

R̂(p) = ERu for all p ∈ [pu, p̄u]. As m(p̄u) = 0, or equivalently, Pr{σ∗
u < p̄u} = 1,

pricing at p̄u results in market clearing price p̄u and sales of ξ−(N−1)k with probabil-

ity 1. The optimality of p̄u implies p̄u = B and ERu = R̂(p̄u) = (B−c)[ξ− (N −1)k].

For any p ∈ [pu, B], by monotonicity of F u, supplier i’s expected payoff satisfies,

R̂i(p) = G
(−i)
(1) (p) · (p − c)[ξ − (N − 1)k] +

∫ B

p
(v − c)kdG

(−i)
(1) (v) = ERu. (2.8)

Since equation (2.8) cannot be solved explicitly, we consider its first order condition,

dR̂i(p)
dp

= 0, which yields an ordinary differential equation (2.9) of G
(−i)
(1) (p):

Ġ
(−i)
(1) (p) · (p − c)(ξ − Nk) + G

(−i)
(1) (p) · [ξ − (N − 1)k] = 0. (2.9)

The general solution to the ODE is G
(−i)
(1) (p) = C0(p − c)

ξ−(N−1)k
Nk−ξ where C0 is a con-

stant. From the boundary conditions G
(−i)
(1) (B) = F u(B)N−1 = 1 and G

(−i)
(1) (pu) =
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F u(pu)N−1 = 0, we have C0 = (B − c)−
ξ−(N−1)k

Nk−ξ and pu = c. Also, from G
(−i)
(1) (p) =

F u(p)N−1, we obtain the equilibrium distribution function described in (2.7) above,

which complete the outline of the proof.

Note that the price range is always [c, B]. That is, for all mixed-strategy equilibria

(but pure-strategy ones), any price between c and B can be observed in a UA, while

in a DA the lower bound p increases in utilization ρ and decreases in the number

of suppliers N . The equilibrium solution in a UA stochastically increases in ρ and

decreases in N , resulting in similar to DA economic interpretation of how utiliza-

tion and decentralization influence the suppliers’ market power, manifesting itself by

randomized bidding above the cost.

While for a DA, with N−1
N

< ρ < 1, the symmetric mixed-strategy equilibrium is

the unique Nash solution; for a UA, we have identified both symmetric mixed-strategy

equilibrium and asymmetric pure-strategy equilibrium. In any pure-strategy equilib-

rium, the task of price making is assigned to one supplier; while in symmetric mixed-

strategy equilibrium, this responsibility is equally and randomly shared among all

bidders. Obviously a continuum of equilibria exist, morphing between the symmetric

mixed-strategy equilibrium and any pure-strategy equilibrium. As these equilibria

differ in multiple dimensions, it is difficult to provide a general solution form. We ex-

clude mixed-strategy solutions that can be reduced to payoff-equivalent pure-strategy

equilibria such as {pu∗
i = B, σu∗

j < B almost surely for all j �= i}. Formally, we define

a mixed-strategy equilibrium as irreducible if Pr{σu∗
i < B} > 0 for all i. Proposi-

tion 2 (Appendix A.3) presents several structural properties of irreducible equilibria

with continuous and monotone distribution functions. Based on these properties in

Proposition 3, we construct a family of mixed-strategy equilibria that clearly illus-

trate increasing asymmetry between the price maker and the remaining suppliers.

(Note that, there exist other solutions outside of this family.)

Proposition 3 For symmetric UA with (N − 1)k < ξ < Nk, any (h, mu
B) ∈

{1, 2, . . . , N}×[0, 1) defines an irreducible mixed-strategy equilibrium with distribution
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functions,

(a) F u
h (p) = (1 − mu

B)(
p − c

B − c
)

ξ−(N−1)k
(N−1)(Nk−ξ) for p ∈ [c, B) and mu

h(B) = mu
B, (2.10)

(b) F u
i (p) = (

p − c

B − c
)

ξ−(N−1)k
(N−1)(Nk−ξ) for p ∈ [c, B] and i �= h.

The equilibrium payoff is ERu
i = (B − c)[ξ − (N − 1)k + δ(i�=h)m

u
B(Nk − ξ)], for all i.

The proposition can be easily proved by verifying the expected payoffs for all sup-

pliers and we omit the details. When multiple equilibria exist, equilibrium selection

is critical for evaluating different auction formats. Within the whole equilibrium set,

the focal points are the pure-strategy equilibria(most asymmetric) and the symmetric

mixed-strategy equilibrium(most symmetric). The pure-strategy solutions described

in Lemma 1 are “attractive” because the bidders’ behavior is deterministic and their

total payoff is maximized.12 Price maker has the same profit as in symmetric mixed-

strategy equilibrium, while all other players are strictly better off. However, in sealed-

bid auction context, these pure-strategy equilibria have major shortcomings. First,

from a behaviorial perspective, they rely heavily on pre-game communication — the

N −1 price takers needs to achieve an agreement to collectively impose a “threat” to

the price maker and the price maker must be informed that she is under such threat.

Suppliers bidding at c have no profit if nobody ends up bidding high. Since the

price maker does not get higher payoff than in a mixed-strategy equilibrium, it is not

clear if anyone would agree to become a price maker and play the pure-strategy equi-

librium. Clearly, the communication needed to achieve a pure-strategy equilibrium

violates the original assumption of independent bidding and would be considered as

violation of antitrust law. Compared with the pure-strategy equilibria, the symmetric

mixed-strategy equilibrium is also more informative because its stochastic features

are arguably shared by other non-symmetric mixed-strategy equilibria(e.g., the ones

described in Proposition 3). Due to the above considerations, we will focus in the

rest of the paper primarily on the symmetric equilibrium for UA and then discuss

12Based on such equilibrium selection, FFH (Proposition 5) omits all mixed-strategy solutions for
symmetric oligopoly model and argues that UA yields higher price (deterministic price B) than DA
(random price with B as upper bound). Also note that FFH’s equilibrium selection and efficiency
argument imply that there is no price dispersion in uniform auctions.
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the relationship with asymmetric pure-strategy ones.

2.4.2 Comparison of Symmetric DA and UA

One of the main objectives of this paper is to compare the stochastic performances

of DA and UA. For ξ ≤ (N − 1)k or ξ ≥ Nk, both auctions yield the same pure-

strategy equilibria involving uniform pricing outcome (c or B). The interesting case

is for demand (N − 1)k < ξ < Nk. Since the payment schemes in DA and UA

are different, instead of comparing the distributions of supplier’s equilibrium bids,

F d
i (p) and F u

i (p), we need to compare the average price for the capacities called

into operation, which we label as transaction price P . For UA, P u is the market

clearing price. For DA, the admitted suppliers are compensated at different rates

(equal to their bid prices) but all electricity buyers pay one single price that covers

the total revenue of the suppliers. In order to compare prices paid by customers

in two auctions, for DA, we consider the randomly sampled seller price P d
S . In

seller price, the probability of being certain price is equal to the probability that the

corresponding capacity is admitted. Denote by P d
B average price, or the buyer price,

which is a sales-weighted average of the realized bids. Formally, for an auction with

(N − 1)k < ξ < Nk, the above prices can be expressed as

(a) P d
S ≡

{
bd
(1),

ξ − (N − 1)k

ξ

}
⊕

{
bd
(2),

k

ξ

}
⊕ . . . . . . ⊕

{
bd
(N),

k

ξ

}
(2.11)

(b) P d
B ≡ ξ − (N − 1)k

ξ
· bd

(1) +
k

ξ
· bd

(2) + . . . . . . +
k

ξ
· bd

(N)

(c) P u ≡ bu
(1),

where ỹ = ⊕N
n=1 {x̃n, fn} denotes a random variable ỹ, being a mixture of N random

variables, such that x̃n is chosen with probability fn.

Denote Hd
S(·), Hd

B(·), and Hu(·) as the c.d.f. of P d
S , P d

B and P u and they are

computed in Appendix A.4. Figure 2.2 illustrates the behavior of equilibrium bids

and transaction prices in both DA and UA. Obviously, suppliers bid stochastically

lower in a UA than in a DA, see Figure 2.2(a). However, since everyone is paid

at the highest bid in a UA, the transaction prices illustrated in Figure 2.2(b) are

significantly increased compared to an individual supplier’s bids in Figure 2.2(a);
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Figure 2.2. Equilibrium Bids and Prices in Discriminatory and Uniform Auctions
Auction Setting: (N = 3, c = 2, B = 10)

while for a DA, the differences between Hd
S(·) and F d(·) are less significant. Note

that Hd
S is stochastically smaller than F d, because among the N i.i.d. bids, the

highest realized value is selected with a smaller chance f(1) = ξ−(N−1)k
ξ

than other

ones f(n) = k
ξ

for n > 1. Note also that when utilization ρ is increased, bids and

transaction prices in both auctions increase stochastically, but in a different fashion.

For a DA, a higher ρ implies a higher pricing bound pd, resulting in condensing of

bidding range towards the price cap B; while for F u and Hu in a UA, increasing

utilization leads to the preponderance of probability mass shifting from pd to B, with

pricing range remaining [c, B]. Finally, Figure 2.2(b) illustrates comparisons among

P d
S , P d

B, and P u for given ρ. First note that, given any realized bid vector b, P d
S is a

random variable with discrete values while P d
B is a constant. Therefore, P d

S must be a

mean-preserving spread of P d
B. The more interesting comparison is between the two

auction formats. We observe that, for each ρ, there is a single cross between Hu and

Hd
S. It suggests that Hu may be a mean-preserving spread of Hd

S. This conjecture is

formally established in the following proposition. See Appendix A.5 for its proof.

Theorem 1 Consider symmetric auctions with (N−1)k < ξ < Nk. The transaction

prices P d
S and P d

B in a discriminatory auction and P u in a uniform auction satisfy:

(a) Equal Expected Price: E[P u] = E[P d
S ] = E[P d

B] = (B − c)N [ξ−(N−1)k]
ξ

+ c;

(b) Variability Ordering: P u is stochastically more variable than P d
S and P d

S is
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stochastically more variable than P d
B.

The equality of expected prices can be easily justified. At a symmetric mixed-

strategy equilibrium σ∗
d or σ∗

u, a bidder expects to earn the equilibrium payoff when

pricing at B. Despite the different payment schemes, a bid equal to B must be the

highest one, so a bidder obtains the same expected payoff ERd = ERu = (B −
c)[ξ − (N − 1)k]. The intuition behind variability ordering can be established by

revisiting the competitive natures of the two auctions. As we explained, one of the

key incentives in a DA is missing in a UA — low-price parties’ benefit by approaching

the highest bidder. In other words, there is stronger force in a DA to contract the

bid range, which is consistent with prices in DA being less dispersed.

Proposition 1 has some surprising consequences. First, equality (a) contradicts

FFH’s claim13 that uniform auctions yield higher prices. The difference is due to

the equilibrium selection for uniform auctions. FFH assume that, in UA, pure-

strategy equilibria described in Lemma 1 is chosen; we argue that the asymmetric

pure-strategy solution is not consistent with the independent bidding assumption and

that the required communication makes the comparison with DA “unfair.” However,

when symmetric bidding is assumed, DA and UA result in the same expected price.

Second, our analysis of the symmetric equilibria predicts that discriminatory auction

outperforms uniform auctions by generating lower price volatility.

2.5 Extensions

This section extends the previous section in two dimensions, demand uncertainty and

asymmetry of bidders. We investigate the robustness of the main takeaways from the

previous section and also obtain new insights about the influence of the other system

factors.

13FFH(2006) Proposition 5 (indirectly) suggests E[P d] = (B − c) ξ−(N−1)k
k + c < B = E[Pu].
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2.5.1 Random Demand

Sections 2.4 assumes demand to be known (perfectly foreseeable). In practice, some

leadtimes are involved. For instance, in electricity day-ahead (hour-ahead) markets,

suppliers submit bids one day (one hour) before the actual dispatch. Therefore,

demand uncertainty is an element of decision process, which is the focus of this

section. For simplicity, the analysis of this section focuses mainly on symmetric

auctions. Selected results for asymmetric auctions are reported as extensions.

Equilibrium Analysis of Symmetric Auctions. Suppose all bidders share a common

belief about the demand distribution with cdf Φ(·). Define the lowest demand level

ξ ≡ inf {ξ : Φ(ξ) > 0} and the highest one ξ̄ ≡ sup {ξ : Φ(ξ) < 1}. For the ease of

exposition, we assume Pr{ξ = ξ} = Pr{ξ = ξ̄} = 0 and Φ(ξ) is strictly increasing

in ξ ∈ [ξ, ξ̄]. We first characterize the equilibrium structure. With the intuition

established in Section 2.4, pure-strategy equilibrium can be easily derived for both DA

and UA. For low demand with ξ̄ ≤ (N−1)k, the highest bidder obtains zero sales with

probability 1. Both auctions are competitive and sustain pure-strategy equilibrium

{p∗i = c}N
i=1. Similarly, for high demand with ξ ≥ Nk, all bidders choose {p∗i = B}N

i=1.

Note that these two cases probably cover a relatively small range of possible demand

realizations. The interesting case is when
ξ

N
< k < ξ̄

N−1
and no symmetric pure-

strategy equilibrium exists. Symmetric equilibria are still our primary focus.

- Discriminatory Auctions It is useful to define the (ex ante) expected sales Zn

for the n-th lowest bidder,

Zn ≡
∫ nk

(n−1)k
[ξ − (n − 1)k]dΦ(ξ) + kΦ̄(nk) =

∫ nk

(n−1)k
Φ̄(ξ)dξ.

Notice that {Zn}N
n=1 are constant values for given demand distribution Φ(·). Mono-

tonicity of Φ̄(ξ) and
ξ

N
< k < ξ̄

N−1
implies Z1 ≥ Z2 ≥ . . . ≥ Zn and ZN−1 > Zn. We

also define the total expected sales X ≡ E[min {ξ, Nk}] =
∑N

n=1 Zn. Following the

logic of Lemma A.1, we can show the continuity and strict monotonicity of F d(·) in

[pd, B], and

ERd = (B − c)Zn, p̄d = B, pd =
ERd

Z1
+ c.
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By (2.3b, c) we also have, for any p ∈ [pd, B],

R̂d(p) = (p − c)
N−1∑
n=0

(
N − 1

n
)F d(p)nF̄ d(p)N−n−1Zn = ERd. (2.12)

Unlike the deterministic case, there is no closed-form solution to equation (2.12) and

we need to solve the equation numerically.

- Uniform Auctions The derivation of the solutions to UA is more complicated.

We first compute supplier i’s expected payoff R̂u
i (p), given that other players follow

F u. Define function δn(ξ) ≡
⎧⎪⎨
⎪⎩

δ(nk−k<ξ≤nk) for n < N

δ(ξ>Nk−k) for n = N
, indicating the number

of active suppliers associated with realized demand ξ. To simplify the notation,

denote bn ≡ b(−i)
n and Gn(p) ≡ G(N−1)

n (p). We also denote b0 < c and bn > B, and

correspondingly, G0(p) = 1 and Gn(p) = 0 for all p ∈ [c, B]. The continuity and strict

monotonicity of F u can be established, implying that possibility of price tie can be

ignored. Now we have

Ru
i (p|ξ,b−i) =

N∑
n=1

δn(ξ)δ(bn−1<p<bn)(p − c)zn(ξ) +
N−1∑
n=1

δn+1(ξ)δ(p<bn)(bn − c)k,

where zn = min {k, [ξ − (n − 1)k]+}. Taking expectation over ξ and b−i, we have

R̂u
i (p) = (p − c)

N∑
n=1

[Gn−1(p) − Gn(p)]Yn + k
N−1∑
n=1

Φn+1

∫ B

p
(v − c)dGn(v), (2.13)

where Yn ≡
⎧⎪⎨
⎪⎩

Zn − kΦ̄(nk) for n < N

Zn for n = N
and Φn ≡

⎧⎪⎨
⎪⎩

Φ(nk) − Φ(nk − k) for n < N

Φ̄(Nk − k) for n = N

The first order condition leads to the following ODE of F u

N−1∑
n=0

(N−1
n )(F u)n(F̄ u)N−(n+1)Yn+1 (2.14)

= (p − c)Ḟ u
N−1∑
n=1

(N − n)(N−1
n−1 )(F u)n−1(F̄ u)N−n−1(Zn − Zn+1),

with boundary condition F u(B) = 1. [See Appendix A.6 for the derivation of (2.13)

and (2.14).] Similarly to DA, (2.14) can only solved numerically. The equilibrium

solutions are summarized in Proposition 2. (See Appendix A.7 for its proof.)
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Theorem 2 Both symmetric DA and symmetric UA have unique symmetric Nash

equilibria. (a) For ξ ≥ Nk, they are identical pure-strategy equilibria with {p∗i = B}N
i=1;

(b) For ξ̄ ≤ (N − 1)k, they are pure-strategy equilibria with {p∗i = c}N
i=1; (c) For

ξ

N
< k < ξ̄

N−1
, they are mixed-strategy equilibria. The equilibrium distribution F d(p)

solves equation (2.12) for a DA; and F u(p) solves ODE (2.14) for a UA.

It is easy to see that the demand uncertainty may eliminate asymmetric equilibrium

for uniform auctions. Recall that multiple asymmetric pure-strategy equilibria exist

for UA with deterministic demand (N−1)k < ξ < Nk (Lemma 1). They all involve a

complete separation between price maker and price takers. However, when demand is

random with ξ < (N − 1)k, a pure-strategy profile {p1 = B, pi = c for i �= 1} cannot

be sustained, because with probability Pr {ξ < (N − 1)k} > 0 the price is set other

suppliers but the highest one. Now bidding a low price is not a best response for any

possible price-setting bidder, who will either raise bid (for better expected margin)

or reduce bid slightly to undercut other suppliers (for larger expected sales). It leads

to non-existence of pure-strategy solution. In other words, a random demand with

ξ < (N − 1)k < ξ̄ guarantees the prevalence of mixed-strategy equilibrium (not pure

ones). This serves as additional justification for choosing to analyze the symmetric

mixed-strategy equilibria.

Impacts of Demand Uncertainty and Auction Comparison. To compare the per-

formance of the two auctions, we again consider buyer prices P u and P d with distribu-

tions of Hd(p) and Hu(p). Appendix A.8 explains numerical derivation of both Hd(p)

and Hu(p). It is easy to see that Expected Price Equality described in Proposition

1(a) still holds under stochastic demand.

E[P d] = E[P u] = (B − c)
NZn

X
+ c (2.15)

We are interested in whether the variability ordering for UA and DA described in

Proposition 1 also holds in random demand case. Since there is no closed-form solu-

tion for both Hd(·) and Hu(·), we use numerical experiments to answer this question.

The numerical test is set as follows. Consider 3-player symmetric DA and UA, with

the total capacity normalized to Nk = 1 (i.e., k = 1/3), and therefore, ρ = E[ξ]
Nk

= E[ξ].
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Figure 2.3. Impacts of Demand Uncertainty on Transaction Prices

Auction Setting: (N = 3, B = 10, c = 2)
Note: In the right graph, values associated with DA are meshed on the grey surfaces.

Let price cap be B = 10 and cost c = 2. The demand is ξ = ρ+ε, where the expected

demand ρ ∈ [0, 1] and random shock ε has symmetric triangle distribution Tr(−r, r).

This triangle distribution has a standard deviation of r√
6

and coefficient of variation

CV = r√
6ρ

, which can be easily controlled by adjusting r and ρ. Triangle distribution

is easy to analyze and has a unimodal pdf, which is typical for commodity demand.

To enforce ξ ≥ 0, r is controlled to be less than or equal to ρ. 14

For any given (ρ, CV ), the equilibrium solution F d and F u to DA and UA can

be numerically solved based on (2.12) and (2.14), as explained in Appendix A.8.

The experiment outcomes are presented in Figure 2.5.1. Deterministic demand cor-

responds to CV = 0, and serves as a benchmark for evaluating the impact of demand

variability. The following qualitative behaviors are observed.

(a) Buyer price in DA is stochastically less variable than in UA. The numerical

tests confirm our conjecture. P d is much more variable than P u. At intermediate

utilizations, the standard deviation of prices in DA is about one third of that in UA.

(b) Demand variability increases the chance of price dispersion, but not necessarily

its magnitude. In Figure 2.5.1(b) the vertical axis shows price variance and zero

14We performed limited experiments for other distributions and found that the qualitative per-
formances identified below are fairly robust.
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price variance corresponds to pure-strategy pricing outcomes. Intuitively, we expect

price to start to vary for bigger demand variability (CV ). As CV increases, for both

DA and UA, the range of utilizations with zero price variance is indeed shrinking

and eventually disappears.

Our intuition would also suggest, that the bigger demand variability, the bigger

price dispersion. This, however, is often not the case. In many cases, price dispersion

is nearly constant across various levels of demand variability. For intermediate uti-

lizations, introduction of demand variability may even decrease the price variance in

both auctions. This phenomenon appears more significant in UA, see Figure 2.5.1(b).

This could be referred to as “the mixing role” of demand variability. In a determin-

istic case, the price variance peaks at an intermediate utilization (point A in Figure

2.5.1(b)). With random demand shocks, the price variance becomes an equivalent

of weighted average of price variances. (Obviously, the underlying behavior is more

complicated as the sellers’ bidding strategies change.)

One of the questions we faced in the initial phases of interaction with a major

northwest energy trading company was whether the price variance is “primarily”

driven by demand variance. Our analytical solutions and numerical illustrations

suggest that it is not the case. Even with very small (or none) demand variability

price dispersion (traders’ gambling) is significant. With bigger demand uncertainty,

the range of utilizations where price dispersion (gambling) takes place quickly extends,

but the size of price dispersion is not significantly influenced, suggesting that the

structure of the interactions (use of auction) are primarily driving price variance in

the energy markets.

2.5.2 Asymmetric Bidders with Random Demand

Analyzing asymmetric auctions with multiple bidders is technically challenging. see

Chapter 3. We summarize known properties and, for the purpose of illustrating the

typical behavior, we use numerical examples.

To keep analytical tractability, we only consider the case of two bidders. Without

loss of generality, we assume c1 ≤ c2 throughout this section. For given costs (c1, c2)
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and price cap B, the resulting equilibrium depends on the combination of capacities

(k1, k2) and random demand ξ. The derivation is similar to KS. The complete solution

in presented in Appendix A.9. Since FFH contains a subset of these results, this

section focuses only on the results not discussed in FFH and highlights the new

insights not discussed in the previous sections.

Similarly to the symmetric case, DA always has a unique equilibrium, either pure-

strategy or mixed-strategy one. There are, however, some differences. (i) When a

mixed-strategy equilibrium prevails, one supplier may, with a positive probability,

choose a bid equal to the price cap B. With identical costs, low capacity supplier

bids more aggressively (with stochastically lower bids) than high-capacity one.15 That

is, the high-capacity supplier (h) has md
h(B) > 0 and prices stochastically higher

than the low-capacity party (l). The intuition is similar to KS who study a duopoly

capacitated pricing game. Supplier with higher price gets residual demand and,

thus, only partially utilizes her capacity. This hurts more low-capacity supplier who,

therefore, tends to price more aggressively.

For UA, similar to the symmetric case, we may have a continuum of equilib-

ria, which happens outside of two extremes (competitive equilibrium {c2, c2} and

monopoly-like equilibrium {B, B}). Each of them can be qualitatively viewed as

a mixture of a pure-strategy equilibrium and a “ pure” mixed-strategy equilibrium

(a solution with mu
1(B) = mu

2(B) = 0). Our “pure” mixed strategy is structurally

similar to the symmetric equilibrium for UA.

We acknowledge that in a duopoly setting, FFH’s selection of pure-strategy equi-

librium based on payoff-dominance has a better standing than in the oligopoly case.

This is because it does not require pre-game communication among the price takers

(there is only one). However, as each supplier prefers to be a price-taker and there

are two asymmetric equilibria, certain “ agreement” is still needed for a specific equi-

librium to be played, as in the symmetric case. Also, FFH’s selection again suggests

that there is no price dispersion between the two possible market clearing prices c2

15Numerical examples suggest that this remains the case with asymmetric costs, unless low ca-
pacity supplier has much higher cost.
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Figure 2.4. Expectations and Variances of Transaction Prices

In both graphs, values associated with DA are represented by the grey surfaces, cost vector

c = [1, 3], price cap B = 10, demand has (truncated) normal distribution N(4, 2).

and B in UA.

With some demand randomness (usually moderate), nonuniqueness of equilib-

rium for UA disappears. Assuming that price cap is not very small, it is sufficient

that there is a chance of demand realizations straddle the smaller of the capacities

ξ < min{k1, k2} < ξ̄. The reason for it is as follows. The only possible pure-strategy

equilibria are when the price is equal cost or the cap, B. A chance of demand ex-

ceeding lower capacity, ξ̄ > min{k1, k2}, removes possibility of selling at max{c1, c2}.
If demand may be smaller than lower capacity, ξ̄ > min{k1, k2}, there is a chance for

each supplier to be the price setter (supplier’ bid becomes the price) and none of the

suppliers is wiling to set the price at its cost. Obviously in these cases both suppli-

ers pricing at price cap B is not sustainable, eliminating possibility of pure strategy

equilibria. Thus, demand uncertainty has two impacts on the price variability – on

one hand, it reduces the system uncertainty by eliminating multiplicity of equilib-

ria; on the other hand, it enforces the price variability by making a mixed-strategy

equilibrium the unique solution to the game.

A. Average price and price variability. With unique solution for a UA, any ambiguity

in comparing the two auctions disappears. Figure 2.4 shows means and standard de-

viations for both auction formats, as a function of combinations of capacities (k1, k2).
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Our tests indicate that (a) the expected prices associated with DA and UA are quite

similar; the ranking of their values is ambiguous and the differences are small; (b)

the standard deviation is significantly higher in a UA than in a DA for most of k. It

suggests that, in asymmetric settings, the same lessons hold as in symmetric ones –

UA yields nearly the same expected price as DA but higher price volatility.

B. Capacity Asymmetry We are also interested in how capacity structure influences

the price dispersion. Since the qualitative characteristics of two auctions appear to

be similar, we only discuss the case of DA. In Figure 2.4(b), we illustrate the effect of

total capacity and the effect of capacity asymmetry. A reduction of total capacity (an

increase of the system utilization) is illustrated by moving from S to F . The expected

price increases, as expected, while the variance increases first and then decreases. The

price variance is maximized at intermediate utilization, implying robustness of the

same observation for symmetric case.

Capacity asymmetry is illustrated by considering capacity combinations between

L and R. In the nearly symmetric setting, corresponding to point S, both expected

buyer prices and their variances have local minima.16 The set of nearly symmetric

capacity combinations SF corresponds to the boundary separating sets Ωd
3 and Ωd

4

in the description of DA’s solution structure (see Appendix A.9). For points on this

boundary (curve SF ), the unique mixed-strategy equilibrium has no mass points,

md
1(B) = md

2(B) = 0. Thus, if total capacity is fairly evenly17 allocated between the

two suppliers, the auction is more competitive and we observe lower expected price.

On line LR the total capacity and thus system utilization are constant. If the two

suppliers’ capacities become unbalanced (i.e., S moves towards either L or R), the

supplier with increasing portion of system capacity will bid, with increasing proba-

bility, at price cap B, i.e., gains dominant pricing power. Consequently, the average

price increases and so does the price standard deviation.When capacity allocation

16The trajectories for UA and DA are not necessarily identical, but they are very close to each
other as illustrated in the Figure 2.4.

17Cost asymmetry influences the boundary: according to Appendix A.9, suppliers’ capacities are
proportional to their maximum profit margins (B− c1) : (B− c2). With fairly high price caps, these
capacities are nearly symmetric.
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becomes very unbalanced, Std[P d] may decrease, since E[P d] is approaching B and

does not vary so much. Thus, capacity asymmetry reduces the market competitive-

ness and leads to an increase of expected buyer price and increase and decrease of

the price variability.

2.6 Preliminary Empirical Study

Our paper focuses on two related problems, the rationale for price dispersion and

the comparison between DA and UA. Since we do not have access to data for the

U.K. electricity market (the only marketplace that adopted DA), we investigate the

uniform auction used in the U.S., and therefore, our partial tests refer only to the

first problem, the structure of price dispersion. New England Power Pool (NEPOOL)

is chosen due to its geographical integrity and availability of data.

Research Design and Data Description. Our objective is to see whether our theoretical

predictions are consistent with the observed data. Our theoretical analysis shows

that bidding strategies and corresponding price dispersion are linked to the demand

level, decentralization of capacity, and asymmetry of production technology (cost

and capacity). Since in reality the capacity profile and costs are fairly stable, while

demand changes, we will observe the effect of single primary factor, demand level,

on price dispersion. Our purpose is to use empirical data to provide qualitative

illustration of derived dynamics rather than to formally test the model.

In general, there are two approaches to describe pricing policies. One is to directly

study the bidding decisions of individual generating units. It is used in Wolfram

(1998), which analyzes the daily electricity auction in U.K. The other approach is to

estimate the aggregated price mark-up, adopted in Wolfram (1999, on U.K. market)

and Borenstein, et al. (2002, on California market). In principle, as a preliminary

test, this section takes the second approach. Our main distinction from the above

papers is that we focus primarily on the stochastic properties of the price (price

dispersion), rather than the average price level.

Since we are interested in describing price dispersion as a function of demand, a
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natural choice would be to estimate the different moments of price, such as mean,

variance, and skewness, conditional on the demand. A more comprehensive charac-

terization is to directly estimate the conditional distribution of the price. This can

be done through the Quantile Regression (QR) model introduced by Koenker and

Bassett (1978). Due to its advantage over the classic conditional-mean models, QR

model is gaining popularity in many areas of applied econometrics. See Koenker &

Hallock (2001) for a good introduction and Koenker (2005) for detailed coverage.

While not used so far in analyzing market power and auction data, we find QR very

appropriate in the settings we study, to estimate a family of price quantile curves as

functions of the actual demand.

Among possible concerns, the critical ones are potential endogeneity and influence

of factors not captured in the data. The possible endogeneity between demand and

price is marginal in our setting because electricity demand is price independent and

primarily driven by the weather (Engle, Mustafa, and Rice 1992). Among multiple

factors that may influence price dispersion, the main ones are fuel prices and genera-

tion outage. As the fossil-fuel (for example, natural gas) generating plants are often

the infra-marginal units at NEPOOL, the change of fuel price moves the cost curve on

a daily basis, and subsequently the realized electricity price. The generation outage

influences the price dispersion in two ways – 1) it directly modifies the marginal cost

curve; 2) creates information asymmetry, as some of the suppliers may be aware of

the outage of other units, but not necessarily all. In the analysis below, we attempt

to control the impacts of both factors.

Next we describe the data we selected for the study. We examine the hourly de-

mand and real-time price for NEPOOL. The available data covers the period March

2003 through June 2006.18 Since the new Standard Market Design (SMD) was initi-

ated at NEPOOL in March 2003, we omit the first year to eliminate (or at lest lessen)

the effect of any potential learning. As the daily outage data for NEPOOL and daily

natural gas price for a major pricing point in New England, Algonquin Cityhub are

18Spot price and load data are obtained from website http://www.iso-ne.com, where additional
information about the NEPOOL market can be found.
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Figure 2.5. Natural Gas Prices at Algonquin Cityhub and Electricity Outage at NEPOOL

available, we control for the impact of outage and of fuel price. Figure 2.5 displays

two time series, daily prices and daily outages. It is standard to classify the data as

heating season, cooling season, and shoulder months. (The data presented in Figure

2.5 includes spring-shoulder months (Mar-May 2004), cooling season (Jun-Aug 2004),

fall-shoulder months (Sep-Nov 2004), heating season (Dec 2004 - Feb 2005), and then

another cycle.) Since outages are an additional source of variability and since outages

are much higher during the shoulder months than in the heating and cooling seasons,

in our empirical analysis we omit all shoulder months and concentrate on the first

cooling season (Jun-Aug 2004). We do not control for weather – influence of the

changing weather manifests itself in demand changing over time.

Marginal Cost Curve and Qualitative Hypotheses. In this subsection we first discuss

the price dispersion that we expect to observe based on our theoretical analysis and

structure of the cost-capacity profile at NEPOOL. A direct implication of our analysis

is that price should exhibit heteroscedasticity conditional on different demand levels.

A more interesting and relevant question is how price variance behaves as a function of

the aggregated marginal cost curve. The discussion in Sections 2.4 and 2.5.1 suggests

that, given symmetric suppliers, the price tends to be more dispersed for intermediate

demands between 0 and capacity of all suppliers, as illustrated in Figure 2.6 (left).

For the symmetric uniform auction, we compute and plot nine quantile curves (for
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Figure 2.6. Numerical Examples Illustrating The Qualitative Hypotheses

10%, 20%, ... and 90%), illustrating the trend of price dispersion as demand increases.

Note, however, that in practice suppliers’ marginal costs are not equal. In practice,

it is convenient to express marginal cost as a function of cumulative capacity, where

all units are ordered from lowest to highest marginal cost. This is referred to as

marginal cost (MC) curve. MC curve is critical in our empirical illustration. A

major northwest energy trading company is building such curves for NEPOOL on

daily basis and provides several historical MC snapshots within our sample period.

Since we focus on the 2004 cooling season, we use the MC curve for the median

date (July 15th 2004), see Figure 2.7.19 Note that, for the time period we consider

(summer 2004), the influence of natural gas is less severe, because the price of natural

gas, a major electricity generating fuel, is quite stable as illustrated in Figure 2.5. As

marked on Figure 2.7, we have four groups of suppliers.we also plot the the histogram

of hourly demands (the lower graph in Figure 2.7). Thus, we conceptually treat the

MC curve as consisting of two cost levels, first being groups I and II, and second being

group III, with nearly constant cost in each group, as illustrated in Figure 2.6(b).

While our model assumes identical cost for many suppliers and we do not provide

a general solution for two levels of cost, we numerically verify that the solution for two

costs can be represented as two “stacked up” solutions, each for a constant marginal

19The curve-providing company adopts a method similar to Borenstein et al. (2002) for MC
estimation.
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Figure 2.7. Marginal Cost Curve (07-15-2004) and Histogram of Hourly Loads (Jun-Aug 2004)

cost, see Figure 2.6(b). The solution has an intuitive structure. When demand does

not activate the high-cost suppliers or only activates a small portion of them, they

are under intensive competition and, therefore, expected to price at their costs or

very close to it. For the lower-cost suppliers, pricing above the high cost group

is a dominated strategy, so the higher cost is effectively a price cap for the low-cost

suppliers playing the same role as B in our symmetric models. When demand activate

high-cost suppliers, the low cost supplier can secure their position of being a price

taker by pricing low (such as at the higher cost or just below). The game is now

played effectively only among the high-cost suppliers.

The 9 quantile curves illustrate the solution structure of above analysis and the

grey box indicates the area where we expect to observe the trend of price dispersion,

based on the histogram of demand distribution for the sample period (Figure 2.7).

This numerical example suggests that, when demand moves towards the next stack of

suppliers, the price range becomes narrower, and with demand continuing to increase

it eventually expands. Furthermore, for demands in left of the shaded area, price is

left skewed (with more heavier weight close to the cost level); while in the right of the

shaded area, the opposite is the case. Our objective is to investigate how the actual
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Figure 2.8. Quantile Regression Curves and Conditional Price Dispersion

price distribution behaves and whether the above prediction is supported.

One-Variable Conditional Price Dispersion. In this section we explain our method-

ology in more detail and then present the main results. Next subsection asks about

robustness of the observations.

The individual points in Figure 2.8(a) are a scatterplot of hourly demand and

price data. Clearly, as demand increases, the price tends to increase but exhibits

wide dispersion. It also illustrates significant nonlinearity between demand and price.

Figure 2.8(a) also superimposes 9 estimated quantile regression curves (for 10, 20, . . . ,

and 90 percent) on the scatterplot. Each curve is specified as a cubic function of the

demand to allow for the intuitive shapes of quantile curves.20 Each curves is specified

as follows: for τ = 10%, 20%, . . . , 90%,

P (τ |d) = α(τ) + β1(τ)d + β2(τ)d2 + β3(τ)d3. (2.16)

The curves in Figure 2.8 show the conditional heteroscedasticity of electricity

prices and imply that demand not only determines the average price level, but also

significantly influences the price variance and skewness. We can see that the realized

20The trend of demand-price in Figure 2.8(a) has a concave-convex curvature, which can well be
captured by a cubic function. We have tried other nonlinear and nonparametric expressions, and
the estimated Q-R curves appear to be robust.
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prices are less dispersed for middle-range demand and more dispersed at the two ends.

This is exactly what our theoretical model suggested. To show this more explicitly,

we estimate a family of quantile functions for every 1% and compute the conditional

density function of the market price. Figure 2.8(b) illustrates three probability density

curves conditional on demand levels of 11000, 15000, and 20000 MWh.21 The price

distribution for demand d2 = 15000 has narrower domain than the ones d1 = 11000

and d3 = 20000. Furthermore, price for d1 is left-skewed and price for d3 is right-

skewed, as predicted by our numerical example.

Robustness: Two-Stage Estimation of Conditional Price Dispersion. The

discussion in the previous section suggests that, for given MC curve at NEPOOL,

the prices tend to be less dispersed for intermediate demand and more dispersed for

both low and high demand. Clearly several uncontrolled factors may contribute to

the price dispersion, such as fuel price, outage, and load shape (with strong daily

periodicity). Also, the observation is based on one cooling season (summer 2004) and

it is not clear whether it would hold for other seasons. The purpose of this subsection

is to control the impacts of various system factors and examine other time periods.

We design the following two-stage test. In the first stage, we consider a single-

equation model, where average price is a function of demand, gas price, outage, and

time-of-the-day indicator, as shown below. In the second stage, we run quantile

regression on the residuals of first-stage equation. Similar to model (2.16), we focus

on the residuals’ distribution conditional on the demand, highlighting the influences

of market power. The model is as follows,

(a) P = α + β1d + β2d
2 + β3d

3 + γcGAS + δTout +
23∑
i=1

θiDi + ε (2.17)

(b) ε(τ |d) = α′(τ) + β ′
1(τ)d + β ′

2(τ)d2 + β ′
3(τ)d3 for τ = 10%, 20%, . . . , 90%.

where cGAS is the daily gas price at Algonquin for the trading day, Tout is the daily

outage at NEPOOL, and Di denote the hourly dummy.

21We note that Koenker (2005) estimated conditional distributions using Q-R in an analysis of
the serial correlation of daily temperatures.
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Figure 2.9. Quantile Curves for Residuals of Conditional Mean Models

In Figure 2.9, we illustrate the four families of estimated quantile curves, cor-

responding to the four electricity peak seasons. They show dispersion of the price

around the mean. The first one uses the same sample set as in Figure 2.8. In Figure

2.9(a) we observe the same behavior of price dispersion as in Figure 2.8(a). It sug-

gests that after controlling the impacts of the additional factors, price dispersion has

the same characteristics as a function of demand level (as a proxy of market power).

The same pattern can be observed in the other three graphs, suggesting consistency

of results among the datasets we considered.

2.7 Discussion and Concluding Remarks

Motivated by the widely observed price dispersion in electricity markets and the on-

going debate about design of wholesale electricity market, this paper investigates the

sources of price dispersion and compares the stochastic performance of two prevail-

ing market designs, DA and UA. We model the critical elements of the auction as a
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game among energy suppliers. The analysis of the game allows us to characterize the

equilibrium solutions and evaluate their sensitivity to the underlying assumptions.

Specifically, it enables us to investigate the probabilistic properties of prices paid by

electricity buyers and to compare their performances under DA and UA. To test the

empirical implications of our analysis, we introduce Quantile Regression model. By

linking hourly-spot prices for the cooling season in 2004 at NEPOOL with NEPOOL’s

marginal cost curve, we illustrate the consistency between these observations and be-

havior predicted by our model.

Our paper has a number of economic implications:

Interpretation of Price Dispersion. Our model indicates that one of important

sources of price dispersion is intentional randomization, manifesting itself as a mixed

strategy. While settings and mechanism are noticeably different, Varian (1980) uses

mixed-strategy equilibrium to explain the empirical failure of “law of one price” in

consumer markets. In order to price discriminate between informed and uninformed

customers, stores may randomly choose sales, which disables the uninformed con-

sumers from learning about future prices. The two critical elements of that paper,

market segmentation and information asymmetry, do not play any role in our auc-

tion settings. Instead, limited capacity causes price randomization. (At a high level

of abstraction, both stores’ randomized sales and electricity suppliers’ randomized

bidding can be treated as intentional strategies to achieve profitability.)

In economics literature, intentional randomization, as an interpretation of mixed

strategy, has been criticized for its lack of behavioral applicability. 22 Obviously, work

of Harsanyi (1973) may provide an alternative interpretation. Harsanyi establishes

a direct connection between pure-strategy Bayesian equilibrium and mixed-strategy

solution. The Harsanyi’s argument, adapted for electricity market, would be that an

electricity supplier in real world, instead of randomizing the bids, may price deter-

ministically according to certain privately observed signal(s). It could be her actual

22For example, Cachon and Netessine (2003), argue that “ mixed strategies have not been applied
in SCM, in part because it is not clear how a manager would actually implement a mixed strategy.
. . . It seems unreasonable to suggest that a manager should ‘flip a coin’ when choosing capacity.”
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cost, capacity outage, or even personal view of the system uncertainty (such as elec-

tricity demand forecast) that give rise to some price changes. With such information

asymmetry, a supplier’s mixed strategy at equilibrium is just her competitors’ ap-

propriate23 belief about her possible actions. Thus, price dispersion may well be

interpreted by the prevalence of mixed-strategy equilibrium.

While both interpretations (purposeful randomization and reaction to private sig-

nals) are possible, our conversations with traders of a major electricity trading com-

pany indicated that the traders do use purposeful randomization when deciding their

bids. (We expect that use of private information also plays a role in some situations.)

Implication to Energy Risk Management. Central task in any risk management

applications is to estimate and forecast price volatilities. The popular models used

in practice (ARCH and its variations) estimate the price volatility based on the

historical prices. To our best knowledge, there is no risk management literature

which incorporates information about other system factors. A practical reason is

that availability of such data is more limited compared to price data. Importantly,

we point to an additional critical predictor of price volatility. As shown in Section 2.6,

the level of electricity price dispersion is heavily influenced by the system capacity

utilization (or demand level). Since, in electricity markets, data for electricity demand

is as easily available as the price data, including demand information seems as an

appropriate adjustment.

Implication to Procurement Auction Design. The ongoing debate about electricity

auction designs has focused on the efficiency of discriminatory and uniform auctions

and, particularly, on the resulting price levels. Two schools formed among several

leading auction theorists (represented by KCPT and FFH respectively) point in op-

posite directions. Our analysis and numerical tests suggest, similarly to FFH, that

DA is a “better” market design. However, we do not endorse FFH’s argument that

DA yields lower prices compared to UA. Our paper shows the payment equivalence

under symmetric setting and illustrates that such relation holds approximately under

23Harsanyi shows that a mixed-strategy equilibrium is the limit of a sequence of pure-strategy
Bayesian equilibria corresponding to diminishing uncertainties of private signals.
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asymmetric scenarios. Thus, we do differ with both of the two schools in terms of

market efficiency. We prefer, however, DA over UA because electricity buyers will

experience lower price volatility under DA. Considering the high price volatility in the

U.S. market (where UA is adopted) and significant attention paid to it, this message

has a potential to influence policy decisions.

Independent qualitative confirmation of our results comes from the area of ex-

perimental economics, as recent developments of experimental economics provide an

alternative approach to compare the two market designs. The laboratory observa-

tions have supported neither schools’ view (both claim one market design is more

efficient than another). Mount et al. (2002) reports that “ both uniform auction

and discriminatory auction produce average prices fifty percent above the competi-

tive levels. However, the prices for the uniform price auction are more volatile with

many price spikes.” It is a direct support of our theoretical finding. Similar test was

conducted by Rassenti et al. (RSW, 2001), and their experiments indicate that (a)

a DA consistently generates lower price volatility; (b) the average prices of the two

auctions have no difference for high demand, but (c) DA yields higher average price

for low demand.24 Our theory is consistent with (a) and (b), but fails to explain

(c). Despite lack of perfect consistency, compared to other theoretical papers we are

aware off, our paper provides predictions closest to experimental observations.

24Here both “ low” and “ high” demand sustain pure-strategy equilibria with competitive price
level, so they can be both viewed as low-demand state as we mentioned in the extended abstract.
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CHAPTER 3

Bertrand-Edgeworth Auction with Multiple

Asymmetric Bidders

3.1 Introduction

Bertrand-Edgeworth Auction. Bertrand-Edgeworth game (i.e., capacitated firms

competing in price) is one of the most important building blocks for competitive

models. It allows to study how capacity constraints influence firms’ pricing decision

in competitive environment and links the two classic forms of oligopoly competitions,

in price and in quantity. In two recent papers about electricity auction designs,

Fabra et al. (2006) and Chapter 2 revisit the Bertrand-Edgeworth game, because

of its resemblance to the discriminatory auction implemented in the England and

Wales electricity markets in 2001. Their point of departure from existing Bertrand-

Edgeworth analysis is to assume inelastic demand1 and fixed pricing cap. Demand

inelasticity has always been identified as a key driver for the high-price volatility

in electricity markets and selection of pricing cap is of high interest for regulatory

economists after the California energy crisis in 2000-2001. As these features are more

common in procurement auctions than in oligopoly pricing competitions, we label the

model as a Bertrand-Edgeworth auction.

Contributions. The paper contributes in terms of both methodology and eco-

nomic insights. From methodological point of view, we structurally characterize the

solution to B-E auctions. We show that a deterministic (i.e., pure-strategy) equi-

librium outcome is achieved only under restricted system conditions. Otherwise, a

1As an extension, Fabra et al. consider the duopoly case with downward-sloping demand function,
which is solved in Kreps and Scheinkman (1983).
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mixed-strategy equilibrium prevails with each player randomizing prices over a cer-

tain price interval. In mixed-strategy case, we show that (a) there exists a market

leader whose bidding interval covers those of all other players and she is usually the

one with relatively high capacity; (b) when demand increases, the lower bound of

the pricing range is a piece-wise linear function that increases continuously, while the

upper bound jumps from one discrete cost level to another. Consequently, the price

range expands and contracts alternately. Applying these analytical results, we de-

rive closed-form solution for a family of B-E auctions, where all active suppliers have

similar size of capacity. The solution unifies the existing B-E solutions (asymmetric

duopoly in Fabra et al. (2006) and symmetric oligopoly in Chapter 2. As these struc-

tural properties can be extended to games with elastic demand, the two existing B-E

solutions in Kreps and Scheinkman (1983) and Vives (1986) are also special cases of

our solution.

For more general asymmetric oligopoly settings, we investigate the impacts of

capacity using numerical simulations. Our tests illustrate the limitation of one im-

portant implication in Kreps and Scheinkman (1983) that, for the same costs, lower

capacity yields more aggressive pricing behavior, as indicated by stochastically lower

bids. Such conclusion holds only in two-player games; in multiple-player settings, the

equilibrium has instead a nested structure, where a low-capacity player prices within

the range chosen by a high-capacity player, given that their costs are the same.

Literature. Three groups of papers are related to our work. The first stream of

research directly studies B-E games. The fundamental papers analyzing B-E games

include Kreps and Scheinkman (1983), Vives (1986), Osborne and Pitchik (1986),

and Vives (1999). Vives (1999) contains a comprehensive review of the research in

B-E area. Our analytical results are a generalization of the solution to asymmetric

oligopoly settings. Similar solution technique is also used in Burdett and Judd (1983)

and Varian (1988), both of which study the price dispersion in retail markets and

interpret it as a mixed-strategy equilibrium. The primary difference between their

models and B-E games that we consider, is that the mixed-strategy in these papers is

not driven by capacity constraints, but by information asymmetry or costly consumer
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search. Allen and Hellwig (1986) also studies oligopoly B-E competitions, but their

results focus on the aggregated impact of market decentralization. For example,

they show that when the number of suppliers increases, the Nash equilibria of B-E

games converge to a competitive outcome. While the insight itself is confirmed in

Chapter 2 such analysis of the limit cases is not our focus. The second group of

papers analyzes discontinuous games. As indicated in this paper, B-E games usually

result in mixed-strategy equilibria, due to discontinuities of the payoff functions.

The theoretical foundations of this field are laid out by Dasgupta and Maskin (1986),

Simon (1986) and Reny (1999), who focus on the general conditions for mixed-strategy

equilibrium to exist. Our paper instead concentrates on the equilibrium structure

and resulting economic insights. The third group of papers includes the literature on

shared auctions is also related to our work. Besides the two directly related papers

(Fabra et al. (2006) and Chapter 2), other important papers include Wilson (1979),

Wang and Zender (2002), and Klemperer and Meyer (1989). The main difference

is that they assume continuous supply functions submitted by bidders, while we

assume only unit-price and supply quantity can be submitted. Such difference leads

to different bidders’ behavior and quite different insights.

Due to technical nature of most proofs, after presenting the model in Section

3.2, in Section 3.3 we outline the analytical results and briefly explain the intuition.

Based on analytical results, in Section 3.4 we derive closed-form solution to quasi-

symmetric B-E auctions and numerically study the impact of capacity. In Section

3.5, we outline an extension of our model by considering demand elasticity. Appendix

A is a stand-alone document and it contains all technical derivations we refer to.

Appendix B contains description of the computational algorithm that numerically

finds the equilibrium.

3.2 Model

Game description. Consider a non-strategic auctioneer and N competing (strate-

gic) suppliers. Supplier i, for i = 1, 2, . . .N , submits a bid of quantity-price pair

(qi, pi), while the auctioneer collects the N bids and chooses a portfolio of suppliers
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that satisfies deterministic demand d at a minimal cost. The auctioneer imposes

a price cap b so that only prices pi ≤ b are accepted. Each supplier has a linear

production cost, with per-unit cost of ci, and fixed production capacity, xi. The

auctioneer can ask each supplier to provide any quantity, qi, up to her bid limit,

xi, and pays the bid price, pi, per unit requested. Given any vector of bid offers

(p,q) = ({pi}N
i=1 , {qi}N

i=1), the auctioneer’s problem is easily solved. The auctioneer

will start at the lowest bid price and accept min {d, qi}, then move to the next lowest

bid price, until demand is filled. The suppliers are aware of auctioneer’s strategy and

simultaneously submit quantity-price bids. We seek a Nash equilibrium among these

competing suppliers.

It is assumed that d > 0, xi > 0, ci ∈ [0, b) for i = 1, 2, . . . , N and b > 0.

All problem parameters are common knowledge among the players. Suppliers are

indexed according to increasing costs, 0 ≤ c1 ≤ c2 ≤ . . . ≤ cN < b. We assume that

the auctioneer will satisfy his demand if possible, even if he has to pay b per unit to

do it. For ease of exposition, we denote cN+1 := b, which may be interpreted as the

auctioneer’s reserve cost to meet the demand (in the form of penalties paid to end

users). Since any bid price less than a supplier’s cost yields a strictly negative payoff

for any positive number of units supplied, all suppliers who bid any capacity into the

market will bid pi ∈ [ci, b].

Allocation rule. The auctioneer minimizes his cost of satisfying demand, given the

quantities and prices bid into the market. We assume ties are broken by first granting

orders to the efficient suppliers (those with lower production costs). If suppliers with

the same cost form a tie, each supplier gets a demand share proportional to her

capacity. These assumptions lead to supplier i receiving demand for fraction ri(p,q)

of her bid capacity qi:

ri(p,q) = min

{
1,

[d −∑
n �=i qkδ(pk<pi) −

∑
k �=i qkδ(pk=pi,ck<ci)]

+

qi +
∑

k �=i qkδ(pk=pi,ck=ci)

}
. (3.1)

where δ(.) denotes an indicator function. Supplier i’s realized sales is denoted by

zi = qiri. We use y−i to denote vector (y1, . . . , yi−1, yi+1, . . . , yN), where y may refer

to price, quantity, or resulting policy.
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Lemma 2 Full-Capacity Bidding: For all suppliers, it is (weakly) optimal to bid

all their capacities into the auction, that is qi = xi for all i.

Proof. Proof of Lemma 16. As Ri(p,q) = (pi−ci)zi(p,q) and pi ≥ ci, it is sufficient

to show that zi(p,q) is nondecreasing in qi. By (3.1), we have

zi(p,q) = qiri(p,q) = min

{
qi,

[d −∑
k �=i qkδ(pk<pi) −

∑
k �=i qkδ(pk=pi,ck<ci)]

+

1 + q−1
i ·∑k �=i qkδ(pk=pi,ck=ci)

}
.

As [d−∑
k �=i qkδ(pk<pi)−

∑
k �=i qkδ(pk=pi,ck<ci)]

+ and
∑

k �=i qkδ(pk=pi,ck=ci) are non-negative

constants for fixed p and q−i, zi is nondecreasing in qi.

Henceforth, without loss of generality we assume that qi = xi for all players i

and the bidding game is reduced to an oligopoly pricing game. Accordingly, in what

follows we use the condensed notation ri(p) = ri(p,x) and zi(p) = zi(p,x). Clearly,

bidder i’s problem is,

max
pi∈[ci,b]

Ri(pi,p−i) = (pi − ci)xiri(pi,p−i).

Mixed strategies. It is well known that a B-E game may result in mixed-strategy

equilibrium and we introduce the corresponding notation here. Supplier i’s mixed-

strategy is denoted by σi, a random variable with support [ci, b]. Define Fi(p; σi)

as the cumulative distribution function for σi and mi(p; σi) the probability mass at

price p. Denote pi(σi) := inf{p : Fi(p; σi) = 1} and p
i
(σi) := sup{p : Fi(p; σi) = 0}

as the upper and lower bounds for bidding strategy σi. Given the opponents’ mixed-

strategy σ−i, supplier i has random sales and payoff, when choosing price p. Define

z̄(p, σ−i) := Eσ−i
[zi(p, σ−i)] as her expected sales, and similarly we define her expected

sales ratio r̄i(p, σ−i) and her expected payoff R̄i(p, σ−i).

Denote σ∗ as a mixed-strategy equilibrium and ERi(σ
∗) := R̄i(σ

∗
i , σ

∗
−i) supplier i’s

expected equilibrium payoff. For simplicity, we suppress the equilibrium-associated

notation by omitting σ∗. For example, Fi(pi) = Fi(pi; σi = σ∗
i ) and pi = pi(σ

∗
i ).

Similarly, we use shorthand notation z̄i(pi) = z̄i(pi, σ
∗
−i), r̄i(pi) = r̄i(pi, σ

∗
−i), R̄i(pi) =

R̄i(pi, σ
∗
−i), and ERi = ERi(σ

∗).
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Figure 3.1. Intervals of Effective Equilibrium Bids Corresponding to Different Demands

3.3 Main Equilibrium Results

An illustrative example. We start with a numerical example that illustrates the

structure of the equilibrium solution. Consider seven suppliers, who differ in pro-

duction costs, capacities, or both. By stocking their capacities one by one according

to increasing production costs, we construct the aggregated marginal cost curve for

the industry, see Figure 3.1. Given the marginal-cost curve, the equilibrium outcome

depends on the level of demand d. We refer to the suppliers whose bids are accepted

(with positive production) as active or activated ones, depending on the context. For-

mally, A = {i : ri(p
∗
i ,p

∗
−i) > 0}, is the set of active suppliers. When demand is

low, not all suppliers are activated and the competition is among the more efficient

suppliers (those with lower generation costs). To avoid activating more suppliers into

the game, their bids are bounded from above, so that the inefficient suppliers (those

with costs higher than this bound) are effectively bid out of the auction. More specif-

ically, for any given demand level and corresponding Nash equilibrium, we denote

P (d) = min{p
i
|ERi > 0} and P (d) = max {pi|ERi > 0} as the lower and upper

bounds of the bids placed by profitable suppliers. By increasing the demand level

from zero to above the total capacities
∑N

i=1 xi, we construct a continuum of B-E auc-

tions and plot the trajectories of P (d) and P (d) in Figure 3.1 as functions of demand

d.
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When P (d) = P (d), a pure-strategy equilibrium is reached, where all profitable

suppliers bid uniformly the same price. When P (d) < P (d), the auction ends with a

mixed-strategy equilibrium, where profitable suppliers randomize the bids within the

interval [P (d), P (d)]. P (d) is a continuous and piecewise linear function of demand d,

while P (d) is a non-decreasing step function, with values equal to certain cost levels.

As demand increases, the effective bidding range shifts upward and it may expand

and contract alternatively. To explain the above qualitative characteristics, we below

describe the Nash equilibrium.

Equilibrium normalization. We first impose an assumption that simplifies the

analysis without any loss of mathematical generality and economic insights. When

P (d) < b the suppliers with cost higher than P (d) are never activated and have zero

payoffs. Thus, multiple equilibria may exist since these inactive suppliers are indif-

ferent among all prices between their cost and the price cap. Of course, their bids

have no impact on the economic transfers among agents. We label such equilibria as

payoff equivalent. We choose one among these, which we call a normalized equilib-

rium, where nonprofitable suppliers bid their costs (Ri(p) = 0 implies p∗i = ci). We

show that for any Nash equilibrium (pure-strategy or mixed-strategy), there exists a

normalized, payoff equivalent equilibrium (Lemmas 20 and 23) and that applies to all

costs, both greater and equal to P (d). The proof for mixed strategy is delayed until

preliminary results for mixed strategy are described. In what follows, we analyze the

normalized equilibria.

Pure-strategy equilibrium. In a pure-strategy equilibrium all active suppliers bid

the same price. If there was any price difference among them, any active supplier

who bids below the highest bid must sell all of her capacity and, by raising her bid

towards the highest active bid, her capacity remains fully utilized, while the payoff

is strictly increased. Lemma 17 formally shows that in pure-strategy equilibrium no

price separation exists among the active bidders. The remaining question is what

price will be chosen. We show that it must be either the upper limit b or one of the

costs (otherwise all active bidders would raise the price). The lowest cost that may

play this role is the cost of the first firm to put total bid capacity above demand
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(a minor modification is required if demand is less than the quantity bid by the

lowest-cost firm). Formally (Proposition 17), the following is the bid price

P ∗ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c2 for d < x1 (a)

cj for
∑j−1

k=1 xk ≤ d <
∑j

k=1 xk and j ≥ 2 (b)

b for d ≥ ∑
k xk (c)

(3.2)

Any price corresponding to a cost lower than P ∗ cannot activate enough capacity

to cover demand. Also, any price above P ∗ activates a total capacity strictly higher

than demand and triggers a demand rationing. As at least one supplier i with positive

profitable margin (P ∗−ci > 0) does not fully utilize her capacity, she has an incentive

to decrease the price and increase her capacity utilization.

Since we consider only normalized equilibria, the above argument suggests the

pure-strategy equilibrium, if exists, is uniquely determined as p∗i = min {P ∗, ci} for

all i (Proposition 18). If, at this price vector no supplier is tempted to defect, then

that price vector is an equilibrium. Analyzing the benefits of defecting is easy because

by (C.7) Ri(P
∗) = (P ∗ − ci)(xi ∧ d) for i with ci < P ∗ and Ri(p

∗) = 0 otherwise.

Formally, we define the payoff of supplier i

Si(p) := Ri(p,p−i = p∗
−i) = (p − ci)[d −∑

k �=i

xkδ(ck<p)]
+ for p ∈ (ci, b]. (3.3)

Strategy profile p∗i = min {P ∗, ci} sustains a pure-strategy equilibrium if and only if

Ri(P
∗) ≥ Si(cj) for all i with ci ≤ P ∗ and cj > P ∗. Conversely, if there is any supplier

i having Ri(P
∗) < Si(cj) for certain cj > P ∗, there is no pure-strategy equilibrium

and we turn to seek mixed-strategy equilibrium.

In next subsections, we describe the structural properties of the Nash equilib-

rium. The accompanying lemmas and propositions are presented in the stand-alone

appendix of this chapter (Appendix B).

Preliminary properties of mixed-strategy equilibrium. We first establish several

properties that any mixed-strategy equilibrium must satisfy. The first one relates to

the upper bound on the pricing range, the next two to the lower bound on the pricing

range, while the fourth one describes ordering of P ∗ and P .
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First preliminary property: Given that there exists supplier(s) obtaining positive

market share by bidding up to P , any supplier with cost ci < P also expects to

obtain a positive sales (and therefore a positive payoff) by bidding between ci and P .

Formally, the upper bound of effective bids P separates the profitable bidders from

the nonprofitable ones: (Lemma 22) ci < P ⇔ ERi > 0.

Second preliminary property: Lemma 24(a) proves that a supplier with p
i
= P has an

expected payoff of ERi = (P−ci) min {d, xi}. Otherwise, if ERi < (P−ci) min {d, xi},
supplier i would have an incentive to defect to P ’s left neighborhood, which provides

a bigger payoff (P − ci) min {d, xi} > ERi.

Third preliminary property: Among the profitable suppliers, for some of them, their

withdrawal would translate into not satisfying the market demand at a certain price

p. In general, supplier i is considered critical at price p if its cost ci is smaller than

price p and its capacity is necessary to meet the demand, that is
∑

k �=i xkδ(ck<p) ≤ d.

In Lemma 24b, we show that, for those suppliers who are critical at price P , we must

have p
i
= P . If this is not the case, (i.e., P < p

i
) the suppliers with p

j
∈ [P , p

i
) have

an incentive to raise their lower bidding bound, without losing any sales.

Fourth preliminary property: Another observation in Figure 3.1 can also be formally

justified; the lower bidding bound in a mixed-strategy equilibrium is always above

(strictly above for mixed strategy) the price P ∗ determined by (C.7). Since pure-

strategy equilibrium does not exists, we must have at least one supplier i with ci < P ∗

and (cj−ci)[d−∑
k �=i xkδ(ck<cj)] > (P ∗−ci) min {d, xi} for certain cj > P ∗. It suggests

that
∑

k �=i xkδ(ck<P ∗) < d, and therefore, P ≤ P ∗ is impossible.

Anchoring supplier. We show (Lemma 25) that at most one profitable supplier has

positive probability mass mi(P ) > 0 at the upper bound P (implying Ri(P ) = ERi).

(Otherwise, if there was more than one supplier doing so, there would be a positive

chance of a price tie at P . From P > P > P ∗, we have that
∑

k xkδ(ck<P ) > d, implying

the rationing rule (C.1) applies on that occasion. Consequently, the least efficient

supplier among them (with the highest cost) would prefer to shift the probability

mass towards P ’s left neighborhood, where a higher expected sales can be achieved.

Thus, more than one supplier choosing mi(P ) > 0 cannot be an equilibrium outcome.
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Suppose there exists a supplier with mi(P ) > 0. Since R̄i(P ) = ERi > 0 and

mj(P ) = 0 for all other profitable suppliers, we have that ERi = Si(P ) > 0, implying

d−∑
k �=i xkδ(ck<P ) > 0. According to the second preliminary property (Lemma 24a),

supplier i must choose p
i
= P . When there is no supplier with mi(P ) > 0, it can be

similarly established that any supplier i with pi = P satisfies the above two properties

(ERi = Si(P ) and p
i
= P ). Formally, we label supplier iA as an anchoring supplier

if she satisfies (a) ciA < P , (b) p̄iA = P , and (c) miA(P ) ≥ mj(P ) for all j with

cj < P . This observation allows us to determine the bidding interval [P, P ], if only

we can identify the supplier with these characteristics. We can further show (Lemma

27) that p̄iA = P = arg max{SiA(cj) : cj > P ∗}. It highlights supplier iA’s role in

forming the mixed-strategy equilibrium, because her incentive to defect from P ∗ to

P is the primary reason that a pure-strategy outcome p∗i = max {ci, P
∗} cannot be

an equilibrium.

Computing price bounds. The task of deriving P and P boils down to identify-

ing supplier iA. As the procedure is analytically complicated (Lemmas 27-29 and

Proposition 19), we only outline the critical elements. First, we can narrow down

the search for iA to the suppliers who are critical at price P ∗, i.e., iA ∈ Ω := {i ∈
N : ci ≤ P ∗ and

∑
k �=i xkδ(ck≤P ∗) < d}. Second, there may exist multiple cj’s that

maximize SiA(cj). We show that, under such circumstance, P has to be the small-

est one among the multiple maximizers. Therefore, we define for all i ∈ Ω the trial

value for the upper bidding bound P
T
i := min {arg max {Si(cj)|cj > P ∗}}. Clearly,

P ∈ {P T
i |i ∈ Ω}. Thirdly, ERiA = SiA(P ) = R̄iA(P ) = (P − ciA) min{xiA , d} implies

p
iA

= P =
SiA

(P )

min{d,xiA
} + ciA . Thus, we define for i ∈ Ω the trial value of lower bidding

bound P T
i :=

max{Si(cj)|cj>P ∗}
min{d,xi} + ci and P ∈ {P T

i |i ∈ Ω} must hold. We can actually

identify P by showing that the anchoring supplier must have the largest trial value of

lower bound among all candidates, i.e., P = P T
iA

= maxi∈Ω{P T
i }. If there exists one

supplier i satisfying P T
i > P T

j for all j ∈ Ω\ {i}, she must be the anchoring supplier

and her trial value of the upper bound P
T
i must be P . Some added complexity results

from the possibility that multiple suppliers in Ω attain P k = maxi∈Ω{P T
i } = P , which

impedes the determination of P . We resolve this last ambiguity by showing that, if
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multiple suppliers have P k = P , the anchoring supplier must have the smallest trial

value of the upper bound among these suppliers, i.e., P = min{P T
i |i ∈ {k|P T

k = P}}.
If multiple suppliers have both P k = P and P k = P , they are all anchoring suppli-

ers. The process above completely determines the anchoring supplier iA and the two

pricing bounds {P, P}.
Distributional properties. Having uniquely determined the price interval for effec-

tive bids, a further characterization of the mixed-strategy equilibrium is based on

investigation of the distribution function Fi. Unfortunately, closed-form solutions

exist only for some special cases – we present these in the next section. Outside

those cases, mixed-strategy equilibrium can only be numerically constructed. Both

the analytical and numerical solutions rely on one useful result that we describe next.

We prove (Proposition 16) that the equilibrium distribution function is continuous

for any critical supplier at price P , i.e., there is no probability mass associated with

any price within (P , P ). The intuition is as follows. If supplier i arranges a prob-

ability mass at price p̃, it deters all other players from pricing at p̃ because of the

possibility of sharing demand with agent i and this disadvantage also extends to p̃’s

right neighborhood. As no other supplier will price at p̃ or its right neighborhood, it

is not optimal for supplier i to arrange a positive probability mass at p̃.

Summarizing the properties above we have the following theorem:

Theorem 3 (1) Pure-Strategy Equilibrium: A normalized pure-strategy equi-

librium exists and is unique if and only if, for each supplier i with cost ci ≤ P ∗

and for all cj > P ∗, (P ∗ − ci) min {d, xi} ≥ Si(cj). The pure-strategy equilibrium is

p∗i = max {P ∗, ci} for all i.

(2) Mixed-Strategy Equilibrium: A normalized mixed-strategy equilibrium

satisfies the following. (a) There exists an anchoring supplier iA such that ciA ≤ P ∗,

p
iA

= P =
ERiA

min{d,xiA
} + ciA , p̄iA = P = arg maxcj>P ∗ SiA(cj), and ERiA = SiA(P );

(b) The bidding interval [P , P ] can be uniquely determined by P = maxi∈Ω{P T
i :=

maxcj>P∗ Si(cj)

min{xi,d} + ci} and P = mini∈{k|PT
k =P}{P T

i = min{arg maxcj>P ∗ Si(cj)}}; (c) For

any critical supplier i, mi(p) = 0 for all p ∈ (min {ci, P} , P ).

We close this section by revisiting and explaining further the example shown in
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Figure 3.1. Consistent with derivations above, P (d) in Figure 3.1 is a step function

and takes values equal to costs of some inefficient supplier(s). More interestingly,

P (d) is piece-wise linear in d. It is because P (d) = Si(P )
d∧xiA

+ ciA is linear in d (by

(C.18) and xiA < d). When P (d) jumps to a higher cost level, there is a change

of the slope of P (d), as illustrated by the kink of P (d) for
∑2

k=1 xk < d <
∑3

k=1 xk.

Moreover, when multiple suppliers have the same cost, assume for a moment that the

suppliers with the same cost are ordered from smallest to largest capacity. As Figure

3.1 illustrates, pure-strategy equilibrium usually collapses when demand activates the

supplier with the highest capacity (such as d >
∑2

k=1 xk and d >
∑6

k=1 xk). Note that

last supplier within the group becomes capable to defect from a competitive pricing

level. Correspondingly, in the resulting mixed-strategy equilibrium, she becomes the

anchoring supplier.

3.4 Applications

Analytical solution to quasi-symmetric B-E auctions. Applying the above results,

we can compute the equilibrium distribution functions {Fi(p)}N
i=1 for some cases ana-

lytically and the remaining ones numerically. In this subsection, we derive the closed-

form solution for B-E auctions when each supplier is critical at price P , where P and

P are derived by Theorem 3(2-b). We label such an auction as quasi-symmetric.

According to the third preliminary property, we have p
i
= P for all i with ci < P .

For p in P ’s right neighborhood, we can compute the equilibrium solution {Fi(p)}i∈Ip

where the index set is defined as the set of players for whom p is within its support,

Ip := {i : Fi(p) ∈ (0, 1)}} and the number of players Np := ||Ip||. In the below

derivation, we only compute distribution functions for players in Ip.

According to Theorem 3.(2c), Fi(p) is continuous, and guided by the same in-

tuition,2 we can show that Fi(p) is also strictly increasing in p ∈ (P , pi). Continu-

2Under the assumption of quasi-symmetry, if the probability distribution Fi has a hole [α, β]
within p ∈ (P , pi), the rest of suppliers will find that β generates strictly higher profit than any
price in [α, β). Therefore, rest of the supplier should also arrange zero probability within [α, β).
This in turn implies that, for supplier i, R̄i(α) < R̄i(β), and therefore, this hole shall further expand
leftwards, which contradicts the optimality of Fi.
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ity and monotonicity imply R̄i(p) = ERi.
3 According to the assumption of quasi-

symmetric auction, supplier i’s expected payoff at p is R̄i(p) = (p− ci)[
∏

k �=i Fk · (d−∑
k �=i xk) + (1 − ∏

k �=i Fi) · xi]. Applying the second preliminary property, we must

have ERi = (P − ci)xi for all i. From R̄i(p) = ERi, we have
∏

k �=i Fk = xi∑
k

xk−d

p−P
p−ci

.

Multiplying the equations across all i, we have expression of (
∏

k Fk)
Np−1. Taking

(Np − 1)th root of the expression and then dividing it by
∏

k �=i Fk, we obtain

Fi(p) =

⎡
⎣ p − P∑N

k=1 xkδ{ck<P} − d
· ∏

k∈Ip

(
xk

p − ck
)

⎤
⎦

1
Np−1

p − ci

xi
for i ∈ Ip. (3.4)

Figure 3.2 shows an example of the equilibrium distribution functions for a 3-

bidder B-E auction. By applying Theorem 3, we identify supplier 3 as the anchoring

supplier and derive P and P = b. It is easy to verify the capacity profile satisfies the

condition of quasi-symmetry, so equation (3.4) can be applied directly at P ’s right

neighborhood. Note that, when p moves upward, F1(p) reaches value of 1, at price

p1. Since F1(p) = 1 for all p > p1, within interval (p1, P ), we solve the problem for

suppliers 2 and 3 only. The same procedure is still valid and the solution has the form

of (3.4), with the only modification of I′p = {2, 3} and N ′
p =

∥∥∥I′p∥∥∥ = 2. For any quasi-

symmetric B-E auction, we repeatedly compute the distribution functions based on

equation (3.4) for the modified set Ip. Note that, the above derivation process has

suggested, that the solution for a quasi-symmetric B-E auction is unique.

The N-bidder symmetric solution in Chapter 2 is a special case of (3.4). Similarly,

the 2-bidder asymmetric solution in Fabra et al. (2006) is also a special case of this

procedure. (Since for any price, at least two players are in the Ip set, in duopoly, the

price ranges of two players must be identical. Thus, the quasi-symmetric capacity

condition is not needed and we need to replace xk by x̂k = min {d, xk} for k = 1, 2.)

Numerical study for general B-E auctions. Outside the quasi-symmetric auctions,

closed-form solutions usually do not exist. However, inspired by the above procedure,

we propose a numerical scheme (defined in detail in Appendix B) to numerically

3R̄i(p) = ERi results from the following observations established in Chapter 2: (a) mi(p) > 0
implies R̄i(p) = ERi; (b) Fi(p) > Fi(p′) for all p′ < p implies R̄−

i (p) ≡ limp′↑p R̄i(p′) = ERi; (c)
Fi(p) < Fi(p′) for all p′ > p implies R̄+

i (p) ≡ limp′↓p R̄i(p′) = ERi.
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Figure 3.2. Solution for 3-Bidder B-E Auction

Example Parameters: c = [1, 2, 2] ,x = [3, 4, 5] , d = 10, b = 5

compute the equilibrium solutions for general B-E auctions. The algorithm relies on

four assumptions

(A1) Fi(p) is continuous in p ∈ [P , P ); partially established in Theorem 3.(2c)

and

(A2) Fi(p) is strictly increasing in (p
i
, pi).

(A3) R̄i(p) is strictly increasing in p ∈ [ci, pi
) for i ∈ Π.

(A4) There is unique mixed-strategy equilibrium.

These four assumptions hold for any quasi-symmetric case. While we are not aware

of any counter-examples, we have not been able to establish that they hold in general.

Hence, they are used as assumptions in our numerical procedure.

In Figure 3.3, we first present the solution to a four-player asymmetric bidding

game, illustrating the effects of cost and capacity. The equilibrium has the following

features: (a) the anchoring supplier 4 has probability mass at b = 10; (b) supplier

3’s bids also covers the whole (anchoring) interval, but her bids are stochastically

smaller than supplier 4’s; (c) supplier 2 chooses P as her lower bound, but p2 is

smaller than P ; (d) supplier 4 randomizes over a subset of supplier 2’s strategy set

with p
2

< p
1

< p1 < p2. Suppliers 1, 2, and 3 have the same cost c1 = c2 = c3, but

their capacities are ordered x1 < x2 < x3, and supplier 4 has c4 > c3 and x3 = x4.

60



6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Equilibrium Distributions (CDF)

Supplier 1
Supplier 2
Supplier 3
Supplier 4

5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

1.5

2
Equilibrium Bid Distribution (PDF)

Supplier 1
Supplier 2
Supplier 3
Supplier 4

6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Equilibrium Distributions (CDF)

Supplier 1
Supplier 2
Supplier 3
Supplier 4

6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Equilibrium Distributions (CDF)

Supplier 1
Supplier 2
Supplier 3
Supplier 4

5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

1.5

2
Equilibrium Bid Distribution (PDF)

Supplier 1
Supplier 2
Supplier 3
Supplier 4

5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

1.5

2
Equilibrium Bid Distribution (PDF)

Supplier 1
Supplier 2
Supplier 3
Supplier 4

Figure 3.3. Solution for 4-Bidder B-E auction

Example Parameters:c = [2, 2, 2, 3] , b = 10,x = [0.6, 3, 4, 4] , d = 9

Our example illustrates the impacts of capacity on price formation – when costs

are similar, capacities determine the ranges of price randomization. Particularly, if

ck = cl and xk < xl, then [p
k
, pk] is nested within [p

l
, pl]. For example, suppliers 1,

2, and 3 have identical costs and ordered capacities, so their bidding intervals satisfy

p
3
≤ p

2
< p

1
< p1 < p2 < p3. This observation is different from an observation

reported in Kreps and Scheinkman (1983). In their analysis of B-E competition of

duopoly with the same cost, the player with lower capacity chooses a more aggressive

pricing strategy by bidding stochastically lower. Their interpretation is that the low-

capacity party has a higher risk to be outbid, because serving the residual demand

means a much smaller market share than being called first. By bidding lower, the

low-capacity player reduces the chance to be outbid. Note that the game in Kreps

and Scheinkman (1983) assumes elastic demand d(p), but the same behavior exist and

the same lessons apply when demand is inelastic, see Fabra et al. (2006). However, as

indicated in Figure 3.3, the claim does not hold when there are more than two bidders.

In general, only nested pricing structure can be claimed. In the special case of two

players, due to choosing the same pricing interval, and the high-capacity supplier

possibly arranging a probability mass at the price cap b, her bids are stochastically

higher.

The intuition in Kreps and Scheinkman (1983) about low-capacity supplier’s vul-
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nerability to be outbid remains valid, but this behavioral description is a part of

a bigger picture. When several players have different capacities, the high-capacity

parties anchor the competition by setting the price interval. A low-capacity supplier

has a smaller stake in the game and behaves like a price taker, selecting the optimal

price range that maximizes her payoff. In fact, our numerical algorithm reflects such

intuition, when locating the lower pricing bound p
i
if p

i
> P . For example, for B-E

auction illustrated in Figure 3.3, given {F2, F3, F4} determined in P ’s right neighbor-

hood, p
1

= arg maxp R̄1(p, F2(p), F3(p), F4(p)). Of course, player 1’s active bidding

influences high-capacity players’ bidding strategy in [p
1
, p1] at equilibrium. These are

reflected in Figure 3.3(b), where pdf {f2, f3, f4} lose continuity at p
1

and p1.

3.5 An Extension

Demand Elasticity. In the preceding sections, we have characterized the equilib-

rium structure for games with deterministic inelastic demand. We investigate here

whether the same properties hold for more general demand. The following theorem

summarizes the equilibrium structure for general demand functions.

Theorem 4 Suppose demand function d(p) is non-increasing and concave. The fol-

lowing hold:

(i) (Pure-Strategy Equilibrium) Define

P ∗ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg max
p∈[c1,c2]

{(p − c1) [d(p) ∧ x1]} if d(c2) < x1

cj if
∑j−1

k=1 xk < d(cj) <
∑j

k=1 xk and j ≥ 2

p(
∑j

k=1 xk) if d(cj+1) ≤ ∑j
k=1 xk ≤ d(cj)

b if d(b) ≥ ∑
k xk

(3.5)

where p(·) is the inverse demand function. A unique normalized pure-strategy equilib-

rium exists with p∗i = P ∗∨ ci, if and only if P ∗ = arg maxp≥ci
{Si(p) := (p− ci)[d(p)−∑

k �=i xkδ(ck<p)]
+} for all i with ci ≤ P ∗.

(ii) (Properties of Mixed-Strategy Equilibrium) A mixed-strategy equilib-

rium satisfy (ii-a) i ∈ Π := {k : ERk > 0} if and only if ci < P ; (ii-b) p
i
= P implies

62



ERi = (P − ci)[xi ∧ d(P )]; (ii-c) i ∈ Π and
∑

k∈Π\{i} xk ≤ d(P ) implies p
i
= P ; (ii-d)

P > P ∗; (ii-e) at most one profitable supplier has mi(P ) > 0.

(iii) (Anchoring Supplier) At a mixed-strategy equilibrium, these exists a prof-

itable supplier iA such that piA
= P and miA(P ) ≥ mj(P ) for all j ∈ Π\ {iA} .

Supplier iA satisfies (iii-a) ERiA = SiA(P ); (iii-b) ciA ≤ P ∗; (iii-c) p
iA

= P =
ERiA

d(P )∧xiA
+ ciA ; (iii-d) P = arg max {SiA(p) : p ∈ (P ∗, b]}.

(iii) (Pricing Range) The pricing bounds of a mixed-strategy equilibrium can be

determined as follows. For all i ∈ Ω := {i : ci ≤ P ∗ and
∑

k �=i xkδ(ck<P ∗) < d(P ∗)},
define R̄T

i := max {Si(p) : p > P ∗} , P
T
i := min{arg max{Si(p) : p ∈ (P ∗, b]}}, and

P T
i ∈ [P ∗, P

T
i ] as the unique solution p ∈ [P ∗, P

T
i ] to (p − ci) [xi ∧ d(p)] = R̄T

i . The

pricing bounds are P = maxi∈Ω

{
P T

i

}
and P = mini∈Ω{P T

i : P T
i = P}.

Note that, the regularity imposed on the demand function implies that d(p) is either a

constant or strictly decreasing in p, which implies existence of a reverse function p(d).

As the analysis of decreasing-demand case is very similar to our previous results, we

only explain the equation (3.5). As illustrated in Figure 3.4, vertical lines for demand

are replaced by decreasing curves p(d). P ∗ corresponds to the point where reverse

demand function p(d) crosses the marginal cost curve, except when c1 < c2 and

d(c2) < x1. For this exceptional case, supplier 1 will not choose any price above c2 to

avoid activating more capacities than the demand. For price below c2, supplier 1 prices

like a monopoly so p∗1 = P ∗ must be a profit maximizer within [c1, c2]. The proof of

Theorem 4 for elastic demand-case largely repeats the arguments for inelastic-demand

case, with d replaced by d(·). Technical difficulties are added because downward-

price elasticity makes it less obvious how price adjustment changes one’s payoff and

concavity of the demand function is necessary for the proof to hold. A complete proof

is presented in Appendix C.

Theorem 4 can be applied to derive the mixed-strategy equilibrium. Similar to the

inelastic demand case, if no supplier chooses a probability mass at any price p ∈ [P , P )

and all active players have strictly increasing Fk in p ∈ [p
k
, pk], then the equilibrium

distributions can be computed progressively from P to P . For special cases, like

duopoly and symmetric oligopoly, this approach yields closed-form solutions.
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Figure 3.4. Derivation of P ∗ under Different Demand Functions

The duopoly solution is presented in Kreps and Scheinkman (1983) and symmetric

solution in Vives (1986). In fact, with d = d(p), where d(p) is concave, (3.4), when

applied to specific settings, describes the closed-form solutions in the following four

papers Kreps and Scheinkman (1983), Vives (1986), Fabra et al. (2006), and Chapter

2. In this spirit, it unifies (generalizes) the previously known results. Due to its

significant generality, we refer to equation (3.4) as the canonical solution to B-E

auctions/games.
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CHAPTER 4

Unit-Price Procurement Auctions with

Asymmetric Information about Costs and

Capacities

4.1 Introduction

Motivation. Share auctions are widely used in public and private sectors.

Their behavior is typically analyzed using continuous bidding functions. We follow

an alternative approach, using unit-price bids. Within unit-price auctions we are able

to provide structural description of the resulting equilibria.

Share auctions assume that the good is perfectly divisible and that the bidders

are not forced to bid one unit each (as in single-item auctions) or a multiple of that

unit (as in multi-unit auctions). Two significant applications of share auctions are

electricity/procurement auctions and treasury auctions. Electricity auctions have all

elements that are critical in our model: asymmetric information, stable, but uncertain

costs, and limited capacity. Treasury auctions have some characteristics of our model.

(They are, however, heavily studied in literature.)

- Electricity (Reverse/Procurement) Auctions Resulting from the deregula-

tion of energy industry in Europe and the United States, major wholesale-electricity

markets were re-organized and are currently structured around procurement auctions.

Two different formats are used in United Kingdom and United States, discriminatory

and uniform, respectively. The most important features of the electricity auctions are

(a) stable marginal production costs and (b) rigid capacity for a specific generation

unit, both cost structure and available capacity are, however, not known to other bid-

ders until much later time (actual bids are published with a delay, usually 6 months,
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and they provide information about capacity and partial information about costs).

- Treasury Auctions They are probably the most influential application of

share auctions, due to their great scale and significant impact on the economy (influ-

encing the whole bond market). While electricity auctions are reverse one, treasury

auctions are normal and thus the role of cost is played by individual valuation (which

is uncertain). Also, individual budgets in treasury auctions act similarly to capacity

in reverse auctions.

Analytical Challenge. Two modeling strategies are adopted to analyze share auc-

tions, continuous-bidding schedule and unit-price bids. Each of these has certain

strengths, but also certain limitations due to the need for analytical tractability,

while preserving the important characteristics of share auctions.

The first strategy assumes that the bidding schedule is a continuous function

of quantity and price (Wilson, 1979, Back & Zender 1993, and Wang & Zender,

2002). The major drawback is that in practice the number of bids is limited and even

with limited number of bids, bidders usually do not place the maximum number.

Empirical evidence in treasury auctions (Bikhchandani & Huang, 1993) and electricity

auctions Chapter 2 indicates that most auction participants use very small number

of price-quantity pairs (mostly one or two). Another limitation of this modeling

strategy is that each supplier’s is assumed to be able to satisfy the total demand,

that is, there is no capacity limits for suppliers’ bids. It is particularly a poor fit

for electricity auctions, where capacity constraint seems to be an important driver of

bidding strategy.

While continuous bidding strategy assumes that bidders can place (unrealistically)

many bids, the alternative modeling strategy (FFH 2007 and Chapter 2) moves in

the opposite direction. It assumes that each supplier submits only one bid consisting

of single production price for its capacity. This approach is suitable to highlight

the influences of suppliers’ capacities on the market outcomes. While capacity is a

natural part of the papers in this literature stream, this work is the first one to study

the impacts of asymmetric information (capacity and cost) in unit-price auctions.
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Main Contributions. This paper extends the unit-price auctions with symmetric

bidders (Chapter 2) by allowing asymmetric information about suppliers’ production

costs and capacities. It is well known that analyzing a game with asymmetric infor-

mation in multiple dimensions is technically challenging. Consequently, we present

two separate models, one where cost and one where capacity is privately known,

while the other component has a deterministic value. Also, as typically done in auc-

tion literature, we restrict our solution search to separating Bayesian equilibria with

symmetric monotone bidding strategies.

For auctions with asymmetric information about suppliers’ costs, we derive the

close-form bidding strategies for discriminatory and uniform auctions. The solutions

are governed by two independent levers, characterizing each type of the suppliers.

We label the first one as market power. In this paper, market power is interpreted

as the marginal contribution of a supplier’s capacity in satisfying the demand. The

influence of market power is thoroughly studied in symmetric information setting by

Chapter 2 and can be represented by system utilization (demand/total capacity) and

number of suppliers. The second lever is uncertainty about the supplier’s cost, which

is private information. In a monotone separating equilibrium, a supplier with lower

production cost obtains an information rent from the auctioneer. The impacts of

information asymmetry are well studied in classic single-item auctions with private

valuations.

Market power describes the bidding range. When the utilization (demand divided

by sum of all capacities is above a critical threshold of (N − 1)/N , the range reaches

the price cap. For all other utilizations, the range spans up to the highest possible

cost (same for all utilizations). Within each of these two cases, the bidding strategy

changes as a function of both realized cost value (the type of a supplier) and market

power. The bids in discriminatory auctions are increasing in the system utilization

and so does the lower bound of equilibrium bids. For uniform auctions, the supplier

with lowest cost type always bids true value, and equilibrium bidding strategy is

increasing in system utilization in regions below and above the critical threshold

(N − 1)/N , but the monotonicity fails at that point. In this more general situation
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(limited capacity and uncertain cost), we show that despite the presence of joint

impacts of market power and information rent, a generalized revenue equivalence

between the discriminatory and uniform auctions continues to hold. This unifies

several well-known equivalence outcomes.

Our paper is first to model asymmetric information about suppliers’ capacities in

auction literature. Compared with auctions with publicly unknown costs, the analysis

is considerably more complicated. The paper provides complete analysis for two-

bidder cases and derives the monotone equilibrium solutions for N-bidder cases. For

discriminatory auctions, monotone equilibrium always exists, where the equilibrium

bid is decreasing in a supplier’s capacity, while its expected revenue is increasing. For

uniform auctions, monotone equilibrium does not always exist. Without extending

the analysis to non-monotone bidding strategies or mixed strategies, we restrict our

focus on the cases where monotone separating equilibrium prevails. Similarly to the

discriminatory counterpart, the equilibrium has decreasing bidding strategies and

increasing expected payoffs, but the two auctions does not yield the same expected

payment for the auctioneer. Numerical studies indicate that uniform auctions usually

yields higher payoffs for suppliers, but the magnitude is not significant.

One concern for unit-price auction models is about the assumption that suppliers

always fully commit their capacities. This is not an issue for discriminatory auctions

since a supplier’s payoff increases in its bidding quantity, in other words, bidding

full capacity is incentive compatible. However, for uniform auctions, a supplier’s

capacity reduction may result in higher market clearing price and possibly increases

its payoff. The analytical discussion about capacity withholding is very limited and

whether the above scenario could actually happen remains unknown. Interestingly,

our finding that a uniform auction with monotone equilibrium bids has increasing

expected payoffs in a supplier’s actual capacity, implies that capacity withholding

may not be incentive compatible for uniform auctions. In other words, the close-

form bidding strategies, if solving a uniform auction, are also an equilibrium solution

when decision space is expanded to two dimensions of price and quantity. This is

an important milestone in understanding the nature of capacity withholding. The
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discussion about uniform auctions is bounded by the fact that monotone separating

equilibrium may not exist when demand is relatively low.

The remainder of the paper is organized as follows. Next section reviews the

related literature and Section 3 presents the model of unit-price auctions. In Section

4 we study the cases where suppliers’ costs are private information and establish the

generalized revenue (payment) equivalence outcome. Section 4 discusses the models

when the asymmetric information is about capacity, 2-bidder cases are discussed

in great details and N-bidder game is heuristically solved. Numerical studies are

conducted to investigate important issues such as revenue comparison and capacity

withholding. Section 5 concludes the paper and discusses its practical and policy

implications.

4.2 Literature Review

This paper relates to several groups of works in economics and management science

literature. We summarize them below and highlight the primary difference with our

paper.

Unit-Price Procurement Auction with Complete Information. The most closely

related works to this paper are FFH(2007) and Chapter 2, which first use the unit-

price procurement auction to model wholesale electricity markets. FFH focuses on

the case of two asymmetric bidders where uniform auction have multiple equilibria

including both pure-strategy and mixed-strategy ones, but discriminatory auction

has unique mixed-strategy solution. FFH argues that uniform auctions yield higher

expected payment for the auctioneer and is then an inferior design, based on their

selection of the pure-strategy equilibria in uniform auctions. Chapter 2 focuses on

oligopoly scenario where the unique symmetric mixed-strategy equilibrium is the nat-

ural focal point among the equilibrium family for uniform auctions. Chapter 2 shows

that symmetric equilibrium has the same expected payment as the unique equilibrium

in a discriminatory auction, but yields higher price volatility. Therefore, Chapter 2

agrees with FFH’s auction selection but differs in that the dominance of discrimina-
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tory auctions is only in second order. Both FFH and Chapter 2 assume symmetric

information, stripping off the cost and capacity uncertainty among the suppliers. This

paper can be viewed as an extension of Chapter 2’s oligopoly model by exploring the

impacts of information asymmetry among bidders.

Single-item and Multi-unit Auctions with Private Values. When asymmetric in-

formation is about cost, our unit-price share auction model is closely related to the

classic private-value auction literature (sees Krishna 2002 for a comprehensive sum-

mary of the auction theories). In fact, when demand is equal to individual capacity

times a positive integer, our model reduces to multi-unit auctions with single-unit

bids. Furthermore, when demand is less than a supplier’s capacity, the discrimina-

tory and uniform auctions both reduces to single-item first-price auction. Therefore,

information rent has a similar bite in auctioneer’s profit as as in private-value auc-

tions. A stark distinction takes place when the system utilization crosses the critical

threshold (N-1)/N identified in Chapter 2. The equilibrium is jointly controlled by

supplier’s sizable power and information advantage, where the first impact cannot

be seen in classic auction literature. Our generalized revenue(payment) equivalence

marries the famous revenue equivalence outcome established by Vickrey (1961) and

Chapter 2’s equivalence outcome due to market power. Bidding capacity (demand

size in normal auctions) being uncertain as in our second model, is only possible

in share auctions, and therefore not discussed within this body of literature. Pekeč

and Tsetlin (2008) address this issue by considering uncertain number of bidders

in a multi-unit single-bid auction. It is shown that, when the magnitude of this

uncertainty is significant, the discriminatory auction yields higher revenues to the

auctioneer and therefore dominates the uniform auction. This dominance result is

consistent to the numerical observations in our unit-price auctions with uncertain

capacity. However, in their model, bidders have symmetric information among un-

certainty, while bidder’s capacity is private information in our model.

Share Auction with Continuous Bidding Curve. The literature of share auctions

with continuous bidding functions differs from classic unit-price auction models in

70



expanding bidders’ decision space. Wilson (1979) pioneers to revisit the classic single-

item auction under the continuous bidding assumption. It is shown that differential

bids largely enhance the bidders’ pricing power and result in inferior outcomes to the

auctioneer. This observation holds for both discriminatory and uniform designs and

the revenue of the two auction formats can be equivalent under specific equilibrium

selection. Back and Zender (1993) extends Wilson (1979) by demonstrating how

a uniform auction can yield continuum of equilibria, most of which leads to lower

expected revenue the auctioneer than the discriminatory auctions. A more complete

characterization of equilibrium bidding strategy under continuous bidding assumption

is provided later in Wang and Zender (2002).

In similar spirit to Wilson (1979), Klemperer and Meyer (KM) (1989) presents

a model named as ”supply function equilibrium” to model to quantity/price com-

petition of oligopoly pricing game. The model can be viewed as special uniform

auction with price elastic demand and it is shown that continuous bidding curve can

facilitate ex post optimality for bidders as an uncertainty scrutinizer. In contrast to

these models, our unit-price model restricts the bidder’s decision space and therefore

limits their pricing power. In reality, most share auctions allow limited number of

bids (equivalent to step-wise function with limited number of jumps) and empirically,

most bidders choose to use one or two bidding pairs (Bikhchandani and Huang, 1993

and Chapter 2). Therefore, unit-price model can be an interesting complement to

continuous bidding model in studying share auctions, with former restricting bidders’

action space while the latter relaxes it. A recent paper by Holmberg (2007) uses

KM’s supply function equilibrium to model uniform auctions in electricity markets

by considering the impacts of capacity constraints and constant marginal costs. The

setting of their game is virtually identical to the uniform auctions in FFH (2007) and

Chapter 2 while the solution differs drastically. This paper differs from Holmberg

further in considering the impacts of asymmetric information on costs and capacities.

Procurement Auction in Private Sector. The increasing usage of auctions in pub-

lic and business procurement generates many interesting research questions. Ewarhart

and Fieseler (2003) studies procurement auctions of unit-price contracts in the con-
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struction tendering context. The auctioneer looks for one contractor among many

bidders who compete in offering a bundle of unit-prices for several construction in-

put factors. As all bidders have sufficient capacities, the primary attention is about

how an efficient scoring rule is designed to rank the unit-price bundles. Chen (2007)

studies the procurement auction design for a retailer (modeled as a news vendor) who

faces random demand and a pool of suppliers with private information about their

costs. The optimal design is to offer a quantity-payment menu and ask the suppliers

to bid the whole contract. The primary distinction of our model is to search for a set

of capacitated suppliers, while capacity is not an issue for their settings.

Capacity Withholding in Uniform Auctions. One concern about uniform auctions

is that suppliers may withhold some of their capacity so that market clearing price is

increased. If the increasing of profit margin dominates the adverse effect of reduced

sale quantity, a supplier will choose to do so. Ausubel and Cramton (2002) first

establish this result in multi-unit auction setting, showing that a bidder will shade

the bids for second and latter units, but bids truthfully for the first unit (as in

second price auction). However, this result may not be a theoretical support for

existence of capacity withholding, since shading prices from the true value may also

take place in our unit-price auction models, and it remains unclear whether it is in

a bidder’s interest to cut off certain portion of its capacity. Lave and Perekhodtsev

(2001) establish an equilibrium where a bidder does not bid in the whole cost curve.

However, this phenomenon is largely driven by their assumption that bidders have

to price every unit at its actual marginal cost and the only decision is to whether

the whole curve shall be submitted. Dechnenaux and Kovenock (2007) use a similar

model as FFH (2007) and HLK (2008). The distinction is that demand is price elastic

and they consider the environment of repeated games. They show that a colluded

equilibrium exists where all supplier withhold certain portion of their capacities under

the threat of being punished in a poor equilibrium if they defects from the collusion.

Withholding will not happen in one-shot game. Our model of unit-price auction with

privately known capacity information provides some insights about whether capacity

withholding is in a supplier’s own interest, particularly when his capacity is only
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privately known.

Empirical Studies The debate about discriminatory and uniform auctions is

largely motivated by the treasury and electricity auctions where both auction formats

are implemented. The empirical studies about the treasury auctions are summarized

in Binmore and Swierzbinski (2000). We note that the empirical evidence have also

presented a foggy picture about the ranking of the two auctions. For examples, Simon

(1994) estimates that the switch from DA to UA in 1970’s resulted in large loss in

the revenue for the US Treasury; Nyborg & Sundaresan (1996) estimate the revenue

changes due to the switch may range from small losses to moderate gains; and Malvey

and Archibald (1998) find the switch produce small gains of revenue for the Treasury.

Empirical comparison of the two auction formats in electricity markets can be con-

ducted only in UK and the findings (Evans & Green 2002, and Fabra & Toro 2003)

are too controversial, since there are other major structural changes of the markets

that happen concurrently with the switch from uniform auction to discriminatory

auctions.

4.3 The Model

System Setup Consider a procurement auction with N potential suppliers. The

auctioneer faces exogenously determined demand ξ and suppliers compete in offering

their capacities through submitting unit prices. Denote supplier i’s cost-capacity

profile as {ci, ki} and his bid price as pi which cannot be higher than the price cap

B set by the auctioneer, i.e., pi ∈ [0, B] for i = 1, 2, . . . , N .

Sequence of Events and Allocation Scheme During the auction, all suppliers inde-

pendently submit (sealed) bids {pi}N
i=1 to the auctioneer. The lowest-bid supplier is

admitted first. If her capacity cannot cover the demand, the auctioneer moves to the

next lowest-bid supplier, and so on, until the demand is filled or no capacity is left.

We assume ties are broken by first granting orders to the efficient suppliers (those

with lower production costs), and among iso-cost suppliers, a supplier with higher

capacity is given higher allocation priority. When the price-tie is formed among mul-
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tiple suppliers with the same cost and the same capacity, the “pie” is split evenly.1

Denote the vector of supplier i’s competing bids as p−i ≡ (p1, . . . , pi−1, pi+1, . . . , pN)

and supplier i ’s realized sales as zi(pi,p−i) = kiri(pi,p−i) where ri is the fraction of

her bid quantity accepted by the auctioneer. The above assumptions imply

zi(pi,p−i) = min{ki, [ξ −
∑

n �=i kn(δ(pn<pi) + δ(pn=pi,cn<ci) + δ(pn=pi,cn=ci,kn>ki))

1 +
∑

n �=i δ(pn=pi,cn=ci,kn=ki)

]+},
(4.1)

where δ(A) = 1 if A is true and 0 otherwise.

Payment Schemes and Value Representation Two payment schemes are consid-

ered. In a discriminatory auction (DA, hereafter), an admitted supplier is paid at her

bid price, while in a uniform auction (UA, hereafter), all of the selected suppliers are

paid at the same uniform price equal to the highest bid selected. We use superscripts

(or subscripts when convenient) d and u to denote the two auction formats. Under

these two schemes, supplier i’s profit is written as

(a)Rd
i (pi,p−i) = (pi − ci)zi(pi,p−i), (4.2)

(b)Ru
i (pi,p−i) = (max

n
{pn : zn(pn,p−n) > 0} − ci)zi(pi,p−i).

Information Structure Each supplier’s cost-capacity profile {ci, ki} is private in-

formation and all suppliers share a common prior distribution about other suppli-

ers’ cost-capacity profiles, denoted by independent identical probability distributions

P(cn, kn) for n = 1, 2, . . . , N . It is well known that, even for single item auctions,

when asymmetric information has two independent dimensions, auction models be-

come analytically intractable. Therefore, we will analyze the impacts of two types

of asymmetric information (cost and capacity) separately. In other words, we will

consider two families of auctions, the ones with uncertain cost and the ones with

uncertain capacities.

Model Label We focus on games with symmetric bidders. For ease of exposition,

we use the following four-letter labels to denote different models (D/U)A(C/K)-n,

1The tie-breaking rule is specified for analytical simplicity, so that discussion of ε-equilibrium is
avoided.
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where (D/U) denotes discriminatory/uniform, (C/K) denotes uncertain cost/capacity,

and n the number of bidders. For examples, DAC-N denotes N-bidder discriminatory

auction with uncertain costs, and UAK-2 denotes 2-bidder (duopoly) uniform auction

with uncertain capacities.

4.4 Auction with Uncertain Cost

Additional Notation In this section, we suppose all suppliers have constant ca-

pacity k > 0 and their costs {ci}N
i=1 have independent identical distributions, with

continuous and strictly increasing c.d.f. G(c) in c = [c, c̄] . The information about de-

mand ξ, capacity k, and cost distribution G(c) is a common knowledge. Our analysis

focuses on symmetric Perfect Bayesian Equilibrium (PBE) p = β(c). One assumption

that we use in our heuristic derivation of the PBE is that β(c) is strictly increasing

and differentiable in c ∈ [c, c̄]. Denote β−1(·) as the inverse function of β.

The derivation relies heavily on order statistics. Particularly, we analyze bidder

i’s decision rule, given that his N−1 competitors follow a symmetric bidding strategy

that we are looking for. For the N − 1 i.i.d. competing bids p−i, denote bm as the

m-th lowest one. Accordingly, denote cm as m-th lowest cost among the c−i and Lm

as its cdf,

Lm(c) ≡ Pr {cm < c} =
N−1∑
j=m

Pr {cm < c ≤ cm+1} (4.3)

=
N−1∑
j=m

(
N − 1

j

)
G(c)jḠ(c)N−1−j for m = 1, 2, . . . , N − 1.

4.4.1 Discriminatory Auction (DAC-N)

Derivation. In this section, we first derive the symmetric bidding strategy p =

β(c) and then show it is a PBE.

Case for ξ ≥ Nk. As supplier i’s payoff (p − ci)k is independent of other

players’ bids, it is easy to see that β(c) = B is the solution.

Case for 0 < ξ < Nk. Consider the decision of supplier i whose cost is c.

Suppose supplier m �= i follows β which is strictly increasing and differentiable with
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choice of price p, supplier i′s expected payoff becomes

R(p) = (p − c)z(G(β−1(p))) wherez(G) =
N−1∑
n=0

(
N − 1

n

)
GnḠN−1−n

[
k ∧ (ξ − nk)+

]
.

(4.4)

The first order condition is

dR(p)

dp
= z(G(β−1(p))) + (p − c)

dz(G)

dG

dG

dc
(β−1(p))

1

β ′(β(p))
= 0.

At a symmetric equilibrium, p = β(c), and equivalently, c = β−1(p). So the FOC

reads

z(G(c)) + (β(c) − c)
dz(G(c))

dc

1

β ′(c)
= 0, i.e.,

d

dc
[(β(c) − c)z(G(c))] = −z(G(c)).

It leads to the following solution,

(β(c) − c)z(G(c)) = CD +
∫ c̄

c
z(G(θ))dθ, (4.5)

where CD = [β(c̄) − c̄] z(G(c̄)) = [β(c̄) − c̄] z(1) = [β(c̄) − c̄] [k ∧ (ξ − Nk + k)+]. If

ξ ≤ (N − 1)k, CD = 0. If ξ > (N − 1)k and supplier i’s type is c̄, then she is the last

to be selected by the system. Therefore, the optimal choice is to price at B. Thus,

β(c̄) = B and CD = (B − c̄) [k ∧ (ξ − Nk + k)]. While above we show the necessary

conditions for symmetric equilibrium, we now show that indeed it is an equilibrium.

Proposition 4 The symmetric equilibrium bidding strategy for model DAC-N is

βD(c) = c +
CD +

∫ c̄
c z(G(θ))dθ

z(G(c))
(4.6)

where CD =

⎧⎪⎨
⎪⎩

0 for ξ ≤ (N − 1)k

(B − c̄) [k ∧ (ξ − Nk + k)] for ξ > (N − 1)k

Proof. When ξ ≥ Nk, we have z(G(c)) = k and CP = (B − c)k, so β(c) = B. It is

clearly the optimal decision.

When ξ < Nk, we first show that β(c) is an increasing function. From (4.6), we have

dβ(c)

dc
= −CP +

∫ c̄
c z(G(θ))dθ

z2(G(c))
· dG(c)

dc
· dz(G(c))

dG
.
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As the first two terms are positive, in order to show dβ(c)
dc

≥ 0, we only need to prove

dz(G)
dG

≤ 0. Denoting zn = min{k, (ξ−nk)+} we have z(G) =
∑N−1

n=0

(
N−1

n

)
GnḠN−1−nzn

and

dz(G)

dG
=

N−1∑
n=1

(N − 1)!

(n − 1)!(N − n − 1)!
Gn−1ḠN−n−1zn−

N−2∑
n=0

(N − 1)!

n!(N − n − 2)!
GnḠN−n−2zn

=
N−1∑
n=1

(N − 1)!

(n − 1)!(N − n − 1)!
Gn−1ḠN−n−1(zn − zn−1).

[by n′ ≡ n + 1 in the 2nd term.]

Clearly the difference zn − zn−1 ≤ 0 for all n. Since
∑N−1

n=1 (zn − zn−1) = zN−1 − z0 =

[ξ − (N − 1)k]+ − (k ∧ ξ) < 0, at least one difference is negative, implying dz(G)
dG

< 0.

Next, suppose that all suppliers other than i follow strategy β, given in (4.6). We

show that it is optimal for supplier i to follow β. First notice that it is not optimal

for supplier i to bid lower than β(c) because all p ≤ β(c) yield an expected sales ratio

of 1 almost surely. It is also easy to see that supplier i will not bid above β(c̄): when

ξ > (N − 1)k, β(c̄) = B and higher price is not feasible; when ξ ≤ (N − 1)k, higher

price than β(c̄) = c̄ yields a sales ratio of zero almost surely. Denote s = β−1(p). If

supplier i defects from price β(c) to p, her expected profit is

RD(s, c) = (β(s) − c)z(G(s)) = −cz(G(s)) + β(s)z(G(s)) = R(s, s) + (s − c)z(G(s)).

By (4.5), we have RD(c, c) = (β(c) − c)z(G(c)) = CP +
∫ c̄
c z(G(θ))dθ. It then follows

RD(c, c) − RD(s, c) = −(s − c)z(G(s)) + R(c, c) − R(s, s)

= (c − s)z(G(s)) +
∫ c̄

c
z(G(θ))dθ −

∫ c̄

s
z(G(θ))dθ

=

⎧⎪⎨
⎪⎩

∫ c
s [z(G(s)) − z(G(θ))] dθ for s < c∫ s
c [z(G(θ)) − z(G(s))] dθ for s > c

.

As G(c) is strictly increasing in c ∈ [c, c̄] and Z(·) is strictly decreasing in G, we have

R(c, c) > R(s, c) for any s �= c. That is, any deviation from p = β(c) causes a profit

loss for supplier i.

We delay to show the numerical examples of the equilibrium bidding strategy after

driving the solutions for uniform auctions.
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4.4.2 Uniform Auction (UAC-N)

Derivation. Similarly to the previous section, we first heuristically derive the

equilibrium bidding strategy.

If ξ ≥ Nk, the equilibrium bidding strategy is β(c) = B.

If ξ < Nk, suppose there exists a symmetric monotone equilibrium bidding strat-

egy β(c), which is strictly increasing and differentiable in c. For supplier i with cost

c, when bidding price p, her payoff conditional on {b−i, ξ} is

N∑
m=1

δ(ξ∈((m−1)k,mk])δ(bm−1<p≤bm)(p−c) [ξ − (m − 1)k]+
N−1∑
n=1

δ(ξ∈(nk,(n+1)k])(bn−c)kδ(p<bn).

For ξ ∈ ((m− 1)k, mk], we have that the m-th lowest bidder makes the price. Given

that β(·) is played by all of supplier i’s competitors, his profit, by bidding price p, is

R(c−i, p) = (p − c)δ(cm−1<β(−1)(p)≤cm) [ξ − (m − 1)k] + (β(cm−1) − c)kδ(p≤β(cm−1)).

Taking expectation over all competitors’ types, we have

R̄(p) = Ec−i

[
R(c−i, p)

]
(4.7)

= (p − c) Pr
{
cm−1 <β(−1)(p) ≤ cm

}
[ξ − (m − 1)k]

+Ecm−1

[
(β(cm−1) − c)kδ(p≤β(cm−1))

]
= (p − c) [ξ − (m − 1)k]

[
Lm−1(β

(−1)(p)) − Lm(β(−1)(p))
]

+
∫ B

p
(v − c)kdLm−1(β

(−1)(v)),

where the last expression follows (4.3).

Now we have

dR̄(p)

dp
= (p − c) [ξ − (m − 1)k]

[
d

dp
Lm−1(β

(−1)(p)) − d

dp
Lm(β(−1)(p))

]

+
[
Lm−1(β

(−1)(p)) − Lm(β(−1)(p))
]
[ξ − (m − 1)k] − (p − c)k

d

dp
Lm−1(β

(−1)(p))

FOC dR̄(p)
dp

= 0 reads,

Lm−1(β
(−1)(p)) − Lm(β(−1)(p))

= (p − c)

[
d

dp
Lm(β(−1)(p)) +

mk − ξ

ξ − (m − 1)k

d

dp
Lm−1(β

(−1)(p))

]

=
(p − c)

[
d
dc

Lm(β(−1)(p)) + mk−ξ
ξ−(m−1)k

d
dc

Lm−1(β
(−1)(p))

]
β ′(β(−1)(p))
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At equilibrium, we must have β(−1)(p) = c and p = β(c), so we have ODE,

β ′(c) [Lm−1(c) − Lm(c)] = [β(c) − c]

[
mk − ξ

ξ − (m − 1)k

d

dc
Lm−1(c) +

d

dc
Lm(c)

]
. (4.8)

Define α(c) ≡ β(c) − c and T (c) ≡
mk−ξ

ξ−(m−1)k
d
dc

Lm−1(c)+ d
dc

Lm(c)

Lm−1(c)−Lm(c)
. From (4.3), we have

d

dc
Lm(c) =

d

dc

⎡
⎣N−1∑

j=m

(
N − 1

j

)
G(c)jḠ(c)N−1−j

⎤
⎦

= g(c)
N−1∑
j=m

(
N − 1

j

) [
jGj−1ḠN−1−j − (N − 1 − j)GjḠN−2−j

]

= g(c)

⎡
⎣N−1∑

j=m

(N − 1)!Gj−1ḠN−1−j

(j − 1)!(N − 1 − j)!
−

N−2∑
j=m

(N − 1)!GjḠN−2−j

j!(N − 2 − j)!

⎤
⎦

= (N − 1)g(c)

⎡
⎣N−1∑

j=m

(N − 2)! · Gj−1ḠN−1−j

(j − 1)!(N − 1 − j)!
−

N−2∑
j=m

(N − 2)! · GjḠN−2−j

j!(N − 2 − j)!

⎤
⎦

= (N − 1)g(c)

⎡
⎣ N−2∑

k=m−1

(N − 2)!

k!(N − 2 − k)!
GkḠN−2−k −

N−2∑
j=m

(N − 2)!

j!(N − 2 − j)!
GjḠN−2−j

⎤
⎦

= (N − 1)
(N − 2)!

(m − 1)!(N − 1 − m)!
Gm−1ḠN−1−m · g(c)

= m

(
N − 1

m

)
Gm−1ḠN−1−m · g(c).

It follows

T (c) =

mk−ξ
ξ−(m−1)k

(m − 1)
(

N−1
m−1

)
Gm−2(c)ḠN−m(c) +

(
N−1

m

)
Gm−1(c)ḠN−m−1(c)(

N−1
m−1

)
G(c)m−1Ḡ(c)N−m

g(c)

=
(mk − ξ)(m − 1)

ξ − (m − 1)k

g(c)

G(c)
+ (N − m)

g(c)

Ḡ(c)
.

The ODE(4.8) of β(c) becomes an ODE of α(c),

α′(c) + 1 = T (c)α(c). (4.9)

The solution to the first-order homogeneous equation α′(c) = T (c)α(c) is

α(c) = exp(−
∫ c̄

c
T (s)ds).

The solution of ODE (4.9) has the form of

α(c) = γ(c) exp(−
∫ c̄

c
T (s)ds) =

γ(c)

exp
∫ c̄
c T (s)ds

.
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Substitute it into (4.9), we have

γ′(c) = − exp
∫ c̄

c
T (s)ds,

then

γ(c) =
∫ c̄

c
(exp

∫ c̄

v
T (s)ds)dv + CU ,

and

α(c) =
∫ c̄

c

exp
∫ c̄
v T (s)ds

exp
∫ c̄
c T (s)ds

dv +
CU

exp
∫ c̄
c T (s)ds

=
∫ c̄

c

dv

exp
∫ v
c T (s)ds

+
CU

exp
∫ c̄
c T (s)ds

.

Boundary condition. We study the individual rationality condition for type c = c̄.

The solution above implies β(c̄) = c̄ + CU . Similar discussion as in the case for DA

leads to CU = 0 for ξ ≤ (N − 1)k and CU = (B − c̄) for ξ > (N − 1)k. Therefore the

solution of ( 4.8) is

β(c) = c +
∫ c̄

c

dv

exp
∫ v
c T (s)ds

+
CU

exp
∫ c̄
c T (v)dv

.

Proposition 5 The symmetric bidding strategy for UAC-N is, β(c) = B for ξ ≥ Nk;

for 0 < ξ < Nk and m =
⌈

ξ
k

⌉
,

βU(c) = c +
∫ c̄

c

dv

exp
∫ v
c T (s)ds

+
CU

exp
∫ c̄
c T (v)dv

(4.10)

where CU =

⎧⎪⎨
⎪⎩

0 for m ≤ N − 1

B − c̄ for m = N

T (c) =
(mk − ξ)(m − 1)

ξ − (m − 1)k

g(c)

G(c)
+ (N − m)

g(c)

Ḡ(c)

Proof. We only discuss the case for 0 < ξ < Nk.

1. Monotonicity of β(c). It is easy to see from (4.8)

β ′(c) = T (c)(β(c) − c) = T (c)α(c) = T (c)

[∫ c̄

c

dv

exp
∫ v
c T (s)ds

+
CU

exp
∫ c̄
c T (v)dv

]
> 0.

2. Optimality of β(c). When bidding strategy (4.10) is played by all bidders, the

expected payoff for supplier with cost c is, by (4.7),

RU(c) = (β(c) − c) [ξ − (m − 1)k] [Lm−1(c) − Lm(c)] +
∫ B

c
(β(v) − c)kdLm−1(v)

R′
U(c) = [ξ − (m − 1)k]

{
(β ′(c) − 1) [Lm−1(c) − Lm(c)] + α(c)(L′

m−1(c) − L′
m(c))

}
−α(c)kL′

m−1(c) − k(1 − Lm−1(c)).
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It follows

R′
U(c) + k(1 − Lm−1(c))

= [ξ − (m − 1)k]
[
(Tα − 1)(Lm−1 − Lm) + α(L′

m−1 − L′
m)

]
− αkL′

m−1

= [ξ − (m − 1)k]

⎡
⎣(

mk−ξ
ξ−(m−1)k

L′
m−1 + L′

m

Lm−1−Lm
α − 1)(Lm−1 − Lm)+α(L′

m−1−L′
m)

⎤
⎦

−αkL′
m−1

= [ξ−(m − 1)k]

[
α

mk − ξ

ξ − (m − 1)k
L′

m−1+αL′
m−(Lm−1 − Lm)+α(L′

m−1−L′
m)

]

−αkL′
m−1

= α(mk − ξ)L′
m−1 + [ξ − (m − 1)k]

[
Lm − Lm−1 + αL′

m−1

]
− αkL′

m−1

= αL′
m−1 [mk − ξ + ξ − (m − 1)k − k] + [ξ − (m − 1)k] [Lm − Lm−1]

= [ξ − (m − 1)k] [Lm − Lm−1] .

Consequently,

R′
U (c) = − [ξ − (m − 1)k]

(
N − 1

m − 1

)
Gm−1ḠN−m − k

m−2∑
j=0

(
N − 1

j

)
GjḠN−1−j .

Now we consider the proof of Proposition 4, we have

R′
D(c) =

dRD(c, c)

dc
= −z(G(c)) = −

N−1∑
n=0

(
N − 1

n

)
GnḠN−1−nzn = R′

U(c).

Since RU(c̄) = RD(c̄) = (B − c̄) [ξ − (N − 1)k]+ = CD, we have

RU (c) = RD(c) = CD +
∫ c̄

c
z(G(θ))dθ.

Similarly to the proof for DA, we define

RU(s, c) = (β(s) − c) [ξ − (m − 1)k] [Lm−1(s) − Lm(s)] +
∫ c̄

s
(β(v) − c)kdLm−1(v)

= (β(s) − c) [ξ − (m − 1)k] [Lm−1(s) − Lm(s)] +
∫ c̄

s
(β(v) − s)kdLm−1(v)

+(s − c)k(1 − Lm−1(s))

= RU(s, s) + (s − c) [(ξ − (m − 1)k)(Lm−1(s) − Lm(s)) + k(1 − Lm−1(s))]

= RU(s, s) + (s − c)z(G(s)) = RD(s, c).
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According the proof of Proposition 4, we have RU(c, c) − RU(s, c) = RD(c, c) −
RD(s, c) < 0 for all s �= c.

The proofs of Propositions 4 and 5 also suggest the following facts.

Theorem 5 (Payment Equivalence and Rent Separation) We have

RU (c) = RD(c) = (B − c̄) [ξ − (N − 1)k]+ +
∫ c̄

c
z(G(θ))dθ. (4.11)

Interpretation. Theorem 5 has interesting economic interpretation. The first term

denotes the market power rent shared by all types. Chapter 2 establishes the equiv-

alence outcome under symmetric information and both auctions yields the same rev-

enue, equal to the first term. It denotes a supplier’s largest payment if he is the last

supplier to be dispatched. Since such a rent exists even when the production cost is

certain, now it must be shared by all cost types. In a procurement auction, c̄ is the

most inferior cost type, everyone get at least (B − c̄) [ξ − (N − 1)k]+. The second

term of (4.11) denotes the information rent charged by a supplier with type c. Auc-

tion is by and large an adverse selection mechanism. In a type-revealing equilibrium

(here through monotone bidding), the principal has to pay a higher rent to a more

favorable type so that it won’t be mimicked by a less favorable type. In this case,

type c̄ collects no information rent and the marginal rent collected by type c is its

expected sales Z(G(c)).

Numerical Studies. Our main contribution on the unit-price auction models with

uncertain cost is to explicitly characterize the bidding strategies. Next we present

several examples demonstrating how system parameters shape the bidding strategy.

In Figure 4.1, we have two panels (columns) of graphs. In panel (a), the bidders’ costs

are uniformly distributed in interval [0, 1], while panel (b) uses a beta distribution

with parameters a = b = 2. Note that uniform distribution is also a beta distribution

with a = b = 1. Graphs (a-1) and (b-1) plot the density and cumulative distribution

functions. Beta (2,2) is chosen for its bell shape, which is common in most real

situations. All auctions tested here also share the following parameters: N = 3,

B = 2, k = 1, c = 0, and c̄ = 1.

Graphs (a-2) and (b-2) display the equilibrium bidding strategies for discrimi-
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(a-1) Uniform distribution (b-1) Beta distribution (2,2) 

(a-2) DAC-3 bids (b-2) DAC-3 bids

(a-3) UAC-3 bids (b-3) UAC-3 bids
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Figure 4.1. Equilibrium Bidding Functions under Different Distributions and Utilizations
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natory auctions. We consider four demand values of ξ (or equivalently utilizations

ρ = ξ
Nk

). The first observation is that the equilibrium bids are increasing in demand

(utilization) for all types. The upper bound of the price range β(c̄) is either c̄ or

B, depending on whether demand ξ is higher than (N − 1)k, or ξ higher than N−1
N

.

The lower bound β(c) also increases in demand, resulting in a shrinking price range

unless demand crosses the critical threshold. Comparing graph (a-2) and (b-2), it ap-

pears that the shape of cost distribution function has minor impacts on the structure

bidding strategy.

Graph (a-3) and (b-3) plot the bidding curves for uniform auctions, where the

same four demand levels are used as in the discriminatory case. The bidding curve

differs from the ones of discriminatory auctions in the following aspects. First, the

low pricing bound β(c) is fixed to be zero. Notice that the lowest bid guarantees a

full-capacity admission and charges the market clearing price. As cost c is the most

advantageous type, and therefore, it will choose the lowest price possible, β(c) = c =

0. The upper price bound β(c̄) has the same property as in the discriminatory case,

but bidding strategy β(c) is not necessarily monotone in demand or utilization when

it cross the critical threshold. For example, for the low types close to c, the bid price

for demand ξ = 2.7 ρ = 0.7), is lower than the price associated with demand ξ = 1.8

(ρ = 0.6).

4.5 Auction with Uncertain Capacity

Additional Notation In this section, we study unit-price auctions where bidders’

capacities is private information. This is a major departure from the existing auction

literature which has focused primarily on the bidders’ private valuations of the goods.

This section gives a detailed analysis for models with two bidders. For the general

case with N bidders, we heuristically derive the equilibrium bidding strategies without

proving their optimality (necessary conditions for PBE).

Suppose all suppliers’ costs are deterministic and identical. For simplicity, we

normalize it as c = 0. Suppliers’ capacities {ki}N
i=1 have independent identical dis-

tributions, with continuous and strictly increasing c.d.f. H(k) in k ∈
[
k, k̄

]
where
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0 ≤ k < k̄ < ξ. 2 Denote its density function as h(k). Similar to the previous section,

we focus on symmetric PBE p = γ(k).

4.5.1 Discriminatory Auction (DAK-2)

Derivation. In this section, we first derive the PBE heuristically and then prove

that obtained solution satisfies the equilibrium conditions. We first consider two

simple cases.

(1) For ξ ≤ k, each supplier can cover the demand for sure. The game reduces to

a simple two-player Bertrand Game. The equilibrium bidding strategy is γ(k) = 0

for all k. The interesting case is,

(2) For demand with k < ξ < k. Suppose there exists a symmetric PBE where

a bidder with capacity k chooses the following bidding strategy p = γ(k). We fur-

ther assume γ(·) is a strictly decreasing and differentiable function and γ−1(·) denote

its inverse function. (Appendix A.1 demonstrates that equilibrium with increasing

bidding strategy does not exist.)

Consider supplier 1’s bidding decision p when his capacity is k. Suppose that

supplier 2 follows the equilibrium strategy γ. We first compute supplier 1’s expected

payoff when choosing price p. Notice that, the decreasing bidding strategy implies he

is outbidding bidder 2 with a type

R(p) = p

{
kH(γ−1(p)) +

∫ k

γ−1(p)
[k ∧ (ξ − x)] h(x)dx

}
.

The above expression results from the strictly decreasing bidding strategy γ: (a)

p < γ(k2) for all k < γ−1(p) and vice versa. The first order derivative is

dR(p)

dp
= kH(γ−1(p)) +

∫ k

γ−1(p)
[k ∧ (ξ − x)] h(x)dx

+pkh(γ−1(p))
dγ−1(p)

dp
−

[
k ∧ (ξ − γ−1(p))

]
h(γ−1(p))

dγ−1(p)

dp

2The assumption k̄ < ξ is not important for discriminatory auctions, but essential for uniform
auctions. The symmetric PBE will collapse if k̄ > ξ and we may need to expand our search to mixed
strategies.
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= p
{
k −

[
k ∧ (ξ − γ−1(p))

]} h(γ−1(p))

γ′(γ−1(p))

+kH(γ−1(p)) +
∫ k

γ−1(p)
[k ∧ (ξ − x)] h(x)dx.

At equilibrium, p = γ(k), so FOC dR(p)
dp

= 0 reads

{k − [k ∧ (ξ − k)]}h(k)
γ(k)

γ′(k)
+ kH(k) +

∫ k

k
[k ∧ (ξ − x)] h(x)dx = 0.

That is
γ′(k)

γ(k)
= − {k − [k ∧ (ξ − k)]} h(k)

kH(k) +
∫ k
k [k ∧ (ξ − x)] h(x)dx

(4.12)

Note that the above equation suggests γ′(k) ≤ 0, which is consistent with our as-

sumption. The general solution to the above ODE is

γ(k) = CD · exp{−
∫ k

k

y − [y ∧ (ξ − y)]

yH(y) +
∫ k
y [y ∧ (ξ − x)] dH(x)

dH(y)} (4.13)

where CD is a constant. Next we determine the boundary condition. The function

can be “fixed” by either the left end γ(k) or the right end γ(k̄). Furthermore, we

conjecture either γ(k) = B or γ(k̄) = c. Expression( 4.13) suggests that if γ(k̄) = c

then, CD = 0 implies γ(k) = 0 for all k, which is clearly not optimal for a bidder

with type k < ξ. This possibility is ruled out then. Now consider the possibility

γ(k) = B. A special consideration needs to be paid to the case k < ξ
2
. For all k ≤ ξ

2
,

ODE(4.12) reduces to γ′(k)
γ(k)

= 0, suggesting γ(k) is a constant. Therefore, we have

that for k ∈
[
k ∧ ξ

2
, k ∨ ξ

2

]
, we have a pooling strategy γ(k) = B.

Proposition 6 The symmetric equilibrium bidding strategy for DAK-2 is

γD(k) =

⎧⎪⎨
⎪⎩

B fork ≤ (k ∨ ξ
2
)

B exp
[
− ∫ k

k∨ ξ
2
θ(y)dH(y)

]
fork > (k ∨ ξ

2
)

. (4.14)

whereθ(y) =
2y − ξ

yH(y) + ξH̄(y) − ∫ k
y xdH(x)

.

Proof. First notice that the simplification of θ(y) is due to y ∧ (ξ − y) = ξ − y and

y ∧ (ξ − x) = (ξ − x) for x ≥ ξ
2

and y ≥ ξ
2
.

To show the above bidding strategy is indeed a PBE, we only need to verify that

R(p) is maximized at p = γ(k) when a bidder’s type is k. Similar to the case with
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uncertain cost, we define

R(l, k) = γ(l)

[
kH(l) +

∫ k

l
(ξ − x)h(x)dx

]

= B exp

[
−

∫ l

k∨ ξ
2

θ(y)h(y)dy

][
kH(l) +

∫ k

l
(ξ − x)h(x)dx

]
.

We only need to show that R(l, k) is maximized at l = k. It is sufficient to show

∂RD(l,k)
∂l

≥ 0 for l ≤ k and ∂R(l,k)
∂l

≤ 0 for l ≥ k. We compute the partial derivative

∂R(l, k)

∂l
= −B exp

[
−

∫ l

k∨ ξ
2

θ(y)h(y)dy

]
θ(l)h(l)

[
kH(l) +

∫ k

l
(ξ − x)h(x)dx

]

+B exp

[
−

∫ l

k∨ ξ
2

θ(y)h(y)dy

]
(k + l − ξ)h(l)

= B exp

[
−

∫ l

k∨ ξ
2

θ(y)h(y)dy

]
h(l)η(k, l)

where

η(l, k) ≡ 2k − ξ −
[
kH(l) +

∫ k̄
l (ξ − x)h(x)dx

]
(2l − ξ)

lH(l) +
∫ k̄
l (ξ − x)h(x)dx

= 2k − ξ − (2l − ξ) − (k − l)H(l)(2l − ξ)

lH(l) +
∫ k̄
l (ξ − x)h(x)dx

= (k − l)

[
2 − H(l)(2l − ξ)

lH(l) +
∫ k̄
l (ξ − x)h(x)dx

]

= (k − l)
2
∫ k̄
l (ξ − x)h(x)dx + H(l)ξ

lH(l) +
∫ k̄
l (ξ − x)h(x)dx

.

Obviously, η(l, k) > 0 for l < k and η(l, k) < 0 for l > k, and we have the desired

property for ∂RD(l,k)
∂l

.

Plugging (4.14) into expression R(k, k), we have the expected revenue for supplier

with capacity k,

RD(k) = γD(k)

[
kH(k) +

∫ k

k
[k ∧ (ξ − x)] dH(x)

]
. (4.15)
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It is easy to show that RD(k) is strictly increasing in k ∈
[
k ∨ ξ

2
, k̄

]

dRD(k)

dk
= γ′(k)

[
kH(k) +

∫ k

k
[k ∧ (ξ − x)] dH(x)

]

+γ(k) {H(k) + kh(k) − h(k) [k ∧ (ξ − k)]}
= −γ(k) {k − [k ∧ (ξ − k)]}h(k) + γ(k) {H(k) + h(k)k − h(k) [k ∧ (ξ − k)]}

[by
γ′(k)

γ(k)
=

{k − [k ∧ (ξ − k)]} h(k)

kH(k) +
∫ k
k [k ∧ (ξ − x)] h(x)dx

]

= γ(k)H(k) > 0

4.5.2 Uniform Auction (UAK-2)

Derivation. For demand ξ ∈
[
k, k̄

]
, similar to model DAK-2, we will focus

only on the case where equilibrium bidding strategy is a decreasing function of the

capacity k. The heuristic derivation starts from calculating the expected payoff of

supplier 1 whose capacity is k and chooses price p, given that supplier 2 uses equilib-

rium bidding strategy p2 = γ(·). As noted above, k̄ < ξ has to be assumed.

R(p) =
∫ γ−1(p)

k
kγ(x)h(x)dx + p

∫ k

γ−1(p)
[k ∧ (ξ − x)] h(x)dx.

It follows

dR(p)

dp
= kγ(γ−1(p))h(γ−1(p))

dγ−1(p)

dp
− p[k ∧ (ξ − γ−1(p))]h(γ−1(p))

dγ−1(p)

dp

+
∫ k

γ−1(p)
[k ∧ (ξ − x)]h(x)dx

= h(γ−1(p))
dγ−1(p)

dp

{
kγ(γ−1(p)) − p[k ∧ (ξ − γ−1(p))]

}
+

∫ k

γ−1(p)
[k ∧ (ξ − x)]h(x)dx.

At equilibrium k = γ−1(p) and p = γ(k), and we have an ODE following FOC

dR(p)
dp

= 0,

h(k)γ(k) {k − [k ∧ (ξ − k)]}
γ′(k)

= −
∫ k

k
[k ∧ (ξ − x)] h(x)dx

γ′(k)

γ(k)
= −h(k) {k − [k ∧ (ξ − k)]}∫ k

k [k ∧ (ξ − x)] h(x)dx

Notice that γ′(k)
γ(k)

= 0 for k < ξ
2
, suggesting all type k ∈

[
k ∧ ξ

2
, k ∨ ξ

2

]
will choose

γ(k) = B. The above ODE only applies for k >
[
k ∨ ξ

2
, k̄

]
, implying 0 ≤ ξ − k ≤ k,
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so the ODE is simplified as

γ′(k)

γ(k)
= − h(k)(2k − ξ)∫ k

k (ξ − x)h(x)dx
. (4.16)

Summarizing the three cases, we have the following proposition.

Proposition 7 The symmetric equilibrium bidding strategy for UAK-2 is

γU(k) =

⎧⎪⎨
⎪⎩

B fork ≤ (k ∨ ξ
2
)

B exp
[
− ∫ k

k∨ ξ
2
τ(y)dH(y)

]
for(k ∨ ξ

2
) < k < k̄

whereτ(y) =
2y − ξ∫ k

y (ξ − x)h(x)dx
.

Proof. Similarly to the DA case, we examine the below function for any k ∈ ((k ∨
ξ
2
), k̄)

RU(l, k) = k

[
BH(k ∨ ξ

2
) +

∫ l

k∨ ξ
2

γ(x)h(x)dx

]
+ γ(l)

∫ k̄

l
(ξ − x)h(x)dx

∂RU (l, k)

∂l
= kγ(l)h(l) − γ(l)(ξ − l)h(l) + γ′(l)

∫ k̄

l
(ξ − x)h(x)dx

= γ(l)h(l)(k + l − ξ) + γ′(l)
∫ k̄

l
(ξ − x)h(x)dx

= γ(l)h(l)

[
k + l − ξ +

γ′(l)
γ(l)h(l)

∫ k̄

l
(ξ − x)h(x)dx

]

Notice that γ′(l)
γ(l)h(l)

= − 2l−ξ∫ k∧ξ

l
(ξ−x)h(x)dx

, so

∂RU (l, k)

∂l
= γ(l)h(l)(k − l).

Clearly RU(l, k) is quasi-concave in l and maximizes at l = k.

The expected payoff for supplier with capacity k is

RU(k) = k
∫ k

k
γU(x)dH(x) + γU(k)

∫ k̄

k
[k ∧ (ξ − x)] dH(x) (4.17)
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We can also show that the expected revenue is increasing in supplier’s capacity k.

dRU(k)

dk
(4.18)

=
∫ k

k
γ(x)dH(x) + kγ(k)h(k) + γ′(k)

∫ k̄

k
[k ∧ (ξ − x)]dH(x) − γ(k)[k ∧ (ξ − k)]h(k)

=
∫ k

k
γ(x)dH(x) + γ(k)h(k) {k − [k ∧ (ξ − k)]} − γ(k)h(k) {k − [k ∧ (ξ − k)]}

[by
γ′(k)

γ(k)
= − h(k) {k − [k ∧ (ξ − k)]}∫ k

k [k ∧ (ξ − x)] h(x)dx
]

=
∫ k

k
γ(x)dH(x) > 0.

Implication to Capacity Withholding. The property of monotone revenue has

an interesting implication about the issue of capacity withholding in uniform auctions.

In the above analysis, we have restricted each supplier to fully commit its available

capacity and the only decision is the unit price. If we relax this assumption and let

supplier i to choose a price-quantity pair {pi, qi} ∈ [0, B] × [0, k]. We name such an

auction as unit price-quantity auction. The following proposition follows,

Proposition 8 In a two-bidder unit price-quantity auction with uniform payment

rule, there is a symmetric Bayesian Equilibrium, {p∗, q∗ |k} = {γU(k), k}.
Proof. We only need to prove that if supplier 2 follows such a strategy, it is optimal

for supplier 1 to use this strategy too. We show this by constructing contradiction.

Suppose there is another strategy {p̂1, q̂1} �= {γU(k1), k1} such that R1({γU(k), k}) <

R(p̂1, q̂1). If q̂1 = k, then existence of p̂1 contradicts to the optimality of γ(k) in game

UAK-2. Suppose q̂1 < k, we must have R1(p̂1, q̂1) ≤ R1(γ(q̂1), q̂1) because of the

optimality of γ(q̂1) in game UAK-2. It implies that R1(γ(q̂1), q̂1) > R1({γU(k), k}),
which is a contradiction to 4.18.

Numerical Studies. In Figure 4.2, four auctions are examined. For each auction,

the equilibrium bidding strategies are plotted in the left and the expected payoffs

R(k) are displayed in the right. In order to illustrate the average revenue, we also

compute ER =
∫

R(k)dH(k) and mark the values in the right graph for each game.
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(a) Auction: N 2, B 10, 1.1, [0.7,1]k U

(b) Auction: N 2, B 10, 1.3, [0.7,1]k U

(c) Auction: N 2, B 10, 1.3, 0.7,1 2, 2k

(d) Auction: N 2, B 10, 1.3, 0.75,0.95 2, 2k
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Figure 4.2. Comparison of DAK-2 and UAK-2
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Fixing the price cap B = 10 and the capacity range within [0.7, 1], we change the level

and shape of capacity distribution function. The following observations are reported.

- The expected revenues for the two auctions are not equivalent, and uniform

auction yields higher expected payoff. For low-capacity types close to k, the difference

is marginal while for the high-capacity types the difference becomes noticeable.

- The upper bound of equilibrium bids is B = 10; the lower bound of discrimi-

natory auction γD(k̄) changes as game setting is modified, while the uniform auction

always has γU(k̄) = 0.

- Effect of higher demand: When demand level is increased (ξb = 1.3 > ξa = 1.1),

equilibrium bids are increased for both discriminatory and uniform auctions. The

expected payoffs for all types are lifted significantly, indicating the demand level is

still the dominant force for auctions with capacity constraints.

- Effect of different distribution function: With other parameters identical, the un-

certain capacity in auction in Figure 2(b) has a uniform distribution between [0.7, 1] ,

while the ones in Figure 2(c) has a scaled beta distribution, i.e., k = 0.7+0.3x where

x˜β(2, 2). The impacts are not significant and expected revenue reduces slightly.

- Effect of reduced capacity range: In Figure 2(d), we only reduces the range of

capacity distribution from Figure 2(c) to [0.75, 0.95] , while keep the mean to be 0.85.

This change has sizable impact, in terms of average revenue ER, since impacts is not

proportional on all capacity types. For the auctioneer, the benefits from eliminating

the high-capacity types dominates the loss due to removal of low-capacity suppliers.

4.5.3 N-Bidder Equilibrium Solution

Monotone Equilibrium. The analysis of N-bidder cases are considerably more

complicated, involving intensive probability manipulations. Fortunately, we manage

to derive the equilibrium bidding strategies under the assumption that the curves are

decreasing in capacity k. We have not been able to show the derived solution is a

Nash solution, but it can be numerically verified by computing function R(l, k) by

checking if γ(k) = arg maxl R(l, k) holds for all k. Here we first present the solutions.

Proposition 9 If auction DAK-N has a symmetric Bayesian equilibrium with de-

92



creasing bidding strategy, the solution is

γD(k) = B exp

[
−(N − 1)

∫ k

k
Δ(x)dH(x)

]
(4.19)

where

Δ(x) =

∑N−2
i=0

(
N−2

i

)
H(x)N−i−2 [Ui(x, ξ) − Ui(x, ξ − x)]∑N−1

i=0

(
N−1

i

)
H(x)N−i−1Ui(x, x, ξ)

Ui(x, d) =

⎧⎪⎨
⎪⎩

x ∧ (d)+ i = 0∫ k̄
x · · · ∫ k̄

x [x ∧ (d −∑i
j=1 kj)

+]dH(k1) . . . dH(ki) i ≥ 1
.

The expected equilibrium payoff for supplier with capacity k is,

RD(k) = γD(k)
N−1∑
i=0

(
N − 1

i

)
H(k)N−i−1Ui(k, k, ξ).

Proposition 10 If auction UAK-N has a symmetric Bayesian equilibrium with de-

creasing bidding strategy, the equilibrium solution is

γU(k) = B exp

[
−(N − 1)

∫ k

k
Θ(x)dH(x)

]
(4.20)

where

Θ(x) =

∑N−2
i=0

(
N−2

i

)
H(x)N−i−2

[
W N−1

i (x, ξ) − W N−2
i (x, ξ − x) + xV N−2

i (x, ξ − x)
]

∑N−1
i=0

(
N−1

i

)
H(x)N−i−1W N−1

i (x, ξ)

W M
i (x, d)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x ∧ d)δ{0<d} i = M = 0

dδ{0<d≤x} i = 0 < M∫ k̄
x . . .

∫ k̄
x (d −∑i

j=1 kj)δ{
d−x≤

∑i

j=1
kj<d

}dH(k1) . . . dH(ki) 0 < i < M

∫ k̄
x . . .

∫ k̄
x

[
x ∧ (d −∑M

j=1 kj)
]
δ{∑M

j=1
kj<d

}dH(k1) . . . dH(ki) 0 < i = M

V M
i (x, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ{0<d} i = M = 0

δ{0<d≤x} i = 0 < M∫ k̄
x . . .

∫ k̄
x δ{

d−x≤
∑i

j=0
kj<d

}dH(k1) . . . dH(ki) 0 < i < M

∫ k̄
x . . .

∫ k̄
x δ{∑M

j=0
kj<d

}dH(k1) . . . dH(ki) 0 < i = M

.
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The expected equilibrium payoff for supplier with capacity k,

RU(k) = γU(k)
N−1∑
i=0

(
N − 1

i

)
H(k)N−i−1W N−1

i (k, ξ)

+(N − 1)k
∫ k

k

[
γU(x)

N−2∑
i=0

(
N − 2

i

)
H(x)N−i−2V N−2

i (x, ξ − k)

]
dH(x).

(a) Auction with Monotone UAK equilibrium: N 3, B 10, 2.1, [0.7,1]k U

(b) Auction without Monotone UAK equilibrium: N 3, B 10, 1.8, [0.7,1]k U
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(a) Auction with Monotone UAK equilibrium: N 3, B 10, 2.1, [0.7,1]k U

(b) Auction without Monotone UAK equilibrium: N 3, B 10, 1.8, [0.7,1]k U
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Figure 4.3. Auctions with/without Monotone UAK Equilibrium

Numerical Studies Numerical studies are conducted for N -bidder auctions

and two examples are provided in Figure 4.3. We have the following observations:

- Regularity of DAK-N: For all derived solutions, we numerically check the equi-

librium condition, γ(k) ∈ arg maxl R(l, k). All solutions in DAK survive the test,

indicating the robustness of our monotone equilibrium solution. Furthermore, all

properties we observe in the DAK-2 model remains to hold qualitatively. For exam-

ple, dR(k)
dk

> 0.

- Nonexistence of Monotone Equilibrium for UAK-N: Although the solution (4.20)

can be computed for all models, not all of the solutions can survive the optimality test.
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It suggests that UAK-N with N ≥ 3 may not have a monotone Bayesian equilibrium,

and the search of equilibrium needs to expand to the strategy space by including non-

monotone bidding strategy or even mixed strategies. The analysis becomes extremely

complicated and is therefore out of the scope of this paper. Numerical studies also

indicates that, when other parameters are fixed, there is a demand threshold such

that all demand lower than the threshold fails to have monotone equilibrium, while

all demand above it sustains the monotone solution (4.20).

- Revenue monotonicity sustains in monotone equilibrium. Our numerical test

indicates that, the survival of monotone equilibrium in UAK-N always couples with

the revenue monotonicity. In other words, the results in Proposition 8 remain to be

true if there is a monotone equilibrium. In Figure 3, we display two games, where

auction (a) has monotone equilibria for both DAK and UAK, while auction (b) has

no monotone equilibrium for UAK. The derived “solution” yields a non-increasing

expected revenue, and numerical study indicates γ(k) = arg maxl {RU(l, k)} does not

hold for all k.

4.6 Concluding Remarks

In order to understand the impacts of supply uncertainty in share procurement auc-

tions, we investigate the unit-price procurement auction models under uncertain sup-

plier cost and capacity. One main contribution of this paper is to analytically charac-

terize the equilibrium solutions, so that economic insights can be obtained. To keep

analytical tractability, we present two models, exploring the uncertainties of costs and

capacities separately. Among many interesting aspects of share auctions, we focus

on (a) the interplay of information rent and market power, and (b) comparison of

discriminatory and uniform auctions.

Impacts of Information Rent and Market Power. The main driver of equilibrium

pricing in private-value auctions is a bidder’s request for a rent to reveal its true

type. In our model of uncertain cost, this request remains. Additionally, a supplier’s

marginal contribution to the industry’s capability to meet demand, namely market
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power, is the primary driver in oligopoly pricing, such as in a Bertrand-Edgeworth

scenario. In unit-price auctions with uncertain costs, these two drivers jointly control

the market outcome, and simultaneously result in the generalized revenue(payment)

equivalence. In auctions with private knowledge about capacities, the two factors are

intervened and our paper is the first one to study the scenario. Revenue equivalence

collapses and discriminatory auctions result in slightly lower expected payment for

the auctioneer under monotone equilibria.

Comparison of Discriminatory and Uniform Auctions. Our paper brings new in-

sights about the two competing market designs. We disclose the conditions under

which revenue equivalence is likely to hold and when the opposite might be true.

Considering both models (one with uncertain cost and one with uncertain capacity),

we find discriminatory auction is a more stable and tractable design. The market out-

come is easy to predict, since unique equilibrium with well behaved bidding strategy

always exists. At the same time, the pricing range is small. Our numerical examples

clearly indicates the overall price variability for discriminatory auction is smaller,

a further confirmation of Chapter 2’s conclusion. Uniform auction involves higher

uncertainty, in that the equilibrium outcome is hard to find and may be multiple

(as in Chapter 2). Within the equilibria we identify, bidders choose their prices in a

wider range than in discriminatory auctions. What further upsets an auctioneer is

that when suppliers have private capacity information, uniform auctions could result

in higher expected payment for the auctioneer. Based on this paper, we would put

discriminatory auction ahead of uniform auction when making recommendation to a

procurement auction designer.

Capacity Withholding. For many reasons, uniform auction is still the dominant

market design in public sector. Its obvious advantages include ease of implementation

and the seeming fairness among bidders. Our paper contributes to the understanding

of capacity withholding in uniform auctions. The theoretical research about this

widely discussed issue (particularly after the 2000 California Energy Crisis) is limited

and this is a first paper with explicit analysis in static game setting. This encouraging
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news for uniform auction advocates is that it might not be incentive compatible for

bidders to withhold capacity, particularly when the demand is relatively high. The

speculated capacity withholding would hurt auctioneer badly in this scenario, but

the competitive nature of auctions induces suppliers to fully commit. We note that

our finding about capacity withholding is preliminary since we have not solved the

auctions when monotone equilibrium does not exist, due to prohibitive analytical

difficulty. It opens room for future research studies.

97



APPENDICES

98



APPENDIX A

Proofs and Analysis for Chapter 2

Note: When context is clear, we ignore the superscripts of auction formats, d and u.

A.1 Continuity and Monotonicity for F d.

Lemma 3 Consider a symmetric DA with (N − 1)k < ξ < Nk. For a symmetric

mixed-strategy equilibrium, F d(p) is continuous and strictly increasing in p ∈ [pd, p̄d]∩
(c, B].

Proof. (a) Continuity of F for p > c. Suppose m(p) > 0 for certain p ∈
(c, B], implying R̂(p) = ER. Note that

r̂−(p) − r̂(p) = Eσ∗
−i

[r−i (p) − ri(p)]

≥ Pr(σ∗
n = p)n �=iEσ∗

−i
[r−i (p) − ri(p)|(σ∗

n = p)n �=i]

= Pr(σ∗
n = p)n �=i[(1 ∧ ξ

k
) − (1 ∧ ξ

Nk
)] [by (2.1-a)]

= m(p)N−1[1 − ξ

Nk
] > 0. [by independence of all σ∗

n’s]

Since p > c, by (2.2), we have R̂−(p)− R̂(p) = (p−c)k[r̂−(p)− r̂(p)] > 0, implying

a contradiction to the optimality of ER = R̂(p).

(b) Monotonicity of F . Suppose there exist α < β such that F (p′) < F (α) =

F (β) < F (p′′) for all p′ < α and all p′′ > β. Note that any player gets at least a

sales of ξ− (N −1)k, so the equilibrium payoff must be positive. From (2.3), we have

R̂+(p) = ER > 0, implying p > c. Part (a) implies R̂−(p) = R̂(p) = R̂+(p) for all

p ∈ [p, B]. Now initial assumption implies two results contradicting to each other,

(i) R̂(α) = ER = R̂(β) by (2.3) and (ii) r̂(β) =
∑N−1

n=0 (N−1
n )F (α)nF̄ (α)N−n−1 · [1 ∧

(ξ−nk)+

k
] = r̂(α), implying R̂(α) < R̂(β).
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A.2 Uniqueness of Mixed-strategy Equilibrium for a Sym-

metric DA.

Proposition 11 For a symmetric DA with (N−1)k < ξ < Nk, if Fi(p) is continuous

and strictly increasing in p ∈ [p
i
, p̄i] ∩ (c, B) for all i with p

i
< p̄i, the symmetric

equilibrium defined in (2.4) is the unique Nash equilibrium.

Proof. (a) ERi ≥ (B − c)[ξ − (N − 1)k] and p
i
≥ (B−c)[ξ−(N−1)k]

k
+ c > 0. For

any supplier i and any price p, we have r̂i(p) ∈ [ ξ−(N−1)k
k

, 1]. Therefore, optimality

of ERi implies ERi ≥ R̂i(B) ≥ (B − c)[ξ − (N − 1)k] > 0. By (2.3-c), we also have

ERi = R̂+
i (p

i
) ≤ (p

i
− c)k, implying p

i
≥ ERi

k
+ c.

(b) p
i
= p ≡ minn{pn

} and ERi = (p − c)k for all i. Suppose there is a supplier

i such that p
i
> p. For supplier j �= i, consider her expected payoff at a price p̃ < p

i
.

With probability 1, supplier j achieves a sales fraction of rj(p̃) = 1∧ ξ−
∑

n�=i
kδ(pn<p̃)∑

n�=i
kδ(pn=p̃)

= 1

because ξ − ∑
n �=i kδ(pn<p̃) >

∑
n �=i kδ(pn=p̃). [by ξ − ∑

n �=i kδ(pn<p̃) − ∑
n �=i kδ(pn=p̃) =

ξ − ∑
n �=i kδ(pn≤p̃) ≥ ξ − (N − 1)k > 0] Therefore, r̂j(p) = 1 and R̂j(p) = (p − c)k

for all p < p
i
. As it is strictly increasing in p, the optimality of σ∗

j requires Pr{σ∗
j ∈

[0, p
i
)} = 0, implying p

j
≥ p

i
for all j �= i. It implies minj �=i{pj

} ≥ p
i
, a contradiction

to p
i
> p = minn{pn

}, so we must have p
i
= p for all i. Now continuity of Fi at p > c

implies mi(p) = 0 for all i and therefore r̂−i (p) = r̂i(p) = r̂+
i (p) = 1. Applying (2.3-c),

we obtain ERi = R̂+
i (p) = (p − c)kr̂+

i (p) = (p − c)k for all i.

(c) There is at most one player with m(P̄ ) > 0 for P̄ ≡ maxn {p̄n}. If P̄ < B, the

desired result follows directly our initial assumption (continuity of {Fn}). Suppose

P̄ = B and there are M ≥ 2 suppliers having m(B) > 0. From (2.3-a), we have

ERi = R̂i(B) for all i ∈ IM ≡ {n : mn(B) > 0}. However, similarly to part (a) of

Lemma A1’s proof, we can establish

r̂−i (p) − r̂i(p) ≥ ∏
n∈IM\{i}

mn(B) · [1 − ξ − (N − M)k

Mk
] > 0,

implying R̂−
i (B) > R̂i(B) = ERi, a contradiction to the optimality of ERi.

(d) ERi = (B − c)[ξ − (N − 1)k] for i = 1, 2, . . . , N and p = c + (B−c)[ξ−(N−1)k]
k

.

Part (c) implies at price P̄ , either mi(P̄ ) = 0 for all i or only one supplier has
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m(P̄ ) > 0. For both cases, we can find one supplier, say h, such that mn(P̄ ) = 0

for all n �= h. Clearly, supplier h has r̂−h (P̄ ) = r̂h(P̄ ) = ξ−(N−1)k
k

, and consequently,

ERh = R̂−
h (P̄ ) = (P̄ −c)[ξ−(N −1)k] by (2.3-b). Optimality of ERh requires P̄ = B

and part (b) yields p.

(e) Derivation of equilibrium solution. Consider supplier i’s expected payoff at

any p ∈ [p, p̄] ∩ [p, B) where p̄ ≡ minn {p̄n}. As all Fn’s are continuous, we have

mn(p) = 0 for all n �= i, and the possibilities of price-tie at p can omitted. Now given

any bid vector p−i, as long as b
(−i)
(1) = max {p−i} > pi, supplier i sells zi = k, while if

b
(−i)
(1) < pi, zi = ξ − (N − 1)k. Note that G

(−i)
(1) (p) = Pr{max {p−i} < p} = Πn �=iFn(p),

and we have

R̂i(p) = (p − c)[(ξ − Nk + k)G
(−i)
(1) (p) + kḠ

(−i)
(1) (p)] = ERi = (p − c)k.

It implies

G
(−i)
(1) (p) = Πn �=iFn(p) =

k

Nk − ξ

p − p

p − c
for all i.

Therefore, ΠN
i=1G

(−i)
(1) (p) = ΠN

i=1Fi(p)N−1 = [ k
Nk−ξ

p−p

p−c
]N , implying

ΠN
i=1Fi(p) = [ k

Nk−ξ

p−p

p−c
]

N
N−1 . Now we have

Fi(p) =
ΠN

i=1Fi(p)N−1

G
(−i)
(1) (p)

= [
k

Nk − ξ

p − p

p − c
]

1
N−1 for p ∈ [p, min {p̄n}]

Since Fi(p) is strictly increasing and takes value 1 at B, we must have p̄i = B for all

i.

A.3 Structural Properties of Mixed-Strategy Equilibria for

Symmetric UA.

Proposition 12 Consider a symmetric UA with (N − 1)k < ξ < Nk. For an

irreducible equilibrium σ∗
u, if Fi(p) is continuous and strictly increasing in p ∈ [p

i
, p̄i]∩

(c, B) for all i with p̄i > c, then

(a) P̄ ≡ max {p̄i} = B and at most one supplier has m(B) > 0; moreover, at least

one supplier h with p̄h = B has ERh = (B − c)[ξ − (N − 1)k];
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(b) p
i
= c and mi(c) = 0 for all i with p̄i > c;

(c) for p ∈ (c, B) and i ∈ Ip ≡ {n : p < p̄i}, Fi(p) = Ci
Ip

(p − c)
ξ−(N−1)k

(Np−1)(Nk−ξ) , where

Np ≥ 2 denotes the number of players in Ip and Ci
Ip > 0 remains constant for given

Ip.

Proof. First, due to the same logic as part (c) of Appendix A.2, there is at most

one player with m(P̄ ) > 0. Similarly to part (d) of Appendix A.2, we can show there

exists supplier h such that p̄h = P̄ and ERh = (P̄ − c)[ξ − (N − 1)k]. The optimality

of ERh requires P̄ = B.

Denote p∗ = max{c, maxn{pn
}} and irreducibility implies p∗ < B. For any p ∈

(p∗, B), denote Jp ≡ {n : p
n

< p < p̄n} and Mp = ‖Jp‖. We first show Mp ≥ 2.

Otherwise, if Mp = 1 (Mp = 0 is impossible), then we must have p
h

< p and p̄j < p

for all j �= h [by continuity and monotonicity of Fi for i ∈ Jp]. Due to the monotonicity

and continuity of Fh in [p, B], we establish a contradiction ERh = R̂h(p) < R̂h(B) =

ERh where the two equalities result from statements (4c) and (4b).

We next derive the functional form of Fi(p) for i ∈ Jp and p ∈ (p∗, B). By (2.3)

again, we have

R̂i(p) = G
(−i)
(1) (p)(p − c)[ξ − (N − 1)k] + k

∫ B

p
(v − c)dG

(−i)
(1) (v) = ERi.

The first order condition is identical to (9), so it has the same solution

G
(−i)
(1) (p) =

∏
n∈Jp\{i} Fn(p) = Di(p − c)

ξ−(N−1)k
Nk−ξ where Di > 0.

Now we have

Fi(p) =

Mp−1

√
Πi∈JpG

(−i)
(1) (p)

G
(−i)
(1)

= Ci
Jp

(p − c)
ξ−(N−1)k

(Mp−1)(Nk−ξ) where Ci
Jp

> 0.

It implies, for all i ∈ Jp, Fi(p) > 0 for p > p∗, i.e., p
n
≤ p∗. Note that the functional

form has Fi(p) > 0 for all p > c and F+
i (c) = limp′↓c Fi(p) = 0. As Fi(p) is continuous

and monotone in p ∈ [p
i
, p̄i] ∩ (c, B), we must have p

i
= c. It further implies p∗ = c

and Jp = Ip everywhere for p ∈ [c, B]. Now part (c) follows.

102



( )dH p

dpc B

p

1

O

dpc B p
O

*p

*p

S p

( ) ( )d uH p H p

( )uH p

( )duH p

Figure A.1. Graphic Illustration of Stochastic Ordering

A.4 Cumulative Distribution Functions of P d
S , P d

B, and P u.

Hu = (F u)N , (A.1)

Hd
S =

N∑
n=2

k

ξ
Gd

(n) +
ξ − Nk + k

ξ
Gd

(1) =
ξ − Nk

ξ
Gn +

k

ξ

N∑
n=1

Gn [by G(n) = GN+1−n]

=
ξ − Nk

ξ
F N +

k

ξ

N∑
n=1

N∑
m=n

(N
m)F mF̄ N−m =

ξ − Nk

ξ
F N +

k

ξ

N∑
m=1

m∑
n=1

(N
m)F mF̄ N−m

=
ξ − Nk

ξ
F N +

k

ξ

N∑
m=1

m(N
m)F mF̄ N−m =

ξ − Nk

ξ
F N +

kN

ξ
F

N∑
m=1

(N−1
m−1)F

m−1F̄ N−m

=
ξ − Nk

ξ
(F d)N +

kN

ξ
F d,

Hd
B = B1 ∗ B2 ∗ . . . ∗ Bn

where Bn(p) =

⎧⎪⎨
⎪⎩

Gd
(n)(

ξ
k
p) for n < N

Gd
(n)(

ξ
ξ−Nk+k

p) for n = N
and (∗) denotes convolution operator.

A.5 Proof of Proposition 1.

Proof. As explained in the paper, for any realized bid vector, P d
B is a constant

while P d
S is a random variable. Therefore, P d

S is a mean-preserving spread of P d
B, so

we only need to compare P d
S and P u.

(a) Equal Expected Price. It results from
∑N

i=1 ERA
i + cξ = E[P A]ξ for A = d and

u. Propositions 1 and 2 imply ERA
i = R̂A

i (B) = (B − c)[ξ − (N − 1)k], so the desired

result follows.
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(b) Stochastic Ordering. We illustrate the proof in the above Figure A.1. De-

fine function S(p) ≡ ∫ p
c [Hd

S(v) − Hu(v)]dv for p ∈ [c, B]. From part (a), we have∫ B
c H̄d

S(v)dv + c = E[P d
S ] = E[P u] =

∫ B
c H̄u(v)dv + c, implying S(B) =

∫ B
c [Hd

S(v) −
Hu(v)]dv =

∫ B
c [H̄u(v) − H̄d

S(v)]dv = 0. To show P u is stochastically more variable

than P u, we only need to prove S(p) ≤ 0 for all p ∈ [c, B].

For p ∈ [c, pd], as Hd
S(p) = 0 and Hu(p) > 0, S(p) = − ∫ p

c Hu(v)dv < 0. For

p ∈ [pd, B], as S(pd) < 0 and S(B) = 0, it is sufficient to show that S(p) is quasi-

convex in p ∈ [pd, B], that is, there exists p∗ ∈ (pd, B) such that Hd
S(p) − Hu(p) < 0

for p < p∗ and Hd
S(p) − Hu(p) > 0 for p > p∗. Given that Hd

S(pd) − Hu(pd) < 0

and Hd
S(B) − Hu(B) = 0, we only need to show Hd

S(p) − Hu(p) is quasi-concave in

p ∈ [pd, B]. A sufficient condition for quasi-concavity is that there exist T1(p) and

T2(p) such that Ḣd
S(p)− Ḣu(p) = T1(p)T2(p), T1(p) > 0, and T2(p) is decreasing in p.

Next we construct such T1 and T2. From (A.1),

Ḣd
S(p) =

pd − c

ρ(N − Nρ)
1

N−1 (N − 1)(p − c)2
[(

p − pd

p − c
)

1
N−1

−1 − (
p − pd

p − c
)

1
N−1 ] (A.2)

= Cd(p − pd)
2−N
N−1 (p − c)−2− 1

N−1

Ḣu(p) = (B − c)−
Nρ−N+1

(N−1)(1−ρ)
Nρ − N + 1

(N − 1)(1 − ρ)
(p − c)

Nρ−N+1
(N−1)(1−ρ)

−1 = Cu(p − c)
ρ

(N−1)(1−ρ)
−2

where Cd =
(pd−c)2

ρ(N−Nρ)
1

N−1 (N−1)
> 0 and Cu = (B − c)

− Nρ−N+1
(N−1)(1−ρ) Nρ−N+1

(N−1)(1−ρ)
> 0. Thus,

Ḣd
S(p) − Ḣu(p) = Cd(p − pd)

2−N
N−1 (p − c)−2− 1

N−1 − Cu(p − c)−2− ρ
(N−1)(ρ−1)

= (p − c)−2− ρ
(N−1)(ρ−1) [Cd(p − pd)−

N−2
N−1 (p − c)−

1
(ρ−1)(N−1) − Cu].

Let T1(p) = (p−c)
−2− ρ

(N−1)(ρ−1) and T2(p) = Cd(p−pd)−
N−2
N−1 (p−c)

− 1
(ρ−1)(N−1) −Cu. As

Ṫ2(p) = −N−2
N−1

Cd(p−pd)−
N−2
N−1

−1(p−c)−
1

(ρ−1)(N−1) − 1
(ρ−1)(N−1)

Cd(p−c)−
1

(ρ−1)(N−1)
−1 < 0

and T1(p) > 0, we obtain the desired functions T1 and T2.
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A.6 Derivation of Expressions (2.13) and (2.14).

R̂u
i (p|b−i) = Eξ[R

u
i (p|ξ,b−i)] = (p − c)

N∑
n=1

δ(bn−1<p<bn)

∫
δn(ξ)[k ∧ (ξ − nk + k)]dΦ(ξ)

+
N−1∑
n=1

δ(p<bn)(bn − c)
∫

kδn+1(ξ)dΦ(ξ)

= (p − c)
N∑

n=1

δ(bn−1<p<bn)Yn + k
N−1∑
n=1

δ(p<bn)(bn − c)Φn+1

R̂i(p) = Eb−i [R̂u
i (p|b−i)] = (p − c)

N∑
n=1

[Gn−1(p) − Gn(p)]Yn

+ k
N−1∑
n=1

Φn+1

∫ B

p
(bn − c)dGn(bn). [A rearrangement provides (2.13).]

dR̂i(p)

dp
=

N∑
n=1

[Gn−1(p) − Gn(p)]Yn + (p − c)
N−1∑
n=1

Ġn(p)(Yn+1 − Yn − kΦn+1)

=
N∑

n=1

[Gn−1(p) − Gn(p)]Yn + (p − c)
N−1∑
n=1

Ġn(p)(Zn+1 − Zn)

=
N−1∑
n=0

(N−1
n )F nF̄ N−n−1Yn+1

+ (p − c)Ḟ
N−1∑
n=1

(N − n)(N−1
n−1 )F n−1F̄ N−n−1(Zn+1 − Zn),

where the last equality follows the established results of order statistics, Gn =
N−1∑
m=n

F mF̄ N−m−1 and Ġn = (N − n)(N−1
n−1 )F n−1F̄ N−n−1Ḟ . The F.O.C. dR̂i(p)

dp
= 0

yields ODE (2.14).

A.7 Proof of Proposition 2

Proof. Parts (a) and (b) follow exactly the same argument as in the deterministic

case. We only consider the case for
ξ

N
< k < ξ̄

N−1
. First, it is easy to verify that

if F d satisfying (2.12) exists, it must be an equilibrium solution by noticing (a)

R̂d(p) < ERd for all p < p = c + (B−c)Zn

Z1
and (b) R̂d(p) = ER for all p ≥ p.

Similarly, it can be verified that a solution to (2.14) defines a symmetric mixed-

strategy equilibrium for a UA. Therefore, the only thing we need to show that the

solutions to (2.12) and (2.14) exist and are unique.

Unlike the deterministic cases, where unique solutions are identified in closed
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forms, here we have to study in more abstract forms. First consider symmetric DA.

A necessary condition for equation (2.12) to hold is dR̂
dp

= 0 for p ∈ [p, B]. It leads to

the following ODE

Ḟ (p) =

∑N−1
n=0 [(N−1

n )F n(1 − F )N−n−1Zn]

(p − c)
∑N−1

n=1 [(N−1
n )nF n−1(1 − F )N−n−1(Zn − Zn+1)]

(A.3)

F (B) = 1.

Notice that
ξ

N
< k < ξ̄

N−1
implies Z1 ≥ Z2 ≥ . . . ≥ Zn and ZN−1 > Zn. Thus, the

difference Zn − Zn+1 ≥ 0 for all n ∈ {1, . . . , N − 1} and ZN−1 − Zn > 0. It implies

function Π(p, F ) defined by RHS of (A.3) is continuous and ∂Π
∂F

is continuous in F for

any {F, p} ∈ (0, 1] × (c, B + ε) with small ε > 0. Therefore ODE (A.3) has one and

only one solution F (p) in some neighborhood of {F ∗, p∗} ∈ (0, 1]×(c, B+ε) satisfying

F (p∗) = F ∗.1 As boundary condition {1, B} ∈ (0, 1]×(c, B+ε), the solution to (A.3)

exists uniquely.

For UA, clearly, ODE (2.14) can be rearranged into

Ḟ (p) =

∑N−1
n=0 (N−1

n )(F u)n(F̄ u)N−(n+1)Yn+1

(p − c)
∑N−1

n=1 (N − n)(N−1
n−1 )(F u)n−1(F̄ u)N−n−1(Zn − Zn+1)

F (B) = 1.

Similarly to the above case of DA, we can show the existence and uniqueness of the

solution to the above ODE.

A.8 Hd and Hu for Symmetric Auctions with Random De-

mand

Symmetric DA: (Numerical Scheme) Similarly to Appendix A.4, given equilibrium

distribution function F , we have Gd
(n)(p) =

∑N
m=n(N

m)F mF̄ N−m. Now cdf of P d,

conditional on demand ξ is

Hd(·|ξ) = B1(·|ξ) ∗ B2(·|ξ) ∗ . . . ∗ BN̄(ξ)(·|ξ)
1Existence and Uniqueness Theorem for Regular ODE: For ODE ẋ = f(t,x), if f is

continuous and ∂f
∂xi

are continuous in x ∈ D, t ∈ I for all i, where D is a domain and I is an open
interval, then the ODE has a solution x(t), defined uniquely in some neighborhood of (x∗ ∈ D, t∗ ∈ I)
which satisfies x∗ = x(t∗).

106



where Bn(p) = Gd
(n)(

ξ
zn

p), zn = min {k, ξ − (n − 1)k} and N̄(ξ) =
⌈

ξ
k

⌉
. Thus,

Hd(p) = Eξ[H
d(p|ξ)] can be computed.

Symmetric UA: (Analytical Scheme) From P u =
∑N

n=1 b(N)
n δ(nk−k<ξ≤nk) + b

(N)
(N)δ(ξ>Nk),

Hu(p|b) = Eξ[Pr {P u < p|b}] =
N∑

n=1

δ(bn<p)Φn + ξ(bn<p)Φ̄(Nk)

Hu(p) = Eb[Hu(p|ξ,b)] =
N∑

n=1

Φn

N∑
m=n

(N
m)F mF̄ N−m + Φ̄(Nk)F (p)N

=
N∑

m=1

(N
m)F mF̄ N−m

m∑
n=1

[Φ(nk) − Φ(nk − k)] + Φ̄(Nk)F (p)N .

A.9 Equilibrium Analysis for Two-Bidder Auctions with Ran-

dom Demand

The following notation is useful for both auctions. For supplier i = 1, 2, define

Ki ≡ E[ki ∧ ξ] =
∫ ki
ξ ξdΦ(ξ) + kiΦ̄(ki) =

∫ ki
0 Φ̄(ξ)dξ as her expected sales for pi < pj .

Define X ≡ E[(k1 + k2) ∧ ξ] =
∫ k1+k2
0 Φ̄(ξ)dξ as the expected total sales. It is easy to

verify that, in case of pi > pj , supplier i’s expected sales is X − Kj.

1. Discriminatory Auctions. We partition the space of capacities in the below

table and illustrate them the right figure. The unique equilibrium solution is as

follows.

(a) Pure strategy equilibrium. (a-i) For k ∈ Ωd
1, it is a pure-strategy equilib-

rium with
{
pd∗

1 = pd∗
2 = B

}
; (a-ii) For k ∈ Ωd

4, it is a pure-strategy equilibrium with{
pd∗

1 = pd∗
2 = c

}
.

(b) Mixed-Strategy Solution. For k ∈ Ωd
3 ∪ Ωd

4, it is a mixed-strategy equilibrium

(σ∗
1 , σ

∗
2) with

F d
h (p) =

(p − pd)Kl

(p − cl)[Kh + Kl − ξ]
for p ∈ [pd, B) and md

h(B) = 1 − (B − ch)Kl

(B − cl)(Kh ∧ ξ)
;

F d
l (p) =

(p − pd)Kh

(p − ch)[Kh + Kl − ξ]
for p ∈ [pd, B],

where pd = (B−ch)(ξ−Kl)
Kh∧ξ

+ ch and (h, l) = (1, 2) for k ∈ Ωd
3, while (h, l) = (2, 1) for
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k ∈ Ωd
4.

Ωd
1 ≡ {k : k1 + k2 ≤ ξ}

Ωd
2 ≡ {k : k1 ≥ ξ̄, K2

B−c2
≥ X

B−c1
}

Ωd
3 ≡ {k : k1 + k2 > ξ, K2

B−c2
< X

B−c1
, K1

B−c1
≥ K2

B−c2
}

Ωd
4 ≡ {k : k1 + k2 > ξ, k1 < ξ̄, K1

B−c1
≤ K2

B−c2
}

2. Uniform Auctions. The partition of capacity combinations is as follows

and illustrated by the right figure. Note that set Ωu
2 is denoted by the grey area which

may overlap with set Ωu
5d (and possibly Ωu

3). We formally present the equilibrium

solution.

Ωu
1 ≡ {k : k1 + k2 ≤ ξ}

Ωu
2 ≡

{
k : k1 ≥ ξ̄, K2

B−c2
≥ X

B−c1

}
Ωu

3 ≡ {k : k1 ≥ ξ̄, k2 ≤ ξ}
Ωu

4 ≡ {k : k1 ≥ ξ̄, k2 < ξ̄}
Ωu

5a ≡ {k : k1 + k2 > ξ, k1 ≤ ξ, k2 ≤ ξ}
Ωu

5b ≡ {k : k1 ≤ ξ, ξ < k2 < ξ}
Ωu

5c ≡ {k : ξ < k1 < ξ, k2 ≤ ξ, }
Ωu

5d ≡ {k : ξ < k1, ξ < k2, (k1 ∧ k2) > ξ̄}
(a) Pure-Strategy Solution. (a-1) For k ∈ Ωu

1 , it is unique with {pu∗
1 = pu∗

2 = B} ;

(a-2) For k ∈ Ωu
2 , {pu∗

1 = pu∗
2 = c2} is an equilibrium; (a-3) For k ∈ Ωu

3 ∪ Ωu
4 ∪

Ωu
5a ∪ Ωu

5b ∪ Ωu
5c, {pu∗

h = B, pu∗
l = (B−c2)(X−kl)

Kh
+ ch} is an asymmetric pure-strategy

equilibrium, where (h, l) = (1, 2) for k ∈ Ωu
5a ∪ Ωu

5c ∪ Ωu
3 ; and (h, l) = (2, 1) for

k ∈ Ωu
5a ∪ Ωu

5b ∪ Ωu
4 ; (a-4) For k ∈ Ωu

5d\Ωu
2 , there is no pure-strategy equilibrium.

(b) Mixed-Strategy Solution. Irreducible mixed-strategy equilibrium exists for k ∈
Ωu

5(a,b,c,d) and satisfies the following distribution function,

F ∗
i (p; mi

B) =

⎧⎪⎨
⎪⎩

(βi

λi
+ 1 − mi

B)( p−cj

B−cj
)λi − βi

λi
if λi �= 0

βi ln
p−cj

B−cj
+ 1 − mi

B if λi = 0
for p ∈ [P, B), (A.4)

where P = max{p
1
, p

2
}, βi =

∫ kj

ξ ξdΦ(ξ)

K1 + K2 − X
and λi =

X − Ki − ∫ kj

ξ ξdΦ(ξ)

K1 + K2 − X
.

Moreover, price bound P satisfies P = max{L1(0), L2(0)}, where function Li(·) and

its inverse function M i
B(·) = L

(−1)
i (·) are defined from equation F ∗

i (Li; m
i
B) = 0 for
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i = 1, 2,

⎧⎪⎨
⎪⎩

Li(m
i
B) ≡ cj + (B − cj)[

βi

βi+λi(1−mi
B)

]
1

λi ; M i
B(p

i
) ≡ 1 + βi

λi
− βi

λi
(

B−cj

p
i
−cj

)λi if λi �= 0

Li(m
i
B) ≡ cj + (B − cj) exp(

mi
B−1

βi
); M i

B(p
i
) ≡ 1 + βi ln(

p
i
−cj

B−cj
) if λi = 0

.

The probability masses m1
B and m2

B determine the set of irreducible equilibria. (b-1)

For k ∈ Ωu
5a, P = c2. Any {m1

B, m2
B} ∈ [0, 1)2 with m1

B ·m2
B = 0 defines an equilibrium

satisfying F2(p) ≥ F ∗
2 (p, m2

B) for p < c2; (b-2) For k ∈ Ωu
5d, the equilibrium is

unique with ml
B = 0 for l = arg maxi {Li(0)} and mh

B = Mh(P ) for h �= l; (b-

3) For k ∈ Ωu
5b, m1

B = 0 and any m2
B ∈ [0, 1) defines an irreducible equilibrium

with m2(P ) = F2(P ; m2
B); (b-4) For k ∈ Ωu

5c if c2 ≤ L2(0), then m2
B = 0 and any

m1
B ∈ [0, 1) defines an irreducible equilibrium; if c2 > L2(0), the equilibrium is unique

m1
B = 0, and m2

B = M2
B(c2).
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APPENDIX B

Proofs and Analysis for Chapter 3

B.1 Pure-Strategy Equilibrium Analysis

Based on Lemma 16, equation (3.1) can be simplified as,

ri(pi,p−i) = min

{
1,

[d − QL
i (pi,p−i)]

+

xi + QE
i (pi,p−i)

}
(B.1)

where QL
i (pi,p−i) =

∑
k �=i

xkδ(pk<pi) +
∑
k �=i

xkδ(pk=pi,ck<ci)

QE
i (pi,p−i) =

∑
k �=i

xkδ(pk=pi,ck=ci).

Note that, pk ∈ [ck, b] implies,

QL
i (pi,p−i) + QE

i (pi,p−i) =
∑
k �=i

xkδ(pk≤pi) −
∑
k �=i

xkδ(pk=pi,ck>ci). (B.2)

Notice that, when the total active capacities at price p do not exceed the demand,

all suppliers pricing below or at p have sales ratio of 1. That is,

∑
k
xkδ(pk≤p) ≤ d implies rk(pk,p−k) = 1 for all k with pk ≤ p. (B.3)

Similarly, we have

∑
k
xkδ(pk<p) ≤ d implies rk(pk,p−k) = 1 for all k with pk < p. (B.4)

Consider a pure-strategy equilibrium outcome p∗ = {p∗1, p∗2, . . . , p∗N} and recall A =

{i : ri(p
∗
i ,p

∗
−i) > 0}, the set of active suppliers (those with positive market share).

Lemma 17 shows that all active players must choose the same bid price in equilibrium,

and also describes features of the set of active suppliers.

Lemma 4 For any pure-strategy equilibrium p∗, there exists a constant P ∗ such that

(a) i ∈ A implies p∗i = P ∗; (b) ci < P ∗ implies i ∈ A, so i /∈ A implies ci ≥ P ∗; (c)

ci > P ∗ implies i /∈ A; (d) pi ≥ P ∗ for all i.
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Proof. Proof of Lemma 17 For part (a) it is equivalent to show that any i, j ∈ A must

have p∗i = p∗j . Suppose p∗i < p∗j and rj(p
∗
j ,p

∗
−j) > 0, implying

∑
k xkδ(p∗

k
<p∗j ) < d. This

relation will not change if supplier i raises her price to p′i =
p∗i +p∗j

2
since δ(p∗i <p∗j ) =

δ(p′i<p∗j ) = 1, suggesting ri(p
′
i,p

∗
−i) = ri(p

∗
i ,p

∗
−i) = 1, implying Ri(p

′
i) > Ri(p

∗
i ), a

contradiction to the optimality of p∗i .

(b) Suppose ci < P ∗ but ri(p
∗
i ,p

∗
−i) = 0 so Ri(p

∗
i ,p

∗
−i) = 0. But, if supplier i bids

p′i = P ∗, she would have Ri(P
∗,p∗

−i) = (P ∗ − ci)xiri(P
∗,p∗

−i) > 0, contradicting the

optimality of p∗i .

(c) As pi ≥ ci always, we must have p∗i ≥ ci > P ∗, implying i /∈ A from the converse

of part (a).

(d) From (a) and (b) if ci < P ∗ then pi = P ∗. If ci ≥ P ∗ then pi ≥ ci ≥ P ∗.

The next lemma shows that agent i’s sales ratio ri(p), or equivalently the sales

zi(p), is (weakly) increasing in her opponents’ bid price and (weakly) decreasing in

her own bid price.

Lemma 5 ri(p) is nondecreasing in pj for j �= i and nonincreasing in pi.

Proof. Proof of Lemma 18 (i) We prove the monotonicity of ri(p) in pj with j �= i

in three steps.

(i-a) QL
i is weakly decreasing in pj . From (C.1), QL

i involves two groups of indices.

When pj increases, index j can disappear from the first group (δ(pj<pi) changing from

1 to 0), or disappear from the second group (δ(pj=pi,cj<ci=pi) changing from 1 to 0),

or move from the first group to the second. For any one of above cases, QL
i does not

increase.

(i-b) QL
i + QE

i is weakly decreasing in pj. From (C.2), QL
i + QE

i is a difference of

two groups of indices. When pj increases, index j can disappear from the first group

(δ(pj≤pi) changing from 1 to 0), or disappear from group 2 (δ(pj=pi,cj>ci) changing from

1 to 0) or both. When it disappears from the second group, it also disappears from

the first group.

(i-c) Consider any p′j < p′′j . We want to show that

1 ∧ [d − QL
i (p′j,p−j)]

+

xi + QE
i (p′j,p−j)

≤ 1 ∧ [d − QL
i (p′′j ,p−j)]

+

xi + QE
i (p′′j ,p−j)

, (B.5)

111



If QL
i (p′j,p−j) ≥ d, then the left hand side of (C.6) is 0 and the desired inequality

holds trivially. If QL
i (p′j,p−j) < d, from (i-a) and p′j < p′′j , we have QL

i (pi, p
′′
j ,p−i−j) ≤

QL
i (p′j,p−j) < d. Now it is sufficient to show that

xi + QE
i (p′j,p−j)

d − QL
i (p′j,p−j)

≥ xi + QE
i (p′′j ,p−j)

d − QL
i (p′′j ,p−j)

,

i.e., 1 +
xi−d+QE

i (p′j ,p−j)+QL
i (p′j ,p−j)

d−QL
i (p′j ,p−j)

≥ 1 +
xi−d+QE

i (p′′j ,p−j)+QL
i (p′′j ,p−j)

d−QL
i (p′′j ,p−j)

. Using (i-a) and (i-

b), the above inequality follows.

(ii) Now we show ri(p) is nonincreasing in pi. Part (i) implies that for k �= i,

zk(pk, pi,p−i−k) = xkrk(pk, pi,p−i−k) is nondecreasing in pi. Since
∑

k zk(pk, pi,p−i−k) =

min{d,
∑

k xk} is nonincreasing in pi, we must have that zi(pi,p−i) = min{d,
∑N

k=1 xk}−∑
k �=i zk(pk, pi,p−i−k) is nonincreasing in pi.

Denote r−i (pi,p−i) = limp′i↑pi
ri(p

′
i,p−i) and r+

i (pi,p−i) = limp′i↓pi
ri(p

′
i,p−i). Simi-

lar notation applies to R−
i (pi,p−i) and R+

i (pi,p−i).

Lemma 6 For any price pi > ci,

(a) r−i (pi,p−i) = 1 ∧ (d−
∑

k �=i
xkδ(pk<pi)

)+

xi
and r+

i (pi,p−i) = 1 ∧ (d−
∑

k �=i
xkδ(pk≤pi)

)+

xi
;

(b) r−i (pi,p−i) ≥ ri(pi,p−i) ≥ r+
i (p,p−i).

(c) p∗i > ci at equilibrium implies r−i (p∗i ,p
∗
−i) = ri(p

∗
i ,p

∗
−i).

Proof. Proof of Lemma 19 (a) First notice that for any pi,

lim
p′i↑pi

δ(pk<p′i) = δ(pk<pi), lim
p′i↓pi

δ(pk<p′i) = δ(pk≤pi), and lim
p′i→pi

δ(pk=p′i) = 0.

Substituting the above expressions into (C.1), we have limp′i↑pi
QL

i (p′i,p−i) =
∑

k �=i xkδ(pk<pi),

limp′i↓pi
QL

i (p′i,p−i) =
∑

k �=i xkδ(pk≤pi), and limp′i→pi
QE

i (p′i,p−i) = 0, which implies (a).

(b) Part (b) is directly implied by monotonicity of ri(pi,p−i) established in Lemma

18.

(c) R−
i (p∗) = (p∗i − ci)xir

−
i (p∗) ≤ Ri(p

∗) at equilibrium or else agent i would deviate

downward from p∗i if possible. When p∗i > ci this implies r−i (p∗) ≤ ri(p
∗). But by

part (b), r−i (p∗) ≥ ri(p
∗), so r−i (p∗) = ri(p

∗) at equilibrium.

We can now formally present the necessary conditions for a pure strategy equilib-

rium. Denote the set of profitable suppliers at equilibrium p∗ by Π = {i : Ri(p
∗) > 0}.
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clearly, Π = {i : ci < P ∗} ⊂ A (from Lemma 17b) and i ∈ A\Π implies ci = P ∗.

Proposition 17 justifies the intuition established earlier regarding the bid prices and

also shows that only a profitable player uses all of her capacity at equilibrium.

Proposition 13 A pure-strategy equilibrium p∗ satisfies (i) p∗i = P ∗ for all i ∈ A

where P ∗ is defined in (C.7); (ii) ri(p
∗) = 1 ∧ d

xi
for all i ∈ Π; and (iii) ri(p

∗) =
d−

∑
k∈Π

xk∑
k∈A\Π xk

< 1 ∧ d−
∑

k∈Π
xk

xi
for all i ∈ A\Π.

Proof. Proof of Proposition 17 (i.a) Suppose P ∗ < c2. It is impossible when c1 = c2,

since P ∗ ≥ ck ≥ c1 for all k. When c1 < c2, P ∗ < c2 implies that A = {1} and

any price p′1 ∈ (P ∗, c2) yields the same ratio r1 and a strictly higher payoff, which

is a contradiction. Suppose P ∗ > c2. From Lemma 17(b), we have {1, 2} ⊂ Π, and

therefore, r1(P
∗,p∗

−1) = d∑
k∈A

xk
≤ d

x1+x2
< d

x1
= r−1 (P ∗,p∗

−1), which contradicts

Lemma 19(c). Therefore, we must have P ∗ = c2.

(i.b) Suppose P ∗ < cj . Then j /∈ A, by Lemma 17(c), and rj(p) = 0. Condition (b)

implies
∑j−1

k=1 xk ≤ d and rk = 1, for k = 1 to j − 1. But, rk = 1 is equal to 1, as

long as pk < cj . Thus, these agents will want to defect to a price greater than P ∗,

contradicting the optimality of p∗k = P ∗, and we must have P ∗ ≥ cj. P ∗ > cj cannot

occur, because then at least one agent k (1 ≤ k ≤ j) must have rk(p) < 1, which

means r−k (p) = 1 contradicting Lemma 19(c). So P ∗ = cj.

(i.c) From (C.4), if d ≥ ∑
k xk, then ri(p) = 1 for all i and p and the only possible

profit maximizing price for any agent is b.

(ii) From Lemma 17(b) and (c), {i|ci < P ∗} ⊆ A ⊆ {i|ci ≤ P ∗}. So Π = A ∩
{i|ci < P ∗} = {i|ci < P ∗} ⊆ A ⊆ {i|ci ≤ P ∗}. For case (a) in equation (C.7), we

have either Π = ∅, when c1 = c2 or Π = {1} and r1(p
∗) = d

x1
< 1, when c1 < c2, so

part (ii) holds in that case. For cases (b) and (c), we have from equation (C.7), that∑
k∈Π xk =

∑
k xkδ(ck<P ∗) ≤ d so ri(p

∗) = 1, for all i ∈ Π and again part (ii) hold.

(iii) For any firm i in A\Π, QE
i (p∗) =

∑
k �=i,k∈A\Π xk so xi + QE

i (p∗) =
∑

k∈A\Π xk is a

constant for all such firms. Also, for i in A\Π, QL
i (p∗) =

∑
k∈Π xk, is also constant.

That is, the allocation ri = r is a constant for all firms in A\Π. But that means

d =
∑
k∈A

xkrk(p
∗) =

∑
k∈Π

xk + r
∑

k∈A\Π
xk, so r =

d −∑
k∈Π xk∑

k∈A\Π xk
for all firms in A\Π.
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All firms in A bid P ∗, so either all firms are in A (in which case P ∗ = b and ri = d∑
k

xk

for all i) or the next highest bid price (from a firm not in A) is strictly greater

than P ∗. Suppose r = 1 for all firms in A\Π and d =
∑

k∈A xk. Then, ri would

remain equal to one if firm i raised her price bid. This cannot be in equilibrium,

so we must have ri < 1 for i ∈ A\Π. If there is more than one firm in A\Π then

rj =
d−

∑
k∈Π

xk∑
k∈A\Π xk

< 1∧ d−
∑

k∈Π
xk

xj
for all j ∈ A\Π. Suppose now that just one firm j is in

A\Π, then rj =
d−

∑
k∈Π

xk

xj
, but she would defect to a higher price since rj =

d−
∑

k∈Π
xk

xj

for all p ∈ [cj, cj+1]. It contradicts the optimality of p∗j = P ∗.

Lemma 20 formally shows that, for any equilibrium in the bidding game, there

exists a normalized, payoff equivalent equilibrium. It further implies that for any

game, if pure-strategy equilibrium exists, there is a unique normalized equilibrium.

Lemma 7 (a) If a pure-strategy equilibrium p∗ has p∗i > ci for any i /∈ Π, then

(ci,p
∗
−i) is also an equilibrium and it is payoff-equivalent to p∗; (b) If a pure-strategy

equilibrium exists, then the game has a unique normalized equilibrium {p∗i = ci ∧ P ∗ for all i}
with P ∗ given by (C.7).

Proof. Proof of Lemma 20 (a) i /∈ Π implies Ri(p
∗) = 0 and agent i is not econom-

ically affected by changing p∗i to ci. We need, however, to show that no other agent

j �= i has an incentive to defect from p∗j , after this adjustment. From Lemma 18, rj

is nonincreasing in pi, so rj(p
∗
j , ci,p

∗
−i−j) ≥ rj(p

∗
j , p

∗
i ,p

∗
−i−j) and Rj(p

∗
j , ci,p

∗
−i−j) ≥

Rj(p
∗
j , p

∗
i ,p

∗
−i−j) for all j. If j ∈ Π, implying cj < p∗j = P ∗ ≤ ci < pi, agent j has

a strictly higher allocation priority over agent i regardless of whether agent i bids pi

or ci, so agent j’s allocation and optimal response are unaffected by this change. If

j /∈ Π then the above and the non-negativity of Rj imply 0 ≤ Rj(pj , cj,p−i−j) = 0 so

again there is no effect.

(b) From Proposition 17 and part (a), for any game with a pure-strategy equilibrium,

p∗i = ci ∨ P ∗ defines a normalized pure-strategy equilibrium. Uniqueness follows be-

cause P ∗ is uniquely defined in (C.7) and stays the same when we interchange the

indices among players with the same cost.

Evaluation of the profits from defection allows us to state necessary and sufficient
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conditions for a pure-strategy equilibrium to exist. We only need to consider incen-

tives for agents to raise price to higher competitors’ bid levels, where the upper limit

b is also a potential target level. To simplify notation, let cN+1 = b.

Proposition 14 A unique normalized pure-strategy equilibrium exists with p∗i = P ∗∨
ci and P ∗ given by (C.7) if and only if

(P ∗ − ci)(xi ∧ d) ≥ (cj − ci)(d −∑
k �=i

xkδ(ck<cj))
+ (B.6)

for all i and j such that ci ≤ P ∗ and j > i, where cN+1 = b.

Proof. Proof of Proposition 18 If a normalized pure-strategy equilibrium exists, by

Lemma 20 (b), p∗i = P ∗ ∨ ci must be the equilibrium bid price. We seek conditions

under which agents wish to defect from p∗i = P ∗ ∨ ci. Consider three cases, ci < P ∗,

ci > P ∗, and ci = P ∗.

(a) ci < P ∗: In this case i ∈ Π ⊆ A, p∗i = P ∗, and ri = 1 ∧ d
xi

from Lemma 17 and

Proposition 17, so Ri(P
∗,p∗

−i) = (P ∗− ci)(xi ∧ d). ri is unaffected if supplier i lowers

her price, so there is no incentive to do that. If supplier i raises her price she will raise

it up to a level equal to some cj > P ∗ ≥ ci, because there is no benefit to stopping

between cost levels. If agent i bids cj > P ∗ she will be allocated the residual demand

(d −∑
k �=i xkδ(ck<cj))

+. (Any agent k with ck = cj is dominated by agent i by (C.1).)

Thus, agent i with ci < P ∗ will not defect to cj > P ∗ if and only if (C.8) holds.

(b) ci > P ∗: In this case i /∈ A, p∗i = ci, and Ri(p
∗) = 0, by Lemma 17 and

normalization. Agent i cannot reduce her price below ci profitably, and since ri is

non-increasing it will remain zero for pi above ci. So, player i has no incentive to

deviate.

(c) ci = P ∗: In this case, p∗i = P ∗ = ci and agent i is making no profit, Ri(p
∗) = 0.

Lowering price cannot be profitable. If ri = 0 then raising price cannot be profitable,

either because ri is non-increasing. If ri > 0 then by raising price to cj > ci supplier

i will capture the residual demand (d − ∑
k �=i xkδ(ck < cj))

+, and will be strictly

better off (relative to zero profits) if this residual demand is positive. That is, agent

i will defect if and only if d − ∑
k �=i xkδ(ck<cj) > 0, which together with Ri(p

∗) =

(P ∗− ci)(xi ∧ d) = 0 is equivalent to (P ∗− ci)(xi ∧ d) < (cj − ci)(d−∑
k �=i xkδ(ck<cj)).
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Putting these three parts together, we see that agents with cost greater than P ∗

never have an incentive to defect, and all other agents will defect if and only if

(P ∗ − ci)(xi ∧ d) < (cj − ci)(d −∑
k �=i xkδ(ck < cj)).

B.2 Mixed-Strategy Equilibrium

Proposition 18 suggests that there is no pure-strategy equilibrium if there exist i and

j such that

(P ∗ − ci)(xi ∧ d) < (cj − ci)(d −∑
k �=i

xkδ(ck<cj))
+ for ci ≤ P ∗ and cj > P ∗. (B.7)

Throughout this section, we assume (C.9) holds for certain i and j and seek mixed-

strategy Nash equilibria. We first show, in Lemma 22, that the upper bound of

active bids, P , separates the profitable players and non-profitable ones according to

whether an agent’s cost is lower than P or not. Lemma 22 generalizes Lemma 17 in

mixed-strategy space, which helps to justify our normalization of the mixed-strategy

equilibria in Lemma 23.

Denote r̄−i (p, σ−i) = limp′↑p r̄i(p
′, σ−i) and r̄+

i (p, σ−i) = limp′↓p r̄i(p
′, σ−i). Correspond-

ingly, we have R̄−
i (p, σ−i) = (p− ci)xir̄

−
i (p, σ−i) and R̄+

i (p, σ−i) = (p− ci)xir̄
+
i (p, σ−i).

As ri(p,p−i) ∈ [0, 1] for all p, from bounded convergence theorem1 and Lemma 19(a),

we must have

r̄−i (p, σ−i) = E[r−i (p, σ−i)] = E[1 ∧ (d −∑
k �=i xkδ(σk<p))

+

xi
] (B.8)

r̄+
i (p, σ−i) = E[r+

i (p, σ−i)] = E[1 ∧ (d −∑
k �=i xkδ(σk≤p))

+

xi
].

Applying Lemma 19(b), we have

r̄−i (p, σ−i) ≥ r̄i(p, σ−i) ≥ r̄+
i (p, σ−i) (B.9)

The next lemma is instrumental and it shows that, if a certain price is chosen with a

positive probability, it must yield the expected equilibrium payoff ERi. Similarly, if

some prices are chosen in any small neighborhood of p, i.e., Fi(·) is strictly increasing

1Refer to standard textbooks of probability and measure theory such as Billingsley (1995).
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in the left or right neighborhood of price p, then supplier i’s equilibrium payoff can

be achieved at the left limit of her function at p. Lemma 21 states a slightly more

general result.

Lemma 8 A mixed-strategy equilibrium satisfies the following, for any p ∈ [p
i
, p̄i],

(a) if mi(p) > 0, then R̄−
i (p) = R̄i(p) = ERi;

(b) if Fi(p
′) < F−

i (p) for all p′ < p, then R̄−
i (p) = ERi;

(c) if Fi(p) < Fi(p
′) for all p′ > p, then R̄−

i (p) = R̄i(p) = R̄+
i (p) = ERi.

Proof. Proof of Lemma 21 Notice that for any p > ci, from inequality (C.12) and

optimality of ERi, we have

R̄+
i (p) ≤ R̄i(p) ≤ R̄−

i (p) ≤ ERi. (B.10)

For part (a), it is sufficient that ERi = R̄i(p), which clearly holds. For part (b),

suppose there exists p such that Fi(p
′) < F−

i (p) for all p′ < p, but ERi > R̄−
i (p).

It implies r̄−i (p) =
R̄−

i (p)

(p−ci)xi
< ERi

(p−ci)xi
, that is, there exists δL > 0 such that r̄i(p

′) <

ERi

(p′−ci)xi
for all p′ ∈ sL ≡ (p− δL, p). We then have R̄i(p

′) = (p′− ci)xir̄i(p
′) < ERi for

all p′ ∈ sL, implying Pr{σ∗
i ∈ sL} = 0, a contradiction to Fi(p

′) < F−
i (p) for all p′ < p.

For part (c), by inequality (C.13), we only need to show ERi = R̄+
i (p). Since Fi(p

′),

as a cdf, is right continuous, we have F+
i (p) = Fi(p). Suppose F+

i (p) = Fi(p) < Fi(p
′)

for all p′ > p but ERi > R̄+
i (p). Similar to part (b), there exists δR > 0 such that

R̄i(p
′) < ER for all p′ ∈ sR = (p, p + δR), implying Pr{σ∗

i ∈ sR} = 0. This is a

contradiction to F+
i (p) = Fi(p) < Fi(p

′), for all p′ > p.

Notice that, for price p
i

= inf {p|Fi(p) > 0}, we have either mi(pi
) > 0 or

{mi(pi
) = 0 and Fi(p) > 0 for all p > p

i
}, so parts (a) or (c) of Lemma 21 ap-

ply. Similarly, for p̄i, part (a) or (b) of Lemma 21 can be applied. Therefore, we have

a useful relationship,

R̄−
i (p

i
) = R̄i(pi

) = ERi = R̄−
i (p̄i). (B.11)

Define the set of profitable suppliers as Π := {k : ERk > 0}. Next, we show that

price P = maxi∈Π {p̄i} separates profitable and non-profitable suppliers according to

whether their costs are less than P or not. Note that our proof relies crucially on
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the independence of suppliers’ mixed-strategies.(That is, randomizing suppliers do

not condition their behavior on any jointly observable events.) It allows us to use

product of probabilities for the joint outcome of the bid vector. This assumption is

used through the whole section and will also be used in the proofs of Lemma 25 and

Proposition 16.

Lemma 9 ERi > 0 if and only if ci < P .

Proof. Proof of Lemma 22 Necessity is obvious from how P is defined. For sufficiency,

suppose there exists i satisfying ci < P but ERi = 0. We must have r̄i(p) = 0 for

any p ∈ (ci, P ). It implies Pr{d ≤ ∑
k �=i xkδ(σ∗

k
<p)} = 1, or equivalently, Pr{d >∑

k �=i xkδ(σ∗
k
<p)} = 0. On the other hand, P > p indicates that there must be certain

player h ∈ Π pricing over (p, P ] with a positive probability, i.e., Pr {σ∗
h > p} > 0. As

supplier h achieves ERh > 0 by choosing certain price higher than p, her expected

sales at price p must be positive, implying, Pr{d >
∑

k �=h xkδ(σ∗
k
<p)} > 0. This leads

to a contradiction,

0 = Pr{d >
∑
k �=i

xkδ(σ∗
k
<p)} ≥ Pr{d >

∑
k

xkδ(σ∗
k
<p)}

≥ Pr {σ∗
h > p}Pr{d >

∑
k

xkδ(σ∗
k
<p)|σh > p}

= Pr {σ∗
h > p}Pr{d >

∑
k �=h

xkδ(σ∗
k
<p)} > 0.

Similarly to the pure-strategy equilibrium analysis, in the rest of this section, we

restrict ourselves to normalized equilibria by fixing non-profitable players’ bidding

strategy. The following lemma justifies the generality of our assumption.

Lemma 10 If σ∗ = {σ∗
i , σ

∗
−i} is an equilibrium with ERi = 0 and p̄i > ci, then

{pi = ci, σ
∗
−i} is a payoff-equivalent equilibrium to σ∗.

Proof. Proof of Lemma 23 As ERi = R̄i(σ
∗) = 0 = R̄i(ci), agent i herself is not

economically affected by changing from σ∗
i to ci. For any other player j �= i, since

σ∗
i ∈ P([ci, b]) is (weakly) larger than pi = ci, the monotonicity of rj(·) in pi (Lemma

18) implies Pr
{
rj(pj, ci, σ

∗
−j−i) ≤ rj(pj, σ

∗
i , σ

∗
−j−i)

}
= 1 for any pj , and therefore,

R̄j(pj, ci, σ
∗
−j−i) ≤ R̄j(pj, σ

∗
i , σ

∗
−j−i) ≤ ERj for all pj ≥ cj. (B.12)
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That is, given ci and σ∗
−j−i, ERj is an upper bound of supplier j’s payoff. Conse-

quently, it is sufficient to show that strategy σ∗
j maximizes j’s expected payoff and

R̄j(σ
∗
j , ci, σ−j−i) = R̄j(σ

∗
j , σi, σ−j−i) = ERj . For a nonprofitable supplier j �= i, this is

trivially true since (C.15) implies j’s expected payoff is 0 everywhere. For a profitable

supplier j with ERj > 0, Lemma 22 implies cj < p̄j ≤ P ≤ ci ≤ p
i
. By allocation

rule (C.1), σ∗
j yields a strictly higher allocation priority than both σ∗

i and pi = ci.

Therefore, her expected payoff by choosing σ∗
j will not be affected by player i’s strat-

egy adjustment.

Next we characterize the analytical properties of the equilibrium payoff functions.

First we point out a useful inequality

r̄−i (p) ≥ (d −∑
k �=i xkδ(ck<p))

+

xi

for all p ≥ max {P ∗, ci} . (B.13)

Notice that r−i (p) = 1 ∧ (d−
∑

k �=i
xkδ(σ∗

k
<p))

+

xi
is decreasing in σ∗

k for k �= i. As σ∗
k ≥ ck

and d <
∑

k xkδ(ck<p) ≤ ∑
k �=i xkδ(ck<p) + xk, the term in the right-hand side of (C.16)

is the lowest value for r−i (p), and (C.16) follows directly. Our analysis starts with the

lower price bound P .

Lemma 11 (a) If i ∈ Π and p
i
= P, then ERi = (P−ci)(xi∧d); (b) If

∑
k �=i xkδ(ck<P ) ≤

d (implied by
∑

k∈Π\{i} xk ≤ d), then p
i
= P ; (c) P > P > P ∗.

Proof. Proof of Lemma 24 (a) It directly follows from (C.14) and r̄−i (P ) = 1 ∧ d
xi

.

(b) Suppose there exists i ∈ Π such that
∑

k �=i xkδ(ck<P ) but p
i
> P . Note that (C.14)

implies p
k

> ck for all k ∈ Π, and therefore, any supplier k with ck ≥ P has p
k

> P .

Denote p̃ := p
i
∧ min {pk : ck ≥ P} and we have p̃ > P . Now consider all suppliers

with cj < P and j �= i, since their total capacity is less than the demand and all

other suppliers price above p̃, they obtain r̄j(p) = 1 for all p < p̃, implying p
j
≥ p̃. It

follows P = min{p
k
} ≥ p̃, a contradiction to p̃ > P .

(c) P > P follows from nonexistence of pure-strategy equilibrium, so we only need to

show P > P ∗. Suppose P ≤ P ∗. Now consider supplier i and cost cj that satisfy (C.9),

which implies
∑

k �=i xkδ(ck<P ) ≤ ∑
k �=i xkδ(ck<cj) < d. Part (b) implies p

i
= P and

therefore ERi = (P−ci)(xi∧d) by part (a). But inequalities (C.16) and (C.9) suggest
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R̄−
i (cj) ≥ (cj − ci)(d−∑

k �=i xkδ(ck<p))
+ > (P ∗ − ci)(xi ∧ d) > (P − ci)(xi ∧ d) = ERi,

a contradiction to the optimality of ERi.

Lemma 12 For a mixed-strategy equilibrium, at most one profitable supplier has

mi(P ) > 0.

Proof. Proof of Lemma 25 Suppose there are at least two suppliers with probability

mass at P . For any i ∈ ΩP := {k : mk(P ) > 0, ERk > 0}, from (C.14), we have

R̄−
i (P ) = ERi > 0 and r̄−i (P ) > 0. Now consider all players in Π\ΩP , who with

probability 1 price lower than P . For supplier i ∈ ΩP , since r̄−i (P ) > 0, we must have

d >
∑

k∈Π\Ω
P

xk. Together with
∑

k∈Π xk > d, and xi <
∑

k∈Ω
P

xk, it implies

1 ∧ d −∑
k∈Π\Ω

P
xk

xi

>
d −∑

k∈Π\Ω
P

xk∑
k∈Ω

P
xk

.

Due to independence of suppliers’ strategies, with strictly positive probability∏
k∈Ω

P
\{i} mk(P ), all players in k ∈ ΩP\ {i} choose P and we have

r̄−i (P ) − r̄i(P ) ≥ ∏
k∈Ω

P
\{i}

mk(P ) ·
⎡
⎣(1 ∧ d −∑

k∈Π\Ω
P

xk

xi
) − d −∑

k∈Π\Ω
P

xk∑
k∈Ω

P
xk

⎤
⎦ ,

which is strictly positive. It implies R̄−
i (P ) > R̄i(P ), contradicting the initial as-

sumption mi(P ) > 0, by Lemma 21(a).

Define supplier iA as an anchoring supplier if she satisfies

(a) ciA < P , (b) p̄iA = P, and (c) miA(P ) ≥ mj(P ) for all j ∈ Π, (B.14)

Lemma 27 identifies four important properties that an anchoring supplier must satisfy.

Lemma 13 Supplier iA satisfies (a) ERiA = SiA(P ); (b) ciA ≤ P ∗; (c) p
iA

= P =
ERiA

d∧xiA
+ ciA; (d) p̄iA = P = arg max {SiA(cj) : cj > P ∗}.

Proof. Proof of Lemma 27 (a) p̄iA = P implies ERiA = R̄−
iA

(P ) = (P −ciA)xiA r̄−iA(P )

by (C.14). As σ∗
k <a.s. P for all k ∈ Π\ {iA} by Lemma 25 and ciA < P ≤ cl for all

l /∈ Π, applying (C.1) and PR, we have r̄iA(P ) =
[d−

∑
k �=iA

xkδ
(ck<P )

]+

xiA
. Part (a) follows

directly.

(b) Suppose ciA > P ∗. From (C.7), we have d ≤ ∑
k xkδ(ck≤P ∗), implying SiA(p) = 0

120



for all p ≥ ciA > P ∗. It contradicts ERiA = SiA(P ) > 0 for P > ciA.

(c) ERiA = SiA(P ) = (P−ciA)[d−∑
k �=iA xkδ(ck<P )]

+ > 0 requires
∑

k �=iA xkδ(ck<P ) < d.

By definition of iA, we have
∑

k �=iA xkδ(ck<P ) =
∑

k∈Π\{iA} xk, and Lemma 24(b) then

proves part (c).

(d) We first show that P = arg max {SiA(p) : p ∈ (P ∗, b]}. Suppose SiA(p̃) > SiA(P ) =

ERiA for p̃ �= P and p̃ > P ∗. By (C.16), we have

R̄−
iA

(p̃) = (p̃ − ciA)xiA r̄−i (p̃) ≥ SiA(p̃) > SiA(P ) = ERiA ,

a contradiction to the optimality of ERiA . Thus, P maximizes SiA(·). Notice that,

due to piece-wise linearity of SiA(p), its maximizer over domain (P ∗, b] must equal to

certain cost cj > P ∗ where discontinuity takes place.

Notice that, it is possible that there are multiple maximizers to function SiA(p).

Lemma 29 states that P must be the smallest one for the anchoring supplier. We

start with an auxiliary lemma, used in several other places.

Lemma 14 If profitable supplier i ∈ Π has R̄−
i (p) = Si(p) for price p > P ∗, then

any profitable supplier k �= i with ck < p satisfies pk ≤ p.

Proof. Proof of Lemma 28 R̄−
i (p) = (p − ci)xir̄

−
i (p) = Si(p) and (C.18) imply

r̄−i (p) =
d−

∑
k �=i

xkδ(ck<p)

xi
. Also, from p > P ∗ and (C.7), we have xi +

∑
k �=i xkδ(ck<p) ≥∑

k xkδ(ck≤P ∗) > d and, therefore, r̄−i (p) = Si(p)
(p−ci)xi

=
d−

∑
k �=i

xkδ(ck<p)

xi
< 1. Notice that

any supplier k with ck ≥ p has σ∗
k ≥ p, i.e., δ(ck≥p)δ(σ∗

k
<p) = 0, so

r̄−i (p) = E

[
1 ∧ [d −∑

k �=i xkδ(σ∗
k
<p)(δ(ck<p) + δ(ck≥p))]

+

xi

]

= E

[
1 ∧ (d −∑

k �=i xkδ(ck<p)δ(σ∗
k
<p))

+

xi

]
.

The above expression achieves its minimum
d−

∑
k �=i

xkδ(ck<p)

xi
< 1 only if δ(σ∗

k
<p) =a.s. 1

for all k with ck < p. That is, pk ≤ p for all k �= i with ck < p.

Lemma 15 Supplier iA satisfies P = P
min
iA

:= min {arg max {SiA(cj) : cj > P ∗}}.
Proof. Proof of Lemma 29 From Lemma 27(d), P maximizes SiA(p). Thus, both

P
min
iA

and P maximize SiA(p). Assume P
min
iA

< P . Lemma 27(a) implies ERiA =

SiA(P ) = SiA(P
min
iA

) and inequality (C.16) implies ERiA ≥ R̄iA(P
min
iA

) ≥ SiA(P
min
iA

), so
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we must have R̄−
iA

(P
min
iA

) = SiA(P
min
iA

). From Lemma 28, p̄k ≤ P
min
iA

for all k �= iA with

ck < P
min
iA

. Now consider interval [P
min
iA

, P ). Since P
min
iA

belongs to {cj : cj > P ∗} and

P
min
iA

< P , there is at least one player with cost ck ∈ [P
min
iA

, P ). Notice that, for any

supplier k with ck ∈ [P
min
iA

, P ), Lemma 22 and (C.14) imply ERk = R̄−
k (p

k
) = (p

k
−

ck)r̄
−
k (p

k
) > 0, and therefore, p

k
> ck ≥ P

min
iA

. Let p∗ := min{p
k

: ck ∈ [P
min
iA

, P )} >

P
min
iA

. Now we have all players with ck < P
min
iA

except iA price lower than P
min
iA

and

all players with ck ≥ P
min
iA

price not lower than p∗ > P
min
iA

. It implies a contradiction

ERiA ≥ R̄iA(p∗) = (p∗−ciA)(d−∑
k xkδ(ck<P

min
iA

)
) > (P

min
iA

−ciA)(d−∑
k xkδ(ck<P

min
iA

)
) =

SiA(P
min
iA

) = ERiA.

Based on Lemmas 27 and 29, if supplier iA is identified, we can uniquely determine

the price bounds P = P
min
iA

and P =
SiA

(P
min
iA

)

d∧xiA
+ ciA. Therefore, identifying the

anchoring supplier iA is the critical step towards derivation of P and P . Since multiple

players may satisfy the conditions of Lemmas 27 and 29, these two tasks have to be

completed jointly, as shown in Proposition 19. By analyzing their payoff structures,

we rule out unqualified candidates and guarantee uniqueness of P and P . Define

Ω := {i ∈ N : ci ≤ P ∗ and
∑

k �=i xkδ(ck≤P ∗) < d}. Notice for all i /∈ Ω, we have

either ci > P ∗ or
∑

k �=i xkδ(ck≤P ∗) ≥ d, implying that, for all cj > P ∗, Si(cj) =

(cj − ci)
[
d −∑

k �=i xkδ(ck<cj)

]+
= 0. Therefore, we must have iA ∈ Ω. For each i ∈ Ω,

define trial values

R̄T
i : = max {Si(cj) : cj > P ∗} , P T

i :=
R̄T

i

d ∧ xi
+ ci,

P
T
i : = min {arg max {Si(cj) : cj > P ∗}} = min

{
cj > P ∗ : Si(cj) = R̄T

i

}
.

From
∑

k xkδ(ck<P
T
i )

≥ ∑
k xkδ(ck≤P ∗) > d, we have xi > d−∑

k �=i xkδ(ck<P
T
i )

. Also from

the above definitions, we have R̄T
i = (P T

i −ci)(xi∧d) = (P
T
i −ci)[d−∑

k �=i xkδ(ck<P
T
i )

] >

0. It implies two useful inequalities

(a) 0 < d −∑
k �=i

xkδ(ck<P
T
i )

< (xi ∧ d) and (b) P
T
i > P T

i for all i ∈ Ω. (B.15)

With the above notation, we claim that P and P can be determined as follows.

Proposition 15 P = maxi∈Ω

{
P T

i

}
and P = mini∈Ω

{
P

T
i : P T

i = P
}
.
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Proof. Proof of Proposition 19 The proof proceeds in three steps. The first part is

an auxiliary result.

(a) ERi ≥ R̄T
i and p

i
≥ P T

i for all i ∈ Ω. By (C.16), for any price equal

to a cost level p ∈ Ψ := {cj : P ∗ < cj ≤ b}, we have ERi ≥ R̄−
i (p) = (p −

ci)xir̄
−
i (p) ≥ (p − ci)[d − ∑

k �=i xkδ(ck<p)], which implies ERi ≥ R̄T
i = maxp∈Ψ{(p −

ci)[d−∑
k �=i xkδ(ck<p)]

+}. To show the second inequality, suppose p
i
< P T

i for certain

i. By (C.14), we have ERi = R̄−
i (p

i
), implying a contradiction, ERi = R̄−

i (p
i
) =

(p
i
− ci)xir̄

−
i (p

i
) ≤ (p

i
− ci)xi(1 ∧ d

xi
) < (P T

i − ci)(d ∧ xi) = R̄T
i ≤ ERi.

(b) P = maxi∈Ω

{
P T

i

}
. We know p

iA
= P T

iA
= P ∈

{
P T

k : k ∈ Ω
}

. Suppose that

there exists supplier h ∈ Ω such that P T
h = maxk∈Ω

{
P T

k

}
> P. Part (a) implies

p
h
≥ P T

h > P = p
iA

. Consider price interval [p
iA

, P T
h ). Inequality (C.19-a) implies∑

k �=h xkδ(ck<p) < d for all p ≤ P T
h . That is, given supplier h’s absence in this price

interval, the total capacity available is smaller than demand. Therefore, supplier iA

obtains sales ratio 1 almost surely for any p ∈ [p
iA

, P T
h ), implying a contradiction,

ERiA = R̄iA(P ) = (P − ciA)xiA < (P T
h − ciA)xiA = R̄−

iA
(P T

h ) ≤ ERiA .

(c) P = P
T
iA

= mini∈Ω

{
P

T
i : P T

i = P
}
. Given P derived in part (b), if only one

player satisfies P T
i = P , she must be the anchoring supplier and Lemma 29 guarantees

part (c). Consider the case when there are more than one players in set Ω satisfying

P T
i = P . Suppose j ∈ Ω exists such that P T

j = P and P
T
j < P = P

T
iA

. Inequality

(C.16) implies R̄−
j (P

T
j ) ≥ Sj(P

T
j ). If R̄−

j (P
T
j ) = Sj(P

T
j ), as ciA < P < P

T
j , Lemma 28

brings a contradiction piA
≤ P

T
j < P = piA

. Thus, we must have R̄−
j (P

T
j ) > Sj(P

T
j ).

Now from ERj ≥ R̄−
j (P

T
j ) > Sj(P

T
j ) = R̄T

j , we have p
j

> P = P T
j . [Otherwise, if

p
j

= P = P T
j , Lemma 24(a) brings a contradiction ERj = R̄j(P ) = (P T

j − cj)(xj ∧
d) = R̄T

j < ERj .] Also notice that (C.19-b) implies P
T
j > P T

j = P . Therefore,

p∗ := min{p
j
, P

T
j } > P = P T

j and for all p < p∗,
∑

k �=j xkδ(ck<p) ≤ ∑
k �=j xkδ(ck<p∗) ≤∑

k �=j xkδ(ck<P
T
j )

< d, where the last inequality follows from (C.19-a). Similarly to part

(b), we can show r̄iA(p) = 1 for all p < p∗ ≤ p
j
, which further leads to a contradiction

ERiA = R̄iA(P ) = (P − ciA)xiA < (p∗ − ciA)xiA = R̄−
iA

(p∗) ≤ ERiA.

Next we establish that the equilibrium distribution function is continuous for any
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critical supplier at price P .

Proposition 16 For any critical supplier i at price P , mi(p) = 0 for all p ∈ (ci ∨
P , P ).

Proof. Proof of Proposition 16 Suppose supplier i with
∑

k∈Π\{i} xk < d has mi(p̃) > 0

for certain p̃ ∈ (P, P ), implying ERi = R̄i(p̃). For any supplier j ∈ Π\ {i}, we show

that supplier j will choose Pr{σ∗
j ∈ [p̃, p̃ + Δj ]} = 0 for certain Δj > 0. If cj ≥ p̃,

we have p
j
> cj ≥ p̃ and Δj := p

j
− cj > 0. For cj < p̃, if we show (#) r̄−j (p̃, σ∗

−j) >

r̄j(p̃, σ
∗
−j), it then follows ERj ≥ R̄−

j (p̃) > R̄j(p̃) ≥ R̄+
j (p̃), implying Δj > 0. Now let

Δ = minj∈Π\{i} {Δj} and consider supplier i. Notice that Pr{σ∗
j ∈ [p̃, p̃ + Δ]} = 0

implies that any price p ∈ [p̃, p̃+Δ] must yields the same expected sales r̄i for supplier

i, which leads to a contradiction ERi ≥ R̄−
i (p̃ + Δ) > R̄i(p̃) = ERi.

The remaining task is to show that mi(p̃) > 0 for p̃ > cj implies (#). It is sufficient to

show Pr{r−j (p̃, σ∗
−j) > rj(p̃, σ

∗
−j)} > 0. First notice p

k
> ck for all k ∈ Π, so expression

of rj can be simplified as rj(p, σ
∗
−j) = 1 ∧ d−

∑
k �=j

xkδ(σ∗
k

<p)

xj+
∑

k �=j
xkδ(σ∗

k
=p)

. Due to independence of

each player’s bid, we have

Pr{r−j (p̃, σ∗
i , σ

∗
−i−j) > rj(p̃, σ

∗
i , σ

∗
−i−j)}

≥ mi(p̃) Pr{r−j (p̃, σ∗
i , σ

∗
−i−j) > rj(p̃, σ

∗
i , σ

∗
−i−j)

∣∣∣σ∗
i = p̃}

= mi(p̃) Pr{1 ∧ (d−
∑

k∈Π\{i,j} xkδ(σ∗
k

<p̃))
+

xj
> 1 ∧ (d−

∑
k∈Π\{i,j} xkδ(σ∗

k
<p̃))

+

xj+xi+
∑

k∈Π\{i,j} xkδ(σ∗
k
=p̃)

},
which is positive if we can show (a) Pr{d >

∑
k∈Π\{i,j} xkδ(σ∗

k
<p̃)} > 0 and (b) Pr{d −∑

k∈Π\{i,j} xkδ(σ∗
k
<p̃) < xi + xj} > 0. Inequality (a) directly follows d >

∑
k∈Π\{i} xk >∑

k∈Π\{i,j} xkδ(σ∗
k
<p̃). To show inequality (b), suppose Pr{d − ∑

k∈Π\{i,j} xkδ(σ∗
k
<p̃) <

xj + xi} = 0, implying d ≥ ∑
k∈Π xkδ(σ∗

k
<p̃) with probability 1. It follows that for any

player k with p
k

< p, we must have r−k (p) =a.s. 1. Lemma 18 then implies rk(p
′) =a.s. 1

for all p′ < p which is a contradiction to p
k

< p.

B.3 Algorithm for Computing Mixed-Strategy Equilibrium

B.3.1 Algebraic Expression of a Mixed-Strategy Equilibrium

We first derive the equilibrium conditions (B.20) for active supplier i. Proposition 16

indicates that no critical supplier i (i.e., d >
∑

k∈Π xk − xi) would choose any price p
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between P and P with a positive probability. We assume this property for all players.

(A1) Fi(p) is continuous in p ∈ [P , P ) for all profitable players.

Under (A1), price tie will almost surely not take place, and given bid vector p = {p,p−i}
with p > ci, and active supplier i’s realized sales ratio is written as

ri(p,p−i) = 1 ∧ [d −∑
k �=i xkδ(pk<p)]

+

xi +
∑

k �=i xkδ(pk=p)

. (B.16)

(A1) implies Er−i (p, σ∗
−i) = Eri(p, σ

∗
−i) = Er+

i (p, σ∗
−i). From (B.16), we have that,

with probability 1

zi(d; 〈p, xi〉 ;
〈
x−i,p−i

〉
) = xiri(p,p−i) = xi ∧ [d − ∑

k �=i xkδ(pk<p)]
+ (B.17)

where zi(·; ·; ·) denotes supplier i’s sales as a function of demand d, his bid 〈p, xi〉,
and bids from her competitors

〈
x−i,p−i

〉
.

In our mixed-strategy analysis, we have identified the unique price bounds
{
P , P

}
and the set of active agents Π =

{
k : ck < P

}
. For any p ∈ [P , P ), we divide active

suppliers into those with bids lower than p, higher than p, and active at p,

L(p) = {k : Fk(p) = 1} ,

H(p) = {k : Fk(p) = 0} ,

A(p) = {k : Fk(p) ∈ (0, 1)} and A−i(p) = A(p)\ {i} .

From (B.17), for price p, supplier i ∈ A(p) has an expected demand allocation

z̄i(p) = Eσ∗
−i

[zi(dL(p); 〈p, xi〉; 〈xA−i(p),pA−i(p)〉)], (B.18)

where dL(p) =
[
d −∑

k∈L(p) xk

]+
.

As mi(p) = 0 for all i and all p ∈ (P , P ), z̄i(x,p) is a polynomial of

{Fk(p), [1 − Fk(p)]}k∈Π\{i}. As Fk(p) = 1 for k ∈ L(p) and Fk(p) = 0 for k ∈ H(p), it

is a polynomial with homogenous order of ‖A−i(p)‖ , where ‖·‖ denotes the number

of elements in a set. Given {Fk = Fk(p)}k∈Π, (B.18) can be further simplified as

z̄i(p) (B.19)

=
∑

Am
−i(p)⊆A−i(p)

⎡
⎢⎣ ∏

k∈Am
−i(p)

Fk · ∏
k∈A−i(p)\Am

−i(p)

(1 − Fk) · (xi ∧ [dL(p) −
∑

k∈Am
−i(p)

xk]
+)

⎤
⎥⎦
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In quasi-symmetric oligopoly games, we can show that any active agent i’s bidding

strategy has strictly increasing cdf function. This observation is used as our second

assumption.

(A2) Fi(p) is strictly increasing in p ∈ (p
i
, pi) for i ∈ Π.

(A1) and (A2) imply R̄i(p) = ERi for any p ∈ (p
i
, pi). Thus a mixed-strategy solution

{Fi(p)}i∈A(p) satisfies the following, for p ∈ [P , P ]

⎧⎪⎨
⎪⎩

(p − ci)Eσ∗
−i

[zi(dL(p); 〈p, xi〉 ; 〈xA−i(p),pA−i(p)〉)] = ERi for p ∈ [p
i
, pi] ∩ [P , P )

(p − ci)Eσ∗
−i

[zi(dL(p); 〈p, xi〉 ; 〈xA−i(p),pA−i(p)〉)] ≤ ERi otherwise
.

(B.20)

Note that P is excluded from supplier i’s maximization domain, since, if miA(P ) > 0,

it can be shown that R̄i(P ) < R̄−
i (P ) = ERi for all players in Π\ {iA} with pi = P .

B.3.2 Progressive Algorithm for Computing {ERi, pi
, Fi, pi}i∈Π.

In Proposition 19, we established the unique price bounds
{
P , P

}
and existence of

the anchoring supplier(s) iA with price range covering
[
P , P

]
. The next steps are

(1) deriving ERi for all i ∈ Π\ {iA}; (2) segmenting active players into three groups

{L(p), A(p), and H(p)} for any p ∈ (P, P ); and (3) finding the solution {Fk}k∈A(p)

to a system of equations, for i ∈ A(p)

ERi

p − ci
(B.21)

=
∑

Am
−i(p)⊆A−i(p)

⎡
⎢⎣ ∏

k∈Am
−i(p)

Fk ·
∏

k∈A−i(p)\Am
−i(p)

(1 − Fk) · (xi ∧ [dL(p) −
∑

k∈Am
−i(p)

xk]
+)

⎤
⎥⎦

The three tasks are interconnected. We proceed with p progressively moving from P

to P , and complete the above tasks iteratively. The algorithm implicitly assumes the

following two assumptions, additional to (A1) and (A2),

(A3) R̄i(p) is strictly increasing in p ∈ [ci, pi
) for i ∈ Π.

(A4) There is unique mixed-strategy equilibrium.

For X = L, A, and H , denote X−(p) = ∩ε>0X(p−ε) and X+(p) = ∩ε>0X(p+ ε).

It can be shown2 that, for any price p, L(p) = L+(p) and H(p) = H−(p). The

2For i �= iA, Fi(p) is continuous and strictly increasing from 0 to 1 when p moves from p
i

to
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procedure identifies a sequence of critical prices P 0, P 1, . . .. At each price P m, at

least one supplier joins the set of active suppliers. Formally, we denote the players

who joined at P m by Im = {i : p
i
= Pm}. Note that

L+(Pm) = L(P m), A+(Pm) = A(P m) ∪ Im, and H+(P m) = H(Pm)\Im (B.22)

The algorithm is as follows.

1. Initialization step, m = 0. Applying Proposition 3, we calculate
{
P , P

}
and identify the set of anchoring supplier(s) IA :=

{
i : P T

i = P and P
T
i = P

}
and

ERi := RT
i for all i ∈ IA. Set P 0 := P , L0 := ∅, A0 := IA, and H0 := Π\IA where

Π =
{
i : ci < P

}
. Clearly, J0 := IA ⊆ I0.

2. Identification of Im. For given Pm, if we can identify Im, then there exists

ε > 0 such that, for all p ∈ (Pm, Pm + ε), A(p) = A+(Pm) = A(P m) ∪ Im. That

is, {Fi(p)}i∈A+(P m) solves polynomial equation system (B.21) for p ∈ (Pm, P m + ε)

where

ERi = R̄i(P m) = (P m − ci) · z̄i(Pm,pA−i(P m)) (B.23)

and z̄i(·) is given by (B.19). Knowing Jm ⊆ Im ⊆ H(Pm) = H−(Pm), we need to

determine Nm := Im\Jm. Since Nm must be a subset of {i ∈ H(Pm)\Jm : ci < P m}
(including ∅), we enumerate all subsets Nk

m ⊆ {i ∈ H(Pm)\Jm : ci < Pm}. For

each Nk
m, let Ik

m := Jm ∪ Nk
m be a trial set of Im. We run the following two tests

(2a) and (2b). Test (2a) corresponds to Assumptions (A1) and (A2), while test (2b)

corresponds to Assumption (A3).

(2a) Monotonicity and Regularity of {Fi}i∈A+(P m). Denote Ak,+
m := A(Pm)∪Ik

m

as the trial set of A+(Pm). Given A(p) = Ak,+
m , solve the equation system (B.21) and

(B.23) for p = Pm + Δp with very small Δp.3 If the solution satisfies monotonicity

pi. FiA(p) is also continuous and strictly increasing for p ∈ [P, P ), except there is a jump only at
piA

= P . Therefore, we have the following results for any i ∈ Π and any p < P : if p < p
i
, then

i only exists in H−(p), H(p), and H+(p); if p = p
i
, then i only exists in H−(p), H(p), and A+(p);

if p ∈ (p
i
, pi), then i is in A−(p), A(p), and A+(p); if p = pi, then i only exists in A−(p), L(p), and

L+(p); if p > pi, then i can only be in L−(p), L(p), and L+(p). Based on above observations, we
must have L(p) = L+(p) and H(p) = H−(p) for p < P .

3For p = Pm + Δp with Δp small enough, we have A(p) = A+(Pm), L(p) = L+(P m), and
H(p) = H+(Pm).
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(i.e., Fi(p) > Fi(Pm)) and regularity (i.e., Fi(p) ∈ (0, 1]) for all i ∈ A(p), we say trial

set Ik
m survives test (2a) and go to step (2.b). Otherwise, trial set Ik

m is rejected.

(2b) Monotonicity of
{
R̄j(p)

}
j∈H+(P m)

. Denote Hk,+
m := H(Pm)\Ik

m as the

trial set of H+(Pm). For given (increasing and within (0, 1) interval) cdf {Fi(p)}i∈Ak,+
m

calculated in (2a) for p = P m+Δp, check the following value function for all j ∈ Hk,+
m ,

R̄j(p) = (p − cj) · z̄j(p,pA−i(p)) (B.24)

where L(p) = L(Pm) and A−j(p) = Ak,+
m \ {j} = Ak,+

m . If R̄j(p) > R̄j(Pm), for all

j ∈ Nk,+
m , then Ik

m survives test (2b). Otherwise, Ik
m is rejected.

From Assumption (A4), there must exist Nk
m and Ik

m = Jm ∪ Nk
m surviving both

tests. In fact, supposing the enumeration yields the unique Im, we have used a

stronger assumption than (A4).

(A4’) There is unique Im satisfying tests (2a) and (2b) for every P m.

Based on Assumptions (A1) — (A4’), the enumeration of {Nm
k } should yield the

unique Im. Let Lm = L(Pm), Am = A(Pm) ∪ Im, and Hm = H(Pm)\Im and go to

the next step.

3. Computation of {Fi(p)}i∈A(p) in Pm’s right neighborhood. For given L(p) =

Lm, A(p) = Am and H(p) = Hm, moving upwards from P m, pointwisely solve equa-

tion system (B.21) and (B.23). By Assumption (A2), the solution {Fi(p)}i∈A+(P m)

are strictly increasing in p. We continue until one of suppliers, i∗ ∈ A+(P m) achieves

Fi∗(p̄temp) = 1 at p̄temp. For p ∈ [Pm, p̄temp], check payoff function (B.24) for all

supplier i ∈ H(p) = H+(P m). Let p′
i
= arg maxp∈[Pm,p̄temp] R̄i(p,F−i).

(3a) If mini∈H+(P m){p′i} = p̄temp, remove supplier(s) i∗ satisfying Fi∗(p̄temp) =

1 from set Am, and include it (them) in Lm. Repeat while (3a) holds. (3b) If

mini∈H+(P m){p′i} < p̄temp, we have

P m+1 : = min
i∈H(P m)

{p′
i
}

and Jm+1 : = {i ∈ Hm : arg max{R̄i(p,F−i)} = Pm+1}
= {i ∈ Hm : p

i
= p′

i
},

Go to step 2.
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APPENDIX C

Analysis of B-E Games with Elastic Demand

Notation

d (p) Buyer’s demand function

xi Supplier i’s capacity

b Price cap for bid price

ci Supplier i’s unit production cost

(pi, qi) Supplier i’s bid of price pi and quantity qi

zi Supplier i’s realized sales

ri = zi

qi
Fraction of supplier i’s bid quantity that is accepted by the buyer

Ri = (pi − ci)zi Supplier i’s realized profit

p = (p1, p2, . . . , pN), p−i = (p1, . . . , pi−1, pi+1, . . . , pN), q = (q1, q2, . . . , qN )

Assumption 1 The demand function d (p) is decreasing and concave in p.

Assumption 1 implies that the reverse demand function p(d) exists and it is also a

decreasing and concave function.

The surplus maximizing rule with is

ri(p,q) = 1 ∧ [d (pi) − QL
i (p,q)]+

qi + QE
i (p,q)

(C.1)

where QL
i (p,q) =

∑
k �=i

qkδ(pk<pi) + δ(pi=ci)

∑
k �=i

qkδ(pk=pi,ck<pi)

QE
i (p,q) = δ(pi>ci)

∑
k �=i

qkδ(pk=pi,ck<pi) + δ(pi=ci)

∑
k �=i

qkδ(pk=pi,ck=pi).

It can be verified that QL
i (p,q) and QE

i (p,q) satisfy

QL
i (p,q) + QE

i (p,q) =
∑
k �=i

qkδ(pk≤pi) − δ(pi>ci)

∑
k �=i

qkδ(pk=pi,ck=pi) (C.2)
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Notice that total realized demand is a function of the bid vector,

d(p,q) = max
i∈N

{
d (pi) :

∑
qkδ(pk<pi) < d (pi)

}
. (C.3)

Lemma 16 For all suppliers, it is optimal to bid all their capacities into the game,

that is qi = xi for all i.

Proof. As Ri(p,q) = (pi − ci)zi(p,q) and pi ≥ ci, it is sufficient that zi(p,q) is

nondecreasing in qi. By (C.1), we have

zi(p,q) = qiri(p,q) = qi ∧ qi[d (pi) − QL
i (p,q)]+

qi + QE
i (p,q)

= qi ∧ [d (pi) − QL
i (p,q)]+

1 +
QE

i (p,q)

qi

.

Notice that for fixed p and q−i, [d (pi) − QL
i (p,q)]+ and QE

i (p,q) are non-negative

constants by (C.1). Thus, zi is nondecreasing in qi.

Lemma 1 implies that each supplier’s bid quantity decision can be simplified to qi =

xi, and the bidding game is reduced to an oligopoly pricing game. Henceforth, without

loss of generality we assume that qi = xi for all players i. Accordingly, in what

follows we will use the condensed notation ri(p) = ri(p,x), QL
i (p) = QL

i (p,x), and

QE
i (p) = QE

i (p,x). So bidder i’s problem in the game is,

max
pi∈[ci,b]

Ri(pi,p−i) = (pi − ci)xiri(pi,p−i).

Notice that if there is no excessive capacity at price level p, all suppliers pricing below

or at p obtain a sales ratio 1. That is,

∑
k
xkδ(pk≤pi) ≤ d(p) implies rk(pk,p−k) = 1 for all k with pk ≤ p, (C.4)

∑
k
xkδ(pk<pi) ≤ d(p) implies rk(pk,p−k) = 1 for all k with pk < p. (C.5)

Pure-Strategy Equilibrium Analysis. For a pure-strategy equilibrium

outcome p∗ = {p∗1, p∗2, . . . , p∗N}, define A = {i : ri(p
∗
i ,p

∗
−i) > 0}, the set of active

suppliers (those with positive market share).

Lemma 17 For any pure-strategy equilibrium p∗, there exists a constant P ∗ such

that (a) i ∈ A implies p∗i = P ∗; (b) ci < P ∗ implies i ∈ A; (c) ci > P ∗ implies i /∈ A;

(d) pi ≥ P ∗ for all i.
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Proof. For part (a) it is equivalent to show that any i, j ∈ A must have p∗i = p∗j .

Suppose p∗i < p∗j and rj(p
∗
j ,p

∗
−j) > 0, implying

∑
k xkδ(p∗

k
<p∗j ) < d(p∗j). This relation

will not change if supplier i raises her price to p′i =
p∗i +p∗j

2
since δ(p∗i <p∗j ) = δ(p′i<p∗j ) = 1,

suggesting ri

(
p′i,p

∗
−i

)
= ri

(
p∗i ,p

∗
−i

)
= 1 by (C.5). It follows Ri (p

′
i) = (p′i − ci)xi >

(p∗i − ci) xi = Ri (p
∗
i ), a contradiction to the optimality of p∗i .

(b) Suppose ci < P ∗ but ri(p
∗
i ,p

∗
−i) = 0 so Ri(p

∗
i ,p

∗
−i) = 0. But, if supplier i bids

p′i = P ∗, she would have Ri(P
∗,p∗

−i) = (P ∗ − ci)xiri(P
∗,p∗

−i) > 0, contradicting the

optimality of p∗i .

(c) As pi ≥ ci always, we must have p∗i ≥ ci > P ∗, implying i /∈ A from the converse

of part (a).

(d) From (a) and (b) if ci < P ∗ then pi = P ∗. If ci ≥ P ∗ then pi ≥ ci ≥ P ∗.

Lemma 18 ri(p) is nondecreasing in pj for j �= i and nonincreasing in pi.

Proof. (i) We prove the monotonicity of ri(p) in pj with j �= i in three steps. Notice

that when pj changes, d(pi) is not changed.

(i-a) QL
i is weakly decreasing in pj . From (C.1), QL

i involves two groups of indices.

When pj increases, index j can disappear from the first group (δ(pj<pi) changing from

1 to 0), or disappear from the second group (δ(pj=pi,cj<ci=pi) changing from 1 to 0),

or move from the first group to the second. For any one of above cases, QL
i does not

increase.

(i-b) QL
i +QE

i is weakly decreasing in pj . According to equation (C.2), QL
i +QE

i is a

difference of two groups of indexes. When pj increases, index j can disappear from the

first group (δ(pj≤pi) changing from 1 to 0), or disappear from group 2 (δ(pj=pi,cj<pi,ci<pj)

changing from 1 to 0) or both. When it disappears from the second group, it also

disappears from the first group.

(i-c) Consider any p′j < p′′j and we want to show

1 ∧ [d(pi) − QL
i (p′j,p−j)]

+

xi + QE
i (p′j ,p−j)

≤ 1 ∧ [d(pi) − QL
i (p′′j ,p−j)]

+

xi + QE
i (p′′j ,p−j)

, (C.6)

If QL
i (p′j ,p−j) ≥ d(pi), then the left hand side of (C.6) is 0 and the desired in-

equality holds trivially. If QL
i (p′j ,p−j) < d(pi), from (i-a) and p′j < p′′j , we have
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QL
i (pi, p

′′
j ,p−i−j) ≤ QL

i (p′j ,p−j) < d(pi). Now it is sufficient to show that

xi + QE
i (p′j ,p−j)

d(pi) − QL
i (p′j,p−j)

≥ xi + QE
i (p′′j ,p−j)

d(pi) − QL
i (p′′j ,p−j)

implying

1+
xi−d(pi)+QE

i (p′j,p−j)+QL
i (p′j,p−j)

d(pi) − QL
i (p′j,p−j)

≥ 1+
xi−d(pi)+QE

i (p′′j ,p−j)+QL
i (p′′j ,p−j)

d(pi) − QL
i (p′′j ,p−j)

.

Using (i-a) and (i-b), the above inequality holds.

(ii) Now we show ri(p) is nonincreasing in pi. From (C.3) and monotonicity of

d(·), we have that d(p) is nonincreasing in pi. Part (i) implies that for k �= i,

zk(pk, pi,p−i−k) = xkrk(pk, pi,p−i−k) is nondecreasing in pi. Since
∑

k zk(pk, pi,p−i−k)

= min{d(p),
∑

k xk} is nonincreasing in pi, we must have that zi(pi,p−i)

= min{d(p),
∑N

k=1 xk} −∑
k �=i zk(pk, pi,p−i−k) is nonincreasing in pi.

Denote r−i (pi,p−i) = limp′i↑pi
ri(p

′
i,p−i) and r+

i (pi,p−i) = limp′i↓pi
ri(p

′
i,p−i). Similar

notation applies to R−
i (pi,p−i) and R+

i (pi,p−i).

Lemma 19 For any price pi > ci,

(a) r−i (pi,p−i) = 1∧ (d(pi)−
∑

k �=i
xkδ(pk<pi)

)+

xi
and r+

i (pi,p−i) = 1∧ (d(pi)−
∑

k �=i
xkδ(pk≤pi)

)+

xi
;

(b) r−i (pi,p−i) ≥ ri(pi,p−i) ≥ r+
i (p,p−i).

(c) p∗i > ci at equilibrium implies r−i (p∗i ,p
∗
−i) = ri(p

∗
i ,p

∗
−i).

Proof. (a) First notice that for any pilimp′i↑pi
δ(pk<p′i) = δ(pk<pi), limp′i↓pi

δ(pk<p′i) =

δ(pk≤pi), and limp′i→pi
δ(pk=p′i) = 0. Plugging the above expressions into (C.1), we have

limp′i↑pi
QL

i (p′i,p−i) =
∑

k �=i xkδ(pk<pi), limp′i↓pi
QL

i (p′i,p−i) =
∑

k �=i xkδ(pk≤pi),

limp′i→pi
QE

i (p′i,p−i) = 0. As limp′i↑pi
d(p′i) = d(pi), result (a) follows.

(b) Part (b) is directly implied by monotonicity of ri(pi,p−i) established in Lemma

18.

(c) R−
i (p∗) = (p∗i − ci)xir

−
i (p∗) ≤ Ri(p

∗) at equilibrium or else agent i would deviate

downward from p∗i if possible. When p∗i > ci this implies r−i (p∗) ≤ ri(p
∗). But by

part (b) r−i (p∗) ≥ ri(p
∗), so r−i (p∗) = ri(p

∗) at equilibrium.

Denote the set of profitable suppliers at equilibrium p∗ by Π = {i : Ri(p
∗) > 0}.

Π = {i : ci < P ∗} ⊆ A (from Lemma 17b) and i ∈ A\Π implies ci = P ∗.
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Proposition 17 A pure-strategy equilibrium p∗ satisfies (i) p∗i = P ∗ for all i ∈ A

where

P ∗ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg max
p∈[c1,c2]

{(p − c1) [d (p) ∧ x1]} if d (c2) < x1 (a)

cj if
∑j−1

k=1 xk < d (cj) <
∑j

k=1 xk and j ≥ 2 (b)

p(
∑j

k=1 xk) if d (cj+1) ≤ ∑j
k=1 xk ≤ d (cj) (c)

b if d (b) ≥ ∑
k xk (d)

(C.7)

(ii) ri(p
∗) = 1 ∧ d

xi
for all i ∈ Π.

Proof. (i-a) Suppose P ∗ > c2, implying d(P ∗) < x1. From Lemma 17(b), we have

{1, 2} ⊂ Π, and therefore, r1(P
∗,p∗

−1) = d(P ∗)∑
k∈A

xk
≤ d(P ∗)

x1+x2
< d(P ∗)

x1
= r−1 (P ∗,p∗

−1),

which contradicts Lemma 19(c). Thus, we have P ∗ ≤ c2. If c1 = c2, from P ∗ = p∗1 ≥ c1

we have P ∗ = c2. If c1 < c2, for all p1 ≤ c2, (C.1) reads r1 (p1) = 1 ∧ d(p1)
x1

, implying

R1(p1) = (p1−c1)[x1∧d(p1)], a strictly concave function by Assumption 1. Optimality

of p∗1 = P ∗ requests P ∗ to be unique maximizer of supplier 1’s profit over the interval

[c1, c2].

(i-b,c) Denote Pb = cj and Pc = p(
∑j

k=1 xk). Suppose P ∗ < Pb (or Pc), equation

(C.7-b,c) implies
∑

k∈Π xk ≤ d(Pb) (or d(Pc)), so rk = 1 for all k ∈ Π. But, rk = 1 will

remain equal to 1 as long as pk ∈ [P ∗, Pb (or Pc)]. Thus, these agents will want to

defect to a greater price, contradicting the optimality of p∗k = P ∗. Suppose P ∗ > Pb

(or Pc), then
∑

k∈Π xk ≥ ∑j
k=1 xkδ(ck≤Pb or Pc) ≥ d (Pb) (or d(Pc) )> d(P ∗), implying

supplier i ∈ Π has ri(p
∗) = d(P ∗)∑

k∈Π
xk

< [1 ∧ d(P ∗)
xi

] = r−k (p∗), contradicting Lemma

19(c). So P ∗ = Pb (or Pc).

(i.d) From (C.4) if d(b) ≥ ∑
k xk then ri(p) = 1 for all i and p ≤ b and the only

possible profit maximizing price for any agent is b.

(ii) From Lemma 17(b) and (c), Π = {i|ci < P ∗} ⊆ A ⊆ {i|ci ≤ P ∗}. For cases (a) in

equation (C.7), we have either Π = ∅ when c1 = c2 or Π = {1} and r1 (p∗) = d(P ∗)
x1

< 1

when c1 < c2, so part (ii) holds in that case. For cases (b), (c), and (d) we have from

equation (C.7) that
∑

k∈Π xk =
∑

k xkδ(ck<P ∗) ≤ d so ri(p
∗) = 1 for all i ∈ Π and

again part (ii) hold.
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Figure C.1. Derivation of Pure-Strategy Equilibrium Prices under Different Demand Functions

Figure C.1 is a graphic illustration of Proposition 17.

Lemma 20 (a) If a pure-strategy equilibrium p∗ has p∗i > ci for any i /∈ Π, then(
ci,p

∗
−i

)
is also an equilibrium and it is payoff-equivalent to p∗; (b) If a pure-strategy

equilibrium exists, then the game has a unique normalized equilibrium

{p∗i = ci ∧ P ∗ for all i} with P ∗ given by (C.7).

Proof. (a) i /∈ Π implies Ri(p
∗) = 0 and agent i is not economically affected by

changing p∗i to ci. We need however to show that no other agent j �= i will have an

incentive to defect from p∗j after this adjustment. From Lemma 18 rj is nonincreasing

in pi, so rj(p
∗
j , ci,p

∗
−i−j) ≥ rj(p

∗
j , p

∗
i ,p

∗
−i−j) and Rj(p

∗
j , ci,p

∗
−i−j) ≥ Rj(p

∗
j , p

∗
i ,p

∗
−i−j)

for all j. If j ∈ Π, implying cj < p∗j = P ∗ ≤ ci < pi, agent j will have a strictly higher

allocation priority over agent i regardless of whether agent i bids pi or ci, so agent

j’s allocation and optimal response are unaffected by this change. If j /∈ Π then the

above and the non-negativity of Rj imply 0 ≤ Rj(pj , cj,p−i−j) = 0 so again there is

no effect.

(b) From Proposition 17 and part (a), for any game with a pure-strategy equilibrium,

p∗i = ci ∨ P ∗ defines a normalized pure-strategy equilibrium. Uniqueness follows

because P ∗ is uniquely defined in (C.7) and stays the same when we interchange the

indices among players with the same cost.
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Proposition 18 A unique normalized pure-strategy equilibrium exists with p∗i = P ∗∨
ci and P ∗ given by (C.7) if and only if

(P ∗ − ci)[xi ∧ d(P ∗)] ≥ (p − ci)[d (p) −∑
k �=i

xkδ(ck<p)]
+ (C.8)

for all i with ci ≤ P ∗ and p > P ∗.

Proof. If a normalized pure-strategy equilibrium exists, by Lemma 20 (b), p∗i =

P ∗ ∨ ci must be the equilibrium bid price. We seek conditions under which agents

wish to defect from p∗i = P ∗∨ci. Consider three cases, ci < P ∗, ci > P ∗, and ci = P ∗.

(a) ci < P ∗: In this case i ∈ Π ⊆ A, p∗i = P ∗, and ri = 1 ∧ d(P ∗)
xi

from Lemma 17

and Proposition 17, so Ri(P
∗,p∗

−i) = (P ∗− ci)[xi ∧d(P ∗)]. ri is unaffected if supplier

i lowers her price, so there is no incentive to do that. Therefore, agent i has no

incentive to defect from p∗i = P ∗ if and only if no higher price can lift her profit, i.e.,

(C.8) holds.

(b) ci > P ∗: In this case i /∈ A, p∗i = ci and Ri(p
∗) = 0 by Lemma 17 and normaliza-

tion. Agent i cannot reduce her price below ci profitably, and since ri is non-increasing

it will remain zero and she cannot do better by increasing her price. So, she has no

incentive to deviate.

(c) ci = P ∗: In this case, p∗i = P ∗ = ci and agent i is making no profit, Ri(p
∗) = 0.

Lowering price is not feasible, so agent i has no incentive to defect from P ∗ if and

only if all higher price also yields zero profit, i.e., (C.8) holds.

Mixed-Strategy Equilibrium Analysis. Proposition 2 suggests that there

is no pure-strategy equilibrium if there exist i and p such that

(P ∗ − ci)[xi ∧ d(P ∗)] < (p − ci)[d (p) −∑
k �=i

xkδ(ck<p)]
+ (C.9)

Throughout this section, we assume (C.9) holds for certain i with ci ≤ P ∗ and p > P ∗

and seek mixed-strategy Nash equilibria.

The following notation is used for describing mixed pricing strategies.
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P(B) Probability space defined over set B

σi ∈ P([ci, b]) Supplier i’s mixed strategy (denoted as a

random variable)

σ = (σ1, σ2, . . . , σN ) Mixed strategy outcome

σ−i = (σ1, . . . , σi−1, σi+1, . . . , σN ) Mixed strategies of supplier i’s competitors

Fi(p|σi) = Pr{σi ≤ p} Cumulative distribution function of price for

mixed strategy σi

mi(p|σi) = Pr{σi = p} Probability of price pi for mixed strategy σi

pi(σi) = min{p : Fi(p|σi) = 1} Supremum of prices for mixed strategy σi

p
i
(σi) = max{p : Fi(p|σi) = 0} Infimum of prices for mixed strategy σi

r̄i(p, σ−i) = E[ri(p, σ−i)] Expected fraction of supplier i’s sales at price p

R̄i(p, σ−i) = (pi − ci)xir̄i(p, σ−i) Supplier i’s expected return at price p

ERi(σ
∗) Expected profit for player i at mixed-strategy

equilibrium σ∗

With the above notation, bidder i’s problem is as follows,

max
σi∈P([ci,b])

R̄(σi, σ−i) = xiE[(pi − ci)ri(σi, σ−i)]. (C.10)

For simplicity, when σi = σ∗
i , we suppress the notation by omitting σ∗

i and σ∗
−i.

For example, Fi(pi) = Fi(pi|σi = σ∗
i ) and pi = pi(σ

∗
i ). Similarly, we use shorthand

notation R̄i(pi) = R̄i(pi, σ
∗
−i), r̄i(pi) = r̄i(pi, σ

∗
−i), and ERi = ERi(σ

∗
i , σ

∗
−i).

Denote P = min{p
i

: ERi > 0} and P = max {p̄i : ERi > 0} for the pricing

bounds. Denote r̄−i (p, σ−i) = limp′↑p r̄i(p
′, σ−i) and r̄+

i (p, σ−i) = limp′↓p r̄i(p
′, σ−i),

and correspondingly, we have R̄−
i (p, σ−i) = (p − ci)xir̄

−
i (p, σ−i) and R̄+

i (p, σ−i) =

(p − ci)xir̄
+
i (p, σ−i). As ri(p,p−i) ∈ [0, 1] for all p, from bounded convergence theo-

rem1 and Lemma 19(a), we must have

r̄−i (p, σ−i) = E[r−i (p, σ−i)] = E[1 ∧ (d(p) −∑
k �=i xkδ(σk<p))

+

xi
] (C.11)

r̄+
i (p, σ−i) = E[r+

i (p, σ−i)] = E[1 ∧ (d(p) −∑
k �=i xkδ(σk≤p))

+

xi
].

1Refer to standard textbooks of probability and measure theory such as Billingsley (1995).
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Applying Lemma 19(b), we have

r̄−i (p, σ−i) ≥ r̄i(p, σ−i) ≥ r̄+
i (p, σ−i) (C.12)

Lemma 21 A mixed-strategy equilibrium satisfies the following, for any p ∈ [p
i
, p̄i],

(a) if mi(p) > 0, then R̄−
i (p) = R̄i(p) = ERi;

(b) if Fi(p
′) < F−

i (p) for all p′ < p, then R̄−
i (p) = ERi;

(c) if Fi(p) < Fi(p
′) for all p′ > p, then R̄−

i (p) = R̄i(p) = R̄+
i (p) = ERi.

Proof. Notice that for any p > ci, from inequality (C.12) and optimality of ERi, we

have

R̄+
i (p) ≤ R̄i(p) ≤ R̄−

i (p) ≤ ERi. (C.13)

For part (a), it is sufficient to show ERi = R̄i(p), which clearly holds. For part (b),

suppose there exists p such that Fi(p
′) < F−

i (p) for all p′ < p, but ERi > R̄−
i (p).

It implies r̄−i (p) =
R̄−

i (p)

(p−ci)xi
< ERi

(p−ci)xi
, that is, there exists δL > 0 such that r̄i(p

′) <

ERi

(p′−ci)xi
for all p′ ∈ sL ≡ (p− δL, p). We then have R̄i(p

′) = (p′− ci)xir̄i(p
′) < ERi for

all p′ ∈ sL, implying Pr{σ∗
i ∈ sL} = 0, a contradiction to Fi(p

′) < F−
i (p) for all p′ < p.

For part (c), by inequality (C.13), we only need to show ERi = R̄+
i (p). Since Fi(p

′),

as a cdf, is right continuous, we have F+
i (p) = Fi(p). Suppose F+

i (p) = Fi(p) < Fi(p
′)

for all p′ > p but ERi > R̄+
i (p). Similar to part (b), there exists δR > 0 such that

R̄i(p
′) < ER for all p′ ∈ sR = (p, p + δR), implying Pr{σ∗

i ∈ sR} = 0. This is a

contradiction to F+
i (p) = Fi(p) < Fi(p

′), for all p′ > p.

Notice that, for price p
i
= inf {p|Fi(p) > 0}, we have either mi(pi

) > 0 or {mi(pi
) = 0

and Fi(p) > 0 for all p > p
i
}, so parts (a) or (c) of Lemma 21 apply. Similarly, for p̄i,

part (a) or (b) of Lemma 21 can be applied. Therefore, we have a useful relationship,

R̄−
i (p

i
) = R̄i(pi

) = ERi = R̄−
i (p̄i). (C.14)

Define the set of profitable suppliers as Π := {k : ERk > 0}.
Lemma 22 ERi > 0 if and only if ci < P .

Proof. Necessity is obvious from how P is defined. For sufficiency, suppose there

exists i satisfying ci < P but ERi = 0. We must have r̄i (p) = 0 for any p ∈
(
ci, P

)
. It
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implies Pr{d(p) ≤ ∑
k �=i xkδ(σ∗

k
<p)} = 1, or equivalently, Pr{d(p) >

∑
k �=i xkδ(σ∗

k
<p)} =

0. On the other hand, P > p indicates that there must be certain player h ∈ Π pricing

over (p, P ] with a positive probability, i.e., Pr {σ∗
h > p} > 0. As supplier h achieves

ERh > 0 by choosing certain price higher than p, her expected sales at price p must

be positive, implying, Pr{d >
∑

k �=h xkδ(σ∗
k
<p)} > 0. Now we get a contradiction,

0 = Pr{d (p) >
∑
k �=i

xkδ(σ∗
k
<p)} ≥ Pr{d (p) >

∑
k

xkδ(σ∗
k
<p)}

≥ Pr {σ∗
h > p}Pr{d (p) >

∑
k

xkδ(σ∗
k
<p)|σh > p}

= Pr {σ∗
h > p}Pr{d (p) >

∑
k �=h

xkδ(σ∗
k
<p)} > 0.

Similarly to the pure-strategy equilibrium analysis, in the rest of this section, we

restrict ourselves to normalized equilibria by fixing non-profitable players’ bidding

strategy. The following lemma justifies the generality of our assumption.

Lemma 23 If σ∗ = {σ∗
i , σ

∗
−i} is an equilibrium with ERi = 0 and p̄i > ci, then

{pi = ci, σ
∗
−i} is a payoff-equivalent equilibrium to σ∗.

Proof. As ERi = R̄i(σ
∗) = 0 = R̄i (ci), agent i herself is not economically affected

by changing from σ∗
i to ci. For any other player j �= i, since σ∗

i ∈ P([ci, b]) is

(weakly) larger than pi = ci, the monotonicity of rj (·) in pi (Lemma 18) implies

Pr
{
rj

(
pj , ci, σ

∗
−j−i

)
≤ rj

(
pj, σ

∗
i , σ

∗
−j−i

)}
= 1 for any pj, and therefore,

R̄j

(
pj , ci, σ

∗
−j−i

)
≤ R̄j

(
pj, σ

∗
i , σ

∗
−j−i

)
≤ ERj for all pj ≥ cj . (C.15)

That is, given ci and σ∗
−j−i, ERj is an upper bound of supplier j’s payoff. Conse-

quently, it is sufficient to show that strategy σ∗
j maximizes j’s expected payoff and

R̄j(σ
∗
j , ci, σ−j−i) = R̄j(σ

∗
j , σi, σ−j−i) = ERj . For a nonprofitable supplier j �= i, this

is trivially true since (C.15) implies j’s expected payoff is 0 everywhere. For a prof-

itable supplier j with ERj > 0, Lemma 22 implies cj < p̄j ≤ P ≤ ci ≤ p
i
. By

allocation rule (C.1), σ∗
j yields a strictly higher allocation priority than both σ∗

i and

pi = ci. Therefore, her expected payoff by choosing σ∗
j will not be affected by player

i’s strategy adjustment.
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The following inequality is very useful,

r̄−i (p) ≥ (d(p) −∑
k �=i xkδ(ck<p))

+

xi
for all p ≥ max {P ∗, ci} . (C.16)

Notice that r−i (p) = 1∧ (d(p)−
∑

k �=i
xkδ(σ∗

k
<p))

+

xi
is decreasing in σ∗

k for k �= i. As σ∗
k ≥ ck

and d(p) < d(P ∗) ≤ ∑
k xkδ(ck≤P ∗) ≤ ∑

k xkδ(ck<p) ≤ ∑
k �=i xkδ(ck<p) + xk, the term in

the right-hand side of (C.16) is the lowest value for r−i (p), and (C.16) follows directly.

Lemma 24 (a) If i ∈ Π and p
i

= P , then ERi = (P − ci)(xi ∧ d(P )); (b) If∑
k �=i xkδ(ck<P ) ≤ d(P ) (implied by

∑
k∈Π\{i} xk ≤ d(P ) ), then p

i
= P ; (c) P > P >

P ∗.

Proof. (a) It directly follows from (C.14) and r̄−i (P ) = 1 ∧ d(P )
xi

.

(b) Suppose there exists i ∈ Π such that
∑

k �=i xkδ(ck<P ) but p
i
> P . Note that (C.14)

implies p
k

> ck for all k ∈ Π, and therefore, any supplier k with ck ≥ P has p
k

> P .

Denote p̃ := p
i
∧ min {pk : ck ≥ P} and we have p̃ > P . Now consider all suppliers

with cj < P and j �= i, since their total capacity is less than the demand and all

other suppliers price above p̃, they obtain r̄j (p) = 1 for all p < p̃, implying p
j
≥ p̃.

It follows P = min{p
k
} ≥ p̃, a contradiction to p̃ > P .

(c) P > P follows from nonexistence of pure-strategy equilibrium, so we only need

to show P > P ∗. Suppose P < P ∗. From δ(σ∗
k
<p) ≤ δ(ck<p) and (C.7), we have∑

k xkδ(σ∗
k
<P ∗) ≤ ∑

k xkδ(ck<P ∗) ≤ d (P ∗) . From (C.5), we must have rk

(
p, σ∗

−k

)
= 1

for all k with ck < P ∗ and p ∈ [P, P ∗), and therefore r̄k

(
p, σ∗

−k

)
= 1 and R̄k

(
p, σ∗

−k

)
=

(p − ck)xk. It implies p
k
≥ P ∗ for all k with ck < P ∗, a contradiction to P < P ∗,

so we must have P ≥ P ∗. Suppose P = P ∗. Consider supplier i and price p > P ∗

that satisfy (C.9), which implies
∑

k �=i xkδ(ck<P ∗) ≤ ∑
k �=i xkδ(ck<p) < d(p). Part (b)

implies p
i

= P = P ∗ and therefore ERi = (P ∗ − ci)(xi ∧ d(P ∗)) by part (a). But

inequalities (C.16) and (C.9) suggest R̄−
i (p) ≥ (p − ci) (d(p) − ∑

k �=i xkδ(ck<P ))
+ >

(P ∗ − ci) (xi ∧ d(P ∗)) = ERi, a contradiction to the optimality of ERi. So we must

have P > P ∗.

Lemma 24(c) implies that we do not need to differentiate between profitable players

(with ERk > 0) and active players (with E [rk] > 0) in the rest of this section.
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Lemma 25 For a mixed-strategy equilibrium, at most one profitable supplier has

mi(P ) > 0.

Proof. Suppose there are at least two suppliers with probability mass at P . For any

i ∈ ΩP := {k : mk(P ) > 0, ERk > 0}, from (C.14), we have R̄−
i (P ) = ERi > 0 and

r̄−i (P ) > 0. Now consider all players in Π\ΩP , who with probability 1 price lower

than P . For supplier i ∈ ΩP , since r̄−i (P ) > 0, we must have d(P ) >
∑

k∈Π\Ω
P

xk.

Together with
∑

k∈Π xk ≥ d(P ∗) > d(P ), and xi <
∑

k∈Ω
P

xk, it implies

1 ∧ d(P ) −∑
k∈Π\Ω

P
xk

xi
>

d(P ) −∑
k∈Π\Ω

P
xk∑

k∈Ω
P

xk
.

Due to independence of suppliers’ strategies, with probability
∏

k∈Ω
P
\{i} mk

(
P
)

> 0,

all players in k ∈ ΩP\ {i} choose P and we have

r̄−i (P )− r̄i(P ) ≥ ∏
k∈Ω

P
\{i}

mk

(
P
)
·
[(

1 ∧
d(P)−

∑
k∈Π\Ω

P
xk

xi

)
−

d(P)−
∑

k∈Π\Ω
P

xk∑
k∈Ω

P
xk

]
> 0. It

implies R̄−
i (P ) > R̄i(P ), contradicting the initial assumption mi(P ) > 0, by Lemma

21(a).

From Lemma 25, at most one supplier, say i, chooses the upper price bound P with

positive probability. As shown below, supplier i also uses P as the lower bound for her

bidding, p
i
= P . It is possible that there is no supplier allocating positive probability

on P . If so, it can be shown that any supplier i with p̄i = P satisfies p
i

= P . We

define supplier iA as an anchoring supplier if she satisfies

(a) ciA < P , (b) p̄iA = P , and (c) miA(P ) ≥ mj(P ) for all j ∈ Π, (C.17)

where “anchoring” stands for her function in our determining the price bounds P and

P .

Define the residual supply payoff functions Si (p, c) and Si (p) as follows. For p ≥ ci

and c > ci,

Si (p, c) : = (p − ci) min{xi, [d (p) −∑
k �=i

xkδ(ck<c)]
+} (C.18)

Si(p) : = Si(p, p) = (p − ci) min{xi, [d(p) −∑
k �=i

xkδ(ck<p)]
+}
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Figure C.2. Illustration of Functions Si(p), Si(p, ck)

Based on Assumption 1, we have that, when taking positive values, Si (p, c) is concave

in p. Function Si (p) coincides to Si (p, ck) where ck is the highest cost level not

exceeding p, i.e.,

Si(p) = Si(p, c̄(p)) where c̄(p) := max {ck : ck ≤ p} .

Thus, Si (p) is piece-wise concave and left continuous, and discontinuities happen at

p = cj for certain j > i. Figure C.2 is a graphic illustration. The next lemma points

out several properties of Si (p, c) and Si (p), which are useful for determining P and

P .

Lemma 26 (i) For ck < ci < cj and for p such that Sk(p, ci) and Sk (p, cj) take

positive values, (i-a) if Sk(p, cj) is increasing at p then Sk (p, ci) is increasing at p;

(i-b) if Sk (p, ci) is decreasing at p then Sk(p, cj) is increasing at p.

(ii) If Sk (p) takes positive values and has at least two maximizers, then such a

maximizer p̂k < max{arg max {Sk(p)}} satisfies p̂k ∈ {ci : ci > ck}.
Proof. (i) Arranging the terms, we have

Sk(p, ci) = min
{
(p − ck) xk, (p − ck) [d (p) − Xi]

+
}

with Xi =
∑

k
xkδck<ci

,

Sk(p, cj) = min{(p − ck) xk, (p − ck) [d (p) − Xi −
∑

k
xkδci≤ck<cj

]+}.
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Based on Assumption 1, both Sk(p, ci) and Sk(p, cj) are unimodel. Comparing the

above expressions, we have arg max {Sk(p, ci)} ≥ arg max {Sk(p, cj)}, and parts (i-a)

and (i-b) follows trivially.

(ii) From p̂k < P̂k := max{arg max {Sk(p)}}, we must have c̄ (p̂k) ≤ c̄(P̂k). Since

Sk(p, c̄(P̂k)) is concave and P̂k = arg maxp≤P̂k
{Sk(p, c̄(P̂k))}, we must have Sk(p, c̄(P̂k))

is strictly increasing in p < P̂k. As c̄ (p̂k) ≤ c̄(P̂k), part(i-a) implies Sk(p, c̄(p̂k)) is also

strictly increasing in p < P̂k. Notice that if p̂k /∈ {ci : ci > ck}, there exists Δ > 0

such that Sk (p) = Sk(p, c̄ (p̂k)) in p ∈ [p̂k − Δ, p̂k + Δ]. Monotonicity of Sk(p, c̄ (p̂k))

brings a contradiction Sk(p̂k + Δ) > Sk (p̂k) = max {Sk (p)}.

Lemma 27 identifies four important properties that an anchoring supplier must satisfy.

Lemma 27 Supplier iA satisfies (a) ERiA = SiA

(
P
)
; (b) ciA ≤ P ∗; (c) p

iA
= P =

ERiA

d∧xiA
+ ciA; (d) p̄iA = P = arg max {SiA(p) : p > P ∗}.

Proof. (a) p̄iA = P implies ERiA = R̄−
iA

(P ) = (P − ciA)xiA r̄−iA(P ) by (C.14). As

σ∗
k <a.s. P for all k ∈ Π\ {iA} by Lemma 25 and ciA < P ≤ cl for all l /∈ Π, applying

(C.1) and PR, we have r̄iA(P ) =
[d(P )−

∑
k �=iA

xkδ
(ck<P )

]+

xiA
. Part (a) follows directly.

(b) Suppose ciA > P ∗. From (C.7), we have d(P ∗) ≤ ∑
k xkδ(ck≤P ∗), implying SiA (p) =

0 for all p ≥ ciA > P ∗. It contradicts ERiA = SiA

(
P
)

> 0 for P > ciA.

(c) ERiA = SiA

(
P
)

= (P−ciA)[d
(
P
)
−∑

k �=iA xkδ(ck<P )]
+ > 0 requires

∑
k �=iA xkδ(ck<P ) <

d
(
P
)
. By definition of iA, we have

∑
k �=iA xkδ(ck<P ) =

∑
k∈Π\{iA} xk, and Lemma 24(b)

then brings part(c).

(d) Suppose SiA(p̃) > SiA

(
P
)

= ERiA for p̃ �= P and p̃ > P ∗. By (C.16), we have

R̄−
iA

(p̃) = (p̃ − ciA) xiA r̄−i (p̃) ≥ SiA(p̃) > SiA

(
P
)

= ERiA, a contradiction to the

optimality of ERiA.

Notice that, it is possible that there are multiple maximizers to function SiA(p).

Lemma 29 states that P must be the smallest one for the anchoring supplier. We

start with an auxiliary lemma, used in several other places.

Lemma 28 If profitable supplier i ∈ Π has R̄−
i (p) = Si(p) for price p > P ∗, then all

profitable supplier k �= i with ck < p satisfies pk ≤ p.
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Proof. R̄−
i (p) = (p − ci)xir̄

−
i (p) = Si(p) and (C.18) implies r̄−i (p) =

d(p)−
∑

k �=i
xkδ(ck<p)

xi
.

Also from p > P ∗, (C.7), and Assumption 1, we have xi+
∑

k �=i xkδ(ck<p) ≥ ∑
k xkδ(ck≤P ∗) ≥

d (P ∗) > d(p), and therefore r̄−i (p) = Si(p)
(p−ci)xi

=
d(p)−

∑
k �=i

xkδ(ck<p)

xi
< 1. Notice that all

supplier k with ck ≥ p has σ∗
k ≥ p, i.e., δ(ck≥p)δ(σ∗

k
<p) = 0, so we have

r̄−i (p) = E

⎡
⎣1 ∧

[d(p) −∑
k �=i xkδ(σ∗

k
<p)(δ(ck<p) + δ(ck≥p))]

+

xi

⎤
⎦

= E

⎡
⎣1 ∧

(d(p) −∑
k �=i xkδ(ck<p)δ(σ∗

k
<p))

+

xi

⎤
⎦ .

The above expression achieves its minimum at p,
d(p)−

∑
k �=i

xkδ(ck<p)

xi
< 1 only if

δ(σ∗
k
<p) =a.s. 1 for all k with ck < p. That is, pk ≤ p for all k �= i with ck < p.

Lemma 29 Supplier iA satisfies P = P
min
iA

:= min {arg max {SiA(p) : p > P ∗}}.
Proof. From Lemma 27(d), P maximizes SiA (p). Thus, both P

min
iA

and P maximize

SiA (p) . Suppose P
min
iA

< P . Lemma 27(a) implies ERiA = SiA

(
P
)

= SiA(P
min
iA

)

and inequality (C.16) implies ERiA ≥ R̄iA(P
min
iA

) ≥ SiA(P
min
iA

), so we must have

R̄−
iA

(P
min
iA

) = SiA(P
min
iA

). From Lemma 28, p̄k ≤ P
min
iA

for all k �= iA with ck < P
min
iA

.

Now consider interval [P
min
iA

, P ). Since both P
min
iA

and P are maximizers of SiA (p)

and max {SiA (p)} = ERiA > 0, Lemma A1(ii) implies that P
min
iA

= cj for certain

j, so the set of suppliers with cost ck ∈ [P
min
iA

, P ) is not empty. For any supplier

k in the set, Lemma 22 and (C.14) imply ERk = R̄−
k (p

k
) = (p

k
− ck)r̄

−
k (p

k
) > 0,

and therefore, p
k

> ck ≥ P
min
iA

. Let p∗ := min{p
k

: ck ∈ [P
min
iA

, P )} > P
min
iA

. Now

we have all players with ck < P
min
iA

except iA price lower than P
min
iA

and all players

with ck ≥ P
min
iA

price no cheaper than p∗ > P
min
iA

. Consequently, for p ∈ [P
min
iA

, p∗),

R̄iA(p) = (p − ciA)[d(p) −∑
k �=iA xkδ(ck<cj)] = SiA(p, P

min
iA

= cj).

As SiA (p) coincides to the concave function SiA(p, c̄(P )) in p ∈ (c̄(P ), P ] and achieves

maximum at P , SiA

(
p, c̄(P )

)
must be strictly increasing in p for p ≤ P̄ . Since c̄(P ) ≥

cj = P
min
iA

, Lemma A1(i-a) implies that R̄iA(p) = SiA(p, cj) is striclty increasing in

p ∈ [P
min
iA

, p∗). It follows R̄−
iA(p∗) > R̄iA(P

min
iA

) = ERiA , a contradiction to the

optimality of ERiA.
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Define Ω := {i ∈ N : ci ≤ P ∗ and
∑

k �=i xkδ(ck≤P ∗) < d(P ∗)}. Notice for all i /∈ Ω,

we have either ci > P ∗ or
∑

k �=i xkδ(ck≤P ∗) ≥ d(P ∗), implying that, for all p > P ∗,

Si (p) = (p − ci)
[
d(p) −∑

k �=i xkδ(ck<cj)

]+
= 0. Therefore, we must have iA ∈ Ω. For

each i ∈ Ω, define trial values

R̄T
i : = max {Si(p) : p > P ∗} ,

P
T
i : = min {arg max {Si(p) : p > P ∗}} = min

{
p > P ∗ : Si(p) = R̄T

i

}
,

P T
i : = min{p ∈ [P ∗, P

T
i ] : (p − ci) [d (p) ∧ xi] = R̄T

i },

Figure C.2 illustrates how R̄T
i , P T

i , and P
T
i are determined. Since Si(p) coincides to

Si(p, c̄(P
T
i )) at P

T
i ’s left neighborhood and achieves maximum at P

T
i , the concave

function Si(p, c̄(P
T
i )) must be strictly increasing in p ≤ P

T
i . As ci ≤ c̄(P

T
i ), Lemma

A1(i-a) suggests that

(#) Si(p, ci) is strictly increasing for p ∈ [ci, P
T
i ].

From (#) and Si(P
T
i , ci) ≥ Si(P

T
i ) ≥ Si(P

∗, ci), intermediate value thoerem guar-

antees that equation Si(p, ci) = Si(P
T
i ) [or (p − ci) [d (p) ∧ xi] = R̄T

i ] has a unique

solution p ∈ [P ∗, P
T
i ]. In other words, P T

i ∈ [P ∗, P
T
i ] always exists. Now from

R̄T
i = (P T

i − ci)[xi ∧ d(P T
i )] = (P

T
i − ci)[d(P

T
i ) − ∑

k �=i xkδ(ck<P
T
i )

] > 0, we have two

useful inequalities

(a) 0 < d(P
T
i )−∑

k �=i

xkδ(ck<P
T
i )

≤ [xi∧d(P T
i )] and (b) P

T
i ≥ P T

i for all i ∈ Ω. (C.19)

With the above notation, we claim that P and P can be determined as follows.

Proposition 19 P = maxi∈Ω

{
P T

i

}
and P = mini∈Ω{P T

i : P T
i = P}.

Proof. The proof proceeds in three steps. The first part is an auxiliary result.

(a) ERi ≥ R̄T
i and p

i
≥ P T

i for all i ∈ Ω. By (C.16), for any price equal

to a cost level p ∈ (P ∗, b], we have ERi ≥ R̄−
i (p) = (p − ci)xir̄

−
i (p) ≥ (p −

ci)[d(p) − ∑
k �=i xkδ(ck<p)], which implies ERi ≥ R̄T

i = maxp∈(P ∗,b]{(p − ci)[d(p) −∑
k �=i xkδ(ck<p)]

+}. To show the second inequality, suppose p
i
< P T

i for certain i. By

(C.14), we have ERi = R̄−
i (p

i
) = (p

i
− ci)xir̄

−
i (p

i
) ≤ (p

i
− ci)[xi ∧ d(p

i
)] = Si(pi

, ci).
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Observation (#) then implies a contradiction, ERi = Si(pi
, ci) < Si(P

T
i , ci) <

(P T
i − ci)[d(P T

i ) ∧ xi] = R̄T
i ≤ ERi.

(b) P = maxi∈Ω

{
P T

i

}
. We know p

iA
= P T

iA
= P ∈

{
P T

k : k ∈ Ω
}

. Suppose

that there exists supplier h ∈ Ω such that P T
h = maxk∈Ω

{
P T

k

}
> P. Part (a) im-

plies p
h
≥ P T

h > P = p
iA

. Consider price interval [p
iA

, P T
h ). Inequality (C.19-a)

and Assumption 1 implies
∑

k �=h xkδ(ck<p) < d(P T
h ) ≤ d(p) for all p ≤ P T

h . That

is, given supplier h’s absence in this price interval, the total capacity available is

smaller than demand. Therefore, supplier iA obtains sales ratio 1 almost surely for

any p ∈ [p
iA

, P T
h ), implying a contradiction, ERiA = R̄iA(P ) = (P − ciA)xiA <(

P T
h − ciA

)
xiA = R̄−

iA
(P T

h ) ≤ ERiA .

(c) P = P
T
iA

= mini∈Ω{P T
i : P T

i = P}. Given P derived in part (b), if only

one player satisfies P T
i = P , she must be the anchoring supplier and Lemma 29

guarantees part (c). Consider the case when there are more than one players in

set Ω satisfying P T
i = P . Suppose j ∈ Ω exists such that P T

j = P and P
T
j <

P = P
T
iA

. Inequality (C.16) implies R̄−
j (P

T
j ) ≥ Sj(P

T
j ). If R̄−

j (P
T
j ) = Sj(P

T
j ), as

ciA < P < P
T
j , Lemma 28 brings a contradiction piA

≤ P
T
j < P = piA

. Thus, we

must have R̄−
j (P

T
j ) > Sj(P

T
j ). Now consider p

j
, if p

j
= P = P T

j , thenLemma 24(a)

brings a contradiction ERj = R̄j (P ) =
(
P T

j − cj

)
[xj ∧ d(P T

j )] = R̄T
j < ERj . So we

must have p
j

> P = P T
j . Also notice (C.19-b) implies P

T
j > P T

j = P . Therefore,

p∗ := min{p
j
, P

T
j } > P = P T

j and for all p < p∗. By (C.19-a), we have
∑

k �=j xkδ(ck<p) ≤∑
k �=j xkδ(ck<p∗) ≤ ∑

k �=j xkδ(ck<P
T
j )

< d(P
T
j ) < d(p). Similarly to part (b), we can

show r̄iA (p) = 1 for all p < p∗ ≤ p
j
, which further leads to a contradiction ERiA =

R̄iA(P ) = (P − ciA)xiA < (p∗ − ciA)xiA = R̄−
iA

(p∗) ≤ ERiA .
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APPENDIX D

Proofs and Analysis for Chapter 4

D.1 Impossibility of increasing equilibrium for DAK-2

This can be illustrated by contradiction. Consider model DAK-2 with k ∈
[
k, k̄

]
and

assume there is a symmetric PBE with strictly increasing bidding strategy p = γ (k).

Suppose supplier 2 follows the bidding strategy p = γ (k),and we consider supplier

1’s payoff function R (p), particularly for type k = k. As γ (k) is strictly increasing

in k, it suggests that γ (k) is the lowest bid possibly submitted by supplier 2. Since

γ (k) defines a symmetric PBE, we must have

R (γ (k)) ≥ R (p) for all p ∈ [0, B] . (D.1)

If k < ξ
2

(i.e, k < ξ − k) we instantly note a contradiction,

R (γ (k)) = γ (k) k < γ (ξ − k) k = R (γ (ξ − k)) .

The second equality results from k < ξ − k and strictly monoticity of γ (·).
If k ≥ ξ

2
, we first derive the γ (k) for k in the right neighborhood of [k, k + Δ)

with k + Δ < ξ.

max
p

R (p) = p

[
kH̄

(
γ−1

)
+

∫ γ−1

k
[k ∧ (ξ − k2)] dH (k2)

]
where H is cdf of k2

= p

[
kH̄

(
γ−1

)
+

∫ γ−1

k
(ξ − k2) dH (k2)

]
[by ξ − k2 ≤ ξ

2
≤ k]

dR (p)

dp
=

[
kH̄

(
γ−1

)
+

∫ γ−1

k
(ξ − k2) dH (k2)

]

+p
[
−kh

(
γ−1

)
+

(
ξ − γ−1

)
h
(
γ−1

)] dγ−1(p)

dp
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It implies the ODE defining the Nash solution with p = γ (k):

γ′ (k)

γ (k)
=

(2k − ξ)h (k)

kH̄ (γ−1) + ξH (k) − ∫ k
k k2h (k2) dk2

(D.2)

implying that

γ (k) = C0 exp

⎧⎨
⎩
∫ k

k

(2k − ξ) dH (k)

kH̄ (k) + ξH (k) − ∫ k
k k2h (k2) dk2

⎫⎬
⎭ with C0 > 0.

Now we check if p = γ (k) is the optimal solution to R (p). Consider p = γ (l) with

l > k, we denote R (p) as

R (l, k) = γ (l)

[
kH̄ (l) +

∫ l

k
(ξ − k2) dH (k2)

]

∂R (l, k)

∂l
= γ̇ (l)

[
kH̄ (l) + ξH (l) −

∫ l

k
k2h (k2) dk2

]
+ γ (l) (−k + ξ − l) h (l) .

Applying the property (D.2), we have

∂R (l, k)

∂l
= γ (l)h (l)

⎧⎨
⎩

(2l − ξ)
[
kH̄ (l) + ξH (l) − ∫ l

k k2h (k2) dk2

]
lH̄ (l) + ξH (l) − ∫ l

k k2h (k2) dk2

+ ξ − k − l

⎫⎬
⎭

= γ (l)h (l)

⎧⎨
⎩ (2l − ξ) (k − l) H̄ (l)

lH̄ (l) + ξH (l) − ∫ l
k k2h (k2) dk2

+ (2l − ξ) + ξ − k − l

⎫⎬
⎭

=
γ (l) h (l)

lH̄ (l) + ξH (l) − ∫ l
k k2h (k2) dk2

(k − l)

[∫ l

k
k2h (k2) dk2 − (2ξ − l) H̄ (l)

]
.

Notice for k = k and l = k+Δ, we have k−l < 0 and
∫ l
k k2h (k2) dk2−(2ξ − l) H̄ (l) <

l − 2ξH̄ (l) < 0 for any l close to k and H (l) < 1
2
. It suggests that ∂R(l,k)

∂l
> 0 for

l ∈ (k, k + Δ), a direct contradiction to (D.1).

D.2 Derivation of Symmetric Equilibrium for DAK-N

In this section, we heuristically derive the symmetric PBE for Model DAK-N. The

derivation uses several assumptions and conclusions that are proven in the duopoly

model (DAK-2). First, generalizing the observation from two-bidder case, we assume

γ′ (k) ≤ 0.
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Suppose all suppliers but i follow the equilibrium bidding strategy pj = γ (kj) for

j �= i and consider supplier i’s payoff when choosing price p, given that his capacity

is k,

R (p,p−i) = (p − c)

⎧⎨
⎩δ{p<b1} (k ∧ ξ) +

N−1∑
i=1

δ{bi<p≤bi+1}[k ∧ (ξ −
i∑

j=1

γ−1 (bi))
+]

⎫⎬
⎭ .

Note that, the above expression has assumed that no two bidders choose the same

prices. Since we have H (k) is continuous in k, we assume have ρ (p,p−i) = 1 almost

surely for any p. Taking expectation of R (p,p−i) over k−i, and using the fact that

γ (·) is a strictly decreasing function, we have

R (p) = p (k ∧ ξ)H
(
γ−1

)N−1
+ p

N−1∑
i=1

{(
N − 1

i

)
H

(
γ−1

)N−i−1 ·
∫ k̄

γ−1
· · ·

∫ k̄

γ−1
[k ∧ (ξ −

i∑
j=1

kj)
+]dH (k1) . . . dH (ki)

⎫⎬
⎭

= p
N−1∑
i=0

(
N − 1

i

)
H

(
γ−1

)N−i−1
Ui

(
γ−1, k, ξ

)
.

where

Ui (x, k, d) =

⎧⎪⎨
⎪⎩

k ∧ (d)+ i = 0∫ k̄
x · · · ∫ k̄

x [k ∧ (d −∑i
j=1 kj)

+]dH (k1) . . . dH (ki) i ≥ 1
.

The first order condition dR(p)
dp

= 0 is

0 =
N−1∑
i=0

(
N − 1

i

)
H

(
γ−1

)N−i−1
Ui

(
γ−1, k, ξ

)
(D.3)

+p
N−2∑
i=0

(
N − 1

i

)
(N − i − 1)H

(
γ−1

)N−i−2
h
(
γ−1

) dγ−1(p)

dp
Ui

(
γ−1, k, ξ

)

+p
N−1∑
i=1

(
N − 1

i

)
H

(
γ−1

)N−i−1 dUi (γ
−1, k, ξ)

dp
.

To further simplify the expression,
dUi(γ−1,k,ξ)

dp
needs to be explicitly derived. We

first note the following property,

d

dx

∫ Ā1

A1(x)
. . .

∫ ĀN

AN (x)
F (a1, . . . , aN) da1 . . . daN

= −
N∑

j=1

dAj (x)

dx

∫ Ā1

A1(x)
. . .

∫ ĀN

AN (x)
F (a1, . . . , Aj (x) , . . . , aN) da1 . . . daj−1daj+1 . . . daN ,
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where Aj (x) < Āj and Āj is constant for all j = 1, 2, . . . , N . Applying this property,

we have

dUi(γ
−1(p), k, ξ)

dp
= −

i∑
j=1

dγ−1(p)

dp
·

∫ k̄

γ−1(p)
· · ·

∫ k̄

γ−1(p)
[k ∧ (ξ − γ−1(p)−

i∑
m=1,m�=j

km)+]h(γ−1(p))
i∏

m=1,m�=j

dH(km)

= −i
dγ−1(p)

dp
h(γ−1(p))

∫ k̄

γ−1(p)
· · ·

∫ k̄

γ−1(p)
[k ∧ (ξ − γ−1(p) −

i−1∑
m=1

km)+]
i−1∏
m=1

dH(km)

= −i
dγ−1(p)

dp
h(γ−1(p))Ui−1

(
γ−1(p), k, ξ − γ−1(p)

)
.

FOC(D.3) now reads

0 =
N−1∑
i=0

(
N − 1

i

)
H

(
γ−1

)N−i−1
Ui

(
γ−1, k, ξ

)

+p
N−2∑
i=0

(
N − 1

i

)
(N − i − 1)H

(
γ−1

)N−i−2
h
(
γ−1

)
Ui

(
γ−1, k, ξ

) dγ−1(p)

dp

−p
N−1∑
i=1

(
N − 1

i

)
H

(
γ−1

)N−i−1
i
dγ−1(p)

dp
h
(
γ−1

)
Ui−1

(
γ−1, k, ξ − γ−1

)

At equilibrium, p = γ (k), k = γ−1 (p), and dγ−1(p)
dp

= 1
γ′(k)

, so we have

0 =
N−1∑
i=0

(
N − 1

i

)
H (k)N−i−1 Ui (k, k, ξ)

+
γ (k)

γ′ (k)
h (k)

N−2∑
i=0

(
N − 1

i

)
(N − i − 1) H (k)N−i−2 Ui (k, k, ξ)

− γ (k)

γ′ (k)
h (k)

N−1∑
i=1

(
N − 1

i

)
iH (k)N−i−1 Ui−1 (k, k, ξ − k)

=
N−1∑
i=0

(
N − 1

i

)
H (k)N−i−1 Ui (k, k, ξ)

+
(N − 1) γ (k) h (k)

γ′ (k)

N−2∑
i=0

(N − 2)!

i! (N − i − 2)!
H (k)N−i−2 Ui (k, k, ξ)

−(N − 1)γ(k)h(k)

γ′(k)
h(k)

N−2∑
l=0

(N − 2)!

l!(N − l − 2)!
H(k)N−l−2Ul(k, k, ξ − k)

[by l = i − 1].
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Therefore, we have an ODE of k,

N−1∑
i=0

(
N − 1

i

)
H (k)N−i−1 Ui (k, k, ξ)

= −(N − 1) γ (k)h (k)

γ′ (k)

N−2∑
i=0

(
N − 2

i

)
H (k)N−i−2 [Ui (k, k, ξ) − Ui (k, k, ξ − k)] ,

or equivalently,

γ′ (k)

γ (k)
= − (N − 1)h (k)

∑N−2
i=0

(
N−2

i

)
H (k)N−i−2 [Ui (k, k, ξ) − Ui (k, k, ξ − k)]∑N−1

i=0

(
N−1

i

)
H (k)N−i−1 Ui (k, k, ξ)

.

(D.4)

The above differential equation has a general solution in format as

γ (k) = KD exp

[
− (N − 1)

∫ k

k
Δ (x) dH (x)

]
,

where Δ (x) is defined in (4.19) and KD > 0. Note that, ODE (D.4) implies that

γ (k) is a decreasing function in k, which is consistent with our initial assumption.

By the boundary condition γ (k) = B, we have KD = B, and therefore, we derive the

equilibrium bidding strategy.

D.3 Derivation of Symmetric Equilibrium for UAK-N

Similar to UAK-2, we assume γ (k) is a decreasing function in k. Suppose all suppliers

but i follow the equilibrium bidding strategy pj = γ (kj) for j �= i and consider supplier

i’s payoff when choosing price p, given that his capacity is k,

R (p,p−i) = pδ{b=p}[k ∧ (ξ −∑
j �=i

δ{pi<p}kj)] + bδ{p<b}k,

where b denotes the market clearing price. Taking expectation of R (p,p−i) , we have

R (p) = Rp (p) + Rk (p)

where Rp (p) = pEk−i [[k ∧ (ξ −∑
j �=i

kjδ{γ(ki)<p})] · δ{b=p}]

and Rk (p) = kEk−i

[
b · δ{p<b}

]
.
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We first derive the expressions of Rp (p) and dRp(p)
dp

,

Rp (p) = p
∫

. . .
∫ [

k ∧
(
ξ −∑

kjδ{γ(kj)<p}
)]

δ{b=p}dH (k1) . . . dH (kN−1)

= p
N−1∑
i=0

(
N − 1

i

)
H

(
γ−1

)N−i−1
W N−1

i

(
γ−1, k, ξ

)
,

where we define

W M
i (x, k, d)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k ∧ d) δ{0<d} i = M = 0

dδ{0<d≤k} i = 0 < M∫ k̄
x . . .

∫ k̄
x

(
d −∑i

j=1 kj

)
δ{∑i

j=1
kj<d≤

∑i

j=1
kj+k

}dH (k1) . . . dH (ki) 0 < i < M

∫ k̄
x . . .

∫ k̄
x

[
k ∧

(
d −∑M

j=1 kj

)]
δ{∑M

j=1
kj<d

}dH (k1) . . . dH (ki) i = M > 0

.

Next we derive a useful property of W M
i . For i = 0, we have

∂W M
i (x,k,d)

∂x
= 0. For

0 < i < M ,

∂W M
i (x, k, d)

∂x

= −ih (x)
∫ k̄

x
. . .

∫ k̄

x

⎛
⎝d − x −

i−1∑
j=1

kj

⎞
⎠ δ{

d−x−k≤
∑i−1

j=1
kj<d−x

}dH (k1) . . . dH (ki−1)

= −ih (x) W M−1
i−1 (x, k, d − x) .

It is easy to verify
∂W M

i (x,k,d)

∂x
= −ih (x) W M−1

i−1 (x, k, d − x) also holds for i = M > 0.

Applying the above property, we now have

dRp (p)

dp
=

N−1∑
i=0

(
N − 1

i

)
H

(
γ−1

)N−i−1
W N−1

i

(
γ−1, k, ξ

)

+p
N−2∑
i=0

(
N − 1

i

)
(N − i − 1) H

(
γ−1

)N−i−2
h
(
γ−1

)
W N−1

i

(
γ−1, k, ξ

) dγ−1(p)

dp

−p
N−1∑
i=1

(
N − 1

i

)
H

(
γ−1

)N−i−1
ih

(
γ−1

)
W N−2

i−1

(
γ−1, k, ξ − γ−1

) dγ−1(p)

dp
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=
N−1∑
i=0

(
N − 1

i

)
H

(
γ−1

)N−i−1
W N−1

i

(
γ−1, k, ξ

)

+ph(γ−1)
dγ−1(p)

dp
(N − 1)

N−2∑
i=0

(
N − 2

i

)
H(γ−1)N−i−2W N−1

i (γ−1, k, ξ)

−ph(γ−1)
dγ−1(p)

dp
(N − 1)

N−1∑
i=1

(
N − 2

i − 1

)
H(γ−1)N−i−1W N−2

i−1 (γ−1, k, ξ − γ−1)

=
N−1∑
i=0

(
N − 1

i

)
H(γ−1)N−i−1W N−1

i (γ−1, k, ξ) + ph(γ−1)
dγ−1(p)

dp
(N − 1) ·

N−2∑
i=0

(
N − 2

i

)
H(γ−1)N−i−2

[
W N−1

i (γ−1, k, ξ) − W N−2
i (γ−1, k, ξ − γ−1)

]
.

Next we derive Rk (p) and dRk(p)
dp

.

Rk (p) = kEk1,...,kN

[
b · δ{p<b}

]
= (N − 1) k

∫
Ek1,...,kN−2

[
γ (x) · δ{p<γ(x),b=γ(x)}

]
dH (x)

= (N − 1) k
∫ γ−1

k

[
γ (x)

N−2∑
i=0

(
N − 2

i

)
H (x)N−i−2 V N−2

i (x, ξ − k)

]
dH (x) ,

where

V M
i (x, d) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ{0<d} i = M = 0

δ{0<d≤x} i = 0 < M∫ k̄
x . . .

∫ k̄
x δ{∑i

j=0
kj<d≤

∑i

j=0
kj+x

}dH (k1) . . . dH (ki) 0 < i < M

∫ k̄
x . . .

∫ k̄
x δ{∑M

j=0
kj<d

}dH (k1) . . . dH (ki) 0 < i = M

.

It follows dRk(p)
dp

= (N − 1)h(γ−1(p))pk
∑N−2

i=0

(
N−2

i

)
H(γ−1(p))N−i−2V N−2

i (γ−1(p), ξ −
k)dγ−1(p)

dp
. For the supplier, optimal p satisfies the FOC dR(p)

dp
= dRp(p)

dp
+ dRk(p)

dp
= 0,

i.e.,

0 =
N−1∑
i=0

(
N − 1

i

)
H

(
γ−1

)N−i−1
W N−1

i

(
γ−1, k, ξ

)
+ (N − 1) ph

(
γ−1

) dγ−1(p)

dp
·

N−2∑
i=0

(
N − 2

i

)
H

(
γ−1

)N−i−2 [
W N−1

i

(
γ−1, k, ξ

)
− W N−2

i

(
γ−1, k, ξ − γ−1

)]

+ (N − 1) ph
(
γ−1

) dγ−1(p)

dp
k

N−2∑
i=0

(
N − 2

i

)
H

(
γ−1

)N−i−2
V N−2

i

(
γ−1, ξ − k

)
.

At equilibrium, we must have γ−1 (p) = k, p = γ (k), and dγ−1(p)
dp

= 1
γ′(k)

. Now FOC
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implies an ODE,

0 =
N−1∑
i=0

(
N − 1

i

)
H (k)N−i−1 W N−1

i (k, k, ξ) + (N − 1)
γ (k)h (k)

γ′ (k)
·

N−2∑
i=0

(
N − 2

i

)
H (k)N−i−2

[
W N−1

i (k, k, ξ) − W N−2
i (k, k, ξ − k) + kV N−2

i (k, ξ − k)
]

Rearranging the terms, we have

γ′ (k)

γ (k)

(−1)

(N − 1)h (k)

=

∑N−2
i=0

(
N−2

i

)
H (k)N−i−2

[
W N−1

i (k, k, ξ) − W N−2
i (k, k, ξ − k) + kV N−2

i (k, ξ − k)
]

∑N−1
i=0

(
N−1

i

)
H (k)N−i−1 W N−1

i (k, k, ξ)
.

The above differential equation has a general solution in format as

γ (k) = KU exp

[
− (N − 1)

∫ k

k
Θ (x) dH (x)

]

where

Θ (x)

=

∑N−2
i=0

(
N−2

i

)
H (x)N−i−2

[
W N−1

i (x, x, ξ) − W N−2
i (x, x, ξ − x) + xV N−2

i (x, ξ − x)
]

∑N−1
i=0

(
N−1

i

)
H (x)N−i−1 W N−1

i (x, x, ξ)
.

By the boundary condition γ (k) = B, we have KU = B, and expression (4.20)

follows. To verify the optimality of p = γ (k), we also derive

R (l, k) = γ (l)
N−1∑
i=0

(
N − 1

i

)
H (l)N−i−1 W N−1

i (l, k, ξ)

+ (N − 1) k
∫ l

k

[
γ (x)

N−2∑
i=0

(
N − 2

i

)
H (x)N−i−2 V N−2

i (x, ξ − k)

]
dH (x) .

If γ (k) = arg maxl {R (l, k)} for all k, γ (k) defines a PBE.
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