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ABSTRACT 

Modularity is a principle of construction whereby individual units are internally cohesive 

and relatively autonomous from other such units.  Modularity thus confers a degree of 

evolutionary autonomy to the sets of traits integrating a module, a feature hypothesized to 

enhance evolvability by allowing selection to optimize individual parts without 

interfering with others.  Detecting modularity in morphological traits requires analyzing 

the structure of covariation because traits integrated by development into modules are 

expected to show stronger mutual covariation. However, unambiguous patterns of 

modularity are rare.  That is because the developmental processes underlying most 

phenotypic traits share regulatory elements and/or have spatially overlapping effects.  

Pervasive interactions can produce the appearance of statistical integration among 

biologically modular traits.  Herein, a statistical framework is provided that confronts 

these limitations on methods for inferring modularity from morphological data.  The 

theoretical basis of this new method states that modules are subsets of dimensions 

embedded in phenotypic space, an approach that differs from previous ones by not 

defining modules as anatomical parts but rather as aspects of the variation of these parts.  

This abstraction allows traits to be integrated into more than one module and also 

suggests a natural approach for testing a priori hypotheses of modularity by fitting 

competing hypotheses to observed covariance matrices, searching for the best-supported 

causal explanations.  A comprehensive method is developed and tested using simulated 

data, then used to address a major outstanding issue in evolutionary biology: whether the 

developmental processes that structure variation within populations bias the direction of 

long-term divergence.  This hypothesis is tested by fitting multiple developmental models 

to both intraspecific and interspecific craniomandibular data obtained from a clade of 

ecologically diverse rodents.  Results reveal a remarkable congruence among patterns 

within and between species, and they also suggest that there are different mechanisms by 

which modular variation arises within different parts of the skull, i.e., cranium and 
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mandible.  That these structures have different dynamics both within and among species 

suggests that whether intraspecific variation constrains the direction of divergence may 

depend on mechanisms structuring modularity within populations. 

 



1 

 

CHAPTER I 

A GEOMETRIC FRAMEWORK FOR TESTING HYPOTHESES OF 
VARIATIONAL MODULARITY 

 

ABSTRACT 

Modularity is defined as the relative autonomy (i.e., background-independence) of 

genetic interactions, the developmental processes regulated by these interactions, and the 

phenotypic traits produced by these processes.   In morphological traits, modularity is 

evinced as strength of covariation (i.e., integration) within anatomical regions, and it is 

caused by common developmental pathways or genetic factors shared by these regions.   

Because distinct pathways may interact, share genetic components, and influence 

overlapping anatomical regions, it is not generally expected for variational (i.e., 

morphological) modules to display a simple pattern of strong integration within and weak 

or no integration outside modules.   This does not necessarily imply that most 

morphological variation is integrated and non-modular, because most phenotypic traits 

are highly multidimensional, so that different sets of dimensions may show distinct 

patterns of integration.   This section elaborates on this idea to propose a geometric 

framework in which variational modules are defined as subspaces embedded within the 

space occupied by the entire phenotype.   Although this is perhaps an unorthodox idea in 

that it seeks to re-interpret pervasive integration as complex modularity, it is consistent 

with developmental and quantitative genetic explanations for the origin of variational 

modules.   A statistical methodology is then proposed to deal with the difficult problem 

of inferring individual modules from morphometric covariation structure.   The proposed 

approach uses the standard formalism of goodness of fit tests to compare observed and 

expected covariance matrices, where the latter are obtained by partitioning the original 

data set into modules as predicted by one or more theories, thus allowing testing 

hypotheses of modularity of any conceivable complexity.  The utility of this approach is 

confirmed using a simulated data set based on a real anatomical structure (the rodent 

mandible).  The relationship of this approach to current methodologies is also discussed. 
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INTRODUCTION 

Heritable variation is essential for most forms of evolutionary sorting, including 

natural selection, and, for that reason, variation is arguably the central concept in 

evolutionary biology (Hallgrímsson and Hall 2005).  Yet, the processes producing and 

patterning variation are remarkably complex, and thus remain poorly understood.  

Whereas the primary sources of variation can be broadly categorized as “environmental” 

or “mutational,” the magnitude and pattern of variation is a function of a combination of 

population-genetic dynamics and the array of processes collectively known as the 

“genotype-phenotype map” (Wagner and Altenberg 1996).  The genotype-phenotype map 

encompasses the network of epigenetic and epistatic interactions among genes and gene 

products through which genetic variation is transduced to phenotypic variation (Wagner 

1984), and the complexity of this map means that there is usually no direct 

correspondence between different levels of variation.  Therefore, the causes of 

phenotypic variation cannot be inferred given only knowledge about correlations between 

genotype and phenotype (Mackay 2001; Klingenberg 2008): Additional information 

about developmental processes underlying the map is also needed (Houle 1991; Cowley 

and Atchley 1992; Steppan et al. 2002).  The properties of the map that are currently 

receiving most attention include phenotypic integration (Olson and Miller 1958; Pigliucci 

and Preston 2004), modularity (Wagner and Altenberg 1996), developmental instability 

(Markow 1993), canalization (Waddington 1942; Hallgrímsson et al. 2002; Dworkin 

2005; Zelditch 2005), plasticity (Pigliucci 2001; West-Eberhard 2003), and robustness 

(de Visser et al. 2003).  These properties channel, alter or mold genetic and 

environmental variation, and therefore are all causally related to the magnitude and 

structure of phenotypic variation (Nijhout and Davidowitz 2003).  Whereas it is 

undisputed that these properties interact, the precise nature of the relationships among 

them is much debated (Hallgrímsson et al. 2002).  For example, it is presently unclear 

whether the mechanisms of canalization are the same as those that stabilize development 

against random noise (Klingenberg and McIntyre 1998; Debat et al. 2000; Réale and Roff 

2003).   
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Not all properties of genotype-phenotype map have a similar effect on variation.  

Whereas canalization and stabilization regulate its magnitude, either increasing it 

systematically as a response to specific cues (i.e., plasticity) or keeping it low in the 

presence of perturbations (i.e., robustness), modularity and integration structure variation 

by distributing it unequally among traits.  Modules are usually defined as relatively 

integrated components of the developmental system, dissociable from and capable of 

interacting with other such units without losing their integrity (Bolker 2000).  Modules 

are also referred to as the building blocks of complex morphological structures (Atchley 

and Hall 1991), and more generally, modules are often regarded as hierarchical 

structures, in that modules can be nested within larger modules (Raff 1996).  Finally, as 

units of the genotype-phenotype map, modules are expected to exhibit certain degree of 

evolutionary autonomy (Riedl 1977; Raff 1996; Wagner and Altenberg 1996; Wagner 

and Cheverud 2007).  Although all types of modules share these general properties, 

modules can be distinguished with respect to their general functions within the genotype-

phenotype map.  Wagner and Mezey (2004) distinguish three general types of modules:  

(1) developmental modules, (2) genetic process modules, and (3) variational modules.  

Developmental modules consist of morphogenetic processes that can be deployed 

relatively independently from their background and that interact to form an individual, 

locally restricted component of a complex system.  Genetic process modules are broadly 

defined as any subset of the genome consisting of relatively constant secreted and 

transcription factors that jointly perform a typical regulatory function and can be 

deployed with little modification in disparate tissues or developmental processes (Gerhart 

and Kirschner 1997; Kirschner and Gerhart 1998).  Genetic process modules are 

commonly associated with cis-regulatory activity (Carroll et al. 2004), and most of the 

best characterized cases correspond to generic cell-cell and matrix-cell signaling 

pathways comprising highly conserved genes, such as the Delta-Notch signaling pathway 

(Henrique et al. 1995; De Celis 2004).  Variational modules are sets of phenotypic traits 

characterized by tighter statistical associations, or phenotypic integration, with respect to 

their background (Chernoff and Magwene 1999; Magwene 2000).  The strength of 

integration within a variational module is commonly attributed to shared pleiotropic 

effects (Cheverud 1995), and is thought to result from shared developmental and 
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functional processes (Olson and Miller 1958; Cheverud 1982, 1996; Zelditch and 

Carmichael 1989; Klingenberg 2005, 2008).   

From its onset, the study of morphological integration has consisted of attempts to 

infer developmental and functional processes from observed patterns of phenotypic 

covariation (Olson and Miller 1958; Van Valen 1965; Cheverud 1982; Zelditch 1987).  

Albeit implicitly, the concept of variational module has figured prominently in these 

efforts, in that the strength and structure of integration among phenotypic traits is thought 

to result from the interactions among underlying developmental and functional.  

Consequently, most studies of integration have focused on identifying variational 

modules by analyzing the distribution of covariances or correlations under the general 

premise that traits conforming a module should covary more strongly than traits in 

separate modules.  As most studies acknowledge, however, inferring developmental 

interactions from phenotypic covariation is a methodologically and conceptually difficult 

problem because of the complexity of the developmental networks that comprise the 

genotype-phenotype map (Klingenberg 2008).  This difficulty is largely due to the fact 

that developmental processes interact so that variational modules are rarely, if ever, truly 

statistically independent.  This lack of independence among modules often invalidates the 

assumption of a simple covariation structure, in which traits are grouped in independent, 

non-overlapping modules (Magwene 2000; Mitteroecker and Bookstein 2007; Zelditch et 

al. 2009).  Instead, variational modules can be correlated by sharing subsets of common 

traits, which means that modules cannot generally be directly inferred from covariance or 

correlation matrices.   

Despite the complex structure of covariation it is nevertheless possible to test 

causal developmental hypotheses that predict patterns of modularity by fitting them to 

observed covariance matrices (Zelditch 1987; Zelditch and Carmichael 1989).  Herein I 

present a statistical framework for testing alternative hypotheses of variational 

modularity, one rooted in the biological principles underlying that concept.  This 

approach treats modules as targets of specific developmental processes, so the definition 

of a module encompasses both the phenotypic traits spanning the module and the 

epigenetic and functional interactions causing their integration.  Thus, when 
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hypothesizing a variational module spanning, for example, the braincase, the same 

module is also assumed to comprise the specific set of processes that are responsible for 

integrated variation within the braincase, e.g., growth of the brain (Moss and Young 

1960).  This focus on causes of covariation means that expectations derived from 

hypotheses of modularity do not necessarily have to be expressed in terms of sets of 

phenotypic traits, but instead as sets of variational properties (i.e., dimensions) of these 

traits.  To accomplish this, I treat modules as subspaces embedded in phenotypic space.  

Although a rather abstract formalism, this is consistent with both the cases in which 

modules possess a simple covariation structure, forming non-overlapping cliques of 

variables (e.g., Zelditch and Carmichael 1989; Cheverud 1982, 1995; Klingenberg et al. 

2003), and the more complex ones in which modules are correlated and spatiotemporally 

overlapping (Magwene 2000; Zelditch et al. 2008; Mitteroecker and Bookstein 2007; 

Márquez 2008).  In the following sections, this abstraction is further developed in more 

intuitive terms, and a statistical method is proposed to implement this framework in the 

study of variational modularity in multivariate morphological data. 

Causes of variational modularity  

Integration within variational modules results from the cumulative effect of 

pleiotropic effects on the traits forming a module (Cheverud 1996; Wagner and Altenberg 

1996; Klingenberg 2008).  The fact that pleiotropy is a pervasive phenomenon, however, 

means that pleiotropic effects can be commonly found both within and among modules 

(Cheverud 2004; Albertson et al. 2005; Kenney-Hunt et al. 2008).  Consequently, 

variational modules can be treated as discrete entities to the extent that they display a 

relatively high degree of morphological integration compared to extra-modular 

integration: integration within modules arises from the aggregation of relatively many or 

strong pleiotropic interactions whereas integration between modules arises from 

relatively few or weak pleiotropic interactions (Fig. I.1).  This model expresses both 

intra- and inter-modular integration in terms of the same general kind of interactions (i.e., 

pleiotropy), which in practice means that it is possible to uncover the genetic basis of 

individual modules by studying the distribution of pleiotropic effects across a complex 

phenotype (e.g., using Quantitative Trait Loci analysis; Mezey et al. 2000).  Although 
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such analyses concentrate on the genetic correlates of phenotypic covariation, seemingly 

placing development in a “black box” (Riska 1986; Houle 1991; Hall 2003), most studies 

of modularity attempt to explain the distribution of pleiotropic effects in the context of 

the developmental or functional processes underlying modules (e.g., Zelditch and 

Carmichael 1989; Cheverud et al. 1997; Monteiro et al. 2005; Klingenberg et al. 2003; 

Albertson et al. 2005, Zelditch et al. 2009).  To this end, a substantial body of theory has 

accumulated that attempts to formalize the role of pleiotropy in structuring the variation 

that is transduced from genotype to phenotype during development (e.g., Lande 1979; 

Cheverud 1982; Wagner 1984, 1988; Burger 1986; Atchley and Hall 1991; Wolf et al. 

2005), generally supporting the hypothesis that patterns of pleiotropic associations will 

evolve to match individual-level demands imposed by functional coupling among body 

parts (e.g., Cheverud 1982; Wagner 1988; Leamy et al. 1999).  Tests comparing genetic 

covariances to patterns of functional association have broadly supported this hypothesis 

(Cheverud et al. 1997; Leamy et al. 1999; Mezey et al. 2000; Klingenberg et al. 2004), 

although most of these comparisons have assumed rather simple patterns of modularity in 

which only one or a limited set of modules are tested and where modules are not allowed 

to overlap. 

Determining the precise genetic and developmental factors underlying pleiotropic 

effects on covariation structure remains a challenge.  One approach is to examine the 

effects on covariation structures of mutations that disrupt known developmental 

processes in experimental systems with controlled genetic backgrounds (Hallgrímsson et 

al. 2006).  But determining the effects of a single mutation is only a first step toward 

understanding the role that a developmental network plays in producing modular 

variation because the magnitude and spatial extent of pleiotropic effects transduced 

through developmental networks may vary among loci and among alleles of single loci 

(Klingenberg 2008).  Another approach, which relies on a more literal interpretation of 

the model of pleiotropy (Fig. I.1), searches for Quantitative Trait Loci (QTLs) that map 

to sets of morphological traits, and quantifies pleiotropic loci as those simultaneously 

affecting two or more traits (Cheverud et al. 1997; Leamy et al. 1999; Mezey et al. 2000; 

Klingenberg et al. 2004; Albertson et al. 2005).  Patterns of pleiotropic effects quantified 

in this manner have been used to show that variational modularity in regions of the skull 
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can be explained by an excess of pleiotropic interactions within, as opposed to between, 

these modules (Mezey et al. 2000).  Of special interest to theories regarding the 

evolutionary origin of modules is a particular class of QTLs that can reveal variation 

among individuals in the pleiotropic relations among traits, namely relationship QTLs 

(rQTLs).  rQTLs are mapped loci that are associated with variation in one trait when 

controlling for a second trait (i.e., a covariate).  In this approach, genetic variation in 

pleiotropic effects is evinced by differences among genotypes in the relationship between 

the trait and the covariate (i.e., differential epistasis; Pavlicev et al. 2008).  Application of 

rQTLs has revealed variation in the allometric relationships between bone lengths and 

overall size; such variation reveals differential epistatic effects among alleles (Pavlicev et 

al. 2008), and it is this variation that enables selection to modify pleiotropic associations 

among traits (Wagner and Cheverud 2007) and also provides a mechanistic basis for the 

evolution of patterns of modularity. 

The developmental causes of pleiotropy have also been a major focus of research.  

Klingenberg (2005, 2008) summarizes two general mechanisms through which 

pleiotropic variation can arise: (1) direct interactions and (2) parallel variation.  The 

major distinction between these two causes of pleiotropy is the relationship between the 

causes of variation and the cause of the covariation.  In the case of direct interactions 

(Fig. I.2A), these need not be the same; the covariation structure results from the 

interactions along pathways that transmit the variation, whatever its cause.  Examples of 

this type of pleiotropy are induction pathways, in which regulatory signals are 

sequentially transduced so that variation arising within any component is transmitted 

along the pathway (e.g., induction of the zone of polarizing activity in vertebrate limbs by 

shh; Riddle et al. 1993), and pathways in which morphological traits are derived by 

partitioning a limited pool of certain precursor (Riska 1986; Houle 1991; Nijhout and 

Emlen 1998).  In contrast, pleiotropic effects due to parallel variation result from 

variation in common factors that affect otherwise independent pathways (Fig. I.2B).  

These sources of variation, which include both allelic effects and environmental factors, 

are external to the individual organisms (Klingenberg 2008), and are expected to cause 

covariation among traits even if there are no direct interactions between their 

developmental processes.  This effect, however, may depend on the complexity of the 
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affected traits (see below).  While both forms of pleiotropy are theoretically able to 

produce variational modularity, only direct interactions produce variational patterns that 

reflect developmental and functional causes of modularity. 

A feature common to all these hypotheses is that they treat modules as defined 

entities, produced by knowable sets of epigenetic interactions that are susceptible to 

delimitation in anatomical terms.  Given that variational modules can be thought of as 

specific morphological aspects whose covariation structure may reflect the history of all 

the developmental interactions leading up to them, the precise nature of modules might 

be as complex as the interactions that produce them.  This complexity is the reason for 

referring to these modules vaguely as morphological “aspects” instead of as traits, 

characters, variables, or parts.  It is this idea that covariation structures will rarely display 

a clear-cut pattern of individual modules with fixed anatomical boundaries that motivates 

the methods described herein.  The present approach is premised on the idea that 

interactions among developmental pathways and spatiotemporal overlap of variational 

modules will produce complex patterns of covariation from which it is difficult to extract 

information about modularity.  Despite the obscuring effect of these factors, variational 

modules produced from the processes described above should still be embedded in the 

phenotypic covariance structure.  Therefore, it should be possible to investigate support 

for a particular array of modules by comparing hypothetical matrices derived from these 

hypotheses to observed covariance matrices (e.g., Márquez 2008).  This approach, 

described below, requires that covariance matrices have a degree of predictability, a 

requirement that is largely determined by the intrinsic dimensionality of the modules 

embedded in them.  But modules derived from complex patterns of pleiotropic 

interactions should be highly multidimensional, which means that neither the 

accumulation of disparate pleiotropic effects from multiple loci or the overlap among 

module boundaries will necessarily reduce the information about modularity contained in 

covariance structures.  That is because each module could reside in its own region of the 

phenotypic space. 
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Consequences of multidimensionality of variational modules 

Variational modularity (i.e., morphological integration) is normally expected to 

reduce the dimensionality of overall phenotypic variation relative to its theoretical 

maximum (e.g., Cheverud 1995; Chernoff and Magwene 1999; Hallgrímsson et al. 2002).  

Considerably less attention has been paid to the structure of variation within individual 

modules.  However, understanding intra-modular variation is important not only because 

modules are expected to be internally integrated but also because the evolutionary 

consequences of modular variation depend critically on the covariation structure of each 

module (Hansen et al. 2003), just as the evolution of individual one-dimensional traits 

depends on the variances of those traits.  As discussed above, integration within modules 

results from the aggregated effect of pleiotropic interactions, which are transduced 

through developmental pathways (Fig. I.2A).  This general process implies that more 

complex pathways should tend to produce more complex intra-modular variation 

patterns, where "complexity" refers to the number of components of that pathway (e.g., 

signal transducers, membrane receptors, transcription factors, etc.) and the interactions 

among them.  For variational modules, complexity refers to the dimensionality of their 

variation structure, which is a consequence of the variation of pleiotropic effects both 

within and among the loci involved in their development (Klingenberg 2005, 2008).  In 

conclusion, the dimensionality of a variational module is a function of the number of 

different sources of pleiotropic variation because each of these sources (i.e., loci and their 

interactions) is expected to affect a different aspect of the variation. 

This conclusion suggests that the structure of covariation among the phenotypic 

aspects that form a module depends on both the number of developmental elements and 

the functional characteristics they share.  Thus, bilateral structures that develop as 

separate developmental modules (e.g., limbs) are expected to covary highly because they 

share the same developmental program, thus jointly forming a variational module 

(Wagner and Mezey 2004).  Elements shared by developmental networks that have little 

else in common should account for a smaller portion of the covariation among the 

corresponding traits, especially when the effects of shared elements are context-

dependent (e.g., Notch-Delta cell-cell signaling pathway; De Celis 2004).  Consequently, 
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to the extent that the developmental networks leading to phenotypic modules share fewer 

elements in common with other such networks, the structure of covariation in the affected 

modules should tend to be unique, and thus occupy its own set of dimensions within 

phenotypic space.  An important methodological consequence of this reasoning is that the 

likelihood of observing a strong correlation among traits that have developed 

independently should be inversely proportional to the complexity of the developmental 

pathways for these traits, so that this complexity should limit the ability of parallel 

pleiotropic effects (Fig. I.2B) to produce a measurable covariation among independent 

modules.  It is also valuable to notice that statistical independence among variational 

modules may be obscured by effects of processes shared by all modules, such as growth, 

and thus it is more likely to be valid for integration caused by local developmental 

processes (Mitteroecker and Bookstein 2007). 

The preceding discussion refers to the origin of multidimensional variation of a 

single module, but, as noted above, covariation structure rarely consists of a collection of 

isolated modules that can be independently analyzed.  Instead, as noted by Hallgrímsson 

et al. (2007), the sequential superimposition of effects of developmental and functional 

processes through ontogeny produces extensive functional and morphological overlap 

among variational modules, resulting in covariation structures from which it may be 

impossible to deduct patterns of modularity (Fig. I.3).  However, as proposed above, a 

sufficiently complex developmental process may map onto the variational structure of the 

phenotype with a set of unique dimensions defining a variational module, providing that 

the process has enough overall variance (Hallgrímsson et al. 2007).  As a result, while a 

covariance matrix may contain a “patchwork” of disparate and only partially independent 

modules (Cowley and Atchley 1992), these modules may still conserve their integrity 

while they become embedded within phenotype space.  The fact that these modules are 

composed of overlapping anatomical features (Hallgrímsson et al. 2007; Fig. I.3), 

however, implies that they cannot be identified as sets of physical variables, their 

identification instead requires a rather abstract approach, namely defining variational 

modules as sets of dimensions, i.e., subspaces embedded in the space occupied by the 

whole phenotype.  In this approach, anatomical features contribute to modules, so that 

only a certain portion of the variation of said features may be causally attributed to the 
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variation of specific modules, therefore facilitating a conceptual image in which 

overlapping modules can be mathematically disentangled by assigning each overlapping 

feature to a putative module.  Unfortunately, any mathematical procedure that could be 

used to approximately extract modules embedded in this way (e.g., Structural Equation 

Modeling) would require making a tremendous number of strong assumptions about 

observed covariation structures (Fornell and Bookstein 1982), and thus an alternative, 

more heuristic procedure seems desirable.  The approach described in this study seeks to 

infer patterns of modularity by comparing observed and expected patterns of covariation.  

To accomplish this, patterns are derived from theories of integration and from models 

derived from heuristic searches; modules postulated by these models are used to build 

hypothetical covariance matrices that are directly compared to observed phenotypic 

covariance matrices. 

Evolutionary implications 

The idea that variational modules are subspaces embedded within a phenotypic 

space has important implications for the evolutionary consequences of modularity.  

Morphological integration is often considered to be both a source of evolutionary 

constraints—i.e., the reduction of heritable variation along one or more dimensions of 

variation (Maynard Smith et al. 1985)—and a medium to facilitate evolvability—i.e., the 

ability to produce selectively useful variation (Hansen 2003).  That the same structural 

feature (modularity/integration) can be a cause of both constraint and evolvability may 

seem contradictory, but this dual role results from the fact that integration limits the 

independent component of variation of traits so that selection cannot optimize each one 

individually, but, at the same time, integration allows suites of functionally coupled traits 

to be selected as a unit, without interfering with other such units (Wagner 1988).  Like 

any other feature of the phenotype, patterns of integration/modularity can evolve, 

although whether there are any general predictors for the evolutionary versatility of 

modules is an open question (Wagner and Cheverud 2007; Klingenberg 2008).  

Multivariate evolution theory predicts that in order for selection to alter prevailing 

patterns of modularity, there should be allelic variation in the effects of pleiotropic 

interactions (Cheverud 1996; Hansen 2006; Pavlicev et al. 2008), and Klingenberg (2005, 
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2008) has argued that since allelic variation is a cause of covariation among modules, this 

form of integration should generally be more evolutionarily labile.  These observations 

suggest that independent developmental modules can become integrated into larger 

variational “super-modules” if pleiotropic effects shared by their respective pathways 

transduce enough variation for correlating selection to act upon.  Similarly, the opposite 

process, i.e., parcellation (i.e., splitting) of super-modules (Wright 1932; Wagner and 

Altenberg 1996; Mezey et al. 2000) is possible if the independent component of variation 

of the resulting modules is selected upon (Beldade et al. 2002; Hansen et al. 2003), and/or 

if the pleiotropic effects linking both modules are epistatically modified under certain 

genetic backgrounds (Wagner and Altenberg 1996; Leamy et al. 1997; Wolf et al. 2006). 

In addition to modularization and parcellation, there is no theoretical limit for 

how modules can be subdivided and rejoined as long as there is autonomous variation 

along these directions of variation.  The question of whether there is a basic level of 

modularity beyond which parcellation is impossible without requiring a trait re-definition 

or, perhaps, innovation (Müller and Wagner 1991), is clearly an empirical question 

whose answer would depend on the nature of the trait and the developmental network 

behind it.  In an often-cited argument, Hall and Atchley (1991; Hall and Miyake 2000; 

Hall 2003) have advocated a definition of developmental modules, i.e., mesenchymal 

condensations, as the basic morphogenetic units upon which morphological features are 

built, analogous to the units of evolution proposed by Lewontin (1970).  Variation of 

these units, which consist of the earliest aggregate of cells formed during an organ’s 

morphogenesis, arises from variation in certain basic parameters such as cell division and 

death rates, in turn controlled by knowable regulatory pathways.  The idea that there is a 

basic level of modular organization that is relatively free to autonomously become a 

variational module or to combine into integrated higher-order modules is attractive 

because it explains both the conservativism of basic developmental rules (Riedl 1977; 

Müller and Wagner 1991; Raff 1996; von Dassow and Munro 1999) and the prevailing 

divergence of covariation structures (e.g., Steppan et al. 2002).  Despite its obvious 

appeal, this hypothesis remains to be properly tested.  Thus far, comparative analyses of 

patterns of variational modularity have provided circumstantial evidence supporting the 

conservation of putative developmental units, showing that the subspaces (i.e., modules) 
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of the mandible that are shared by the members of a clade of rodents with widely 

different covariation patterns resemble the pattern of modularity that would be expected 

should covariances induced by mesenchymal condensations dominate the phenotypic 

covariation structure later in ontogeny (Márquez 2008). 

A NOVEL STATISTICAL FRAMEWORK FOR STUDIES OF VARIATIONAL 

MODULARITY 

Conveying the full complexity of the conceptualization described in the preceding 

section for the developmental origin of variational modularity in tests of a priori 

hypotheses of modularity and integration requires the implementation of similarly 

complex statistical methods.  To this end, the present work describes a general approach 

in which ordinary multivariate techniques are used to mirror the multidimensional 

geometry implied by the model described above.  This model assumes that intra-modular 

trait covariation results from the cumulative effect of successive layers of genetic and 

epigenetic interactions, whose combined effect ultimately leads to the partitioning of the 

phenotypic space into modular but non-independent subspaces.  These techniques are 

then used to build hypotheses and their expectations based on knowledge of 

developmental and functional interactions, which are tested for goodness of fit against the 

observed covariance structure of a set of phenotypic traits.  As in any standard statistical 

test, the approach presented herein consists of (1) an internal logic for translating 

hypotheses based on developmental and functional interactions into quantitative 

structures with the desired geometry, (2) the ability to represent expectations from 

hypotheses and data in commensurable forms (i.e., covariance matrices) to make them 

comparable, (3) a goodness of fit statistic that measures the similarity between expected 

and observed patterns of modularity, and (4) a null distribution for this statistic under the 

hypothesis that expected and observed patterns diverge only by chance.  Following it is a 

description of each of these components, as implemented in this approach. 

Formulation of hypotheses 

Traditionally, a priori hypotheses of morphological integration and modularity 

have consisted of arrays of blocks (modules) of traits jointly defined according to a 
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common explanatory principle, such as, for instance, the effect of muscle function or 

tooth eruption on the development of the skull form.  In this approach, postulated 

modules reflect the underlying covariation structure that is expected to result from the 

spatiotemporal organization of said principle, which is assumed to be known, so that 

testing among alternative hypotheses amounts to contrasting among fully defined self-

contained sets of putative modules.  For example, muscular function, a commonly tested 

explanatory principle for skeletal covariation patterns, can be invoked to formulate a 

model in which skeletal traits that interact with the same muscular units are hypothesized 

to be integrated as a module, and therefore expected to be mutually interconnected by 

stronger covariances than traits interacting with disparate muscular units (Young and 

Badyaev 2006).  In this approach, intra-modular covariation is seen both as a by-product 

of shared functional and developmental interactions among the component traits, and 

proportional to the variance of the shared processes (Zelditch 1987; Hallgrímsson et al. 

2007), such that independent subsets of interactions are expected to lead to statistically 

independent modules.  In the example of effects of muscle function on skeletal 

covariation patterns, those independent subsets of interactions may correspond to 

separate muscles or muscle groups carrying out distinct functions (e.g., mastication, 

deglutition, locomotion), which can be modeled by partitioning the structure under study 

(the skull) into modules matching the morphological regions hypothesized to be 

influenced by each of these subsets of muscle.  Additional explanatory principles 

commonly tested in studies of craniofacial integration and modularity include, among 

others, embryonic tissue and cell lineage origin, and influence of functional matrices.  

The approach for building hypotheses is usually focused on the same question, namely 

what is the principle or family of processes (e.g., cellular origin, function) that best 

explain the covariation structure of a set of traits. 

A clear advantage of this approach is that it allows establishing a transparent link 

between causal processes and statistical patterns when formulating hypotheses of 

modularity.  However, its reliance on general principles to define putative modules seems 

rather artificial in many instances, because alternative principles are rarely mutually 

exclusive.  Consequently, this approach can only adequately test whether a single 

principle is more important than others.  For example, asking whether the covariation 
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structure induced by muscle function is more relevant than the covariation induced by 

morphogenetic processes is less informative than decomposing the relative contributions 

of these processes to covariances among traits.  This limitation is particularly problematic 

for analyses of interspecific divergence of patterns of modularity, where this approach 

could lead to situations in which different causal factors are supported for the covariation 

patterns of two species, which is a rather uninformative result because it cannot be 

accurately construed as if the species are actually affected by different sets of 

developmental or functional processes.  Instead, the two supported processes are likely to 

influence covariation patterns of both species to some extent.  Consequently, by treating 

alternative models as exclusive explanations, interspecific differences are likely to 

confound complex patterns of interactions among ontogenetic processes, thus requiring 

the elaboration of critical tests that explicitly take these interactions into account. 

In the alternative framework proposed herein, any developmental or functional 

process that affects more than one anatomical region or trait is theoretically capable of 

producing a variational module, provided that this process is capable of transducing 

sufficient variation.  The simplest pattern that may result from this system, aptly termed 

simple structure (e.g., Mitteroecker and Bookstein 2007), occurs when the developmental 

and functional processes affecting separate modules do not interact, or if they do, such 

interactions are invariant, and therefore do not contribute to the covariance among traits 

that belong to distinct modules.  More complex situations occur when multiple 

developmental processes influence the covariation structure of a single morphological 

trait, either because these processes interact or by wielding their influence during 

different ontogenetic stages.  Similarly, many morphological structures carry out multiple 

functions, each associated to different subsets of traits (Moss 1968).  The mammalian 

frontal bone, for example, is functionally associated to the braincase, orbit, sinuses, 

ethmoid, nasal bones, and masticatory apparatus (Moss and Young 1960), and each of 

these structures is in turn functionally coupled with different subsets of skull structures. 

From these considerations, overlap among variational modules is expected to be 

common, so that some of the traits or regions that belong to a module will often belong to 

other modules as well (Moss 1968).  Overall, the picture that emerges is one of a complex 
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patchwork of interacting but approximately distinct processes that is capable of 

producing an equally complex pattern of phenotypic covariation.  Within this patchwork, 

covariances result from the additive effect of all of the processes linking two traits, so 

that a particularly high covariance may indicate traits that recurrently belong to the same 

modules, and not necessarily that they actually form a single module.  This process-

oriented interpretation of covariance patterns suggests that purely phenomenological 

approaches to infer modularity from covariances or correlations may tend to overestimate 

the number of modules defined within a complex structure, or even support modules 

which are inexplicable in terms of actual processes. 

This situation is further complicated by the addition of evolutionary 

considerations.  Even though selection directly acts on phenotypic variation, actual 

selective responses will affect the processes underlying the covariation structure of the 

phenotype (Cowley and Atchley 1992).  From a methodological standpoint, the major 

difficulty that this poses is that the processes responsible for intra-modular integration 

can be evolutionarily conserved and yet show spatiotemporal divergence with respect of 

the morphological regions that they affect.  The vagueness of variational modules that 

this situation entails implies that both evolutionary conservation and correlated 

divergence within modules may be easily obscured by divergence of the anatomical 

boundaries of these modules.  This divergence may simply take the form of shifting 

boundaries or, as discussed above, to involve the coalescence or rupture of formerly 

independent or joined modules.  For example, effects of a large masticatory muscle group 

like the temporalis, which loads on both the mandible ramus and the temporal region of 

the calvarium, may be still considered as stereotypical for a large group of related taxa 

(e.g., Muroid rodents), even if the attachment sites and specific loading patterns are not 

the same in all species; the same modules are still present in all species, even if the 

cranio-mandibular regions they span diverge. 

In order to take these observations into consideration, tests of hypotheses of 

modularity must in practice satisfy three basic conditions: first, hypotheses should be 

based on a priori expectations of modular variation derived from functional and 

developmental theories, not only to ensure interpretability of patterns supported by tests, 
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but also to avoid treating groups of traits that share a recurrent set of processes as single 

modules; second, given the non-exclusivity of the processes responsible for 

morphological integration, tests should include hypotheses containing modules expected 

from multiple explanatory principles (e.g., muscle function and developmental origin of 

skull tissues), in addition to the more traditional approach in which only instances of a 

single principle are included; and finally, hypothetical modules should be defined as to 

have flexible boundaries, making tests more conservative by acknowledging that module 

boundaries may be more diverse than modules are, a major concern particularly when 

carrying out interspecific comparisons, as shown in this study. 

Generation of expectations from data 

The covariances among observed coordinates are computed in the conventional 

way (Dryden and Mardia 1998), but the expected covariances are obtained by 

transforming each data set to match the covariation structure implied by the models.  

Specifically, Procrustes residuals are partitioned into anatomical regions corresponding to 

the modules specified by each model, and these partitions are each assigned to their own 

subspace, orthogonal to all other partitions.  That is achieved by the following steps: 1) 

make as many copies of the original data set as there are modules in the hypothetical 

matrix; 2) within each copy, assign a value of zero to each coordinate that does not 

belong to the module; 3) combine all copies into a single matrix by stacking them 

vertically, so that the resulting matrix has dimensions nm × 2k, where n is sample size, m 

is the number of modules in the model being considered, and k is the number of (2-D) 

landmarks and semi-landmarks.  For example, if we wish to compute an expectation from 

a model with three modules containing the pairs of coordinates for landmarks 1-8:  

[1 2 3] [4 5 6] [7 8] 

we first partition the full data set with n observations and eight variables into three 

subspaces, by forming the extended data matrix 

X଴ ൌ ൦

૚ ૛ ૜ ૙ ૙ ૙ ૙ ૙

૙ ૙ ૙ ૝ ૞ ૟ ૙ ૙

૙ ૙ ૙ ૙ ૙ ૙ ૠ ૡ

൪ 
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in which each element corresponds either to one of the variables (vectors 1-8) or to a 

vector of zeros, each of length n. 

The expected covariance matrix, namely S0, can be computed from the columns 

of X0.  For models of modularity (see above), S0 will equal the observed covariance 

matrix after between-module covariances are replaced by zeros.  However, that does not 

take into account the covariances among Procrustes residuals induced by GLS 

superimposition (Walker 2000), which are estimated and included into X0 by performing 

a Procrustes superimposition of the rows in the extended data matrix (X0) prior to 

computing covariance matrices.  This factorization also does not account for covariances 

induced by the geometry of sampled shapes, the general expectation being that landmark 

coordinates that are more proximate to each other will tend to bear higher covariances 

than more distant landmarks (Roth 1996; Mitteroecker and Bookstein 2007).  The present 

approach, however, tests for relative support among competing models sharing a 

common geometry (see below), and thus this “spatial packaging” (Roth 1996) effect 

should not affect their relative goodness of fit. 

When combining alternative models of modularity as described above, it is 

possible to obtain models in which some modules overlap, i.e., share landmarks.  While 

module overlap may be biologically reasonable in that two or more processes can affect 

the same anatomical region, assigning one variable to more than one subspace presents a 

methodological challenge because that will multiply its variance and its covariances with 

other variables within the region of overlap by the number of instances that the variable is 

replicated.  Therefore, the expected values must be adjusted so that the model does not 

excessively depart from observed values.  To that end, a possibility is to model landmarks 

within an overlapping region as contributing equally to the variation of each of the 

overlapping modules by dividing the Procrustes residuals in matrix X0 by √s, were s 

equals the number of modules sharing the corresponding landmark.  For example, if the 

model being tested is 

[1 2 3] [3 4 5] [3 5 6 7 8] 
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in which variable 3 is shared by three modules, and variable 5 is shared by two, X0 would 

equal 

൦
૚ ૛ ૜ √૜⁄ ૙ ૙ ૙ ૙ ૙

૙ ૙ ૜ √૜⁄ ૝ ૞ √૛⁄ ૙ ૙ ૙

૙ ૙ ૜ √૜⁄ ૙ ૞ √૛⁄ ૟ ૠ ૡ

൪ 

Application of this correction makes the simplifying assumption that variance 

within regions spanned by more than one module is homogeneously distributed among 

these modules.  A number of alternatives seem more suitable for different applications, 

such as partitioning this variance according to the ontogenetic period in which each 

overlapping module is developmentally or functionally active—more recent modules 

could account for a larger share of the variation in the region.  Also, a more analytical 

approach could be used by estimating the proportion of the variance of the shared 

landmarks that is accounted for by each overlapping module.  Clearly, this aspect of the 

present approach offers ample room for improvement.  Irrespective of the method used to 

partition this variation, however, it is interesting to notice that overlapping modules are 

no longer orthogonal, allowing thus the definition and testing of biologically informed 

patterns that could not possibly be obtained by conventional eigenanalysis techniques, 

such as PCA or CPCA, which not only are constrained to produce orthogonal axes with 

no a priori biological meaning, but also offer no way to group variables into hypothetical 

modular subspaces. 

Estimating goodness of fit 

Goodness of fit between expected and observed patterns can be assessed using a 

variety of metrics that measure the similarity between covariance matrices such as trace 

correlations (Klingenberg et al. 2003), Procrustes distances (Peres-Neto and Jackson 

2001), matrix correlations (Cheverud 1982; Dietz 1983), Common Principal Component 

Analyses (Phillips and Arnold 1999; Mezey and Houle 2003), angles between subspaces 

(Zelditch et al. 2006), and γ (Richtsmeier et al. 2005).  The present study uses that last 

metric (γ), which is computed as: 

γ = trace {(S – S0)(S – S0)T } 



20 

 

(Richtsmeier et al., 2005), where S and S0 are the observed and modeled covariance 

matrices, respectively, and the T superscript is the transpose symbol. 

The similarity between the data and a model is always affected by the number of 

fixed and estimated parameters; consequently, models having more “zero-covariance” 

elements will regularly appear to be less similar to the data than those having fewer 

orthogonal subspaces (Fig. I.5).  To control for this artifact, γ values were regressed on 

the number of fixed parameters contained in each model (i.e., the number of zeros in their 

respective covariance matrices).  Since the total number of parameters is fixed for all 

models (= number of distinct elements in the covariance matrices), this is equivalent to 

control for the number of estimated parameters, such as done in more familiar techniques 

for correction of model support statistics (e.g., Akaike Information Criterion).  Residuals 

from this regression were added to the expected value (mean) of γ, yielding γ*, the test 

statistic for the evaluation of the models.  The smallest values of γ* correspond to the 

best supported models.  This procedure is appropriate for γ, which is linearly related to 

the number of fixed parameters in the model, but simulations demonstrate that more 

complex methods will be needed when using test statistics that have a non-linear 

relationship to the number of fixed parameters (e.g., angles between subspaces).  The 

core aspect of the Matlab® code used to carry out these tests is included in the Appendix. 

Significance tests 

To test the hypotheses of modularity, the expected distributions of γ* were 

obtained using a parametric Monte Carlo approach in which the model covariance matrix 

(S0) and the original sample size (n) of each model and species were used to parameterize 

a Wishart distribution (Krzanowski 2000).  This is the distribution of covariance 

matrices, or, more precisely, sums of squares and cross-products (SSCP matrices) of a 

multivariate normal population.  A random variate generator (Krzanowski 2000), 

implemented in the function WISHRND of Matlab® (The Mathworks 2006) was used to 

generate 1,000 random covariance matrices from this distribution, and γ* was computed 

between S0 and these random covariances, giving a probability value for the hypothesis 

that this value of γ* is no larger than that between two matrices produced from the same 
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model.  A low (< 0.05) P-value corresponds to large values of γ*, indicating a large 

difference between data and model and thus a poorly fitting model. 

Random permutations of the original data can also be used as an alternative to this 

parametric approach.  Those permutations generate a distribution of covariance matrices 

under the model being tested.  In this case, specimen coordinates are randomly permuted 

within each module postulated by the model, thus preserving the intra-modular while 

destroying the inter-modular covariation structure.  As in the Monte Carlo approach, 

covariances from permuted data sets are used to generate a distribution of γ* under each 

model, that can be compared to the original value of γ*. 

Determining model support 

Given many models, the procedure outlined above might fail to reject two or more 

competing hypotheses merely because of inadequate statistical power; in cases, as in this 

study, when several similar models are simultaneously tested, distinguishing statistically 

between them demands very large samples.  Therefore, a more informative approach is to 

rank models by the strength of their support (i.e., γ*).  Confidence intervals for γ* were 

obtained using a jackknife resampling method (Manly 2006) in which a randomly chosen 

subset of 10% of the specimens were dropped from each sample to produce 500 

subsamples, from which 95% confidence intervals were computed as the 2.5 and 97.5 

percentiles for each model-data comparison (Klingenberg 1996).  Finally, a measure of 

model support (namely ‘jackknife support’) was computed by counting the proportion of 

jackknife samples in which a model ranks first (i.e., has the lowest value of γ*). 

The definitions provided above for X0 and S0 represent the expected values for a 

covariance structure with a known modular pattern, and as such they do not include an 

estimate of measurement error.  Whereas it is customary for goodness of fit and other 

techniques to account for measurement error by computing model support after 

minimizing the difference between data and model using, for example, a Least Squares 

approach, the use of γ* to compute model support does not need to implement any of 

such approaches for two reasons, namely (1) expected covariances from each model are 

directly obtained from the data, so that it is assumed that data are measured without error, 
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and (2) only relative support is used to find the best-fitting model, so that it is implicitly 

accepted that a better model could always be found if the entire parameter space could be 

explored (something unfeasible for most data sets given current computational 

capabilities).  In using this approach, it is thereby implicitly assumed that the 

measurement error structure remains constant throughout a study, so that error variance 

can be safely ignored when determining relative support. 

All of the methods described herein have been included in the software 

application MINT (Márquez 2008), which has been made publicly available at the 

author’s website. 

Evaluating the method via simulations 

To assess how accurately the approach described herein estimates model support 

under a variety of controlled situations, the method was applied to a series of simulated 

data sets created according to twelve hypothetical patterns of modularity based on 

proposed models for the development of the mammalian mandible.  These models (see 

Table I.1) were also tested in a comparative study of anatomical modularity in the 

mandible of oryzomyine rodents on a subset of the data analyzed in the following 

chapters (Márquez 2008).  Mandibles were simulated to include the same landmarks used 

in the present study of skull modularity (see Fig. II.2), and modules included in each 

model (Fig. I.4) vary in number and coverage, and thus in their intrinsic dimensionality, 

providing a useful benchmark against which to compare results obtained from actual 

morphometric data. 

To simulate landmark data with a known covariation structure, random vectors 

were sampled from a multivariate normal distribution (Krzanowski 2000) with mean 

vector zero (i.e., to simulate Procrustes residuals) and covariance matrices derived from 

each of the twelve developmental models plus a null model describing complete absence 

of covariance.  These covariance matrices were obtained by arranging another data set 

comprising a randomly sampled multivariate normal distribution with mean vector zero 

and covariance matrix I (the identity matrix) to follow the structure described by each 

model, using the same approach described above to build expected covariance matrices 
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from each model.  Simulated data were computed for the minimum (39) and maximum 

(77) sample sizes available in this study for the mandibles of oryzomyine species (see 

Table II.1).  Application of this procedure produced 26 data sets sampled from two sets 

of 13 multivariate normal distributions corresponding to each of the 12 models of 

modularity plus a null model.  For each, γ* values, their confidence intervals, and their 

jackknife support were computed as described above to determine whether the best 

supported model is the one from which the data were derived.  Finally, model support 

statistics were also computed for each of the 620 models resulting from combining the 

modules hypothesized by the same set of 12 models, to assess the sensitivity of test 

results to the increase in resolution introduced by adding multiple similar models to the 

correct one. 

Analysis of simulated data sets confirms that the methods used herein can detect 

the correct model of modularity if it is included among tested alternatives (Tables I.2, 

I.3).  This is the case for analyses of the 13 original models (Table I.2) and also for the 

620 models formed by combining them.  Because the γ* values are obtained by 

regressing model-specific γ values on the number of fixed parameters (Fig. I.5), results 

are expected to depend on the number of models being evaluated.  As in any least-squares 

procedure, the larger the number of observations (models, in this case), the more stable 

the results.  Not surprisingly, resolution is improved when all 620 models are 

simultaneously compared, particularly for model H0, which predicts a total absence of 

integration across the mandible (Table I.3). 

These simulations show that the methods are typically robust to variation in the 

number of models being examined, but the signal is sometimes obscured for the most 

highly modular models, i.e., those that predict weak or no covariances across the 

mandible.  Similarly, the methods are reasonably robust to small sample sizes, with the 

correct model being supported above the others in all but two cases (i.e., the highly 

modular H0 and H1, Table I.2) even when samples are as small as N = 39.  Jackknife 

support for the correct model from the analysis of 620 models exceeds 75% for all but 

one model (H1), and exceeds 90% for all but four models (Table I.2).  Again, the models 

that predict a larger number of smaller modules tend to produce a weaker signal at N = 



24 

 

39.  As might be expected, the signal is improved when analyses are based on large 

sample sizes (data not shown); thus, at N = 200, jackknife support is 100% even for 

model H1. 

Although both γ* and jackknife support must be interpreted with caution when 

sample sizes are small, the purpose of these statistics is limited to finding the best 

supported hypothesis.  However, the pattern of support for the full set of hypotheses, not 

simply the best one, is a function of the covariation structure in the data, so even though a 

large sample size may be required when assessing a highly modular model, its support 

relative to other models will generally be higher when it is true than when it is not.  

Hence, with N = 39, H0 ranks first out of 620 when the data are simulated according to 

H0, whereas it ranks between 306th and 596th when the data are simulated using other 

models.  In contrast, H1 ranks fifth when data actually follow H1, just below models 

{1,2}{3}{5}{4,6} (first), {1,2}{3}{4}{5}{6}, {1,2}{4}{5}{3,6}, and 

{1}{2}{3}{5}{4,6} (fourth), but it ranks between 48th and 293rd when data follow every 

other model except H0 and H5.  In those cases, H1 ranks second and eighth, respectively.  

Note that a higher rank for H1 when data are simulated based on H0 rather than H1 does 

not imply that H0 is more strongly supported by these data because ranks are relative 

measures and the regressions are independent from each other.  In fact, H0 ranks 533rd 

when data are simulated using H1. 

Simulations show that the methods used herein are reasonably robust at small 

sample sizes, although robustness seems partly dependent on the dimensionality of the 

data; when there are a large number of modules, sample sizes need to be proportionally 

increased to facilitate their detection.  These simulations, however, represent worst-case 

scenarios because (1) intra-module covariances were derived from data simulated using 

an isotropic distribution (i.e., using an identity matrix as covariance matrices), which 

means that covariation within modules had a large random component, whereas modular 

variation is normally expected to show much more intra-modular integration, and (2) 

each of the 52 pairs of coordinates in the simulated samples was treated as a landmark, 

producing a 100-dimensional space.  Actual data rarely have such high dimensionality.  

The oryzomyine mandible data upon which these simulations were based, for instance, 
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occupy a space with substantially fewer degrees of freedom, as only 18 of the 69 sampled 

coordinates correspond to landmarks, with the remaining being semi-landmarks, each of 

which contribute only one dimension to the space (Bookstein 1997).  Consequently, the 

sample size requirements should be correspondingly smaller. 

Robustness of results depends also on the total number of models being tested, 

including the original hypotheses and the models that result from combining them.  That 

dependence arises from the fact that the main test statistic, γ*, is computed by a least-

squares regression (of γ on the number of zero-covariance elements within each model).  

Each point in that regression represents the value for an individual model.  Yet, these 

results also appear to be highly robust to variation in the number of tested models based 

on the simulations using 13 versus 620 models (Tables I.2 and I.3, respectively).  The 

results differ only in their adjustment of the γ value for the model having the greatest 

number of zero-covariances i.e., H0, the null model that predicts a total absence of 

integration.  This model behaves as an outlier only when the regression is based on 13 

models.  When the number of models to be tested is insufficient, outliers such as this one 

can either be removed or the γ statistic can be adjusted using a robust regression. 

VISUALIZING MODULARITY IN MORPHOMETRIC DATA 

One of the major strengths of geometric morphometrics is, as the name implies, 

the ability to graphically illustrate the geometric differences resulting from the 

comparison of two shapes (Bookstein 1991; Dryden and Mardia 1998).  Consequently, 

applications based on these methods are usually accompanied by a number of techniques 

for visualization of patterns of variation.  For instance, variation implied by an 

eigenvector can be shown as the shape difference between two endpoints along this 

vector, or, more commonly between the corresponding differences between these 

endpoints and their middle point (Dryden and Mardia 1998).  Therefore, we wish to 

produce a visualization of modularity that reflects modules in a way that contrasts their 

increased internal integration with respect to their background.  In other words, a 

visualization that shows both intra-modular and inter-modular variation is preferred to 

either of these views alone. 
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To this end, a variant of Partial Least Squares (PLS; Wold 1966; Rohlf and Corti 

2000; Bookstein et al. 2003) is proposed in which each putative multivariate module is 

compared to the entire structure to which it belongs.  This visualization technique is 

termed part-whole PLS.  PLS is a technique that computes the linear combinations of two 

or more blocks of variables (e.g., modules) that maximize the covariance between the 

sets.  Like Principal Component Analysis (PCA), PLS produces sets of orthogonal axes 

on which each variable set can be projected; unlike PCA, PLS axes are oriented so that 

the first vector of one block maximally covaries with the second block; as usual, the 

second and successive vectors are constrained to be orthogonal to every other vector in 

the basis (Rohlf and Corti 2000).  Changes in shape implied by these vectors are then 

readily computed using standard geometric morphometrics techniques (Bookstein et al. 

2003).   

Part-whole PLS is more consistent with the philosophy of the present approach 

than the alternative (i.e., visualizing the variation of isolated parts), for two reasons.  

First, it offers a more realistic interpretation of a part’s variation by ensuring that it lies 

along axes of variation actually displayed by the whole structure (e.g., the entire 

mandible), that is, a module subspace is assumed to be embedded within the entire space 

occupied by the morphological complex under study.  Second, it allows for visualizing 

regional variation within the context of the variation of the whole, making it possible to 

detect patterns of covariation both between and within parts.  PLS axes corresponding to 

the full mandible for some of the models used in the simulations described above are 

shown in Figure I.6.  In these illustrations, the signal produced by modules is clearly 

appreciated as dimensions where only one module loads within the space spanned by the 

whole structure.  These analyses and visualizations can also be carried out using the 

MINT software (Márquez 2008).  In addition to allowing the visualization of hypothetical 

or known modular patterns, part-whole PLS has proven effective as an exploratory 

technique, and it has been used as a heuristic to derive additional models of modularity 

with more support than models derived from the theory (Márquez 2008). 
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RELATIONSHIP TO ALTERNATIVE METHODS 

Even though the conceptualization of variational modules as subspaces embedded 

within phenotypic spaces may appear novel, most traditional and current methods have 

implicitly treated modules as multivariate subspaces.  The present approach differs from 

these methods in multiple ways, but the main features that distinguish it from most of 

these are (1) its emphasis on analyzing the entire space spanned by observed covariance 

matrices, as opposed to rely on pairwise comparisons among a priori partitions, (2) its 

emphasis on both intra- and inter-modular covariation in the definition and test of 

patterns of modularity, and (3) its ability to handle models of modularity that hypothesize 

a spatiotemporal overlap among modules. 

A similar set of principles to the basic decomposition of phenotypic spaces into 

modular subspaces has been recently proposed by Mitteroecker and Bookstein (2007) in 

an attempt to formalize the definition of variational modules in term of latent causal 

factors (Jöreskog and Wold 1982; Bookstein 1986).  In their approach, a phenotypic 

covariance matrix Σ is modeled as 

઱ ൌ ઱܋ ൅ ൭
ો܉ ڮ ૙
ڭ ڰ ڭ
૙ ڮ ોܓ

൱ ൅શ 

where the ઱܋ matrix accounts for integration among all of the measured variables, namely 

common or global factors (e.g., allometric variation),ો܉, with a = 1 … k, are the 

covariance matrices among the variables comprising each module, and શ is a matrix of 

measurement errors (Mitteroecker and Bookstein 2007).  Despite differences in 

nomenclature, this equation is almost identical to the formulation used in the present 

study, with each ો܉ matrix corresponding to a different modular subspace.  An important 

distinction is the treatment of the common factor, which Mitteroecker and Bookstein 

prefer to remove in order to obtain “proper” modularity information.  In the present 

approach, allometric variation is removed by regressing the original variables onto 

centroid size and using the residuals from this regression for further analyses (Zelditch et 

al. 2003).  The choice to remove allometric variation is a matter of convenience, since the 

observation that allometry produces integration is rather trivial and potentially capable to 
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obscure patterns of local modularity (Mitteroecker and Bookstein 2007).  Should 

allometric variation be considered among the models being tested, it would be more 

consistent within the philosophy of the present approach to include a size vector within 

each module, thus effectively transforming each subspace into a size-shape space 

(Mitteroecker et al. 2004).  In Mitteroecker and Bookstein (2007) approach, however, 

common factors affecting the phenotype in a global manner are treated as external 

covariates with respect to individual modules, following the customary approach used in 

path analysis (Wright 1932; Zelditch 1987; Zelditch et al. 2008; Jepsen et al. 2009).  

When interpreted in this way, indeed it appears necessary to control for such common 

factors if local modules are to be uncovered, a task that is complicated by the authors’ 

assertion that allometric variation, which can be readily removed from phenotypic data, is 

only one of the possible common factors, such that other factors, most likely unavailable 

for direct measurement, must also be removed from the covariation structure.  To solve 

this problem, Mitteroecker and Bookstein propose to use the component of the total 

variation that is outside of the putative modules to estimate the common factor.  This is 

computed as the first axes of a Singular Value Decomposition of the matrix of cross-

products between two modules, i.e., PLS (Bookstein 1991; Rohlf and Corti 2000).  In 

other words, a common factor is estimated as the between-module component of the 

variation. 

The approach proposed by Mitteroecker and Bookstein is notably different from 

the one described in this study for two major reasons.  First, the suggestion that there is a 

unique global factor other than allometric variation seems at odds with the conventional 

definition of modules as hierarchical and/or reticulated sets of factors, whereby the 

concept of “common” or “local” are not absolute, but relative to the specific traits under 

consideration.  In agreement with this premise, within the present approach any non-

allometric common factor would be considered as a hypothesis of modularity in its own 

right, and tested accordingly.  In fact, some of the models tested in the following chapters 

include factors that treat the entire mandible as a single module.  In turn, no model in the 

study treats the entire skull (i.e., cranium plus mandible) as a module, simply because 

there is no known developmental process to account for such pattern of variation.  

Second, any method that uses PLS to estimate variation between putative modules 
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necessarily requires a rigid definition of modules, because this technique offers no 

statistic that is capable of distinguishing among the relative support for alternative 

hypotheses of modularity. 

In order to explore the potential problems posed by removing a common factor in 

order to retrieve local patterns of modularity, PLS was used as described by Mitteroecker 

and Bookstein (2007, 2008) to estimate the common factor from data sets simulated 

assuming a known model of modularity.  Simulations were carried out as described 

above, using two of the models of the mandible shown in Table I.4, specifically model H3 

({1,2,4}{3,5,6}) and H8 ({1,2}{3,4,5,6}), each consisting of two non-overlapping 

modules comprising a distal and a proximal region of the mandible, respectively.  Two 

sets of simulations were obtained for each module, (1) including, and (2) excluding a 

common factor.  The common factor was computed as the first principal component of 

the covariance matrix of another data set, also simulated as above, in which the entire 

mandible was hypothesized as a single module.  This principal component (a) was 

expanded into a Sums of Squares and Cross-Product matrix  ઱܋ ൌ  and added to the ܉T܉

modular covariance matrix to obtain Σ (see equation above).  This procedure guarantees 

that the common factor will be one-dimensional, and thus it should be captured by the 

first PLS axis.  In order to examine the approach, each of these four data sets was 

submitted to two PLS analyses, in which (1) the correct and (2) the incorrect model was 

used to partition the landmarks into blocks prior to computation of the common factor.  It 

is expected from these analyses that a common factor should be identified only in the 

data sets to which such factor was added.  This is tested by computing the probability that 

the squared covariance between the putative modules (i.e., the singular value of the first 

PLS axis) is higher than expected from random permutations within the modules (Rohlf 

and Corti 2000): only those samples in which a common factor was included should 

produce PLS axes that account for a significant portion of the covariance among the sets, 

because in absence of a common factor, these sets should be statistically independent.  

The results of this exercise show that most of these expectations are fulfilled, with an 

exception (Table I.4, highlighted rows): partitioning a data set according to the incorrect 

modules seems to produce a signal that leads one to conclude that there is a common 

factor when in fact there is none.  Comparing plots of PLS scores from these situations 
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suggests that inter-modular patterns of covariation computed with the incorrect model in 

absence of a common factor are more similar to patterns computed with the correct 

model in presence a common factor than to those patterns that use the correct model and 

do not include a common factor (Fig. I.7).  These results suggest that support for an 

incorrect common factor does not require a substantial change in the percent covariance 

accounted for the incorrect partition.  The significant P-values for the first PLS axis 

obtained in these cases must then result from a translation of the distribution of random 

permutations towards a lower range of values for the proportion of the covariance 

explained by this factor, so that randomly permuted data sets show relatively more 

independence among partitions than the observed PLS axes.  This could be explained by 

an effect on the intra- and inter-modular covariation patterns caused by incorrectly 

partitioning a data set in which those variables that are incorrectly allocated tend to 

covary with the partition to which they actually belong, causing random permutations to 

effectively treat both inter- and intra-modular associations as exchangeable, instead of 

only inter-modular associations as assumed by the tests.  This issue could be addressed 

using Klingenberg et al.’s (2003) landmark permutation technique to test for module 

integrity, although this procedure also has its own limitations (see below). 

In general, these results indicate that whenever modules are incorrectly defined so 

that variables that belong to the same module are wrongly assigned to different partitions, 

removing a common factor will also remove or distort the intra-modular components of 

the variation of the modules that are incorrectly defined.  This effect is illustrated in 

Figure I.8, in which part-whole PLS reveals integration patterns that tend to follow the 

true pattern of modularity irrespective of the partitioning scheme used to compute PLS 

axes.  This does not imply that PLS can accurately reveal true patterns of modularity, 

because incorrectly partitioning a data set has an obscuring effect on the underlying 

covariation structure, as evident from comparing Figure I.8 to Figure I.6, which reveals a 

much stronger modular association when the postulated modules agree with the true 

modules.  It remains to be explored whether this consequence of the method would 

prevent its application to situations in which modules overlap, which by definition share a 

subset of variables.  Furthermore, results suggest that when there is in fact a common 

factor, this is correctly computed irrespective of whether variables are partitioned 
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according to the correct modules (Table I.4, Fig. I.7), which is expected because this 

approach assumes that common factors are effectively independent from the modular 

structure in the data.  Therefore, should common (global) factors be measurable, 

controlling for them using PLS should be equivalent to removing them using ordinary 

regression techniques, as customarily done for allometric variation (e.g., Zelditch et al. 

2003). 

As mentioned above, Mitteroecker and Bookstein approach can only test for the 

strength, or lack thereof, of integration among modules, being limited in its ability to 

compare among alternative modules in terms of intra-modular integration, even though 

the concept of modularity stresses both of these components (Bolker 2000).  This 

limitation is shared by most approaches for studying modularity using PLS or other forms 

of pairwise comparisons among modules (e.g., Monteiro et al. 2005).  Along similar 

lines, Klingenberg et al. (2003) have proposed testing for the strength of association 

within putative modules with respect to their background by comparing their pairwise 

correlation to the distribution of correlation values computed from blocks of random sets 

of variables.  Although this approach treats modules in a way that is compatible with 

conventional definitions in that it assumes that modules are minimally correlated, it is 

unclear how it can be used to rigorously test among alternative hypotheses, how can it 

deal with models including more than two modules, and whether it can be used to test 

hypotheses including overlapping modules. 

A different approach that is not based on pairwise comparisons has been proposed 

by Magwene (2000).  In this approach, graph theory statistics are used to test for the 

strength of association among groups of variables defining semi-independent modules, a 

module being defined as a set of traits which are conditionally independent from other 

variables.  Although this conceptualization seems superficially reasonable in that it 

considers both intra- and inter-modular variation, it is weakened by the fact that in 

practice the variation of each variable is conditioned on every other variable, including 

those within the same putative module, effectively destroying or distorting any 

information about modularity in the data (Mitteroecker and Bookstein 2007).  This is 

similar to the effect shown above resulting from using PLS to estimate a common factor 
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from modules with incorrectly defined boundaries (Mitteroecker and Bookstein 2007).  In 

the case of graph theory, this issue is not a flaw of the general approach, but only of this 

particular implementation.  In fact, if implemented by conditioning variation of a module 

only on variables outside the module, this approach is largely equivalent to the one 

advocated in this study, in that both conceptualize modules as (conditionally) 

independent components of variation of traits, not as traits per se.  It seems worthwhile to 

further explore the methodological implications of graph theory (Whittaker 1990) to 

formulate and tests hypotheses of modular subspaces in phenotypic and genetic 

covariance matrices. 

Another conceptual advantage of the method described herein is its ability to 

postulate and test non-orthogonal models, overcoming a major limitation of traditional 

eigenanalysis techniques (Steppan et al. 2002).  Other methods allow for non-orthogonal 

modules, such as Confirmatory Factor Analysis (Jöreskog and Wold 1982; Zelditch and 

Carmichael 1989), but the approach presented herein differs from them by not relying on 

assumptions about the expected structure of variation (Fornell and Bookstein 1982; 

Bookstein 1986).  However, a methodological limitation that arises when modules are 

allowed to be non-independent is that non-orthogonal factors cannot be easily combined 

to compute their joint effects.  This limitation can be overcome by extracting axes of 

maximum covariation among separate modules, using methods such as PLS or canonical 

correlations (Rohlf and Corti 2000).  However, as discussed above, these methods ignore 

within-module covariances.  The alternative presented here, namely part-whole PLS 

regression, can find the directions of both within- and between-module covariation using 

the entire covariance matrix.  Despite the large number of part-whole comparisons 

required by this approach, this is a useful tool for detecting patterns of inter-module 

covariation as well as for testing the internal integrity of putative modules. 

CORRELATIONS VS. COVARIANCES IN STUDIES OF MODULARITY 

As noted above, numerous methods have been proposed to measure integration 

and test hypotheses regarding its causes and consequences since Olson and Miller (1958) 

and Berg (1960) popularized the use of correlation structure to understand phenotypic 

integration (for a recent review, see Mitteroecker and Bookstein 2007).  With few 
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exceptions, most of these approaches have focused on finding ways to obtain accurate 

statistical representations of underlying patterns of integration, and less attention has been 

paid to ensure that these representations can be incorporated into the mathematics of 

general evolutionary theory (Lande 1979; Wagner 1984; Hansen and Houle 2008).  Thus, 

for example, Olson and Miller (1958) and later researchers (e.g., Cheverud 1982, 1995; 

Monteiro et al. 2005) have chosen to use correlation matrices and indexes derived from 

them to analyze patterns of morphological integration.  Correlation matrices standardize 

the covariation structure in a multivariate data set by equating the variances of the 

individual variables to one, and this is an appropriate standardization when the variables 

under study are measured in different scales with incommensurable variances (Wagner 

1984).  Although it is clear that some standardization is needed whenever data cannot be 

directly compared (Hansen and Houle 2008), morphological integration studies have 

advocated the use of correlation matrices even when variables are measured in the same 

scale.  This is justified by a definition of integration that emphasizes common direction of 

variation irrespective of the magnitude of variation (e.g., Cheverud 1989).  An 

undesirable consequence of using correlations instead of covariances, however, is that 

results from these methods can only be verbally connected to methods and questions 

posed by general evolutionary theory, which is mathematically expressed in terms of 

covariances (Lande 1979; Lynch and Walsh 1998).  In contrast to most studies of 

morphological integration/variational modularity, the approach proposed herein is not 

suitable for correlation data, and in its present form it should only be applied to 

covariance matrices.  This is because each correlation value is standardized 

independently from other traits, and thus its relevance within a module would be 

inconsistent among alternative models of modularity.  Although this property of the 

method limits its applicability only to commensurable variables, it also has two important 

advantages.  First, as suggested above, by being based on covariance matrices, models 

and results derived from the present approach should be applicable to general quantitative 

genetics methods.  Second, and perhaps more importantly, the operational definition of 

integration used by this method assumes that intra-modular variation is a function of 

pleiotropic variation accumulated through defined developmental networks, implying that 

in order to decompose observed variation in terms of hypothetical contributions from 
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separate developmental pathways, it must be assumed that variances remain in the same 

scale throughout the mapping of genetic onto phenotypic variation.  Transforming 

covariances into correlations would have the undesirable effect of distorting the 

pleiotropic effects of shared developmental pathways to a point that the corresponding 

modular subspaces could no longer be recovered. 

The present approach seeks to formalize the generally undisputed notion that 

phenotypic and genetic covariance matrices contain the cumulative effects of multiple 

epigenetic interactions during the mapping from genotype to phenotype (e.g., Wagner 

1984; Cowley and Atchley 1992; Klingenberg 2005).  By explicitly testing hypotheses of 

modularity as causes of covariation among phenotypic variables, it could facilitate the 

incorporation of mechanistic explanations for observed phenotypic and genetic 

covariances, thus potentially allowing establishing functional connections between 

developmental interactions and short-term divergence.  Thus, for example, it should be 

possible to estimate the autonomy of a given module (i.e., the proportion of its genetic 

variance that is independent of other aspects of the phenotype; Hansen and Houle 2008) 

and thus, for a given selection gradient, the potential contribution of this module to the 

evolvability of a genotype (Hansen and Houle 2008).  A promising aspect of this 

approach is the possibility to explain some of the correlates of evolvability in terms of 

specific developmental processes.  Overall, given the appropriate data (e.g., genetic 

variants with known phenotypic effects and strictly controlled genetic backgrounds), it 

seems theoretically possible to decompose a G- or P-matrix as a function of the 

contributions from different epigenetic interactions, which would clearly constitute a 

highly informative framework for understanding and predicting evolutionary divergence 

under a wide variety of mutational scenarios. 

CONCLUSIONS 

The general approach used in this study rests on the idea that individual modules 

are affected by local processes, which means that the structure of covariation is shaped 

partly by the accumulation of local effects even when they partially overlap (Cowley and 

Atchley 1992).  Mathematically, the regions where modules intersect are therefore 

modeled by assuming that their (co)variances result from the cumulative effect of 
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overlapping processes.  This view of modules shifts the focus of studies of modularity 

away from asking whether a particular module exists, or whether a given phenotypic part 

is a module, to asking about the degree to which specific genetic and epigenetic factors 

contribute to the distinction of modules and, more generally, to the patterning of 

phenotypic covariances. 

Analyzing modularity in terms of both the within- and between-module 

associations, within the span of full covariance matrices, may seem directly contrary to 

the idea that modules are defined as independent subsets of variables.  However, the 

present approach reconciles these apparently conflicting views by treating modules as 

self-contained multidimensional subspaces that are embedded within the full space 

occupied by the data.  This geometric interpretation of modules makes it straightforward 

to derive and test explicit hypotheses based on developmental and functional theories 

because the expectations derived from them are merely reorganizations, not 

modifications of the geometric characteristics (e.g., degrees of freedom) of the original 

space.  In fact, it is this commensurability between data and models, as well as among 

models, which allows for testing multiple competing hypotheses simultaneously in terms 

of a unique goodness of fit statistic (Richtsmeier et al. 2005).  Furthermore, because all 

hypotheses are directly compared to the data, results can be continually reexamined by 

adding new hypotheses or by refining the old ones.  An important consequence of this is 

that there is no penalty for testing novel or even unrealistic hypotheses along with 

familiar ones, which means that this can simultaneously be applied as an inferential and 

heuristic tool. 

The representation of variational modules as semi-independent subsets of 

variables (i.e., subspaces) is consistent with their definition as dissociable parts of the 

phenotype (Raff 1996; Magwene 2000; Mitteroecker and Bookstein 2007).  This 

representation assumes that modules, like most phenotypic features, are inherently 

multidimensional, which means that individual vectors (e.g., Principal Components) 

rarely can correspond to an entire module.  As a result, methods that extract such vectors 

are likely to fail to find modules, especially when the modules are not statistically 

independent.  In general, non-independence (i.e., non-orthogonality) of modules can be 
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due to the spatiotemporal overlap of their causal factors.  Therefore, defining modularity 

in terms of an array of strictly orthogonal subspaces should be decided in light of 

developmental and functional considerations rather than methodological limitations 

(Steppan et al. 2002; Mezey and Houle 2003).  We clearly need methods that can detect 

intersecting modules if the structure of modularity and integration regularly arises from 

multiple, spatially overlapping processes.
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Simulated model Best ranked models Jackknife 
support 

H0 H0 100% 

H1 {1,2}{3}{5}{4,6} 
{1,2}{3}{4}{5}{6} 
{1}{2}{3}{5}{4,6} (H6) 
{1}{2}{3}{4}{5}{6} (H1) 
{1}{2}{4}{5}{3,6} 
{1,2}{4}{5}{3,6} 

46% 
42% 
6% 
3% 
2% 
1% 

H2 {1,4}{2}{3}{5}{6} (H2) 
{1,2,4}{3}{5}{6} 

94% 
6% 

H3 {1,2,4}{3,5,6} (H3) 100% 

H4 {1,4+}{2}{5}{3,4-,6} (H4) 
{1,4}{2}{5}{3,4-,6} 

98% 
2% 

H5 {1}{2}{3}{5}{4,6} (H5) 
{1}{2}{5}{3,4,6} 

81% 
19% 

H6 {1,4+}{2}{3}{5}{4-,6} (H6) 
{1,4}{2}{3}{5}{4-,6} 
{1,4+}{2}{5}{3,4-,6} (H4) 

75% 
24% 
1% 

H7 {1,2}{5}{3,4,6} (H7) 
{1}{2}{5}{3,4,6} 

94% 
6% 

H8 {1,2}{3,4,5,6} (H8) 
{1}{2}{3,4,5,6} 

78% 
22% 

H9 {1,2,4+}{3,4-,5,6} (H9) 
{1,2,4+}{5}{3,4-,6} 

99% 
1% 

H10 {1,2,5}{3,4,6} (H10) 100% 

H11 {1}{2,4,5}{3,6} (H11) 100% 

H12 {1,2,4,5}{3,6} (H12) 100% 

Table I.3.  Results from simulations, showing models supported by at least one jackknife sub-sample of 
each simulated data set, among the 620 models that include all possible combinations of models H1-H12 
(see Table I.2).  Jackknife support measures the proportion of jackknife sub-samples in which each model 
ranks best.  100 jackknife runs used in each case.  Only shown data set with N = 39 simulated individuals. 
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Models used for simulations Modules used for PLS % squared covariance 
captured by common factor P-value 

{1,2,4}{3,5,6} {1,2,4}{3,5,6} 14.15 0.218 

{1,2,4}{3,5,6} + common factor {1,2,4}{3,5,6} 70.81 0.001 

{1,2,4}{3,5,6} {1,2}{3,4,5,6} 16.55 0.001 

{1,2,4}{3,5,6} + common factor {1,2}{3,4,5,6} 62.9 0.001 

{1,2}{3,4,5,6} {1,2}{3,4,5,6} 15.08 0.525 

{1,2}{3,4,5,6} + common factor {1,2}{3,4,5,6} 77.15 0.001 

{1,2}{3,4,5,6} {1,2,4}{3,5,6} 12.34 0.011 

{1,2}{3,4,5,6} + common factor {1,2,4}{3,5,6} 71.47 0.001 

Table I.4.  Results from application of Mitteroecker and Bookstein (2007) approach to simulated data.  
Common factors are extracted from simulated data sets based on two versions (i.e., with and without a 
common factor) of two distinct covariation structures.  Analyses are designed to test the effects of (1) 
defining a modular structure in PLS analyses that differs from the true modular structure in the data, and (2) 
extracting a common factor when in fact there is no common factor in the data.  P-value is the probability 
that the percentage of squared covariance accounted for by the first PLS vector is no larger than expected 
for two random matrices.  Because simulations assume perfect modularity, this value is expected to be 
significant (P < 0.05) only in the presence of a common factor. 
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Figure I.1.  Schematic representation of pleiotropic interactions in the genotype-
phenotype map.  The squares at the base of the arrows (G1-G6) represent individual
loci, and arrows represent direct or indirect effects on phenotypic traits (P1-P8).
More than one arrow indicates the presence of pleiotropy.  Phenotypic traits appear
integrated in two modules (delimited by dashed lines).  Intra-modular effects are
indicated by dark arrows, inter-modular effects by light arrows.  Adapted from
Wagner and Altenberg (1996).
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+

=

Figure I.3.  Simple example illustrating the overlap of successive patterns of
modularity as postulated by the palimpsest model (Hallgrímsson et al. 2007).  The
shaded areas in each model correspond to variational modules (top: areas of the
mandible that approximately map to the mesenchymal condensations, middle:
muscle attachment sites and tooth alveoli, bottom: superimposition of both
models).  Intensity of shading is proportional to the number of overlapping
modules in a region.  The idea behind the palimpsest model is that observed
covariances will summarize the cumulative effects of multiple layers of
modularity, represented by the model at the bottom.
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Incisor alveolus (anterior):
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Incisor alveolus (posterior)/
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Figure I.4.  Partitions of the mandible used in simulations of modular covariation
structure.
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Figure I.5.  Relationship between number of fixed parameters (i.e., number of
zeros in covariance matrices) and g value computed for each model.  Plot includes
the 620 models derived from the 12 hypotheses of modularity (H1-H12) used in
simulations analyses.  Arrow indicates the best-supported model in this example,
i.e., model H3 (see Table I.1 for details), after removing the effect of the number
of parameters from g (i.e., to obtain g*).  Outlier value in the top end of both axes
is the 'null' model with zero covariances among landmarks (i.e., H0).
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D
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B
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P D

Figure I.6.  Example of visualizations of modular variation using part-whole PLS.
Data were obtained from simulations using models (A) H3 and (B) H8 (see Table I.2
for details).  Each model contains a proximal (P) and distal (D) module which are
projected onto the space occupied by the whole mandible using PLS.  Implied
deformations are shown for the first PLS axes (PLS1) obtained from both data sets.
In A, PLS1 accounts for 13.91% and 15.28% of the squared covariance between the
proximal and the whole and the distal and the whole, respectively, both significant at
P < 0.005 based on 1,000 permutations.  Corresponding values for case B are 14.18%
and 17.48% for the proximal and distal modules, respectively, both significant at P <
0.05 based on 1,000 permutations.  PLS axes above the first show further
decomposition of the same patterns captured by PLS1.
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APPENDIX 

 Annotated Matlab® code for tests of hypotheses of modularity based on 2-D 
landmark data using γ* as goodness of fit statistic.  Annotations are preceded by the 
percent symbol (‘% ’). 

function [d,P,summ]= mintcoretest(data,proto,centSize,disType,disWidth,disConf) 
 
% MINTCORETEST is the core function for MINT--modularity and integration 
% analysis software.  It accepts a data set and a protocol containing one or 
% more modularity hypotheses and produces a distribution of covariance matrices 
% for each hypothesis being tested, and a p-value for each hypothesis. 
%  
% Inputs: 
%   - data: original landmark data (one data set only, in matrix form). 
%   - proto: protocols for modularity hypotheses in a cell array, each 
%     cell (in a row) containing a single hypothesis.  For each protocol, 1st 
%     column = number of module, 2nd column = landmark included in each 
%     module.  First protocol always corresponds to 'null model' (diag-only 
%     non-zero entries). 
%   - centSize: Column vector containing centroid sizes for each specimen. 
%  
% Parameters: 
%   - disType: method used to generate null distributions: 'wish' or 'perm' 
%    (Wishart/parametric and permutation/non-parametric methods) 
%   - disWidth: number of covariance matrices to be included in null 
%     distributions 
%   - disConf: % confidence to report from output parameters. 
%  
% Outputs: 
%   - P: P-values for each hypothesis 
%   - d: value(s) of test statistic (gamma*) 
%   - D: distribution of values of test statistic under each model 
%   - DCI: limits of confidence of distribution as % disConf 
%   - summ: cell array with full set of results 
%   - datacova: covariance matrix of original data (in a cell array) 
%   - nullcova: covariance matrix of null model (model #1 in ‘proto’) 
 
 
% First, blank arrays are set up for outputs and other common structures 
 
P = zeros(length(proto),1); 
d = P; 
dRaw = P; 
dStd = P; 
noZeros = P; 
D = cell(length(proto),1); 
DCI = D; 
summ = cell(length(proto),8); 
 
% Internal random-seed initialization 
 
rand('state',sum(100*clock)); 
 
% Procrustes superimposition of data set under analysis.  Function COMPLEXFORM 
% transforms a two-column set of [x,y] coordinates into a column complex 
% vector.  Function XYFORMCONV transform a row coordinate vector into a 
% two-column coordinate vector.  Function PROCRUSTES accepts a landmark 
% data set in complex form and centroid size, and returns the data set 
% after GLS superimposition, the GLS mean, and a vector with Procrustes 
% distances (which remain unused in this algorithm). 
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for t = 1:size(data,1) 
 dataC(t,:) = complexform(xyformconv(data(t,:))).'; 
end 
 
[dataC,dataMean,dataProcdist] = procrustes(dataC,centSize,[]); 
dataResC = dataC - repmat(dataMean,size(dataC,1),1); 
dataRes = realco(dataResC); % dataRes are Procrustes residuals 
 
% The following builds the covariance expected matrix for each model and 
% compares it to the observed covariance matrix 
 
for h = 1:length(proto) 
 allPart = {}; 
 protoPart = proto{h}; 
 noPart = max(protoPart(:,1)); 
 for p = 1:noPart 
  allPart{p,1} = dataResC; 
 end 
 
% this builds the expected value according to the model.  First, 
% the original data are stacked as separate matrices whose non-zero 
% entries correspond to data within (but not outside) modules: 
 
 dataPart = []; 
 for r = 1:noPart 
  thisPart = zeros(size(allPart{r})); 

thisPart(:,protoPart(find(protoPart(:,1) == r),2)) = 
allPart{r}(:,protoPart(find(protoPart(:,1) == r),2)); 

  dataPart = [dataPart; thisPart]; 
 end 
 
% this split the variance in equal parts among landmarks from overlapping 
% regions (if any): 
 
 for t = 1:size(dataPart,2) 

dataPart(:,t) = 
dataPart(:,t)./sqrt((length(find(dataPart(:,t)))/size(data,1))); 

 end 
 
% Procrustes superimposition of expected data under current model (h): 
 

[dataPartC,dataPartMean,dataProcdist] = procrustes(dataPart + 
repmat(dataMean,size(dataPart,1),1),repmat(centSize,noPart,1),[]); 

 
% Computing Procrustes residuals: 
 
 dataPart = realco(dataPartC - repmat(dataPartMean,size(dataPartC,1),1)); 
 
% The following computes gamma* value. 
% First, for null model (h = 1), the for remaining models: 
 
 if h == 1 
  datacova = (dataRes.'*dataRes)./size(dataRes,1); 
  nullcova = (dataPart.'*dataPart)./size(dataRes,1); 
 end 
 thisPartCova = (dataPart.'*dataPart)./size(dataRes,1); 

[thisStatRaw,thisStatStd,thisPartZeros] = 
mintstatstar(dataRes,dataPart,'dd',nullcova,protoPart); 

 
% Above, MINTSTATSTAR computes gamma comparing the original matrix 
% (dataRes) to the model matrix (dataPart).  Input ‘dd’ indicates that 
% both matrices contain landmark/Procrustes residuals (as opposed to 
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% covariances), input nullcova is the covariance matrix of the null 
% model, used to estimate gamma* from gamma, and input protoPart 
% contains the protocol for the current model, used to compute the 
% number of zeros (no.  of fixed parameters) in the model. 
 
% Outputs of MINTSTATSTAR are thisStatRaw (gamma values), thisStatStd 
% (gamma values standardized so that the largest value equals 1), and 
% thisPartZeros (number of zeros in the current model) 
 
 dRaw(h) = thisStatRaw; 
 dStd(h) = thisStatStd; 
 noZeros(h) = thisPartZeros; 
 
% The following computes the distribution and P-values under the model, 
% using the Monte Carlo approach (based on the Wishart distribution) 
% or a permutation approach 
 
 newStats = zeros(disWidth,1); 
 switch disType 
  case 'wish' 
   thisPartSSCP = thisPartCova*size(data,1); 
   for m = 1:disWidth 
    newMat = wishrnd(thisPartCova,size(data,1)); 
    newMat = newMat*trace(cov(dataRes,1)* 
    size(dataRes,1))/trace(newMat); 
 
% the step above rescales the SSCP matrix produced by WISHRND (a 
% MATLAB function) so that variance in simulated covariances 
% equals variances in observed/modeled covariance matrices 
 
    newStats(m) = mintstatstar(newMat/size(data,1), 
    dataPart,'cd',nullcova,protoPart); 
   end 
 
  case 'perm' 
   for t = 1:size(dataRes,1) 
    dataResC(t,:) =  
    complexform(xyformconv(dataRes(t,:))).'; 
   end 
 
   for p = 1:disWidth - 1 
    dataPermC = zeros(size(dataResC)); 
    for m = 1:noPart 
     dataPermC(:,protoPart(protoPart(:,1) == m,2))= 
     dataResC(randperm(size(dataResC,1)), 
     protoPart(protoPart(:,1) == m,2)); 
    end 
    [dataPermC,permMean,bleh] =  
    procrustes((dataPermC +  
    repmat(dataMean,size(data,1),1))); 
    dataPerm = realco(dataPermC -  
    repmat(permMean,size(dataPermC,1),1)); 
    newStats(p) = mintstatstar(dataPerm,dataPart, 
    'dd',nullcova,protoPart); 
   end 
 end 
 
% The following collects gamma* values from each Monte Carlo/permutation 
% as a distribution, and computes P-values 
  
 D{h} = newStats; 
 DCI{h} = [perctile(newStats,(100-disConf)/2), 
 perctile(newStats,(100+disConf)/2)]; 
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 if strcmp(disType,'wish') 

P(h) = (sum(newStats >= thisStatRaw))/disWidth; 
 else 
  P(h) = (1 + (sum(newStats >= thisStatRaw)))/(disWidth + 1); 
 end 
 
% Note that P-values are computed using gamma (instead of gamma*) values 
 
end 
 
 
% Computing gamma* from gamma and the number of zeros of each model 
 
[dBeta,dIntercept,dResid] = regress(dStd,noZeros); 
d = dResid + mean(dStd); 
 
% Finally, the following builds a summary array with all results 
% per model.  In order, these correspond to: #model, distribution 
% of gamma values, raw gamma values, standardized gamma values, 
% No.  of zeros in model, gamma* values, and P-values. 
 
for k = 1:h 
 [summ{k,:}] = deal(k,D{k},DCI{k},dRaw(k),dStd(k),noZeros(k),d(k),P(k)); 
end 
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CHAPTER II 

CAN MODULARITY EXPLAIN PATTERNS OF INTERSPECIFIC DISPARITY? 
A STUDY OF DEVELOPMENTAL CONSTRAINTS IN THE 

CRANIOMANDIBULAR COMPLEX OF ORYZOMYINE RODENTS 

 

ABSTRACT 

Hypotheses of craniomandibular modularity were tested in nine species of oryzomyine 

rodents to determine whether the same causal factors shape covariance structures in all 

species.  Such constancy is required if developmental processes are to constrain 

evolutionary divergence.  I find that many of the same developmental modules are 

supported by all nine species, suggesting conservation of the factors underlying patterns 

of phenotypic covariation despite ample ecological diversity among these species.  

Moreover, a detailed examination of conserved and divergent patterns in whole-skull, 

cranial, and mandibular data sets suggests that different mechanisms of functional and 

developmental integration in crania and mandibles may result in qualitatively different 

patterns of modularity.  While cranial modules might arise early in development and then 

become successively integrated, mandibular modules may be regularly maintained and 

integrated by distinct but overlapping aspects of masticatory function.  I then address 

whether conserved patterns of intraspecific modularity have constrained 

craniomandibular diversification in this group, finding congruence between patterns of 

interspecific co-disparity and intraspecific modularity, a pattern that is more evident in 

cranial than mandibular traits.  These results suggest that a causal link between 

intraspecific patterns of modularity and interspecific patterns of disparity may depend on 

the specific nature of the mechanisms responsible for modular variation. 

INTRODUCTION 

 The primary question addressed in this study is whether developmental 

constraints bias evolutionary divergence, a question that has a long history(e.g., Maynard 

Smith et al. 1985; Arnold 1992; von Dassow and Munro 1999; Atchley et al. 1992; 

Beldade et al. 2002; Young and Badyaev 2006).  However, few studies have examined 

the role that developmental processes play in directing morphological divergence (e.g., 
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Jernvall et al, 2000), partly because the hypothesis only makes sense if these 

developmental processes are conserved (Zelditch et al. 1990; Nemeschkal 1999).  If so, 

then it is possible to test whether directions of variation within species correspond to 

directions of divergence.  It is commonly accepted, however, that whatever biases 

developmental constraints impose on evolutionary trajectories are transitory, perhaps 

lasting no longer than a few generations (Schluter 1996).  Whether such constraints have 

long-term consequences has been much debated, especially whether the structure of 

covariation arising from developmental interactions among traits can bias evolutionary 

divergence at the expense of optimality of adaptation (e.g., Riedl 1977; Lande and Arnold 

1983; Turelli 1988; Zeng 1988; Cowley and Atchley 1990; Houle 1991; Arnold 1992; 

Wagner and Misof 1993; Armbruster and Schwaegerle 1996; Schluter 1996; Armbruster 

et al. 1999; Badyaev and Hill 2000; Arnold et al. 2001; Sinervo and Svensson 2002; 

Jones et al. 2003; Wagner and Mezey 2004; Frankino et al. 2007; Walker 2007; Hunt et 

al. 2008; Blows and Walsh 2009).  Most tests of this hypothesis focus on biases imposed 

by genetic covariances.  But covariances are generally difficult to interpret in terms of the 

developmental processes underlying them (Riska 1986; Houle 1991), and a conserved 

developmental system can produce multiple different covariance structures (Hallgrímsson 

et al. 2007).  Therefore, tests of the hypothesis that developmental interactions constrain 

divergence need to be complemented by analyses of the developmental factors that shape 

these covariances. 

Identifying the factors underlying the structure of covariance is a serious 

methodological challenge because these factors can be multidimensional and non-

independent.  No multivariate techniques exist that can extract such structures from data 

without making a large number of questionable assumptions.  In terms of processes, these 

factors correspond to developmental networks and pathways through which genetic and 

environmental variation is channeled and transduced (Klingenberg 2005, 2008), 

providing multiple opportunities for interactions among factors.  These are then manifest 

as networks of traits that share dimensions of variation.  Groups of traits that share all of 

their dimensions are defined as modules (Wagner and Mezey 2004), and, according to 

one hypothesis, it is modules that bias the directions of divergence, constraining 

directions of variation of traits integrated within the modules (e.g., Klingenberg 2005).  



55 

 

Therefore, testing this hypothesis amounts to asking three questions, namely (1) what 

developmental hypotheses predict the structure of modules?, (2) are those processes and 

resulting modules evolutionary conserved?, and (3) has morphological diversity 

preferentially accumulated along the same dimensions defining the conserved modules?  

The present study addresses these questions using the craniomandibular complex 

of nine ecologically diverse species of oryzomyine rodents.  To answer the first question, 

a novel approach is used to search for the most highly supported hypothesis among a 

large list of models derived from functional and developmental theories each postulating 

a particular modular arrangement (Márquez 2008; see also Chapter I of this dissertation).  

The second question is addressed by seeking the conserved modules, which are 

determined from the most-highly supported modules.  This search yields a consensus 

model that specifies the anatomical regions consistently integrated into a single module 

within all sampled species.  The third question is addressed by comparing the conserved 

patterns of modularity to the major directions of disparity in species means, and by fitting 

the hypotheses of modularity used for intraspecific data to these means. 

The results support the hypothesis that patterns of modularity are highly 

conserved; seven species share one pattern while the other two species display unique 

patterns.  Perhaps surprisingly, disparity among these seven species appears to be 

structured along the dimensions predicted by their conserved pattern of modularity.  The 

remaining two species, again, appear to diverge in unique directions.  While these results 

support the hypothesis of developmental constraints on evolutionary divergence, that 

hypothesis is more highly supported by cranial than mandibular data.  The mandible 

appears to be more complex within species and less constrained in its divergence, thus 

suggesting that cranial and mandibular integration are caused by different mechanisms.  

These results therefore suggest that in order to answer the question initially posed in this 

study, i.e., whether modularity constrains divergence, it may be necessary first to 

consider the mechanisms whereby modular variation is generated because not all 

mechanisms of integration need be equally likely to produce constraints, even if they all 

are developmental in origin. 
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MATERIALS AND METHODS 

Overview of methodological approach 

In the present study, patterns of variational modularity are examined by testing 

alternative a priori models, each of which hypothesizes a distinct modular structure 

caused by specific functional or developmental mechanisms.  In practice, the models are 

represented by a series of partitions, each of which delimits a region sampled by subsets 

of landmarks and semi-landmarks.  Each anatomical subset of coordinates corresponds to 

a putative module and so ought to be characterized by high internal morphological 

integration and low integration with other such modules.  The models selected for testing 

represent a diversity of factors including the effect of single-gene knockouts, and whole 

developmental and functional processes spanning morphogenesis (e.g., mesenchymal 

condensations; (Atchley and Hall 1991; Hall and Miyake 2000) through post-weaning 

growth and remodeling (e.g., effects of masticatory muscles on bone deposition and 

remodeling; Herring 1993).  While the resulting hypotheses comprise the most exhaustive 

collection of models used in a study of modularity or morphological integration to date, 

the list is far from complete.  Nonetheless, models tested in this study cover a substantial 

proportion of the developmental and functional processes capable of affecting covariation 

patterns in the mouse mandible. 

The methodology for testing a priori hypotheses, described in detail in the 

preceding Chapter, consists of three basic steps: (1) compute the expected covariance 

matrix from the model, by assuming that each module resides in its own subspace within 

the space occupied by the entire structure, (2) compute a statistic measuring the distance 

between observed and expected covariances for each model, (3) determine the absolute 

and relative support for each model by both computing the probability that this distance is 

smaller than expected by chance and the frequency with which this model ranks as the 

best among models (i.e., jackknife support).  Given that the objective is to find the best-

supported model, the search is expanded to models with no known biological rationale to 

ensure that the entire space is sufficiently explored.   

After steps 1-3 outlined above are complete, a data-to-model distance statistic 

(γ*) and its confidence interval has been computed for each model, these are then sorted 
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to determine which model has the most support (i.e., the one with the lowest γ* value).  

Afterwards, the vicinity of this model is explored by listing the modules hypothesized by 

all of the models whose support falls within the confidence interval of the most supported 

one, and then searching for all possible combinations among these modules (as shown in 

Chapter I).  In the present case, the large number of models being tested implies that it is 

not computationally feasible to search for all possible combinations, but a preliminary 

test using a subset of about 116,500 module combinations suggest that restricting the 

search to the vicinity of the best-supported models is a robust procedure to find the most 

supported models.  In the following step, the models found from all possible module 

combinations in each of the species sampled for this study are pooled into a single set, 

along with all of the previously tested a priori hypotheses, and mode support is re-

computed. 

A final step consists of a heuristic search where the boundaries of the most 

supported modules found in the previous steps are modified, within individual species, to 

allow for the possibility that even though a particular pattern of modularity may be 

supported across an entire clade, the exact module boundaries need not be conserved, in 

the same way as the conserved causal factors of modularity (functional interactions and 

developmental interactions, gene expression) may be individually fine-tuned within each 

species, probably even suggesting the re-definition of supported modules due to extensive 

alteration of their boundaries.  In this study, the heuristic search consisted of a basic 

algorithm in which the most-supported model (or model plus their module combinations, 

if more than one was supported by previous tests) was modified by adding and removing 

random landmarks to its putative modules until the resulting model could not be longer 

improved.  Specifically, in each round of the algorithm, in five copies of the currently 

most supported model, a random landmark is added to a module (also randomly chosen), 

whereas a random landmark is removed from this module in five other copies of the 

model, in an attempt to avoid support for a locally (instead of globally) best model.  The 

ten new models obtained in this way are then compared to the full set of models, and the 

most supported model is updated.  This procedure is repeated until a better model is not 

found after five consecutive loops, and pilot tests suggest that the results do not change 

when this tolerance value is increased to 10.  As is the case for any search algorithm, this 
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procedure has ample room for improvement, although the similarity of models 

independently found in individual species (see Results section) suggest that this 

algorithm is robust. 

As in analyses carried out in the previous Chapter, model support was determined 

using the Matlab®-based program MINT (Márquez 2008).  An unreleased of this 

program was used for these analyses, which includes the heuristic search algorithm and 

allows analyses on multiple views of a single structure (see below). 

Data  

Species sampling 

The species sampled for present analyses belong to the oryzomyine clade of 

sigmodontine rodents (Table II.1; see photographs in Appendix A), which have 

experienced a remarkable ecological radiation and expansion throughout South, Central, 

and Southern North American (Carleton 1973; Voss 1988).  Nine species were chosen 

based on phylogenetic proximity (Weksler 2003, 2006) and to ensure an appropriate 

representation of the ecological diversity of the clade (Table II.1).  Figure II.1 shows the 

topology of the portion of the oryzomyine phylogeny encompassing the species sampled 

in this study (Weksler 2006).  Although relevant ecological features such as dietary 

preferences are not known in detail for most species, their wide distribution, ranging from 

habitats as distinct as the Peruvian desert (e.g., O. xantheolus; Guabloche et al. 2002) to 

rainforest streams (e.g., N. squamipes; Hershkovitz 1944), strongly suggests that these 

species span a wide dietary spectrum (for detailed locality information, see Appendix B).   

 Samples were drawn from museum specimens (see Appendix B).  Because this 

study was focused on population (co)variation patterns explicable in developmental and 

functional terms, it is important to control for extraneous sources of variation (e.g., 

geographical location, collection date, sex).  Those might induce phenotypic covariances 

obscuring patterns of modularity.  Specimens were thus chosen to maximize sample size 

while limiting geographical and temporal variation as much as possible.  Only adult 

specimens, as determined by tooth eruption and wear, were used in the present study.  To 

determine whether to pool samples from multiple geographical locations or collection 
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dates or sexes, the homogeneity of the sample was assessed by first comparing 

covariance matrices between groups (e.g., males vs. females).  That comparison was done 

by measuring the angle between subspaces spanned by each sample (Zelditch et al. 

2006); the number of dimensions used in this comparison was chosen to span at least 

95% of the variation.  Should that differ between samples, as might be expected when 

sample sizes differ, the smaller value was used.  The null hypothesis that the covariance 

matrices differ by no more than expected by chance is tested by randomly assigning 

specimens to each sex, geographical location, and capture date, maintaining the original 

sample sizes.  Angles between subspaces were computed for each of 1,000 random 

permutations produced in this way, and P-values for the null hypothesis were computed 

by dividing the number of permutations in which the angle equaled or exceeded the 

original value by the total number of permutations.  After using the Bonferroni criterion 

to correct the P-values obtained from these comparisons, all supported pooling samples 

(see Table II.2).  Final sample sizes (excluding specimens missing at least one skull view) 

range from 30 for Sigmodontomys alfari to 70 for Nectomys squamipes (Table II.1).   

Data acquisition 

 Digital images of the skull were acquired from ventral and lateral views of the 

cranium and the right side of the mandible in lateral view (unless that side was severely 

damaged).  Specimens were placed in standardized orientation, on a graduated rotating 

stage under a macro (60 mm Nikkor) camera lens (manufactured by Nikon®).  A 635 nm 

laser level beam (manufactured by LaserMark®) was used to aid in the alignment of 

species in a standard orientation.  In the resulting photographs, landmarks and points 

along curves (semi-landmarks) were digitized on a tablet PC using TpsDig2 (Rohlf 

2006).  Figure II.2 shows the selection of landmarks and semi-landmarks sampled for this 

study: 41 landmarks in the ventral view of the cranium, 54 landmarks in the lateral view 

of the cranium, and 18 landmarks and 51 semi-landmarks in the mandible.  A full 

symmetric set of landmarks was digitized for the ventral view (totaling 74 landmarks), 

and the two sides averaged to produce the final set of 41 landmarks.  The endpoints of a 

ruler were digitized to remove scaling artifacts produced by differences in focal distance 

Landmarks were transformed into Procrustes residuals by the conventional Procrustes 

superimposition (Rohlf and Slice 1990); semi-landmarks were superimposed by allowing 
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them to slide along curves bounded by landmarks to minimize the Procrustes distance 

among individuals, and then superimposed along with the landmarks (Bookstein 1997).  

Superimposition of semi-landmarks was done in Semiland6 (Sheets 2002a).  Allometric 

variation within species was removed by calculating residuals from a regression of shape 

on the logarithm of centroid size using Standard6 (Sheets 2002b) separately for each 

species and view, adding the residuals to the mean configurations for each species/view. 

 The use of semi-landmarks and superimposition reduces the dimensionality of a 

sample because each semi-landmark supplies only one dimension; semi-landmarks can 

vary only in the direction perpendicular to the curve (Bookstein 1997).  For that reason, 

there are 2k + l - 4 dimensions, with k being the number of landmarks, l the number of 

semi-landmarks; the four other dimensions are lost by scaling, translation, and rotation 

(Bookstein 1991).  This discrepancy between the dimensionality of the data and the 

number of coordinates is not problematic because the comparisons between hypothesized 

and observed covariance matrices are based on an integral metric (see below) that uses all 

the information in covariance matrices to produce a single scalar value.  The results 

should therefore be invariant to geometric transformations of these matrices, differing 

only by scale.  Therefore, ordinary Procrustes residuals (Dryden and Mardia 1998) were 

used to compute covariance matrices in all present analyses.  The method produces the 

same results whether covariances are derived from Procrustes residuals or Partial Warp 

scores so long as the covariance (or SSCP) matrices being compared are properly scaled 

Models 

 The initial set of hypotheses tested herein (i.e., prior to combining their modules) 

contains a total of 66 models (labeled H0-H65), including a “null” model (H0) which states 

that there is no modularity (i.e., all covariances equal zero).  These models were based on 

84 modules (M1-M84), derived as predictions from the specific developmental, functional, 

and genetic factors detailed below (Fig. II.3).  Most of these models specify non-

overlapping sets of landmarks analogous to the hypotheses tested in similar studies 

(Klingenberg et al. 2003), which means that they have a simple structure (Mitteroecker 

and Bookstein 2007) of “strict modularity” in that modules are hypothesized to be 

statistically independent.  While modules are orthogonal by design, they are not 
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statistically or biologically equivalent to the orthogonal vectors produced by 

eigenanalysis techniques (e.g., PCA, CPCA) because those eigenvectors are computed to 

maximize explained variance.  They will therefore match a strictly modular structure only 

if the (orthogonal) modules account for decreasing proportions of variance.  Some 

models, however, do not assume a simple structure but instead hypothesize anatomically 

overlapping modules owing to distinct processes that affect the same regions of the skull.  

Models that include overlapping modules contain general causal factors (e.g., masseter 

and pterygoid overlap in their attachment in the angular process of the mandible), and 

modules where multiple causal factors overlap due to their cumulative effect during 

ontogeny (Hallgrímsson et al. 2007).  As noted in the previous chapter, overlapping 

modules are not statistically independent, even if they are biologically independent. 

 A novel approach is needed to test models that incorporate multiple views of the 

skull in a single analysis.  This approach is needed because the variational properties 

pertain to the whole structure and disparate results from separate analyses of skull views 

may be difficult to interpret.  This criterion can be relaxed in the case of the division 

between cranium and mandible even though these structures are affected by a number of 

common processes, particularly during early embryogenesis (see below).  Nevertheless, 

each part undergoes a number of unique transformations (e.g., growth of the cranial vault 

affects the mandible only indirectly), and each is affected by unique functions (e.g., 

chewing).  This combination of overlap and individuality is apparent from the definitions 

of modules tested herein, which may span only cranial or mandibular regions.  Only in a 

few cases do regions within the mandible interact with regions within the cranium (Fig. 

II.3).  Therefore, two sets of analyses were carried out in this study, the first assumes that 

the skull as an integrated unit comprising cranium and mandible, the second treating 

cranial and mandibular models separately.  For the latter analyses, models including the 

entire structure within a single module were removed from analyses, yielding a total of 

62 and 22 models for the cranium and mandible, respectively.  The landmarks shared by 

both views of the cranium (represented as stars in Fig. II.2) were treated as if they 

belonged to the same module.  This included situations where these landmarks were 

hypothesized to be independent from any other landmark (i.e., not belonging to any 



62 

 

module).  Covariance matrices including these landmarks were computed as described in 

the previous chapter, i.e., after independently superimposing each configuration. 

 After briefly reviewing developmental and functional aspects of craniofacial 

ontogeny as they pertain to tests of modularity, the following sections detail the modules 

used to design the hypotheses of modularity tested on the oryzomyine data.  Modules are 

classified according to their hypothesized origin into seven categories: (1) functional 

matrices, in which individual modules correspond to skeletal components of functional 

matrices, (2) differences in embryonic primordia giving rise to skull tissues, which 

contrast mesoderm- and neural crest-derived skull cells, (3) differences in mode of 

ossification (endochondral vs. intramembranous), (4) differences in embryonic tissue 

origin of regions of the chondrocranium mapping to the adult skull (neurocranium vs. 

splanchnocranium), (5) timing of developmental sequences of ossification, in which 

stage-specific events are hypothesized to produce integration, (6) mapping of 

mesenchymal condensations to postnatal skull regions as individual modules, and (7) 

anatomical targets of individual gene knock outs, in which regions affected by 

developmental gene mutations are hypothesized to be the morphological outcome of 

epigenetic cascades containing such genes.   

Overview of craniofacial development in the context of variational modularity 

 The following description is primarily based on the extensive account of 

craniomandibular development compiled by de Beer (1985), Moore (1981), and Dixon et 

al. (1997), as well as reviews by Cheverud (1995) and Depew et al. (2002a). 

 The embryonic chondrocranium (endocranium) comprises two functionally and 

developmentally distinct divisions, namely the neurocranium and the splanchnocranium 

(viscerocranium).  The neurocranium, which houses the central nervous system and 

sensory organs, in turn comprises a basal plate (floor) composed of a parachordal plate 

and a trabecular plate, and paired otic, optic, and nasoethmoidal capsules.  The boundary 

between parachordal and trabecular plates broadly delimits the regions of the 

chondrocranium derived from mesenchymal condensations of cells originating from 

paraxial mesoderm (PM) and cranial neural crest (CNC) primordia, respectively.  The 

parachordal cartilage develops in close association with the notochord, giving rise to 
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occipital cartilages and to the proximal portion of the basisphenoid.  The trabecular plate 

originates from the fusion of two caudal (i.e., acrochordal and polar) and one rostral (i.e., 

trabecular) chondrification centers, which give rise, respectively, to the distal portion of 

the basisphenoid and the presphenoid.  Parachordal cartilages are physically connected to 

the cartilages of the otic skeleton, whereas trabecular cartilages extend rostrally and 

dorsally, in structural continuity with the cartilaginous skeleton of the nasoethmoidal 

region (e.g., cribriform plate, nasal septum, turbinals), and the orbital region.  The 

nasoethmoidal region forms the embryonic rostrum, whereas the orbital region both 

provides supports for the optic apparatus and forms the lateral walls of the braincase.  

The latter also structurally bridges the chondrocranium regions derived from CNC (i.e., 

nasal and trabecular neurocranium) and mesoderm (i.e., otic and parachordal 

neurocranium), thus containing cells derived from both primordia. 

 The splanchnocranium (viscerocranium) comprises the chondrocranial elements 

derived from the branchial arches and functionally and developmentally associated with 

the masticatory, pharyngeal, and laryngeal organs.  Patterning within branchial arches is 

regulated by the combinatorial expression of Dlx genes (Depew et al. 2002b).  Most 

relevant for the study of the adult cranium are the structures derived from the first 

branchial arch, which give rise to the masticatory, pharyngeal, and laryngeal apparatuses 

in mammals, as well as contributing to the otic skeleton (incus and malleus ossicles), 

orbital skeleton (lamina obturans, squamosal), basicranium (pterygoid, ala temporalis), 

and oral cavity (secondary palate, alveolar bone).  The first branchial arch forms the 

primary craniomandibular joint between Meckel’s cartilage (MC) and the incus, as well 

as, upon ossification of the dentary, the secondary and definitive craniomandibular joint, 

i.e., the temporomandibular joint (TMJ).  The second through fourth branchial arches, 

although intimately linked to cephalic function, give rise to structures that are not part of 

the external adult cranium, and therefore are excluded from the present study, such as the 

stapes ossicles, and hyoid and thyroid cartilages. 

 The dermatocranium (exocranium) comprises discrete bones that form by dermal 

(intramembranous) ossification, usually as protective hard tissue surrounding a 

cartilaginous or otherwise “soft” element of the skull.  Dermatocranial tissues are not 
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developmentally homogeneous, as they include bones derived from both PM and CNC 

cells.  Thus, the parietal and most of the interparietal bones are PM-derived and ossify in 

association with the brain tissues around which they form, whereas remaining 

dermatocranial elements are derived from CNC cells and ossify around the neurocranial 

and splanchnocranial tissues functionally associated to the frontonasal, orbital, oral-

alveolar, and dentary (mandible) regions.  Development of the cranial vault structures is 

intimately linked to growth of the brain (Moss and Young 1960; Hoyte 1971), whereas 

normal development of orofacial structures requires the fusion of the facial prominences 

that condense around the oropharyngeal membrane (Hallgrímsson et al. 2007).  Elements 

of the chondrocranium that do not become surrounded by dermatocranial bones instead 

undergo endochondral ossification, forming the postnatal sphenoid, occipital, and otic 

regions of the postnatal basicranium. 

 Following ossification of dermatocranial and chondrocranial elements of the 

skull, postnatal growth and development of skull bones are heavily influenced by 

locomotory and feeding functions, which are intimately associated to skeletal 

components.  Of particular relevance are mastication and occlusion mechanisms, which 

involve a major muscle complex (i.e., masseter-pterygoid-temporalis), and teeth.  

Compressive and tensile forces generated by both of these processes can elicit 

osteoclastic and osteoblastic activity, and are primarily responsible for postnatal skull 

remodeling (Hoyte ad Enlow 1966; Herring 1993).  Postnatal interactions between 

muscles, teeth, and cranial bone result in thickening of structures that serve as muscle 

attachment sites, such as the zygomatic arch and frontal, temporal, parietal, and occipital 

ridges, and thus are generally expected to have a strong influence on the structure of 

variation of the skull (Cheverud 1982; Zelditch 2005; Willmore et al. 2006). 

 The development of the skull is clearly a complex and multilayered set of 

processes with many potential sources of variation and covariation.  As such, it may 

produce complex patterns of covariance in adult skulls that do not display the effects of a 

single process.  That complexity is enhanced by the fact that the various phases described 

above are not discrete or hierarchically organized throughout ontogeny.  Instead, they 

only partially overlap.  Thus, for instance, the division of the embryonic chondrocranium 
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into trabecular and parachordal cartilages and sensory capsules does not exactly 

correspond to the distinction between dermally and chondrogenically ossified elements in 

the adult skull.  Similarly, not all cranial musculature is derived from the PM, as bucco-

nasal and labial muscles have a non-PM mesodermal origin.  Moreover, PM-derived 

masticatory muscles functionally link developmentally disparate splanchnocranial (e.g., 

mandible ramus), calvarial (e.g., frontal ridge), and secondary cartilage (e.g., angular 

process of the mandible) elements.  In general, an intricate pattern of intracranial 

associations is expected when cellular origins of the tissues and the distribution of 

mutational effects are taken into account.  That intricacy increases when functional units 

of the skull are superimposed on cellular origin and the distribution of mutational effects.  

Consequently, any attempt to test mechanistic hypothesizes requires a careful 

identification of the critical predictions that can distinguish among competing 

hypotheses. 

Developmental and Functional Hypotheses 

1.  FUNCTIONAL MATRICES 

 Attempts to partition the vertebrate skull into discernible subdivisions have a 

remarkably long history (e.g., van der Klaauw 1945) based on a variety of ontogenetic 

and functional considerations (de Beer 1985; van der Klaauw 1945).  However, except 

for the rather coarse division into neurocranium, visceral and dermal components of the 

embryonic skull, there is little consensus regarding the number of basic skull components 

(Zelditch et al. 1992).  The idea of partitioning the skull into distinct functional units 

dates at least to Van der Klaauw (1945), who identified 36 functional units.  It was not 

until the “functional matrix” theory (Moss and Young 1960; Moss et al. 1972), however, 

that experimental manipulations were used to document the impact of individual 

functions on the skull's structural development.  The outcome of these analyses is the 

view of the skull as a rigid support matrix for the soft tissues of the cephalic region, 

including cartilages, blood vessels, neural tissue and muscles.  The functional matrix 

theory maintains that the dependence between structure and function is not simply due to 

parallel development (and evolution) of hard and soft parts but rather involves multiple 

interactions between these elements throughout the entire ontogeny of the skull:  Bone 
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growth closely depends on the development of functional units.  As predicted by this 

hypothesis, skeletal regions associated with atrophic or malformed functional units tend 

to become deformed or fail to develop.  The distribution of skeletal effects caused by 

experimental manipulations of functional units has thus been used to delimit functional 

matrices.  When results from these experiments are expressed as quantitative hypotheses 

(e.g., Cheverud 1982, 1995), it is easy to visualize the affected anatomical regions as the 

downstream targets of developmental perturbations.  In terms of variational modularity, 

the regions of the skull affected by perturbations of a functional unit would be expected 

to covary under normal conditions by virtue of their close ontogenetic association to this 

unit, making them suitable candidates for both developmental modules and loci of 

evolutionary divergence.  The putative modules described below are based as much as 

possible on reported results of experimental manipulations of functional matrices. 

 Two types of functional matrices have been distinguished (Moss and Salentjin 

1969): (1) periosteal matrices and (2) capsular matrices.  Periosteal matrices surround 

skeletal components and influence bone growth and remodeling via apposition and 

resorption.  This type of matrix includes the skull musculature, most prominently the 

group of masticatory muscles (i.e., masseters, temporalis, and pterygoids), as well as 

blood vessels, glands, and cranial nerves.  The specific orientation and magnitude of 

tensile and compressive forces on hard tissues (e.g., muscle attachment sites) and the 

adjacent buttresses upon which these forces load are complex and often context-

dependent (Hoyte and Enlow 1966; Herring 1993).  In general, however, some effect 

(resorption, apposition, or a mixture of both) is expected, making it possible to model 

variational modularity for periosteal matrices from which geometric data can be collected 

(e.g., bone edges and sutures serving as muscle insertion sites).  In the case of muscle 

insertions, there is an additional element contributing to increased covariation within 

attachment sites, which is the joint migration of muscles and their associated bone-

muscle connective tissues during condensation.  These cell populations are derived, 

respectively from paraxial mesoderm and rhombencephalic neural crest (Köntges and 

Lumsden 1996).   
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 Capsular matrices comprise structures enclosed within cavities surrounded by 

skeletal components, including the neural, nasal, otic, optic, oral, and pharyngeal 

matrices.  According to the functional matrix theory, bone growth in capsular matrices 

occurs by means of passive translation of dermatocranial elements coupled with 

periosteal membranous ossification (Moss and Young 1960; Moss et al. 1972) and 

endosteal remodeling (e.g., Bruner and Ripani 2008).  Therefore, we can predict modules 

comprising skeletal elements associated with individual matrices.  By virtue of their 

association to major cephalic organs, capsular functional matrices have been a natural 

subject in many analyses of morphological integration (e.g., Cheverud 1982, 1995; 

Zelditch and Carmichael 1989).  Five or six such matrices can be found in the cephalic 

region, namely calvarial, oral (sometimes including a dental-alveolar), nasal, optic, and 

otic matrices.  In each case, development of a soft tissue stimulates and regulates the 

development of specific skeletal elements surrounding or providing structural support to 

the tissue.  In this study, five capsular (oropharyngeal, nasal, orbital, otic, and neural) and 

two periosteal (masticatory and periosteal) matrices were hypothesized to be variational 

modules, each discussed individually, below.   

Oropharyngeal matrix (Figs.  II.3.2-II.3.5) 

 Development of the oral cavity is intimately linked to the nasal and pharyngeal 

functional matrices.  Whereas the nasoethmoid complex contributes to the development 

of the roof of the mouth (herein treated as a component shared by the nasal and oral 

matrices), the pharyngeal airway plays a central role in the development of the oral cavity 

per se, so that skeletal elements supporting oral and pharyngeal matrices are henceforth 

treated as components of the same general functional matrix.  The skeletal components of 

the oropharyngeal matrix comprise the elements surrounding the mouth, namely the 

palatine processes of the maxillary and palatine bones and both upper and lower alveoli, 

in addition to the cranial base elements that develop in conjunction with the pharynx, i.e., 

presphenoid and pterygoids (Bosma 1963). 

 A close functional link between pharyngeal and oral matrices is mediated by the 

tongue, whose proper development is a pre-condition for the normal development of the 

mandible, pharynx, and palate (Bosma 1963; Dixon 1997a; Schumacher 1997).  



68 

 

Removing the tongue inhibits proximo-distal growth of the mandible although it has no 

effect on the upper jaw, whereas collapse of the pharynx results in collapse of the 

mandible (Bosma 1963).  Similarly, normal closure of the secondary palate requires that 

the tongue be displaced away from the palate (Seegmiller and Fraser 1977), which partly 

controls for the diameter of the pharyngeal canal, and hence the volume of the buccal 

cavity (Bosma 1963). 

 The oropharyngeal matrix is also functionally and developmentally linked to other 

skull elements.  At the proximal end of the head, the connection between the pharyngeal 

airway and the trunk implies that body posture influences the orientation and diameter of 

the pharynx, and hence its attachment to nuchal muscles (i.e., semispinalis, longissimus, 

splenius, orbitoscapularis, and cleido-occipitalis; Rinker 1954), which establishes an 

association with the occipital attachment of such muscles (Bosma 1963).  On the oral 

side, molar occlusion functionally links the mouth cavity with components of the 

masticatory apparatus in that masticatory forces tend to be dissipated through the fronto-

maxillary, zygomatico-maxillary (including the maxillary-lacrimal intersection), and 

pterygoid-maxillary buttresses of the cranium.  Removing teeth enlarges the sinus cavity 

owing to thinning of sinus walls (Dixon 1997b). 

 These observations are incorporated in present hypotheses as four distinct 

modules: (1) oral, including bones surrounding the buccal cavity (Fig. II.3.2); (2) 

oropharyngeal, comprising the oral partition plus the skeleton of the pharyngeal airway 

(Fig. II.3.3); (3) pharyngo-nuchal, comprising the pharyngeal capsular matrix and the 

head-neck periosteal matrix (Fig. II.3.4); and (4) oral-masticatory, adding the periosteal 

regions of dissipation of masticatory forces to the oral matrix (Fig. II.3.5). 

Nasal matrix (Fig. II.3.6) 

 The skeletal components of the nasal matrix comprise the dermal bones 

surrounding the cartilaginous elements of the olfactory apparatus (nasal septum, ethmoid, 

cribriform plate, nasolacrimal canal, and turbinals), namely pre-maxilla, maxilla, nasals, 

and lacrimals.  It is delimited ventrally by the roof of the mouth (pre-maxillary, maxillary 

surfaces surrounding the incisor foramen), and caudally by the frontonasal suture and the 

basis of the zygomatic process of the maxilla.  To preserve the functional unity 
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championed by the functional matrix theory, the nasal matrix is treated herein as a single 

hypothetical module, even though experimental removal of internal structures 

(prominently the nasal septum) is accompanied of a collapse of the roof elements of the 

region (i.e., nasal bones) (Sarnat 1997).  The nasal matrix is also related to lateral growth 

of the skull, particularly affecting the palatal process of the maxilla (Dixon 1997a), an 

effect embedded in the hypothesized oropharyngeal matrix for the purposes of present 

tests.  Finally, the link between the rostrum and the frontonasal suture, whose synostosis 

causes a lateral bending of the snout (Huggare and Rönning 1997), is automatically 

considered by including this suture in the nasal module. 

Orbital matrix (Fig. II.3.7) 

 The orbital region of the skull develops around the optic capsule and eye by 

elongation and cavitation of a number of bone processes that are also related to other 

functional matrices.  The orbit is therefore only partially regulated by the growth and 

development of the eye (Hoyte 1997a), overlapping with other postulated modules.  

Although treated as a single putative module in this analysis, the orbital skeleton spans 

elements of the lateral wall of the braincase (lamina obturans, temporal process of the 

squamosal, and lateral process of the frontal) and elements associated with the nasal 

matrix (frontonasal complex, including lacrimal and maxillary bones), and with the 

zygomatic arch (zygomatic processes of squamosal and maxillary and jugal), which also 

has a major role in the masticatory apparatus. 

Otic matrix (Fig. II.3.8) 

 The otic skeleton forms around the labyrinth and ossiculo-tympanic complex, and 

comprises, for the purpose of the present study, the auditory bulla, internal and external 

auditory meatus, and periotic bone.  These elements are treated as a single functional 

unit, by virtue of their functional and physical detachment of the otic apparatus from the 

basicranium from which it is ventrally and laterally separated by the sphenotympanic and 

squamotympanic fissures.  It is only postnatally fused at the periotic-mastoid interface 

(Baer et al. 1983). 
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Neural matrix (Figs.  II.3.9-II.3.11) 

 According to Moss and Salentjin (1967), the effect of the growing brain on the 

development of the braincase is analogous to the effects of sensorial capsules (otic, optic, 

nasal), in that it is the volume of the soft tissue, irrespective of its actual functionality that 

stimulates and regulates the growth of calvarial bones.  In this view, parietal, 

interparietal, and frontal bones, as well as the temporal processes of squamosals, which 

altogether form the calvarium, are passively translated on the external surface 

(ectomenix) of the growing brain and undergo compensatory appositional growth at their 

sutures (Moss et al. 1972).  The main influence of this process on the cranial base occurs 

at the endocranial surface (Bruner and Mitani 2008) although basicranial growth parallel 

to calvarial growth is seen in the occipital region (Moss et al. 1972).  Postnatally, the 

main orientation of braincase growth is along the antero-posterior axis, which is thought 

to orchestrate the major rotation of the skull in which the angle separating the 

basicranium from the rostrum is flattened, causing the foramen magnum to be dorsally 

displaced as well as the nasal bones to become more closely aligned to the frontals (Baer 

et al. 1972; Moss et al. 1987).  This pattern of growth seems to be independent of posture, 

as noted below (Fanghanel 1974, cited by Schumacher 1997).  In the present study, these 

observations are interpreted as indicating a subdivision of the entire cranium into three 

putative partitions: calvarium (Fig. II.3.9), basicranium (Fig. II.3.10), and rostrum (Fig. 

II.3.11). 

Masticatory matrix (Figs.  II.3.12-II.3.16) 

 The masticatory function of the skull is carried out by the group of four major 

muscles connecting the mandible to the cranium, namely medial and lateral pterygoid, 

temporalis, and masseters.  Numerous experiments involving partial section and re-

section of these muscles have demonstrated their individual contributions to the 

morphogenesis and postnatal shaping of the processes of the mandible as well as the 

cranial surfaces upon which they exert mechanical loads (e.g., Avis 1961; Hohl 1983; 

Brennan and Antonyshyn 1996).  These experiments demonstrate a functional and 

developmental dependence between muscles and their areas of attachment and tensile 

loading in the mandible, specifically between: (1) temporalis muscle and the coronoid 

process (e.g., Washburn 1947; Hohl 1983; Brennan and Antonyshyn 1996), (2) lateral 
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pterygoid muscle and the condyloid process (e.g., Hinton 1990), and (3) medial pterygoid 

and masseter muscles and the angular process and proximal end of the mandible ramus 

(e.g., Avis 1961; Hohl 1983).  More relevant for tests of mastication as an integrating 

factor, however, are the effects of these muscles on skull growth and development.  In 

this sense, a central role in the development of the cranial vault has been demonstrated 

for the temporalis muscle in that either removing or paralyzing it causes substantial 

modifications of the temporal and supraorbital regions (e.g., Brennan and Antonyshyn 

1996).  In fact, it has been postulated that the rounded shape of the calvarium is 

maintained by a balance between the compressive outward forces exerted by the growth 

of the brain and tensile downward forces exerted by the temporalis.  Unilateral sectioning 

of this muscle leads to overgrowth of the temporal region in the manipulated side in dogs 

(Köster and Mierzwa 1985, cited by Schumacher 1997).  Similarly, significant alterations 

in the basicranium result from manipulation of masticatory muscles, most evident at 

synchondroses (Wieslander and Tandläkare 1963).  These effects originate either at the 

attachment of the medial pterygoid muscle or the temporomandibular joint.  In the latter 

case, variation in the articulation leads to variation in shape of the condyle (Kantomaa 

and Hall 1988).  Finally, the masseter muscles influence the development of the 

zygomatic arch even though removal or paralysis of these muscles does not completely 

eliminate this structure, merely reducing it (Pratt and Loring 1943) perhaps because that 

arch also serves as a component of the ocular skeleton. 

 The following masticatory partitions are tested in present tests: (1) coronoid 

process plus temporal ridge, associated to the temporalis muscle (Fig. II.3.12); (2) 

proximal half of the mandible plus zygomatic arch, associated to the masseter muscles 

(Fig. II.3.13); (3) angular process plus pterygoid fossa, associated to external pterygoids 

(Fig. II.3.14); (4) condyloid process plus glenoid fossa, associated to the TMJ (Fig. 

II.3.15); and (5) a comprehensive module combining all of these four partitions, 

corresponding to the full “masticatory” matrix (Fig. II.3.16). 

Postural (nuchal) matrix (Fig. II.3.17) 

 The final functional matrix considered in this study accounts for the effect of neck 

musculature, which is largely a function of body posture.  A link has not been 
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demonstrated between angle of the foramen magnum relative to the cranial base and 

verticalization in mice; however, amputation of upper extremities appears to exert 

significant influence on the shape and relative orientation of both rostrum and mandible, 

leading to a brachycephalic skull characterized by a shorter snout, apparently as a result 

of a shortening of the palate and mandible (Fanghanel 1974, cited by Schumacher 1997).  

Elsewhere in the skull, the only noticeable effect of bisection of neck muscles is on the 

occipital ridge on which these muscles insert (Hoyte 1997b).  This matrix is included in 

the present study for purposes of completeness even though postural effects seem 

relatively unimportant compared to other skull functions.  This hypothesized module 

predicts integration among the distal half of the mandible ramus, the palate, and the 

occipital ridge. 

2.  TISSUE PRIMORDIA 

 The bone and cartilage of the skull is derived from two cell-lineages, paraxial 

mesoderm (PM) and cranial neural crest (CNC).  Paraxial mesoderm comes from the 

somitomeres surrounding the distal portion of the notochord.  The cells migrate to form 

the condensations that give rise to cranial muscles and parachordal elements of the 

embryonic neurocranium, including the proximal portion of the presphenoid, 

basisphenoid, and occipital segments that develop around the notochord, with 

basioccipitals forming the floor and the exoccipitals forming the lateral extensions 

joining dorsally to make the supraoccipital region (Noden 1978; Jiang et al. 2002).  

Parachordal elements condense as paired sets of chondrifications which later join 

medially as synchondroses or appositionally.  Cells derived from the PM also give rise to 

the mesenchyme of the otic capsule, cartilages associated with vestibular and cochlear 

apparatuses and parts of the optic capsule, and the orbital region via mesodermally-

derived portions of the sphenoid and parietals.  Finally, mesenchyme of calvarial bones 

posterior to the coronal suture (i.e., parietals and most of the interparietal) also derive 

from PM (Couly et al. 1993; Jiang et al. 2002; Yoshida et al. 2008). 

 The CNC forms in the folds of the distal portion of the neural tube at the 

intersection between neural tube and ectoderm and is therefore regarded as ectodermal in 

origin (Baker and Bronner-Fraser 1997).  The fate of cells migrating from the CNC is 
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varied, including mesenchyme of both chondrocranial and dermatocranial elements as 

well as the alveolar regions and teeth.  In the chondrocranium, CNC-derived cells give 

rise to the trabecular, nasoethmoidal, and most of the orbital regions as well as the 

mesenchyme of the splanchnocranium.  In the dermatocranium, CNC-derived cells are 

precursors of the dermal bones associated with the splanchnocranium (squamosals, jugal, 

maxillary, dentary) and dermal bones that develop in conjunction with the nasal 

apparatus (pre-maxillary, frontonasal complex, lacrimals), as well as upper and lower 

alveolar bone (Noden 1978). 

 The CNC primordium is segmented into three regions according to the region of 

the developing brain from which they are derived, i.e., forebrain (FB), midbrain (MB), 

and hindbrain (HB).  Fate mapping has shown that CNC cells derived from these 

subdivisions contribute to distinct populations of cranial mesenchyme.  Thus, cells from 

FB migrate to the orbital region and the frontonasal process, whereas cells from the 

rostral aspect of MB migrate to the mandibular extension of the first branchial arch and 

orbital and frontonasal regions, where they appear to mix with FB-derived cells.  The 

HB, on the other hand, is clearly segmented into 7-8 rhombomeres which migrate along 

three clearly delimited cell streams that correspond to the first three branchial arches.  

Cells derived from rhombomeres 1 and 2 (R1 and R2), mixed with some cells derived 

from the caudal aspect of the MB, forming the first of these streams, condensing in the 

first branchial arch that had previously been colonized by MB-derived cells.  A second 

stream, comprising cells derived from R4, condenses in the second branchial arch.  

Finally, cells derived from R6, R7, and R8, form a stream that condenses in the third 

branchial arch (Couly et al. 1993; Chai et al. 2000). 

 Hypotheses of modularity are constructed by assuming that tissues derived from a 

single primordium share a number of regulatory mechanisms, timing and physical 

location both before and after migration, any or all of which could cause covariation.  

Variation in cell population sizes, rates of cell division and cell death, and rates of 

migration of PM and CNC cells are expected to produce covariances among the 

“downstream” traits influenced by these processes.  Present tests include a general 

hypothesis of modularity based on skull primordia, in which the skull is partitioned 
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according to the major source of mesenchyme, i.e., PM (Fig. II.3.18) vs. CNC  (Fig. 

II.3.19). 

3.  MODE OF OSSIFICATION 

 The skull can be divided into chondrocranium (endocranium) and 

dermatocranium (exocranium), the first ossifying endochondrally, the second 

intramenbranously.  Within the chondrocranium, neurocranial elements derived from 

parachordal cartilages, external elements of the otic complex, and proximal elements of 

the trabecular cartilages undergo endochondral ossification.  A number of ossification 

centers later coalesce to form the bones of the basicranium.  The rostral components of 

the cartilaginous neurocranium, in turn, disappear or persist as cartilages throughout 

ontogeny, being replaced or surrounded by dermal bone, a fate shared with elements of 

the cartilaginous viscerocranium and calvarial bones.  Such bones develop from 

mesenchymal condensations that grow outwardly via intramembranous ossification until 

they meet, forming fibrous sutures, after which they continue to grow at their periosteal 

surface (Baer et al. 2003).  As a result, the external bones of the adult skull can be 

categorized according to whether they result from endochondral ossification of primary 

cartilage or intramembranous ossification.  This distinction could contribute to skull 

integration because the genetic and epigenetic factors involved in these two modes of 

ossification differ considerably in terms of (1) the involved developmental pathways, (2) 

their dependency on functional attributes of the skull in that the chondrocranium is 

traditionally seen as being less dependent on epigenetic interactions than the 

dermatocranium (Moss et al. 1972; van Limborgh 1982), (3) their responsiveness to 

endocrine factors such as growth hormones (Nilsson et al. 1986), and (4) their sensitivity 

to environmental fluctuations (Young and Badyaev 2007).  Such differences thus make it 

possible to postulate that each subset of skull components is a separate module 

(endochondral ossification: Fig. II.3.20, membranous ossification: Fig. II.3.21).  In 

addition, it is possible to consider an additional tissue type that does not undergo either 

form of ossification, namely the secondary cartilage that caps the periosteal surface of the 

condyle and angular process of the mandible (de Beer 1985), which is herein tested as an 

additional hypothetical module (Fig. II.3.22). 
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4.  SPLANCHNOCRANIUM VS. NEUROCRANIUM 

 The distinction between the splanchnocranium and neurocranium is established 

early in skull ontogeny.  Even though other hypotheses posit finer subdivisions of these 

components, a distinction between the two is justified by abundant evidence that the 

branchial arches rely on unique developmental pathways, including distinct axes (antero-

posterior, medio-lateral, and dorso-ventral) of epithelial signaling for specification of 

arch-specific structures (e.g., teeth), and possibly even a unique Hox-code determination 

of arch identity (Depew et al. 1999).  For the present study, the partitioning of the 

neurocranium is identical to that defined for the basicranium according to the functional 

matrix theory (Fig. II.3.10).  The distinction between that model and this is the addition 

of the splanchnocranial partition, one that includes all dermatocranial elements derived 

from the first branchial arch, namely mandible, maxillary, squamosal, jugal, lacrimal, 

palatine, and alisphenoid bones (Fig. II.3.23). 

5.  TEMPORAL PATTERNS OF OSSIFICATION 

 Whereas most skull bones that undergo intramembranous ossification develop 

from one or a few ossification centers through periosteal accretion, over one hundred 

paired and unpaired endochondral ossification centers have been identified in the 

chondrocranial skeleton, which continue to expand until they fuse within individual 

elements or meet at synchondroses (Hoyte 1997b).  The hypothesis that distinguishes 

intramembranous from endochondral, previously discussed, ignores the potential effects 

of chronological sequence of ossifications.  The present model incorporates that timing 

effect which could result from epigenetic and micro-environmental signals that affect 

regions of the skull at particular developmental stages.  Consequently, elements 

undergoing simultaneous ossification may be affected by the same signals.  For the 

present study, information about ossification sequences is taken from that for the house 

mouse (Mus musculus; Kaufman and Bard 1999) to derive five putative models reflecting 

the relative timing and distribution of ossifying skull regions.  The modules represented 

in this study correspond, respectively, to the following Theiler Stages/Embryonic age (in 

days) in the house mouse (Kaufman and Bard 1999): (1) TS 22-23/E 13.5-14.5 (Fig. 

II.3.24), (2) TS 23/E 14.5 (Fig. II.3.25), (3) TS 24/E 15.5 (Fig. II.3.26), (4) TS 25/E 16.5 

(Fig. II.3.27), (5) TS 26/E 17.5 (Fig. II.3.28), and (6) perinatal  (Fig. II.3.29). 
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6.  MESENCHYMAL CONDENSATIONS 

 Mesenchymal condensations have been regarded both as the basic building blocks 

of complex morphological structures and as the most basic morphogenetic units capable 

of producing an evolutionary response (Atchley and Hall 1991).  The interpretation of 

mesenchymal condensations as units of development and evolution has been based on the 

spatiotemporal distinctiveness of these cell aggregates, as well as on their potential to 

differentiate into many tissue types (Hall and Miyake 2000; Hall 2003).  The distinction 

of mesenchymal condensations is argued on the grounds that this is the stage at which 

genes are selectively up- or down-regulated, preceding the onset of expression of genes 

specific to the differentiated tissue.  In their general model for the development and 

evolution of complex structures (i.e., those derived from multiple condensations), 

Atchley and Hall define parameters of cell condensations as fundamental developmental 

units.  These units include the number of stem cells, the timing of the initiation of 

condensation, the fraction of mitotic cells, the rate of mitosis, and the rate of apoptosis.  

Natural selection is presumed to operate on these parameters.  The model does not rule 

out natural selection acting at later ontogenetic stages, but it does propose that 

condensations are the most basic units in morphological and developmental evolution. 

 For the most part, individual, suture-bound elements of the dermatocranium can 

be traced back to single condensation of either PM or CNC-derived cells (Noden 1978; 

Jiang et al. 2002).  In contrast, synchondrosis-bound elements of the chondrocranium 

often result from the aggregation of more than one chondrogenic center (Kaufman and 

Bard 1999), making it impossible to trace actual condensations from adult specimens.  

However, single condensations are not split into separate (synchondrosis-bound) 

elements so treating each as a single unit is reasonable.  The chondrocranial elements of 

interest for the purpose of this study are those that form the basicranium, which develop 

largely within the basal plate from parachordal or NC origin.  Caudally, the occipital 

bone develops from paired basal chondrogenic centers that coalesce medially and give 

rise to the basioccipital, forming lateral extensions, i.e., the future exoccipitals, and 

meeting dorsally to give rise to the supraoccipital.  Further rostrally, the basisphenoid is 

derived from the fusion of at least two condensation centers, one (caudal) of parachordal 

origin, the other (rostral) of trabecular origin, whereas the presphenoid, rostral to the 
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basisphenoid, forms from a condensation of NC origin.  Both basisphenoid and 

presphenoid develop lateral projections.  Basisphenoid projections extend into the greater 

temporal alae that fuse with the anterior lamina, which has a membranous origin and is 

derived from a separate condensation, to form the alisphenoid.  This bone is therefore 

considered herein only cautiously as a putative module.  For similar reasons, the external 

auditory complex, which includes the periotic bone, bulla an and auditory meatus, is split 

into two modules, one corresponding to the periotic, which condenses as a single 

cartilage surrounding the auditory labyrinth, and the mastoid-bulla complex, which 

develops in membrane from the endo- and ectodermal surfaces of the first pharyngeal 

pouch, respectively, from the coalescence of numerous bulbous projections. 

 The dentary bone is a special case, as it is the sole dermatocranial bone that 

develops from the coalescence of six morphogenetic condensations of CNC origin.  One 

additional condensation forms the Meckel's cartilage, but this makes little contribution to 

the adult mandible.  The other six condensations give rise to (1) the central ramus, (2) the 

odontogenetic incisor alveolus, (3) odontogenic molar alveolus, and the (4) coronoid, (5) 

condyloid, and (6) angular processes.  Two processes develop from a combination of 

intramembranous and chondrogenic ossification with associated secondary cartilage (i.e., 

angular and condylar), and a membranous process (i.e., coronoid) that develop within the 

anlage of the temporalis muscle before attaching to the mandible ramus (Atchley and 

Hall 1991; Cheverud et al. 1991). 

 A total of 22 modules are defined in association with mesenchymal condensations 

in the craniomandibular complex, corresponding to the following structures: (1) 

basioccipital (Fig. II.3.30), (2) supraoccipital (Fig. II.3.31), (3) exoccipital (Fig. II.3.32), 

(4) basisphenoid plus ala temporalis (Fig. II.3.33), (5) presphenoid (Fig. II.3.34), (6) 

lamina obturans (Fig. II.3.35), (7) palatine plus pterygoid (Fig. II.3.36), (8) periotic (Fig. 

II.3.37), (9) tympanic bulla (Fig. II.3.38), (10) parietal (Fig. II.3.39), (11) interparietal 

(Fig. II.3.40), (12) squamosal (Fig. II.3.41), (13) maxilla plus lacrimal (Fig. II.3.42), (14) 

premaxilla (Fig. II.3.43), (15) nasal (Fig. II.3.44), (16) frontal (Fig. II.3.45), (17) molar 

alveolus of the mandible (Fig. II.3.46), (18) incisor alveolus of the mandible (Fig. 
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II.3.47), (19) mandible ramus (Fig. II.3.48), and (20) condyloid (Fig. II.3.49), (21) 

coronoid (Fig. II.3.50), and (22) angular (Fig. II.3.51) processes of the mandible. 

7.  MUTATIONAL TARGETS 

 Many of the secreted factors and signaling molecules involved in regulation of 

skull development are specific to particular types of processes (e.g., chondrification, 

osteoblast differentiation) but some participate in multiple disparate processes.  

Consequently, allelic variation of these factors is potentially able to produce covariation 

among traits influenced by multiple pathways, which would be evinced as variational 

modularity (Klingenberg 2005; see Chapter I for further discussion).  The primary 

experimental approaches used to establish the anatomical targets of these signaling 

molecules and the associated transcription factors is to knock out specific genes in a 

systematic manner.  The results are often sensitive to genetic background, and it can be 

difficult to determine the extent to which variation induced by these kinds of experiments 

mimics natural variation because the knocked out genes might be devoid of standing 

variation in natural populations.  Therefore, mutational targets are better interpreted as 

modules in the sense that such mutations reveal the presence of an underlying epigenetic 

cascade affecting a particular anatomical region.  However, one important caveat is that 

not every mutation within a developmental pathway will have the same effect on 

morphology.  Thus, even though the epithelial factor endothelin-1 regulates the 

transcription factors dHAND and Msx1 (Thomas et al. 1998), knockouts of these 

individual genes produce notably distinct effects on the skull morphology (see Table II.3; 

Satokata and Maas 1994, Yaganisawa et al. 2003, Kurihara et al. 2004). 

 The hypothetical modules used in this study correspond to known mutational 

targets of regulatory genes of skull development (listed in Table II.3).  Many of the genes 

included in this study have been compiled in a recent review by Depew et al. (2002a).  

The hypotheses are based on the photographs of mutants plus verbal descriptions of 

mutational effects by the original authors of each study.  A total of 24 secreted factors 

and 24 transcription factors with diverse regulatory roles were considered during this 

study.  After merging those mutations with identical effects into a single module and 

those mutations suggesting modules that were indistinguishable from other modules used 
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in the study, a total of 14 and 19 new modules were added, corresponding to secreted and 

transcription factors, respectively (see Table II.3). 

Hypotheses of modularity 

 The initial set of hypotheses is based on certain combinations of individual 

modules illustrated in Fig. II.3.  This gives a total of 66 models (listed in Table II.4), with 

H0 corresponding to the null model of no modularity or integration (i.e., all covariances 

equal to zero).  Models H1 to H21 represent alternative versions of the hypotheses derived 

from the functional matrix theory.  Model H1 divides the skull in three partitions 

(calvarium, basicranium, and rostrum-mandible) to represent the skull-wide effect of 

brain growth.  Antero-posterior growth of the braincase has a flattening effect on the 

angle between rostrum and basicranium (Moss et al. 1987), whereas lateral growth of the 

brain case exerts tensile forces onto the basicranium (Bruner and Ripani 2008).  For 

purposes of this study, this effect is interpreted as three separate effects on regions 

spanned by the three modules defined in H1.  Models H2 and H3 seek to account for 

masticatory function.  H2 comprises modules M12-M14 depicting the functional influence 

of the temporalis, masseters, and pterygoid muscles, respectively, and M15, which links 

the cranial and condylar components of the temporomandibular joint; H3, on the other 

hand, is based on module M16, which combines the effects of the three major masticatory 

muscles in a single module.  Models H4 to H9 depict several alternative versions of 

modules presumably associated with the same general function.  Each includes M6 (nasal 

capsule), M7 (orbit), M8 (otic capsule), and M9 (calvarium) but they vary with respect to 

M2, M3, or M5, each a different version of the oral matrix (oral-only, oropharyngeal, and 

oral-masticatory, respectively).  Similarly, a postural (nuchal) matrix is included either by 

itself (M17) or as integrated with an oral component (module M4).  Models H10 to H24 

combine models H4-H9 with either model H2 or H3, adding masticatory function to those 

represented in other models. 

 Models H22-H24 contrast the variational patterns expected according to the tissue-

primordium hypothesis, including a PM-only module, a CNC-only module, and a 

combination of the two.  Models H25 and H26 contrast endochondral and membranous 
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ossification, and endochondral ossification, membranous ossification, and secondary 

cartilage, respectively. 

 Models H27-H30 contrast structures derived from splanchnocranium and 

neurocranium.  Model H27 includes a single module (M23) corresponding to 

splanchnocranial elements, whereas models H28-H30 also include the neurocranium, 

represented either as the set of walls and roof of the braincase (frontals, parietals, 

interparietals, and squamosal process of the squamosals, M9), or as a braincase-

basicranium complex (parietals, interparietals, occipitals, and sphenoid, M18).  In 

addition, models H29 and H30 include module M8, corresponding to the auditory bulla, 

given that this structure is derived from neither splanchnocranium nor neurocranium, 

being instead of endodermal origin (Depew et al. 2002a).  Models H31 and H32 are based 

on the chronological sequence of ossification in Mus and the structures derived from 

mesenchymal condensations in the craniomandibular complex.  Hypotheses H33 to H65 

predict that a single mutational target (as defined in Table II.3) is a single module.  

Hypotheses H33 to H46 correspond to secreted factors whereas H47 to H65 correspond to 

transcription factors.  Each mutational target is modeled separately because there is no 

obvious way in which they can be meaningfully combined.  Analyzing all possible 

combinations—7672 and 84466 models from secreted and transcription factors, 

respectively, makes prohibitive computational demands.  Furthermore, preliminary 

analyses of models that combined all secreted factors or all transcription factors in a 

single model produce models with extremely low empirical support, scoring among the 

worst of all competing hypotheses.   

Comparative analysis of intraspecific patterns of modularity 

Consensus model 

 Shared elements of supported models can be combined into a ‘consensus’ 

hypothesis, i.e., a model containing only modules supported in all or most species.  Such 

a consensus could be obtained for each internal node on the phylogeny, but that 

phylogenetic approach would be better suited for analyses based on a larger number of 

species and clades.  In the present study, a “horizontal” consensus was built by 

combining models from all sampled species, using theoretical and heuristic models.  A 
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consensus built in this way should not be interpreted as an interspecific average or overall 

trend; instead, a consensus includes those modules that are common to all or nearly all 

species, and thus can potentially be interpreted as a set of phylogenetically conserved 

modules. 

Interspecific comparisons in model space 

 When comparing species with respect to fit among competing models, the 

statistics γ and γ* can be interpreted as the distance between each species’ data and the 

model.  However, when a single model fits two or more species equally well, it does not 

necessarily follow these species are separated by a short distance because two objects that 

are equally distant from a third need not occupy the same position, especially in high-

dimensional spaces.  To increase the precision with which a species’ position is 

determined, it is useful to have a large number of reference points, i.e., additional models.  

In this study, this was accomplished by constructing a vector of γ* values (one per model 

being tested) for each species.  This vector has two interpretations.  The first is as a set of 

distances between the observed covariation matrix and a large number of patterns with 

known pattern of modularity.  The second is as the coordinates for the data in a ‘model 

space’ centered on a species’ covariance pattern.  Because each species’ model space is 

potentially centered at a different position, only the direction of these vectors is 

comparable across species.  In this study, those directions were compared by the 

correlation coefficients between γ* vectors for pairs of species, providing an indirect 

comparative approach of their underlying patterns of integration. 

RESULTS 

Intraspecific patterns of modularity 

 Following is a detailed description of the results of tests of hypotheses for each of 

the nine oryzomyine species sampled for this study (summarized in Table II.5). 

Holochilus chacarius 

 Of the 66 models initially tested for the skull data set, which spans the cranium 

and mandible, the most strongly supported is H1, which partitions the skull into 

calvarium, basicranium, and rostrum (jackknife support for this model is 95%).  Of the 
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models initially tested for the cranium-only data set, empirical support is split among 

three models: H24 (25%), which posits two modules, one the calvarium-basicranium, the 

other the calvarium-rostrum module; H60 (39%), which posits a single calvarium-rostrum 

module; and H48 (26%), which posits a single module containing elements of the 

basicranium, calvarium, and rostrum.  Of the models initially tested for the mandible, one 

is most highly supported, H32 (100%), which posits partitions that correspond to 

mesenchymal condensations.  In comparisons based on the full set of models (comprising 

the 66 initial models plus the module combinations from the most-supported among the 

initial set of models), one model was supported by each data set (Fig. II.4A).  Both skull 

and cranium data sets supported a single model, comprising modules M11, associated with 

the rostrum, and M18, associated with the neurocranium.  The mandible data support a 

model containing four modules: (1) molar alveolus, (2) incisor alveolus, (3) ramus, and 

(4) a module comprising the angular, coronoid, and condyloid processes. 

 These analyses suggest that integration of the posterior half of the cranium affects 

the entire braincase, forming a unit distinct from the anterior half, which also forms an 

integrated unit spanning certain splanchnocranial elements (i.e., maxilla, premaxilla, and 

zygomatic).  The mandible seems to be associated with the rostrum, including the 

zygomatic, palate, and palatine, within the context of the craniomandibular complex.  

This pattern suggests a functional (i.e., mastication) explanation for the pattern of 

integration between cranium and mandible.  However, when analyzed separately, a more 

complex pattern is revealed within the mandible, one that partially resembles 

expectations from the model of mesenchymal condensations.  The distinction between 

that pattern and the one expected by the condensation hypothesis is that, in the data, the 

mandibular processes are mutually integrated but independent from the rest of the ramus.  

Only one model predicts this (H58), but the integration among mandible processes is 

consistent with any set of modules that is nested within this pattern (e.g., mesenchymal 

condensations), because the independence of these processes is biological, not necessarily 

statistical.  Although it is possible that this pattern is consistent with functional matrix 

theory (see models M12, M14, and M15), that seems unlikely because the functional matrix 

model would also imply that integration is stronger between the condyloid and pterygoid 
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and the temporalis attachment site, than between the latter processes and the masseter 

attachment sites. 

 Heuristic optimization of module boundaries significantly improved the fit of the 

best-supported model (jackknife support = 100%; see Table II.5).  The boundaries were 

adjusted to accommodate a larger extent of antero-posterior (AP) integration than 

suggested by a priori and combination models (Fig. II.4B).  In the skull data set, this is 

apparent as a forward extension of the calvarium-basicranium module to include the 

fronto-maxillary suture and part of the nasal, and a backward extension of the rostral 

module toward the parietals.  These extensions produce an overlap between modules in 

the frontal region.  Such a pattern of AP integration may depend on treating the mandible 

as part of the rostrum, because without including the mandible, the model is not 

supported by data.  Instead, for the cranium-only data set, there is a weak (but noticeable) 

increase in integration between modules in the squamosal-sphenoid intersection and the 

zygomatic spine.  This discrepancy between the results for the two data sets might be due 

to a stronger integration between the zygomatic arch and mandible in the whole-skull 

data, which might be due to an interaction between these bones during mastication.  

Finally, in the mandible-only data set, there is an increase in AP integration, including 

integration between the angular process and both alveoli, and between the coronoid 

process and both molar alveolus and ramus.  The ramus, in turn, appears somewhat 

integrated with the incisor alveolus.  Overall, the patterns of integration supported by 

heuristic models seem to overlay regions presumably derived from different 

mesenchymal condensations, which seem to retain some individuality, onto elements the 

that evoke complex functional interactions between tooth-bearing and muscle-bearing 

skeletal components (Zelditch et al. 2008), i.e., between processes and alveoli. 

 Results from part-whole PLS are broadly consistent with patterns described above 

(Fig. II.5), especially for the mandible.  They reveal strong integration between molar 

alveolus and mandible processes, particularly the coronoid process, and also integration 

among ramus, coronoid process, and incisor alveolus.  For the cranium-alone data, when 

the rostrum is regressed onto the whole, PLS finds little integration between rostral and 

calvarium-basicranium modules.  In contrast, if the calvarium-basicranium is regressed 
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onto the whole, the cranium as a whole appears to be integrated.  This discrepancy 

suggests that covariation between anterior and posterior cranial regions spans multiple 

dimensions—they are approximately orthogonal only in some dimensions.  This pattern 

is consistent with the concept of modularity as implemented herein, and, as seen below, is 

commonly observed in the species included in this study. 

Melanomys caliginosus 

 Analyses based on initial models favor the same models for all three data sets.  

Both skull and cranium-only data sets support H34 (100%), which is based on the effects 

of the loss-of-function mutation in the Tgfβ-2 gene (module M53; Sanford et al. 1997).  

According to this model, the calvarium and lateral walls of the braincase are integrated 

with each other and with the palate and proximal half of the mandible (Fig. II.6A).  The 

rostrum, basicranium, and mandibular alveoli are not integrated in any module.  A second 

model, weakly supported when testing the full set of models, adds another module, M6, to 

M53.  This added module comprises the anterior region of the snout, corresponding to the 

skeletal matrix of the nasal capsule (i.e., nasal and pre-maxillary bones) 

 For the mandible-only data, initial tests support two models: H3 (53%) and H32 

(33%).  The first contains one module comprising the proximal half of the mandible, 

spanning insertion sites of all masticatory muscles (i.e., M16).  The second is based on 

mesenchymal condensations.  When testing the full set of models, these two are also 

supported, but less so than the combined model {M46}{M48}{M77} (Table II.5), which is 

the model supported by H. chacarius except for the absence of an incisor alveolus 

module (Fig. II.6A).  Other models whose γ* CI overlaps the CI of these two include 

H20 (=H3 plus an alveolar module), H2 (also based on attachment sites of masticatory 

muscles, assigning a module to each muscle group and adding an alveolar module), and 

H14 (=H2 plus an alveolar module) (Fig. II.6A). 

 These results suggest that the covariation structure of M. caliginosus supports two 

distinct patterns of modularity.  The first contrasts posterior and anterior regions of both 

mandible and cranium, whether they are considered jointly or separately, a result that is 

consistent with the pattern expected from the effect of Tgfβ-2 gene knockout (i.e., model 

H34).  The second pattern posits integration internal to the mandible, which seems to 
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simultaneously support (1) a pattern in which tooth- and muscle-bearing regions are 

separated in distinct modules, and (2) a pattern consistent with expectations from the 

mesenchymal condensations model. 

 Heuristic models also support these two alternative patterns (Fig. II.6B).  In the 

case of the cranium and skull data, AP integration is supported in both lateral and ventral 

views, affecting mainly the dermatocranial, zygomatic, and nasal regions.  In the 

mandible data, a similar pattern to H. chacarius is observed, in that the mandible 

processes appear integrated with the molar alveolus, whereas the ramus appears 

integrated with the incisor alveolus. 

 These patterns are broadly supported by part-whole PLS analyses (Fig. II.7).  PLS 

vectors, however, account for a considerably smaller magnitude of variation in the 

rostrum and palate regions than suggested by these models or than seen in H. chacarius, 

suggesting that the AP axis, or, as discussed in the case of H. chacarius, rostral 

structures, span a subspace approximately orthogonal to the subspace occupied by the 

calvarium. 

Microryzomys minutus 

 The best supported modules are remarkably consistent regardless of the models 

included in tests.  When analyses are based on 66 models, skull and cranium-only data 

support H34 (100%), the same one supported by M. caliginosus, whereas the mandibular 

data support model H32 (100%), i.e., mesenchymal condensations.  Using the full set of 

models, two modules are supported by the whole-skull data: H34 and the combination of 

that plus M6 (i.e., nasal plus pre-maxillary bones).  The cranium-only data support H34 

(Fig. II.8A), as in the case of M. caliginosus.  For the mandible, the most supported of the 

a priori and combination models contains modules corresponding to mesenchymal 

condensations (i.e., H32), excluding only the molar module (M46).  H32 is, however, the 

next best supported model, followed by H2 and H14, which can be interpreted as 

originally intended, namely as a superimposition of regions associated with individual 

attachments of masticatory muscles (plus an alveolar module in H14), or it could also be 

interpreted as the superimposition of effects of muscle function on the structure derived 
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from mesenchymal condensations.  That second alternative cannot be ruled out given the 

support found for this hypothesis in the mandible data. 

 In addition to the similarities between the a priori models supported by M. 

caliginosus and M. minutus, the heuristic models supported by both species suggest that 

there is relatively strong integration between calvarium and rostrum.  M. minutus, 

however, shows that there is a high degree of integration within the rostrum, including 

the palatal region, which is either a separate module, or integrated with other regions of 

the skull (Fig II.8B).  The basicranium in M. minutus appears unusually strongly 

integrated, sharing common partitions with either neurocranial or rostral elements.  This 

pattern of two distinct (and distant) modules might mean that the basicranium in this 

species is associated with both regions, due perhaps to the pervasive effects of braincase  

growth (Baer 1954; Hoyte 1971; Bruner and Ripani 2008) or with the role that the 

basicranium is thought to play as the central integrator of the cranium (Lieberman et al. 

2000).  The heuristic model for the mandible shows little integration across the AP axis, 

and the regions related to mesenchymal condensations seem to remain approximately 

modular.  Results from PLS analyses are consistent with those from the a priori tests (Fig. 

II.9).  However, as found in the other species, integration along the AP axis that is 

hypothesized by heuristic models is not readily apparent in the first PLS vector.  A 

clearer signal emerges from the mandibular data, which supports the heuristically 

modified a priori model, and suggests other associations (e.g., incisor-ramus, angular-

ramus-coronoid) not supported by the heuristic search. 

Nectomys squamipes 

 Analyses produce consistent results regardless of the models used in tests.  In the 

case of the skull, the best-supported model is the one supported by data from M. 

caliginosus and M. minutus (see Table II.5).  However, that similarity between species 

does not extend to the cranium or mandible data sets.  The cranium data set supports 

model H60, which posits a module spanning regions affected in Otx2-null mice.  In 

homozygous form, this mutation affects neural-crest derived regions of the skull.  Even 

though this hypothesized effect is different from that seen in all other species included in 

this study (except S. alfari, see below), it is consistent with the pattern of AP integration 
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observed in other heuristic models.  In fact, heuristic models for the skull and cranium in 

N. squamipes are largely indistinguishable from those in M. caliginosus.  For the 

mandible, both the masticatory model and the mesenchymal model are supported (Fig. 

II.10A). 

 Heuristic searches based on those models found strong proximo-distal integration 

in the cranium (Fig. II.10B) as well as some evidence of integration in the rostral region, 

like that seen in M. minutus.  Integration is also detected in the basicranium (i.e., 

basioccipital, exoccipitals, and external auditory meatus), which appears to be integrated 

with both neurocranium and rostrum.  For the mandible, heuristic searches support a 

model that is almost identical to the one on which the search was based, further 

supporting masticatory function as the main cause of integration (and modularity) in this 

species.   

 PLS supports most of these patterns, including the pattern of integration along the 

AP axis observed for cranial data (Fig. II.11).  This suggests that in N. squamipes, unlike 

the other species, AP integration spans a subspace with lower dimensionality (i.e., 

stronger integration), which might mean that this region is a variational module or super-

module.  Additionally, PLS suggests that there might be integration between ramus and 

both alveoli, although it is not possible to determine whether that is due solely to chance.  

Additionally, PLS vectors show that the covariance between the posterior half and the 

whole mandible is no greater than expected by chance (P = 0.049).  Given that the pattern 

described strongly resembles those expected from the best-supported model, it would 

appear that this module has a high dimensionality (i.e., its variation is distributed more or 

less homogeneously over several dimensions).  In general, however, these results are not 

readily interpretable and there is less variation in the mandible of N. squamipes than seen 

in the other species. 

Oligoryzomys nigripes 

 Relative support for models for the skull, cranium, and mandible does not depend 

on which sets of models are included in the tests.  Once again, the best-supported models 

(Table II.5) for the skull and cranium data sets are H34 and {M53}{M6}, which include, 

respectively, a calvarium-palate-posterior mandible module, plus a module comprising 
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nasal and pre-maxillary bones.  For the mandible, three types of models are supported: 

(1) a joint module comprising all mandible processes plus ramus and molar alveolus (2) 

one module per mesenchymal condensations, and (3) one module per region associated 

with attachment sites for masticatory muscles (Fig. II.12A). 

 Heuristic models for the skull and cranium suggest a higher degree of integration 

between calvarium and zygomatic arch than seen in the other species (Fig. II.12B), 

whereas integration among basicranial elements seems weaker.  The heuristic model 

supported for the mandible indicates integration among mandibular processes and 

integration along the entire AP axis (Fig. II.12B).  As also noticed in other species, the 

first PLS axis does not seem to recover the pattern of AP integration for skull and 

cranium.  In contrast, PLS discerns the same modules supported by tests of priori models 

in the mandible, and finds particularly strong integration between molar alveoli and 

ramus (Fig. II.13).   

Oryzomys couesi 

 The best-supported models for the skull and cranium are the same ones favored 

for M. caliginosus, M. minutus, and O. nigripes (Table II.5), regardless of the models 

used in these tests (Fig. II.14A).  These include H34 (i.e., a calvarium-palate-posterior 

mandible module), and {M53}{M6} (i.e., H34 plus a nasal and pre-maxillary bones).  For 

the mandible, the only models that fit well are related to the effects associated with 

masticatory musculature, with modules concentrated in the posterior half of the mandible, 

each associated with a muscle attachment site.  Interestingly, models for the mandible are 

consistent with those supported for the skull, which also show little support for 

integration within either alveolus.   

 A heuristic model for the skull was derived from model {M53}{M6}, which is 

nearly as well-supported as model {M53.} (see Table II.5).  This model posits integration 

between calvarium and zygomatic arch, whereas the nasal capsule matrix is an individual 

module (Fig. II.14B).  For the cranium data, however, a heuristic model derived from 

{M53} suggests that the rostral module may be integrated with the calvarium.  These 

apparently conflicting inferences, like the discrepancies between heuristic models and 

PLS axes, might be due to integration among non-orthogonal modules such as an overlap 
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between modules at the fronto-nasal and fronto-parietal boundaries.  In the case of the 

mandible, the model found by a heuristic search differs from the best-supported a priori 

mode in that it shows relatively strong integration (1) between ramus-angular module and 

the other two processes, (2) between coronoid process and incisor alveolus, and (3) 

between the condyloid process and the incisor alveolus, as predicted by functional effects 

associated with changes in direction of growth of the mandible due to rotation (i.e., 

change in posture) at the temporomandibular joint (Björk 1969).  As seen in the other 

species, the first PLS vectors of both cranium and mandible data provide little evidence 

supporting the unique integration patterns depicted by heuristic models, and variation 

accounted for by these vectors does not reveal much integration beyond the module being 

regressed (Fig. II.15).  This might mean that data have an unusually high dimensionality.  

However, because that lack of support applies to all views and modules, and because 

most PLS vectors account for no more covariance than expected by chance (Fig. II.15), it 

may be that the modules found by heuristic models are rather weakly defined and/or 

account for a relatively small portion of the variation in this species. 

Oryzomys palustris 

 The best supported models (Table II.5) once again include models H34 (= M53, 

i.e., a calvarium-palate-posterior mandible module), and {M53}{M6} (i.e., H34 plus nasal 

and pre-maxillary bones), and H60 (=M79, i.e., integration along the AP axis of the 

cranium, approximating a module of CNC-derived tissues (also supported by N. 

squamipes and S. alfari).  For the mandible, the best-supported models propose that the 

mandibular processes are integrated, but there is support as well for the modules 

predicted from mesenchymal condensations and masticatory muscle attachment) (Fig. 

II.16A). 

 Heuristic models based on skull and cranium data sets support patterns similar to 

those seen in the other species (i.e., M. caliginosus, N. squamipes, M. minutus, O. 

couesi), in which there is strong integration along the AP axis through the zygomatic arch 

(Fig. II.16B).  In addition, O. palustris shows strong integration within the rostrum, as 

found in N. squamipes and M. caliginosus.  A heuristic model of the mandible, on the 

other hand, maintains support for a module comprising the mandible processes.  This 
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module incorporates elements of the ramus, specifically the continuation of the 

superficial masseteric ridge rostral to the angular process.  This addition suggests a dual 

role for masticatory function and development (e.g., chondrogenesis) in structuring the 

covariation of the ventral aspect of the mandible.  Interestingly, a similar heuristic model 

is supported by O. nigripes which, as seen above, supports the same a priori models as O. 

palustris.  This consistency of optimal, sub-optimal, and heuristic models further 

strengthens the argument that sub-optimal models contain relevant information regarding 

the underlying integration structure in a data set. 

 As seen in other species, most patterns detected by heuristic search are supported 

by PLS analyses.  Particularly evident is the support for integration between the ramal 

portion of the superficial masseteric ridge and both the mandible processes and alveoli, as 

well as integration between both alveoli (Fig. II.17).  An exception that was also seen in 

other species is the absence of AP integration in the first PLS vector of the cranium data.  

As discussed above, this suggests that the AP pattern results from non-orthogonality of 

neurocranial and rostral modules. 

Oryzomys xantheolus 

 An unusually large number of models are supported by the data from this species, 

which might result from the low resolution caused by small sample size.  This lack of 

resolution seems to affect the cranial data most.  The skull data set supports the same 

models favored by the data from most other species (i.e., H34: calvarium-palate-posterior 

mandible, and {M53}{M6},: H34 plus nasal and pre-maxillary bones) (Table II.5; Fig. 

II.18A).  The best-supported models for the cranial data set also include H34.  In addition, 

the cranial data support models based on tissue primordia (PM vs. CNC modules), model 

H60 (also supported by N. squamipes, O. palustris, and S. alfari) and other models that 

postulate some form of AP integration (see Table II.5).  Mandible data support a model 

with three modules, comprising, respectively, the three processes, both alveoli, and the 

ramus.  Other supported models include the partition of the mandible into posterior and 

anterior modules and a model based on mesenchymal condensations. 

 Heuristic models based on skull and cranial data show particularly widespread 

integration throughout the proximo-distal axis of the cranium, including strong 
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integration between rostral (i.e., nasal, premaxilla, maxilla, zygomatic) and basicranial 

(i.e., occipital, sphenoid, presphenoid, and external auditory meatus) elements (Fig. 

II.18B).  Such widespread integration could explain the abundance of models supported 

by cranial data in this species (Fig. II.18A) because multiple models capture some local 

aspects of the integration of this apparently global pattern.  In contrast, the heuristic 

model supported by the mandibular data is almost identical to the corresponding a priori 

model.   

 PLS discerns the same patterns predicted by the best-fitting a priori hypotheses 

(Fig. II.19).  The first PLS vector from the cranium data set suggests AP integration, as 

seen in N. squamipes.  As discussed above, this may indicate that the rostral and 

neurocranial modules have fused into a single module or, more likely, that the orientation 

of these modules is closer to being parallel in multidimensional space.  It is also possible 

that the pattern is due to compressing multidimensional information into relatively few 

axes due to small sample size.   

Sigmodontomys alfari 

 There are many well-supported models for the skull, probably due to small 

sample size, but these models consistently suggest the same general patterns of 

integration.  However, many of these patterns are unique to this species.  One recurrent 

pattern is that the mesoderm-derived tissues (i.e., M18) form a module (Fig. II.20A).  

Other models supported by the data from this species are associated with late ossifying 

regions (M28), or paraxial mesoderm-derived tissues (M19), and Tgfβ-1 (M53) and Prx 

(M77) mutational targets.  In the case of the mandible, two basic models are supported: 

(1) all three processes jointly define one module, with the ramus and molar alveolus 

defining a module each and (2) one module spans the posterior half of the mandible.  

This combination of models is also seen in several other species. 

 Heuristic models are broadly consistent with patterns discerned from the best-

supported a priori models for the skull, cranium, and mandible (Fig. II.20B).  The only 

noticeable discrepancy suggests integration between CNC-derived tissues and elements 

of the occipital bone.  This observation, however, is not confirmed by PLS analyses (Fig. 

II.21).  PLS of cranial data show evidence of AP integration along the first PLS axis, as 
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also seen in N. squamipes and O. xantheolus, possibly due to stronger integration within 

this axis.  PLS of the mandible data supports the hypothesis of integration between 

mandibular processes and ramus, consistent with suboptimal models which were 

excluded from the heuristic search (Fig. II.20A).  In any case, the best-supported model 

(i.e., mandibular processes jointly forming a module) is nested within this pattern of 

integration within the posterior half of the mandible so results from these analyses are not 

inconsistent. 

Summary of findings 

 Many of the same patterns are detected in all nine species, suggesting a 

remarkable conservation of phenotypic covariation structures despite the high degree of 

ecological diversity and phylogenetic divergence exhibited by these species.  As 

expected, there is a greater diversity of patterns detected by heuristic searches, but that 

diversity seems mostly confined to small differences in the boundaries between 

conserved modules.   

Comparative analysis of intraspecific patterns of modularity 

 The aim of this section is to explore the links between intraspecific patterns of 

modularity and morphological divergence. 

Consensus model 

 A strict consensus model derived from the best-supported skull models (Table 

II.5) includes one module that spans the posterior half of the mandible plus glenoid fossa 

plus palatine and parietal bones.  A consensus based on the model unanimously supported 

by all species other than H. chacarius and S. alfari (which are unique in their patterns of 

craniomandibular integration) includes module M53, and possibly M6.  For the cranium 

data set, N. squamipes and O. xantheolus also appear to support unique models, but the 

modules supported by these species do overlap those supported by the remaining five, 

i.e., spanning frontal, parietal, interparietal, squamosal (including the zygomatic process), 

exoccipital, and palatal process of the palatine.  A consensus based on this set of 

anatomical regions is not changed by adding S. alfari, but if H. chacarius is included, that 

narrows the strict consensus to the pattern identical to that described above for the skull 

data set (minus the mandible). 
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 Identification of a mandibular consensus based on a priori models is relatively 

straightforward.  However, in this case it may not suffice to build a consensus from the 

optimal models alone; distinct models in the vicinity of the best-supported ones should 

also be taken into account.  This, as discussed in detail in the next section, is because of 

the recurrent relatively high support observed for discrepant models, which does not 

seem an artifact of sampling issues, but a real pattern resulting from a high 

dimensionality of modularity in the mandible.  Table II.6 lists modules supported by all 

species, highlighting those that belong to optimal models.  From the columns of this 

table, it is apparent that the most commonly supported modules correspond to the 

mesenchymal condensations of the mandible.  In cases where some of these modules are 

not supported, they appear to be embedded within larger modules.  For example, even 

though the data from O. couesi do not support molar or incisor alveolus modules, those 

two modules are nested within the tooth-bearing module that is supported in this species.  

If the analysis is restricted only to the best-supported models, no single module is present 

in all species.  In this case, some species do not support the hypothesis that one or both 

tooth alveoli are modules.  Specifically, the hypothesis of an incisor alveolus module is 

not among the optimal models for M. caliginosus, O. nigripes, O. palustris, whereas the 

hypothesis of a molar alveolus module is not supported by M. minutus, and neither 

alveolus is a module in O. couesi and S. alfari.  However, data from all species support 

the hypothesis that the posterior half of the mandible is either a single module, or two, 

one containing the ramus, the other the mandibular processes (or some other partitioning 

of the posterior mandible).  The consensus from optimal plus suboptimal models (in the 

vicinity of the optimal ones) is identical to H32:: each mesenchymal condensation is a 

module.  A consensus based solely on the optimal models contains four modules, the 

three mandibular processes, plus a ramus module, i.e., a combination of M49-M51 (Fig. 

II.3). 

 A consensus derived from the heuristic models of the skull and cranium is more 

consistent because most species share several common features, such as a module 

spanning most of the AP cranial axis.  The boundaries do vary among species, with the 

most variable being (1) the inclusion of the zygomatic spine and other elements of the 

maxilla, as well as (2) elements of the occipital bone and other basicranial regions.  As in 
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the case of the analyses based on a priori models, H. chacarius and S. alfari are 

exceptions, with the former showing a marked division of the cranium into calvarial and 

rostral regions, and the latter showing strong integration only anterior to the squamosal.  

In addition, both of these species are especially highly integrated in the palatal area.  A 

strict consensus based on all nine species would then postulate integration of squamosal, 

frontal, dorsal aspects of pre-maxillary bones, and the entire mandible in a single module.  

Exclusion of these two species leads to a consensus model in which exoccipital, periotic, 

squamosal, interparietal, parietal, frontal, nasal, and alisphenoid bones, as well as the 

glenoid fossa and the entire mandible form one module. 

 Models based on heuristic searches for the mandibular data show increased 

integration across all partitions, mostly involving individual landmarks within one region 

being associated with spatially restricted modules, making it difficult to define the 

boundaries of the consensus.  The most recurrent associations introduced by heuristic 

searches is between the ramus and incisor alveolus, which may be partially consistent 

with the Atchley-Hall model of developmental models tested in this study (Atchley 199), 

given that the ramus contains also the posterior portion of the incisor alveolus, and as 

such could be affected by variation associated to odontogenic processes.  However, in all 

cases, only a few alveolar landmarks, and sometimes only one, are integrated with the 

ramus.  That pattern is seen in all species other than N. squamipes, O. couesi, and O. 

xantheolus.  It is important to note, however, that the heuristic search takes a single 

model as starting point, ignoring the possibility that multiple suboptimal models are 

among the valid alternatives.  That may explain why the consensus for the mandible, 

based on heuristic models, is not distinct from that model built from modules defined a 

priori. 

Interspecific comparisons in model space 

 The best 100 models, including the original ones and those combining modules of 

the best ones, were used for interspecific comparisons.  This approach guarantees that all 

modules supported across all species (and views) are included in the comparisons, while 

also optimizing the signal to noise ratio.  Comparisons were based on the results for each 

data set (i.e., γ* for the whole-skull, cranium-only and mandible data sets).   
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 Dendrograms and the interspecific correlations used to build them are shown in 

Fig. II.22.  As expected, the skull and cranium data sets are more similar to each other 

than either is to the mandible data set.  The only element shared by all data sets suggests 

relatively high similarity among the patterns of modularity seen in M. caliginosus, O. 

nigripes, and O. palustris.  This group, in turn, is similar to O. couesi and M. minutus in 

the skull and to M. minutus in the cranium data set.  Additionally, N. squamipes, O. 

xantheolus, and S. alfari appear to be correlated in the mandible data set, whereas H. 

chacarius and N. squamipes, and N. squamipes and O. xantheolus appear to be similar in 

skull and cranium data sets, respectively.  H. chacarius and S. alfari emerge as the most 

divergent in the skull data set, whereas a comparable degree of divergence is seen only 

for S. alfari, and for M. minutus and O. couesi in the cranium and mandible data sets, 

respectively.  These results do not correspond well to the patterns of model support 

exhibited by the different sets of skull traits and might result from differences among 

species in the covariance between mandible and cranium.  Despite the similarity of the 

closely related  M. caliginosus, O. nigripes, and O. palustris (see Appendix A) in patterns 

of mandibular integration, and among the semi-aquatic N. squamipes, O. xantheolus, and 

S. alfari, no known explanatory factor is strongly associated with these patterns of 

similarity.   

Modularity and disparity 

 The first principal component of the skull, cranium, and mandible shape is 

associated primarily with interspecific size differences.  It thus appears to be an 

evolutionary allometry axis.  In order to compare patterns of interspecific divergence and 

intraspecific patterns of modularity, we need to remove that allometric component by 

regressing the mean shape for each species on its mean centroid size.  This avoids the risk 

of confounding differences in shape due to differences in size, generally involving 

interspecific variation in the relative size and shape of the braincase with respect to the 

rostrum, with differences related to the pattern of (non-allometric) modularity supported 

for most of the species sampled herein, which also involve variation in the shape of the 

braincase.  Figure II.23 shows PCA ordinations of skull data sets before and after 

allometric correction. 
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 Interspecific differences are not homogeneously distributed (Fig. II.23B), and thus 

the overall covariation patterns are likely to be dominated by the extreme shapes.  

Analysis of the partial disparities of the whole-skull data set, which estimates the 

contribution that each species makes to the total disparity (Table II.7) reveals that nearly 

36% of the disparity is due to two species: H. chacarius and S. alfari.  The remaining 

species account for a similar proportion of the disparity (ranging from 8% to 12%) and 

are also (approximately) homogeneously distributed around their mean shape (Fig. 

II.24A).  Because analyses that include the two outlier species will be dominated by 

them, these two are excluded from the remaining comparative analyses.   

 Tests of a priori models fitted to interspecific covariance matrices suggest that 

most of the morphological (co-)disparity is concentrated in the braincase, palate and 

posterior mandible.  In contrast to the results from the intraspecific analyses, the same 

model fits all views of the skull.  The module receiving the greatest support is M53, with 

γ* values equal to 0.506, 0.561, and 0.344, and jackknife support values of 87%, 53%, 

and 85% for the skull, cranium, and mandible data sets, respectively.  This is the model 

supported by the intraspecific analysis as well.  Another, less strongly supported module 

is M77, with γ* values of 0.541, 0.577, and 0.390 and jackknife support values of 13%, 

32%, and 15% for skull, cranium, and mandible data sets, respectively.  This model 

receives very limited support from the intraspecific analyses; the only support that those 

analyses offer comes from the cranial data of S. alfari.  An additional module, M79 also 

receives some support from the cranium data set (γ* = 0.593, jackknife support = 15%).  

This one is partially supported by intraspecific analyses of N. squamipes, O. palustris, 

and O. xantheolus. 

 Even though M53 and M77 span largely overlapping regions (including squamosal, 

parietal, interparietal, exoccipital, alisphenoid and palatine, glenoid fossa and mandibular 

processes), they differ in critical elements of the AP axis of the skull and mandible.  M53 

is unique in spanning the frontal and supraoccipital bones and mandible ramus, and M77 

is unique in spanning the maxillary bone.  Results of these interspecific analyses suggest 

the presence of separate caudal and rostral aspects of cranial divergence, a pattern 

approximately recovered by PC1 and PC2 of the skull and cranium data (Fig. II.24B).  
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PC1 of both data sets (which accounts for 41% of the skull and 38% of the cranial 

variation) is dominated in lateral view by variation at the parietal, interparietal, 

supraoccipital, squamosal (including the zygomatic process), and orbitosphenoid, and in 

ventral view by variation at the presphenoid, palatine, and glenoid fossa.  In contrast, PC2 

(skull: 6%, cranium: 7% of total variation) is dominated in lateral view by the frontal, 

maxilla (including the zygomatic process), lacrimals, and premaxilla, and in ventral view 

by palatine, palatal process of the maxilla, and the maxilla-premaxilla boundary.  

Notably, the morphological regions singled out by these axes overlap in the orbit/palatine 

region, just as the modules supported by this covariation structure do.  Regarding the 

mandible, PC1 and PC2 computed from the skull and mandible-alone data sets differ, 

even though both of these views support the same models.  In the skull data set (Fig. 

II.24B), PC1 (45% of the variance) shows variation at the ramus, molar alveolus, angular, 

and condylar regions, whereas PC2 (5%) shows variation at the molar and incisor alveoli, 

the ramus, and the condyloid process.  In the mandible data set (Fig. II.24B), both PC1 

and PC2 are dominated by variation at the ramus and all processes, which is consistent 

with the consensus module for the mandible based on optimal models (see above). 

 Ordinations using principal components are, as expected, almost identical for the 

skull and cranium, but slightly different for the mandible (Fig. II.24).  In the ordinations 

based on skull and cranium data, PC1 accounts for interspecific differences among O. 

palustris, O. couesi, N. squamipes, and M. minutus, whereas PC2 accounts for differences 

among M. caliginosus, O. xantheolus, and O. nigripes.  In contrast, in ordinations based 

on the mandible, both PCs account for variation in all seven species, although these 

ordinations are highly consistent with those that include the cranium.  Geometrically, the 

discrepancy between skull/cranium and mandible data seems to reflect a rotation of the 

same axes (see Fig. II.24A).  In anatomical terms, the discrepancy seems to result from 

co-disparity between ramus and alveoli in the former versus co-disparity among mandible 

processes in the latter.  These two patterns reflect distinct aspects of mandibular disparity.   

 As mentioned above, H. chacarius and S. alfari make disproportionate 

contributions to disparity, hence including them in the PCA results in a dramatic increase 

in the perceived dimensionality of this group, with the proportion of disparity captured by 
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PC1 dropping from 41% to 10%, from 38% to 22%, and from 45% to 13% for the skull, 

cranium, and mandible data sets, respectively.  Considering that these two species are 

also the ones with the most divergent patterns of modularity, it seems worth asking 

whether differences in mean shape have a similar structure as the intraspecific patterns of 

covariation, despite the fact that it is not possible to test developmental hypotheses for the 

species using only their means.  Figures II.25A and B show these differences for H. 

chacarius and S. alfari, respectively, computed by subtracting the mean shape of each of 

these two species from the mean shape based on all others species combined, after 

rotating them using ordinary Procrustes superimposition (Dryden and Mardia 1998).  

From these figures, it appears that the two species differ from that mean in different 

characteristics, although some are common to both.  One common feature is that both 

species show abundant differences in the ventral view of the cranium, particularly so in 

the palate-palatine region.  Similarly, both species show marked differences in the 

relative position of the molar alveolus along the AP axis, which seems to be highly 

conserved in other species.  Additionally, they differ along the lambdoid suture and 

zygomatic process of the squamosal.  However, they are dissimilar in that H. chacarius 

seems to differ slightly in the posterior braincase (in the supra- and exoccipital and 

parietal) and also in the frontal and maxillary bones, including the zygomatic spine, 

whereas S. alfari differs primarily toward the anterior aspect of the rostrum (nasal and 

pre-maxillary bones).  Major differences between these species relative to that mean are 

found only in the mandible:  in H. chacarius, differences are observed in most aspects but 

the condyle and the mental side of the incisor alveolus, whereas in S. alfari differences 

are concentrated in the ramus, the least differences seen in the condyloid and molar 

alveolus. 

DISCUSSION 

 Hypotheses of craniomandibular modularity were tested in nine ecologically 

diverse species of oryzomyine rodents to determine whether the same causal factors 

shape covariance structures in all species.  Such constancy is required if developmental 

processes are to constrain evolutionary divergence over long time scales (Alberch 1980; 

Maynard Smith et al. 1985; Zelditch et al. 1990).  Previous studies have compared 

covariance matrices to determine if they retain the same structure but few have asked 
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whether the developmental factors responsible for covariance structures are conserved 

and those that do have typically tested few developmental hypotheses (e.g., Zelditch et al. 

1990; Nemeschkal 1999; Monteiro et al 2005).  More importantly, prior studies did not 

take into account the complications due to the complex geometry of modules, 

particularly, the fact that they can be both biologically independent and yet capable of 

combining with each into "super-modules" (Nemeschkal 1999; Márquez 2008) and of 

evolving in concert (Wagner and Cheverud 2007).  Whether individual modules persist 

and retain their internal structure has been an open question.  In this study, I find that 

many of the same developmental modules are, in fact, detected in all nine species, 

suggesting that the internal structure of modules is conserved in this ecologically diverse 

group.  Moreover, this detailed examination of both conserved and divergent patterns in 

the whole-skull plus cranial and mandibular data sets shows that different mechanisms 

responsible for functional and developmental integration in crania and mandibles may 

result in qualitatively different patterns of modularity.  With regard to the evolutionary 

impact of these conserved modules, I find a high congruence between the patterns of 

conserved intraspecific modularity and interspecific co-disparity.  Among species with 

relatively similar skull shapes, this congruence is manifest as support of the same 

hypotheses of modularity in both intra- and interspecific data.  Species with highly 

divergent cranial shapes also have highly divergent patterns of cranial modularity.  Taken 

together, these results reveal a strong link between the developmental mechanisms 

underlying intraspecific variation and the major directions of evolutionary diversification. 

Intraspecific patterns of modularity 

Widespread support for a conserved a priori model of craniomandibular modularity 

 Two models of craniomandibular modularity are best supported by the data from 

seven of the nine species.  The one that fits most of the species includes a module that 

spans calvarium, basicranium and proximal mandible.  This module comprises frontal, 

parietal, interparietal, exoccipital, supraoccipital, and squamosal plus alisphenoid, 

palatine-palatal, and proximal-mandibular regions (module M53: Fig. II.3.53).  The other 

model contains that broad craniomandibular module plus a nasal module (comprising the 

skeletal component of the nasal capsule: nasal, lacrimal, and premaxillary bones [module 
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M6: Fig. II.3.6]).  The two exceptional species are S. alfari and H. chacarius; in them, the 

mandible is integrated with the rostral cranium, including the zygomatic arch, and the 

oropharyngeal region (i.e., palatines, pterygoids, and floor of maxilla and premaxilla).  In 

addition, in these two species, the oral cavity is strongly integrated.  Taken together, the 

hypotheses of modularity supported by most species in this study suggest that there is 

typically one module spanning the braincase, palate, and proximal half of the mandible.  

The cranial part of that module is also supported by the cranium-only data for six of the 

nine species.  Of the other three species, a hypothesized module that spans the entire 

cranium except the posterior basicranium fits two of them.  This module comprises 

basioccipital, ala temporalis, basisphenoid, pterygoids, periotic, and internal and external 

auditory meatus (module M79: Fig. II.3.79).  In the remaining species, H. chacarius, the 

same cranial module is found as described above for the craniomandibular data. 

  Heuristically modifying modular boundaries yields a clear pattern common to 

most species: cranial elements are integrated along the AP axis, producing a super-

module containing the calvarium and some combination of pre-maxillary, maxillary, and 

nasal bones.  This super-module usually excludes ventral structures (i.e., basicranium, 

palate), although they are included in some cases.  This same AP integration is found 

whether searches are initiated with a model containing a single calvarial module or 

separate calvarial and rostral modules.  AP axial integration therefore does not appear to 

be an artifact of the model used to initiate the search.  However, AP axial integration is 

not supported by PLS analyses, which suggest AP axial integration for only the three 

species (N. squamipes, O. xantheolus, and S. alfari) in which the best-fitting a priori 

models also predict AP integration.  The weak support from PLS for integration between 

anterior and posterior cranial structures suggests that these regions are only partially 

integrated, that is, it is possible that only some dimensions of their respective subspaces 

covary.  A pattern of partial integration is consistent with the idea that modules can be 

integrated because they interact with each other or because developmental processes 

structuring modularity have overlapping effects on two or more modules.  For the AP 

axis, this geometric interpretation implies that there are autonomous as well as integrating 

factors affecting anterior and posterior structures.  Interestingly, this also appears to be 

the case, but in the reverse direction, in H. chacarius, which does not support either a 



101 

 

priori or heuristic models of AP integration, but does partially support AP integration 

along the first PLS axis (Fig. II.5). 

 In contrast to the broadly shared patterns seen in the craniomandibular and cranial 

data, several disparate models fit the mandible-only data.  That does not appear to be due 

to low resolution of the data because, unlike the other two data sets, the number of 

modules supported by the data does not fluctuate with sample size (see Tables II.1, II.5).  

One explanation for the disparity of models fitting the mandible-only data is that there are 

multiple "layers" of processes influencing integration of this structure.  That possibility 

follows from the statistic used in this study to measure goodness of fit of a model (i.e., 

γ*), which is a pairwise distance between model and empirical matrix; an empirical 

matrix can be equidistant from two model matrices that occupy different positions in a 

multidimensional space.  Consequently, the equidistant model matrices may correspond 

to distinct but equally supported causal explanations.  Should that be the case, suboptimal 

models in the vicinity of best-supported models should also be considered relatively well-

supported.   

 Additional support for the hypothesis of multilayered mandibular variation is 

suggested by the observation that the pattern supported by the whole-skull data resembles 

that of the cranium-only data more closely than it does the mandible-only data.  This 

might indicate that, in addition to the disparate hypotheses of modularity supported by the 

mandible, there is an additional level of mandibular integration caused by the interaction 

between cranium and mandible.  This pattern can be interpreted as a hierarchy of causal 

factors, with the mandible nested within the skull (Kenney-Hunt 2007, cited by Wagner 

and Cheverud 2007).  Cranio-mandibular interactions may be another source of modular 

variation for the mandible, an interpretation supported by cases in which mandibular and 

cranio-mandibular patterns of modularity are indistinguishable (e.g., in O. nigripes; Fig. 

II.12A).  This is consistent with the explanations suggested above for integration within 

the AP axis of the cranium because it implies that there is a module spanning the 

posterior cranium and the proximal mandible distinct from other modules found within 

these structures.  This module seems to account for relatively more variation in the 

cranium than in the mandible, which leads to the re-interpretation of cranial integration 
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as craniomandibular integration, one that could not be detected without the joint analysis 

of both structures. 

Cranium vs. mandible 

 Modularity of crania and mandibles differ in several major aspects, perhaps the 

most evident being the higher degree of overall cranial integration, which is manifest as 

support for a super-module spanning the AP axis.  This super-module, found in all but 

one species, is not predicted by any a priori model, and as suggested by PLS analyses, it 

might best be interpreted as partial integration between distinct modules (rather than as 

occupying a high level in a hierarchy of nested modules).The fact that this form of 

integration is found only in the cranium suggests that causes of modularity differ between 

cranium and mandible even though both form from developmentally independent cell 

condensations (Hall and Miyake 2000).  One hypothesis to explain the discrepancy 

between these two skeletal complexes is that the structure of functional integration is 

essentially different between the two components (see Zelditch et al. 2009).  In the 

cranium, functional units are highly localized and developmental integration arises, at 

least partly, by coordinated growth within these localized functional components (rather 

than function per se), as predicted by the functional matrix theory (Moss and Young 

1969).  In the mandible, as Zelditch et al. (2008, 2009) hypothesize, integration could 

arise from the relationship between forces generated by muscles and experienced at teeth 

during mastication, i.e., between the loading induced by muscular contraction and 

occlusion.  Therefore, integration in the mandible is caused by function, rather than, as 

predicted by the functional matrix theory, by physical contact with a functional unit 

(Moss and Rankow 1968).  The mechanism of integration, bone's response to tensile 

forces, is thus common to cranium and mandible, but the spatial structure of those forces 

and their degree of localization differs between cranium and mandible. 

 One possible explanation for the contrast that I find between the cranium and 

mandible takes into account differences in their sources of non-allometric integration.  In 

the cranium, each skeletal module is influenced by at least four sources: (1) integration 

directly induced by growth of functional components, (2) integration by proximity among 

spatially adjacent skeletal elements, (3) integration among functionally coupled modules, 
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and (4) integration among tissues with similar cellular properties (e.g., cartilage, dermal 

bone, etc.).  Of these sources, two of them (2, 4) also contribute to modularity in the 

mandible, but the first and third become indistinguishable because intra-modular (e.g., 

within the ramus) and inter-modular integration (e.g., between ramus and molar alveolus) 

originate as direct effects of masticatory function. 

 The main distinction between mandible and cranium is therefore not their 

complexity or the number of modules (or factors) affecting each (Caumul and Polly 

2005) but rather how integration among modules originates in each.  According to the 

principles laid out above, it would seem that cranial modules become integrated over 

ontogeny because early growth is the only source of modular cohesion or autonomy, 

whereas mandibular modules become integrated by on-going function.  Consequently, we 

would expect that identifying individual modules of the cranium should become 

increasingly difficult through ontogeny, whereas mandibular modules should each 

account for a relatively high portion of the variation through adulthood.  Note that this 

distinction does not predict that either of these structures will be more or less integrated.  

If mandibular functions integrate the entire mandible, as suggested by Zelditch et al. 

(2008, 2009), we would expect each of these functions to produce a variational module 

and widespread integration would then result from spatiotemporal overlap among these 

modules.  The finding of a multilayered covariation structure in the mandible, 

characterized by high support for alternative, disparate models, could therefore be 

explained by different mandibular functions (e.g., gnawing, chewing, grinding) 

generating their own variational modules, each integrating different subsets of 

mandibular components into partially correlated subspaces. 

 Analyses of oryzomyines thus suggest that: (1) the cranium seems more 

integrated than the mandible but only because the modules embedded within the cranium 

are relatively more highly correlated; (2) the mandible appears to have a more complex 

structure of modularity than the cranium, comprising multiple layers of covariation (i.e., 

sets of subspaces), including those representing cranio-mandibular coupling and those 

accounting for intrinsic integration of the mandible.  These two results are consistent with 

the hypothesis that there are different mechanisms of cranial and mandibular integration.  
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The function-driven growth that is postulated to integrate the latter would cause each 

functional interaction within the mandible (e.g., between teeth and bone, bone and 

muscle, muscle and secondary cartilage, and so forth) to imprint its own covariation 

structure; (3) in agreement with these observations, it is possible to conclude that the 

covariation structures of mandible and cranium are at least partly independent, both 

functionally and developmentally; finally, (4) also consistent with these results is the 

observation that heuristic models seem to be more variable in the mandible than in the 

cranium; given that these interspecific differences do not seem to be structured according 

to phylogenetic relatedness, explanations for the resulting integration patterns may be 

found in details of each species’ ecology, possibly reflecting functional diversity. 

Connections with similar studies 

 The patterns seen in most of these oryzomyines broadly resemble those found in 

other rodents and primates, although a direct comparison between this study and others is 

complicated by the different approaches to measurement and by the fact that prior studies 

generally did not consider the possibility of modules spanning cranium and mandible.  

Despite these caveats, several studies have found patterns of integration resembling those 

seen in these oryzomyines.  For example, Zelditch et al. (1990) found support for both 

neurocranial and orofacial integration in four species of Sigmodon, in which orofacial 

integration was explained in terms of musculoskeletal or occlusive function.  Similarly, 

Willmore et al. (2006) found higher integration in calvarial and squamosal regions in a 

random-bred laboratory mouse strain (CV1), contrasting relatively low integration of the 

facial skeleton.  Additionally, significant integration has been found within neurocranial, 

orbital (i.e., squamosal/frontal/maxilla), and oral (including the palatal process of the 

palatine) regions in tamarins (Cheverud 1995) and macaques (Cheverud 1982), although 

nasal integration was not found in the former group.  However, integration of only the 

facial region is reported for Neotropical sakis (Marroig et al. 2004), and quantitative trait 

locus mapping (QTL) suggests that the calvarium and rostrum constitute two individual 

modules in mice.  Support for the latter pattern, however, is weakened by the limited 

number of morphometric variables sampled in that study, which exclude cranial variables 

critical for making the distinction between these results and those shown herein. 
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 The model that best fits the oryzomyine data, and which also appears broadly 

consistent with that seen in other rodents as well as primates, was originally derived from 

the phenotype of TGFβ2-null mice (Sandford et al. 1997).  Tgfβ2 is a 

growth/differentiation factor from the Bone Morphogenetic Protein family, which has a 

role in skeletal patterning and chondrogenesis (Sandford et al., 1997).  It is not clear why 

this factor should be the best predictor of covariation in natural populations, although 

Tgfβ2 might be a regulatory component of a functionally relevant module.  Other genetic 

correlates for a recurrent variational module, as discussed above, are muscle regulatory 

genes, which, when knocked-out (Rot-Nikcevic et al. 2007) affect the same regions that 

appear to be integrated in natural populations.  Other studies have found that population 

and geographic variation in cranial components can be traced to the modular effect of a 

single regulator, most notably, regulatory variation in Bmp4 (Abzhanov et al. 2004; 

Badyaev et al. 2008), which also belongs to the family of bone morphogenetic protein 

genes.  It is therefore possible that the pattern of craniomandibular integration found in 

this study is influenced, at least partly by a Tgfβ2-dependent regulatory network. 

 Most of the cranial regions spanned by this best-supported model are, in fact, 

functionally linked to masticatory activity, including the mandibular attachment sites of 

the masseter (see Fig. II.3.13), cranial and mandibular attachments of the temporalis (Fig. 

II.3.12), as well as other elements (i.e., parietal, squamosal, frontal) presumably loaded 

by these muscles based on data from other mammals (Herring and Teng 2000).  Although 

a functional hypothesis for the observed pattern of craniomandibular integration would be 

consistent with a posterior-cranial module as detected in this study, it is not, as discussed 

above, consistent with a proximal-mandibular module.   

 Irrespective of the mechanisms integrating the proximal-half of the mandible, 

present results indicate that such a module exists.  This is consistent with most 

quantitative-genetic studies of the mandible, which distinguish a distal (i.e., alveoli) and a 

proximal (i.e., mandibular processes) module (e.g., Cheverud et al. 1997; Mezey et al. 

2000; Ehrich et al. 2003; Klingenberg et al. 2003, 2004).  While these results do not 

contradict the proximal-mandibular module supported by cranio-mandibular data in 

oryzomyines, none of these studies have analyzed the patterns of pleiotropic interactions 
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between cranium and mandible, suggesting that a proximo-distal model of mandible 

modularity may be an incomplete model, and therefore difficult to interpret in functional 

or developmental terms.  Due to differences in anatomical coverage among studies, it is 

difficult to determine whether QTL-based results are consistent with the other, more 

complex patterns of proximo-distal mandibular integration supported herein and by 

Zelditch et al. (2008, 2009).  Although QTL studies routinely show pleiotropic 

interactions across the proximo-distal axis (see Kenney-Hunt et al. 2008 for a recent 

review), it would be necessary for such analyses to test alternative and more complex 

models of spatial distribution of pleiotropic effects in order to produce a result 

comparable to those presented herein. 

Comparative analysis of intraspecific patterns of modularity 

 Interspecific comparisons suggest a higher than expected congruence between 

patterns of modularity and co-diversity, in which the dominant multidimensional aspect 

of intraspecific covariation is also the main axis of interspecific differences in mean 

shape.  Furthermore, the congruence among these within- and among-species patterns is 

enhanced by the fact that the species with the most divergent shapes are also the ones 

with the most divergent patterns of modularity.  This relationship, however, applies only 

to crania, the region for which the most divergence is actually observed.  Congruence 

between intraspecific and interspecific covariation is expected for allometric data (Lande 

1979; Klingenberg 1996) but not necessarily for allometry-free data.  It is difficult to 

explain why intraspecific variation should so closely match among-species disparity 

except in terms of intrinsic constraints.  This suggests that the conserved modules 

detected for craniomandibular, and cranial data in particular, may constrain the 

dimensions in which these species have evolved. 

 These constraints, however, are not absolute.  Evidence for them is found in the 

first principal component of shape (after excluding the two highly divergent species).  

This component accounts for approximately 40% of the disparity and it describes a 

pattern of shape divergence that resembles the intraspecific pattern of modularity.  

However, this axis is dominated by differences among only four species.  The remaining 

three are differentiated mostly by PC2 (5%), which appear unrelated to either the 
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consensus or any supported pattern of intraspecific modularity.  The presence of 

dimensions of disparity that cannot be explained in terms of intraspecific modularity but 

that account for a substantially lower proportion of disparity is also consistent with the 

hypotheses of developmental constraints on cranial divergence in this group.   

 A different argument for the influence of constraints on evolutionary divergence 

can be made for the mandible.  In this case, interspecific data support two distinct 

patterns of modularity, suggesting that divergence is at least partially independent 

between cranium and mandible.  The first is the pattern associating mandible and 

cranium, the second is intrinsic to the mandible.  As previously discussed, integration 

within the proximal mandible is seen at both levels.  When the mandible is treated as part 

of the skull, it is the distal part that contributes most to disparity.  However, when treated 

as an isolated structure, it is the proximal half that dominates.  Congruence between the 

mandible-specific disparity and the intraspecific pattern of modularity suggests 

constraints on mandible diversification.  Several other studies have found that the 

proximal mandible makes a disproportionally greater contribution to disparity in rodents 

(e.g., Atchley et al. 1992; Duarte et al. 2000; Monteiro and dos Reis 2005), but this is not 

as compelling evidence for constraint as is the observed similarity between patterns of 

interspecific co-disparity and of intraspecific modularity. 
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Sampled species N 

Holochilus chacarius 60 

Melanomys caliginosus 48 

Microryzomys minutus 67 

Nectomys squamipes 70 

Oligoryzomys nigripes 54 

Oryzomys couesi 48 

Oryzomys palustris 67 

Oryzomys xantheolus 44 

Sigmodontomys alfari 30 

 
Table II.1.  List of oryzomyine species and sample sizes (N) used in this study. 
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Gene Module (Figure) Reference 
Egfr II.4.3 Miettinen et al. (1999) 
Fgf-3 II.4.8 Mansour et al. (1993) 
Chordin II.4.8 Bachiller et al. (2000) 
Fgf-2 II.4.9 Montero et al. (2000) 
Fgfr2 II.4.9-II.4.11 Perlyn et al. (2006) 
Fgfr3 II.4.9-II.4.11 Wang et al. (1999) 
PdgfαR II.4.19 Soriano (1997) 
Shh II.4.19 Jeong et al. (2004) 
Fgf-8 II.4.23 Trumpp et al. (1999) 
Dlx-2 II.4.23 Qiu et al. (1995) 
ET-1 II.4.52 Kurihara et al. (2004) 
Tgfβ2 II.4.53 Sanford et al. (1997) 
Tgfβ3 II.4.54 Proetzel et al. (1995) 
Bmp1 II.4.55 Suzuki et al. (1996) 
Noggin II.4.55 Warren et al. (2003) 
Msx2 II.4.55 Jabs et al. (1993) 
Alx4 II.4.55 Antonopoulou et al. (2004) 
Cart1 II.4.55 Zhao et al. (1996) 
Bmp7 II.4.56 Luo et al. (1995) 
Activin-βA II.4.57 Matzuk et al. (1995) 
Noggin+Chordin II.4.58 Bachiller et al. (2000); Stottmann et al. (2001) 
Ski II.4.59 Berk et al. (1997) 
RARα + RARγ II.4.60 Lohnes et al. (1994) 
Ihh II.4.61 Young et al. (2006) 
Gli2 II.4.62 Mo et al. (1997) 
Gli3 II.4.63 Johnson (1967; Schimmang et al. (1992) 
Wnt-1 + Wnt-3a II.4.64 Ikeya et al. (1997) 
Wnt-5a II.4.65 Yamaguchi et al. (1999) 
Dlx-1 II.4.66 Qiu et al. (1997) 
Dlx-5 II.4.67 Acampora et al. (1999) 
dHAND II.4.68 Yaganisawa et al. (2003) 
Hoxa1 II.4.69 Barrow and Capecchi (1999) 
Hoxa2 II.4.70 Rijli et al. (1993; Barrow and Capecchi (1999) 
Msx1 II.4.71 Satokata and Maas (1994) 
Bapx1 II.4.72 Tribioli and Lufkin (1999) 
Pax2 II.4.73 Torres et al. (1996) 
Pax6 II.4.74 Kaufman et al. (1995) 
Pax7 II.4.75 Mansouri et al. (1996) 
Pax9 II.4.76 Peters et al. (1998) 
Prx1 II.4.77 Martin et al. (1995) 
Gsc II.4.78 Yamada et al. (1995) 
Otx2 II.4.79 Matsuo et al. (1995) 
Ptx1 II.4.80 Lanctôt et al. (1999) 
Pitx2 II.4.81 Lu et al. (1999) 
Pbx1 II.4.82 Selleri et al. (2001) 
Mfh1 II.4.83 Winnier et al. (1997) 
Mf1 II.4.84 Kume et al. (1998) 

 
Table II.3.  List of secreted and transcription factors used to build hypotheses of “mutational 
targets” tested in this study.  Hypothesized modules are designed based on the expectation that 
knocking out a listed gene under a controlled background generates a covariance pattern that is 
similar to the effect (i.e., anatomical target) of the mutation.  Modules were drawn to match 
illustrations (in some cases, verbal descriptions) of mutational effects provided in the given 
references.
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Model Component modules  Model Component 

modules 
H0 {M1}  H33 {M52} 
H1 {M11}{M9}{M10}  H34 {M53} 
H2 {M13}{M12}{M14}{M15}  H35 {M54} 
H3 {M16}  H36 {M55} 
H4 {M6}{M2}{M7}{M9}{M4}{M8}  H37 {M56} 
H5 {M6}{M2}{M7}{M9}{M17}{M8}  H38 {M57} 
H6 {M6}{M3}{M7}{M9}{M4}{M8}  H39 {M58} 
H7 {M6}{M3}{M7}{M9}{M17}{M8}  H40 {M59} 
H8 {M6}{M5}{M7}{M9}{M4}{M8}  H41 {M60} 
H9 {M6}{M5}{M7}{M9}{M17}{M8}  H42 {M61} 
H10 {M6}{M2}{M7}{M9}{M4}{M13}{M12}{M14}{M15}{M8}  H43 {M62} 
H11 {M6}{M2}{M7}{M9}{M17}{M13}{M12}{M14}{M15}{M8}  H44 {M63} 
H12 {M6}{M3}{M7}{M9}{M4}{M13}{M12}{M14}{M15}{M8}  H45 {M64} 
H13 {M6}{M3}{M7}{M9}{M17}{M13}{M12}{M14}{M15}{M8}  H46 {M65} 
H14 {M6}{M5}{M7}{M9}{M4}{M13}{M12}{M14}{M15}{M8}  H47 {M66} 
H15 {M6}{M5}{M7}{M9}{M17}{M13}{M12}{M14}{M15}{M8}  H48 {M67} 
H16 {M6}{M2}{M7}{M9}{M4}{M16}{M8}  H49 {M68} 
H17 {M6}{M2}{M7}{M9}{M17}{M16}{M8}  H50 {M69} 
H18 {M6}{M3}{M7}{M9}{M4}{M16}{M8}  H51 {M70} 
H19 {M6}{M3}{M7}{M9}{M17}{M16}{M8}  H52 {M71} 
H20 {M6}{M5}{M7}{M9}{M4}{M16}{M8}  H53 {M72} 
H21 {M6}{M5}{M7}{M9}{M17}{M16}{M8}  H54 {M73} 
H22 {M18}  H55 {M74} 
H23 {M19}  H56 {M75} 
H24 {M19}{M18}  H57 {M76} 
H25 {M21}{M20}  H58 {M77} 
H26 {M21}{M20}{M22}  H59 {M78} 
H27 {M23}  H60 {M79} 
H28 {M23}{M9}  H61 {M80} 
H29 {M6}{M23}{M9}{M8}  H62 {M81} 
H30 {M6}{M23}{M18}{M8}  H63 {M82} 
H31 {M27}{M24}{M25}{M26}{M28}{M29}  H64 {M83} 
H32 {M44}{M43}{M42}{M45}{M39}{M41}{M40}{M31}{M35} 

{M32}{M37}{M38}{M36}{M47}{M46}{M48}{M50}{M49} 
{M51}{M34}{M33}{M30} 

 H65 {M84} 

  

 
Table II.4.  Models used in initial tests.  Module numbers refer to numbers in Figure II.3 
(i.e., M# = Fig. II.3.#) 
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Species: Views Best ranked models Jackknife 
Support1 γ* (95% CI) 

Holochilus chacarius:      

Cranium + mandible Heuristic 
{M11}{M18} 

100% 
0% 

0.570 
0.613 

(0.565-
(0.605-

0.586)
0.628)

Cranium Heuristic 
{M11}{M18} 

100% 
0% 

0.540 
0.633 

(0.534-
(0.629-

0.562)
0.648)

Mandible Heuristic 
{M46}{M47}{M48}{M77} 

100% 
0% 

0.332 
0.411 

(0.324-
(0.400-

0.356)
0.431)

Melanomys caliginosus:      

Cranium + mandible Heuristic 
{M53} (H34) 
{M53}{M6} 

100% 
0% 
0% 

0.466 
0.575 
0.575 

(0.459-
(0.565-
(0.566-

0.480)
0.586)
0.587)

Cranium Heuristic 
{M53} (H34) 

100% 
0% 

0.508 
0.615 

(0.496-
(0.601-

0.532)
0.628)

Mandible Heuristic 
{M46}{M48}{M77} 
{M16} (H3) = {M53} (H34) = {M80} (H61) 
{M5} {M16} (H20) 
{M46}{M47}{M48}{M49}{M50}{M51} 
(H32)  
{M5}{M12}{M13}{M14}{M15} (H14) 
{M12}{M13}{M14}{M15} (H2) 

100% 
0% 
0% 
0% 
0% 
0% 
0% 

0.363 
0.403 
0.423 
0.425 
0.425 
0.430 
0.431 

(0.352-
(0.391-
(0.408-
(0.413-
(0.419-
(0.419-
(0.420-

0.381)
0.425)
0.439)
0.439)
0.444)
0.453)
0.454)

 

Table II.5.  Best supported models for each species.  Given are the percentage of 
jackknife sub-samples in which each model was the best supported, the measure of model 
fit (γ*) and its 95% confidence interval (P = 1.0 in all listed cases, based on 1,000 Monte 
Carlo replicates).  Suboptimal models shown are those whose γ* CI overlaps the CI of 
the most supported model-combination model.  Ranks are based on the set comprising 66 
models (H0-H65) plus the best-supported combination of their individual modules, plus a 
heuristic model obtaining by iteratively changing the boundaries of the latter.  Jackknife 
support and 95% CI based on 500 jackknife sub-samples.  1Note that this is the 
proportion of replicates in which a model ranks first.  In most of these tests, the listed 
models rank in their noted positions in 100% of the replicates (e.g., in H. chacarius, in the 
cranial + mandible data set, model {M11}{M18} ranks 0% first, but 100% second). 
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Species: Views Best ranked models Jackknife 
Support1 γ* (95% CI) 

Microryzomys minutus:      

Cranium + mandible Heuristic 
{M53}{M6} 
{M53} (H34) 

100% 
0% 
0% 

0.494 
0.584 
0.593 

(0.485-
(0.576-
(0.581-

0.506)
0.598)
0.607)

Cranium Heuristic 
{M53} (H34) 

100% 
0% 

0.503 
0.597 

(0.494-
(0.585-

0.519)
0.611)

Mandible Heuristic 
{M47}{M48}{M49}{M50}{M51} 
{M46}{M47}{M48}{M49}{M50}{M51} 
(H32) {M12}{M13}{M14}{M15} (H2) 
{M5}{M12}{M13}{M14}{M15} (H14) 

100% 
0% 
0% 
0% 
0% 

0.254 
0.306 
0.315 
0.339 
0.342 

(0.246-
(0.298-
(0.307-
(0.328-
(0.332-

0.282)
0.334)
0.342)
0.367)
0.368)

Nectomys squamipes:      

Cranium + mandible Heuristic 
{M53}{M6} 
{M53} (H34) 

100% 
0% 
0% 

0.486 
0.606 
0.619 

(0.476-
(0.599-
(0.610-

0.499)
0.616)
0.630)

Cranium Heuristic 
{M79} (H60) 

100% 
0% 

0.501 
0.627 

(0.491-
(0.613-

0.523)
0.643)

Mandible Heuristic 
{M16}{M46}{ M47} 
{M46}{M47}{M48}{M49}{M50}{M51} 
(H32) 

100% 
0% 
0% 

0.375 
0.386 
0.392 

(0.364-
(0.375-
(0.386-

0.389)
0.401)
0.412)

Oligoryzomys nigripes:      

Cranium + mandible Heuristic 
{M53}{M6} 
{M53} (H34) 

100% 
0% 
0% 

0.460 
0.564 
0.567 

(0.452-
(0.555-
(0.557-

0.467)
0.575)
0.579)

Cranium Heuristic 
{M53} (H34) 

100% 
0% 

0.502 
0.622 

(0.494-
(0.608-

0.514)
0.634)

Mandible Heuristic 
{M46}{M48}{M77} 
{M46}{M47}{M48}{M49}{M50}{M51} 
(H32) {M5}{M12}{M13}{M14}{M15} (H14)
{M12}{M13}{M14}{M15} (H2) 

100% 
0% 
0% 
0% 
0% 

0.296 
0.354 
0.369 
0.371 
0.375 

(0.291-
(0.346-
(0.361-
(0.358-
(0.360-

0.307)
0.372)
0.389)
0.390)
0.397)

 
Table II.5.  Continued. 
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Species: Views Best ranked models Jackknife 
Support1 γ* (95% CI) 

Oryzomys couesi:      

Cranium + mandible Heuristic 
{M53} (H34) 
{M53}{M6} 

100% 
0% 
0% 

0.515 
0.589 
0.589 

(0.505-
(0.579-
(0.580-

0.525)
0.602)
0.603)

Cranium Heuristic 
{M53} (H34) 

100% 
0% 

0.494 
0.611 

(0.482-
(0.597-

0.505)
0.620)

Mandible Heuristic 
{M12}{M13}{M15} 
{M12}{M13}{M14}{M15} (H2) 
{M5}{M12}{M13}{M14}{M15} (H14) 
{M16} (H3) = {M53} (H34) = {M80} (H61) 

100% 
0% 
0% 
0% 
0% 

0.289 
0.420 
0.429 
0.437 
0.460 

(0.279-
(0.406-
(0.416-
(0.425-
(0.435-

0.302)
0.446)
0.455)
0.462)
0.485)

Oryzomys palustris:      

Cranium + mandible Heuristic 
{M53}{M6} 
{M53} (H34) 

100% 
0% 
0% 

0.480 
0.579 
0.581 

(0.473-
(0.571-
(0.572-

0.487)
0.592)
0.594)

Cranium Heuristic 
{M53} (H34)  
{M79} (H60) 

100% 
0% 
0% 

0.489 
0.594 
0.623 

(0.480-
(0.583-
(0.605-

0.504)
0.614)
0.645)

Mandible Heuristic 
{M46}{M48}{M77} 
{M46}{M47}{M48}{M49}{M50}{M51} 
(H32) {M5}{M12}{M13}{M14}{M15} (H14)

100% 
0% 
0% 
0% 

0.356 
0.409 
0.425 
0.435 

(0.347-
(0.404-
(0.420-
(0.427-

0.376)
0.427)
0.441)
0.453)

 
Table II.5.  Continued. 



115 

 

 

Species: Views Best ranked models 
Jackknife 
Support1 γ* (95% CI) 

Oryzomys xantheolus:      

Cranium + mandible Heuristic 
{M53}{M6} 
{M53} (H34) 

100% 
0% 
0% 

0.519 
0.646 
0.652 

(0.512-
(0.635-
(0.638-

0.529)
0.657)
0.663)

Cranium Heuristic 
{M53} (H34)  
{M18}{M19} (H24) 
{M19} (H23) 
{M79} (H60) 
{M63} (H44) 
{M77} (H58) 

100% 
0% 
0% 
0% 
0% 
0% 
0% 

0.533 
0.688 
0.691 
0.698 
0.698 
0.713 
0.714 

(0.520-
(0.675-
(0.681-
(0.684-
(0.686-
(0.697-
(0.698-

0.552)
0.703)
0.702)
0.708)
0.709)
0.737)
0.728)

Mandible Heuristic 
{M5}{M48}{M77} 
{M5} {M16} (H20) 
{M16} (H3) = {M53} (H34) = {M80} (H61) 
{M46}{M47}{M48}{M49}{M50}{M51} 
(H32) 

100% 
0% 
0% 
0% 
0% 

0.345 
0.412 
0.434 
0.436 
0.437 

(0.337-
(0.404-
(0.420-
(0.419-
(0.431-

0.363)
0.433)
0.451)
0.458)
0.455)

Sigmodontomys alfari:      

Cranium + mandible Heuristic 
{M19} (H23) 
{M53} (H34) 
{M18}{M19} (H24) 
{M77} (H58) 

100% 
0% 
0% 
0% 
0% 

0.520 
0.628 
0.629 
0.639 
0.640 

(0.511-
(0.617-
(0.610-
(0.633-
(0.622-

0.529)
0.639)
0.647)
0.648)
0.657)

Cranium Heuristic 
{M19} {M28} 
{M19} (H23) 

100% 
0% 
0% 

0.540 
0.581 
0.583 

(0.531-
(0.566-
(0.567-

0.557)
0.600)
0.602)

Mandible Heuristic 
{M46}{M48}{M77} 
{M16} (H3) = {M53} (H34) = {M80} (H61) 
{M5} {M16} (H20) 

100% 
0% 
0% 
0% 

0.298 
0.378 
0.401 
0.409 

(0.286-
(0.370-
(0.382-
(0.396-

0.325)
0.403)
0.445)
0.442)

 
Table II.5.  Continued. 
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Species 
Partial disparity (x1000) 

(in sq.  Procrustes units) 

Percent of total 

disparity 

H. chacarius 0.715 19.87% 

M. caliginosus 0.420 11.68% 

M. minutus 0.368 10.24% 

N. squamipes 0.311 8.65% 

O. nigripes 0.239 6.65% 

O. couesi 0.297 8.24% 

O. palustris 0.377 10.47% 

O. xantheolus 0.284 7.89% 

S. alfari 0.587 16.31% 

 
Table II.7.  Partial disparities contributed by each species to the total disparity among 
mean shapes of nine species of oryzomyines included in this study.  Computations based 
on craniomandibular data set.  Percent value of total disparity is shown.  Total disparity 
of the group equals 0.0036 squared Procrustes units. 



Microryzomys minutus

Oligoryzomys nigripes

Oryzomys couesi

Oryzomys palustris

Holochilus chacarius

Oryzomys xantheolus

Nectomys squamipes

Melanomys caliginosus

Sigmodontomys alfari

Figure II.1.  Phylogenetic relationships among species included in this study.
Modified from Weksler (2006).
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Figure II.2.  Diagrammatic representation of the lateral (top), mandible (middle),
and ventral (bottom) views of the skull analyzed in this study.  Landmarks are
indicated as open circles, semi-landmarks of the mandible are indicated as closed
circles.  Stars in lateral and ventral views represent common landmarks across
views; these landmarks are treated as part of the same module to construct
craniomandibular and cranial data sets.
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1 2 3

4 5 6

7 8 9

Figure II.3.  Modules used to define hypotheses of modularity.  Each module is
shown in grey (one module per set of diagrams).  Each module comprises a lateral-
cranial, mandibular, and ventral-cranial component.  Module numbers are referenced
in the text either as Fig. II.3.# or as M#.
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Figure II.3.  Continued.
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Figure II.3.  Continued.
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Figure II.3.  Continued.
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Figure II.3.  Continued.
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Figure II.3.  Continued.
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Figure II.3.  Continued.
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Figure II.3.  Continued.
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Figure II.3.  Continued.
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Figure II.3.  Continued.
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Figure II.21.  Part-whole PLS analysis based on best-supported modules for
Sigmodontomys alfari for cranial and mandibular data sets.  Each set of diagrams
includes a colored representation of the module being regressed onto the whole
structure, a deformation plot, and two statistics.  PLS analyses are based on entire
modules; deformation graphs correspond to projections of individual views onto first
PLS axis.  Statistics show the percentage of squared covariance between part and
whole explained by the depicted vector, and the P-value of this percentage for the
null hypothesis that this value could be produced by chance.  Non-significant values
may indicate lack of association between part and whole or that the part-whole
association cannot be appropriately represented by one dimension.
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Figure II.22.  Dendrograms showing similarity of oryzomyine species in model space.
Top: craniomandibular data; middle: cranium data; bottom: mandible data.  Distances
were calculated as 1 - correlation coefficient.  Data correspond to vectors of the 100
best models (according to g* values) for each species.
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APPENDICES 

Appendix A 

Photographs of typical specimens of the nine oryzomyine species included in this study. 
 
1.  Holochilus chacarius   

2.  Melanomys caliginosus   

3.  Microryzomys minutus   

4.  Nectomys squamipes   
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5.  Oligoryzomys nigripes   

6.  Oryzomys couesi   

 
7.  Oryzomys palustris   

8.  Oryzomys xantheolus   

 
9.  Sigmodontomys alfari   
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Appendix B 

Detailed list of specimens sampled for this study, indicating localities of origin and 
sampling date. 
 
Holochilus chacarius: 
  
Origin: Presidente Hayes, Paraguay.  Collection: University of Michigan (UMMZ): 
 
Captured Jul.  1978-Aug.  1979: 125997, 125999, 126000, 126001, 126002, 126003, 
126004, 126074, 126075, 126076, 126077, 126078, 133971, 133972, 133973, 133974, 
133975, 133976, 133977, 133978, 133979, 133980, 137137, 137138; captured Sep.-
Oct.  1986: 165990, 165991, 165992, 165993, 166149, 166150, 166176, 166197, 
166198, 166199, 166200, 166202, 166203, 166204, 166208, 166209, 166234, 166235, 
166236, 166237, 166238, 166239, 166260, 166325, 166326, 166327, 166328, 166329, 
166330, 166331, 166332, 166333, 166334, 166335, 166686; captured Oct.  
1988:166385, 166387, 166388, 166389, 166690. 
 
Melanomys caliginosus: 
 
Origin: Cerro Azul, Panama.  Collection: Smithsonian Institution (USNM): 
Captured Jan.-Apr.  1956: 305674, 306926, 302487, 302488, 302490, 302491, 302678, 
302679, 302680, 302682, 302683, 303096; captured Jun.  1957: 303098, 303099, 
303100, 305666, 305667, 305668, 305669, 305670; captured Jan.-Aug.  1958: 305671, 
305672, 305673, 306927, 306928, 306929, 306930, 306931, 306932, 306933, 306934, 
306935, 306936, 306937, 306938, 306940, 306941, 306942, 306943, 306945, 306946, 
306947, 306948, 310533, 310534, 310535, 310537, 310538, 310539, 310540, 310541, 
310542. 
 
Microryzomys minutus: 
 
Origin: Tabay, Mérida, Venezuela.  Collection: Smithsonian Institution (USNM): 
Captured Mar.-Apr.  1966: 374364, 374365, 374366, 374369, 374371, 374372, 
374375, 374377, 374380, 374381, 374382, 374386, 374387, 374390, 374396, 374398, 
374403, 374406, 374410, 374419, 374421, 374422, 374423, 374424, 374425, 374431, 
374434, 374435, 374436, 374441, 374443, 374446, 374448, 374453, 374454, 374455, 
374456, 374460, 374461, 374462, 374463, 374465, 374467, 374468, 374473, 374474, 
374475, 374480, 374481, 374484, 374486, 374489, 374490, 374492, 374493, 374494, 
374502, 374503, 374508, 374509, 374510, 374511, 387891, 387893, 387894, 387895, 
387897, 387899, 387901. 
 
Nectomys squamipes: 
 
Origin: Varjao, São Paulo, Brazil.  Collection: Smithsonian Institution (USNM).   
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Captured Aug.-Dec.  1969: 460525, 460527, 460528, 460529, 460530, 484187, 484188, 
484189, 484190, 484191, 484192, 484193, 484194, 484195, 484196, 484198, 484199; 
captured Feb.-Dec.  1970: 484200, 484202, 484203, 484204, 484205, 484206, 484207, 
484208, 484209, 484210; captured Jan.-Dec.  1971: 484211, 484213, 484214, 484215, 
484216, 485058, 485059, 485060, 485064, 485065, 485066, 485067; captured Mar.-
Dec.  1972: 462065, 462066, 485069, 485071, 485068, 485070, 485073; captured Dec.  
1973: 462067, 462071; captured May-Dec.  1974: 462072, 462073, 542970, 542971, 
542972, 542973, 542974, 542975, 542976, 542977, 542978, 542979, 542980, 542982, 
542983, 542984, 542985, 542986, 542987, 542988; captured Jan.-Sep.  1975: 542989, 
542990, 542991, 542993, 542994, 542995, 542996, 542997, 542998. 
 
Oligoryzomys nigripes: 
 
Origin: Ybycui N.P., Paraguari, Paraguay.  Collection: University of Michigan (UMMZ): 
Captured Jun.  1979: 133839, 133840, 133841, 133842, 133843, 133844, 133845, 
133846, 133847, 133849, 133850, 133851, 133852, 133853, 133854, 133855, 133856, 
133857, 133858, 133859, 133860, 133861, 133862, 133863, 133864, 133865, 133866, 
133867, 133868, 133869, 133870, 133871, 133873, 133874, 133875, 133876, 133879, 
133880, 133881, 133882, 133883, 133884, 133885, 134356, 134357, 137041, 137042, 
137043, 137044, 137046, 137047, 137048, 137049, 137050, 137052, 137053, 137054, 
137055, 137056, 137059, 137565. 
 
Oryzomys couesi: 
 
Origin: Uaxactun, Peten, Guatemala.  Collection: University of Michigan (UMMZ): 
Captured Mar.-May 1931: 63187, 63188, 63189, 63190, 63191, 63192, 63193, 63194, 
63195, 63196, 63197, 63198, 63199, 63201, 63202, 63203, 63204, 63206, 63207, 63208, 
63209, 63210, 63211, 63212, 63213, 63214, 63215, 63216, 63217, 63218, 63219, 63220, 
63221, 63223, 63224, 63226, 63227, 63228, 63229, 63230, 63231, 63232, 63233, 63235, 
63244, 63245, 63246, 63247, 63248, 63249, 63251, 63252, 63253, 63254, 63255, 63256, 
63257, 63259, 63260, 63261, 63263, 63265, 63266, 63267. 
 
Origin: Veracruz, Mexico.  Collection: University of Michigan (UMMZ): 
Captured Jan.  1946: 89901, 89907, 89908, 89909, 89910, 89911, 89912, 89913, 
89914, 89915, 89916, 89917, 89918, 89919, 89920, 89921, 89922, 89923. 
 
Oryzomys palustris: 
 
Origin: Cameron Parish, Louisiana, USA.  Collection: Louisiana State University 
(LSUMZ): 
Captured Feb.-Mar.  1986: 28913, 28921, 28922, 28923, 28924, 28925, 28926, 28930, 
28931, 28932, 28934, 28939, 28940, 28946, 28947, 28948, 28950, 28953, 28954, 28955, 
28956, 28957, 28964, 28965, 28966, 28967, 28968, 28972, 28973, 28974, 28975, 28976, 
28981, 28982, 28983, 28984, 28985, 28987, 28988, 28989, 28990, 28991, 28993, 28994, 
28995, 28996, 28997, 29001, 29002, 29003, 29004, 29005, 29006, 29008, 29014, 29016, 
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29017, 29018, 29019, 29020, 29021, 29035, 29036, 29037, 29357, 29358, 29359, 29361, 
29363, 29364. 
 
Oryzomys xantheolus: 
 
Origin: Ancash, Peru.  Collection: Field Museum (FMNH): 
Captured Mar.  1954: 81381, 81382.   
 
Origin: Lambayeque, Peru.  Collection: Field Museum (FMNH): 
Captured Mar.-Apr.  1954: 81383, 81384, 81385, 81386, 81387, 81388.   
 
Origin: Piura, Peru.  Collection: Field Museum (FMNH): 
Captured Apr.-Jun.  1954: 81389, 81390, 81391, 81392, 81393, 81394, 81395, 81397, 
81398, 81399, 81400, 81401, 81402, 81403, 81404, 81405, 81406, 81407, 81431. 
 
Origin: Tumbes, Peru.  Collection: Field Museum (FMNH): 
Captured Jul.  1954: 81408, 81409, 81410, 81411, 81412, 81413, 81414, 81415, 81416, 
81417, 81418, 81419, 81420, 81421, 81422, 81423, 81424, 81425, 81426, 81427, 81428, 
81429, 81430. 
 
Sigmodontomys alfari: 
 
Origin: Cana, Panama.  Collection: Smithsonian Institution (USNM): 
Captured Mar.  1912: 178622, 178623, 178624, 178625, 178626, 178628, 178629, 
178630, 178631, 178632, 178633, 178634, 178635, 178636, 178637, 178639, 178640, 
178641, 178977. 
 
Origin: Cerro Azul, Panama.  Collection: Smithsonian Institution (USNM): 
Captured Mar.  1955: 302492; Captured Jun.  1957: 305717; Captured Jan.-Oct.  
1958: 306963, 306964, 306965, 306966, 306967, 306969, 310597; Captured Feb.  
1960: 314582. 
 
Origin: Darien, Panama.  Collection: Smithsonian Institution (USNM): 
Captured Feb.-Mar.  1959: 310585, 310586, 310587, 310588, 310589, 310590, 310591, 
310593, 310595, 310596. 
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