
STATISTICAL PROBLEMS IN WIRELESS

SENSOR NETWORKS

by

Natallia V. Katenka

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2009

Doctoral Committee:

Professor George Michailidis, Co-Chair
Assistant Professor Elizaveta Levina, Co-Chair
Professor Alfred Hero III
Assistant Professor Stilian Stoev

c© Natallia V. Katenka 2009
All Rights Reserved

To my Parents, Husband, and Sister

ii

ACKNOWLEDGEMENTS

I owe a debt of gratitude to many people who contributed to my success in com-

pleting this dissertation. First of all, I have been privileged to have the direction

and guidance of two excellent advisers, my co-chairs Professors Elizaveta Levina and

George Michailidis. From the first day of my graduate studies in Michigan, Eliza-

veta has been very generous with her time and has provided very helpful advice on

everything from the course schedule, the choice of my dissertation topic, the method-

ological design, the writing process to the choice of my future career. Her support

and her ability to bring me back on track at difficult times have been a godsend.

George likewise made invaluable contributions to the development of my ideas and

the organization of my research. He has always motivated me to do my best work,

provided timely feedback on each part of my dissertation and keen insight into the

significance of my research. Both Liza and George introduced me to the joys of

academic research not only by teaching me about the issues at hand, but also by

encouraging my trips to a number of workshops and conferences and by sharing with

me practical experiences they had accumulated through their professional careers

and personal lives.

My other committee members, Professors Alfred Hero and Stilian Stoev, have

also contributed insightful and helpful comments and suggestions. I am grateful to

Alfred Hero for stimulating conversations that reassured me of the significance of my

research during several workshops and seminars. I would also like to express my deep

iii

gratitude to Professor Tailen Hsing for his help during one of my projects and my job

application process. I would like to offer my sincere thanks to Brenda Gunderson, a

person, who awakened and inspired my teaching abilities, and who always provided

me with understanding and comforting talks. I am grateful to the Department of

Statistics of the University of Michigan that supported me financially in various ways

throughout the past five years. I am very thankful to our graduate program assistant

Lu Ann Custer and department assistant Mary Ann King for their help with all my

paperwork. Many thanks to all my friends who helped me to relieve the emotional

storms and stress of graduate school, especially, to Bodhisattva Sen, Matthew Linn,

Harsh Singhal, Herle McGowan, Amy Wagaman, Jason Goldstick, Sahar Zangeneh,

and Ali Shojaie.

Finally, I owe much gratitude to my parents, Valjantsina and Uladzimir Katenka,

for always believing in me and encouraging me to achieve my goals. I owe them for

all they had sacrificed to give me a good education and a happy life. I will always

feel in my heart their infinite love, joy, and faith in me. I am deeply grateful to

my husband, Pavel Mikhno. His sincere love, understanding, and constant everyday

support have been invaluable in helping me to focus on my academic pursuit. I would

very much like to thank my only sister, Olga Marchenko, and her family. With her

hard work, enthusiasm, compassion, and generosity, Olga has always been a prime

example for me. She has always been there for me, and has never failed to do what

she could to further my progress.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

CHAPTER

I. Overview . 1

1.1 Wireless Sensor Network Design Issues . 2
1.2 Wireless Sensor Network Data Fusion . 5

1.2.1 Target Detection . 6
1.2.2 Single Target Localization and Tracking 6
1.2.3 Multiple Target Localizations and Tracking 7

1.3 General Linear Data Fusion for Classification 8

II. Cost-Efficient Approach to Wireless Sensor Network Design 9

2.1 Introduction . 9
2.2 Problem Formulation . 12
2.3 Methods and Algorithms . 14

2.3.1 The Coverage Constraint . 14
2.3.2 The Connectivity Constraint . 20
2.3.3 Joint Coverage and Connectivity Optimization 26

2.4 Extensions . 31

III. Target Detection with Wireless Sensor Networks 33

3.1 Introduction . 33
3.2 Methods and Algorithm . 38

3.2.1 Decision Fusion for Target Detection 38
3.2.2 Local Vote Decision Fusion (LVDF): the algorithm 40
3.2.3 LVDF: threshold selection . 42
3.2.4 LVDF: Central Limit Theory for threshold approximation 47

3.3 Performance Evaluation . 50
3.4 Temporal Decision Fusion . 57
3.5 Performance Evaluation for Temporal LVDF 59

IV. Localization and Tracking of a Single Target with Wireless Sensor Networks 62

4.1 Introduction . 62
4.2 Methods and Algorithms . 65

4.2.1 Localization from Original Decisions 66

v

4.2.2 Localization from LVDF Decisions 68
4.2.3 Hybrid Maximum Likelihood Estimates 70
4.2.4 Properties of Maximum Likelihood Estimates 71

4.3 Performance Evaluation . 73
4.3.1 Detection Performance . 74
4.3.2 Localization and Signal Estimation Accuracy 75
4.3.3 Starting Values . 77
4.3.4 Robustness to Model Misspecification 81
4.3.5 Confidence Region Estimation . 82
4.3.6 Computational Costs . 83

4.4 Single Target Tracking . 85

V. Localization and Tracking of Multiple Targets with Wireless Sensor Net-
works . 89

5.1 Introduction . 89
5.2 Problem Formulation . 93
5.3 Methods and Algorithms . 94

5.3.1 Localization from Energy Readings 95
5.3.2 Localization from Binary Decisions 95
5.3.3 Localization from LVDF Decisions 96
5.3.4 Hybrid Maximum Likelihood Estimates 97
5.3.5 Estimating the Number of Targets 98

5.4 Multiple Target Tracking . 98
5.5 Performance Evaluation . 102

5.5.1 Choosing Starting Values for the Localization of Multiple Targets . 103
5.5.2 Identifying the Location and Estimating the Number of Multiple

Targets . 107
5.5.3 Tracking of Multiple Targets . 109

5.6 Applications . 112
5.6.1 The NEST project . 112
5.6.2 The ZebraNet Project . 114

VI. Local Data Fusion Framework for Classification in Wireless Sensor Net-
works and Beyond . 118

6.1 Introduction . 118
6.2 Methods and Algorithms . 120

6.2.1 Problem Formulation . 120
6.2.2 The Linear Discriminant Rule . 121
6.2.3 A Local Data Fusion for Classification 122

6.3 Extensions . 131
6.4 Performance Evaluation . 133

6.4.1 Classification of binary textures . 133
6.4.2 Handwritten Digit Recognition . 138

VII. Conclusions and Future Research . 140

BIBLIOGRAPHY . 142

vi

LIST OF FIGURES

Figure

2.1 Average area not covered εS (solid line) with a 95% confidence band (dotted lines)
obtained from simulations, together with the theoretical value (dash-dot line) as
a function of the number of sensors n for s = 0.1 (left panel) and s = 0.2 (right
panel), with p = 1. Results are averaged over 100 deployments on a unit square. . 16

2.2 Number of sensors n(s) as a function of sensing radius s for different values of the
active state probability p with ε = 0.05 (left panel), and for different values of ε
with p = 1 (right panel). 16

2.3 Network cost function n(s)C(s) (left panel) and its first derivative (right panel)
with coefficients c0 = 1 and c1 = 1000 for different values of β1, with p = 1,
ε = 0.05, S = [0.01, 0.035]. 18

2.4 Number of sensors n(s) (left panel), sensor unit cost C(s) (middle panel), and
network cost function n(s)C(s) (right panel) for collected and approximated data
with p = 1, ε = 0.05, S = [0.0025, 0.3]. 19

2.5 Left panel: measure of fit (R2) and estimated error variance (Error) for different
regression models (“3” corresponds to q(δ) in (2.19)). Right panel: estimated values
of q(δ) from simulations over 500 random deployments for different values of r with
p = 1, together with the fitted curve. 23

2.6 Number of sensors n as a function of communication radius r for δ = 0.05 (left
panel) and δ = 0.1 (right panel). 24

2.7 Approximated sensor unit cost C(r) (left panel), corresponding number of sen-
sors n(r) (middle panel), and network cost n(r)C(r) (right panel) as a function of
connectivity range r = [0.05, 0.35] with p = 1 and δ = 0.05. 26

2.8 The curve defined by n1(s) = n2(r) with ε = δ = 0.05, p = 1. 28

2.9 Number of sensors n(s, r) (left panel), sensor cost function C(s, r) (middle panel),
and overall network cost n(s, r)C(s, r) (right panel) with c0 = 93 c1 = 104.329,
c2 = 12.2623, β1 = 2.8765,β2 = 1.6163, ε = δ = 0.05, and p = 1. The optimal
design is s = 0.156, r = 0.348, n = 38 and the optimal cost is 38× 346.4 = 13163.2
dollars. 30

3.1 Left panel: Target signal generated by the model Si(v) = S0 exp(−||si − v||2/η2)
for a target at location v = (0.5, 0.5) with S0 = 2, η = 0.1; Right panel: Target
energy contaminated by Gaussian noise of variance σ2 = 0.16 (signal-to-noise ratio
S0/σ = 5). 34

vii

3.2 Ordinary vs Local Vote decision fusion under a square grid design (top panels) and
random deployment (bottom panels). The network is comprised of 100 sensors,
with individual sensor false alarm probability γ = 0.2, system-wide false alarm
probability F = 0.1 and a target located at the center of the monitored region R.
The signal is generated by the model Si = S0 exp(−||si−v||2/η2), with S0 = 2, η =
0.1, and the measured energy is corrupted by Gaussian noise with σ = 0.4. 41

3.3 Example of sensor neighborhoods with Mi = 6, Mj = 5 and nij = 3. 42

3.4 Square (left panel), hexagonal (center panel) and diamond-shaped (right panel)
neighborhoods on a regular grid. 45

3.5 Left panel: Root mean squared error (RMSE) of the normal approximation of
the system’s false alarm probability for grids with neighborhood sizes M = 5, 9,
together with ODF, as a function of the grid size n (number of sensors N = n2).
The individual sensor’s false alarm γ = 0.2, and the RMSE is computed over the
range of F = 0 . . . 0.5. Right panel: A plot of the calculated false alarm probability
quantiles against the theoretical ones of a standard normal distribution for a 25×25
grid, with γ = 0.2 and M = 5. 52

3.6 Probability of target detection as a function of SNR (in dB) for models M1 (left
panel) and M2 (right panel). 54

3.7 Probability of detection as a function of the system-wide false alarm probability F
(ROC curve) for models M1 (left panel) and M2 (right panel). 55

3.8 Probability of detection as a function of SNR for signal decay parameter(left panel)
and the system-wide false alarm probability F (ROC curve)(right panel) for η = 0.08. 55

3.9 Number of positive decisions as a function of the sensor’s false alarm α (left panel,
with η = 0.1) and as a function of the signal decay parameter η (right panel, with
α = 0.2) for model M1 with F = 0.1 and SNR = 7. 56

3.10 Target detection probability for various levels of signal decay η. 57

3.11 Temporal LVDF probability of detection for different time slots and uncorrelated
noise (left panel), and for a fixed time slot with different values of the correlation
coefficient for correlated noise (right panel). 60

3.12 Temporal LVDF probability of detection for different time slots and uncorrelated
noise (left panel), and for a fixed time slot with different values of the correlation
coefficient for correlated noise (right panel). 60

3.13 Temporal LVDF probability of detection for slow (left panel) and fast moving tar-
gets (right panel) under a grid deployment. 61

4.1 Average distance from true target location v as a function of η for square grid
deployment. (a) SNR = 2, model M1; (b) SNR = 2, model M2; (c) SNR = 5,
model M1; (d) SNR = 5, model M2. 78

4.2 Root Mean Squared Error of estimating S0 as a function of η for square grid de-
ployment. (a) SNR = 2, model M1; (b) SNR = 2, model M2; (c) SNR = 5, model
M1; (d) SNR = 5, model M2. 79

viii

4.3 True model M2 misspecified as M1 with SNR=5. (a) The difference between average
distances from true v for misspecified and true models; (b) The difference between
RMSE of Ŝ0 for misspecified and true models. 82

4.4 True noise distribution t3 misspecified as Gaussian, with SNR=5. (a) The difference
between average distances from true v for misspecified and true models; (b) The
difference between RMSE of Ŝ0 for misspecified and true models. 83

4.5 Distribution of iterations to convergence. (a) ML algorithms; (b) EM algorithms;
(c) HEM algorithms. 85

4.6 Tracking a moving target: (a) Estimated target trajectory for a single realization;
(b) Average distance from the true trajectory (over 100 replications). 87

4.7 Tracking a stationary target with evolving signal:. (a) Estimated signal ampli-
tude for a single realization; (b) Average RMSE of temporally fused S0 (over 100
replications). 88

5.1 Left panel: The activation pattern of NEST sensors by a person traversing the
monitored area. Right panel: The trajectory of a single zebra in the monitored area. 90

5.2 Target located at x = [0.25, 0.25]. 104

5.3 Clustering results of initial (upper panels) and corrected (lower panel) decisions. . 105

5.4 Four targets with η = 0.1 and S0 = 2 located at x1 = (0.42, 0.26), x2 = (0.59, 0.69),
x3 = (0.42, 0.75), x4 = (0.77, 0.95) in the monitored area R; SNR=3. (a) Signal
emitted by targets, (b) initial and (c) corrected decisions. 109

5.5 True trajectories (solid lines) and positions estimated by ML(Z) at each time point
for three targets with SNR = 5. (a) The signal from the second target is briefly
lost; (b) Two targets come close together and the third target briefly loses signal;
(c) Another noise realization for (b). 110

5.6 (a) True trajectories; (b) Average estimated number of targets as a function of time. 111

5.7 Estimated and true trajectories for one, two, and three NEST targets. 113

5.8 Averaged distance from the true trajectory of a single moving target (Sc.1) as a
function of λ. 113

5.9 The recorded locations of the single zebra (a) and the four zebras (b) scaled and
plotted on the unit square. 116

5.10 True and estimated by HEM(Z) coordinates x(t) and y(t) for the zebra. 116

5.11 True and estimated by HEM(Z) coordinates x(t) and y(t) for the four zebras. . . . 117

6.1 (a) Weights and (b)the probability of correct classification as a function of p. (d = 1,
π0/π1 = 1, σ = 1, µ1 = 1, µ0 = 0) . 130

6.2 Parameters {α, β, γ, δ, ε} corresponding to binary textures of (a) Type 1, (b) Type
2, and (c) Type 3. 134

ix

6.3 True labels Yij corresponding to binary textures of (a) Type 1, (b) Type 2, and (c)
Type 3. 134

6.4 Simulated Xij corresponding to binary textures of (a) Type 1, (b) Type 2, and (c)
Type 3. 135

6.5 Labels predicted via LDA for binary textures of (a) Type 1, (b) Type 2, and (c)
Type 3. 135

6.6 Labels predicted via LDA-LF corresponding to binary textures of (a) Type 1, (b)
Type 2, and (c) Type 3. 136

6.7 (a) Estimated average difference (Pz − Px) as a function of SNR.(b) Universal
neighborhood 4× 2. 137

x

CHAPTER I

Overview

Wireless Sensor Networks (WSN) is a new technology which allows monitoring

natural phenomena in space and time. Originally, wireless sensor networks were

used for military applications, but currently they are employed in a variety of civil

applications, including surveillance, chemical and biological agent monitoring, secu-

rity in critical infrastructures, environmental and habitat monitoring, etc. Some of

these application areas cover a broad range of objectives. For example, surveillance

applications extend from intruders’ detection and tracking to in-home monitoring

of elderly patients [102]. Environmental applications include land monitoring [75],

recognition of amphibian populations [46] and underwater tsunami and seaquake

detection [5]. Other recent applications of WSNs include identification of chemical,

biological, radiological, nuclear and explosive phenomena1, and infrastructure moni-

toring [123]. Technological constraints imposed by the nature of WSN together with

their increased importance in a number of applications have created a fertile ground

for research. There is active involvement from diverse research communities, includ-

ing electrical engineering and computer science, materials science and manufacturing,

and, more recently, statistics.

1Sensornet: Nationwide detection and assessment of chemical, biological, radiological, nuclear and explosive
threats, ”http://www.sensornet.gov”

1

2

Wireless sensor networks are built from a large number of autonomously powered

devices (sensors) capable of sensing signals from their surrounding environment, with

limited communication, computing and storage capabilities. Each sensor consists of

four basic components: a power unit which supports all sensor operations; a sensing

unit which collects environmental measurements and translates the analog signal

of the observed phenomenon (energy) into a digital signal via an analog-to-digital

converter (ADC); a processing unit, which stores and pre-processes the digital signal;

and a transceiver unit, which is responsible for all sensor communications. In a

WSN, sensors are linked by a wireless medium – radio, infrared or optical. The

transmitted data need to be routed to a ’sink’ node, also known as task manager,

or data fusion center. The network layer controls the routing protocol between the

sensor and the sink nodes. Power efficiency is of paramount importance, and specially

designed protocols have been developed for WSNs (more details can be found in

[4]). Processing and storage capabilities of WSNs range from devices capable of

carrying out computational tasks to simple sensing devices; the former are able to

obtain measurements, process them and even store some ’sufficient’ statistics for a

limited time period, while the latter are constrained to getting data and immediately

transmitting them. Finally, in many cases the location of the sensors is unknown

and needs to be estimated by the network [49]. When the knowledge of the sensor

locations is crucial, an additional location finding unit (for instance, GPS) may be

installed. However, it may significantly increase the cost of the network.

1.1 Wireless Sensor Network Design Issues

Technological constraints of sensors coupled with the application area under con-

sideration determine to a large extent the deployment strategy for the WSN. For

3

example, in industrial applications [59] the sensors are deployed at specific locations

of interest; the same holds true for structural monitoring [124]. In various environ-

mental applications the sensors are often deployed in a one-dimensional array pattern

(see Soil Pylon Development and Palmdale Test Bed Deployments2) or on a fairly

regular grid.

However, in many situations deterministic deployment is neither feasible nor prac-

tical; e.g., when the region monitored by the WSN is not easily accessible. In such

cases, deployment mechanisms are often equivalent to a random positioning of the

sensors. For example, a non-accessible area, such as a contaminated site or a bat-

tlefield, requires aerial deployment, which leads to a random assignment of sensor

locations [4]. Sensors in underwater networks are usually anchored to the sea floor

and attached to a floating buoy that regulates their position [5]. The imprecision of

this mechanism can be well approximated by a random deployment. Another exam-

ple is embedding sensors in materials for measuring their properties, such as concrete,

ablative materials (see the MSRS developed by NASA3) or polymer structures [66].

As a rule, a sensor network under any deployment should satisfy two fundamental

constraints: coverage (all or most of the region of interest is within the sensing

range of at least one sensor) and connectivity (each sensor can communicate with

any other sensor either directly or by relaying information through its neighbors).

These constraints are critical for the wireless sensor network to be able to accomplish

its task. In regular deterministic deployments it is easier to provide the necessary

coverage of the phenomenon under consideration and also to guarantee connectivity

amongst the sensors; on the other hand, in a random deployment scenario it is more

2Soil Pylon Development and Palmdale Test Bed Deployments,
http://research.cens.ucla.edu/areas/2007/Contaminant/projects.htm.

3Embedded Sensors for Measuring Surface Regression, Stennis Space Center,Mississippi, NASA Tech. Briefs,
Electronics and Computers,2006.

4

difficult to satisfy these constraints.

In Chapter II we describe a general flexible approach to design of wireless sensor

networks under the random deployment mechanism (see also [53]). Although sensors

are relatively cheap, the overall cost may be large due to the size of the network;

hence, the main objective is to minimize the overall network cost, while enforcing

the coverage and connectivity constraints. The cost of sensing and communications

is incorporated into the design of the network; we also allow for unreliable sensors.

In the proposed approach, cost is treated generically and can correspond to either

a fixed acquisition cost, or an operational cost or a combination of both. Our ap-

proach can be used as part of any feasibility study during the planning stages for

the deployment of a wireless sensor network, when decisions about its capabilities

and cost are considered. The technical contribution is the derivation of a new simple

bound on the probability of a network being connected, which exhibits a very good

performance in simulations shown to be better suited for network design studies than

other existing bounds.

Additional sensor network design issues include the estimation of the sensor loca-

tions, lossless communication protocols, synchronized transmissions to other sensors

and the center node, network size-scalability, network and sensors reliability, etc.

Problems related to these issues are out of the scope of this work, but they have

been of a particular interest of the engineering and computer science research com-

munity for the last decade (for comprehensive review see [6], [65], [113] and references

therein).

In what follows next, we assume that all communication and networking issues

have been settled in advance and we focus only on the collaborative signal processing

task at hand.

5

1.2 Wireless Sensor Network Data Fusion

Detection, identification and tracking of spatial phenomena are important tasks

in various environmental and infrastructure applications. Typically, the sensors mea-

sure the phenomenon under consideration at discrete points in space and time and

the task of the network is to integrate (fuse) the available data in order to estimate

and track the parameters of interest; for example, in surveillance monitoring [34],

the task is to detect an intrusion and follow its path; in habitat monitoring [75], to

identify and track herds; in environmental monitoring [87], to estimate soil moisture

levels [13], dispersion of pollutants [56], etc.

In our setting, we assume that each sensor records a signal (temperature, vibra-

tion, etc) emitted from a target, makes a decision about the target’s presence/absence,

and then transmits either the signal or the decision to the fusion center, which makes

a final situational assessment. Sensors themselves have limited capabilities, and data

fusion from many sensors enhances the performance, especially if the individual sen-

sors are only providing single bit (binary) results. Transmission of binary decisions

instead of signals offers savings in communication costs, but binary decisions are unre-

liable in noisy environments. Our major contribution to this problem is an algorithm

to improve the reliability of binary decisions, the Local Vote Decision Fusion (LVDF).

In LVDF, sensors correct their initial decisions by first consulting the neighboring

sensors. This results in correlated decisions, which presents technical challenges. Us-

ing the LVDF, we develop new data fusion algorithms for target detection (making a

network-level decision about the presence of a target), target localization (estimating

the target’s position), and target tracking (estimating trajectories of multiple moving

targets over time).

6

1.2.1 Target Detection

We investigate the problem of target detection by a wireless sensor network in

Chapter III. We propose and describe an LVDF-based detection framework that

guarantees a given false-alarm level for the network. We show that this framework

performs significantly better than existing methods based on binary data, especially

in a noisy environment. The critical step in this work is adapting a central limit

theorem for correlated random fields and deriving an analytical approximation for

the network-wide decision threshold. Our detection approach makes no assumptions

about the target signal model or background noise distribution, and can be directly

applied to multiple target detection. We also extend this framework to temporal

fusion, where information becomes available over time.

1.2.2 Single Target Localization and Tracking

In Chapter IV, we discuss different approaches to the problem of a single tar-

get localization and signal diagnostics by a wireless sensor network. We develop a

pseudo-likelihood based method for estimating the target’s location and signal mag-

nitude for the proposed LVDF mechanism. Two variants – direct optimization of the

likelihood function and an expectation-maximization algorithm – are developed and

compared both for the original and updated decisions. Uncertainty assessments of

the parameters of interest are obtained via a bootstrap technique. Further, numeri-

cal results indicate that the LVDF-based algorithms outperform even the maximum

likelihood estimate based on the actual energies in a low signal-to-noise environment,

and outperform localization based on uncorrected decisions in every setting.

As an extension to the proposed methods above and assuming that energy readings

from sensors that made positive decisions are available, we develop hybrid (pseudo-)

7

maximum likelihood and expectation-maximization algorithms. Simulation results

show that the proposed framework significantly improves the accuracy in target lo-

cation estimation and signal magnitude estimation. In the simulations two different

signal models were used; robustness to model and noise distribution misspecifica-

tion is also examined. Finally, extensions to tracking of a single moving target are

considered.

1.2.3 Multiple Target Localizations and Tracking

The problem of localizing and tracking multiple targets introduces several new

challenges, such as estimating their number, adapting to targets appearing and dis-

appearing over time, and enforcing some smoothness in target trajectories over time.

There has been a substantial amount of work on multiple target localization and

tracking over the past decade. However, most of the proposed methods use a para-

metric approach that assumes either the number of targets known or the target

trajectories or both. In order to address all the challenges above, we utilize model

selection methods, clustering techniques, matching algorithms, and penalized likeli-

hood optimization.

In Chapter V we develop the LVDF-based multiple tracking framework which

also allows for sensor failures, targets appearing and disappearing over time, and

complex target trajectories. We apply our framework to two case studies – an ex-

periment involving tracking people and a project of tracking zebras, and in terms of

estimation accuracy show that our tracking approach using binary decisions exhibits

a competitive performance even compared to maximum likelihood estimation based

on full energy measurements.

8

1.3 General Linear Data Fusion for Classification

Motivated by the success of the LVDF algorithm in WSNs, in Chapter VI we

introduce a general data fusion framework for classification purposes. The set-up

involves a collection of local classifiers that can consult their neighbors (in some

suitably defined metric) and take their measurements or decisions into account. We

assume that each classifier knows the probability that its neighbors are observing the

same class label as they are, which can be modeled through some local covariance

model (e.g., spatial), and derive optimal weights for fusing data from such correlated

classifiers. The obvious application of this approach is classifying spatial data, but

the framework can be equally well applied to the more general problem of fusing data

from multiple sources with varying degrees of reliability, which has applications in

security. Preliminary results on simulated Markov random fields and on handwritten

digit data show significantly better classification performance compared to methods

based on non-fused data.

In summary, Chapters III - V present a complete multi-target detection-localization-

tracking framework for wireless sensor network based on corrected binary decisions;

and Chapter VI presents a general data fusion algorithm for correlated classifiers.

Detailed conclusions and future research problems are discussed in Chapter VII.

CHAPTER II

Cost-Efficient Approach to Wireless Sensor Network Design

2.1 Introduction

In this chapter we present a general flexible approach for the design of wireless

sensor networks under the random deployment mechanism. The random deployment

scenario has received a substantial amount of attention in the literature. The two

fundamental constraints such a network has to satisfy are coverage (all or most of the

region of interest is within the sensing range of at least one sensor) and connectivity

(each sensor can communicate with any other sensor either directly or by relaying

information through its neighbors). These constraints are critical for the wireless

sensor network to be able to accomplish its task.

It turns out that coverage is easier to address, since for a spatial random marked

point process the coverage of an area by sets centered at the random points is com-

prehensively studied in [42]. Additional issues specific to wireless sensor networks

are discussed in [47], [61], and [68], and we elaborate on this point when we examine

the coverage constraint in Section 2.3.1. The important point from the design point

of view is that the coverage constraint has an explicit analytic form and is easy to

solve as a function of the number of sensors.

On the other hand, the connectivity constraint turns out to be harder to analyze.

9

10

The general question of the number of connected components of a random graph is

covered, for example, in [88], but all general connectivity results are asymptotic and

provide little guidance for network design. In the context of wireless sensor networks

this issue has been addressed in a number of papers (see [39], [98], [114], [11] and

references therein). Typically, asymptotic bounds on the probability of the network

being connected are obtained, but they either involve unknown functions [39] or are

not tight enough [11], as we show below in Section 2.3.2. Here we will develop a

new simple approximation to the probability of the network being connected for a

given number of sensors n under random deployment, which, by utilizing an empir-

ically determined constant, provides an explicit formula useful for network design

purposes. Finally, in a number of studies both coverage and connectivity have been

studied together ([118], [81], [121], [98]), again with the focus on deriving bounds.

An important result for design purposes was proved in [118]: if the communications

range of the sensors is at least twice their sensing range, then coverage implies con-

nectivity, so only the coverage constraint needs to be enforced. Scheduling protocols

designed to maintain both coverage and connectivity have been considered in [74],

[69], [81], and [121].

Our goal here is to cast the network design problem as an optimization prob-

lem, where we are interested in minimizing the overall cost of the network which

is affected by its sensing and communication capabilities, while maintaining the de-

sired coverage and connectivity. Most currently available commercial products (e.g.

Crossbow Technology wireless motes1, MicroStrain’s wireless measurement systems2,

and HOBOnode wireless data loggers3) allow for specification of communication and

sensing ranges, albeit with a limited range of selections. We assume that we can

1Crossbow Technology, http://www.xbow.com.
2MicroStrain, Inc., http://www.microstrain.com/.
3ONSET, http://www.onsetcomp.com/.

11

choose both the sensing radius and the communications one (either from a set of

commercially available options, or from a larger set of available sensing and trans-

mission options if the sensors are yet to be constructed), but there is a cost associated

with each option. We treat the cost generically, so it can represent either the fixed

acquisition cost, or the operational (energy) cost, or a combination of both. Further,

we incorporate the possibility of unreliable sensors: we assume that each sensor is

active and performs its task with probability p ∈ (0, 1), independent of its other

characteristics, and fails to do so with probability 1 − p. In the design context, the

concept of active sensors is also rather generic: a sensor may not be active because of

hardware failure in which case p captures a priori reliability, or because the network

protocol has put it to sleep to save on energy, in which case p is determined by the

scheduling protocol. The issue of active sensors has briefly been addressed in [74] in

the context of minimizing the power consumption of each individual sensor in the

network, while ensuring the necessary coverage and connectivity, but not in terms of

overall network cost.

Different aspects of network design through optimization of different cost func-

tions have been considered in various studies. A design based on the minimal covering

problem was studied by [8] and [121], but that precludes random deployment of sen-

sors. In [80], a network design that minimizes an energy-based cost was developed

under a lifetime constraint. Other cost functions include network search cost [3] and

target localization error bound [117]. However, these cost functions do not incorpo-

rate the sensor characteristics themselves, such as the sensing and communications

capabilities. Our approach provides a general flexible framework for network design,

where different cost functions determined by the application are easy to incorporate.

At the technical level, explicit expressions for the coverage and connectivity con-

12

straints are required. Hence, we provide a new simple connectivity bound which is

shown to perform very well in simulations. The posited optimization problem can

be part of any feasibility study during the planning stages for the design of a WSN.

The remainder of the Chapter is organized as follows. Section 5.2 formulates

the problem as a constrained optimization problem. Section 2.3.1 focuses on the

coverage constraint alone, while Section 2.3.2 focuses on the connectivity constraint

and presents the new bound. Section 2.3.3 studies network design when enforcing

both coverage and connectivity constraints. Section 2.4 discusses potential extensions

of proposed framework and some concluding remarks are given in Section ??.

2.2 Problem Formulation

Suppose n sensors will be deployed at random within a two-dimensional mon-

itoring region X which without loss of generality corresponds to the unit square.

Further, suppose we can choose the sensing range s and communications range r

from a set of feasible values D ⊂ (0,∞) × (0,∞), and they are associated with a

cost function C(s, r) ≥ 0, which denotes the cost per sensor. Different applications

will have different forms of the set D. If the sensors are constructed by combining

ready-made sensing and transmission components, there may be I fixed choices for

the sensing range, with S = {si, i = 1, · · · , I}, and J choices for the communications

range with R = {rj, j = 1, · · · , J}, and D = S × R. If the sensors are chosen from

a fixed number of commercially available models, some combinations of si and rj in

this Cartesian product may not be possible. If the sensors can be constructed with

any sensing or communications radii s and r in a certain range, which will be as-

sumed later on, the sets S and R can be intervals of feasible values, with D = S×R.

We further assume that each sensor performs its task with probability p ∈ (0, 1) and

13

fails to do so with probability 1−p. Our objective is to determine the number n and

the type (in terms of the values of s and r) of sensors to be randomly deployed over

X to minimize the total network cost,

(2.1) min
n,(s,r)∈D

nC(s, r)

subject to:

(a) Coverage constraint: the expected fraction of the region area covered exceeds

a prespecified threshold 1− ε, ε > 0; and

(b) Connectivity constraint: the probability that there is a communication path

between any two sensors exceeds another prespecified threshold 1− δ, δ > 0.

We further assume that the individual sensor’s cost function C(s, r) is a positive,

continuous, non-decreasing function in both arguments; i.e.

C(s, r) ≥ 0, ∂C(s, r)/∂s ≥ 0, ∂C(s, r)/∂r ≥ 0.

This assumption is supported by empirical evidence, since sensors with more capa-

bilities are more expensive.

Notice that the lower bound on the number of sensors n will be determined by

the constraints, and the objective function is strictly increasing in n. Thus, if for

each combination of values of s and r, we define

n(s, r) = min{n : constraints (a) and (b) are satisfied} ,

then the optimization problem reduces to

(2.2) min
(s,r)∈D

n(s, r)C(s, r) .

Note that the random deployment mechanism of the sensors determines the exact

expressions for the coverage and connectivity constraints. Further, the nature of the

14

optimization problem is determined by the nature of the set D. If there is a finite

discrete number of options for the sensors’ characteristics, the above optimization

problem is a combinatorial one. Obviously, for a small set D an exhaustive search

strategy is adequate, but for larger sets it becomes impractical. We consider the

continuous version of the problem, where the sensing and communications radii can

take any value in an interval; i.e., S = [SL, SU], R = [RL, RU], where SL > 0

and RL > 0, and the sensor design space D is given by the Cartesian product

[SL, SU]× [RL, RU]. This can be viewed as a relaxation of the discrete optimization

problem.

Notice that if the objective function is convex in both s and r, a global minimum

exists and can be determined by solving for the point (s̃, r̃) ∈ D. Obviously, if such

a point (s̃, r̃) is not feasible, then the solution is given by a point on the boundary of

the design space D. Ultimately, the solution is determined by the form of functions

n(s, r) and C(s, r). Next, we investigate the shape of n(s, r) comprehensively by

first studying separately the coverage (Section 2.3.1) and connectivity (Section 2.3.2)

constraints, and then apply our findings to the joint problem (Section 2.3.3).

2.3 Methods and Algorithms

2.3.1 The Coverage Constraint

Focusing solely on the coverage constraint first, the problem becomes

min
n,s∈S

nC(s), s.t. E(area not covered) ≤ ε,

where C(s) is a positive, continuous, non-decreasing function of s. The monitored

area X is considered covered by the WSN if all points in it are within the sensing

radius of at least one sensor.

The problem of coverage in WSN has received a lot of attention in the literature

15

from various perspectives. In [68] and [79] it is used as a ’quality-of-service’ measure

for the WSN to detect and track targets within its monitored region under a random

deployment mechanism. An enhanced measure of coverage, called k-coverage, is

discussed in [47], [61], and [45]. This introduction of redundancy by requiring each

point within X to be covered by at least k sensors leads to improved detection,

target localization and tracking. Further, an extension of k-coverage in the presence

of active/inactive sensors is examined in [61]. In [109], the problem of selecting and

scheduling when the sensors should become active/inactive while preserving the k-

coverage property is addressed. A different scheduling protocol for the latter problem

is discussed in [100]. Finally, results addressing detection and sensor scheduling issues

under partial coverage of the monitored region were provided in [70] and in [97].

Recall that we formulate the design problem under the assumption that the sensors

can be in an active or inactive state, induced either by hardware failure or as a

result of a scheduling protocol. Let p denote the probability that a sensor is in the

active state, and assume it is the same for all sensors. Then, the probability that

a target/event at location x ∈ X is detected by a single randomly deployed sensor

is pπs2. Let X̃ denote the subset of X not covered by the network, and write |X̃|

for the area of X̃. A result from the theory of coverage processes (page 128 in [42])

gives that, for a random deployment of n sensors,

(2.3) E(|X̃|) = (1− pπs2/|X|)n|X| .

Since it is known that Var(|X̃|) converges to 0 as a function of n sufficiently fast

[42], we can assume that the actual area not covered by the network deviates little

from the above expression for expected area not covered. Figure 2.1 shows that

the expected area not covered E(|X̃|) calculated using (2.3), falls within the 95%

confidence bounds based on simulations for different network sizes and values of the

16

sensing range s.

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

ε

ε
s

ε
s
−2s.e.(ε

s
)

ε
s
+2s.e.(ε

s
)

E(ε)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

ε

ε
s

ε
s
−2s.e.(ε

s
)

ε
s
+2s.e.(ε

s
)

E(ε)

Figure 2.1: Average area not covered εS (solid line) with a 95% confidence band (dotted lines)
obtained from simulations, together with the theoretical value (dash-dot line) as a
function of the number of sensors n for s = 0.1 (left panel) and s = 0.2 (right panel),
with p = 1. Results are averaged over 100 deployments on a unit square.

Assuming |X| = 1, the smallest n that satisfies the constraint E(|X̃|) ≤ ε is

(2.4) n(s) =
log(ε)

log(1− pπs2)
.

For illustration purposes, the function n(s) (the number of sensors for achieving the

required coverage) is plotted in Figure 2.2 for several values of p and ε. It can be

seen that for small values of s the effect of both p and ε is rather small.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

10
1

10
2

10
3

10
4

s

n
(s

)

p = 1.0
p = 0.8
p = 0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

10
1

10
2

10
3

10
4

s

n
(s

)

ε = 0.01
ε = 0.05
ε = 0.10

Figure 2.2: Number of sensors n(s) as a function of sensing radius s for different values of the active
state probability p with ε = 0.05 (left panel), and for different values of ε with p = 1
(right panel).

As discussed in Section 5.2, the corresponding optimization problem takes the

17

form

min
s∈S

n(s)C(s).

The conditions for an interior point minimum to exist at point s̃ ∈ (SL, SU) are

given by

(2.5)

n′(s̃)C(s̃) + n(s̃)C ′(s̃) = 0

n′′(s̃)C(s̃) + 2n′(s̃)C ′(s̃) + C ′′(s̃)n(s̃) > 0,

where

n′(s) = 2
log(ε) πsp

(log (1− πs2ps))
2 (1− πs2p)

(2.6)

n′′(s) = 2
log(ε) πsp [4πps2 + (1 + πs2p) log (1− πs2p)]

(log (1− πs2p))3 (1− πs2p)2
(2.7)

If such a point is not feasible (s̃ /∈ S) then the solution would occur either at SL or

at SU .

To illustrate, consider the following cost function [110]:

C(s) = c0(1 + c1s
β1), c0, c1, β1 > 0 .(2.8)

This is an example of an additive cost function, where c0 represents the fixed cost

of a sensor independent of its sensing capabilities, while the second term captures

the variable cost which is an increasing function of the sensing radius. For the

optimization problem, we can take c0 = 1 without loss of generality. Then, the

network-wide cost and its first derivative are given by

n(s) C(s) =
log(ε)

log(1− π s2 p)

(
1 + c1 sβ1

)
,

((n(s) C(s)))′ =
log(ε)

s log(1− π s2 p)

(−b(s) + c1(β1 − b(s))sβ1
)

,

where

(2.9) b(s) =
−2s2πp

(1− πs2p) log(1− πs2 p)
.

18

The existence of an interior solution s̃ ∈ (SL, SU) depends on the specific choices

of the parameters c1 and β1. For 0 ≤ β1 < 2, the overall network cost n(s)C(s) is a

decreasing function of s, so the optimal design is achieved for s = SU . For β1 ≥ 2,

the convexity and interior vs. boundary solution depend on c1. The network cost

function is plotted in Figure 2.3 for several values of β1. It can be seen that sometimes

there is more than one interior extremum point, and sometimes the solutions are on

the boundary.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500

s

n
(s

)C
(s

)

β
1
=2.2

β
1
=2.4

β
1
=2.6

β
1
=2.8

β
1
=3

β
1
=5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

1000

s

[n
(s

)C
(s

)]
’

β
1
=2.2

β
1
=2.4

β
1
=2.6

β
1
=2.8

β
1
=3

β
1
=5

Figure 2.3: Network cost function n(s)C(s) (left panel) and its first derivative (right panel) with
coefficients c0 = 1 and c1 = 1000 for different values of β1, with p = 1, ε = 0.05,
S = [0.01, 0.035].

The optimal solutions (the size of the WSN n and the corresponding sensing radius

s) for S = [0.01, 0.35] and various choices of c1 and β1 are given in Table 2.1.

Table 2.1: The optimal sensing radius s (rounded to 3 significant digits) and the number of sensors
n for different values of c1 and β1 with p = 1 and ε = 0.05.
β1 2.2 2.4 2.6 2.8 3 5

c1 s n s n s n s n s n s n

100 .350 7 .350 7 .350 7 .350 7 .350 7 .350 7
500 .350 7 .350 7 .156 38 .159 37 .167 33 .280 11
1e3 .350 7 .116 69 .115 70 .121 64 .129 56 .240 16
5e3 .061 254 .057 293 .061 258 .067 213 .074 172 .171 32
1e4 .044 492 .042 529 .046 445 .052 352 .059 258 .148 43
1e5 .015 4112 .016 3652 .019 2644 .023 1843 .027 1290 .093 110

Example: This illustrative example is based on real data obtained for a sample of

35 low-power acoustic sensors (microphones) obtained from Digi-Key Corporation4

4Digi-Key Corporation, http://www.digikey.com/.

19

– an industry leader in the distribution of electronic components. Their sensing radii

range from 2.5 meters to 300 meters (s = [.0025, 0.3]), with a total of nine types. For

each type, the unit cost was computed as the average cost of the sensors with the same

sensing radius (Figure 2.4, middle panel). In addition, the number of sensors required

for monitoring an area of size 1km × 1km is shown in the left panel of Figure 2.4,

together with the corresponding overall network cost in the right panel of Figure 2.4.

It can be seen that the network cost is not convex in the sensing range. The global

minimum is achieved at a boundary point and corresponds to $675.5 (10 sensors at

$67.55 each with a sensing range of 300m), while an interior local minimum exists at

$1200.68 (52 sensors at $23.09 each with a sensing range of 134m). Further, we can

approximate the cost function C(s) for the sensing range between 37.8 and 157.4m

by the cost function of the form (2.8) with coefficients c0 = 3, c1 = 3.2342 × 103,

and β1 = 2.876. The number of sensors required to satisfy the coverage constraint

and the network cost function based on this approximation are also shown in Figure

2.4.In this case, an interior optimum network cost of $1442.82 is achieved with the

deployment of 139 sensors (at $10.38 each) with a sensing range of 82.4m.

0 0.05 0.1 0.15 0.2 0.25 0.3
10

1

10
2

10
3

10
4

10
5

10
6

s

n
(s

)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

s

C
(s

)

data
approx

0 0.05 0.1 0.15 0.2 0.25 0.3

10
3

10
4

10
5

10
6

s

n
(s

)C
(s

)

Figure 2.4: Number of sensors n(s) (left panel), sensor unit cost C(s) (middle panel), and network
cost function n(s)C(s) (right panel) for collected and approximated data with p = 1,
ε = 0.05, S = [0.0025, 0.3].

20

2.3.2 The Connectivity Constraint

Analogously to the optimization problem subject to the coverage constraint alone,

when the connectivity constraint is considered alone, the problem becomes

min
n,r∈R

nC(r), s.t. P(network is not connected) ≤ δ,

where C(r) is a positive, continuous, non-decreasing function of r. The WSN is

considered to be fully connected if all the sensors can communicate and exchange

information with each other through some path of intermediary nodes. Formally,

let G(n, r) denote the graph with node set corresponding to the sensors and edges

between all pairs of nodes at the distance less than or equal to r. Then the network

is considered connected if graph G is connected.

The fundamental problem of deriving conditions under which the WSN is essen-

tially (with high probability) connected has been extensively studied in the literature.

Next, we review some of the main results that could help us formulate the connec-

tivity constraint. [39] studied the WSN randomly deployed on the unit circle and

examined the probability of full connectivity as the size of the network n goes to

infinity. The problem is formulated as finding the minimum communications radius

r(n) that ensures connectivity for a given number of sensors n, but since we assume

that the cost function is non-decreasing in r, this formulation is obviously equivalent

to ours. Specifically, it was shown that if

(2.10) πr2(n) =
log n + v(n)

n
,

then the probability that the underlying WSN is connected tends to 1 if and only

if v(n) → ∞ as n → ∞. Any function v(n) with this property would work, but

from a practical standpoint this limits the applicability of the result. However, the

21

following bound derived in [39] as an intermediate step proves more useful. Let

Pd(n, r(n)) denote the probability that the network is disconnected. Assume that

limn→∞ v(n) ≡ v and (2.10) holds. Then, the following holds (Theorem 3.1 in [39]):

(2.11) lim sup
n→∞

Pd(n, r(n)) ≤ 4 exp(−v).

Our goal is to derive an explicit relationship between n and r that would imply

(2.12) Pd(n, r(n)) ≤ δ,

i.e. the network is disconnected with probability at most δ. Clearly, there exists the

minimum n(r) such that (2.12) holds for all n ≥ n(r), and it satisfies Pd(n(r), r) = δ.

Using (2.10), the bound (2.11), and setting δ = 4 exp(−v) we get that the minimum

sufficient number of sensors nGK(r) (GK stands for Gupta and Kumar) is the solution

of

(2.13) πr2 nGK(r)− log(nGK(r)) = − log(δ/4) .

Equivalently, for a network of size n the connectivity radius should be at least

(2.14) rGK(n) =

(
log n− log(δ/4)

π n

)1/2

.

Another related result was obtained in [11], where the goal was to calculate the

probability that none of the nodes in a randomly deployed WSN are isolated. Let A

denote the event that there exists at least one sensor with no neighbors within the

connectivity radius r. Then,

(2.15) P (A) =
(
1− exp(−nπ r2)

)n
,

However, the fact no isolated nodes exist does not imply the whole network is con-

nected (there could be two separate connected components). Therefore, the prob-

ability of the network being disconnected Pd is greater than the probability P (A)

22

that the network has isolated nodes. The original proposal in [11] was to use the

probability P (A) as an approximation to Pd, even though it is a lower bound and

will yield an insufficient number of sensors to ensure full connectivity. We include

this approximation here for comparison purposes. For given δ and r, the minimum

number of nodes nB(r) (Bettstetter’s bound in [11]) required is the solution of

(2.16) nB(r) log
(
1− exp(−nB(r) π r2)

)
= log δ .

Similarly, if the network size n is fixed, then for a given δ > 0, the communication

radius r can be obtained explicitly and should be at least

(2.17) rB(n) =

(
− log(1− (1− δ)1/n

π n

)1/2

.

Simulation results below show that both solutions, (2.13) and (2.16), are lower

bounds on the true n(r) required for connectivity. Thus using them for design cannot

guarantee desired network properties. Here, we propose an empirical and more pre-

cise way of identifying n(r) as a function of r and δ. Using (2.13) as a starting point,

we omit the slowly varying term log n(r), and instead absorb it into an unknown

function on the right hand side that depends only on δ, q(δ). This results in a simple

estimate for n(r),

(2.18) n(r) =
q(δ)

π r2
.

Further, we approximate the function δ by its first order power expansion as

q(δ) = γ0δ
−1 + γ1 + γ2δ

1,(2.19)

The coefficients γ0, γ1, γ2 were obtained from the least squares fit to simulation

data. A large number (500) of random deployments were generated and the minimum

number of sensors calculated for the network to be disconnected with probability δ for

23

a given r. From these data, the coefficient values were estimated as γ0 = 0.0397, γ1 =

14.1208, γ2 = −9.4352, with a very satisfactory measure of fit (R2 = .975). The

fitted curve is shown in Figure 2.5 as a function of δ, along with simulated results

for selected values of r, with fixed p = 1. One can see that the variation across r

is small relative to the variability as a function of δ, which justifies modeling q(δ)

as a function of δ only. Further, compared to simpler models (”1”: γ1 + γ2δ
1, ”2”:

γ0δ
−1 + γ1), the chosen one (”3”) shows a significant improvement in terms of fit

and estimated error variance (see Figure 2.5, left panel). On the other hand, more

complicated models that include second (”4” - ”6”) and third order terms (”7”-”9”),

do not exhibit any noticeable gains in terms of fit or estimated error variance.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

model

R2

Error

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

12

14

16

18

20

22

δ

π
 r

2
 n

(r
)

r=0.2
r=0.15
r=0.1
r=0.05
q(δ)

Figure 2.5: Left panel: measure of fit (R2) and estimated error variance (Error) for different re-
gression models (“3” corresponds to q(δ) in (2.19)). Right panel: estimated values of
q(δ) from simulations over 500 random deployments for different values of r with p = 1,
together with the fitted curve.

Figure 2.6 shows the proposed estimates of n as a function of r for two values of δ

(0.05 and 0.1) and fixed p = 1. The options compared are (2.13) (labeled GK), (2.16)

(labeled B), our empirical formula (2.18) (labeled Q) and the simulation result (Sim),

which can be taken as the “ground truth”. The results of the simulations strongly

indicate that the values of n calculated from (2.13) and (2.16) are only lower bounds,

and thus should not be used for design purposes, since they would lead to an under-

provisioned network. Our empirical value, on the other hand, either agrees very

24

well with simulation or is slightly more conservative (estimating a larger n than

necessary). Because a connected network is required for the successful operation of

the WSN, a conservative estimate is a natural choice over an overly optimistic one.

0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

1

10
2

10
3

10
4

r

n
(
r
)

Q
B
GK
Sim

0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

1

10
2

10
3

10
4

r

n
(
r
)

Q
B
GK
Sim

Figure 2.6: Number of sensors n as a function of communication radius r for δ = 0.05 (left panel)
and δ = 0.1 (right panel).

Next we generalize our formula to the case where sensors can be active or inactive

with probability p. This generalization was briefly discussed in [39], where it is stated

that the main result still holds if πr2(n) is replaced by πr2(n)p(n) in (2.13); however,

a more stringent condition is required. Further, it was shown in [74] that a sufficient

condition is given by πr2(n)np → ∞. In fact, it was established that a network

graph G is connected if for any ε ∈ (0, 1), ns(ε) = (1− ε)n p,

1. πr2(n)np →∞, as n →∞,

2. πr2(n)ns(ε) = log(ns(ε)) + v(ns(ε)), where v(n) →∞ as n →∞.

This generalization implies that our estimate n(r) can easily incorporate p as follows:

(2.20) n(r) =
q(δ)

π r2 p
.

Using formula (2.20) allows us to simplify the optimization problem for the con-

nectivity constraint alone to

(2.21) min
r∈R

r−2C(r) ,

25

with the corresponding optimal value of n given by n(r) = q(δ)
π r2 p

.

Again, we illustrate with an additive sensor cost function of the form

(2.22) C(r) = c0(1 + c2 rβ2),

where the variable component depends only on the communication radius r. Further,

we assume without loss of generality c0 ≡ 1, and c2 ≥ 0, β2 ≥ 0.

The corresponding network-wide cost function and its first derivative (omitting

constants) are given by:

n(r) C(r) = r−2 + c2 rβ2−2,

(n(r) C(r))′ = r−3
(−2 + c2(β2 − 2)rβ2

)
.

For 0 < β2 ≤ 2, the network cost is a decreasing function of r and the solution occurs

at r = RU . For β2 > 2, there are values of c2 for which an interior extremum point

r̃ of equation (n(r) C(r))′ = 0 exists and can be expressed as:

(2.23) r̃ = (0.5 (β2 − 2)c2)
−1/β2 .

If β2 > 3, the function is convex, the extremum point is unique, and (2.23) provides

the solution to the optimization problem, as long as c2 is such that r̃ ∈ R, that is,

the optimal radius ro is given by

(2.24) ro =

RL, r̃ ≤ RL

RU , r̃ ≥ RU

r̃, r̃ ∈ (RL, RU)

For 2 < β2 ≤ 3, the function is not convex, and the minimum may be achieved either

at the extremum point or at the boundary.

For illustration, the solutions to the optimization problem (optimal radius r and

the corresponding number of sensors n) for different values of β2 and c2 are given in

Table 2.2.

26

Table 2.2: The optimal communication radius r (rounded to 3 significant digits) and the number of
sensors n for different values of c2 and β2 with p = 1, δ = 0.05, R = [0.01, 0.35].
β2 2.2 2.4 2.6 2.8 3 5

c2 r n r n r n rc2 n r n r n

100 .350 39 .290 58 .271 65 .268 66 .272 64 .350 39
500 .169 165 .147 219 .146 222 .151 208 .159 187 .266 67
1e3 .124 310 .110 390 .112 379 .118 340 .126 297 .232 88
5e3 .059 1337 .056 1488 .060 1305 .067 1073 .074 867 .168 167
1e4 .044 2511 .042 2651 .046 2225 .052 1760 .059 1376 .146 221

Example: In this example, we illustrate the proposed approximation using data

collected for a number of sensor models from different vendors. The possible com-

munications radii range from 50 to 350 meters, while the unit cost ranges from $99

to $299. Then, the estimated unit cost of communication is approximated by

(2.25) C(r) = 90
(
1 + 12.671 r1.6163

)
.

The approximated unit cost, the corresponding number and the network total cost

as a function of the connectivity radius (r = [0.05, 0.35]) with the other parameters

fixed to p = 1 and δ = 0.05 are shown in Figure 2.7. The global minimum of $11,362

for the network is achieved with 38 sensors with the largest sensing radius (300m).

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

300

r

C
(r

)

0.05 0.1 0.15 0.2 0.25 0.3 0.35

10
2

10
3

r

n
(r

)

0.05 0.1 0.15 0.2 0.25 0.3 0.35

10
5

10
6

r

n
(r

)C
(r

)

Figure 2.7: Approximated sensor unit cost C(r) (left panel), corresponding number of sensors n(r)
(middle panel), and network cost n(r)C(r) (right panel) as a function of connectivity
range r = [0.05, 0.35] with p = 1 and δ = 0.05.

2.3.3 Joint Coverage and Connectivity Optimization

Recall that the optimization problem (2.2) formulated in Section 5.2 reduces to

minimizing n(s, r)C(s, r), where n(s, r) is the smallest n that satisfies the connec-

27

tivity and coverage constraints for given r and s. Using the explicit expressions for

n(s) ≡ n1(s) from (2.4) and n(r) ≡ n2(r) from (2.20), we can investigate the behav-

ior of n(s, r). Ultimately it depends on the feasible region D and the values of ε, δ,

and p. The following three situations can occur:

1. n1(s) > n2(r) for all (s, r) ∈ D,

2. n1(s) < n2(r) for all (s, r) ∈ D,

3. D = D1 ∪D2, with n1(s) ≥ n2(r) for all (s, r) ∈ D1 , and n1(s) ≤ n2(r) for all

(s, r) ∈ D2.

Case 1: In this case, the coverage constraint dominates and n(s, r) = n1(s). Since

we assume that C(s, r) is a non-decreasing function of r for all s, the optimal value

of r is clearly r̃ = RL. The optimal sensing radius s̃ minimizes n1(s) C(s,RL), which

reduces to the problem of Section 2.3.1.

Case 2: Similarly, the connectivity constraint dominates in this case, and n(s, r) =

n2(r). The cost function C(s, r) is a non-decreasing function of s, and therefore

the optimal value of s is s̃ = SL. The optimal communication radius r̃ minimizes

n2(r) C(SL, r), which reduces to the problem of Section 2.3.2.

Case 3: Again because C(s, r) is a non-decreasing function of s and r, the optimal

values s and r will lie either on the boundary or on the curve n1(s) = n2(r), which we

know in this case passes through the feasible region. This curve is shown in Figure

2.8. It shows that the condition r = 2s, where it has been established that coverage

implies connectivity [118], is sufficient but not necessary to have both coverage and

connectivity constraints satisfied, although it provides a reasonable bound. Solving

n1(s) = n2(r) for r gives

(2.26) r(s) =

(
q(δ)

π p log(ε)
log(1− π s2 p)

)1/2

.

28

The optimization problem then reduces to one-variable optimization of the function

n1(s) C(s, r(s)) over the set (s, r(s)) ∈ D (plus boundaries of D). Depending on the

functional form of C(s, r), it may be more convenient to solve n1(s) = n2(r) for s

instead, which gives

(2.27) s(r) =

(
1− exp (π r2 p log(ε)/q(δ))

π p

)1/2

,

and solve the optimization problem as a function of r over the set (s(r), r) ∈ D.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

s

Figure 2.8: The curve defined by n1(s) = n2(r) with ε = δ = 0.05, p = 1.

Extending the additive cost function idea to include costs associated with both

sensing and transmission capabilities, we consider a sensor cost function of the form

C(s, r) = c0(1 + c1s
β1 + c2r

β2),(2.28)

with c0 = 1 without loss of generality and non-negative parameters c1, c2, β1, β2.

In general, all three cases can occur. Specifically,

Case 1: For the rectangular region D, this case occurs when n1(SU) > n2(RL). The

optimal value of r is r̃ = RL. The extremum points of the function n1(s) C(s,RL)

are solutions to the equation:

(2.29) b(s)(1 + c1s
β1 + c2R

β2

L)− c1β1s
β1 = 0 ,

29

where b(s) is defined as where b(s) = −2s2πp
(1−πs2p) log(1−πs2 p)

. This equation can be solved

numerically. The optimal solution s̃ can be either an extremum point or a boundary

point, depending on the values of β1, β2, c1, and c2 (see examples in Table 2.3).

Case 2: This case occurs when n2(RU) > n1(SL), and the optimal value for s is

s̃ = SL. The extremum point of n2(r)C(SL, r) is defined by

(2.30) rβ2 =
2(1 + c1 Sβ1

L)

c2(β2 − 2)

Clearly, extremum points only exist if β2 > 2. The optimal value r̃ may be an

extremum point or one of the boundaries RU , RL.

Case 3: Plugging in the expression (2.27) for s(r) into n2(r) C(r, s(r)) and taking

the derivative with respect to r gives an extremum point equation

(2.31) −2 + c2(β2 − 2)rβ2 + sβ1(r)c1

(
−2 + rβ1

s′(r)
s(r)

)
= 0 ,

where

s′(r) = − r log(ε)

s(r) q(δ)
exp

(
π r2 p log(ε)/q(δ)

)
.

This can be solved numerically, and along with boundary points constitutes the

candidate solution points.

As an illustration, in Table 2.3 the solutions to the joint optimization problem

are presented for different values of β1 and β2 with c1 = c2 = 103. It is assumed that

the feasible interval for both r and s is [0.01, 0.35], all sensors are in active mode

(p = 1), the maximum proportion of area not covered is ε = 0.05, and the highest

probability of a disconnected network is δ = 0.05.

Example: We revisit the examples discussed in Sections 2.3.1 and Section 2.3.2.

Recall that the network cost as a function of the sensing s and the communications

r range was estimated as

(2.32) C(s) = 3
(
1 + 3234.2 s2.876

)
,

30

Table 2.3: Optimum values of the sensing radius s and communication radius r, and the corre-
sponding number of sensors n, for different values of β1 and β2 with c1 = c2 = 103,
ε = 0.05, δ = 0.05, and p = 1.
β1 2.0 2.4 3.0 5.0

β2 s r n s r n s r n s r n

2.0 .155 .347 39 .118 .262 67 .129 .287 56 .157 .350 38
2.4 .050 .110 380 .046 .101 451 .050 .110 380 .050 .110 380
2.8 .055 .121 315 .050 .110 380 .052 .114 354 .054 .118 331
3.0 .059 .130 273 .055 .121 315 .055 .121 315 .058 .126 290
5.0 .110 .244 78 .090 .199 117 .095 .210 105 .104 .230 87

and

(2.33) C(r) = 90
(
1 + 12.671 r1.6163

)
,

respectively. We consider next a joint additive model next

C(s, r) = C(s) + C(r) = 93

(
1 +

3 · 3234.2

90 + 3
s2.876 +

90 · 12.671

90 + 3
r1.6163

)
=

= c0(1 + c1s
β1 + c2r

β2),(2.34)

shown in Figure 2.9. The global minimum of the network cost function is achieved

at s = 0.156 and r = 0.348 with n = 38 and the optimal cost is 38× 346.4 = 13163.2

dollars.

0
0.1

0.2
0.3

0.4

0

0.05

0.1

0.15

0.2

10
2

10
3

10
4

10
5

r
s

n
(s

,r
)

0
0.1

0.2
0.3

0.4

0

0.05

0.1

0.15

0.2
0

100

200

300

400

rs

C
(s

,r
)

0
0.1

0.2
0.3

0.4

0
0.05

0.1
0.15

0.2

10
5

10
6

10
7

10
8

rs

n
(s

,r
)C

(s
,r

)

Figure 2.9: Number of sensors n(s, r) (left panel), sensor cost function C(s, r) (middle panel), and
overall network cost n(s, r)C(s, r) (right panel) with c0 = 93 c1 = 104.329, c2 = 12.2623,
β1 = 2.8765,β2 = 1.6163, ε = δ = 0.05, and p = 1. The optimal design is s = 0.156,
r = 0.348, n = 38 and the optimal cost is 38× 346.4 = 13163.2 dollars.

31

2.4 Extensions

The proposed framework can easily accommodate additional constraints; for ex-

ample, separate costs and coverage requirements for cluster heads of hierarchical

networks. The most straightforward extension is for coverage by a WSN comprised

of heterogeneous types of sensors. Suppose there are K types of sensors (e.g. acous-

tic, thermal, etc.), with sensing radii sk, k = 1, . . . , K, and nk sensors of each type k

are deployed at random over the region X. Further, suppose that all type k sensors

have probability pk of being in active mode, and a set of feasible sensing radii Sk.

Then, it is fairly straightforward to extend expression (2.3) to show that the expected

area not covered is

(2.35) E(|X̃|) =
K∏

k=1

(
1− pkπs2

k

|X|
)nk

|X| .

If the coverage problem is considered alone, and each sensor type has a cost function

Ck, the problem becomes

min
nk,sk∈Sk

K∑

k=1

nkCk(sk) subject to
K∑

k=1

nk log(1− pkπs2
k) < log(ε) .

Example: We extend the example discussed in Section 2.3.2. It is assumed that

the number of sensors with an extended sensing range of s = 300 is limited to 5.

Provided that these 5 sensors have been uniformly deployed over a monitoring region

of size 1km2, it is then of interest to estimate the number of sensors needed to cover

the area with minimum cost, subject to a coverage constraint of ε = 0.05. From

the function fitted to the collected data, we obtain a solution corresponding to 23

sensors with s = 134 m, resulting in an overall cost of $531. On the other hand,

using the quadratic approximation we require 62 sensors of sensing radius 84.2 m

for a cost of $643.56. Adding to the two solutions the fixed cost of $337.75 of the

32

5 high-capability sensors, it can be seen that savings of $331.86 ($461.51) can be

achieved compared to a solution utilizing only low capability sensors.

The connectivity problem for a network with varying communications radii is an

open problem in the general case. If one assumes that all types of sensors have the

same communications capabilities, or that each type of sensors only communicates

with other sensors of the same type, the connectivity constraint is easy to incorporate

using the developments from Section 2.3.2.

For ease of presentation, here we assumed that the probability of a sensor actively

sensing (p1) is the same as the probability of being available for communications (p2),

with p1 = p2 = p. However, it is trivial to extend the calculations to the case p1 6= p2.

Another interesting extension is to allow the reliability parameter(s) to be linked to

the sensor characteristics s and r and its cost. The general framework remains the

same, but the optimization problem becomes significantly more involved.

CHAPTER III

Target Detection with Wireless Sensor Networks

3.1 Introduction

We explore in this chapter different data fusion algorithms for target detection by

a WSN. In order to measure the accuracy of the detection the false alarm probability

and the detection probability are used. The false alarm probability is the conditional

probability that the sensors detect the target given that there is no target in the

monitored region. The detection probability is the conditional probability that the

sensors correctly report the presence of the target. So, when the signal-to-noise ratio

is low for a given system false alarm, the probability of detection is also low.

Suppose that N sensors have been deployed at locations si, i = 1, . . . , N, over a

two-dimensional monitoring region R, which without loss of generality corresponds

to the unit square. A target at location v ∈ R emits a signal captured by the sensors.

Let Ei = Si + εi denote the energy measured by the i-th sensor, where Si ≡ Si(v)

is the signal from the target measured at location i, and εi, i = 1 . . . N are i.i.d.

random noise. It is natural to assume that the signal strength decays monotonically

as the distance from the sensor to the target increases. For example, the left panel of

Figure 3.1 shows the signal strength of a target located in the center of R exhibiting

exponential decay, while the right panel shows the same signal corrupted by Gaussian

33

34

noise.

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

1
0

0.5

1

1.5

2

XY

Si
gn

al

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

1
0

0.5

1

1.5

2

XY

En
er

gy
Figure 3.1: Left panel: Target signal generated by the model Si(v) = S0 exp(−||si − v||2/η2) for

a target at location v = (0.5, 0.5) with S0 = 2, η = 0.1; Right panel: Target energy
contaminated by Gaussian noise of variance σ2 = 0.16 (signal-to-noise ratio S0/σ = 5).

Based on the observed energy levels Ei, each sensor reaches a decision Yi ∈ {0, 1}

regarding the presence of the target in the monitoring area. The decision depends

on whether the energy level exceeds a pre-specified threshold τi, which determines

the individual sensor’s false alarm probability; i.e., Yi = I(Ei ≥ τi), where I(·) is the

indicator function.

The two main options for reaching a joint decision are value fusion, where sensors

transmit the energy readings back to the fusion center, and decision fusion, where

each sensor decides first whether a target is present and only the binary decisions

are transmitted. In [20] value and decision fusion were compared and it was found

that the former performs better in terms of detection probability for low noise levels;

however, for noisy energy measurements decision fusion proves more robust. Further,

it offers significant savings in communications costs, since only positive one-bit deci-

sions need to be transmitted. For these reasons, in our research we focus on decision

fusion.

35

The classical approach to this problem (see [113] for a comprehensive review)

is to assume a specific model for the signal and frame it as a hypothesis test of

the null hypothesis H0: no target is present vs. the alternative H1: there is a

target in the field. This approach was used by fusion algorithms developed in the

1980’s with application to surveillance systems (e.g. radars). Optimal decision rules

based on classical Bayesian decision theory have been worked out when signal and

noise distributions are known, for independent [108, 14] and correlated [50] decisions,

though in the latter case the computations are cumbersome. In [108], it is assumed

that the false alarm and detection probabilities are the same for all sensors, a fairly

reasonable assumption for a remote target in, say, a missile defense system, but not

for a wireless sensor network with a relatively small target in the middle of a large

region. In [14], optimal weights (in the sense of classical decision theory) were derived

for combining decisions Yi if the detection and false alarm probabilities are known

for all sensors. The corresponding Chair-Varshney fusion rule is optimal in such

a setting. Another way to derive an optimal rule is to apply the local asymptotic

normality framework [104]. However, for a wireless sensor network, the assumption

of known detection probabilities is unrealistic [15]: even if a specific model for the

signal is assumed and all model parameters are known, the detection probability

for each sensor depends on its distance from the target, and assuming a known

location for the target would defeat the whole purpose of target detection. Further,

the assumption of a known signal model can also be restrictive, since there may be

different types of targets present, whose signals follow different models.

Here we propose a different approach to decision fusion: we make no assumptions

about the signal model whatsoever (other than that the signal is positive). The null

hypothesis of no target present is H0: Si = 0 for all i, while the alternative is simply

36

H1: Si > 0 for some i. This approach is unlikely to be optimal if a specific signal

model is known in advance, since a better performance can be achieved under addi-

tional assumptions; however, it has the advantage that it is applicable even when no

prior knowledge about the target’s signal characteristics is available, as empirically

shown in Section III. Note that this formulation follows the classical (frequentest)

approach of treating the Si’s as unknown non-random parameters. Then, the en-

ergy readings Ei and the corresponding decisions Yi are independent, since the only

randomness comes from the i.i.d. noise εi. Further, we assume that all sensors are

identical, and that they all use the same threshold τi = τ . Then under H0, all Ei’s

are i.i.d. and all sensors have the same false alarm probability γ = PH0(Yi = 1).

In contrast, a large body of literature adopts the so-called conditional independence

assumption: P (E1, . . . , EN |Hm) =
∏N

i=1 P (Ei|Hm) for m = 0, 1. This assumption

is inherently Bayesian, since conditioning on the hypothesis implies that the signal

means Si’s are treated as random variables.

A consequence of not assuming any particular model for the signal is that the

optimal Chair-Varshney type weighted rules can not be computed. Nevertheless, the

following simple model-independent decision fusion algorithm studied in the liter-

ature (e.g. [20]) can be used as a benchmark comparison. We will refer to it as

ordinary decision fusion (ODF):

Ordinary Decision Fusion:

1. Each sensor i makes its own decision Yi ∈ {0, 1} w.r.t. the sensor threshold τ ,

Yi = I(Ei ≥ τ);

2. Sensors transmit positive decisions to the fusion center;

3. The fusion center obtains final decision based on a pre-specified threshold T ,

37

I(
∑

i Yi ≥ T).

Given a target in R, the objective of the sensor network is to maximize its prob-

ability of detection D, while controlling the corresponding system-wide false alarm

probability F . The more recent work on decision fusion for target detection by wire-

less sensor networks has primarily focused on threshold selection, both for individual

sensors and the global decision. We note that, for any given sensor false alarm prob-

ability γ, the global threshold T can always be selected to achieve the desired overall

system false alarm F , so in our problem formulation it is not possible to optimize

both thresholds simultaneously. Under the assumption of independent sensor deci-

sions, expressions for false alarm and detection have been calculated exactly using

binomial probabilities [83], approximated using the central limit theorem [84] and

the saddle-point approximation [7], and bounded using Chebyshev’s inequality [127].

The overall detection calculations typically assume known sensor detection rates,

which is, again, unrealistic for a target in an unknown location. The expressions for

false alarm can be used to set the threshold, but none of these techniques would work

for our proposed algorithm, since they rely on independence of sensor decisions.

On the algorithmic side, alternatives to ordinary decision fusion have been pro-

posed. Distance Weighted Voting [29] weighs individual sensor decisions by the

inverse of their distance to the target, which applies only to detection at a pre-

specified location. Confidence Weighted Voting [103], perhaps closest in spirit to

what we propose, weighs sensor decisions by a measure of confidence based on the

neighborhood agreement. Finally, in [57] the decision for a pre-specified location is

made by majority vote in its neighborhood, but this was only derived for a 3-sensor

system. No analytical performance guarantees exist for these methods, and it is not

clear how to choose thresholds to achieve a desired false alarm rate.

38

In this Chapter we make two main contributions: first, we propose a new decision

fusion algorithm based on first locally adjusting individual sensors’ decisions and

subsequently integrating them at the network level. Second, we provide a rigorously

derived analytical approximation for the system-wide decision threshold level T as

a function of the system-wide false alarm probability F , obtained using limit theo-

rems for random fields. This ensures one can design a network with a guaranteed

false alarm rate using our algorithm. We show that the approximation performs

very satisfactorily for both random and fixed grid deployments, even for networks

comprised of a small number of sensors. Further, the proposed decision fusion algo-

rithm substantially outperforms ordinary decision fusion in terms of target detection

probability, and achieves good results at a significantly lower signal-to-noise ratio.

Finally, we show how to extend this algorithm to temporal decision fusion, which

allows detection of moving targets over time.

3.2 Methods and Algorithm

3.2.1 Decision Fusion for Target Detection

In order to guarantee the overall system performance of decision fusion for target

detection, one must be able to obtain the threshold T for the whole network, given an

individual sensor’s and the system’s false alarm probabilities γ and F , respectively. It

is assumed that γ is determined either by hardware specifications or from information

about background noise levels, whereas F is selected by the network’s operator.

We start our exposition from the ordinary decision fusion algorithm, where the

sensors’ decisions are simply added at the fusion center, and give an expression for the

false alarm rate and the corresponding target detection probability (similar analysis

can be found e.g. in [83, 105]). Let G denote the distribution function of the noise

levels, i.e. εi ∼ G. In the absence of a target, the probability of a positive decision

39

(false alarm probability) is given by the right tail of the binomial distribution,

(3.1) F =
N∑

i=T

(
N

i

)
γi(1− γ)N−i,

since sensors make individual decisions independently, with γ = G(τ).

In the presence of a large number of sensors, the above tail probability can be

fairly accurately determined by the normal approximation given by

(3.2) F ≈ 1− Φ

(
T −Nγ√
Nγ(1− γ)

)
,

where Φ(·) denotes the standard normal cumulative distribution function. Therefore,

for specific sensor and system false alarm probabilities γ and F , one can compute the

corresponding threshold T . Note that knowledge of the background noise distribution

G is not required, as long as γ is known. Then, a target is detected by the network

if at least T sensors measure energy levels that exceed their individual threshold τ .

Hence, the probability of detection is given by

(3.3) D =
N∑

i=T

∑
π∈Γ

i∏
j=1

(
1−G(τ − Eπ(j))

) N∏
j=i+1

G(τ − Eπ(j)),

where Γ denotes the set of all permutations of {1, . . . , N}. The first product term

corresponds to the probability that sensors π(1), . . . , π(i) make positive decisions,

while the second product term corresponds to the probability that sensors π(i +

1), . . . , π(N) make negative decisions. The detection probability depends on the

target’s and the sensors’ locations, signal parameters, and the noise distribution.

Even though in principle (3.3) gives a closed-form analytical expression for detection

probability, computing it this way is not feasible numerically; instead, we compute

it through simulation (see Section 3.3).

40

3.2.2 Local Vote Decision Fusion (LVDF): the algorithm

We propose next a modification of the ODF mechanism that first adjusts each

sensor’s decision locally by taking a majority vote in its neighborhood. For each

sensor i, the neighborhood U(i) can be defined as either all sensors within a fixed

distance r (e.g., communications range), or as a fixed number of its nearest neighbors.

By definition, i ∈ U(i), so the sensor’s own decision is always taken into account.

Local Vote Decision Fusion (LVDF):

1. Sensor i makes an initial decision Yi independent of all other sensors and com-

municates it to all other sensors j in its neighborhood U(i),

2. Subsequently, given a set of decisions {Yj : j ∈ U(i)}, sensor i adjusts its initial

decision according to a majority vote; i.e., Zi = I(
∑

j∈U(i) Yj > Mi/2), where

Mi = |U(i)| denotes the size of the neighborhood.

3. The positive updated decisions Zi are communicated to the fusion center, which

makes the final decision I(
∑N

i=1 Zi ≥ T`).

In practice, sensors only need to communicate positive decisions in step 1; an absence

of communication according to some pre-specified protocol implies that Yi = 0. In

Figure 3.2, the advantage of local vote decision fusion over ordinary decision fusion

is illustrated for both random and fixed grid deployments. Under ordinary decision

fusion, the threshold T is higher since more wrong decisions from sensors located far

away from the target are expected; these false positives have a significant adverse

effect on the sensor network’s final decision. On the other hand, the proposed local

vote mechanism fixes those isolated decisions and helps the network reach the correct

conclusion. If communications to neighbors are cheaper than those to the fusion

center, which is typical, LVDF also reduces the overall communication costs since by

41

ODF Decision =0 LVDF Decision =1

ODF Decision =0 LVDF Decision =1

Figure 3.2: Ordinary vs Local Vote decision fusion under a square grid design (top panels) and
random deployment (bottom panels). The network is comprised of 100 sensors, with
individual sensor false alarm probability γ = 0.2, system-wide false alarm probability
F = 0.1 and a target located at the center of the monitored region R. The signal is
generated by the model Si = S0 exp(−||si − v||2/η2), with S0 = 2, η = 0.1, and the
measured energy is corrupted by Gaussian noise with σ = 0.4.

42

canceling out false positives it reduces the number of positive decisions which need

to be communicated to the fusion center.

3.2.3 LVDF: threshold selection

We derive next the system-wide threshold value T` for LVDF that guarantees a

false alarm probability F . The strategy is to derive a normal approximation for F

for large sensor networks. However, unlike the initial decisions, the updated ones

exhibit dependences, a fact that introduces certain technical challenges that are

resolved next.

We start by calculating the expected value and variance of the updated decision

Zi under H0:

(3.4) µi = P (Zi = 1) =

Mi∑

j=[Mi/2]+1

(
Mi

j

)
γj(1− γ)Mi−j,

where [x] denotes the largest integer smaller than or equal to x. The variance is

given by σ2
i = Var(Zi) = µi(1− µi).

The dependence between Zi and Zj, j 6= i comes from the intersection of their

respective neighborhoods U(i) and U(j), as shown on the Figure 3.3. Let nij denote

the number of sensors in the intersection U(i) ∩ U(j).

Figure 3.3: Example of sensor neighborhoods with Mi = 6, Mj = 5 and nij = 3.

In order to calculate the covariance between Zi and Zj we first compute E(ZiZj) =

P (Zi = Zj = 1). Let A be the number of positive decisions in U(i) ∩ U(j), B the

43

number of positive decisions in U(i) but not in U(j), and C the number of positive

decisions in U(j) but not in U(i), and note that A, B, and C are independent. Then

we can write (letting
(

a
b

) ≡ 0 if b < 0)

E(ZiZj) =

nij∑

k=0

P (A = k) P (B >
Mi

2
− k) P (C >

Mj

2
− k), where

P (A = k) =

(
nij

k

)
γk(1− γ)nij−k,

P (B >
Mi

2
− k) =

Mi−nij∑

q=[
Mi
2

]−k+1

(
Mi − nij

q

)
γq(1− γ)Mi−nij−q,

P (C >
Mj

2
− k) =

Mj−nij∑

q=[
Mj
2

]−k+1

(
Mj − nij

q

)
γq(1− γ)Mj−nij−q.(3.5)

The term A is the probability that enough positive decisions for both sensors i and

j to make decisions Zi = Zj = 1 are present in the intersection of their neighborhoods

U(i)∩U(j). The term Bk is the probability that there are exactly k positive decisions

in U(i)∩U(j) (but not enough to make both Zi and Zj positive automatically); and

the terms Ck and Dk are the probabilities that there are enough positive decisions

outside of the intersection to make Zi = 1 and Zj = 1, respectively.

The covariance is then given by

(3.6) Cov(Zi, Zj) = [E(ZiZj)− µiµj]I(nij 6= 0).

Under the assumption that the target is absent, the system’s false alarm probability

is given by

(3.7) F = P

(
N∑

i=1

Zi ≥ T`

)
,

where T` denotes the local-vote decision fusion threshold. The updated decisions

{Zi; i = 1, . . . , N} form a dependent random field. The central limit theorem applies

44

to the
∑

Zi (see Section 3.2.4), both for sensors deployed on a regular grid or at

random. The following approximation then holds:

(3.8) F ≈ 1− Φ

 Tl −

∑N
i=1 µi√∑N

i=1 σ2
i +

∑
i 6=j,nij 6=0 Cov(Zi, Zj)

 .

Remark 1: Fixed neighborhood size

In some settings (e.g., dense deployments or regular grids) the number of neighbors

may be fixed to a pre-specified number with |U(i)| = M for all i. In this case we

have Zi = I
{∑

j∈U(i) Yj > M
2

}
, which shows that the Zi’s are dependent but now

identically distributed. Hence, the mean E(Zi) = µ and the variance Var(Zi) = σ2

can be calculated using (3.4). Then, E(ZiZj) can be calculated from (3.5) with

Mi = Mj = M and the resulting covariance is given by Cov(Zi, Zj) = [E(ZiZj) −

µ2]I(nij 6= 0). The normal approximation simplifies to

(3.9) F ≈ 1− Φ

 T` −Nµ√

Nσ2 +
∑

i6=j,nij 6=0 Cov(Zi, Zj)

 .

Remark 2: Regular Grids

In some applications, it may be possible to deploy the sensors along a regular grid. In

this case the false alarm approximation (3.8) further simplifies under the assumption

that each sensor has exactly M neighbors to consult including itself (ignoring edge

effects). In practice, this can be achieved by ignoring corrected decisions of sensors

on the edges, effectively reducing the grid size. On a regular grid, the one-hop

neighborhood contains either M = 5 (diamond-shaped neighborhood) or 9 neighbors

(square neighborhood), depending on whether diagonally located nearest neighbors

are included or not, and M = 7 (hexagonal neighborhood), the three most common

designs considered in classical random fields theory[28] (see Figure 3.4).

(i) Square neighborhood: The number of hops (layers) away from the sensor

at the center determines the size of the neighborhood. Let m denote the number

45

Figure 3.4: Square (left panel), hexagonal (center panel) and diamond-shaped (right panel) neigh-
borhoods on a regular grid.

of layers considered. Then, the size of the square neighborhood U(i) is given by

M = (2m + 1)2. Let t = (t1, t2) be a location shift and U(i + t) the neighborhood

of the sensor located at si + t. Then the number of common sensors in U(i) and

U(i + t) is given by ni,i+t = (2m + 1 − |t1|)(2m + 1 − |t2|), with 0 ≤ |t1|, |t2| ≤ 2m,

and ni,i+t = 0 otherwise. The covariance is given by

(3.10) Cov(Zi, Zi+t) = Cov(t) = [E(ZiZi+t)− µ2]I(0 ≤ |t1| , |t2| ≤ 2m)

and the normal approximation of F can be obtained as before.

The previous formula does not reflect the presence of edge effects, that are taken

into account in the following formula:

(3.11) ni,i+t =
∣∣∣U(i)

⋂
U(i + t)

∣∣∣ = (max(mL
i , mL

i+t)− |t1|)(max(mW
i ,mW

i+t)− |t2|),

where mL
i and mW

i are the length and the width of the neighborhood of sensor i, i.e.

Mi = mL
i ·mW

i . For each sensor i the length mL
i and the width mW

i can be calculated

as follows:

(3.12)
mL

i = min(tmax
i,1 − tmin

i,1 , 2m + 1),

mW
i = min(tmax

i,2 − tmin
i,2 , 2m + 1),

where

tmin
i,1 = max(−2m,−(i1 − 2m + 1)), tmax

i,1 = min(2m,n− i1),

tmin
i,2 = max(−2m,−(i2 − 2m + 1)), tmax

i,2 = min(2m,n− i2),

46

and sensor location index i is a pair of indexes i = (i1, i2) along horizontal and

vertical dimensions. The formula for the covariance can be written as:

(3.13)

Cov(ZiZi+t) =

E(ZiZi+t)− µiµ
2
i+t, 0 < tmin

i,j ≤ |tj| ≤ tmax
i,j < 2m, j ∈ 1, 2

σ2
i , |t1| = |t2| = 0

0, |tj| > tmax
i,j , j ∈ 1, 2

and the normal approximation of F can be obtained as before. Howener, for large

networks, the edge effect is negligible. Simulation results show that there is no

significant difference in a quality approximation for network size n ≤ 10.

(ii) Diamond-shaped neighborhood: We only consider the single-layer neigh-

borhood with M = 5. The possible values for the size of non-empty intersections of

U(i) and U(j) are

(3.14) nij = |U(i) ∩ U(j)| =

1, ‖si − sj‖ = 2h

2, h ≤ ‖si − sj‖ ≤ h
√

2

where 2h is the size of the diamond’s diagonal. The approximation for F can then

be straightforwardly obtained.

(iii) Hexagonal neighborhood. For a hexagonal grid design, let h denote the side

of the hexagon. Here we only consider the single-layer neighborhood with M = 7.

The only possible values for the size of non-empty intersections of U(i) and U(j) are

(3.15) nij = |U(i) ∩ U(j)| =

1, ‖si − sj‖ = 2h

2, ‖si − sj‖ = h
√

3

4, ‖si − sj‖ = h

and the corresponding approximation formula is

(3.16) F ≈ 1− Φ

 T` −Nµ√

N
(
σ2 + 6

∑
nij∈{1,2,4} Cov(nij)

)

 ,

where the factor of 6 comes again from the symmetry of the grid.

47

3.2.4 LVDF: Central Limit Theory for threshold approximation

Here we establish the central limit theorem for correlated LVDF decisions Zi which

was used as the basis for the approximation (3.8). The key property of the variables

Zi we use here is that even though they are correlated, correlations are only present

between ’nearby’ locations.

Regular grids. The concept of correlations between ’nearby’ locations is formalized

in the notion of mixing. Let {Xi, i ∈ Zd}, d ≥ 1, be a real-valued random field, i.e.,

a set of random variables defined on a d-dimensional lattice (in the present context

d = 2). For any set of indices E ⊂ Zd, let F(XE) = F{Xi; i ∈ E} be the σ-field

generated by the collection {Xi : i ∈ E}. Informally, F(XE) contains all events

related to the variables {Xi : i ∈ E}. Define

αu,v(k) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F(XE), B ∈ F(XF),

|E| ≤ u, |F | ≤ v, dist(E, F) ≥ k},

where the distance between two sets of indices E,F is defined as

dist(E, F) = max{‖x− y‖, x ∈ E, y ∈ F},

‖x− y‖ = max
j=1,...,d

|xj − yj|.

Then the field {Xi} is called α-mixing if for all u and v,

αu,v(k) → 0, as k → 0.

The theory of mixing random fields has been studied extensively [28, 40]. We rely

on the following theorem to establish the result.

Theorem 1: ([40], p.111). Let X = {Xi, i ∈ Zd} be a real-valued field with EXi = 0

(not necessarily stationary) and {Dn} a sequence of strictly increasing finite domains

of Zd. Let Sn =
∑

i∈Dn
Xi and let σ2

n = Var(Sn). Assume that

48

(i)
∑∞

k=1 kd−1αu,v(k) < ∞, if u + v ≤ 4 and α1,∞(k) = o(k−d).

(ii) There exists δ > 0 such that supi ||Xi||2+δ < ∞, and
∑∞

k=1 kd−1α1,1(k)
δ

2+δ < ∞.

(iii) lim infn |Dn|−1σ2
n > 0.

Then,

(3.17) σ−1
n Sn

D⇒ N (0, 1).

Based on this result, we establish

Theorem 2: Let {Zi, i = 1, . . . , N} be the LVDF corrected decisions on a regular

grid with N nodes over the unit square, DN = (1√
N

[1 :
√

N])2. Let µi = E(Zi) and

SN =
∑N

i=1 Zi. Then, as N →∞,

(3.18)
SN −

∑N
i=1 µi√

Var(SN)

D⇒ N (0, 1).

We examine the approximation for two variants of LVDF. The first one is distance

based local vote decision fusion (D-LVDF), which defines the neighborhood U(i) as all

sensors within a circle of fixed radius r from sensor i, i.e., U(i) = {j : ||si−sj|| ≤ r}.

The second one called nearest neighbor local vote decision fusion (NN-LVDF) fixes

the number of neighbors to be considered; i.e., U(i) = {i} ∪ {M-1 nearest neighbors

of i}. The theorem holds for both D-LVDF and NN-LVDF.

Proof: The proof is carried out in two steps. The result is established first for

the variables Zi defined on a rescaled version of DN , D̃N = NDN = [1 :
√

N]2.

Subsequently, it is extended to the original domain DN .

The definition of the neighborhoods U(i) (either circles of fixed radius as in D-

LVDF, or M nearest neighbors as in NN-LVDF) implies that the mixing coefficients

αu,v(k) ≡ 0 for all k ≥ k0, with k0 being a fixed constant independent of N . Hence,

all the conditions on the mixing coefficients in (i) and (ii) are automatically satisfied.

49

Further, Zi are binary and thus ||Zi||2+δ ≤ 1 for all i and δ, which implies that

condition (ii) holds as well.

Next, we establish condition (iii) holds in the present setting. Note that for all i

and j, P (Zi = 1|Zj = 1) ≥ P (Zi = 1), with strict inequality if nij > 0 and equality

if nij = 0. Thus,

(3.19) Cov(Zi, Zj) = (P (Zi = 1|Zj = 1)− P (Zi = 1)) P (Zj = 1) ≥ 0.

We also have

(3.20) σ2
N ≡ Var(SN) =≥

N∑
i=1

Var(Zi) ≥ N inf
i

σ2
i = Nσ2

0.

For the fixed number of neighbors case, we have µi = µ =
∑M

j=[M/2]+1

(
M
j

)
γj(1−γ)M−j

and 0 < µ < 1. For the fixed radius case on a regular grid, the only possible

values for Mi are in the set {1, . . . , M}, where M is the full neighborhood size

(unaffected by edges). Hence, there is a finite, at most M , number of µi and for

each one 0 < µi < 1, so that σ2
0 = infi µi(1 − µi) > 0, which in turn implies that

limN→∞ |D̃N |−1σ2
N = limN→∞ N−1σ2

N > 0.

On the original domain DN (grid over the unit square), consider first the case

of M nearest neighbors. The joint distribution of the {Zi}s over DN is identical

to that over D̃N for each N , which shows that the same limit (3.18) holds. For

the fixed radius neighborhood case, in order to make the joint distribution of the

{Zi}s invariant to rescaling of the grid, select r = rN → 0 so that rN = O(
√

N). A

convenient choice is to set Nπr2
N = M = const as before, thus fixing the size of the

neighborhoods not adjacent to the edges of the unit square. Then, the limit (3.18)

holds for D-LVDF as well.

Random deployments. For the case of random deployments, we need a central

limit theorem for a functional H(X) of a marked binomial point process X = {Xi =

50

(si, Yi), i = 1, . . . , N}, where si are the random sensor locations and Yi are the

original i.i.d. decisions (the marks). A general CLT for unmarked binomial and

Poisson processes was obtained in [89] and extended to marked point processes in

[90]. The functional H must be translation-invariant and satisfy two conditions:

(i) H is strongly stabilizing, which, informally speaking, means that the “add one

cost” ∆(X) = H(X ∪ {0}) − H(X), i.e., the change in H caused by inserting

an extra point at the origin, is not affected by changes in X that are far from

the origin; and

(ii) Certain moment bounds hold for ∆(X) and H(X).

Here, we do not state or check these conditions formally, but they are easy to verify

for LVDF: (i) is implied by the neighborhood structure, and (ii) follows from the fact

that all the variables are binary. Rescaling to the unit square from an increasing

domain is done in the same way as for regular grids.

3.3 Performance Evaluation

In this section we evaluate the proposed local vote decision fusion scheme. The

models used to generate signals are:

(3.21) M1: Si = S0 exp(−||si − v||2/η2), M2: Si =
S0

1 + (||si − v||/η)3
,

while measured energies are contaminated by Gaussian noise with mean zero and

variance σ2. The main difference between the two models is that under M1 the

signal decays exponentially fast, while under M2, polynomially fast. Notice that

the parameter η scales the attenuation of the signal within the monitored region R

and essentially determines the effective size of the target. These models capture the

characteristics of physical processes. For example, M1 with its exponential rate is

51

most appropriate for temperature signals, due to Newton’s law of cooling. On the

other hand, M2 has been used in the literature as a model for acoustic signals, with

the exponent in the denominator ranging between 2 and 5 [64, 21]. Finally, for ease

of interpretation in simulations, we give the values of the baseline signal strength S0

and the signal-to-noise ratio expressed in dB units, given by SNR=10 log10(S0/σ).

Quality of the approximation: We start by examining the quality of the normal

approximation of the network’s false alarm probability. The left panel of Figure

3.5 shows the approximation error for regular n by n grid designs, for M = 9 and

M = 5 size neighborhoods for LVDF, together with ODF, which corresponds to

M = 1. The true values of false alarm are based on 3,000 simulations of noise,

with Monte Carlo error present in the 4th significant digit. The approximation for

ODF is simply the normal approximation to the binomial distribution, and thus is

the most accurate. As M increases, the dependencies among the decisions become

stronger, and the quality of the approximation deteriorates. On the other hand,

as the size n of the grid increases, the approximation improves. Nevertheless, the

quality of the approximation remains very good even for moderate network sizes. A

quantile-quantile plot of the calculated false alarm probability obtained from 3,000

simulations vs. those from a standard normal distribution for a 25 × 25 grid, with

γ = 0.2 and the neighborhood size M = 5, is shown in the right panel of Figure 3.5.

It can be seen that the approximation is very good throughout the domain of the

distribution, with a slight deterioration in the tails.

We examine next the quality of the approximation for random deployments for

two variants of LVDF (Table 3.1). In order to make the two methods comparable,

for D-LVDF we set M to be the average number of points in a circle of radius r;

hence, M = N(πr2) and r =
√

M/(Nπ).

52

5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
M

S
E

n

Square (M=9)
Hexagonal (M=7)
Diamond (M=5)
ODF (M=1)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

M = 5

Figure 3.5: Left panel: Root mean squared error (RMSE) of the normal approximation of the
system’s false alarm probability for grids with neighborhood sizes M = 5, 9, together
with ODF, as a function of the grid size n (number of sensors N = n2). The individual
sensor’s false alarm γ = 0.2, and the RMSE is computed over the range of F = 0 . . . 0.5.
Right panel: A plot of the calculated false alarm probability quantiles against the
theoretical ones of a standard normal distribution for a 25× 25 grid, with γ = 0.2 and
M = 5.

Columns A1 and A2 in Table 3.1 give the RMSE of the general approximation

formula (3.8) for D-LVDF and NN-LVDF, averaged over 100 random deployments

(Monte Carlo error is in the 4th digit). The true false alarms for each deployment are

obtained from 3000 noise simulations. The settings used are M = 5, r =
√

M/(Nπ)

for the size of the NN- and D-LVDF neighborhoods, γ = 0.2; the RMSE is computed

over the range F = 0 . . . 0.5. As expected, the quality of the approximation improves

for larger network sizes N = n2, but the approximation is reasonable even for smaller

networks.

The general approximation (3.8) depends on sensor locations, which we assume

are known or can be obtained through a localization algorithm. However, exami-

nation of the approximation (3.8) shows that it depends on sensor locations only

through the distribution of neighborhood sizes Mi and their intersections nij; and,

while the actual locations will change from deployment to deployment, the distri-

bution of neighborhood sizes does not change much. Columns B1 and B2 in Table

3.1 show approximation errors obtained by computing the threshold (3.8) from a

53

D - LVDF NN - LVDF
n A1 B1 C1 A2 B2 C2
10 0.023 0.026 0.099 0.025 0.025 0.026
25 0.009 0.019 0.260 0.014 0.014 0.015
50 0.006 0.016 0.443 0.011 0.011 0.011

Table 3.1: RMSE for random deployments with M = 5. A: approximation (3.8); B: approximation
(3.8) based on a single fixed deployment; C: approximation for a M = 5 size neighbor-
hood on a regular grid (Monte Carlo error present in the 4th digit).

single arbitrary random deployment and then averaging the errors over 100 different

random deployments; it can be seen that the differences are very small and therefore

localization can be avoided in practice.

An even greater simplification would be to approximate the random deployment

with a fixed grid. Columns C1 and C2 in Table 3.1 show that this approximation is

reasonable for NN-LVDF but not D-LVDF. This is expected, since the distributions

of neighborhood sizes are very similar for the grid and NN-LVDF (all Mi = M , so

only the intersections vary), but not at all similar for D-LVDF and the grid.

Target detection probability: We examine next the probability of target detec-

tion D for a target located at the center of region R and a network comprised of

100 sensors. The schemes compared are ordinary decision fusion (ODF) and both

variants of local vote decision fusion, D-LVDF and NN-LVDF, using M = 9 under

random and square grid deployments. The signal for both models M1 and M2 is gen-

erated with S0 = 2 and η = 0.1. The individual sensor’s false alarm probability is set

to γ = 0.2 and that of the system to F = 0.1. The differences between D-LVDF and

NN-LVDF for these settings are so small that their respective curves in Figures 3.6

and 3.7 are practically indistinguishable; hence, only those corresponding to D-LVDF

are shown. The plots, based on averages from 1000 simulations, show that for all

SNRs, LVDF outperforms ODF, with the detection probability exceeding in general

0.9 for SNR≥ 10 for model M1 and for SNR≥ 7 for M2. This is expected in light of

54

the polynomial decay of tails in the latter model. In general, detection is lower for

more localized signals (target following M1 is harder to detect than that following

M2, and for each model smaller η results in lower detection), but the corresponding

gains from LVDF are larger. Therefore, the local vote schemes are particularly bene-

ficial for small targets or signal with low attenuation. On the other hand, ODF does

not prove to be competitive in the cases considered above. Under the above settings,

0 3 6 9 12 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

D

ODF − Square
LVDF − Square
ODF − Random
LVDF − Random

0 3 6 9 12 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

D

ODF − Square
LVDF − Square
ODF − Random
LVDF − Random

Figure 3.6: Probability of target detection as a function of SNR (in dB) for models M1 (left panel)
and M2 (right panel).

the receiver operating characteristic (ROC) curves for these decision fusion schemes

are shown in Figure 3.7 for fixed SNR = 7. Once again, the local vote schemes clearly

outperform ordinary decision fusion, with larger gains obtained for more localized

targets (M1). Specifically, for values of F in the range 0-0.2 that are most relevant

in practice, the gains in detection probability exceed .3 for both models and both

types of deployment.

It is worth noting that both LVDF and ODF exhibit a superior performance under

random deployments. This is due to the discretization of the grid – our isotropic

signal models generate a circular target, which is covered by fewer sensors from a

square grid than from a random deployment. The differences become negligible for

denser networks (N ≥ 400 – results not shown here).

The results shown in Figures 3.6 and 3.7 are consistent across a range of the γ

55

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F

D

ODF − Random
LVDF − Random
ODF − Square
LVDF − Square

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F

D

ODF − Random
LVDF − Random
ODF − Square
LVDF − Square

Figure 3.7: Probability of detection as a function of the system-wide false alarm probability F
(ROC curve) for models M1 (left panel) and M2 (right panel).

and η parameters.The plots (Figure 3.8), generated for η = 0.08, also show that

LVDF outperforms ODF, with the detection probability exceeding in general 0.9

for SNR≥ 10. As expected, the performance deteriorates for more localized signals

(η = 0.08) as compared to η = 0.1, but the corresponding gains from LVDF are

larger. Therefore, the local vote schemes are particularly beneficial for small targets

(lower values of η).

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

D

ODF − Random
LVDF − Random
ODF − Square
LVDF − Square

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F

D

ODF − Random
LVDF − Random
ODF − Square
LVDF − Square

Figure 3.8: Probability of detection as a function of SNR for signal decay parameter(left panel) and
the system-wide false alarm probability F (ROC curve)(right panel) for η = 0.08.

Energy Savings: The exact amount of energy savings will depend on the system

set-up and the cost of in-network transmissions relative to transmissions to fusion

center. However, since LVDF leads to better detection regardless of whether it can

provide energy savings, it can be performed at the fusion center after the original

decisions are transmitted. If transmissions to fusion center are more expensive, then

56

the energy savings potential of LVDF over ODF can be assessed from the number of

positive decisions transmitted to the fusion center. These are shown in Fig. 3.9 for

both algorithms as a function of α and η for model M1 (the pattern for M2 is very

similar).

0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

α

po

si
tiv

e
de

ci
si

on
s

ODF − Random
LVDF − Random
ODF − Square
LVDF − Square

0.05 0.1 0.15 0.2
0

10

20

30

40

50

η

po
si

tiv
e

de
ci

si
on

s

ODF − Random
LVDF − Random
ODF − Square
LVDF − Square

Figure 3.9: Number of positive decisions as a function of the sensor’s false alarm α (left panel, with
η = 0.1) and as a function of the signal decay parameter η (right panel, with α = 0.2)
for model M1 with F = 0.1 and SNR = 7.

System design: We examine next the sensitivity of the target detection probability

to the size of the local vote neighborhood, since this parameter can impact the

operational characteristics of the sensor network. The setting is as follows: the

target is located in the center of the region R monitored by 100 sensors deployed

on a square grid, with individual false alarm probabilities γ = 0.2. The signal is

generated by model M1 with S0 = 2, SNR=7 and η ∈ {0.05, 0.10, 0.15}. In Figure

3.10, the probability of target detection D as a function of M is shown for these

three levels of the signal decay parameter η. It can be seen that when the signal

is highly localized (η = 0.05) the detection probability does not exceed 0.5 and is

maximized for small values of M , whereas when the signal diffuses across R, the

detection probability is almost 1 for almost all values of M examined. For η = 0.1,

the optimal neighborhood size is around 10, and the drop in D for larger values of

M occurs when the size of the neighborhood becomes larger than the target. In this

57

case, only a few sensors in the neighborhood pick up the signal and thus the majority

vote tends to indicate the target is absent. A similar pattern occurs for model M2.

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

D η=0.15

η=0.05

η=0.1

Figure 3.10: Target detection probability for various levels of signal decay η.

These plots indicate that when designing a wireless sensor network employing a

LVDF mechanism, one should choose the size of the neighborhood comparable to

the size of the smallest target one is interested in detecting, since large targets will

be easy to spot.

3.4 Temporal Decision Fusion

In previous sections, the problem of decision fusion for target detection by a sensor

network has been studied when only one set of energy measurements is available.

However, target detection is often performed continuously over time, as the sensor

network collects information and updates its decisions. We examine next the problem

of temporal decision fusion. We assume that at every time slot t = 0, 1, 2, . . . the

sensors obtain energy measurements and make decisions, and extend the proposed

local vote decision fusion framework to decisions made over time.

Denote by Zt
i the decision of sensor i at time t corrected according to the pro-

posed LVDF scheme. The values Zt
i are stored and processed by the fusion center.

We propose combining decisions over time with an exponentially weighted moving

58

average with parameter λ, 0 ≤ λ ≤ 1: for all i = 1, . . . , N , let Y 0
i = Z0

i and

(3.22) Y t
i = λZt

i + (1− λ)Y t−1
i , t = 1, 2, . . .

The parameter λ determines how much weight to give to the present vs. the past:

in slowly changing environments or for slowly moving targets smaller λ will be

better, and vice versa. The decision of the network at time t is given by D̃t =

I
(∑N

i=1 Y t
i ≥ T̃`

)
. As before, the goal becomes to obtain an approximation for the

system-wide false alarm probability that allows us to calculate T̃`. We examine the

case where the energy measurements Ei and consequently the corrected decisions Zt
i

are independent over time; the case where the Zt
i s are correlated over time, due to

correlated noise in the energy measurements, is studied through simulation in Section

3.5.

Straightforward algebra shows that, for all i, j = 1 . . . N , and all t = 1, 2, . . . ,

E(Y t
i) = E(Zt

i) = µi, and

(3.23) Cov(Y t
i , Y t

j) = λ2Cov(Zt
i , Z

t
j) + (1− λ)2Cov(Y t−1

i , Y t−1
j).

Iterating the recursive covariance formula (3.23) we obtain

(3.24) Cov(Y t
i , Y t

j) = ((1− λ)2t + λ2

t−1∑

k=0

(1− λ)2k)Cov(Zk
i , Zk

j),

and letting t →∞ we finally get, for large t,

(3.25) Cov(Y t
i , Y t

j) =
λ

2− λ
Cov(Z0

i , Z
0
j).

The geometric series converge very quickly for reasonable values of λ, at the rate

O(1− λ)2t. The approximation formula for the system-wide false alarm probability

F is given by

(3.26) F ≈ 1− Φ

 T̃` −

∑N
i=1 µi√

λ
2−λ

∑N
i=1

∑N
j=1 Cov(Z0

i , Z
0
j)

59

3.5 Performance Evaluation for Temporal LVDF

We examine next the performance of temporal LVDF in terms of target detection,

using the approximation (3.26). The results shown are based on a network comprised

of N = 100 sensors, with the signal generated by model M1, the energy by Et
i = Si+εt

i

and a stationary target located at the center of the region R. Two scenarios are

studied and compared: (1) Independent noise over time; i.e., Cov(εt
i, ε

t−1
i) = 0, for

all time slots t, with the noise εt
i ∼ N (0, σ2) as before; (2) Temporally correlated

noise according to the autoregressive model εt
i = ρεt−1

i +ξi, with ξi ∼ N (0, (1−ρ2)σ2),

and εt
i ∼ N (0, σ2) as before.

In Figure 3.11, ROC curves based on 1000 simulations for temporal LVDF under

random deployment are shown for uncorrelated and correlated noise for time slots

t = {0, 1, 2, 10}. The settings are S0 = 2, η = 0.1, SNR = 7, γ = 0.2, M = 9, and

λ = 0.5. As expected, for uncorrelated noise (left panel of Figure 3.11) the detection

probability improves uniformly over time (given that the target is stationary) with

gains of over 15% for small false alarm rates. More substantial gains are obtained

for smaller targets (smaller values of η – results not shown here). It is interesting

to note that most of the improvement occurs over the first two time slots, with

rather minimal gains at subsequent times. Qualitatively, the situation is analogous

if different weight factors λ are used, as well as in the case of square grid deployment.

For correlated noise, the ROC curves for time slot t = 10, under the above system

settings and for values of ρ = 0 (uncorrelated noise), 0.4 and 0.9 are shown in the right

panel of Figure 3.11. It can be seen that the performance degrades for larger values

of the temporal correlation, a result which is consistent for other time slots as well.

Nevertheless, for moderate values of ρ, the decrease in the detection probability is

60

rather small, especially for smaller false alarm rates; this suggests that the procedure

is fairly robust and hence useful in practice for weak temporal dependence scenarios.

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F

D

time=0
time=1
time=2
time=10

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F

D

ρ=0.4

ρ=0.9

ρ=0

Figure 3.11: Temporal LVDF probability of detection for different time slots and uncorrelated noise
(left panel), and for a fixed time slot with different values of the correlation coefficient
for correlated noise (right panel).

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F

D

time=0
time=1
time=2
time=10

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F

D

ρ=0.4

ρ=0.9

ρ=0

Figure 3.12: Temporal LVDF probability of detection for different time slots and uncorrelated noise
(left panel), and for a fixed time slot with different values of the correlation coefficient
for correlated noise (right panel).

We examine next the performance of temporal LVDF for different values of the

weight parameter λ for moving targets across the monitored region R. Specifically,

a 100-sensor network is deployed along a grid and a target crosses R horizontally

moving west to east. The target’s signal is generated by model M1 with S0 = 2,

η = 0.1, SNR= 7 and the monitoring period is 30 time units. The target appears

at t = 10 and two scenarios for the target’s speed are considered: in the first one,

the target moves one hop every time unit and it takes 10 time periods to cross R;

61

in the second scenario, the target moves 3 hops per time unit and it takes 3 time

periods to cross R. The detection probability over the monitoring period for these

two scenarios and for different values of λ is shown in Figure 3.13. It can be seen that

for both slow (left panel) and fast (right panel) moving targets, the pattern is similar

across λ: the detection probability rises fast once the target appears, stabilizes during

its presence in R and fades once the target departs. The increase in the detection

probability is similar for most values of λ with the exception of λ = 0.2, where a

small lag is observed. On the other hand, there are substantial differences once the

target departs; for example, for λ = 0.2 the detection probability fades slowly, since

most of the weight is placed in past decisions, while for λ = 1 where all the weight is

on the current decision, it drops to the false alarm rate almost immediately. Finally,

one can conclude that the intermediate value of λ = 0.5 is a reasonable and robust

choice for most situations, since it is sensitive to both the emergence and departure

of the target, and achieves a very high detection probability.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

D

λ = 0.2
λ = 0.5
λ = 0.8
λ = 1

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

D

λ = 0.2
λ = 0.5
λ = 0.8
λ = 1

Figure 3.13: Temporal LVDF probability of detection for slow (left panel) and fast moving targets
(right panel) under a grid deployment.

Remark: The scenario involving a moving target could be formulated as a change-

point problem, especially under the hypothesis testing framework discussed in the

Introduction.This formulation has been studied extensively, and optimal procedures

can be derived as in, e.g., [105, 106].

CHAPTER IV

Localization and Tracking of a Single Target with Wireless
Sensor Networks

4.1 Introduction

In this chapter we focus on the tasks of a single target localization and tracking.

The canonical signal processing problems of target localization have received an in-

creasing degree of attention over the last few years. The literature on these problems

goes back to radar systems (see e.g. [1]), where localization was mostly performed

via beam-forming methods. Existing localization algorithms for WSNs can be di-

vided into two general classes: those based on energy readings Ei [64, 99, 52, 12]

and those based on binary decisions Yi [82, 85, 33]. In [64], non-linear least squares

are used to localize the target, assuming an isotropic exponentially decaying signal

model. For acoustic energy measurements, a maximum likelihood (ML) estimation

method based on the Expectation-Maximization (EM) algorithm and a projection

solution for the problem of target localization was proposed in [99]. The EM algo-

rithm was used to fit the mixture model for energies coming from multiple targets.

These methods proved to be more accurate than nonlinear least squares estimates,

but more computationally intensive. Compared to techniques that depend on such

physical variables as direction of arrival (DOA) and time delay of arrival (TDOA)

62

63

[52, 16, 78], energy based methods do not require a very accurate synchronization

among the sensors and provide accurate estimation of target locations. However,

energy-based techniques require transmission of real value data from all the sensors,

which may not be feasible under a set of communication constraints. Moreover,

methods in [99] require transmission of the mean and variance of the background

noise, which often are unknown and may have to be estimated together with the

target location and signal amplitude. Options for reducing communications cost to

some extent include implementation of an optimization-based localization algorithm

in a distributed manner [12], or obtaining energy information only from cluster heads

rather than all sensors [128]. Specifically, in [128], a two-step communication proto-

col between the cluster head and the sensors within the cluster is used: sensors send

binary decisions to the cluster head, which determines candidate target locations and

sends requests for stored energy readings to selected sensors.

Binary decision transmission offers significant cost savings, since only positive one-

bit detection notifications are sent to the fusion center. In [82], maximum likelihood

target location estimation from binary and multi-bit discrete data was developed,

along with the corresponding Cramer-Rao bound. The MLE approach reduces the

problem of localization to that of non-linear function optimization, which may suffer

from existence of local maxima, slow convergence and high computational complexity.

In [85], an improved MLE approach using the same likelihood as in [82] maximized by

particle swarm optimization techniques was shown to outperform deterministic quasi

Newton-Raphson schemes. Another recent approach used distributed false discovery

rate to select the most informative sensors to communicate with the fusion center,

although it relies on multiple within network communications on each step of the

localization [33]. Other related papers include target localization in relation to the

64

coverage problem [116], and a Bayesian approach to target localization and sensor

selection and placement [117].

In this chapter, we develop a target localization technique based on binary deci-

sions; the original decisions Yi and corrected decisions that incorporate information

from neighboring sensors through Local Vote Decision Fusion (LVDF) proposed in

Chapter III (described also in [54]). The main effect of LVDF is de-noising the

original decisions, which was shown to give a robust procedure for target detection,

particularly in noisy environments with low signal-to-noise ratio [54]. However, the

corrected decisions are correlated, which makes likelihood computations intractable.

Instead, we adopt a pseudo-likelihood approach, and develop a localization and sig-

nal estimation procedure for LVDF that enjoys the same robustness properties as

the LVDF detection algorithm. We also derive an EM algorithm for maximum like-

lihood estimation from binary decisions, both for the original decisions Yi and the

LVDF-corrected ones. We show that, in both cases, EM provides much more accu-

rate estimates than direct optimization of the likelihood of binary decisions, but has

higher computation complexity. We also discuss properties of the estimators and

provide a bootstrap procedure for uncertainty assessment.

In addition to the proposed methods above and under the assumption of known

energy readings from sensors with positive original decisions Yi or corrected decisions

Zi, we develop hybrid (pseudo-) maximum likelihood and expectation-maximization

algorithms. Numerical results show that the proposed framework significantly im-

proves the accuracy in target location estimation, as well as signal magnitude esti-

mation. Simulations using different signal models are performed and the problem

of model and noise distribution misspecification is explored. We also investigate the

advantage of applying the Largest Connected Component technique to define sub-

65

regions of the candidate target locations. Extensions to tracking a target over time

are considered as well.

The remainder of the chapter is organized as follows. In Section 4.2 the likelihood

framework and the EM algorithm for binary decisions are developed, and properties

of these estimates and construction of confidence intervals are discussed. In Section

4.3, numerical results on the performance of the various methods are presented, along

with a discussion of implementation issues. The problem of tracking a target over

time is briefly examined in Section 4.4.

4.2 Methods and Algorithms

In this section we present methods for target localization by a WSN deployed over

a region R, based on binary measurements – either the original decisions Yi, i =

1, 2, · · · , N or LVDF-corrected decisions Zi. The maximum likelihood estimator for

location from Yi has been derived before (see e.g. [82]), but we include a summary

for completeness.

It is assumed that the sensor locations si are known and that the attenuation of the

target’s signal is a known function which is monotonically decreasing in the distance

from the target δi(v) = ||si − v||, and also depends on an attenuation parameter η.

That is, the signal at location si is given by

(4.1) Si(v) = S0Cη(δi(v)),

with Cη(0) = 1 and S0 ∈ [0,∞) denoting the signal strength at the target’s location

v. The noise is assumed to be Gaussian with mean zero and variance σ2. The

primary parameters of interest are the target’s location v and the signal strength S0;

obviously, the noise variance σ2 and the attenuation parameter η affect the estimation

problem.

66

4.2.1 Localization from Original Decisions

As outlined above, each sensor makes a decision Yi ∈ {0, 1} regarding the pres-

ence of the target in R. We do not treat the signal itself as random, so the only

randomness comes from the i.i.d. noise. Define the vector of unknown parameters

θ = (vx, vy, S0, σ, η). Then decisions {Yi} are independent Bernoulli random variables

with probability of success given by

P(Yi = 1) ≡ αi(θ) = 1− Φ(Ai(θ)),

where Φ(·) denotes the Gaussian cumulative distribution function and Ai(θ) is the

standardized excess energy level given by

Ai(θ) =
τ − S0Cη(δi(v))

σ
.

The log-likelihood function of {Yi} is given by:

(4.2) `Y (θ) =
N∑

i=1

[Yi log αi(θ) + (1− Yi) log(1− αi(θ))] .

There are two options for obtaining estimates of the unknown parameters: direct

numerical maximization of the log-likelihood function (5.6) (no closed form solution

exists) or the Expectation-Maximization (EM) algorithm [26]. The EM can be ap-

plied here by viewing Yi = I(Ei > τ) as incomplete data on the true energy readings

Ei, and consists of an expectation step (E-step), where expected likelihood of the full

data conditional on the available data is obtained, and a maximization step (M-step)

where the parameters are estimated by maximizing the likelihood from the E-step.

The full log-likelihood of the energies, up to an additive constant, is given by

(4.3) `E(θ) = −n

2
log σ2 − 1

2σ2

N∑
i=1

[Ei − S0Cη(δi(v))]2 .

67

Maximizing this over S0 and σ2 can be done in closed form. This gives the

M-step:

Ŝ0 =

∑N
i=1 EiCη(δi(v))∑N

i=1 C2
η(δi(v))

,(4.4)

σ̂2 =
1

N

N∑
i=1

(Ei − Ŝ0Cη(δi(v)))2.(4.5)

The other parameters (v and η) are found by numerical optimization of (4.3) with

(4.4) and (4.5) plugged in.

The likelihood (4.3) is a curved exponential family in θ, so the M-step shows that

there are just two quantities that need to be computed in the E-step: Êi = E[Ei|Y] =

E[Ei|Yi] and Ê2
i = E[E2

i |Y] = E[E2
i |Yi]. Note that each Ei only depends on Yi rather

than all Y because Si is not random, and εi’s are independent. These expectations

are straightforward to derive: for instance,

E[Ei|Yi = 0] =

∫ τ

−∞ xp
Ei

(x) dx∫ τ

−∞ p
Ei

(x) dx
=

= S0Cη(δi(v))−
σ exp

(
−Ai(θ)

2

2

)

√
2πΦ(−Ai(θ)2

2
)

(4.6)

Combining analogous computations for E[Ei|Yi = 1] and E[E2
i |Yi] gives the

E-step:

Êi = S0Cη(δi(v)) +
σ exp

(
−Ai(θ)

2

2

)
√

2π
Bi(θ, Y)(4.7)

Ê2
i = S0Cη(δi(v))(τ − Êi)− Êiτ,(4.8)

where

Bi(θ, Y) =
Yi − 1

Φ(−Ai(θ)2

2
)

+
Yi

1− Φ(−Ai(θ)2

2
)

.

The EM algorithm consists of iterating between the E-step and the M-step until

convergence, which tends to be computationally more expensive that direct numerical

68

optimization of the likelihood; however, it tends to produce much more accurate

results (see Section 4.3). In both cases, good initial values for the parameters are

important; we briefly discuss this issue in Section 4.3.

4.2.2 Localization from LVDF Decisions

The adjusted decisions Zi produced by the LVDF algorithm are correlated, which

renders the form of the likelihood function in (5.6) invalid. For this reason we adopt

a pseudo-likelihood formulation [10], by assuming that all adjusted decisions Zi are

independent. Further, we make a simplifying

Assumption: For neighbors j ∈ U(i), P(Yj = 1) ≈ P(Yi = 1).

Letting βi(θ) = P(Zi = 1), this gives

βi(θ) = P(
∑

j∈U(i)

Yj ≥ M

2
) ≈

M∑

k=[M/2]

(
M

k

)
αk

i (1− αi)
M−k.

The pseudo-loglikelihood function for the adjusted decisions Zi is given by:

(4.9) `Z(θ) =
N∑

i=1

[Zi log βi(θ) + (1− Zi) log(1− βi(θ))] .

Maximum likelihood estimates based on (5.9) can again be obtained through direct

maximization. For the EM algorithm, the M-step is the same as before. The E-step

requires calculating the first and second conditional moments E[Ei|Z] and E[E2
i |Z].

We first compute the conditional distribution of Ei given all the decisions Z. Write

P[Ei|Z] =
1

P(Z)

∑

k=0,1

P(Ei, Z|Yi = k)P(Yi = k) =

=
1

P(Z)

∑

k=0,1

P(Ei|Yi = k)P(Z|Yi = k)P(Yi = k)(4.10)

where the last equality follows because conditional on the value of Yi the energy

reading Ei is independent of the vector of corrected decisions Z (recall again that all

69

randomness comes from the noise εi, not the signal). Integrating (4.10) gives

E[Ei|Z] =
∑

k=0,1

E(Ei|Yi = k)P(Yi = k|Z)(4.11)

E[E2
i |Z] =

∑

k=0,1

E(E2
i |Yi = k)P(Yi = k|Z)(4.12)

Since we have already obtained E[Ei|Yi] and E[E2
i |Yi] in the E-step for ODF, all that

remains to be calculated is

P(Yi = 1|Z) =
P(Yi = 1)P(Z|Yi = 1)

P(Z)
(4.13)

≈ αi

N∏
j=1

P(Zj|Yi = 1)

P(Zj)
(4.14)

= αi

∏

j:i∈U(j)

P(Zj|Yi = 1)

P(Zj)
,(4.15)

where (4.13) is the Bayes rule, (4.14) is the pseudo-likelihood approximation, and

(4.15) follows because only corrected decisions that come from a neighborhood con-

taining sensor i depend on Yi. Once again using the assumption αj ≈ αi for j ∈ U(i),

we get

β̃ji = P(Zj = 1|Yi = 1) = P(
∑

k∈U(j),k 6=i

Yk ≥ M

2
− 1)

≈
M−1∑

q=[M/2−1]

(
M − 1

q

)
αq

j(1− αj)
M−1−q(4.16)

and finally

(4.17) P(Yi = 1|Z) = αi

∏

j:i∈U(j)

(
β̃ji

βj

)Zj
(

1− β̃ji

1− βj

)1−Zj

Substituting (5.10) into (4.11) and (4.12) completes the E-step for the LVDF deci-

sions.

70

4.2.3 Hybrid Maximum Likelihood Estimates

Hybrid maximum likelihood estimation is motivated by the trade-off between en-

ergy consumption and accuracy of target localization. Maximum likelihood estimates

based on the energy measurements Ei encompass all available information, and are

considered to be the most accurate. Decision based estimates contain less informa-

tion (although in low SNR environments they tend to perform better due to relative

robustness of binary decisions). However, transmission of one bit decisions offers

significant communication cost savings. The main idea of hybrid methods is to use

energy information from the sensors with positive decisions and model energies for

the rest of the network. By using energy readings from sensors with positive initial

or updated decisions, we both reduce significantly communication cost compared to

transmission of the full energy measurements from all sensor nodes and improve the

decision based localization.

Hybrid expectation maximization (HEM) algorithm is an extension of the original

EM algorithm. Since each Ei only depends on Yi, for ODF, hybrid EM formulas are

given as:

If Yi = 1,

Êi = Ei,(4.18)

Ê2
i = E2

i .(4.19)

Otherwise (Yi = 0),

Êi = S0Cη(δi(v))−
σ exp

(
−Ai(τ)2

2

)

√
2πΦ(−Ai(τ)2

2
)

(4.20)

Ê2
i = S2

0C
2
η(δi(v))(τ − Êi)− Êiτ.(4.21)

Analogously, for LVDF hybrid EM version, we model only the energies that corre-

71

spond to Zi = 0 using (5.10),(4.11), (4.12) and use the available energies for Zi = 1.

Although HEM proves to be competitive in terms of the accuracy of localization

and less computationally expensive than the original EM algorithm, it sometimes fails

to converge. Another option is to replace energies corresponding to zero decisions

by the threshold τ and maximize the energy-based likelihood (4.3), which avoids

iterative computations, but suffers in accuracy of location and signal estimates. We

refer to this method as hybrid maximum likelihood estimation (HML).

4.2.4 Properties of Maximum Likelihood Estimates

We briefly discuss the properties of the ML and EM estimates for the ODF and the

LVDF mechanisms. Under the following assumptions on the log-likelihood function

[27]: (i) the log-likelihood function is distinct when θ1 6= θ2, (ii) the true parameter

θ0 is in the interior of the parameter space and (iii) the log-likelihood function is

differentiable in θ, the estimate θ̂ is consistent. Since (ii) is straightforward, we show

that both log-likelihood functions (5.6) and (5.9) satisfy (i) and (iii).

(i) Let θ1 6= θ2, where θj = (Sj
0, v

j), j = 1, 2,and let I(θ1, θ2) = {i : Ai(θ1) 6=

Ai(θ2)} ⊂ {1, 2, ...N}.

The set I is not empty, because otherwise it would follow that S1
0Cη(δi(v

1)) =

S2
0Cη(δi(v

2)) for all i, and θ1 = θ2, which contradicts the assumption above.

Therefore, αi(θ1) 6= αi(θ2) for i ∈ I and hence `Y (θ1) 6= `Y (θ2). A similar argu-

ment applies to LVDF log-likelihood function `Z . Assumption (iii) follows from the

fact that the log-likelihood function (`Y (θ) or `Z(θ)) is a continuous and bounded

function.

Under additional assumptions on the log-likelihood function and its derivatives,

asymptotic normality of the estimates can also be established, which can be used to

provide a measure of uncertainty for the estimates. Whether these assumptions hold

72

will depend on the exact form of the signal decay function C. The EM algorithm

will converge to a local maximum of the energy likelihood (4.3); additional properties

can be established depending on the function C.

Assuming the assumptions on the likelihood function that guarantee asymptotic

normality hold, one can obtain confidence regions for the parameters of interest.

We show next how to construct a two-dimensional confidence region for the main

parameter of interest, target location v. Let v̂ = (v̂x, v̂y) be the coordinates of the

estimate of the true target location, with v̂ ∼ N (v, Σv), with Σv = Var(v̂). A two-

dimensional confidence region Q satisfies P(v ∈ Q) = 1− ζ, with 1− ζ denoting the

confidence level. Standardizing the location estimate yields

(4.22) ṽ = Σ−1/2
v (v̂ − v) ∼ N (0, I2),

which in turn implies that the desired confidence region Q̃ for ṽ is a circle of radius

r that satisfies P(‖ṽ‖2 ≤ r2) = 1 − ζ. The appropriate value of r is given by the

(1 − ζ)-quantile of the χ2 distribution with two degrees of freedom. The region Q̃

can then be inverted to obtain Q using (4.22).

This procedure requires an estimate of the covariance matrix Σ = Var(θ̂). The

asymptotic Cramer-Rao bound may be used to estimate Σ via the Fisher information

matrix, but it may not be sufficiently accurate for smaller samples, particularly for

the pseudo-likelihood.

An alternative way of obtaining a measure of variability of the estimates is through

a parametric bootstrap procedure [31], as follows.

(i) Energies are simulated from the posited model with parameters set to the max-

imum likelihood estimates: simulate M samples from the assumed signal attenuation

model to obtain

E∗
i,m = Ŝ0Cη̂(δi(v̂)) + ε∗i,m,

73

where ε∗i,m ∼ N (0, σ̂2) are i.i.d. noise, i = 1, . . . , N , m = 1, . . . , M .

(ii) The simulated energies are used to obtain bootstrap estimates of the param-

eters of interest θ̂m, m = 1, . . . , M .

(iii) The empirical covariance of the estimates θ̂m across the M samples gives an

estimate for Σ.

This is the procedure we followed in obtaining uncertainty estimates presented in

the next section.

4.3 Performance Evaluation

We examine next the performance of the proposed algorithms, focusing on the

target location v and the signal amplitude S0. In order to limit the number of

comparisons, it is assumed that the parameters η and σ2 are known, although the

proposed likelihood framework allows their estimation.

The same models as in Chaper III, were used to generate the target’s underlying

signal:

M1: Si = S0 exp(−||si − v||2/η2), M2: Si =
S0

1 + (||si − v||/η)3
.

IIn the simulation study, the signal at each sensor location si was contaminated by

mean zero, variance σ2 Gaussian noise and the following procedures were compared:

the maximum likelihood estimates based on the original decisions Yi (ODF) obtained

through direct optimization and through the EM algorithm, as well as the hybrid

versions, denoted by ML(Y), EM(Y), HML(Y) and HEM(Y), respectively, and the

corresponding estimates based on the adjusted decisions (LVDF), denoted by ML(Z),

EM(Z), HML(Z) and HEM(Z). In addition, maximum likelihood estimates based

on the measured energies (ML(E)) were obtained to serve as a ’gold standard’ for

74

comparison purposes. Their computation is equivalent to the M-step in the EM

algorithms, except real rather than expected energies are used.

Throughout this section, the results will be shown for either a WSN deployed on

a 20 × 20 grid in the unit square, or 400 sensors deployed at random (uniformly

distributed in the unit square). We fix the same arbitrarily selected random deploy-

ment throughout; additional simulations confirmed that the results are very similar

if we average over many random deployments instead. The true target location is

set to v = (1/4, 1/4), S0 = 2, the individual sensor’s false alarm γ = 0.1, and the

network’s false alarm F = 0.1. The value of σ is determined from the selected value

of the signal-to-noise ratio SNR = S0/σ, which varied from 2 to 10. The target

“size” parameter η ranged from 0.03 to 0.15. Note that if the target is large enough,

it is usually detected by several sensors. On the other hand, if the sensor is so small

that only one or two sensors can detect it, there is no advantage using local voting

and localization accuracy could be fairly low. In such a situation, the density of the

sensor network needs to increase to compensate.

4.3.1 Detection Performance

Notice that from the detection point of view, there are only three distinct algo-

rithms: value fusion (energies), ODF (original decisions), and LVDF. Their detection

performance was compared extensively in the previous chapter (also in [54]), and thus

not included in this study. However, it is important to put all the algorithms on an

equal footing when comparing their localization performance, since they all have

different detection rates. To accomplish this, 500 replications of the noise were gen-

erated, and only those cases where all three procedures were able to detect the target

were kept for further calculations. Table 4.1 shows how many cases were detected by

each method, and how many were detected by all in each case. It can be seen that

75

LVDF exhibits a superior detection performance overall, particularly for low SNRs.

SNR VF ODF LVDF all VF ODF LVDF all
Model M1 Model M2

Grid deployment
2 240 181 378 115 435 340 474 315
5 481 426 500 416 500 499 500 499
10 500 492 500 492 500 500 500 500

Random deployment
2 218 163 378 100 418 306 433 259
5 460 369 500 352 499 500 500 499
10 500 491 500 491 500 500 500 500

Table 4.1: Number of times (out of 500) the target is detected by different methods (VF, ODF,
LVDF) and all methods together (all), with η = 0.1.

4.3.2 Localization and Signal Estimation Accuracy

The accuracy of the various algorithms for target localization is given in Table

4.2. The results are obtained for a low (2), medium (5) and high (10) SNR scenarios,

with η set to 0.1. It can be seen that the LVDF localization algorithms clearly out-

perform their ODF counterparts for both models, with the exception of model M2

at SNR=10, where the EM version of ODF performs slightly better than the corre-

sponding LVDF algorithm. Further, in the low SNR regime they clearly outperform

the “gold standard” ML(E), while for the medium and high SNR regimes they ex-

hibit a competitive performance. The HEM algorithms tend to be the most accurate,

followed by EM, while both ML and HML tend to be less accurate. All algorithms

do somewhat better on model M2, since the slower signal decay allows more sensors

to pick up the target. It is also worth noting that for the ODF based algorithms,

the EM version significantly outperforms the one based on numerical optimization.

The poor performance of ML using Y , particularly at low SNR, is primarily due to

the sensitivity of the numerical solver to the selection of initial values, which in the

case of the adjusted decisions is not an issue due to the de-noising nature of LVDF

76

(see discussion in 4.3.3). As expected, for larger values of SNR the accuracy of all

the algorithms improves, and for random deployments the pattern remains the same

but all methods are somewhat less accurate.

SNR ML(E) ML(Y) EM(Y) HML(Y) HEM(Y) ML(Z) EM(Z) HML(Z) HEM(Z)

Model M1, grid deployment

2 0.208 0.576 0.223 0.329 0.236 0.077 0.056 0.075 0.089
5 0.011 0.502 0.113 0.275 0.066 0.019 0.020 0.012 0.012
10 0.005 0.421 0.028 0.221 0.006 0.019 0.016 0.010 0.006

Model M2, grid deployment

2 0.164 0.388 0.119 0.226 0.111 0.066 0.050 0.093 0.049
5 0.011 0.101 0.018 0.031 0.012 0.022 0.021 0.012 0.012
10 0.005 0.064 0.017 0.021 0.005 0.020 0.020 0.006 0.005

Model M1, random deployment

2 0.230 0.744 0.346 0.424 0.326 0.128 0.077 0.221 0.082
5 0.012 0.621 0.233 0.300 0.171 0.052 0.037 0.095 0.020
10 0.006 0.488 0.078 0.283 0.020 0.043 0.024 0.090 0.008

Model M2, random deployment

2 0.191 0.625 0.197 0.329 0.187 0.092 0.052 0.158 0.052
5 0.012 0.170 0.040 0.216 0.023 0.049 0.031 0.106 0.017
10 0.007 0.096 0.016 0.109 0.006 0.025 0.021 0.043 0.006

Table 4.2: Average distance from the true location v as a function of SNR with η = 0.1.

In Table 4.3, the quality of the estimates of the signal S0 is given in terms of

root mean squared error (RMSE). Once again, the LVDF based algorithms outper-

form their ODF counterparts in almost all situations, and for low SNR they exhibit

smaller RMSE than the gold standard. The only exception again is model M2 at

SNR=10 with the EM algorithm. Finally, for larger values of SNR all the algo-

rithms become more accurate, with the largest improvement for the gold standard.

For both ODF and LVDF, the EM algorithm outperforms the corresponding hybrid

EM version estimates for low SNR. For medium and high SNR, the HEM(Z) algo-

rithm exhibits the best performance in terms of accuracy of localization and signal

estimation (essentially the same as the ”gold standard”) (Table 4.2).

We compare next the accuracy of target localization for the various algorithms as

a function of effective target size η for a low SNR=2 regime and a moderate one with

SNR=5 (see Figures 4.1). The HML(Z) and HML(Y) algorithms are omitted from

77

SNR ML(E) ML(Y) EM(Y) HML(Y) HEM(Y) ML(Z) EM(Z) HML(Z) HEM(Z)

Model M1, grid deployment

2 0.923 1.297 0.933 1.068 0.736 0.634 0.718 1.017 0.537
5 0.163 1.555 0.923 0.722 0.450 0.558 0.521 0.223 0.169
10 0.077 1.702 0.546 0.861 0.083 0.661 0.460 0.355 0.082

Model M2, grid deployment

2 0.798 1.104 0.717 1.798 0.747 0.475 0.464 1.491 0.487
5 0.120 0.733 0.314 0.446 0.183 0.415 0.345 0.354 0.124
10 0.060 0.623 0.267 0.262 0.082 0.325 0.325 0.119 0.065

Model M1, random deployment

2 0.924 1.377 1.016 1.317 0.703 0.729 0.608 1.134 0.718
5 0.197 1.599 1.218 0.663 0.782 0.773 0.734 0.454 0.233
10 0.092 1.599 0.825 0.916 0.308 0.702 0.651 0.573 0.115

Model M2, random deployment

2 0.796 1.328 0.868 2.449 0.877 0.423 0.518 2.003 0.465
5 0.151 0.855 0.406 0.521 0.276 0.544 0.489 0.458 0.160
10 0.076 0.686 0.234 0.531 0.097 0.314 0.264 0.377 0.079

Table 4.3: Root Mean Squared Error of estimating S0 as a function of SNR with η = 0.1.

the figures to reduce clutter since they are outperformed by HEM(Z) and HEM(Y),

respectively, in every case. In general, larger η corresponds to a bigger target which is

easier to detect and localize. The patterns for both models are very similar, and the

LVDF algorithms outperform the ODF ones; moreover, in a very noisy environment

(SNR=2) the LVDF algorithms also outperform the energy based MLE, while for

the case of SNR=5 they perform equally well, especially for larger targets.

The plots in Figure 4.2 assess the quality of the estimates for S0 as a function

of the target size. One can see that for larger targets the LVDF based algorithms

perform well for both models, and somewhat outperform the gold standard at SNR

= 2. For smaller size targets, the pattern is not that clear, although all the decision

based algorithms exhibit similar performance. As before, the HEM versions tend to

be the most accurate ones for both algorithms.

4.3.3 Starting Values

All the decision based algorithms are iterative in nature and require starting

values for the parameters of interest. Experience shows that an inferior choice of

starting values can slow down convergence and/or lead to poor quality estimates; in

78

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

A
V

G
D

(v
)

ODF ML(Y)
LVDF ML(Z)
LVDF EM(Z)
ODF EM(Y)
MLE(E)

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

A
V

G
D

(v
)

ODF ML(Y)
LVDF ML(Z)
MLE(E)
LVDF EM(Z)
ODF EM(Y)

(a) (b)

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

A
V

G
D

(v
)

ODF ML(Y)
LVDF ML(Z)
MLE(E)
LVDF EM(Z)
ODF EM(Y)

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

A
V

G
D

(v
)

ODF ML(Y)
LVDF ML(Z)
MLE(E)
LVDF EM(Z)
ODF EM(Y)

(c) (d)

Figure 4.1: Average distance from true target location v as a function of η for square grid deploy-
ment. (a) SNR = 2, model M1; (b) SNR = 2, model M2; (c) SNR = 5, model M1; (d)
SNR = 5, model M2.

79

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

η

R
M

S
E

(S
0)

ODF ML(Y)
LVDF ML(Z)
MLE(E)
LVDF EM(Z)
ODF EM(Y)

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

η

R
M

S
E

(S
0
)

ODF ML(Y)
LVDF ML(Z)
MLE(E)
LVDF EM(Z)
ODF EM(Y)

(a) (b)

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

η

R
M

S
E

(S
0)

ODF ML(Y)
LVDF ML(Z)
MLE(E)
LVDF EM(Z)
ODF EM(Y)

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

η

R
M

S
E

(S
0)

ODF ML(Y)
LVDF ML(Z)
MLE(E)
LVDF EM(Z)
ODF EM(Y)

(c) (d)

Figure 4.2: Root Mean Squared Error of estimating S0 as a function of η for square grid deployment.
(a) SNR = 2, model M1; (b) SNR = 2, model M2; (c) SNR = 5, model M1; (d) SNR
= 5, model M2.

80

fact, the poor performance of localization based on Y is primarily due to this issue.

Notice that the starting values have to be a function of the information available for

the method, and a good initial guess for the target’s location is the centroid of the

positive decisions, given by

v0(Y) =

∑
i siI(Yi = 1)∑
i I(Yi = 1)

for ODF and

v0(Z) =

∑
i siI(Zi = 1)∑
i I(Zi = 1)

for LVDF. Because LVDF eliminates many distant false positives, v0(Z) tends to

be significantly more accurate than v0(Y). For the benchmark ML(E), where all

energies are available, a natural choice of starting value is the location v0(E) of the

maximum energy reading maxi Ei. Table 4.4 gives average distance from the starting

location for each class of methods (energies, original decisions, and LVDF decisions)

to the truth. It can be seen that all methods improve at higher SNR, but the starting

value for Y is, on average, much further from the truth than the starting value for

Z; for energies, the starting value based on maximum energy works well at higher

SNRs, but not at SNR=2.

SNR v0(E) v0(Y) v0(Z) v0(E) v0(Y) v0(Z)
Model M1 Model M2

Grid deployment
2 0.244 0.306 0.094 0.214 0.282 0.086
5 0.033 0.266 0.033 0.039 0.220 0.030
10 0.024 0.231 0.022 0.031 0.183 0.026

Random deployment
2 0.252 0.321 0.104 0.170 0.305 0.107
5 0.027 0.285 0.070 0.029 0.236 0.057
10 0.022 0.245 0.048 0.024 0.196 0.031

Table 4.4: Average distance of starting values from the true location as a function of SNR with
η = 0.1.

If better starting values are available from some prior information or external

81

knowledge, performance of all methods will improve, but particularly that of Y . We

found that if the search is initialized very close to the truth, the ML(E) generally

provides the best localization, as expected, followed closely by Y and Z. However,

the starting values we use are integral to the methods and are unlikely to be improved

upon without extra information.

4.3.4 Robustness to Model Misspecification

The performance of all algorithms may change when aspects of the true model

are misspecified. Of particular interest is the change in performance of the best

algorithms, and changes in relative performance of the different algorithms. First,

we test robustness to signal model misspecification by investigating how the quality

of the estimates is affected when the signal is generated by model M2, but the

assumed signal model is M1. The performance of the algorithms relative to each

other remains exactly the same (results not shown, but see the pattern in Figures

4.1 and 4.2): LVDF is still the most accurate for low SNRs followed by ML(E) and

ODF, and ML(E) is the best for higher SNRs, closely followed by LVDF. To assess

changes in absolute accuracy of each algorithm, the differences between the error

under misspecified model and the error under the true model are shown in Figure 4.3,

for SNR =5. The two binary likelihood methods (ML(Y) and ML(Z)) are omitted as

the least accurate in their class. Note also that we plot absolute rather than relative

differences because some of the errors under the true model are very small, and will

lead to unstable ratios. One can see that for target localization, the performance

of both ML(E) and LVDF is very robust, whereas ODF performs somewhat worse,

though the differences are small. For signal estimation, methods that use at least

some energy information (ML(E), HEM(Y), and HEM(Z)) do well, whereas both

methods based on binary decisions only (EM(Y) and EM(Z)) deteriorate more. These

82

differences may be larger for more drastically different models.

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

η

di
ff(

v)

ML(E)
ODF EM(Y)
LVDF EM(Z)
ODF HEM(Y)
LVDF HEM(Z)

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
−1

−0.5

0

0.5

1

1.5

2

2.5

3

η

di
ff(

S0
)

(a) (b)

Figure 4.3: True model M2 misspecified as M1 with SNR=5. (a) The difference between average
distances from true v for misspecified and true models; (b) The difference between
RMSE of Ŝ0 for misspecified and true models.

We next look at another type of potential misspecification, which is when the

noise distribution is misspecified. In the simulation, M1 generates the signal and

is used by the algorithms, but the noise comes from a t-distribution with 3 degrees

of freedom, while Gaussian distribution is assumed by the algorithms. Note that

this t-distribution has significantly heavier tails than the Gaussian, but the false

alarm rate of the individual sensor is fixed at the same value γ = 0.1, and the two

distributions are scaled to have the same variance. In this case, both versions of the

LVDF algorithm perform very well and prove the most robust. The ODF errors also

remain similar, with somewhat erratic behavior for smaller targets where ODF may

perform better under a misspecified noise model. The energy-based MLE is the most

sensitive to distribution misspecification, as one would expect.

4.3.5 Confidence Region Estimation

The coverage and area of bootstrap confidence regions for the target location v are

summarized in Table 4.5. The setting was a target located at v = (1/4, 1/4), with

sensor false alarm rate γ = 0.1 and target size determined by η = 0.1. The table gives

83

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

η

di
ff(

v)

ML(E)
ODF EM(Y)
LVDF EM(Z)
ODF HEM(Y)
LVDF HEM(Z)

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

η

di
ff(

S0
)

(a) (b)

Figure 4.4: True noise distribution t3 misspecified as Gaussian, with SNR=5. (a) The difference be-
tween average distances from true v for misspecified and true models; (b) The difference
between RMSE of Ŝ0 for misspecified and true models.

the coverage for the various methods for models M1 and M2. It can be seen that

the energy based ML algorithm, together with all variants of the LVDF algorithm

except HML, approximately achieve the nominal level of 95% for all SNRs examined,

whereas the ODF ones fall short, particularly for the more localized target of model

M1. The table also gives the average area of the confidence regions. For SNR=2, the

gold standard is outperformed by all of LVDF algorithms in all cases, and in some

cases by some of the ODF methods as well. For larger SNRs, ML(E) is the best.

The HML(Z) method gives small confidence regions, but taken coverage probabilities

into account, we conclude that of decision-based methods, EM(Z) produces the most

reliable confidence regions, with HEM(Z) also showing good performance. We note

that the bootstrap procedure does require extra computing time, but it typically

takes less than a minute to compute a confidence region on an ordinary PC.

4.3.6 Computational Costs

Some computational cost estimates are shown in Figure 4.5, which give the distri-

bution of the number of iterations over 100 replications of the ML (direct optimiza-

tion), EM, and HEM algorithms. One iteration for each method takes approximately

84

SNR ML(E) ML(Y) EM(Y) HML(Y) HEM(Y) ML(Z) EM(Z) HML(Z) HEM(Z)

Model M1, grid deployment

2 1.0000 2.3195 0.2692 0.6120 0.1977 0.3041 0.3204 0.0415 0.2411
96 76 47 62 49 94 97 77 90

5 0.0029 2.1307 0.1614 0.7897 0.0510 0.0491 0.0070 0.0212 0.0019
93 72 78 84 96 97 96 98 95

10 0.0003 2.1063 0.0497 0.6587 0.0010 0.0089 0.0037 0.0459 0.0004
93 87 97 82 98 91 96 99 98

Model M2, grid deployment

2 0.8738 1.9541 0.1667 0.0583 0.0365 0.3745 0.1768 0.0074 0.1506
97 81 62 54 73 97 95 46 95

5 0.0016 0.8758 0.0106 0.0202 0.0014 0.0086 0.0066 0.0013 0.0015
97 90 91 92 87 91 94 88 90

10 0.0003 0.3162 0.0031 0.0061 0.0003 0.0134 0.0049 0.0003 0.0003
93 99 88 96 94 87 94 88 96

Model M1, random deployment

2 1.0294 2.0788 0.2313 0.5898 0.1495 0.7190 0.3516 0.2851 0.2850
92 61 22 50 28 95 91 55 96

5 0.0027 2.0278 0.2754 0.6529 0.1773 0.1928 0.0294 0.2949 0.0159
94 65 50 63 66 93 77 82 91

10 0.0005 1.9758 0.1605 0.6260 0.0401 0.0735 0.0077 0.2707 0.0007
94 78 85 59 97 91 91 85 95

Model M2, random deployment

2 0.8657 1.8346 0.2374 0.1478 0.0653 0.6836 0.2319 0.1445 0.2329
95 55 59 26 58 96 94 63 97

5 0.0019 1.0153 0.0378 0.2354 0.0024 0.0828 0.0128 0.1850 0.0027
92 91 93 55 86 76 90 81 91

10 0.0004 0.6465 0.0031 0.1237 0.0004 0.0482 0.0053 0.1035 0.0005
91 97 93 78 94 91 95 92 97

Table 4.5: Average area (top entry) and number (bottom entry) of 95% confidence regions (both
out of 100 replications) containing the true target location.

85

the same amount of time, so comparing the number of iterations directly provides

a reasonable estimate of relative computational costs. Comparisons are shown for

a grid deployment with η = 0.1 and SNR = 5. Note that the EM algorithms were

stopped at 300 iterations if they did not achieve convergence using a 10−4 tolerance.

On average, the LVDF algorithms converge faster than their ODF counterparts; how-

ever, it takes the optimization about 1/10 of the iterations to converge on average,

compared to the EM versions (recall that the M-step requires a numerical optimiza-

tion; the number of iterations shown for EM is the sum of the optimization iterations

at each M-step and the EM iterations). Given the significantly higher accuracy of

the EM algorithms, this represents the usual trade-off between computational com-

plexity and accuracy. The hybrid EM algorithms converge faster than their EM

counterparts as one would expect.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

#iterations

F
re

q
u

e
n

c
y

ODF ML(Y)
LVDF ML(Z)

0 100 200 300 400 500 600
0

5

10

15

20

25

30

iterations

F
re

q
u

e
n

c
y

ODF EM(Y)
LVDF EM(Z)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

iterations

F
re

q
u

e
n

c
y

ODF HEM(Y)
LVDF HEM(Z)

(a) (b) (c)

Figure 4.5: Distribution of iterations to convergence. (a) ML algorithms; (b) EM algorithms; (c)
HEM algorithms.

4.4 Single Target Tracking

In this section, we examine the performance of the proposed localization algo-

rithms for tracking a single target moving through the monitoring region R. The

problem of tracking targets over time is itself a significantly harder problem which

86

we will address in the next chapter.

The setting we investigate here as follows. Sensors record energy readings at time

slots t = 1, 2, . . . and make decisions at each time slot. In our previous chapter, tem-

poral decision fusion was introduced and shown to lead to significant improvements

in terms of the detection probability for both stationary and moving targets. Tem-

poral decision fusion combines decisions over time using an exponentially weighted

moving average scheme. The same idea can be extended to fuse information about

the location of the target over time. Specifically, we have ṽ0 = v̂0, and

(4.23) ṽt = λv̂t + (1− λ)ṽt−1, t = 1, 2, · · ·

where v̂t denotes the location estimate obtained from measurements at time t. A

more detailed discussion on the use of exponentially weighted moving average and

the choice of λ can be found in [54]. An analogous scheme can be used for the signals’

magnitude. In addition, we use ṽt−1 as a starting value for localization at time t,

instead of the centroid of positive decisions at time t.

The first scenario examined using temporal decision fusion is of a target moving

from west to east through the middle of the monitoring region R = [0, 1]2. A 20×20

WSN is deployed on a grid and the target’s speed is set to one hop per time slot;

hence, it takes the target 20 time periods to cross R. The remaining parameters

are set to S0 = 2, λ = 0.5 and η = 0.1. The trajectories estimated by the various

algorithms for a moderately noisy environment with SNR=2 under model M1 are

shown in Figure 4.6, along with average error as a function of time. As expected

from the previous results, the LVDF algorithms track the target particularly well,

whereas the ODF one exhibit the worst performance. It is worth noting that ML(E)

suffers more from errors at the beginning of the monitoring period. For larger SNRs

(results not shown), ML(E) catches up and eventually outperforms LVDF, whereas

87

the ODF algorithms continue to exhibit an inferior performance. Similar findings

(not shown) have been obtained for estimating the (constant) signal of the moving

target, as well as for random sensor deployments.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

X

Y

v
MLE(E)
ODF ML(Y)
LVDF ML(Z)
ODF EM(Y)
LVDF EM(Z)

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time

AV
G

D
(v

)

MLE(E)
ODF ML(Y)
LVDF ML(Z)
ODF EM(Y)
LVDF EM(Z)

(a) (b)

Figure 4.6: Tracking a moving target: (a) Estimated target trajectory for a single realization; (b)
Average distance from the true trajectory (over 100 replications).

In the second scenario, the target is positioned at v = (0.25, 0.25) and does not

move. However, the signal’s amplitude evolves over time according to the model

S0(t) = 2/(1 + 0.01(t− 10)2), with t = 1, 2, . . . , 20, and σ = 0.4 held constant, which

results in SNR going from 2.5 at time 0 to 5 at time 10 and down to 2.5 again by time

20. Other settings are the same as in the first scenario (grid deployment, η = 0.1,

signal model M1, λ = 0.5). The performance of the algorithms is summarized in

Figure 4.7. Once again, the LVDF gives the best results at all points in time, followed

by the gold standard and the ODF algorithms. At higher SNRs, the ML(E) algorithm

becomes the best method, a result consistent with previous ones.

88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

X

S0

S0
MLE(E)
ODF ML(Y)
LVDF ML(Z)
ODF EM(Y)
LVDF EM(Z)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

R
M

SE
(S

0)

MLE(E)
ODF ML(Y)
LVDF ML(Z)
ODF EM(Y)
LVDF EM(Z)

(a) (b)

Figure 4.7: Tracking a stationary target with evolving signal:. (a) Estimated signal amplitude for
a single realization; (b) Average RMSE of temporally fused S0 (over 100 replications).

CHAPTER V

Localization and Tracking of Multiple Targets with Wireless
Sensor Networks

5.1 Introduction

In this chapter we introduce a framework for tracking multiple targets over time

using binary decisions collected by a wireless sensor network, and apply the method-

ology to two case studies – an experiment involving tracking people and a project

tracking zebras. As motivation, we start by describing these two case studies.

Our first case study is the Network Embedded Systems Technology (NEST)

project developed at the University of California at Berkeley [17, 86]. The pur-

pose of the NEST project was to develop both the necessary hardware and software

platforms for a WSN to track targets traversing a monitored area. A prototype

sensor system was deployed, where each sensor had an 8-meter sensing radius and a

10% false alarm probability (i.e., the probability of detecting the presence of a target,

when none was present). In a particular testing experiment whose goal was to track

one, two or three people crossing the monitored area, 144 sensors were used on a

12×12 grid pattern, spaced 5 meters apart. The sensors reported their decisions on

the presence or absence of target(s) to one central node, called the fusion center in

the WSN literature, which is responsible for making the final decision. All positive

89

90

0 10 20 30 40 50
0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

Figure 5.1: Left panel: The activation pattern of NEST sensors by a person traversing the moni-
tored area. Right panel: The trajectory of a single zebra in the monitored area.

decisions from a trial involving a single person traversing the monitored area is shown

in the left panel of Figure 5.1. Note that different positive decisions were made at

different times. The goal is to infer the path of the target(s) through the monitored

area, which requires detecting the presence and estimating the number of targets,

locating them at a particular point in time, and tracking their positions over time.

Our second application involves data collected by the ZebraNet project1, which

tracked a zebra herd in its natural habitat at Sweetwaters Game Reserve near

Nanyuki, Kenya [71, 126, 120]. In the initial deployment of ZebraNet, sensors with

GPS capabilities were attached to the zebras rather than placed in the field. The

trajectory of one zebra over the course of about a day is shown in the right panel of

Figure 5.1. This example illustrates that in order to perform well in realistic envi-

ronments, the tracking algorithms need to be able to handle complicated trajectories

with abrupt changes in direction.

In previous chapters, we have already discussed a general structure of WSNs and

the associated literature for detection and localization of a single target. Several

results have been proposed in the literature to address the problem of localizing

1ZebraNet is an inter-disciplinary joint animal monitoring study of the Departments of Electrical Engineering,
Ecology and Evolutionary Biology, and Computer Science at Princeton University (http://www.princeton.edu/∼
mrm/zebranet.html).

91

multiple targets. For example, in [99] energy measurements emanated from multiple

targets are used in a likelihood based approach to estimate their position, whereas

in [77] a weighted least squares algorithm for localization, which achieves results

similar to maximum likelihood but at a smaller computational cost. In both cases,

the number of targets is assumed known. However, when the number of targets

present in the field is unknown, the localization of multiple targets becomes more

challenging.

Tracking of multiple targets over time is even harder problem, because a good

algorithm needs to account for multiple targets moving in complicated, possibly in-

tersecting patterns, for the appearance/disappearance of targets in the monitored

area over time, and also, in some applications, results must be produced in real

time (for a recent review see [70]). Some authors focus on tracking a single target

[76, 51, 119], whereas others consider multiple targets [41, 112]. State space models

are an obvious tool for tracking purposes and particle filtering algorithms have been

proposed in a number of papers [67, 73, 58, 111, 112, 70]. Their main drawback is

their computational complexity, which only reduces in the case of a linear Gaussian

model due to the availability of the Kalman filter solution. In some of these models,

restrictive assumptions are required, such as that one target can generate at most

one sensor measurement during a time period, or that a sensor can receive a signal

from one target only. In some applications, saving energy is an overarching consider-

ation for the WSN operators and hence activation/deactivation schedules for sensors

becomes important. A number of papers have addressed this issue within the context

of target tracking [116, 18, 125, 76, 19, 107]. Finally, a recent development involving

mobile fusion centers that follow the target has been studied in [18] and [76].

Our focus here is on tracking from binary decisions (in the NEST project nothing

92

else is available). Multi-target tracking techniques based on binary sensor readings

have been examined in [86] and [119]. In particular, [86] developed a fusion algorithm

which first converts binary detections into finer position estimates using spatial cor-

relations, and then uses an MCMC algorithm to track the targets. This algorithm

does not require prior information about the number of targets or their labels. The

algorithm has been tested to track human subjects moving through an outdoor field

in real-time mode [17]. [119] developed the virtual measurement (VM) approach,

which aims to define a mapping between the space of binary sensor decisions and the

space of target states, which is similar in spirit to an expectation-maximization algo-

rithm (EM). This technique is less computationally intensive than particle filtering,

but requires the assumption of no sensor failures and no false detections.

The goal of this work is to build on the target localization methodology developed

in Chapter IV (see also [55]) to address the multi-target tracking problem in the

context of our motivating applications. To achieve this goal, we extend our likelihood

based framework for localization of a single target to localizing multiple targets

and to tracking over time, and incorporate information about the targets’ speed

and acceleration. The developed framework appropriately handles multiple targets

that appear or disappear over time, and does not assume any prior information on

the number of targets. Finally, although the focus is on binary measurements, the

proposed framework with minor adjustments can handle continuous measurements

or a mixture of binary and continuous measurements, as discussed in Section 5.3.4.

The remainder of the chapter is organized as follows. Section 5.2 introduces the

general setup of the multi-target localization and tracking problems and describes

signal models and data types. Section 5.3 presents the theoretical basis for our local-

ization algorithms, and Section 5.4 presents our approach to tracking target locations

93

over time. Section 5.5 provides a brief performance evaluation of the proposed al-

gorithms via simulations, and Section 5.6 applies the algorithms to data from the

NEST and ZebraNet projects.

5.2 Problem Formulation

Again consider a WSN comprised of N identical sensors deployed at locations

si, i = 1, 2, . . . , N over a two-dimensional monitoring region R. Suppose that p

targets move in R over time, assuming positions xj(t), j = 1, · · · , p at times t =

t1, t2, Each target j emits a signal (e.g. infrared/temperature/acoustical) of

strength S
(j)
0 (t) at the target location. The signal attenuates with distance from the

target according to a decreasing function C, and thus a sensor located at si receives

signal from target j given by

S
(j)
i (t) = S

(j)
0 (t)Cηj

(δi(xj(t))) ,

where δi(xj(t)) = ‖si − xj(t)‖ is the distance from the target to sensor i, and ηj is a

potentially time varying scaling parameter which represents the effective target size.

At time t, each sensor obtains an energy reading comprised of all p individual

signals and corrupted by random noise:

(5.1) Ei(t) =

p∑
j=1

S
(j)
i (t) + εi(t), i = 1, · · · , N,

where errors εi(t) are assumed to be independent in time and space with mean

zero and variance σ2(t). The collected energy readings Ei(t) are either directly

transmitted to the fusion center or converted to binary decisions Yi(t) = I(Ei(t) ≥

τi), using a pre-specified threshold τi, which is related to the individual sensor’s false

alarm probability. Here we assume that all sensors are identical and τi ≡ τ .

In most circumstances, location estimates based on energy readings (value fusion)

tend to be significantly more accurate, while those based on binary decisions (decision

94

fusion) are more power-efficient. The Local Vote Decision Fusion (LVDF) algorithm

introduced in Chapter III significantly improves the accuracy of decision fusion,

while sacrificing little in terms of energy consumption. It has also been shown that

location estimates for a single target based on LVDF are in general competitive and

outperform even value fusion in low signal-to-noise environments.

In tracking applications, our ultimate goal is to estimate the following parameter

vector,

(5.2)

θ(t) = (p(t), x1(t), ..., xp(t), S
(1)
0 (t), ..., S

(p)
0 (t), η1(t), ..., ηp(t), σ(t)), t = 1, 2, · · ·

based either on energy readings (Ei(t)) or binary decisions (Yi(t) or corrected Zi(t)).

Note that we assume that the sensor measurements are obtained on a synchronized

schedule, at discrete points in time, which is usually the case in practice.

5.3 Methods and Algorithms

The necessary building block for a tracking algorithm is localization of targets at

a given point in time. In this section, we generalize the algorithms that estimate

target locations at a given point in time based on energy/binary data developed in

a previous chapter from the case of one target to the case of multiple targets. To

ease the presentation, we suppress the dependence on t in this section, but in general

all parameter values and data depend on t. First, we discuss localization with the

number of targets assumed known, and present a method for selecting the number

of targets in 5.3.5.

95

5.3.1 Localization from Energy Readings

In the presence of Gaussian mean zero, variance σ2 background noise, the log-

likelihood of the energies at a fixed point in time is given by

(5.3) `E(θ) = −N

2
log 2πσ2 − 1

2σ2

N∑
i=1

[
Ei −

p∑
j=1

S
(j)
0 Cηj

(δi (xj))
]2

.

With other parameters fixed, maximizing over S
(j)
0 is equivalent to solving the fol-

lowing system of linear equations:

(5.4)

p∑

l=1

S
(l)
0

N∑
i=1

Cηl
(δi (xl)) Cηj

(δi (xj)) =
N∑

i=1

EiCηj
(δi (xj)) , j = 1 . . . p .

Maximizing with respect to the noise variance σ2 can be done in closed form, if all

other parameters are fixed, as

(5.5) σ2 =
1

N

N∑
i=1

[
Ei −

p∑
j=1

S
(j)
0 Cηj

(δi(xj))
]2

.

We obtain the remaining parameters by numerical maximization of (5.3), with (5.4)

and (5.5) plugged in.

5.3.2 Localization from Binary Decisions

Notice that the initial decisions Yi ∈ {0, 1}, are independent Bernoulli random

variables with probability of success given by P(Yi = 1) ≡ αi(θ) = 1 − F (Ai(θ)),

where F (·) is the cumulative distribution function of εi/σ (not necessarily Gaussian)

and Ai(θ) represents the standardized excess energy level given by

Ai(θ) =
τ −∑p

j=1 S
(j)
0 Cηj

(δi(xj))

σ
.

The log-likelihood function of {Yi} can be computed as

(5.6) `Y (θ) =
N∑

i=1

[Yi log αi(θ) + (1− Yi) log(1− αi(θ))] .

96

Since there is no closed form solution for any of the parameters, either direct nu-

merical maximization of the log-likelihood function (5.6) should be used, or an EM

algorithm. We have explored both options both for localization and for tracking;

the EM algorithms are often more accurate but are also substantially computation-

ally more expensive. The EM algorithm proceeds as follows: under the Gaussian

assumption on the noise, the M-step is defined by equations (5.3), (5.4), and (5.5).

The E-step equations are given by

E[Ei|~Y] = Êi =

p∑
j=1

S
(j)
0 Cηj

(δi(xj)) +
σ√
2π

exp

(
−Ai(θ)

2

2

)
Bi(θ, Yi) ,(5.7)

E[E2
i |~Y] = Ê2

i =

p∑
j=1

S
(j)
0 Cηj

(δi(xj))(τ − Êi)− Êiτ ,(5.8)

where

Bi(θ, Yi) =
Yi − 1

Φ(−Ai(θ)2

2
)

+
Yi

1− Φ(−Ai(θ)2

2
)

.

As usual, the E-step and the M-step are alternated until convergence.

5.3.3 Localization from LVDF Decisions

Since corrected decisions Zi are not independent, we employ a pseudo-likelihood

estimation approach [10]. In order to simplify calculations, it is further assumed that

the success probabilities of initial decisions are approximately the same within the

neighborhood, i.e. for j ∈ U(i), P(Yj = 1) = P(Yi = 1). The pseudo-loglikelihood

function at a fixed time point for the corrected decisions Zi is given by

(5.9) `Z(θ) =
N∑

i=1

[Zi log βi(θ) + (1− Zi) log(1− βi(θ))] ,

where βi(θ) = P(Zi = 1) is approximated by

βi(θ) ≈
M∑

k=[M/2]

(
M

k

)
αi(θ)

k(1− αi(θ))
M−k .

97

Again, we can either maximize the likelihood directly or apply the EM algorithm.

The M-step is the same as that used for the initial decisions Yi. The E-step requires

calculating the first and second conditional moments E[Ei|~Z], E[E2
i |~Z], which can

be written as E[Ei|~Z] =
∑

k=0,1 E(Ei|Yi = k)P(Yi = k|Z), and an analogous formula

holds for the second moment. The moments conditional on Y were calculated in

(5.7) and (5.8), and P(Yi = k|~Z) can be approximately computed using the Bayes

rule. For example, for k = 1 we have

(5.10) P(Yi = 1|~Z) = αi

∏

j:i∈U(j)

(β̃ji

βj

)Zj
(1− β̃ji

1− βj

)1−Zj

,

where

(5.11) β̃ji = P(
∑

k∈U(j),k 6=i

Yk ≥ M

2
− 1) ≈

M−1∑

q=[M/2−1]

(
M − 1

q

)
αq

j(1− αj)
M−1−q .

5.3.4 Hybrid Maximum Likelihood Estimates

In some situations, a mixture of energy readings and binary decisions may be

transmitted to the fusion center. One natural protocol is to have sensors that make

positive decisions transmit the energies, while sensors that make negative decisions

only transmit their negative decisions (or, equivalently, nothing at all). This strategy

leads to lower communication costs compared to transmitting all energies, and more

accurate targets location estimates compared to methods based entirely on binary

decisions. In this case, it is straightforward to extend the EM algorithm for binary

decisions. We refer to this extension as hybrid expectation maximization (HEM)

algorithm in Chapter IV. The only modification needed is to replace conditional

moments for the available energies with the observed energy readings. It is also

possible to directly maximize the likelihood of the observed data; this approach does

not perform as well as the hybrid EM, so we do not pursue it here.

98

5.3.5 Estimating the Number of Targets

Once we generalized the localization algorithms from one to many targets, we have

to resolve an additional problem of estimating the number of targets. We propose

to use the Bayes Information Criterion (BIC), a common way to select a “model

complexity” parameter such as the number of targets within a likelihood framework.

To pick p, we maximize

(5.12) BIC = −2`p(θ̂) + 2(4p + 1) log N,

where 4p + 1 gives the total number of parameters that need to be estimated for

a model with p targets (signal amplitude, two coordinates, and the attenuation pa-

rameter for each target, and the noise variance σ2), and θ̂ is the maximum likelihood

estimate of the parameters assuming p targets are present.

5.4 Multiple Target Tracking

There are many ways to build a complete model and algorithm for tracking, and

the choice depends on the applications. Tracking can be performed in an offline

or online fashion. In the former case, one collects all the measurements (energies

or binary decisions) at all the time point t1, . . . , tNT
, and then estimates all the

parameters at all time points simultaneously. If no assumptions are made on how

things evolve over time, this results in a prohibitively large number of parameters

and computational expense. More importantly, in many applications one wants

to have up-to-date information instantly, which requires online estimation, namely

estimating parameters at time t as soon as the data for that time point becomes

available. Even though in principle one could use the new information to update

estimates at earlier time points, in practice computational constraints typically lead

one to simply maximize the likelihood for one current time point tn. However,

99

one can use the information from previous time points, for example, the previous

estimated location and signal of the target at time tn−1 could provide starting values

for localization at time tn; other ways of incorporating information about the past

are discussed below.

An important modeling consideration is whether to model a dependency structure

in the noise over time. In our context, the noise is primarily receiver noise, so there

is no reason to assume dependence. If the noise is likely to be dependent over time,

appropriate time series models can be incorporated into our framework; this direction

is outside the scope of the current paper. Throughout the paper, we assume that

the noise is independent in time as well as in space.

Even though our framework in principle allows for estimating all the parameters

separately, it is important to consider the application at hand and make reasonable

assumptions about which parameters are likely to change over time and which are

likely to remain constant. Incorporating the application context in this way will lead

to both more accurate estimation and reduced computational cost. For example,

consider the following three different cases for signal amplitude:

1. Signal amplitudes S
(j)
0 (t) are changing over time and are different for each target;

2. Signal amplitudes S
(j)
0 (t) ≡ S

(j)
0 are constant over time, but different for each

target;

3. Signal amplitudes S
(j)
0 (t) ≡ S0 are the same for all targets and constant over

time.

Whether the signal changes over time depends a lot on the type of sensor used. The

NEST project uses infrared sensors to detect humans, and thus we can reasonably

assume that the signal amplitudes are the same for all targets and constant over

100

time. Similarly, we assume that the signal attenuation parameter η does not depend

on time and is the same for all targets. Further, we assume the variance σ2(t) ≡ σ2

remains constant over time, since there is no reason to believe otherwise in our

application.

In this case the formulas described in Section 5.3 are simplified, and in online

tracking, current estimates of global parameters can be updated at every time step

by incorporating new data. For example, the common signal amplitude can be

updated at each time step tn as follows:

(5.13) Ŝ0(tn) =

∑N
i=1

∑n
k=1 Ei(tk)

∑p
j=1 Cη̂j

(δi(x̂j(tk)))∑N
i=1

∑n
k=1

∑p
j=1 C2

η̂j
(δi(x̂j(tk)))

.

Estimates obtained via proposed methods can be affected by additional error due to

a possible model misspecification, or hight level of noise present in sensor measure-

ments. One approach here would be to combine the results for target location and

signal magnitude over time using an exponentially weighted moving average scheme

(as discussed in Chapter IV), or smooth estimated data using, for example, splines

as basis functions.

In many applications, targets follow fairly regular trajectories, which suggests

that some kind of trajectory smoothing could be beneficial in estimating it. In order

to incorporate information about the target’s previous position and guarantee some

degree of smoothness in the trajectory, we utilize a penalized likelihood approach,

which in general can be written as

(5.14) `({θ(t), t ∈ [0, tn+1]})−
p∑

j=1

λj

∫ tn+1

0

[ẍj(t)]
2dt−

p∑
j=1

ρj

∫ tn+1

0

[S̈0
(j)

(t)]2dt,

where ẍj(t) denotes the acceleration of the target and S̈0
(j)

(t) the second derivative

of the amplitude of the signal. The second term is not needed if we assume the signal

remains constant over time.

101

Assuming independent errors over time, the log-likelihood of the observations can

be decomposed into a sum. Thus, for online tracking, we approximate `({θ(t), t ∈

[0, tn+1]}) with
∑n

q=1 `(θ̂(tq))+`(θ(tn+1)), and only use the last term. Similarly, if we

approximate the integral in (5.14) by second-order differences, only the two previous

time points affect the penalty terms that involve θ(tn+1). Thus, given the parameter

estimates for times up to tn, and assuming constant signal, we estimate parameters

at time point tn+1 by maximizing

`(θ̃(tn+1))−
p∑

j=1

λj

(
x

(1)
j (tn+1)− x̂

(1)
j (tn)

tn+1 − tn
− x̂

(1)
j (tn)− x̂

(1)
j (tn−1)

tn − tn−1

)2

+

(
x

(2)
j (tn+1)− x̂

(2)
j (tn)

tn+1 − tn
− x̂

(2)
j (tn)− x̂

(2)
j (tn−1)

tn − tn−1

)2

 (tn+1 − tn)

(tn − tn−1)2
,(5.15)

where we write x = (x(1), x(2)) for the two planar coordinates of x, and, with our

assumptions, θ̃(tn+1) = (x1(t), . . . , xp(t), S0, η, σ2). The estimation procedure iterates

over different parameters; we use estimates that average over time for the global

parameters (such as(5.13) for S0), and estimate the coordinates xj(t) for the current

time point only with the global estimates plugged in.

Using the smoothing penalty introduces the additional challenge of choosing the

smoothing parameters λj. At the same time, penalized maximum likelihood provides

the user with flexibility to enforce smoothness on trajectory estimates as needed and

to incorporate prior knowledge about the expected trajectories to improve estima-

tion. For example, one may expect that a larger degree of smoothing would be helpful

in the NEST project (people deliberately walking through a field) than in the Ze-

braNet project (zebras grazing in a natural environment). The choices of smoothing

parameters for these datasets are discussed in Section 5.6. It may also be possible to

develop appropriate criteria for automatic choice of λj, but that is beyond the scope

of this paper.

102

Finally, to adapt to the situations when targets appear/disappear over time we

propose the following algorithm. At each time point, the number of targets present

is estimated by using the BIC as described in Section 5.3.5 in conjunction with

penalized maximum likelihood. The locations p̂(tn+1) of the identified targets at tn+1

are matched to those estimated at the previous time slot (p̂(tn)). If p̂(tn+1) < p̂(tn),

tracking of unmatched targets is discontinued; otherwise, new targets start to be

tracked.

5.5 Performance Evaluation

We briefly examine the performance of the proposed methods and algorithms

on simulated data under several specific challenging scenarios that may occur in

tracking multiple targets. The simulation setting is as follows: a wireless sen-

sor network comprised of 400 sensors is deployed on a 20 × 20 grid over the unit

square. The signal received by a sensor at location si from target j is modeled as

S
(j)
i (t) = S

(j)
0 (t) exp(−δi(xj(t))

2/η2
j), where S

(j)
0 (t) denotes the amplitude, xj(t) the

location of target j at time t and ηj its effective size. In accordance with our earlier

discussion, we set all ηj ≡ η = 0.1 and S
(j)
0 ≡ S0 = 2. Further, the signal is assumed

to be contaminated by Gaussian noise with zero mean and standard deviation σ, the

value of which is determined by the signal-to-noise ratio SNR= S0/σ. The individual

sensor false alarm probability was set to 0.1, which in turn determines the decision

threshold τ , and the overall system false alarm was set to 0.1 as well (the probability

of the fusion center making a false detection – see [54] for more details on how to

control the system’s false alarm for each method). We compared the performance

of EM algorithms based on pure binary decisions for the original decisions {Yi} and

LVDF-corrected ones {Zi} (referred to as EM(Y) and EM(Z), respectively), hybrid

103

algorithms based on energies corresponding to positive decisions only (HEM(Y) and

HEM(Z)), and the maximum likelihood estimates based on complete energy measure-

ments (ML(E)) as a benchmark, since they are expected to be the most accurate.

The reported results are based on 100 realizations of the noise where targets were

detected by all the detection algorithms corresponding to the methods under con-

sideration. For simplicity of comparisons, λ = 0 is used in simulations, and η is

assumed known rather than estimated.

5.5.1 Choosing Starting Values for the Localization of Multiple Targets

Since many of the employed algorithms are iterative in nature, they prove sensitive

to starting values. As an illustration, we first generated a signal emitted by a single

target located at x = [0.25, 0.25] with a signal amplitude S0 = 2 and effective

target size η = 0.1 (see Figure 5.2(a)). Further, we simulated energies at SNR

set to 3 (see Figure 5.2(b)) and computed the corresponding initial and corrected

decisions (Figure 5.2(c)). The log-likelihood function computed for energies achieves

a global minimum near the true target location x̂E = [0.25, 0.26], but has several

local minima (Figure 5.2(d)). There are several options how one can choose a starting

value for log-likelihood optimization: location of the sensor with maximum energy

reading xsE = [0.21, 0.26], the centroid of the sensor locations corresponding to

positive initial decisions C(Y) = [0.51, 0.52], or the centroid of the sensor locations

corresponding to positive corrected decisions C(Z) = [0.26, 0.26]. The last option

clearly produces starting values closest to the global minimum, and hence to the true

target location.

Now, consider more than one target (p > 1) present in the monitored area. The

choice of the starting values becomes even more important and also more compli-

cated. When it remains unclear how to choose the sensor locations of multiple energy

104

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) Signal. (b) Energies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

Y
i

Z
i

x
xs

E

C(Z)
C(Y)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

40

60

80

100

120

XY

(c) Decisions. (d) Log-likelihood.

Figure 5.2: Target located at x = [0.25, 0.25].

105

peaks, one could divide sensor locations corresponding to positive initial or corrected

decisions into multiple clusters, and then select the centroids of these clusters as ini-

tial target locations.

There are a number of clustering techniques that can be used here. A comprehen-

sive investigation suggests that using the centroids of positive decisions after cluster-

ing them using the K-means [38] and normalized cuts [101] perform well. It should

be noted that the clustering method used affects the performance of the methods;

for example, hierarchical clustering methods did not provide good starting values.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

Y

i

x
1
, x

2

C
1
(Y), C

2
(Y)

(a) ODF - Targets far. (b) ODF - Targets close.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

Z

i

x
1
, x

2

C
1
(Z), C

2
(Z)

(c) LVDF - Targets far. (d) LVDF - Targets close.

Figure 5.3: Clustering results of initial (upper panels) and corrected (lower panel) decisions.

Figure 5.3 shows the results of K-means clustering applied to sensor locations cor-

responding to the initial decisions and corrected decisions for two targets being far

apart and close together respectively. We examine two scenarios involving two tar-

106

gets; the ”far apart” locations are x1 = (0.25, 0.25) and x2 = (0.75, 0.75), and ”close

together” locations are x1 = (0.45, 0.45) and x2 = (0.55, 0.55). The corresponding

energies, initial and corrected decisions for these two scenarios were obtained for

WSN of 20 × 20 sensors with signal-to-noise ration of 3. True target locations and

the centroids of the clusters are sketched out in the Figure 5.3 as stars and diamonds

respectively. There is very little difference between the quality of the clusters when

targets are far apart, but as targets get closer clustering becomes an ambiguous and

difficult task especially for ODF decisions. One can see that LVDF decisions produce

more localized clusters, and hence provide better starting values.

Instead of averaging locations corresponding to all positive decisions within one

cluster, one can compute the largest connected component of the graph of these deci-

sions and average locations which belong to the component. In that case, both ODF

and LVDF would be well localized, since taking two largest connected components

of the ODF graph is an operation quite similar to LVDF, in the sense that it also

removes distant false positives. However, LVDF can be performed locally within the

network, whereas the largest connected components can only be determined by the

fusion center; hence, performing LVDF on the spot will produce significant com-

munications cost savings compared to transmitting all ODF decisions to the fusion

center.

Further, to keep faithful to the algorithm, we apply this procedure to the original

decisions Y for EM(Y) and HEM(Y), and to corrected decisions Z for EM(Z) and

HEM(Z). For ML(E), we use the centroids of LVDF decisions to provide the starting

values, since those are generally more accurate.

107

5.5.2 Identifying the Location and Estimating the Number of Multiple Targets

One challenge in tracking comes from the presence of multiple targets with in-

tersecting trajectories, especially when the number of targets is not assumed to be

known. Hence, we first examine the algorithms’ comparative ability to identify the

locations and correct number of targets at a fixed point in time, contrasting per-

formance results for targets far apart and close together with the same setup as

discussed above.

First, we compare the localization accuracy of the various algorithms assuming

that the number of targets is known. Table 5.1 gives the average distance from the

estimated to the true target locations, which is computed by matching the estimated

locations to true locations using the Hungarian algorithm [60].

Results in Table 5.1 show that overall, the LVDF methods clearly outperform the

methods based on the original decisions. In general, the ML(E) and the HEM(Z)

estimates are the most accurate, with ML(E) doing slightly better for higher SNRs

and far apart targets, and HEM(Z) doing better for close targets and low SNR. In

general, for the lowest SNR of 3 the LVDF methods are the most competitive, and

when the targets are close together, the LVDF methods outperform ML(E) at all

SNR levels, with the HEM(Z) exhibiting the best performance; ML(Z) and EM(Z)

are slightly worse than HEM(Z) and fairly similar to each other.

Next, we compare the performance of the various algorithms when the number

of targets is unknown, in the same simulation setting. The results on the estimated

number of targets are given in Table 5.2. If the estimated number of targets is

different from the true number of targets, some targets (either true or estimated

ones) will be left unmatched. We do not include any penalty for this, since the

choice of penalty would heavily affect the performance measure and should thus be

108

Table 5.1: Average distances between estimated and true target locations for two static targets,
assuming p = 2 known.

Targets close
SNR ML(E) ML(Y) EM(Y) HEM(Y) ML(Z) EM(Z) HEM(Z)

3 0.0877 0.3152 0.1301 0.1163 0.0618 0.0606 0.0532
5 0.0461 0.3277 0.0672 0.0684 0.0382 0.0399 0.0294
10 0.0750 0.3067 0.0445 0.0411 0.0461 0.0312 0.0121

Targets far
SNR ML(E) ML(Y) EM(Y) HEM(Y) ML(Z) EM(Z) HEM(Z)

3 0.0262 0.1411 0.0343 0.0266 0.0255 0.0257 0.0225
5 0.0103 0.0781 0.0166 0.0116 0.0197 0.0199 0.0114
10 0.0051 0.0343 0.0136 0.0052 0.0164 0.0165 0.0052

left to the user; instead, we report separately the results on estimating the number

of targets itself. Results on the average distance from true locations in Table 5.3

are consistent with results in Table 5.1 and in fact the estimated number of targets

provides better discrimination between different algorithms in this case.

Table 5.2: Average estimate of the number of targets (p = 2).
Targets close

SNR ML(E) ML(Y) EM(Y) HEM(Y) ML(Z) EM(Z) HEM(Z)

3 1.79 1.04 1.00 2.55 1.73 1.06 1.73
5 2.05 1.12 1.00 2.60 1.98 1.30 2.09
10 2.13 1.34 1.00 2.66 2.02 1.74 2.23

Targets far

SNR ML(E) ML(Y) EM(Y) HEM(Y) ML(Z) EM(Z) HEM(Z)

3 2.01 2.11 1.49 2.67 2.03 1.96 2.00
5 2.02 2.10 1.96 2.56 2.08 2.01 2.10
10 2.01 1.98 2.00 2.60 2.08 2.03 2.03

Table 5.3: Average distances between estimated and true target locations for two static targets,
assuming p = 2 unknown.

Targets close

SNR ML(E) ML(Y) EM(Y) HEM(Y) ML(Z) EM(Z) HEM(Z)

3.0 0.0440 0.0522 0.0520 0.1327 0.0538 0.0569 0.0423
5.0 0.0236 0.0548 0.0589 0.0994 0.0331 0.0539 0.0273
10.0 0.0146 0.0484 0.0606 0.0842 0.0285 0.0382 0.0193

Targets far

SNR ML(E) ML(Y) EM(Y) HEM(Y) ML(Z) EM(Z) HEM(Z)

3.0 0.0191 0.1054 0.0349 0.0971 0.0277 0.0268 0.0239
5.0 0.0121 0.0909 0.0168 0.0757 0.0230 0.0204 0.0169
10.0 0.0063 0.0407 0.0135 0.0770 0.0193 0.0188 0.0078

When the two targets are far apart, almost all methods prove fairly accurate,

and ML(E) and all Z based methods are more accurate than Y based ones. On the

109

other hand, when targets are close, only the ML(E), ML(Z) and HEM(Z) methods

performed well at all SNR values. Similar conclusions hold for a more complicated

configuration of four targets (see Figure 5.4 and Table 5.4). To reduce the number

of comparisons, from this point on we only report results for three algorithms that

provide the best performance in each category: ML(E) (energies), ML(Z) (binary),

and HEM(Z) (hybrid).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

(a) (b) (c)

Figure 5.4: Four targets with η = 0.1 and S0 = 2 located at x1 = (0.42, 0.26), x2 = (0.59, 0.69),
x3 = (0.42, 0.75), x4 = (0.77, 0.95) in the monitored area R; SNR=3. (a) Signal
emitted by targets, (b) initial and (c) corrected decisions.

Table 5.4: The number of targets is assumed (p = 4) unknown.
Average Estimate of the Number of Targets.

SNR ML(E) ML(Y) HEM(Y) ML(Z) HEM(Z)

3.0 3.97 3.28 4.25 4.08 3.91
5.0 4.02 3.85 4.27 4.14 4.02
10.0 4.02 3.94 4.10 4.12 4.01

Average Minimal Distance.

SNR ML(E) ML(Y) HEM(Y) ML(Z) HEM(Z)

3.0 0.0222 0.0353 0.0469 0.0361 0.0283
5.0 0.0130 0.0306 0.0312 0.0288 0.0140
10.0 0.0072 0.0202 0.0130 0.0258 0.0069

5.5.3 Tracking of Multiple Targets

We now turn our attention to tracking multiple targets over time, again focusing

on the difficulties encountered in applications. Suppose that information about one

of the targets becomes lost due to sensor failure. Such a scenario is depicted in

Figure 5.5(a), where three identical targets (S0 = 2, η = 0.1) follow parallel linear

110

trajectories. At time slots t = 7, 8 (out of a total of 11) the information about

the second target is lost, and the target ’reappears’ at t = 9. Another difficulty is

illustrated in Figures 5.5(b) and 5.5(c), where two targets travel very close to each

other for a period of time, and the third target is also briefly lost. These issues make

it challenging to estimate the number and location of the targets correctly. Figure

5.5 shows that our algorithm behaves as expected: when the signal is lost, it stops

tracking the target in question and then starts tracking it as a new target once the

signal is recovered. We are intentionally not enforcing any matching between newly

appearing targets and targets that had disappeared earlier, but such matching could

be easily implemented if needed. When two targets come close together, the two

noise realizations show that the target labels are assigned arbitrarily once the targets

separate, since in our scenario all targets are indistinguishable. If the targets have

different signal amplitudes, they will be tracked correctly (results not shown). Note

that in all cases, the number of targets is estimated correctly in these realizations.

Finally, we show results on estimating the number of targets for the case of two

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Figure 5.5: True trajectories (solid lines) and positions estimated by ML(Z) at each time point for
three targets with SNR = 5. (a) The signal from the second target is briefly lost; (b)
Two targets come close together and the third target briefly loses signal; (c) Another
noise realization for (b).

identical targets (S0 = 2, η = 0.1) following crossing linear trajectories over twenty

time slots. The trajectories intersect at t = 10, as shown in Figure 5.6(a). The

111

number of targets estimated over time by the three methods and averaged over 100

replications of the noise for SNR=5 is shown in Figure 5.6(b). When the targets are

in exactly the same spot, ML(Z) tends to estimate them as one target, which is not

surprising considering it uses binary data only. On the other hand, the other two

methods that have access to energy measurements yield correct estimates even when

the trajectories cross. These results are consistent with previously obtained ones; as

targets move closer, the ML(Z) method experiences more difficulties in estimating

their number correctly. Finally, we compare the tracking accuracy of our algorithms

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

tg.2
tg.1

0 2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

time

N
u
m

b
e
r

o
f
T

a
rg

e
ts

ML(E)
ML(Z)
HEM(Z)

(a) (b)

Figure 5.6: (a) True trajectories; (b) Average estimated number of targets as a function of time.

in the scenario of Figure 5.6 to their performance when they are provided with the

correct, fixed number of targets. The results in Table 5.5 show that the accuracy is

essentially the same, and even slightly better for the adaptive method. This is due

to the fact that when the method can really only find one target but is forced to

estimate two, it is likely to pick some arbitrary second location driven by noise.

112

Table 5.5: Distances from the true locations averaged over time and 100 noise replications for fixed
and estimated number of targets, for two targets with intersecting linear trajectories.

Fixed (p = 2) Adaptive

SNR ML(E) ML(Z) HEM(Z) ML(E) ML(Z) HEM(Z)

3 0.0329 0.0449 0.0376 0.0190 0.0292 0.0244
5 0.0185 0.0307 0.0195 0.0114 0.0224 0.0129
10 0.0086 0.0244 0.0089 0.0062 0.0193 0.0065

5.6 Applications

5.6.1 The NEST project

We start with a brief description of the data collection setup. The network consists

of 144 sensors placed approximately 5 meters apart on a grid pattern. Each sensor

has a sensing radius of 8 meters, a probability of detection 80% and that of raising

a false alarm of 10%. Given the nature of the sensors (infrared), it is assumed that

the model for the underlying signal is given by Si(t) = S0/(1 + (δi(xj(t))/η))3. A

network detection was declared if at least three sensors recorded positive decisions.

The data available come in the form of positive decisions for each sensor. The test

experiments involved 1, 2 or 3 people crossing the monitored area following linear

intersecting trajectories, available from video recordings. The ML(Z) algorithm is

suitable for the available data (there are no energy measurements available) and was

applied with a neighborhood of M = 9 sensors.

In Figure 5.7, the ‘true’ (recovered from video recordings) and estimated trajecto-

ries are shown, for the three scenarios involving different numbers of targets. Table

5.6 gives averaged over time distances from the true target trajectories, for adaptive

and fixed number of targets, and for smoothing vs no smoothing (λ = 0). Again,

the adaptive version of ML(Z) outperforms the one with the number of targets fixed

a priori, with the most apparent improvement in accuracy for the scenario with 3

people, since not all of them crossed the area simultaneously.

113

0 5 10 15 20 25 30 35 40
10

15

20

25

30

35

40

45

50

X

Y

x
Z
(t)

x(t)

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

X

Y

x
1
(t)

x
2
(t)

x
1

Z

(t)

x
2

Z

(t)

x
1

Z

(t)

10 20 30 40 50 60
0

10

20

30

40

50

60

70

X

Y

x

1
(t)

x
2
(t)

x
3
(t)

x
1

Z

(t)

x
2

Z

(t)

x
3

Z

(t)

Figure 5.7: Estimated and true trajectories for one, two, and three NEST targets.

Table 5.6: Average distances from the true trajectories and estimated SNR.
Fixed p, λ = 0 Adaptive, λ = 0

Target Sc.1 Sc.2 Sc.3 Sc.1 Sc.2 Sc.3

1 1.6553 5.9369 14.8523 1.6551 5.8832 2.9071
2 n/a 9.4583 11.0036 n/a 7.0816 1.8923
3 n/a n/a 18.2545 n/a n/a 4.0922

SNR 2.0961 1.7785 1.3643 2.0968 1.9652 2.0634

Fixed p, λ = 1 Adaptive, λ = 1

Target Sc.1 Sc.2 Sc.3 Sc.1 Sc.2 Sc.3

1 1.5505 5.7325 17.5941 1.5505 5.2864 1.5156
2 n/a 8.5750 10.0829 n/a 6.8767 1.9553
3 n/a n/a 19.3467 n/a n/a 2.3720

SNR 2.0909 1.7663 1.3514 2.0909 2.0541 2.0374

Finally, various values of the smoothing parameter λ were tested and the most

appropriate value λ = 1 was determined through a simulation study (see Figure

5.8). Since the estimates obtained from corrected decisions are already quite accurate

without smoothing, the differences between smoothed and non-smoothed estimates

are fairly small.

0 0.5 1 1.5 2
1.55

1.56

1.57

1.58

1.59

1.6

1.61

1.62

1.63

1.64

λ

A
V

G
D

Figure 5.8: Averaged distance from the true trajectory of a single moving target (Sc.1) as a function
of λ.

114

5.6.2 The ZebraNet Project

Unlike the highly controlled trajectories of people crossing the field in the NEST

project, the trajectories of zebras in their natural habitat are highly irregular.The

data were collected during from two ZebraNet deployments: a two-day deployment

in January 2004 and a two-month deployment in the summer of 2005. During both

deployments the sensors were equipped with GPS location devices and were actually

fitted as collars on zebras. Due to hardware failures and severe weather conditions

first experiment (2004) lasted for a few days and the data were collected for only one

zebra for one day period each 8 minutes.

During the second deployment (2005), the data were collected for a two-month

period from four zebras, selected for their varying behavioral patterns. Specifically,

we have data on a bachelor male (id.6), actively searching for a mate, a female

leader of the herd (id.10), a passive female with a characteristic of a very small home

range (id.14), and another female zebra (id.8). The last zebra was reported to have

had trouble with the collar position. The zebras’ locations and a time stamp were

recorded every 8 minutes for approximately 10 days, but due to hardware problems

there are many missing values in the data, so we only use the time frame when

the movements of all four zebras were recorded, which is just over 24 hours long.

In general, the ZebraNet project found that placing sensing collars on zebras did

not work very well, because some zebras managed to remove or lose the collars and

there were other frequent hardware failures. Thus, it seems reasonable to consider a

stationary sensor network of the NEST type for future deployments in this project

instead.

In order to test the proposed algorithms on realistic trajectories, the following

simulated sensor experiment was designed. A 20 × 20 sensor grid was simulated on

115

the unit square, and the true locations of the zebras available from the ZebraNet

data were then mapped to this monitored region. The original monitored region

is roughly 5 × 5km, so the simulated grid corresponds to sensors roughly 250m

apart. The emitted signals were generated according to the model used in previous

simulations, with the most challenging of the previously considered settings (SNR =

3). One random realization of the noise was used to generate the energies, following

the noise model used in simulations.

Figure 5.9 shows the profile of the true animal trajectories for the first and the

second deployments, respectively. In Figure 5.9(b) it is interesting to note that the

trajectories of the zebras with ids 6, 8, and 10 intersect at some points in time, while

zebra 14 remains isolated. The tracking results using the HEM(Z) algorithm are

shown in Figure 5.10 and Figure 5.11 for one and the four zebras. They indicate

that all the zebras are fairly well tracked at almost all points in time. Nevertheless,

the more active zebras (id 6 and 10) prove the hardest to track.

Table 5.7 compares the performance of the three main algorithms when the num-

ber of targets is fixed in advance (at the true p = 4) to estimating it adaptively,

with and without smoothing. For smoothing, an optimal λ was picked from the set

{0, 100, 500, 1000, 5000} for each zebra. We can see that, consistent with our previ-

ous results, adaptively estimating the number of targets yields significantly improved

tracking. Further, smoothing the trajectories yields some improvement; however, the

complex nature of the underlying trajectories, coupled with the sparse sampling over

time, limit the gains from smoothing.

More detailed information on the estimated number of targets in provided in

Table 5.8, which shows the percentage of time points where the number of targets

was estimated as 2, . . . , 6. Recall that the SNR is set to 3, and these results are

116

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

True Trajectory

id.6
id.8
id.10
id.14

(a) (b)

Figure 5.9: The recorded locations of the single zebra (a) and the four zebras (b) scaled and plotted
on the unit square.

consistent with earlier simulation results: when the two zebras are very close together,

the number of targets is likely to be estimated as 3 rather than 4, and particularly

so by ML(Z) which only has binary information available; extra targets are also

sometimes picked up due to high noise levels, but they tend to be quickly dropped.

Overall, it seems that these algorithms would be appropriate for tracking animals

in natural environments, and their tracking performance can be further improved if

additional discriminating information about the targets is available.

1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

x(t)
y(t)
x

e
(t)

y
e
(t)

Figure 5.10: True and estimated by HEM(Z) coordinates x(t) and y(t) for the zebra.

117

2.945 2.95 2.955 2.96 2.965 2.97 2.975

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

id.6

x(t)
x

e
(t)

y(t)
y

e
(t)

2.945 2.95 2.955 2.96 2.965 2.97 2.975

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

id.8

x(t)
x

e
(t)

y(t)
y

e
(t)

2.945 2.95 2.955 2.96 2.965 2.97 2.975

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

id.10

x(t)
x

e
(t)

y(t)
y

e
(t)

2.945 2.95 2.955 2.96 2.965 2.97 2.975

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

id.14

x(t)
x

e
(t)

y(t)
y

e
(t)

Figure 5.11: True and estimated by HEM(Z) coordinates x(t) and y(t) for the four zebras.

Table 5.7: Average distance from the true zebra trajectories. One unit of distance is approximately
5 km.

Fixed p = 4, λ = 0 Adaptive, λ = 0
id ML(E) ML(Z) HEM(Z) ML(E) ML(Z) HEM(Z)
6 0.0943 0.1140 0.0965 0.0270 0.0359 0.0298
8 0.0632 0.0655 0.0694 0.0252 0.0291 0.0314
10 0.0976 0.1200 0.0983 0.0243 0.0330 0.0302
14 0.0459 0.0452 0.0511 0.0230 0.0288 0.0300

Fixed p = 4, optimal λ Adaptive, optimal λ
id ML(E) ML(Z) HEM(Z) ML(E) ML(Z) HEM(Z)
6 0.0805 0.1016 0.0888 0.0269 0.0288 0.0298
8 0.0621 0.0604 0.0622 0.0223 0.0264 0.0282
10 0.0849 0.0969 0.0841 0.0236 0.0219 0.0283
14 0.0378 0.0389 0.0437 0.0206 0.0280 0.0269

Table 5.8: The distribution of the estimated number of targets for zebra tracking (%).
2 3 4 5 6

ML(E) 0.30 21.60 59.17 18.05 0.89
ML(Z) 10.95 54.44 26.33 7.69 0.59

HEM(Z) 0.30 18.93 57.69 21.01 2.07

CHAPTER VI

Local Data Fusion Framework for Classification in Wireless
Sensor Networks and Beyond

6.1 Introduction

The goal of this chapter is to develop a general data fusion framework for classifi-

cation that utilizes several ideas from LVDF. The framework can be viewed as local

data fusion in WSN, where each sensor obtains energy measurements about one or

several features of the environment, combines them with those of neighboring ones,

and makes a decision about the presence or absence of the phenomenon of interest.

We will restrict our attention to linear classification rules. Thus, the proposed

framework can be regarded as an extension of LDA (for review see [35], [37], [30],

and [44]) and unlike other LDA extensions that use the optimal scoring [43], locally

linear embedding [72], or locally weighted naive Bayes [36, 115], our new rule is still

linear. The proposed set-up can also be viewed as a linear local fusion algorithm

that takes into consideration the underlying (e.g., spatial) structure. It involves a

collection of local classifiers that can consult their neighbors (in some suitably defined

metric) and take their measurements into account. Fusion of classifiers obtained

from multiple classification techniques has been addressed in [23]. However, in our

framework we deal with the fusion of classification decisions obtained from multiple

118

119

local observations. We assume that each classifier knows the probability that its

neighbors are observing the same class label as they are, which can be modeled

through some local covariance model, and derive optimal weights (in terms of the

probability of correct classification) for fusing data from such classifiers.

Obvious applications of the proposed framework are classifying spatial data and

also fusing data from multiple sources with varying degrees of reliability. As moti-

vation, we introduce the following two applications of proposed framework that will

be further discussed in Section 6.4 of this chapter.

Our first application includes synthesized binary textures. Texture is the term

used for repeated spatial patterns with local variations. Texture characteristics are

widely used for data segmentation, classification and synthesis in many applications

including computer vision [63], optics [94], multimedia [32],[122], [25],surveillance

[62], and military applications [48], just to name a few. The modeling of texture is a

common component of image analysis. The largest class of stochastic models com-

monly used for textures is Markov Random Fields (MRFs). The main disadvantage

of MRFs is that there is no explicit form for the joint probability of the random

variables describing the model. Special subclasses of MRF models that allow an

explicit expression for the joint probability through conditional probabilities that

correspond to the spatial dependence in the data have been developed by Abend [2],

Pickard [91, 92, 93], Besag [10, 9], Qian and Titterington [96, 95], and others. In this

study, we use Partially Ordered Markov Models (POMMs) developed by Davidson

and Cressie[24] to generate several types of binary textures and evaluate performance

of our fusion framework.

Our second application involves a data set that contains handwritten digits auto-

matically scanned from envelopes by the U.S. Postal Service and then size and slant

120

normalized by the neural network group at AT&T research labs [22]. Each observa-

tion is a 16× 16 grayscale image of an isolated digit (0-9). From the whole data set

we choose the digits four (4) and nine (9), whose classification is rather challenging.

This data set contains852 and 821 images for four and nine, respectively.

The rest of the chapter is organized as follows. In Section 6.2 we describe our

local fusion framework and its main proprieties, and in Section 6.3 we discuss sev-

eral extensions of proposed framework. In Section 6.4 we evaluate the performance

of our framework with application to synthesized binary textures and normalized

handwritten digits.

6.2 Methods and Algorithms

6.2.1 Problem Formulation

In a standard two-class classification problem, we are given a set of training data

{(Xi, Yi)}, i = 1, .., N with the input vector Xi ∈ Rd and a response Yi ∈ {0, 1},

which is the true class label for object i. For the training data it is usually assumed

that the observations {(Xi, Yi)} are an independent and identically distributed sam-

ple from an unknown joint distribution, and that given class labels Yi the input

features Xi are conditionally independent and identically distributed. The main ob-

jective is to find a classification rule based on the training data in order to be able

to predict a class label Y for a new object given the vector of its features X. The

optimal Bayes classification rule is based on a posterior conditional distribution of

the object being in class Y = c given X, P(Y = c|X), and is defined as:

(6.1) Ŷ = argmax
c∈{0,1}

P(Y = c|X).

The probability of correct classification Px(X) for a single observation is given by:

(6.2) Px(X) = π1P(Ŷ (X) = 1|Y = 1) + π0P(Ŷ (X) = 0|Y = 0).

121

6.2.2 The Linear Discriminant Rule

Classical Linear Discriminant Analysis (LDA) is based on an assumption that the

conditional distribution functions of X given Y = 1 and Y = 0, denoted f1(X) and

f0(X), are multivariate normal with common covariance matrix Σ and means µ1 and

µ0 for class 1 and class 0, respectively:

f1(X) =
1

(2π)d/2|Σ|1/2
exp(−0.5(X − µ1)

′Σ−1(X − µ1)),

f0(X) =
1

(2π)d/2|Σ|1/2
exp(−0.5(X − µ0)

′Σ−1(X − µ0)).

In theory, an optimal classification rule (6.1) for LDA can be written as follows:

(6.3) Ŷ (dx(X)) =

1, dx(X) ≥ log(π0/π1)

0, dx(X) < log(π0/π1),

where π1 = P(Y = 1) and π0 = P(Y = 0) are the prior class probabilities and dx(X)

is a linear function that projects the d-dimensional vector X to the one-dimensional

space of maximum class separability, i.e.:

(6.4) dx(X) =
log(fX|Y =1(X))

log(fX|Y =0(X))
= (µ1 − µ0)

′Σ−1

(
X − 1

2
(µ1 + µ0)

)
.

The Bayes risk, i.e., the probability of correct classification Px(X) under the Bayes

rule is:

Px(X) = π1P(dx(X) ≥ log(π0/π1)|Y = 1) + π0P(dx(X) < log(π0/π1)|Y = 0)

= π1Φ̄

(
log(π0/π1)− d(µ1)

D(µ1, µ0)

)
+ π0Φ

(
log(π0/π1)− d(µ0)

D(µ1, µ0)

)
,(6.5)

where D(µ1, µ0) is the Mahalanobis distance between the classes:

D(µ1, µ0) = |(µ1 − µ0)
′Σ−1(µ1 − µ0)|1/2.

122

The unknown parameters µ0, µ1, Σ, and π0 and π1 are estimated from training data

as:

π̂c = Nc/N,

µ̂c =
∑
Yi=c

Xi/Nc,(6.6)

Σ̂ =
∑

c∈{0, 1}

∑
Yi=c

(Xi − µ̂c)(Xi − µ̂c)
′/(N − 2),

where Nc (c ∈ {0, 1}) is the number of class-c observations.

Given estimated values of µ1, µ0, Σ, π0, π1, and a vector of input features X,

one can easily assign the corresponding class label Y using (6.4) and evaluate the

probability of correct classification using (6.5). Compared to other more complicated

classification techniques, LDA has the advantages of linearity, shift invariance, and

low computational cost.

6.2.3 A Local Data Fusion for Classification

It should be noted that LDA makes no use of any structure in the training data.

If there is in fact some local structure in the data, accounting for it will improve clas-

sification performance. We propose a Local Data Fusion (LDF) algorithm according

to which we combine the input features X with features in the training data set in

the neighborhood of the object of interest, denoted U(X).

Let Z define a fused feature vector:

(6.7) Z = w0 X +
∑

h∈U(X)

whXh.

The idea is to use the fused feature Z instead of X to predict the underlying class

label Y . The weights w0, wh, h ∈ U(X) are to be constructed by maximizing the

probability of correct classification Pz:

Pz = max
{w0,wh, h∈U(X)}

{
π1P(Ŷ (Z) = 1|Y = 1) + π0P(Ŷ (Z) = 0|Y = 0)

}
.

123

The optimal Bayes classification rule for Z can be constructed using the ratio of

the conditional distribution functions f1(Z) and f0(Z) of Z given class Y = 1 and

Y = 0, respectively:

Ŷ (Z) =

1, if f1(Z)
f0(Z)

≥ π0

π1

0, if f1(Z)
f0(Z)

< π0

π1
,

To compute f1(Z) and f0(Z), we first consider the simplest local class dependency

structure:

P(Yh = 1|Y = 1) = p,(6.8)

P(Yh = 0|Y = 0) = p,

i.e., we assume a constant probability of having the same class labels for all neighbors.

According to this assumption, we assign weight w0 to the input vector X and w1 to

all remaining observations in the neighborhood U(X). We define a random variable

Q as the number of objects in U(X) with the same class label as Y . Assuming also

that all Yh (h ∈ U(X)) are conditionally independent given Y , variable Q follows a

binomial distribution with parameters p and M = |U(X)|, conditional on Y . Hence,

the conditional density f1(Z) is computed as follows:

f1(Z) ≡ f(Z|Y = 1) = EQ {f(Z|Q, Y = 1)} =

=
M∑

q=0

f(Z|Q = q, Y = 1)P(Q = q|Y = 1) =

=
M∑

q=0

φ(Z; µz1(q), Σz)

(
M

q

)
pq(1− p)M−q,

where φ(Z; µz1(q), Σz) is the multivariate normal density with mean µz1(q) and co-

124

variance matrix Σz. Similarly, f0(Z) is given by,

f0(Z) ≡ f(Z|Y = 0) = EQ {f(Z|Q, Y = 1)} =

=
M∑

q=0

φ(Z; , µz0(q), Σz)

(
M

q

)
pq(1− p)M−q.

Values of µz1(q) ≡ µz(Q = q, Y = 1) , µz0(q) ≡ µz(Q = q, Y = 0) and Σz can be

calculated as:

µz1(q) = w0µ1 + w1(qµ1 + (M − q)µ0),

µz0(q) = w0µ0 + w1(qµ0 + (M − q)µ1),(6.9)

Σz = (w2
0 + M w2

1) Σ.

The weights are only defined up to a scaling constant, so we need to impose a

constraint. One convenient option is to have Σz = Σ, setting

w2
0 + M w2

1 = 1.

In general, one can also account for more complex neighborhood structures by

grouping neighbors within U(X) into k layers, Lj(X) ∈ U(X), j ∈ {1, .., k}, so that

within each layer Lj(X) objects have a constant probability of having the same class

label Y , i.e.

P(Yl = 1|Y = 1) = P(Yl = 0|Y = 0) = pj, l ∈ Lj(X).

In the extreme case of k = |U(X)|, all neighbors have different probabilities of

agreement.

In this data structure, we assign different weights wj, j ∈ {1, .., k} to the input

characteristics in different layers. We define a random vector Q = (Q0, Q1, .., Qk)

where each Qj, j = 1, .., k represents the number of objects in layer Lj(X) that

125

have the same class label value as Y . Note that Q0 corresponds to the input X

itself, so Q0 = 1 with probability p0 = P(Y = Y) = 1. Given the class label

Y , class labels in different layers and within each layer can preserve some degree of

dependence; however, here we adopt a pseudo-likelihood formulation [10] and assume

that all neighbors Yh are conditionally independent. Letting Mj in layer Lj(X), the

distribution of Q can be defined as:

P (Q = (q0, q1, .., qk)) = Πk
j=1P(Qj = qj), where(6.10)

P (Qj = qj) =

(
Mj

qj

)
p

qj

j (1− pj)
Mj−qj , j = 1, .., k.

The conditional distribution functions of Z given Y = 1 and Y = 0, i.e., f1(Z) and

f0(Z), in the presence of multiple layers are calculated as follows:

f1(Z) =
∑

q=(q0,...,qk)∈ΩQ

φ(Z; µz1(q), Σz)Π
k
j=1P(Qj = qj),(6.11)

f0(Z) =
∑

q=(q0,...,qk)∈ΩQ

φ(Z; µz0(q), Σz)Π
k
j=1P(Qj = qj),

where the values of the conditional means µz1(q) ≡ µz|Y =1(q = (q0, .., qk), w0, .., wk) ,

µz0(q) ≡ µz|Y =0(q = (q0, .., qk), w0, .., wk) are computed as:

µz1(q) =
k∑

j=0

wj(qjµ1 + (Mj − qj)µ0),(6.12)

µz0(q) =
k∑

j=0

wj(qjµ0 + (Mj − qj)µ1.

and we again impose the constraint that forces Σz = Σ, i.e.,

k∑
j=0

w2
jMj = 1.

Recall that the Bayes rule is given by the ratio R(Z) = f1(Z)
f0(Z)

, which can be written

as follows:

R(Z) =
EQ {φ(Z; µz1(Q), Σz)}
EQ {φ(Z; µz0(Q), Σz)} =

∑
q∈ΩQ

φ(Z; µz1(q), Σz)Π
k
j=1P(Qj = qj)∑

q∈ΩQ
φ(Z; µz0(q), Σz)Πk

j=1P(Qj = qj)
.(6.13)

126

For Q having more than one possible value, R(Z) is a complicated, non-linear func-

tion of Z, and we cannot compute these expectations explicitly. However, we can

compute a simpler classification function dz(Z) as:

(6.14)

dz(Z) =
∑
q∈ΩQ

(µz1(q)− µz0(q))
′Σ−1

(
Z − 1

2
(µz1(q) + µz0(q))

)
Πk

j=1P(Qj = qj).

Proposition VI.1. Classification function dz(Z) is a linear function of Z for all

values of µ1, µ0, Σ, and p.

Proof. Given

µz1(q)− µz0(q) =
k∑

j=0

wj(2qj −Mj)(µ1 − µ0),

µz1(q) + µz0(q) =
k∑

j=0

wjMj(µ1 + µ0),

the expression for dz(Z) defined by (6.14) is simplified to:

dz(Z) =
k∑

j=0

wjMj(2pj − 1)(µ1 − µ0)
′Σ−1

(
Z − 1

2

k∑
j=0

wjMj(µ1 + µ0)

)
,

which is linear in Z.

Introducing additional notation,

S1 =
k∑

j=0

wjMj, S2 =
k∑

j=0

wjMj(2pj − 1), S3 =
k∑

j=0

wj(2qj −Mj),

we can reduce the expression for dz(Z) to the form of (6.4):

dz(Z) = S2(µ1 − µ0)
′Σ−1

(
Z − S1

2
(µ1 + µ0)

)
.

Recall that

φ(Z; µz1(Q), Σz) =
1

(2π)d/2|Σ|1/2
exp

{−0.5(Zi − µz1(Q))′Σ−1
z (Z − µz1(Q))

}
,

127

so that equation (6.14) can be also written as:

dz(Z) =
∑
q∈Ωq

(µz1(q)− µz0(q))
′Σ−1

(
Z − 1

2
(µz1(q) + µz0(q))

)
Πk

j=1P(Qj = qj)

= EQ

{
log

1

(2π)d/2|Σ|1/2
− 0.5(Z − µz1(Q))′Σ−1(Zi − µz1(Q))

}

− EQ

{
log

1

(2π)d/2|Σ|1/2
− 0.5(Z − µz0(Q))′Σ−1(Zi − µz0(Q))

}
.

Hence, the expression 6.14 coincides with:

dz(Z) = EQ {log φ(Z; µz1(Q), Σz)} − EQ {log φ(Z; µz0(Q), Σz)} .(6.15)

Given Z, the class label Ŷ is assigned according to:

(6.16) Ŷ (Z) =

1, dz(Z) ≥ log(π0/π1)

0, dz(Z) < log(π0/π1),

The corresponding probability of correct classification in this case can be calculated

explicitly:

Pz = max
{w0,..,wk}

{
π1EQΦ̄

(
log π0/π1 − dz(µz1(Q))

|S2|D(µ1, µ0)

)

+ π0EQΦ

(
log π0/π1 − dz(µz0(Q))

|S2|D(µ1, µ0)

)}

= max
{w0,..,wk}

π1

∑
q∈ΩQ

Φ̄

(
log π0/π1 − dz(µz1(q))

|S2|D(µ1, µ0)

)
Πk

j=1P(Qj = qj)(6.17)

+ π0

∑
q∈ΩQ

Φ

(
log π0/π1 − dz(µz0(q))

|S2|D(µ1, µ0)

)
Πk

j=1P(Qj = qj)

 .

The next two propositions derive the main properties of the function Pz.

Proposition VI.2. The probability of correct classification Pz based on fused features

Z is mean shift invariant.

Proof. We need to show that if µ0, µ1 are replaced by µ0 + c, µ1 + c, respectively, Pz

will stay the same.

128

Recall that Pz depends on µ1 and µ0 only through the functions DM(µ1, µ0),

dz(µz1(q)), and dz(µz0(q)). Notice that D(µ1, µ0) is a function of difference in means

(µ1 − µ0), and therefore is shift invariant. Also, dz(µz1(q)), and dz(µz0(q)) can be

expressed in terms of the previously defined sums S2 and S3:

dz(µz1(q)) = S2(µ1 − µ0)
′Σ−1

(
µz1(q)−

1

2
S1(µ1 + µ0)

)
=

= 0.5S2 S3 D2(µ1, µ0),

dz(µz0(q)) = −0.5S2 S3 D2(µ1, µ0).

Since neither S2 or S3 depend on µ0, µ1, both dz(µz1(q)) and dz(µz0(q)) only depend

on µ0, µ1 through D(µ1, µ0), and therefore are shift invariant.

This completes the proof of the Proposition.

Proposition VI.3. The probability of correct classification Pz based on fused features

Z is greater or equal to the probability of correct classification for LDA for all values

of µ1, µ0, Σ, and p.

Proof. Recall that Pz is maximized over {w0, .., w1}, and therefore Pz is greater or

equal to the inner expression in (6.18) with any weights w0, .., w1 satisfying the

constraint
∑k

j=0 w2
jMj = 1; for instance, w0 = 1 and w1 = w2 = ... = wk = 0. With

these weights, S2 = 1, dz(Z) = dx(X), µz1(q) = µ1, and µz0(q) = µ0, so that

Pz ≥ {w0 = 1, w1 = 0, ..., wk = 0}
{

π1EQΦ̄

(
log π0/π1 − dz(µz1(Q))

|S2|D(µ1, µ0)

)

+ π0EQΦ

(
log π0/π1 − dz(µz0(Q))

|S2|D(µ1, µ0)

)}

= π1Φ̄

(
log(π0/π1)− dx(µ1)

D(µ1, µ0)

)
+ π0Φ

(
log(π0/π1)− dx(µ0)

D(µ1, µ0)

)
= Px.

129

Corollary VI.4. The probability of correct classification Pz based on fused vector Z

achieves its minimum, Pz ≡ Px:

π1Φ̄

(
log(π0/π1)− 0.5D2(µ1, µ0)

D(µ1, µ0)

)
+ π0Φ

(
log(π0/π1) + 0.5D2(µ1, µ0)

D(µ1, µ0)

)
,

when p1 = ... = pk = 0.5 with w0 = 1, w1 = ... = wk = 0.

Numerically, it can be shown that the probability of correct classification Pz

achieves its maximum:

max(Pz) = π1Φ̄

 log(π0/π1)− 0.5

∑k
j=0 MjD

2(µ1, µ0)√∑k
j=0 MjD(µ1, µ0)

+ π0Φ

 log(π0/π1) + 0.5

∑k
j=0 MjD

2(µ1, µ0)√∑k
j=0 MjD(µ1, µ0)

 ,

when pj = 1 or 0 with

wj =

1qPk
j=0 Mj

, if pj = 1

− 1qPk
j=0 Mj

, if pj = 0.

For illustration purposes, we explored the one-layer neighborhood structure and

plotted the probability of correct classification Pz (Figure 6.1(b)) and corresponding

optimal weights (Figure 6.1(a)) as a function of p. Figure 6.1 shows that for p ∈

[0, 1/2), the weight w1 is negative (see (a)) and Pz is decreasing in p. Analogously,

when p ∈ [1/2, 1], the weight w1 is positive and Pz is an increasing function of p.

These properties match the intuition that the more likely your neighbors are to be

of the same class, the more it helps to fuse (when p > 1/2). The whole process is

symmetric around p = 1/2.

Corollary VI.5. For special cases when pj = 1 or 0 for all j = 1, ..., k, the linear

decision rule defined by the dz (6.14) and the Bayes rule defined by the Rz (6.13) are

equivalent.

130

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

p

w

w0
w1

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p

P

P

x

P
z

(a) (b)

Figure 6.1: (a) Weights and (b)the probability of correct classification as a function of p. (d = 1,
π0/π1 = 1, σ = 1, µ1 = 1, µ0 = 0)

Proof. Recall that by construction we have:

log(R(Z)) = logEQ {φ(µz1(Q), Σz, Z)} − logEQ {φ(µz0(Q), Σz, Z)} ,

dz(Z) = EQ {log φ(µz1(Q), Σz, Z)} − EQ {log φ(µz0(Q), Σz, Z)} .

When pj = 1, the probability P(Qj = qj) =
(

Mj

qj

)
p

qj

j (1 − pj)
Mj−qj 6= 0 only when

qj = Mj. Similarly, when pj = 0, P(Qj = qj) 6= 0 for qj = 0. In this case, the

sample space of Q is reduced to a single term Q1 which consists of zeros and Mj

depending on the values of p′js. So the expectations in the formulas for dz(Z) and

R(Z) are taken with respect to a point mass distribution P (Q = Q1) = 1. It is

clear that under these conditions log(R(Z)) = dz(Z), and consequently Ŷ (R(Z)) =

Ŷ (dz(Z)).

Next Corollary shows that in the one-dimensional case, the proposed linear rule

dz(Z) coincides with the optimal Bayes rule R(Z).

Corollary VI.6. In the one-dimensional case, when π0 = π1 and R(Z) is a mono-

tone function, the classification rules defined by functions R(Z) and dz(Z) produce

the same class label Ŷ .

131

Proof. In order to assign class label Ŷ to the object with features X we compare the

classification function dz(Z) to log(π0/π1), and classification function R(Z) to π0

π1
.

When π0 = π1, the boundary conditions for dz(Z) and R(Z) are defined, respectively,

as dz(Z) = 0 and R(Z) = 1. If R(Z) is a monotone function of Z, then there is only

one solution to the equation R(Z) = π0

π1
, or R(Z) = 1, if π0

π1
= 1. By solving the

equation dz(αz) = 0, we obtain the decision boundary αz:

αz =
µ1 + µ0

2

k∑
j=0

wjMj.

Next we will establish that if π0

π1
= 1, then the solution to dz(Z) = 0 (Z = αz) is

also the solution to the equation R(Z) = 1.

When d = 1, the function R(Z) for each q depend on Z−µz1(q) in the numerator

and Z − µz0(q) in the denominator. We next calculate these values for αz.

αz − µz1(q) = −0.5 (µ1 − µ0)
k∑

j=0

wj(2qj −Mj),

αz − µz0(q) = 0.5 (µ1 − µ0)
k∑

j=0

wj(2qj −Mj).

By plugging them into the formula of R(Z) and using the symmetry of the normal

density function, we get that R(αz) = 1, i.e. R(αz) = π0

π1
.

6.3 Extensions

The most straightforward extension of the proposed framework is to assume the

conditional probabilities of neighbors Yh (h ∈ U(X)) having the same class labels as

Y to be different for Y = 1 and Y = 0, i.e., to assume that

P(Yh = 1|Y = 1) = p1,

P(Yh = 0|Y = 0) = p0.

132

The conditional distribution functions f1(Z) and f0(Z) are then computed as

follows:

f1(Z) = EQ1f(Z|Q1, Y = 1) =

=
M∑

q1=0

φ(Z; µz1(q1), Σz)

(
M

q1

)
pq1

1 (1− p1)
M−q1 ,

f0(Z) = EQ0f(Z|Q0, Yi = 1) =

=
M∑

q0=0

φ(Z; µz0(q0), Σz)

(
M

q0

)
pq0

0 (1− p0)
M−q0 ,

where Q1 and Q0 follow the binomial distribution with parameters p1 and M , and

p0 and M , respectively.

Values for µz1(q1) ≡ µz(Q1 = q1, Y = 1) , µz0(q0) ≡ µz(Q0 = q0, Y = 0) and Σz

can be calculated as:

µz1(q1) = w0µ1 + w1(q1µ1 + (M − q1)µ0),

µz0(q0) = w0µ0 + w1(q0µ0 + (M − q0)µ1),(6.18)

Σz = w2
0 + M w2

1 Σ,

and again impose the constraint w2
0 + M w2

1 = 1. The corresponding classification

rule can be computed then as:

dz(Z) = AZ ′ − 1

2
B, where

A = (w0 + w1M(p1 + p0 − 1))(µ1 − µ0)
′Σ−1,

B = µ′z1
(Mp1)Σ

−1µz1(Mp1)− µ′z1
(Mp1)Σ

−1µz1(Mp1)

+ w2
1M(p1(1− p1)− p0(1− p0))D

2(µ1, µ0).

This form of dz(Z) is more complicated, but remains linear in Z. Hence, dz(Z)

is a univariate normal random variable and the corresponding probability of correct

classification can be computed explicitly.

133

Other natural extensions of the proposed local fusion framework include incor-

porating more complicated neighborhood structures, and classification of multi-class

classification problems.

6.4 Performance Evaluation

In this section, we compare the performance of the proposed LDF framework to

classical LDA applied to three different types of synthesized binary textures and to

a real data set of handwritten digits.

6.4.1 Classification of binary textures

There are several algorithms available in the literature for texture modeling. Here

we use an algorithm that is based on partially ordered Markov models (POMMs)

introduced by Davidson and Cressie in [24]. According to this algorithm, first, we

have to choose the neighborhood dependency structure and corresponding condi-

tional probability. Following the original paper [24], we define

U(Yij) = {Yi−1,j, Yi−1,j−1, Yi,j−1, Yi+1,j−1},

and a Bernoulli distribution for the conditional probability,

P(Yij|U(Yij)) = qYij(1− q)1−Yij , where

q = eTij/(1 + eTij), and

Tij = α + βYi−1,j + γYi−1,j−1 + δYi,j−1 + εYi+1,j−1.

Using different values for the parameters α, β, γ, δ, and ε (Figure 6.2), we generate

three types of binary textures {Yij} (Figure 6.3). Note that each binary texture is a

64× 64 pixel black-and-white image with the following proportions of the number of

black (Yij = 0) pixels π0 to the number of white (Yij = 1) pixels π1 for each type of

textures:

134

• Type 1: π0 = 0.6, π1 = 0.4;

• Type 2: π0 = 0.52, π1 = 0.48;

• Type 3: π0 = 0.51, π1 = 0.49.

(a) (b) (c)

Figure 6.2: Parameters {α, β, γ, δ, ε} corresponding to binary textures of (a) Type 1, (b) Type 2,
and (c) Type 3.

(a) (b) (c)

Figure 6.3: True labels Yij corresponding to binary textures of (a) Type 1, (b) Type 2, and (c)
Type 3.

Given {Yij}, we simulate i.i.d. realizations of {Xij} from a normal distribution

with means µ0 = 0 and µ1 = 1 for Yij = 0 and Yij = 1, respectively. We set the

variance σ2 = 0.5, so that the signal-to-noise ratio, defined as SNR = µ1−µ0

σ2 , equals

2. The described procedure corresponds to a scenario when the original texture

image was contaminated or distorted at a given SNR (Figure 6.4).

To recover the original texture image, or {Yij} that in our setting are treated as

true labels, we first apply LDA with true means µ1 and µ0 to predict {Yij} from the

135

(a) (b) (c)

Figure 6.4: Simulated Xij corresponding to binary textures of (a) Type 1, (b) Type 2, and (c) Type
3.

feature values {Xij} and then plot the predicted labels on Figure 6.5. As one can

easily notice, there is still a severe distortion compared to the original textures. The

corresponding rates of correct classification Px are also relatively low (84.1%−84.4%).

(a) Px = 0.844 (b)Px = 0.841 (c)Px = 0.841

Figure 6.5: Labels predicted via LDA for binary textures of (a) Type 1, (b) Type 2, and (c) Type
3.

Next, we apply LDF framework to obtain fused feature values {Zij} and predict

class labels {Yij} using the proposed linear classification rule for fused data. The

results are shown on Figure 6.6; the rates of correct classification Pz range from 90%

(for Type 2) to 94.2% (for Type 3), which illustrates the superior performance of

the algorithm. Note since the proportions of the number of black pixels π0 to the

number of white pixels π1 are very similar for all types of textures, we expect that

the rates of correct classification Pz are close to the optimal values, according to

136

Corollary VI.6.

(a)Pz = 0.931 (b)Pz = 0.90 (c)Pz = 0.943

Figure 6.6: Labels predicted via LDA-LF corresponding to binary textures of (a) Type 1, (b) Type
2, and (c) Type 3.

The average difference, over 100 replications, in the rates of correct classification

Pz and Px as a function of SNR is plotted for different types of textures in Figure

6.7(a). It can be seen that the largest gains correspond to low (1) and medium

(3) SNRs; for large SNR values the gains become small for all types of textures,

because the relative difference in the class means becomes large and the probability

of correct classification for both LDA and our fusion framework approaches one. The

largest gains are obtain for Type 3 texture. This is due a highly regular pattern in

the vertical direction, which is picked up by the corresponding weights in the fusion

framework.

Notice that the choice of the right fusion neighborhood is in general a very im-

portant task. In the comparisons reported above a ”universal” neighborhood which

accounts for vertical (V), horizontal(H), and two diagonal directions (left upper cor-

ner and right lower corner(D1), and left lower corner and right upper corner(D2))

with two neighbors for each direction is used, as illustrated in Figure 6.7(b). In

our setup, it represents a neighborhood structure with four layers with two objects

in each one, i.e., Mj = 2, j = 1, .., 4. The corresponding probabilities of class label

137

agreement pj (up to second decimal digit) and the weights wj (up to the third deci-

mal digit) are in Table 6.1. The results show that neighbor contributions are greater

when the corresponding probability pj is further from 1/2, as expected.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

SNR

P
z −

 P
x

Type 1
Type 2
Type 3

(a) (b)

Figure 6.7: (a) Estimated average difference (Pz − Px) as a function of SNR.(b) Universal neigh-
borhood 4× 2.

LDA V H D1 D2
Type 1

p 1 0.6 0.6 0.83 0.83
w 0.974 0.029 0.028 0.108 0.108

Type 2
p 1 0.74 0.68 0.73 0.61
w 0.986 0.071 0.052 0.069 0.031

Type 3
p 1 0.03 0.52 0.48 0.49
w 0.947 -0.226 0.004 -0.004 -0.002

Table 6.1: Probabilities of the within direction class similarity pj and optimal weights wj .

In Table 6.2, for each texture type we compare the probabilities of having the same

labels within the neighborhood p and the average rate of correct classification Pz for

several types of the neighborhood structures. Note that the first column represents

the rate of correct classification obtained via LDA, i.e., Px. The results in Table

6.2 suggest using the neighborhood structures with layers where the probabilities of

having the same class label as the central object deviate significantly from 0.5.

138

LDA
M 0 2 2 2,2 4 4,4 8

Type 1
p 0.5 0.6 0.6 0.6,0.6 0.6 0.6, 0.83 0.72
Pz 0.844 0.849 0.849 0.854 0.854 0.931 0.913

Type 2
p 0.5 0.74 0.68 0.74,0.68 0.71 0.71, 0.67 0.69
Pz 0.841 0.869 0.857 0.882 0.880 0.900 0.899

Type 3
p 0.5 0.03 0.52 0.03,0.52 0.27 0.27,0.49 0.38
Pz 0.841 0.943 0.842 0.943 0.885 0.885 0.866

Table 6.2: Probabilities of the within neighborhood class similarity p and estimated probabilities
of correct classification Pz.

6.4.2 Handwritten Digit Recognition

Next, we apply the proposed fusion framework to a real data set that contains

normalized handwritten digit images: 852 images of the digit four (4), and 821 images

of the digit nine (9). Each observation corresponds to a 16 × 16 gray-scale image,

i.e., the feature vector is 256-dimensional.

The results summarized in Table 6.3 contain training classification rates and test

classification rates for LDA and LDF using four neighbors (M = 4). To test the

performance of the method with different sample sizes and particularly in the ”large p

small n” scenario, we perform a random split of the data, keep 50% (837 images), 20%

(335 images) or 10% (168 images) for training. and the rest for testing. The correct

classification rates are then averaged over 100 such random splits. On each split,

dimensions corresponding to the background for all images and dimensions where

the difference in class means did not exceed 0.1 were excluded from consideration.

On average, about a half of all dimensions were used for analysis.

Table 6.3 shows that the main gains occur when p >> n, which is the case of

most interest. When only 10% of the data is used for training, LDF provides about

12% improvement in the correct classification rate.

139

% training 50% 20% 10%

LDA train 0.9926 0.9986 1.0000
test 0.9743 0.9553 0.7578

LDF train 0.9926 0.9960 0.9869
test 0.9794 0.9712 0.8793

Table 6.3: Training and test rates of correct classification for handwritten data.

The work presented in this chapter is still in progress, but the obtained results

are very promising, especially for spatially correlated data.

CHAPTER VII

Conclusions and Future Research

The main contributions of our work are the application of wireless sensor networks

to detection, localization, and tracking of single and multiple targets. In Chapter

III, we proposed a new decision fusion algorithm for target detection which makes

no assumptions about the signal model, and therefore can be used for detection

of single or multiple targets. Numerical results show that the proposed scheme

achieves significantly higher detection rates under a variety of settings, including

sensor deployment mechanisms, signal-to-noise ratio, target size, etc. In Chapter IV,

we examined the problem of estimating the location and signal amplitude of a single

target. We developed several localization algorithms based on corrected decisions

that provide highly accurate estimates, and in the presence of high levels of noise

consistently outperform the energy based ML algorithm. Through the sequence of

simulations we also showed that LVDF based methods are robust to signal model

and noise distribution misspecification. Further, in Chapter V we introduced an

LVDF based framework for localization and tracking multiple targets. Our multi-

target tracking approach is based on a penalized maximum likelihood framework, and

allows for sensor failures, targets appearing and disappearing over time, and complex

intersecting target trajectories. We show that the proposed framework provides the

140

141

most robust performance in noisy environments, and gives good tracking results

in applications – an experiment involving tracking people (NEST) and a project

tracking zebras (ZebraNet).

In Chapter II, we addressed the problem of an efficient wireless sensor network

design under random deployment. We proposed a general design framework which

can be extended to include a performance measure of the ultimate network task (such

as accuracy of target localization or field estimation) into the constraints. The precise

nature of the optimization problem will be determined by the application, but the

general principle of optimizing the network cost subject to operational constraints is

applicable to a wide variety of WSN problems.

One example of an interesting WSN problem for future work is to develop an

adaptive sensor scheduling algorithm which would control how often different sensors

acquire measurements over time. In applications like herd monitoring, one could use

a strategy which adjusts sensors sampling rate according to the average speed of

animals, such as turning off most sensors during the night when the animals are not

moving. Similar strategies can be considered in surveillance applications. In WSN

design, our cost-efficient framework can be extended to networks with several types

of sensors (heterogeneous networks) and to networks where each sensor can collect

measurements about more than one environmental characteristic.

Our linear data fusion classification framework developed in Chapter VI opens

a whole new direction of research in classification of correlated observations. It al-

lows naturally incorporating spatial and time varying components into classification,

and also fusing data from multiple sources with varying degrees of reliability. This

framework can be extended to multi-class problems and then to more complicated

underlying classification algorithms.

BIBLIOGRAPHY

142

143

BIBLIOGRAPHY

[1] A.A. Abdel-Samad and A.H. Tewfik. Search strategies for radar target localization. In Pro-
ceedings of International Conference on Image Processing, volume 3, pages 862–866, October
1999.

[2] K. Abend, T. Harley, and L. Kanal. Classification of binary random patterns. IEEE Trans-
actions on Information Theory, 11(4):538 – 544, 1965.

[3] J. Ahn and B. Krishnamachari. Modeling search costs in wireless sensor networks. Techni-
cal report, University of Southern California, Department of Electrical Engineering-Systems,
2007.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a
survey. Computer Networks, 38(4):393–422, 2002.

[5] I.F. Akyildiz, D. Pompili, and T. Melodia. Underwater acoustic sensor networks:research
challenges. Ad Hoc Networks Jounal (Elseviier), 18:257–279, March 2005.

[6] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks.
IEEE Communications Magazine, 40(8):102–114, August 2002.

[7] S.A. Aldosari and J.M.F. Moura. Saddlepoint approximation for sensor network optimiza-
tion. In The Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 4, pages iv/741–iv/744, March 2005.

[8] J. Bahi, A. Makhoul, and A. Mostefaoui. Localization and coverage for high density sensor
networks. In Proceedings of the 5th Annual IEEE International Conference on Pervasive
Computing and Communications Workshops, pages 295–300, 2007.

[9] J. Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179–195, September
1975.

[10] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society:
Series B, 48(3):259–302, 1986.

[11] Christian Bettstetter. On the minimum node degree and connectivity of a wireless multi-
hop network. In Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing, pages 80–91, 2002.

[12] D Blatt and A.O.III Hero. Energy-based sensor network source localization via projection
onto convex sets. IEEE Transactions on Signal Processing, 54(9):3614–3619, September 2006.

[13] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer. A reactive soil moisture sensor
network:design and field evaluation. International journal of Distributed Sensor Networks,
1(2):149–163, 2005.

[14] Z. Chair and P.K. Varshney. Optimal data fusion in multiple sensor detection systems. IEEE
Transactions on Aerospace and Electronic Systems, 22(1):98–101, 1986.

144

[15] B. Chen and P.K. Varshney. A Bayesian sampling approach to decision fusion using hierar-
chical models. IEEE Transactions on Signal Processing, 50(8):1809–1818, August 2002.

[16] J. Chen, R. Hudson, and K. Yao. Maximum-likelihood source localization and unknown
sensor location estimation for wideband signals in the near-field. IEEE Transactions on
Signal Processing, 50(8):1843–1854, August 2002.

[17] Phoebus Chen, Songhwai Oh, Michael Manzo, B. Sinopoli, C. Sharp, K. Whitehouse, G. Tolle,
J. Jeong, P. Dutta, J. Hui, S. Shaffert, S. Kim, J. Taneja, B. Zhu, T. Roosta, M. Howard,
D. Culler, and S. Sastry. Experiments in instrumenting wireless sensor networks for real-
time surveillance. In Proceedings of 2006 IEEE International Conference on Robotics and
Automation, pages 3128 – 3133, May 2006.

[18] T. Chen, W. Liao, M. Huang, and H. Tsai. Dynamic object tracking in wireless sensor
networks. In Proceedings of 13th IEEE International Conference on Networks, 2005, volume 1,
page 6, November 2005.

[19] W.-P. Chen, J.C. Hou, and Lui Sha. Dynamic clustering for acoustic target tracking in
wireless sensor networks. IEEE Transactions on Mobile Computing, 3(3):258 – 271, July–
August 2004.

[20] T. Clouqueur, V. Phipatanasuphorn, K.K. Saluja, and P. Ramanathan. Sensor deployment
strategy for detection of targets traversing a region. Mobile Networks and Applications,
28(8):453–461, 2003.

[21] T. Clouqueur, P. Ramanathan, K.K. Saluja, and K.C. Wang. Value-fusion versus decision-
fusion for fault-tolerance in collaborative target detection in sensor networks. In Proceedings
of 4th Annual Conference on Information Fusion, pages TuC2/25–TuC2/30, 2001.

[22] Y. Le Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and D. Hen-
derson. Handwritten digit recognition with a back-propagation network. Advances in neural
information processing systems 2, pages 396–404, 1990.

[23] R. A. Dara, M. S. Kamel, and N. Wanas. Data dependency in multiple classifier systems.
Pattern Recognition, 42(7):1260–1273, July 2009.

[24] J.L. Davidson, Noel Cressie, and X. Hua. Texture synthesis and pattern recognition for
partially ordered Markov models. Pattern Recognition, 32(9):1475–1505, September 1999.

[25] J. DeBonet and P. Viola. A non-parametric multi-scale statistical model for natural images.
Advances in Neural Information Processing Systems, 9, 1997.

[26] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1):1–38, 1977.

[27] A. W. Van der Vaart. Asymptotic Statistics. Cambridge Univ. Press, 1998.

[28] P. Doukhan. Mixing: Properties and Examples. Springer–Verlag, 1994.

[29] M. Duarte and Y.H. Hu. Distance-based decision fusion in a distributed wireless sensor
network. Telecommunication Systems, 26(2-4):339–350, June 2004.

[30] R.O. Duda, P.E. Hart, and D.H. Stork. Pattern Classification. Wiley, 2000.

[31] R.J. Efron, B. Tibshirani. An Introduction to the Bootstrap. CRC Press, 1994.

[32] Kie B. Eom. Synthesis of color textures for multimedia applications. Multimedia Tools
Applications, 12(1):81–98, 2000.

[33] E.B. Ermis and V. Saligrama. Detection and localization in sensor networks using distributed
FDR. In Proceedings of Conference on Information Sciences and Systems, 2006.

145

[34] D. Estrin. Wireless sensing systems: from eco-systems to human-systems. In Feedback and
Dynamics in Nature Workshop held at the Grace Hopper Celebration of Women in Computing
Conference, 2006.

[35] Ronald Aylmer Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:179–188, 1936.

[36] Eibe Frank, Mark Hall, and Bernhard Pfahringer. Locally weighted naive bayes. In Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence, pages 249–256. Morgan
Kaufmann, 2003.

[37] J.H. Friedman. Regularized discriminant analysis. Journal of the American Statistical Asso-
ciation, 84:165–175, 1989.

[38] A. Gordon. Classification. Chapman and Hall, 1980.

[39] P. Gupta and P.R. Kumar. Critical power for asymptotic connectivity in wireless networks.
In Proceedings of the 37th IEEE Conference on Decision and Control, volume 1, 1998.

[40] X. Guyon. Random Fields on a Network: Modeling, Statistics, and Applications. Springer–
Verlag, New York, 1995.

[41] Li Haihao, Liu Mei, Shen Yi, and Qiao Deli. Research on task allocation technique for multi-
target tracking in wireless sensor network. In Proceedings of International Conference on
Mechatronics and Automation, pages 360 – 365, August 2007.

[42] P. Hall. The Theory of Coverage Processes. New York: Wiley, 1988.

[43] Trevor Hastie, Robert Tibshirani, and Andreas Buja. Flexible discriminant analysis by opti-
mal scoring. Journal of the American Statistical Association, 89:1255–1270, 1994.

[44] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction (Springer Series in Statistics). Springer New
York, 2001.

[45] M. Hefeeda and M. Bagheri. Efficient k-coverage algorithms for wireless sensor networks.
Technical report, School of Computing Science, Simon Fraser University, January 2007.

[46] Wen Hu, Van Nghia Tran, Nirupama Bulusu, Chun Tung Chou, Sanjay Jha, and Andrew
Taylor. The design and evaluation of a hybrid sensor network for cane-toad monitoring. In
Proceedings of the 4th international symposium on Information processing in sensor networks
(IPSN 2005), page 71. IEEE Press, 2005.

[47] C.-F. Huang and Y.-C. Tseng. The coverage problem in wireless sensor networks. Mobile
Networks and Applications, 10(4):519 – 528, August 2005.

[48] Lewis F. Jardme. Digital Image Processing as an Aid to Camouflage Design and Assessment.
PhD thesis, School of Electrical Engineering and Science, Royal Military College of Science,
Shrivenham, 1989.

[49] X. Ji and H. Zha. Sensor positioning in wireless ad-hoc sensor networks with multidimensional
scaling. In Infocom, 2004.

[50] M. Kam, Q. Zhu, and W.S. Gray. Optimal data fusion of correlated local decisions in mul-
tiple sensor detection systems. IEEE Transactions on Aerospace and Electronic Systems,
28(3):916–920, 1992.

[51] S. Kamath, E. Meisner, and V. Isler. Triangulation based multi target tracking with mobile
sensor networks. In Proceedings of IEEE International Conference on Robotics and Automa-
tion, pages 3283–3288, April 2007.

146

[52] L.M. Kaplan, Q. Le, and P. Molnar. Maximum-likelihood methods for bearings-only target
localization. In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 5, pages 3001–3016, May 2001.

[53] N. Katenka, E. Levina, and G. Michailidis. A cost-efficient approach to wireless sensor net-
work design. Technical report, Technical report 474, Department of Statistics, University of
Michigan., November 2007. Under revision.

[54] N. Katenka, E. Levina, and G. Michailidis. Local vote decision fusion for target detection in
wireless sensor networks. IEEE Transactions on Signal Processing, 56(1):329–338, January
2008.

[55] N. Katenka, E. Levina, and G. Michailidis. Robust target localization from binary decisions
in wireless sensor networks. Technometrics: A journal of statistics for the physical, chemical
and engineering sciences, 50(4):448–461, November 2008.

[56] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon. Wireless sensor
networks for structural health monitoring. In Proceedings of the 4th international conference
on Embedded networked sensor systems, pages 427–428, New York, NY, USA, 2006. ACM
Press.

[57] L. Klein. A Boolean algebra approach to multiple sensor voting fusion. IEEE Transactions
on Aerospace and Electronic Systems, 29(2):317–327, April 1993.

[58] C. Kreucher, K. Kastella, and A. Hero. Multitarget tracking using the joint multitarget
probability density. IEEE Transactions on Aerospace and Electronic Systems, 39(4):1396–
1414, October 2005.

[59] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, N. Kushalnagar,
L. Nachman, and M. Yarvis. Design and deployment of industrial sensor networks: experi-
ences from a semiconductor plant and the north sea. In Proceedings of the 3rd international
conference on Embedded networked sensor systems, pages 64–75, New York, NY, USA, 2005.
ACM Press.

[60] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[61] S. Kumar, T.H. Lai, and J. Balogh. On k-Coverage in a mostly sleeping sensor network. In
Proceedings of the 10th annual international conference on Mobile Computing and Networking,
pages 144–158, 2004.

[62] A. Leone and C. Distante. Shadow detection for moving objects based on texture analysis.
Pattern Recognition, 40(4):1222–1233, April 2007.

[63] E. Levina and P.J. Bickel. Texture synthesis and non-parametric resampling of random fields.
Annals of Statistics, 34(4):1751–1773, 2006.

[64] D. Li, K.D. Wong, Y.H. Hu, and A.M. Sayeed. Detection, classification, and tracking of
targets. IEEE Signal Processing Magazine, 19(3):17–29, March 2002.

[65] Q. Li, J. Aslam, and D. Rus. Distributed energy-conserving routing protocols for sensor
network. In Proceedings on 37th Hawaii International Conference on System Science, January
2003.

[66] X. Li and F. Fritz Prinz. Embedded fiber bragg grating sensors in polymer structures fabri-
cated by layered manufacturing. Journal of Manufacturing Process, 5(1):78–86, 2003.

[67] Yao Li and P.M. Djuric. Particle filtering for target tracking with mobile sensors. In Pro-
ceedings of 2007 IEEE International Conference on Acoustics, Speech and Signal Processing,
volume 2, pages II–1101 – II–1104, April 2007.

147

[68] B. Liu and D. Towsley. A study of the coverage of large-scale sensor networks. In Proceedings
of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems, October 2004.

[69] C. Liu, K. Wu, Y. Xiao, and B. Sun. Random coverage with guaranteed connectivity: joint
scheduling for wireless sensor networks. IEEE Transactions on Parallel and Distributed Sys-
tems, 17(6):562– 575, June 2006.

[70] J. Liu, M. Chu, and J.E. Reich. Multitarget tracking in distributed sensor networks. IEEE
Signal Processing Magazine, 24(3):36–46, May 2007.

[71] T. Liu, C. Sadler, P. Zhang, and M. Martonosi. Implementing software on resource-
constrained mobile sensors: Experiences with impala and zebranet. In Proceedings of 2nd
International Conference on Mobile Systems, Applications, and Services (MobiSys), pages
256–269, June 2004.

[72] M. Loog and D. de Ridder. Local discriminant analysis. In Proceedings on 18th International
Conference on Pattern Recognition (ICPR 2006), volume 3, pages 328–331, 2006.

[73] Hui Ma and Brian W.-H. Ng. Distributive jpdaf for multi-target tracking in wireless sensor
networks. In Proceedings of 2006 IEEE Region 10 Conference, TENCON 2006, pages 1–4,
November 2006.

[74] M. Magdon-Ismail, F. Sivrikaya, and B. Yener. Joint problem of power optimal connectivity
and coverage in wireless sensor networks. Wireless Networks, 13(4):537 – 550, August 2007.

[75] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor net-
works for habitat monitoring. In Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages 88–97, New York, NY, USA, 2002. ACM
Press.

[76] Baljeet Malhotra and Alex Aravind. Path-adaptive on-site tracking in wireless sensor net-
works. IEICE - Transactions on Information and Systems, E89-D(2):536–545, 2006.

[77] C. Meesookho, U. Mitra, and S. Narayanan. On energy-based acoustic source localization for
sensor networks. IEEE Transactions on Signal Processing, 56(1):365 – 377, January 2008.

[78] C. Meesookho and S. Narayanan. Distributed range difference based target localization in
sensor network. In Proceedings of the 39th Asilomar Conference on Signals, Systems and
Computers, pages 205–209, November 2005.

[79] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava. Coverage problems in
wireless ad-hoc sensor networks. In Proceedings of the 12th Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 3, pages 1380–1387, 2001.

[80] V. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff. A minimum cost hetero-
geneous sensor network with a lifetime constraint. IEEE Transactions on Mobile Computing,
4(1):4–15, January–February 2005.

[81] W. Mo, D. Qiao, and Z. Wang. Mostly sleeping wireless sensor networks: Connectivity,
k-Coverage and α-Lifetime. In Proceedings of the 43rd Annual Allerton Conference on Com-
munication, Control, and Computing, September 2005.

[82] R. Niu and P.K. Varshney. Target location estimation in wireless sensor networks using binary
data. In Conference on Information Sciences and Sytems, March 2004.

[83] R. Niu and P.K. Varshney. Performance evaluation of decision fusion in wireless sensor
networks. In Proceedings of 40th Annual Conf. Info. Sciences Systems, March 2006.

148

[84] R. Niu, P.K. Varshney, and Q. Cheng. Distributed Bayesian algorithms for fault-tolerant
event region detection in wireless sensor networks. International journal on Information
Fusion, 53, 2004.

[85] M. Noel, P. Joshi, and T. Jannett. Improved maximum likelihood estimation of target po-
sition in wireless sensor networks using particle swarm optimization. In Proceedings of 3rd
International Conference on Information Technology: New Generations, April 2006.

[86] S. Oh, P. Chen, M. Manzo, and S. Sastry. Instrumenting wireless sensor networks for real-
time surveillance. In Proceedings of 2006 IEEE International Conference on Robotics and
Automation, May 2006.

[87] P. Padhy, K. Martinez, A. Riddoch, H. L. R. Ong, and J. K. Hart. Glacial environment
monitoring using sensor networks. In Proceedings of Real-World Wireless Sensor Networks.
ACM Press, 2005.

[88] M. Penrose. Random Geometric Graphs. Oxford: University Press, 2003.

[89] M.D. Penrose and J.E. Yukich. Central limit theorems for some graphs in computational
geometry. Annals of Applied Probability, 11:1005–1041, 2001.

[90] M.D. Penrose and J.E. Yukich. Limit theory for random sequential packing and deposition.
Annals of Applied Probability, 12:272–301, 2002.

[91] D. K. Pickard. A curious binary lattice process. Journal of Applied Probability, 14:717 – 731,
1977.

[92] D. K. Pickard. Unilateral ising models. Journal of Advances in Applied Probability, 10:58 –
64, 1978.

[93] D. K. Pickard. Unilateral markov fields. Journal of Advances in Applied Probability, 12:655
– 671, 1980.

[94] J. Portilla, R. Navarro, O. Nestares, and A. Tabernero. Texture synthesis-by-analysis based
on a multiscale early-vision model. Optical Engineering, 35(8), 1996.

[95] W. Qian and D. M. Titterington. Multidimensional markov chain models for image textures.
Journal of the Royal Statistical Society: Series B, 53:661–674, 1991.

[96] W. Qian and D. M. Titterington. Pixel labelling for three-dimensional scenes based on markov
mesh models. Signal Processing, 22(3):313–328, 1991.

[97] S. Ren, Q. Li, H. Wang, X. Chen, and X. Zhang. Design and analysis of sensing scheduling
algorithms under partial coverage for object detection in sensor networks. IEEE Transactions
on Parallel and Distributed Systems, 18(3):334–350, March 2007.

[98] S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor grids: Coverage, connectivity, and
diameter. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 2, pages 1073–1083, 2003.

[99] X. Sheng and Y.H. Hu. Energy based acoustic source localization. In Proceedings of 3rd
International Workshop on Information Processing in Sensor Networks, volume 2634, pages
286–300, April 2003.

[100] J.-P. Sheu and H.-F. Lin. Probabilistic coverage preserving protocol with energy efficiency
in wireless sensor networks. In Proceedings of the Wireless Communications and Networking
Conference, pages 2631–2636, 2007.

[101] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions Pattern
Analysis and Machine Intelligence, 22(8):888–905, August 2000.

149

[102] R. Steele, C. Secombe, and W. Brookes. Using wireless sensor networks for aged care: the
patient’s perspective. In Proceedings of Pervasive Health Conference, pages 1–10, 2006.

[103] T. Sun, L.J. Chen, C.C. Han, and M. Gerla. Reliable sensor networks for planet exploration.
In Proceedings of IEEE International Conference on Networking, Sensing and Control, 2005.

[104] Y. Sung, L. Tong, and A. Swami. Asymptotic locally optimal detector for large scale sensor
network under the poisson regime. IEEE Transactions on Signal Processing, 53(6):2005–2017,
June 2005.

[105] A.G. Tartakovsky and X.-R. Li. Sequential testing of multiple hypotheses in distributed
systems. In Proceedings of 3rd International Conference on Information Fusion, volume 2,
pages 10–13, July 2000.

[106] A.G. Tartakovsky and V. Veeravalli. Change point detection in multichannel and distributed
systems with applications. Applications of Sequential Methodologies, pages 339–370, 2004.

[107] Jing Teng, H. Snoussi, and C. Richard. Prediction-based proactive cluster target tracking
protocol for binary sensor networks. In Proceedings of 2006 IEEE International Symposium
on Signal Processing and Information Technology, pages 234 – 239, December 2007.

[108] R. Tenney and N. Sandell. Detection with distributed sensors. IEEE Transactions on
Aerospace and Electronic Systems, 17(3):501–510, 1981.

[109] D. Tian and N. Georganas. A coverage-preserving node scheduling scheme for large wireless
sensor networks. In Proceedings of the ACM Workshop on Wireless Sensor Networks and
Applications, October 2002.

[110] H. Varian. Intermediate Microeconomics. W.W. Norton and Co., 1999.

[111] Mahesh Vemula, Monica F Bugallo, and Petar M. Djuric. Particle filtering-based target
tracking in binary sensor networks using adaptive thresholds. In Proceedings of 2nd IEEE
International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,
pages 17 – 20, December 2007.

[112] T. Vercauteren, Dong Guo, and Xiaodong Wang. Joint multiple target tracking and classifi-
cation in collaborative sensor networks. IEEE Journal on Selected Areas in Communications,
23(4):714 – 723, April 2005.

[113] R. Viswanathan and P.K. Varshney. Distributed detection with multiple sensors: Part I-
Fundamentals. Proceedings IEEE, 85(1):54–63, January 1997.

[114] P.-J. Wan and C.-W. Yi. Asymptotic critical transmission radius and critical neighbor number
for k-Connectivity in wireless ad hoc networks. In Proceedings of the 5th ACM international
symposium on Mobile ad hoc networking and computing, pages 1–8, 2004.

[115] Bin Wang and Harry Zhang. Probability based metrics for locally weighted naive bayes. In
Proceedings of the 20th conference of the Canadian Society for Computational Studies of Intel-
ligence on Advances in Artificial Intelligence (CAI 2007), pages 180–191, Berlin, Heidelberg,
2007. Springer-Verlag.

[116] H. Wang, K. Yao, and D. Estrin. Information-theoretic approaches for sensor selection and
placement in sensor networks for target localization and tracking. Journal of Communication
and Networks, 7(4):438–448, December 2005.

[117] W. Wang, V. Srinivasan, B. Wang, and K. Chua. Coverage for target localization in wireless
sensor networks. In Proceedings on Information Processing in Sensor Networks, pages 118–
125, April 2006.

150

[118] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage and con-
nectivity configuration in wireless sensor networks. In Proceedings of the 1st International
Conference on Embedded networked sensor systems, pages 28–39, 2003.

[119] Xuezhi Wang and B. Moran. Multi-target tracking using virtual measurement of binary sensor
networks. In Proceedings of 9th International Conference on Information Fusion, ICIF ’06,
pages 1 – 8, July 2006.

[120] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure coding based routing for opportunistic
networks. In Proceedings of the ACM SIGCOMM Workshop on Delay Tolerant Networking
and related topics (WDTN), August 2005.

[121] Y.-C. Wang, C.-C. Hu, and Y.-C Tseng. Efficient deployment algorithms for ensuring cov-
erage and connectivity of wireless sensor networks. In Proceedings of the 1st International
Conference on Wireless Internet, pages 114–121, July 2005.

[122] Goerges Winkenbach and David H. Salesin. Rendering parametric surfaces in pen and ink.
In Proceedings of the 23rd International Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), pages 469–476, August 1996.

[123] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin.
A wireless sensor network for structural monitoring. In Proceedings of the 4th international
conference on Embedded networked sensor systems, New York, NY, USA, November 2004.
ACM Press.

[124] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin.
A wireless sensor network for structural monitoring. In Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 13–24, 2004.

[125] L. Yang, C. Feng, J.V. Rozenblit, and H. Qiao. Adaptive tracking in distributed wireless
sensor networks. In Proceedings of 13th Annual IEEE International Symposium and Workshop
on Engineering of Computer Based Systems, June 2006.

[126] P. Zhang, C. Sadler, S. Lyon, and M. Martonosi. Hardware design experiences in zebranet.
In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys),
November 2004.

[127] M. Zhu, S. Ding, R. Brooks, Q. Wu, N. Rao, and S. Lyengar. Fusion of threshold rules for
target detection in sensor networks. ACM Transactions on Sensors Networks, 2005. Submit-
ted.

[128] Y. Zou and K. Chakrabarty. Target localization based on energy considerations in distributed
sensor networks. IEEE Transactions on Signal Processing, 5:51–58, February 2003.

