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Chapter 1

Introduction

1.1 Conventional MRI Based Neuroimaging and Recon-

struction

Neuroimaging using magnetic resonance (MR) is generally not sensitive enough to be able

to directly detect neuronal firing. Rather it is conventionally done using an indirect measure

of neuronal activity, such as through increased supply of oxygenated blood. For a site with

increased neuronal activity the situation can be described as follows. Increased neuronal

activity leads to increased metabolic rate of oxygen. This rate change is facilitated by de-

livering more oxygenated blood by increasing blood flow and blood volume close to the

site of activity. These hemodynamic changes perturb the local magnetization due to differ-

ent magnetic susceptibility properties of oxygenated and deoxygenated hemoglobin. This

perturbation is detectable in water based MR imaging since the local field changes affects

neighboring magnetized water molecules by changing their R∗

2 relaxation rate, thus chang-

ing the contrast of the image in that area. This contrast mechanism is called blood oxygen

level dependent (BOLD) contrast and it is the most common way of imaging neuronal

activity in humans using functional MRI (fMRI).

The conventionally reconstructed images for fMRI are so called T ∗

2 -weighted images.

However, these images are unitless and thus unquantifiable in terms of the hemodynamic

changes, such as changes in blood flow, blood volume and metabolic rate of oxygen. Since

1



the concentration of deoxygenated hemoglobin affects R∗

2 directly from changes in blood

flow, blood volume and metabolic rate of oxygen associated with neuronal activity, R∗

2 is

a more quantifiable measure of neuronal activity. Thus, an alternative approach for quan-

titative fMRI is to reconstruct images of the R∗

2 relaxation rate. However, conventional

reconstruction methods involve long readouts and generally ignore relaxation while col-

lecting the data for one image. If the reconstruction uses a model where this relaxation

is included, the problem becomes nonlinear and calls for slow optimization algorithms to

solve. Both these restrictions have made R∗

2 imaging for fMRI not desirable. Also, most

of these reconstructions do not try to build into the algorithm some form of robustness to

noise, such as using regularization functions or penalties.

An fMRI experiment is designed to capture dynamic changes in the hemodynamics

as a subject performs a particular task that is to be investigated. This involves acquiring

multiple time frames of a brain volume that is involved in the task. The functional anal-

ysis is then performed on the resulting pixel time series. If this analysis is performed on

quantitative data such as R∗

2 it is imperative that any changes to the MR signal not directly

from functional activity be controlled. Some contributors of non-functional changes are

motion and physiological changes such as breathing and cardiac cycle. These processes

affect other parameters in the MR signal such as the initial magnetization in the slice or

sources of off-resonance (corrected by using field maps). If they are not accounted for in

every time frame they could confound any quantitative R∗

2 inferences.

In this dissertation we propose a new fast regularized iterative algorithm that jointly

reconstructs the magnetization, R∗

2 and field map for every time frame in the fMRI data. To

accelerate the algorithm we make a linear approximation to the MR signal model, enabling

the use of fast regularized iterative reconstruction algorithms. The regularizer was designed

to account for the inherently different resolution properties of both R∗

2 and field maps and

provide uniform spatial resolution for the estimated images.
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1.2 Summary of Contributions

Here follows a list of contributions that were made in this dissertation:

Fast Iterative Dynamic R∗

2 and Field Map Reconstruction

We propose and implement a linear approximation to the original signal model that allows

us to use fast iterative reconstruction algorithms to estimate R∗

2 and the field maps for every

time frame (see Chapter 3).

Separate R∗

2 and Field Map Roughness Penalty

We perform the reconstruction using a roughness penalty function that penalizes R∗

2 and

field map separately. This allowed us to relax the dependencies on the data fit, and thus

we are able to use more conventional k-spaced trajectories to acquire data during an fMRI

experiment. This also allows us to closely maintain the temporal resolution and spatial

coverage that conventional fMRI experiments use today (see Chapter 3 and Chapter 5).

Spatial Resolution Analysis of Regularized Reconstruction

We developed a spatially varying roughness penalty for the f and R∗

2 estimates that ap-

proximately maintains spatially uniform resolution on the reconstructed images imposed

by the penalty. This is critical in fMRI since the R∗

2 images will be to be used to detect

areas of activation. Any spatially varying resolution for the resulting images affect this

analysis leading to a possible increase in false positives or decrease in true positives if not

controlled (see Chapter 3).

Fast Algorithm to Evaluate Effects of Separate Roughness Penalty

We developed a fast algorithm to estimate the spatial resolution of the reconstructed images

when using a roughness penalty. This information can then be used to choose regulariza-

3



tion parameters that give a desired spatial resolution in a computationally fast manner (see

Chapter 4).

Fast and Motion Robust Iterative R∗

2 Reconstruction

We developed a fast joint reconstruction of initial magnetization, R∗

2 and field map that

uses a similar linear approximation used in the R∗

2 and field map reconstruction. By adding

the initial magnetization as one of the parameters to be estimated we can account better for

MR signal effects from such things as motion and blood inflow (see Chapter 5).
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Chapter 2

Background

2.1 The MR Signal Equation

The MR signal equation is the foundation underlying all reconstruction algorithms in MR

imaging. The MR signal equation s(t) is given by the following expression:

s(t) =

∫
f(~r) e−tz(~r) e−i2π(~k(t)·~r) d~r, z(~r) , R∗

2(~r) + iω(~r) , (2.1)

where t is time with t = 0 directly after RF excitation, ~r is a 2D or 3D image space co-

ordinate, f(~r) is the magnetization of the object at t = 0, z(~r) is a complex-valued rate

map with R∗

2(~r) as the signal relaxation rate map and ω(~r) as the magnetic field offset map,

and ~k(t) is the k-space trajectory used to acquire the MR data. The goal of this section is

to explain the basics of MRI and in the process derive the MR signal equation as shown

above. The reader may skip this section if familiar with the basic concepts of MRI.

2.1.1 MR Signal Sources, Excitation and Measurement

Magnetic resonance imaging (MRI) is an imaging modality that uses a magnetic property

of some atoms, e.g., 1H, 13C, 17O and 31P. In particular, these are atoms that contain an odd

number of protons and/or neutrons. All of them possess a nuclear spin angular momentum

S, which gives rise to a small magnetic dipole moment µ, and are thus sometimes collec-
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Figure 2.1: Applied magnetic field in longitudinal direction of strength B0 forms a net

magnetization moment M in the unit sample. At thermal equilibrium M is aligned in the

direction of B0.

tively referred to as spins. Proton spins (1H) are most often used in MR imaging of living

organisms, since they are the most abundant (such as in water), the most sensitive (highest

SNR) and the most studied.

If a collection of spins is exposed to an external static magnetic field B0 , [0, 0, B0],

applied along the longitudinal axis (z-axis), two notable effects occur. First, a spins µ

tends to align in the direction of B0 to form a per unit volume net magnetization moment

M =
∑

µ, as shown in Figure 2.1. Second, the spins exhibit resonance at a well-defined

frequency ω0, called the Larmor frequency. It is related to the applied magnetic field B0

by the following expression:

ω0 = γ |B0| , (2.2)

where γ is the gyromagnetic ratio, which is unique for each type of spin.

For MR imaging the objective is to measure the spatial distribution of M for the object

being imaged. While this distribution can be generated by exposing the object to B0 as

described earlier it does not allow for M to be measured. This is due to M pointing in the

same direction as B0 at thermal equilibrium, making it impossible to discriminate between

the two. However, when M is made to point in a different direction than B0 it exhibits

a rotational behavior due to a torque exerted on the now nonzero transverse component
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Figure 2.2: Applying an RF magnetic pulse B1 to excite M from equilibrium and tip it

towards the transverse plane. In doing that it starts to precess around B0 at the Larmor

frequency ω0.

(xy-component) of M . This torque makes M precess around B0 at its Larmor frequency

ω0, which forms a rotating magnetic field in the transverse plane. From Faraday’s law the

rotating field induces an electromotive force (EMF) in specifically oriented receiver coils.

This allows the distribution of M to be measured.

To excite M from its equilibrium state towards the transverse plane the precessional

property of the spins is exploited. By applying a rotating radiofrequency (RF) magnetic

pulse B1 along the transverse plane and orthogonal to M , B1 exerts a torque on M thus

tipping it towards the transverse plane. However, as M is getting tipped it starts to pre-

cess around B0 at the Larmor frequency ω0. To maintain the orthogonal orientation of B1

and M and hence also the torque, the RF pulse B1 has to be tuned to the spins Larmor

frequency ω0. This process is illustrated in Figure 2.2. The strength and duration of B1

dictates how far M is tipped towards the transverse plane and is quantified by a flip angle

which usually ranges from 0◦–180◦.

A slice-selective RF excitation is usually used to restrict the spatial extent of excited

spins in an object to be imaged. After the slice-selective excitation the selectively excited

spins have a spatial distribution of M precessing at ω0 irrespective of their spatial position.
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To be able to form an image of the object some kind of spatial encoding of the precession

frequency is needed to be able to discriminate between spins in different spatial positions

in the object. In MRI this is done by using linear gradients to encode the spatially varying

frequency across the object.

2.1.2 Gradient Based Spatial Encoding

After applying a slice-selective excitation to an object we can envision the precessing

magnetization vectors in the transverse plane of the slice as being a spatial map of tiny

‘magnetic oscillators’. Each oscillator at spatial position ~r possesses a time varying mag-

nitude f(~r, t), equivalent to the transverse component of M , and a phase term φ(~r, t).

The MR signal from each oscillator at position ~r and time t can thus be expressed as

f(~r, t) e−iφ(~r,t). If the receiver coil is uniformly sensitive over the excited object, then the

received MR signal s(t) as measured by the coil can be written as follows:

s(t) =

∫
f(~r, t) e−iφ(~r,t) d~r . (2.3)

Since frequency is equal to the time rate of change in phase and by using the general form

of (2.2), φ(~r, t) can be rewritten as follows:

d

dt
φ(~r, t) = ω(~r, t) = γB(~r, t) ,

⇒ φ(~r, t) =

∫ t

0

ω(~r, τ) dτ = γ

∫ t

0

B(~r, τ) dτ , (2.4)

where the initial phase is assumed to be zero. To encode the spatial locations of all the

oscillators in the excited slice we can use linear field gradients in addition to the main mag-

netic field B0. This forms a spatially dependent frequency distribution for the slice that
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makes B(~r, t) in (2.4) have the following form:

B(~r, t) = B0 + ~G(t) · ~r,

where B0 = |B0| and ~G(t) are 2D or 3D linear gradients depending on the data acquisition.

Using this in (2.4) we get the following:

φ(~r, t) = γ

∫ t

0

B0 dτ +

(
γ

∫ t

0

~G(τ) dτ

)
· ~r

= ω0t + 2π~k(t) · ~r, (2.5)

where ~k(t) is the k-space trajectory which has units of spatial frequency, e.g., cycles/cm,

and is defined by the following temporal integral of the gradients:

~k(t) ,
γ

2π

∫ t

0

~G(τ) dτ .

The expression in (2.5) shows how ~G(t) (or ~k(t)) enables control of the phase across the

excited slice. Using this in (2.3) and demodulating by ω0 yields the following signal model:

s(t) =

∫
f(~r, t) e−i2π(~k(t)·~r) d~r . (2.6)

By convention the received MR signal s(t) is sometimes called the k-space signal and

represents a mapping from spatio-temporal space to k-space as determined by the ~k(t) tra-

jectory. Figure 2.3 shows a couple of commonly used trajectories, the echo planar imaging

(EPI) trajectory in Figure 2.3(a) that samples k-space on a Cartesian grid and the spiral

trajectory in Figure 2.3(b).
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EPI trajectory

(a)

Spiral trajectory

(b)

Figure 2.3: Two examples of k-space trajectories. (a) A echo planer imaging (EPI) trajec-

tory; (b) A spiral trajectory.

2.1.3 Signal Relaxation: Return to Equilibrium

After excitation and sampling of the MR signal, the spins are in an elevated energy state.

Eventually all the spins return to their thermal equilibrium state along the longitudinal axis.

In a perfectly homogeneous |B0|, this process is driven by interaction of the spins both with

its surrounding spins and environment. The relaxation is characterized by an exponential

recovery and decay of its longitudinal and transverse component respectively.

The longitudinal recovery is characterized by the time constant T1 and the transverse

decay by T2. Both time constants are tissue dependent and T1 is also field strength de-

pendent [1]. For instance T1 in the brain at 3.0T is ∼1330ms and ∼830ms in gray and

white matter respectively [2], but ∼1200ms and ∼750ms at 1.5T [3]. The transverse decay

constant T2 is much shorter, generally around ∼95ms in gray matter and ∼70ms in white

matter [4].

Both relaxation constants dictate the image contrast in MR imaging. For the simple

case of a spatially uniform T1 and T2 and a 90◦ RF pulse, their relationship to s(t) can be

approximately expressed by the following:

s(TE) ∼ e−TE/T2
(
1 − e−TR/T1

)
,
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where the echo time TE is the time instance when ~k(t) = 0, i.e., when the center of k-space

gets sampled, and the repetition time TR is the time difference between consecutive RF ex-

citations. From this relationship one can see how T1 and T2 weighting of the acquired data

can be manipulated by changing when the center of k-space gets sampled and the time be-

tween consecutive excitations. For example, to get a T2-weighted image one would choose

TR ≫ T1 and TE ≈ T2 and for a T1-weighted image one would choose TE ≈ 0 and

TR ≈ T1.

Since T2(~r) is the spatially varying time constant for the decay of the transverse com-

ponent of M , f(~r, t) can be written as follows [1]:

f(~r, t) = f(~r) e−t/T2(~r) = f(~r) e−tR2(~r) , (2.7)

where f(~r) is the instantaneous transverse magnetization after excitation and R2(~r) ,

1/T2(~r) is the R2 relaxation rate map. This form of f(~r, t) separates the temporally depen-

dent relaxation of the magnetization from the initial magnetization generated in the object.

By replacing f(~r, t) in (2.6) with the formulation in (2.7), the MR signal equation can now

be written as follows:

s(t) =

∫
f(~r) e−tR2(~r) e−i2π(~k(t)·~r) d~r . (2.8)

2.1.4 Macro- and Microscopic Off-Resonance Effects

Thus far we have assumed a perfectly homogeneous |B0|, so that after excitation the object

only has spins resonating at the Larmor frequency ω0. In practice that is not the case due to

two primary sources of inhomogeneity. The first source is inhomogeneity in the main mag-

netic field and the second source is tissue dependent susceptibility variations. Susceptibility

differences introduce a spatially varying magnetic field across the object. This causes spins

in the object to resonate at different frequencies based on the local field strength |B| expe-

rienced by the spins as dictated by (2.2). This spatially dependent off-resonance leads to a
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Figure 2.4: Spins dephasing leading to eventual loss in magnetization signal strength.

loss in magnetization strength due to destructive interference among the spins as shown in

Figure 2.4, which causes signal voids or distortions in the MR images. The off-resonance

can be categorized into macroscopic and microscopic effects that depend on the spatial

scale of their field disturbances versus the spatial resolution of the acquired image [5].

The macroscopic off-resonance is due to large field distortions that act across typical

voxel sizes [5]. The two main sources of these effects are B0 inhomogeneity and bulk

magnetic susceptibility differences from air/tissue interfaces such as in areas close to the

sinuses or lungs. This generally causes a bulk shift in spin resonance and can be modeled

as a spatially dependent shift in phase in the MR signal equation. By including the effects

of macroscopic off-resonance in f(~r, t) we get the following:

f(~r, t) , f(~r) e−tR2(~r) e−itω(~r) = f(~r) e−t(R2(~r)+iω(~r)) ,

where the field map ω(~r) is the spatial map of the macroscopic off-resonance.

The microscopic off-resonance is due to localized field distortions that act within typ-

ical voxel sizes [5]. These distortions are mostly driven by susceptibility differences on

the molecular level that causes localized spin dephasing. This intravoxel susceptibility

weighting increases the effective relaxation rate of the voxel, defined as R∗

2 , 1/T ∗

2 to dif-

ferentiate it from R2 relaxation. The T ∗

2 -weighting is conventionally modeled as an additive
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relaxation R′

2 to R2 as follows:

R∗

2 , R2 + R′

2.

Even though this model is somewhat simplistic it does work well in areas with low macro-

scopic off-resonance. For areas with high macroscopic off-resonance there exist more

complete models as will be discussed in Section 2.4.1.

By including both the macro- and microscopic effects, the MR signal equation in (2.8)

can be written as follows:

s(t; z(~r) , f(~r)) ,

∫
f(~r) e−t(R∗

2(~r)+iω(~r)) e−i2π(~k(t)·~r) d~r,

=

∫
f(~r) e−tz(~r) e−i2π(~k(t)·~r) d~r, (2.9)

where f(~r) e−tR∗

2(~r) is the T ∗

2 -weighted image. This form of the MR signal equation is

generally used when including bulk off-resonance and susceptibility weighted signal re-

laxation. In some cases the relaxation is not included in the model but is instead included

in the magnetization term f(~r) which then becomes a weighted magnetization, denoted by

fTE(~r) due to its strong link to the echo time TE. This version of the signal equation can

then be written as follows:

s(t; zI(~r) , fTE(~r)) ,

∫
fTE(~r) e−itzI(~r) e−i2π(~k(t)·~r) d~r, (2.10)

where zI(~r) = ω(~r). This form of the signal equation is more commonly used (often

implicitly) in the conventional reconstruction methods as shown in the next section.
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2.2 MR Image Reconstruction

In MRI the discrete, complex-valued and T ∗

2 -weighted acquired MR data y = [y1, . . . , yM ]

can be modeled using the MR signal equation in (2.9) or (2.10), as follows:

ym = s(tm; ·) + ǫm, m = 1, . . . , M, (2.11)

where s(tm; ·) is a temporal sample of the MR signal equation and ǫm is complex-valued

independent and identically distributed (iid) Gaussian noise [5, 6]. This equation is some-

times written in a vector format as follows:

y = s(·) + ǫ, (2.12)

where all the vectors are column vectors of length M with elements given by (2.11).

The objective of MRI image reconstruction is then to use (2.12) to either reconstruct

the magnetization image f(~r) or the weighted image fTE(~r). For simplicity the following

discussion will assume fTE(~r) reconstruction since it is more commonly used and more

studied of the two reconstruction problems. However, the discussion can easily be applied

to reconstructing f(~r), with minor differences that are discussed at the end of this section.

It should be noted that reconstructing fTE(~r) requires a prior estimate of the field map

(or to assume ω(~r) = 0). The field map is conventionally estimated from the phase dif-

ference of two scans, where one is acquired with a slight delay relative to the first one

[7, 8]. For a 3T MRI scanner this delay is usually 2-3ms to minimize the chance of phase

wrapping.

Next, we will review two different methods of reconstructing fTE(~r). The first one

reconstructs fTE(~r) by linearly mapping the acquired k-space data back to image space,

while the second one is an iterative method that involves minimizing a squared error term

of y and s(zI(~r) , fTE(~r)). Both methods offer some form of noise suppression and fast im-
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plementations with and without field map correction. The non-iterative method is slightly

faster than the iterative method but its solution becomes more involved for k-space data

acquired on a non-Cartesian grid, which is less of an issue for the iterative method.

2.2.1 Non-iterative MRI Reconstructions

Ignoring off-resonance correction, the most commonly used class of non-iterative discrete

reconstruction methods is the conjugate phase (CP) reconstruction, described by the fol-

lowing weighted correlation method [9]:

f̂TE(~r) ≈
M∑

m=1

ymD(tm) ei2π(~k(tm)·~r) , (2.13)

where f̂TE(~r) is the reconstructed image, ym is the acquired k-space data (sometimes it

is low-pass filtered to reduce noise) and D(tm) is the weight function. The weight func-

tion is called the sample density compensation function (DCF) and as the name implies

is supposed to compensate for nonuniform sampling in k-space when using non-Cartesian

k-space trajectories to acquire the data. This is a critical portion of the reconstruction and

it is important it be calculated efficiently and accurately.

Finding the DCF for the k-space trajectory that is used to acquire the data is nontrivial

and there have been many iterative and non-iterative methods developed for that purpose.

These include using Voronoi areas [10], the sample Jacobian determinant [11, 12] or least

squares optimization, which is either solved using SVD [13] or analytically as shown in

equation (34) in [14].

Calculating (2.13) for Cartesian k-space trajectories involves a 2D FFT operation which

is fast. For non-Cartesian k-space data the conventional fast reconstruction is based on

gridding, where the k-space data is interpolated to an oversampled Cartesian grid followed

by a 2D FFT. The gridding process usually uses optimized Kaiser-Bessel interpolation ker-

nels [15] and an apodization/de-apodization to correct for aliasing. The gridding process
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can be optimized further for speed such as by choosing a “wise” oversampling factor or

Kaiser-Bessel parameters [16].

When including off-resonance correction, the CP reconstruction in (2.13) is modified

as follows:

f̂TE(~r) ≈
M∑

m=1

ymD(tm) eitmzI(~r) ei2π(~k(tm)·~r) . (2.14)

Due to the spatio-temporal dependence of eitmzI(~r), (2.14) cannot be calculated using a

2D FFT. To speed up the computation, a fast implementation of this reconstruction can

use either temporal or frequency segmentation [17, 18]. These methods break up the

off-resonance correction term into L time or frequency segments and its associated inter-

polation coefficients as follows:

eitmzI(~rn) ≈
L∑

l=1

amlbln, (2.15)

where aml and bln are basis functions or interpolation coefficients based on the choice

of segmentation. By including this approximation into (2.14) the reconstruction becomes

a sum of L CP reconstructions. This idea has also been used in iterative reconstruction

algorithms using min-max interpolators [19, 20].

2.2.2 Iterative MRI Reconstruction

The reconstruction problem can be restated in the form of finding the maximum likelihood

estimator (MLE) of fTE(~r) using an iterative optimization algorithm. From (2.12) y is a

complex-valued iid Gaussian random variable with mean s(zI(~r) , fTE(~r)), thus the MLE

is equal to the least squares estimator (LSE). However, finding the MLE of the continuous-

space map fTE(~r) from the discrete MR data y using (2.12) is an ill-posed inverse problem.

The ill-posedness is due to there being an infinite amount of solutions in the continuous

solution space that fit the finite dimensional measurement vector y.
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To make the problem more tractable we parametrize fTE(~r) and zI(~r) using a voxel

basis function b(·) as follows:

fTE(~r) ,

N∑

n=1

fTE(~rn) b(~r − ~rn) ,

zI(~r) ,

N∑

n=1

zI(~rn) b(~r − ~rn) ,

(2.16)

where ~rn is the spatial coordinate in physical units, such as mm or cm, of pixel n in lexi-

cographical order. There are multiple ways of choosing b(·), but due to convenience and

the eventual displaying of the image on a screen the rect(·) function is commonly used

[19, 20].

Using (2.16) with b(·) , rect(·) in (2.10) we get the following:

s(t; zI , fTE) , Φ(~k(t))
N∑

n=1

fTE(~rn) e−itzI(~rn) e−i2π(~k(t)·~rn) , (2.17)

fTE , [fTE(~r1) , . . . , fTE(~rN)]T , zI , [zI(~r1) , . . . , zI(~rN)]T ,

where s(t; zI , fTE) is the discrete-space MR signal equation and Φ(~k(t)) is the Fourier

transform of rect(·). This form of the signal equation can now be used with (2.12) to find

the MLE of the discrete image fTE.

Note that (2.17) can be written in terms of fTE as a matrix-vector multiplication as

follows:

s(zI , fTE) = AfTE, (2.18)

where the elements of the system matrix A are given as follows:

[A]mn = Φ(~k(tm)) e−itmzI(~rn) e−i2π(~k(tm)·~rn) .

Using (2.18), fTE can be reconstructed by minimizing a regularized log-likelihood
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function as follows:

Ψ(fTE) =
1

2
‖y − AfTE‖2 + R(fTE) ,

f̂TE = arg min
fTE

Ψ(fTE) ,
(2.19)

where the regularization function R(·) is used to control the tradeoff of bias and noise in

the reconstructed image.

Excluding regularization in (2.19) the reconstruction is a quadratic least squares prob-

lem that can be solved efficiently using an iterative algorithm such as conjugate gradient

(CG) [21]. However, this exclusion can make the solution sensitive to errors from noise in

y if A is ill-conditioned. However, by choosing a quadratic regularization function, such

as a roughness penalty, allows for CG to be still used to solve (2.19). This is at a cost in

reduced spatial resolution of the reconstructed image, which is minor relative to the overall

increase in stability of the reconstruction algorithm.

The degree of regularization is controlled through a regularization parameter that dic-

tates how much bias is imposed on the final solution. There are many methods available

that find the regularization parameter in a sensible manner [22], such as cross validation,

but those can be computationally intensive. For roughness penalties, local point spread

functions [23] is a method that has been used to investigate the local resolution properties

of the reconstructed images. This information can then be used to design regularizers for

which the reconstructed images have a predetermined resolution that is spatially uniform

[24]. These methods can also be computed in an efficient manner using FFT.

To reduce memory usage A is never explicitly formed, but rather a software object is

used to represent it1. The CG algorithm involves both a forward projection AfTE and a

back projection A′y that, when excluding the field map correction, can be implemented

efficiently using FFT for Cartesian k-space data or NUFFT for noncartesian k-space data

[25]. Including field map correction in either projection cannot be implemented in this fast

1Software available at http://www.eecs.umich.edu/∼fessler/
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manner. However, the off-resonance term can be approximated by temporal segmentation

as mentioned in Section 2.2.1 (see equation (2.15)) [19, 20]. This renders the forward

and back projections to a weighted sum of L FFT or NUFFT operations, which greatly

decreases computation time.

2.2.3 Reconstructing f(~r)

As was noted earlier in the section, reconstructing f(~r) is very similar to reconstructing

fTE(~r). There are some minor additional things to have in mind such as the inclusion of an

R∗

2 relaxation map in the MR signal equation and consequently in the system matrix. This

implies an estimate of the R∗

2 map is needed. A simple way of estimating these maps is to

reconstruct multiple fTE images with a range of different TE values followed by fitting a

mono-exponential to each voxel magnitude value using all the acquired fTE as is discussed

in Section 2.4.1.

Including a spatially varying R∗

2 map in the CP reconstructions is problematic and is

usually performed using a post processing method, such as by de-blurring the reconstructed

fTE [26, 27]. However, for the iterative reconstruction this is not a problem, since we can

still use the temporal/frequency segmentation methods. The only difference is that the ex-

ponent is now a complex valued rate map, which can be dealt with in a similar way as if

the rate map were real valued [19].

2.3 Functional MRI

Functional magnetic resonance imaging (fMRI) is an MR imaging method to study neu-

ronal activity in the brain or spinal cord of humans or other animals. In an fMRI study,

a subject lies in the scanner and is asked to perform a prespecified task that will activate

neurons associated with that task. At the same time, multiple MRI images are collected of

the neuronal population of interest either in the brain or spinal cord. Since MRI images are
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Figure 2.5: The BOLD contrast, where ‘+’ indicates a causal increase from one block to

the next.

not sensitive to the local field potential from neurons other indirect measures are used such

as the associated changes in local hemodynamics. Of those changes the blood oxygen level

dependent (BOLD) contrast mechanism is the most popular for detecting brain activation.

2.3.1 BOLD: T ∗
2 -Weighted fMRI

BOLD contrast comes from localized magnetic field distortions due to changes in cerebral

hemodynamics, such as blood flow, blood volume and blood oxygenation. These local

microscopic field distortions change the intra-voxel dephasing of spins that make up the

voxel magnetization. This affects the R∗

2 relaxation of the voxel [28, 29] and hence the

T ∗

2 -weighted magnitude images fTE(~r). The temporal changes of the voxel magnitude val-

ues in brain areas involved in the task have been shown to correlate well with the temporal

fluctuations of the task [30–32].

Figure 2.5 shows the causal time line of the BOLD contrast [33]. During an increase

in local neuronal activity, cerebral blood flow (CBF) increases also around that area thus

causing a drop in the concentration of deoxygenated hemoglobin. This increases unifor-

mity of the local magnetic field due to less concentration of diamagnetic deoxygenated

hemoglobin. That decreases locally the intravoxel dephasing that is modeled by the R∗

2

relaxation rate. The temporal fluctuations associated with the neuronal activity show up in

the voxel time series of either the T ∗

2 -weighted magnitude images or the R∗

2 spatial maps.

Figure 2.6 shows the temporal characteristics of the hemodynamic response associated
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Figure 2.6: The temporal characteristics of the hemodynamic response during an fMRI

study associated with the BOLD contrast. The response is shown for a sustained period of

task-related neuronal activity (gray box) along with the rise-time and time-to-baseline for

the hemodynamics.

with the BOLD contrast. The hemodynamics respond slowly to the sustained neuronal

activity. This allows the MR image frame rate to be on the order of 1-2 seconds without

having to worry about aliasing of the hemodynamic response. For example a typical whole

brain acquisition on a 3T scanner with in-plane resolution (xy-plane) of 3mm and slice

resolution of 3-5mm (z-plane) has a total acquisition time of 1.5-2 seconds.

To get the needed BOLD contrast in T ∗

2 -weighted magnitude images, TE has to be

chosen large enough to allow for the susceptibility weighting to build up. This can be seen

from the relationship of s(t) to R∗

2 relaxation which, if we assume a spatially nonvarying

R∗

2 relaxation, is the same as for R2 shown in Section 2.1.3:

s(t) ∼ e−TE·R∗

2 .

This relationship indicates a strong connection between the amount of susceptibility

weighting and the echo time (TE). In fact, the largest difference in T ∗

2 -weighting for two

time frames in an fMRI experiment that are reconstructed using (2.10) is when TE = T ∗

2

[5]. However, different tissue types such as gray matter and white matter in the brain have

different T ∗

2 values, so choosing a single TE is always going to be a compromise. There

are also limitations in how large TE can be chosen due to bulk magnetic susceptibility re-

lated artifacts and a decrease in SNR. These issues dictate the chosen TE value used for
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any given fMRI study. With T ∗

2 values being around 40-60ms for gray and white matter a

reasonable choice for TE is around 30-35ms.

The conventional method of detecting brain activation for fMRI is to collect multiple

T ∗

2 -weighted k-space data and reconstruct all T ∗

2 -weighted time frames. This is then fol-

lowed by a statistical detection of task-related signal changes in the time series of each

voxel of the magnitude images. The drawback with using the T ∗

2 -weighted magnitude

images is that they give only a qualitative measure of the BOLD contrast but are not quan-

titative. BOLD contrast is more interpretable using R∗

2 relaxation maps [34, 35] since they

are quantifiable, i.e., have units of 1/sec, and can be directly related to hemodynamic quan-

tities such as blood flow and blood volume. They also exhibit a larger functional contrast,

although with some loss of spatial specificity as observed using standard reconstruction

methods [36, 37] to be reviewed in Section 2.4.1.

2.3.2 Non-Idealities in BOLD fMRI Imaging

BOLD fMRI imaging usually involves scans where MRI images are collected continuously

for tens of minutes. During this time there are some temporal low frequency fluctuations

in the off-resonance, both from the hardware and also related to physiological processes.

Additionally, since the images are susceptibility weighted, there are also problems from

bulk susceptibility related signal loss. These problems will be discussed further in this

subsection.

Field Map Temporal Instability

While acquiring data for an fMRI study the main magnetic field B0 and hence the spa-

tially global spin resonance can drift, effectively causing drift in the field map. This drift

is usually ignored in the conventional “static” field map corrected image reconstruction

[9, 17, 19, 20, 38] where the field map is collected at the start of the study and then used to
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reconstruct all subsequent image time frames. The main cause of the drift in B0 is heating

of the passive shim when the scanner runs for a long time [39]. This heating changes the

magnetic properties of the shim elements which causes a near spatially uniform drift in B0.

If this drift in the field map is ignored during the reconstruction, it can cause a global drift

in the voxel time series of the T ∗

2 -weighted magnitude images. This is a confound which

has to be dealt with during the post-processing statistical detection stage of the functional

data.

There have been several methods proposed to correct for this drift both, online and off-

line. The simplest method is to use a 1D navigator echo that measures phase changes at the

center of k-space while the fMRI data is collected [40]. This method measures the spatially

averaged phase offset in image space, which can be corrected online while acquiring the

k-space data or offline during post-processing. However, this method does not take into

account any possible spatial variation in the drift.

A more appropriate method would be correct for this effect during the image recon-

struction via a nonlinear joint reconstruction of the field map and the T ∗

2 -weighted image

[41–45]. Existing methods of this type can correct for spatially varying effects in the

drift but they all rely on longer readouts than conventional fMRI acquisition schemes de-

mand. That impacts the temporal or spatial resolution of the fMRI data. Also, nonlinear

reconstruction is more time consuming than conventional T ∗

2 -weighted reconstruction al-

gorithms.

It is more more common to ignore this effect during acquisition or reconstruction and

to deal with this artifact during post-processing of the time series. The drift is most often

modeled as a 2nd or 3rd degree polynomial regressor during the statistical detection of the

neuronal activation. However, this regressor could mask any true physiologically based

baseline signal drift present in the time series. This includes gradual changes in baseline

blood flow, blood volume and oxygen consumption that need to be taken into consideration

to get quantifiable activation changes.
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Bulk Susceptibility Artifacts

Even for an ideal main magnetic field there can still be off-resonance differences in the

object to be imaged due to bulk magnetic susceptibility differences in the object. For brain

imaging the air-tissue interfaces are the primary source of such spatially varying suscepti-

bility differences. Since BOLD fMRI is susceptibility weighted it is very sensitive to these

bulk magnetic susceptibility related artifacts.

Most currently used reconstruction methods account for off-resonance by using field

maps. The field map is a discrete representation of the true off-resonance in continuous

space and typically has a rect(·) bases function for the continuous to discrete mapping.

Thus, the field map represents the average off-resonance within a voxel, induced by the

spatially varying and continuous gradients from the bulk susceptibility differences. There

has been some work in including first order linear gradient correction in both iterative

[46, 47] and noniterative [12] reconstruction methods, which should show some benefits

over using only the average off-resonance correction.

Physiological Related Artifacts

In addition to noise introduced when acquiring k-space there is also additional noise from

physiological processes that introduce temporally correlated artifacts in the voxel time se-

ries. The effects of these processes manifest themselves differently, based on the how the

k-space data is acquired. For acquisitions that sample the fMRI data over multiple readouts,

or multi-shot acquisitions, the effect induces ghosting and intensity and phase fluctuations

due to shot-to-shot discrepancies. For acquisitions that acquire the data in one readout, or

single-shot acquisitions, the effect causes a more localized intensity variations and global

phase fluctuations in the time frames. These diminished effects relative to the multi-shot

acquisitions is one of the primary reasons why single-shot is more popular for fMRI data.

The main sources of physiological noise are respiration and the cardiac cycle.

Of the two physiological artifact sources, the respiratory effect is a more spatially global
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source in an fMRI study than the more local cardiac related effects. Respiration generates

a small magnetic field shift due to the gross magnetic susceptibility changes that happen

when the lungs expand and contract during breathing. This causes temporally dependent

fluctuations in the magnetic field across the brain, where the fluctuations are higher at the

inferior part of the brain than the superior. The cardiac related effects are more local-

ized than the respiratory effects. They mainly introduce local image magnitude changes

when fully relaxed spins in the blood flow into the imaging slice. This causes magni-

tude fluctuations that are correlated with the cardiac cycle. Another effect is circulation of

cerebrospinal fluid (CSF) around the brain due to the cardiac pulsation of the brain.

These effects are conventionally corrected during post-processing of the voxel time se-

ries. One such method is RETROICOR [48] or RETROKCOR [49] where the temporal

fluctuations are modeled using a low-order Fourier series. The series is formed using the

phase of the respiratory and cardiac cycles that are measured at the same time as the fMRI

data. It is then used as a regressor to model the physiological artifacts that are superim-

posed on the actual neuronal activation response. Other corrections include exploratory

methods such as PCA or ICA which tend to separate these effects into a component that

can be included in the regression model.

2.4 R∗
2 Estimation

This section discusses two different types of methods for R∗

2 estimation. First we will

discuss conventional methods of estimating R∗

2 that are based on multiple fully sampled

acquisitions that have different TE values followed by a fit to a signal relaxation model.

Second we will discuss methods that model more accurately the R∗

2 effect in the signal

model, requiring nonlinear iterative algorithms to reconstruct R∗

2 maps. Both descriptions

address the impact of off-resonance correction.
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2.4.1 Conventional R∗
2 Estimation

Conventional R∗

2 estimation uses the following discrete signal equation:

s(t; fTEl
(~r)) =

N∑

n=1

fTEl
(~rn) e−tzI(~rn) e−i2π(~k(t)·~rn) , l = 1, . . . , L, (2.20)

where L is the number of acquisitions with different echo times TE1, . . . , TEL. Using this

model to reconstruct R∗

2, one starts by reconstructing f̂TEl
assuming e−tzI(~rn) = e−TElzI(~rn)

for all l followed by a voxel-wise fit to the chosen R∗

2 relaxation model.

The simplest of such models is the mono-exponential model used in most fMRI studies

with R∗

2 maps [35–37, 50–52]. Even though this is the simplest model, it has been shown

to adequately approximate the signal relaxation after fitting it to acquired MRI magnitude

images. This method has problems in areas where there are large spatial variations in sus-

ceptibility and in voxels composed of multiple tissue types that have highly varying R2

relaxation curves.

To deal with the multi-tissue-type problem for some voxels, one can use multi-

exponential fits, e.g., a bi-exponential model [53] to fit two of the largest contributions of

the signal relaxation. For areas with large spatial variations of susceptibility more complex

models have been used such as an exponential with a quadratic exponent [54] or logspline

density functions [55].

Most of these studies did not use field map correction in the image reconstruction al-

gorithms. This lack of field map correction could accentuate the model mismatch found

when only using a mono-exponential model. Also, to improve the results from the mono-

exponential model one could also include the reconstructed R∗

2 in (2.20) to correct for R∗

2

relaxation during the readout, i.e., instead of using e−tzI(~rn) use e−tz(~rn) with t = 0, . . . , tacq.

This would then be followed by a refined relaxation fit from the resulting magnitude im-

ages. This method would initialize the R∗

2 map to be zR(~rn) = 0 for all n.

However the model chosen for R∗

2 relaxation still has two major flaws with this way
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of estimating R∗

2. The first is that to perform a voxel-wise fit to the signal decay, multiple

acquisitions are needed for each slice or 3D volume that is collected. This puts restrictions

either on the temporal or spatial resolution of the fMRI data. Secondly is the conventional

assumption of instantaneous decay at TE. This simplification ignores the relaxation during

the k-space data readout causing model mismatch between the collected signal and does

not include any estimation of the R∗

2 relaxation during the readout.

2.4.2 Iterative R∗
2 Estimation

In this section we use the more accurate discrete signal model given as follows:

s(t; z(~r) , f(~r)) = Φ(~k(t))
N∑

n=1

f(~rn) e−tz(~rn) e−i2π(~k(t)·~rn) , (2.21)

with,

z(~rn) = zR(~rn) + izI(~rn) , zR(~rn) , R∗

2(~rn) , zI(~rn) , ω(~rn) .

This form of the MR signal equation assumes a mono-exponential signal relaxation model.

This formulation combines the effects of R∗

2 and ω into a single complex valued rate map

z(~r).

To estimate R∗

2 one has to resort to iterative methods and, due to temporal fluctuations

in zI during the acquisition of fMRI data, zI also needs to be estimated. There are a few

previously proposed iterative methods that have solved this using (2.21) in an iterative re-

construction algorithm [41–43]. All these algorithms reconstruct z(~r) and [42, 43] also

reconstruct f(~r) in addition to z(~r), which has to be otherwise estimated previously. An-

other algorithm [45] reconstructs R∗

2-weighted images fTE(~rn) along with the field map

zI(~rn) for all time frames in an fMRI study. However, all these methods are based on non-

linear reconstruction algorithms that try to solve a nonconvex problem that is much more

complex than the methods presented in Section 2.4.1. This has detracted from mainstream

use of these algorithms. This thesis provides alternatives that overcome this drawback.
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Chapter 3

Fast Joint Reconstruction of Dynamic

R∗
2

and Field Maps in functional MRI1

3.1 Introduction

Here, we propose a method for fast joint reconstruction of R∗

2 and field maps from MR data

collected during an fMRI study. The method is based on making a linear approximation

to the signal equation in (2.9) in terms of the temporal changes in the complex valued rate

map z relative to a predefined reference map. The reference map is chosen such that any

approximation errors are minimal. This approximation is then used to rewrite the signal

equation as a linear mapping of the unknown rate map z. This allows us to solve the recon-

struction using a penalized least squares estimator, where the minimum is calculated using

fast iterative algorithms such as conjugate gradient (CG).

To further minimize any approximation errors, the method uses the first estimate from

the linearized model as the reference map and estimates the rate map again. This refine-

ment process is repeated multiple times for the current time frame in the fMRI time series

until the estimated rate maps have converged. This allows the algorithm to correct for any

possible errors introduced from the linear approximation. Once the refinements have con-

verged, one can start to estimate the rate map for the next frame. If the reference map is

1This chapter is based on [56–58].
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chosen close enough to the true rate map there are only 2-3 refinements needed until the

reconstructed z has converged.

The structure of this chapter will be as follows. We start by introducing a mono-

exponential relaxation model for R∗

2 enabling us to combine R∗

2 and field map into a single

complex-valued map (Section 3.2). We then linearize the MR signal equation relative to

the temporal dynamics of this map and employ fast regularized iterative algorithms to re-

construct the complex-valued map (Section 3.3). We then simulate fMRI data for analysis

and collect in vivo fMRI data for qualitative purposes (Section 3.6 and 3.7). For simplicity,

motion is excluded from the reconstruction algorithm and the simulations.

3.2 Joint Reconstruction of R∗
2 and Field Map

In fMRI the received complex-valued and discrete T ∗

2 -weighted MR data y = [y1, . . . , yM ],

including effects of mono-exponential relaxation and off-resonance, can be modeled as

follows [34]:

ym = s(tm) + ǫm, m = 1, . . . , M, (3.1)

s(t) =

∫
f(~r) e−tz(~r) e−i2π(~k(t)·~r) d~r, (3.2)

where ǫm denotes complex-valued independent and identically distributed (iid) Gaussian

noise [5] and s(tm) is a sample of the MR signal equation defined in (3.2). In (3.2), ~r is

a 2D or 3D image space coordinate, f(~r) is the magnetization of the object directly af-

ter RF excitation, ~k(t) is the k-space trajectory used to acquire the MR data and z(~r) is a

complex-valued spatial map:

z(~r) = zR(~r) + izI(~r) ,
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where the R∗

2 map zR(~r) and the field map zI(~r) characterize the relaxation rate and off-

resonance effects respectively for T ∗

2 -weighted images. Here, we would like to reconstruct

z(~r) from y.

Reconstructing the continuous-space map z(~r) from the discrete MR data y using (3.2)

is an ill-posed inverse problem. To simplify the problem we parametrize f(~r) and z(~r)

with the following approximations [20]:

z(~r) ≈
∑N

n=1 z(~rn) b(~r − ~rn),

f(~r) ≈
∑N

n=1 f(~rn) b(~r − ~rn),

(3.3)

where b(·) is the voxel basis function, chosen here as the 2D or 3D rect function. Using

this in (3.2) gives:

s(t; z, f ) , Φ(~k(t))

N∑

n=1

f(~rn) e−tz(~rn) e−i2π(~k(t)·~rn) , (3.4)

z , [z(~r1) , . . . , z(~rN)] , f , [f(~r1) , . . . , f(~rN)] ,

where s(t; z, f ) is the discrete-space MR signal equation and Φ(~k(t)) is the Fourier trans-

form of b(·). This form of the signal equation can now be used to reconstruct a discrete

image z from y. Note that f is generally not known and thus either needs to be determined

before z is reconstructed or jointly reconstructed with z using (3.4).

In an fMRI study, a series of time frames are collected in an MRI scanner, where a

frame can either be an image slice (2D) or volume (3D). Using (3.1) and (3.4) we model

the received fMRI data for time frame j as follows:

yj = s(zj , f) + ǫj , j = 1, . . . , J, (3.5)

s(zj , f) , [s(t1; zj , f) , . . . , s(tM ; zj , f)] ,

where yj is the received MR data, s(zj , f) is the discrete MR signal from (3.4) and ǫj is
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iid Gaussian noise. An assumption in (3.5) is that f is not time frame dependent, which in

the absence of motion is reasonable for single shot MR data acquired using low-flip angles

and/or long TRs to control for blood inflow enhancement [35]. Since f is time frame inde-

pendent, it can be reconstructed from specifically collected MR data y0 prior to the fMRI

acquisition. The reconstructed f is denoted f̂ .

Using f̂ we can reconstruct zj from yj for j = 1, . . . , J by minimizing a penalized

likelihood cost function as follows:

Ψ(zj) =
1

2
‖yj − s(zj)‖2 + R(zj) ,

ẑj = arg min
zj

Ψ(zj) ,
(3.6)

where s(zj) , s
(
zj , f̂

)
, ẑj is the reconstructed zj and R(zj) is an appropriately chosen

roughness penalty (see Section 3.3.1) that controls the tradeoff between spatial resolution

and noise in ẑj . The cost function Ψ(zj) is non-convex and would require a nonlinear

iterative minimization algorithm, e.g., [42, 43, 45]. Any algorithm used to minimize it is

likely to return a local minimum and thus needs to be carefully initialized.

We propose to solve (3.6) by converting it to a sequence of quadratic optimization prob-

lems so that fast iterative reconstruction algorithms can be used. The idea is to use a linear

approximation to the dynamic temporal changes between zj and a carefully chosen refer-

ence ž. The advantage of using a sequence of quadratic approximations is that for each

one, we can precompute temporal interpolators required for fast field-corrected image re-

construction [20], and then minimize that quadratic by NUFFT or Toeplitz methods [19].

In contrast, if we apply gradient descent or CG directly to (3.6), each gradient calculation

would need new temporal interpolator coefficients, significantly increasing the computation

time per iteration.
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3.3 Dynamic zj Reconstruction

This section describes an efficient algorithm for (3.6). Suppose a previously reconstructed

reference map ž is available (see discussion later in this section) in addition to f̂ . Under

this assumption, adding and subtracting ž in the exponent containing zj in (3.4) gives the

following:

s(t; zj) = Φ(~k(t))
N∑

n=1

f̂(~rn) e−tž(~rn) e−t(zj(~rn)−ž(~rn)) e−i2π(~k(t)·~rn) , (3.7)

where the exponential has been split into two separate exponentials with one containing the

difference of ž and zj . When this difference is small, that term can be approximated using

a first-order Taylor expansion, as follows:

e−t(zj(~rn)−ž(~rn)) ≈ 1 − t (zj(~rn) − ž(~rn)) . (3.8)

Substituting this in (3.7) yields:

s(t; zj) ≈ Φ(~k(t))

N∑

n=1

f̂(~rn) e−tž(~rn) (1 − t (zj(~rn) − ž(~rn))) e−i2π(~k(t)·~rn)

= s(t; ž) + Φ(~k(t))
N∑

n=1

f̂(~rn) e−tž(~rn) · (−t) (zj(~rn) − ž(~rn)) e−i2π(~k(t)·~rn) .

(3.9)

Using the approximation in (3.8) the relationship of s(t; zj) to zj is now approximately

linear (or more precisely affine) according to (3.9). This allows us to rewrite (3.9) in a

matrix-vector form as follows:

s(zj) ≈ s(zj; ž) , (3.10)

s(zj ; ž) , s(ž) + A(ž) (zj − ž) ,
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where A(·) is the system matrix of size M × N , with elements written as follows:

amn(ž) = Φ(~k(tm)) f̂(~rn) e−tmž(~rn) (−tm) e−i2π(~k(tm)·~rn) . (3.11)

Using the approximation in (3.10), we can now approximate the difference of yj and

s(zj), as follows:

yj − s(zj) ≈ yj − s(zj ; ž)

= ỹj(ž) − A(ž)zj , (3.12)

where,

ỹj(ž) , yj − s(ž) + A(ž) ž.

Using the approximation in (3.12) we can form a new cost function as follows:

Ψ(zj ; ž) =
1

2
‖ỹj(ž) − A(ž) zj‖2 + R(zj) , (3.13)

where Ψ(zj ; ž) is quadratic in terms of the objective zj . By minimizing Ψ(zj ; ž) one can

then reconstruct zj using fast iterative reconstruction algorithms such as [19, 20]. How

well that matches to the result of (3.6) depends on the approximation made in (3.8), i.e., we

must find a ž that is close enough to the true zj so that (3.8) does not introduce too much

error in (3.12).

As previously discussed, the MR data y0 is already needed to get f̂ . This data could

be acquired so that z0 and f are jointly reconstructed from y0 [42, 43]. Thus, one might

choose ž to be the reconstructed map ẑ0. This reference map would approximate the base-

line state of R∗

2 and field map. However, in an fMRI study at 3T the voxels showing

activation have zR and zI showing maximum temporal changes of approximately -2s−1

[2] and 3Hz [45] respectively for a 3 minute scan relative to baseline. By using z0 as the

reference map and for a typical single shot acquisition with a TE = 30ms the NRMS error
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for the approximation in (3.8) would at worst be ∼15%, which would be undesirably large.

A more appropriate choice is to dynamically update ž using a previous estimate of zj ,

where the estimate then gets gradually refined. To differentiate between the refinements

we denote them as ẑ
(l)
j , where l is the refinement index. Thus, we choose ž as ẑ

(l−1)
j when

reconstructing ẑ
(l)
j , and if the total number of refinements are L we set:

ẑ
(0)
j = ẑj−1 = ẑ

(L)
j−1.

With this choice of ž, (3.8) should have a smaller approximation error as l increases, and

thus the approximation in (3.12) should improve when used in (3.13).

Including the refinement concept into the reconstruction algorithm, we rewrite (3.12)

as follows:

yj − s(zj) ≈ ỹj

(
ẑ

(l−1)
j

)
− A

(
ẑ

(l−1)
j

)
zj .

Using this we reconstruct ẑj for j = 1, . . . , J by minimizing a quadratic cost function as

follows:

ẑ
(l)
j = arg min

zj

Ψ
(
zj ; ẑ

(l−1)
j

)
, l = 1, . . . , L, (3.14)

where Ψ(zj ; ·) was defined in (3.13) and ẑj = ẑ
(L)
j . This form of the reconstruction al-

gorithm is very flexible and should approximate well the results of the original nonlinear

reconstruction problem given in (3.6).

3.3.1 Roughness Penalty R(zj) and Its Implications on ẑj

We must choose a roughness penalty R(zj) in (3.14). The conventional choice is given as

follows:

1

2
β ‖Czj‖2 ,

where β is the regularization parameter and C is a real-valued first-order difference matrix

that evaluates the differences of neighboring pixels within a user specified neighborhood.
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If R(zj) were defined as this penalty the real and imaginary parts of zj would be penalized

equally. However, because the field map zI is usually smoother than the R∗

2 map zR, we

choose to regularize these maps separately, as follows:

R(zj) =
1

2

(
β1‖CzRj‖2 + β2‖CzIj‖2

)
, (3.15)

where C is the first-order difference matrix and zRj and zIj are respectively the real and

imaginary parts of zj. Note that C can be defined separately for zRj and zIj . This can have

some advantages, e.g., defining C for zIj as a second-order difference matrix as suggested

in [8] while C for zRj is a first-order difference matrix. However, for simplicity we chose

to use the same matrix for both parameters.

As evident from (3.11) the elements of A
(
ẑ

(l−1)
j

)
depend on f̂ , which has values near

0 outside the object. This relationship has the following consequences:

∀n s.t. f̂(~rn) ≈ 0 ⇒
[
A
(
ẑ

(l−1)
j

)
zj

]

n
≈ 0, ∀zj ∈ C

N .

This implies that the roughness penalty R(zj) becomes the dominant factor in the cost

function Ψ
(
zj ; ẑ

(l−1)
j

)
for spatial positions outside the object.

3.3.2 Implementation of the Fast Iterative Algorithm

For fast minimization of Ψ
(
zj ; ẑ

(l−1)
j

)
in (3.14) we use the Conjugate Gradient (CG)

method [21]. To reduce memory we never explicitly form the large matrix A(·), rather

we use a software object to represent this matrix.2 This software uses fast methods such as

FFT (for cartesian k-space trajectories) or NUFFT (for noncartesian k-space trajectories)

[25] and temporal segmentation [19, 20] to greatly decrease computation time. The total

compute time of the reconstruction algorithm is then roughly L times longer than previous

fast iterative algorithms used to reconstruct T ∗

2 -weighted images [19, 20].

2Software available at http://www.eecs.umich.edu/∼fessler/
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The convergence of CG depends on how it is initialized. A common CG initialization is

to set all the elements of the initial solution to zero. This is a convenient initialization, but

does not exploit any prior knowledge of the solution of (3.14). Another CG initialization

would be to use the conjugate phase (CP) [17] reconstructed zj . This initializer was shown

to improve the convergence of CG, compared to initializing with all zeros, when used to

iteratively reconstruct an off-resonance corrected T ∗

2 -weighted image [20]. However, since

A
(
ẑ

(l−1)
j

)
also includes R∗

2 relaxation, CP is ineffective here.

As previously stated, zj should change only slightly between neighboring time frames

and across refinements. Thus, it is advantageous to exploit this relatively gradual tempo-

ral change to initialize the CG algorithm sensibly. Hence, when we reconstruct ẑ
(l)
j the

previous refinement ẑ
(l−1)
j is used to initialize CG.

3.4 Resolution Properties: Regularization Design

The resolution properties of ẑ
(l)
j are important to further understand the relationship of

the regularization function in (3.15) and the spatial smoothness of ẑ
(l)
j . Local point

spread functions (LPSF) [23] have been previously used to analyze this relationship, us-

ing the approximate local resolution properties of regularized reconstruction algorithms

with parametrized object models [24] as in (3.3). This analysis will be used first, to check

if the penalized reconstruction in (3.14) has uniform spatial resolution and, if needed, de-

sign a penalty to achieve such uniformity. Then it will be used to set β values to achieve

a predetermined resolution that is quantified using the full-width half-max (FWHM) of the

LPSF.

3.4.1 Resolution Analysis

We estimate ẑ
(l)
j by minimizing Ψ

(
zj; ẑ

(l−1)
j

)
in (3.14) with separate regularization of the

real and imaginary parts per (3.15). Sections 4.2.1 and 4.2.2 derive a stacked cost func-
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tion and its LPSF for such reconstruction problems. If that LPSF can be shown to be shift

invariant then the spatial resolution of ẑ
(l)
j is uniform and the resolution properties of the

algorithm can be quantified approximately by evaluating the LPSF in (4.8) at a single spa-

tial location. If both A′A and C ′C are Toeplitz, then using (4.8) one can show that the

LPSF is approximately locally shift invariant.

For the reconstruction method used in this paper C ′C is Toeplitz but A′A is not as

seen from (3.11). Thus the LPSF is shift variant, which makes the resolution nonuniform

for the usual first-order difference matrix C in (3.15). Next we propose a spatially variant

penalty design that leads to approximately uniform local spatial resolution.

3.4.2 Spatially Variant Penalty Design

Although A′A is not Toeplitz, using methods similar to those proposed in [24] we can find

an approximation of the form:

A′A ≈ D′G′GD, (3.16)

where G′G is Toeplitz and D is a real-valued and invertible matrix. Having found such an

approximation, we introduce a spatially variant differencing matrix C̃ , as follows:

C̃ = CD. (3.17)

By replacing C with C̃ in (3.15) the stacked LPSF in (4.8) becomes as follows:

lSn =
(
A′

SAS + C̃
′

SC̃S

)
−1

A′

SASeSn (3.18)

≈ dnD
−1
S (G′

SGS + C ′

SCS)
−1

G′

SGSeSn,

≈ (G′

SGS + C ′

SCS)
−1

G′

SGSeSn, (3.19)
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where A′

SAS and eSn are shown in (4.9), C̃S is a block diagonal matrix with
√

β1C̃ and

√
β2C̃ forming the diagonal blocks, dn is the nth diagonal element of D and

G′

SGS =




ℜ (G′G) −ℑ (G′G)

ℑ (G′G) ℜ (G′G)


 , DS =




D 0

0 D


 .

Thus even though A′A is not Toeplitz we can still make the LPSF to be approximately

locally shift invariant by introducing a spatially variant penalty of the form (3.17) in the

reconstruction.

We use a diagonal matrix D such that the diagonal of A′A and D′G′GD are equal.

This equality constraint when estimating ẑ
(l)
j can be written as follows:

M∑

m=1

∣∣∣amn

(
ẑ

(l−1)
j

)∣∣∣
2

= dn

(
ẑ

(l−1)
j

)2

·
M∑

m=1

|gmn|2 . (3.20)

To find dn we need to define gmn such that G′G is Toeplitz and yet ensure (3.16) is a good

approximation. The term in A that makes A′A non-Toeplitz is f̂(~rn) e−tmẑ
(l−1)
j (~rn). Even

though f̂(~rn) can be separated from A′A as proposed in (3.16) the same cannot be said

for e−tm ẑ
(l−1)
j (~rn) because of its spatio-temporal structure. However, by approximating the

elements of ẑ
(l−1)
j with the median value of ẑ0, denoted z, we define the elements of G as

follows:

gmn , Φ(~k(tm)) e−tmz (−tm) e−i2π(~k(tm)·~rn) , (3.21)

This definition of G makes G′G Toeplitz and the diagonal elements of D
(
ẑ

(l−1)
j

)
= D
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are then given as follows:

dn

(
ẑ

(l−1)
j

)
=

√√√√√
∑M

m=1

∣∣∣amn

(
ẑ

(l−1)
j

)∣∣∣
2

∑M
m=1 |gmn|2

= |f(~rn)|

√√√√
∑M

m=1 c2
m e−2tm ẑR

(l−1)
j (~rn)

∑M
m=1 c2

m e−2tmzR

, (3.22)

with cm , Φ(~k(tm)) tm. Note that this form of D allows us to use (3.19) to find a single

pair of regularization parameters to achieve a desired resolution that depends only on ẑ0.

3.4.3 Spatially Variant Penalty Implementation

To implement the penalty designed in (3.22) there were some issues regarding computa-

tional speed and stability of the reconstruction that needed to be addressed.

For stability, we find D according to (3.22) at the beginning of the algorithm after esti-

mating ẑ0 and use that for subsequent j and l, i.e., D
(
ẑ

(l−1)
j

)
, D(ẑ0) for all (l, j). Also,

calculating (3.22) for all n is computationally expensive due to the spatio-temporal depen-

dence of the numerator. However, since an R∗

2 map generally has values within a fairly

tight range we approximate the numerator by histograming ẑ0 and replace ẑR
(l−1)
j (~rn) with

the center bin value it falls within. Our implementation of the penalty suggested in (3.17)

uses the modification given in equation (35) in [24].

Equation (3.19) is implemented efficiently using FFTs as is derived in Section 4.3. This

allows us to evaluate it for multiple β values, calculate the FWHM of the resulting LPSFs

and interpolate that to the desired FWHMs and their associated β values in a very fast

manner.
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3.5 Reconstruction Algorithm – Overview

We can now summarize the proposed reconstruction algorithm as follows:

• Find f̂ and ẑ0 from multi-echo MR data y0 that is collected at the beginning of

the fMRI study.

• Using (3.19), find β1 and β2 that yield the desired resolution for the real and

imaginary parts of ẑj .

• Generate D for the regularizer using (3.22) with ẑ0.

• Reconstruct ẑj for all j = 1, . . . , J as follows:

for j = 1, . . . , J [time]

Set ẑ
(0)
j = ẑj−1.

for l = 1, . . . , L [refinement]

Form A
(
ẑ

(l−1)
j

)
and generate s

(
ẑ

(l−1)
j

)
.

Solve ẑ
(l)
j = arg minzj

Ψ
(
zj; ẑ

(l−1)
j

)
using CG.

end

Set ẑj = ẑ
(L)
j .

end

3.6 Simulations

We simulated k-space data using the exact form of the signal equation given in (3.4), with

no temporal interpolation. We used a 4713 sample spiral-out k-space trajectory with a

readout of 18.8ms, field of view of 22cm and maximum gradient amplitude and slew rate

of 22mT/m and 180mT/m/ms respectively. The simulation maps were 128 × 128 but re-

constructed as 64 × 64, unless otherwise noted, with the baseline maps f and z0 shown

in Figure 3.1(a) - 3.1(c). For simulations corrupted by noise, we found the variance of

the iid Gaussian noise to make the SNR 80, 55 or 30 for the baseline k-space data with

TE = 30ms, where:

SNR =
‖s(z0, f)‖

‖ǫ0‖
.
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Figure 3.1: True and reconstructed maps (SNR = 55) used in the simulations. (a) f with

the edge of the reconstruction mask for reference; (b) zR0; (c) zI0; (d) f̂ ; (e) ẑR0; (f) ẑI0.

The reconstructed maps for simulated k-space data are only shown for voxels within the

reconstruction mask and the (N)RMSE is the (normalized) RMS error of the reconstructed

map relative to the true map within the mask |f | > 0 for SNR = (80, 55, 30).
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This noise variance was then used to generate iid Gaussian noise for k-space data of other

time frames and TEs.

For the iterative algorithm parameters we used 9 segments for the temporal segmen-

tation of e−tz(~rn), which were interpolated using min-max interpolation coefficients [20].

When comparing the exact and interpolated complex exponential the maximum error and

normalized RMS error (NRMSE) were on the order of 10−7 and 10−8 respectively for the

simulation maps shown in Figure 3.1(b) - 3.1(c). For the NUFFT parameters we used

2× oversampling and a 5 × 5 neighborhood [25]. We ran 20 iterations of CG for each

(l, j) pair to get ẑ
(l)
j and used a reconstruction mask to reduce the number of reconstructed

voxels from 4096 to 2404. Figure 3.1(a) shows the edge of the reconstruction mask. All

reconstructions were run on a 2.13Ghz Intel Core 2 Duo with 2GB of memory.

3.6.1 Initialization: Estimating f̂ and ẑ0

The proposed reconstruction needs f̂ and ẑ0 for initialization. These spatial maps were

reconstructed from multiple fully sampled readouts, i.e., multi-echo data. Here, we simu-

lated 5 echos with noise, where the readouts had TE = [6.5, 4.5, 24.3, 44.1, 63.8]ms. We

reconstructed two T ∗

2 -weighted images from the 4.5ms and 6.5ms readouts using iterative

reconstruction [20] and then estimated ẑI0 from the phase difference of these two images

[7, 8]. This was repeated two times, where after estimating ẑI0 the first time it was used in

the iterative reconstruction to correct for off-resonance during readout.

Using ẑI0, we reconstructed an off-resonance corrected T ∗

2 -weighted image for each

echo of the multi-echo data using the same iterative reconstruction. The reconstructed im-

ages have different T ∗

2 -weighting which is assumed to occur at TE. This allowed us to

fit the decay of each voxel in the reconstructed images to a mono-exponential model [50],

which gave ẑR0. Since this fit is highly sensitive to noise in voxels with low SNR, spatially

weighted smoothing was performed that applied low smoothing to ẑR0 in areas inside the

object and higher smoothing where there are signal voids and outside the object, similar to
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[8]. We chose the weights as the magnitude image with TE = 4.5ms. This was repeated

three times, where after estimating ẑR0 each time it was used in the iterative reconstruction

to correct for R∗

2 relaxation during readout.

From [50], we know that f̂ could also be reconstructed using the mono-exponential

fitting method. However, due to the poor fitting performance in voxels with low SNR, we

chose to reconstruct f̂ iteratively using the signal model in (3.4) as follows:

f̂ = arg min
f

1

2
‖y0 − B(ẑ0)f‖2 + R(f ) ,

where y0 is the concatenated multi-echo data, R(f) is a roughness penalty and the elements

of B(ẑ0) are given as follows:

bmn(ẑ0) = Φ(~k(tm)) e−tmẑ0(~rn) e−i2π(~k(tm)·~rn) ,

where tm are the concatenated time vector samples of the simulated readouts and ẑ0 is

formed using ẑR0 and ẑI0. We chose the spatial regularization for f̂ so that the LPSF of

the center voxel had a FWHM of approximately 1.25 voxels.

The results for simulated k-space data with SNR = 55 are shown in Figure 3.1(d) -

3.1(f) and the (N)RMSE shown below the images is the (normalized) RMS error of the

reconstructed map relative to the true map within the mask |f | > 0 for all SNRs.

3.6.2 Resolution: Properties and Nonuniformity Correction

Here we analyze the performance of the proposed spatially variant penalty. All the analysis

is based on the true simulation maps in Figure 3.1(a) - 3.1(c). We started by finding β1 and

β2 to achieve a desired resolution. We chose the desired resolution such that the LPSF for

the center voxel gave a FWHM of 1.35 and 1.5 voxels for the real and imaginary parts of

ẑ
(l)
j respectively. This was done by evaluating the LPSF in (3.19) for 100 pairs of β1 and
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Figure 3.2: Voxel positions where the LPSFs in (3.18) were evaluated. The positions are

split into 2 groups, indicated by the x’s and o’s, where each group are at locations where

the value of f is the same.

β2, where z was the median of the true z0 in Figure 3.1(b)-3.1(c). Using FFTs [59] it took

19.2s to evaluate the LPSFs for all 100 pairs. The FWHMs of those LPSFs were then used

to interpolate the desired FWHM to their associated β values.

Using those β values, we calculated the exact LPSF using (3.18) at the voxel positions

shown in Figure 3.2. We investigated the resolution properties by evaluating (3.18) for ẑ1,

with AS formed by stacking A(z0) and using the true f in place of f̂ . The spatially variant

penalty was formed in 4.7s using (3.22), where the true simulation maps were again used

and the numerator was calculated by histograming zR0 with 100 bins. For comparison, we

also designed a spatially nonvariant penalty by making a diagonal matrix using the mean

of dn(z0) in (3.22) across all voxels where |f | > 0. This made the nonvariant penalty

approximately have the desired FWHM using the previously calculated β values.

Figure 3.3 shows both FWHM scatter plots and the average profile of the LPSF for

the voxel positions in Figure 3.2 of the real and imaginary parts of ẑ1 for both penalties.

The calculated FWHM values are more concentrated around the desired FWHM values

when using the spatially variant penalty compared to the nonvariant one. This is further
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Figure 3.3: FWHM scatter plots and average profile of the LPSF for the two groups of

voxel positions in Figure 3.2. Results are shown for the real and imaginary parts of ẑ1

when using the spatially variant and nonvariant penalty. (a) Scatter plot for spatially nonva-

riant penalty; (b) Scatter plot for spatially variant penalty; (c) Average profile for spatially

nonvariant penalty; (d) Average profile for spatially variant penalty.
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Table 3.1: Average FWHM for both ẑR1 and ẑI1 with its standard deviation for both the

spatially nonvariant and proposed penalties.

Spatially Nonvariant Penalty Spatially Variant Penalty Desired

x’s o’s x’s o’s

ẑR1 FWHM 1.28 ± 0.04 1.36 ± 0.03 1.31 ± 0.04 1.31 ± 0.05 1.35

ẑI0 FWHM 1.45 ± 0.04 1.55 ± 0.03 1.50 ± 0.03 1.50 ± 0.03 1.50

confirmed in the profile plots of the LPSFs averaged over each group for both the real and

imaginary parts of ẑ1. This indicates the importance of compensating for spatial resolution

nonuniformity in the reconstruction algorithm.

Table 3.1 shows the mean and the standard deviation of the FWHM for both the real

and imaginary parts of ẑ1. It shows further evidence of the effect of f in causing resolution

nonuniformity in the reconstructed zj . The mean FWHM of the two groups from Figure 3.2

deviate more when using a spatially nonvariant penalty compared to the proposed penalty.

Repeating these measurements for A(ẑj) for a time frame j during activation the numbers

did not change significantly while still using dn(z0) to form D. This indicates that it is

sufficient to find D based on f̂ and ẑ0 and use that for all time frames.

3.6.3 Simulated fMRI Data

To analyze the proposed reconstruction in (3.14) for fMRI time series we compared its acti-

vation detection and R∗

2 estimation performance to an iterative T ∗

2 -weighted reconstruction

[20] and a multi-echo R∗

2 reconstruction [50]. We simulated a 70 time frame four-echo

fMRI data with TE = [10.2, 30, 49.8, 69.6]ms. The TE = 30ms readouts were used for

the proposed and the T ∗

2 -weighted reconstructions. For the multi-echo R∗

2 reconstruction

we iteratively reconstructed four T ∗

2 -weighted images [20], one for each readout, and esti-

mated both R∗

2 and f by fitting a mono-exponential decay to each voxel of the T ∗

2 -weighted

magnitude images.

Figure 3.4 shows the simulated fMRI spatial activation map and the temporal changes.
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Figure 3.4: Simulated spatial and temporal activations. (a) Map of the spatial weights for

four enumerated activation clusters, along with the edges of f in Figure 3.1(a) shown for

reference; (b) Additive task waveform for R∗

2 for all clusters. Additionally, in clusters 2

and 3 we added task-related changes in f and zI respectively (maximum change of 1%

and 0.15rad/s); (c) Additive spatially global drift in the field map to simulate the effects of

magnetic field drift and respiration.
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Figure 3.4(a) shows the spatial weights for four enumerated activation clusters, along with

the edges of f in Figure 3.1(a) shown for reference. Figure 3.4(b) shows the task-related

temporal changes in zR that were simulated in all the clusters. Additionally, in clusters 2

and 3 we added task correlated changes in f and zI respectively (maximum change of 1%

and 0.15rad/s). Cluster 1 was placed where the in-plane field map gradient of zI0 was large,

while cluster 4 was placed along the edge of f . Figure 3.4(c) shows the spatially global

drift in zI that simulates the effects of magnetic field drift and respiration. The k-space time

series was generated by adding these spatio-temporal changes to z0 and f in Figure 3.1,

using the exact MR signal equation (3.4) and noise.

To choose L for the proposed reconstruction, we generated noiseless k-space data from

64 × 64 images to reconstruct ẑj with L = 1, . . . , 5 by solving (3.14). The desired resolu-

tion was set as described in the first paragraph in Section 3.6.2 and we used the true f and

z0 to exclude any effect from the initialization of the reconstruction. With the exception of

the first time frame the algorithm had similar temporal RMSE for L ≥ 2 (average temporal

RMSE was 0.197). Hence we chose to use L = 5 for the first time frame and L = 2 for

subsequent time frames when reconstructing the k-space data from 128 × 128 images. We

also initialized the reconstruction using f̂ and ẑ0 from Section 3.6.1.

All the T ∗

2 -weighted reconstructed readouts used 20 CG iterations, with CG initial-

ized using the conjugate phase reconstruction [17], and corrected for off-resonance in all

time frames using ẑI0 in Figure 3.1(f). The regularization parameter was chosen to have a

LPSF with FWHM of 1.35 so that the resolution was comparable to ẑRj from the proposed

reconstruction.

We reconstructed all the time frames for all SNRs. We did the time series analysis

using a GLM model with the task waveform as a regressor and generated z-score maps

that were thresholded with a Bonferroni corrected P-value of 0.01. Figure 3.5 shows the

overlaid z-score of the voxels inside f that were above the threshold for SNR = 80 (left)

and SNR = 30 (right). Voxels with true positives are shown with a color coded z-score
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Figure 3.5: Overlaid z-score of the voxels inside f that were above the threshold (Bon-

ferroni corrected P-value of 0.01) for SNR = 80 (left) and SNR = 30 (right). (a)&(b)

Dynamic ẑRj reconstruction; (c)&(d) T ∗

2 -weighted reconstruction; (e)&(f) Multi-echo R∗

2

reconstruction.
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and false negatives with a square. Figure 3.5(a) - 3.5(b) shows the results from the dy-

namically reconstructed ẑj , Figure 3.5(c) - 3.5(d) from the T ∗

2 -weighted reconstruction and

Figure 3.5(e) - 3.5(f) from the multi-echo R∗

2 reconstruction.

Figure 3.5 shows that in terms of total number of true positives the four-echo R∗

2 re-

construction performs the worst. This is especially apparent in cluster 1 due to the high

in-plane field map gradient. Compared to the T ∗

2 -weighted reconstruction, the proposed

reconstruction performs slightly better for both SNRs, especially for voxels that have low

functional CNR. This is particularly evident in cluster 3, that has the task correlated changes

in the field map, and cluster 4. However, both these reconstructions are sensitive to the task

correlated changes in f for cluster 2. The multi-echo R∗

2 reconstruction is more robust to

this effect. Similar trends are seen for SNR = 55 as for the other SNRs.

Figure 3.6 shows R∗

2 time series from the three reconstructions, spatially averaged over

cluster 1-4 as shown in Figure 3.6(a) - 3.6(d) respectively. For reference the plots show

the true spatially averaged zRj time series. To convert the T ∗

2 -weighted time series to R∗

2

we calculated its ∆R∗

2 time series using ∆R∗

2 ≈ − (Sj − S1) /S1/TE, where Sj is the

T ∗

2 -weighted magnitude image of time frame j. This time series was then shifted by ẑR0.

The plots show that the multi-echo R∗

2 reconstruction performs the worst and the proposed

reconstruction the best in estimating the R∗

2 time series. This is obvious in Figure 3.6(a)

due to the high in-plane field map gradient of cluster 1. Figure 3.6(b) shows how the sim-

ulated inflow changes in cluster 2 affect the R∗

2 estimates during activation for both the

proposed and T ∗

2 -weighted reconstructions. Additionally, all plots indicate a slight linear

drift in the ∆R∗

2 time series, as clearly seen in Figure 3.6(c). All the clusters have <2%

error in estimating R∗

2 time series for the proposed reconstruction.
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Figure 3.6: Estimated R∗

2 time series (SNR = 55) for all the reconstructions, which was

spatially averaged over each cluster, along with the true zRj. (a) Results from cluster 1; (b)

Results from cluster 2; (c) Results from cluster 3; (d) Results from cluster 4.
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3.7 Experimental Data

We scanned a single subject in an fMRI experiment to demonstrate the proposed re-

construction for in vivo data and compared with T ∗

2 -weighted and multi-echo R∗

2 recon-

structions. The data had 102 time frames, four-echo spiral-out readouts, FOV = 24cm,

TR = 3.2s and FA = 90◦. The first time frame had TE = [4.6, 23.2, 41.8, 60.4]ms,

the second time frame the same TEs shifted by 2ms and subsequent time frames had

TE = [11.4, 30, 48.6, 67.2]ms. The subject was instructed to repeat 5 times 32s of rest

followed by 32s of bilateral finger tapping prompted by a flickering checkerboard. We

collected 26 axial slices that covered the visual and motor cortices.

The four readouts from the first time frame and the first readout of the second time

frame were used to form a five-echo k-space data with TE = [4.6, 6.6, 23.2, 41.8, 60.4]ms.

This five-echo data was used to estimate f̂ and ẑ0 identically to the procedure described

in Section 3.6.1. For the proposed and T ∗

2 -weighted reconstructions we used only the

TE = 30ms readout while the multi-echo R∗

2 reconstruction used all the readouts. All

the reconstructions were set up identically to what was described in Section 3.6.

The fMRI analysis was applied to all the reconstructions, using a GLM model with a

gamma-variate regressor [60] for the task and a linear regressor for the linear drift. We

generated z-score maps that were thresholded using a Bonferroni corrected P-value of 0.01

followed by a clustering constraint [61] of at least one neighboring voxel above the thresh-

old. Figure 3.7 shows 2 slices with overlaid z-scores of voxels above the threshold for all

the reconstructions. The left column of Figure 3.7 shows a superior slice with motor acti-

vation and the right column shows an inferior slice with visual activation. Figure 3.7(a) -

3.7(b) shows the results from the proposed reconstruction, Figure 3.7(c) - 3.7(d) from the

T ∗

2 -weighted reconstruction and Figure 3.7(e) - 3.7(f) from the four-echo R∗

2 reconstruction.

Figure 3.7 shows clear activations in the motor cortex, supplementary motor area and

the visual cortex for all the reconstructions. Also, f estimates from the four-echo R∗

2 recon-

struction showed only 3 voxels in the visual cortex having minor task correlated inflow and
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Figure 3.7: Z-scores of voxels above the threshold for 2 slices overlaid on anatomical im-

ages for all the reconstructions. Left column shows the results of a superior slice with

motor activation and right column shows the results of an inferior slice with visual acti-

vation. (a)&(b) Dynamic ẑj reconstruction; (c)&(d) T ∗

2 -weighted reconstruction; (e)&(f)

Four-echo R∗

2 reconstruction.
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none in the motor cortex. The results from the superior slice follows the trend shown in the

simulations, where the proposed reconstruction has the most number of voxels classified

as active and the four-echo R∗

2 reconstruction the fewest. However, this is not the case for

the inferior slice, where the T ∗

2 -weighted reconstruction has the most active voxels. This

difference may be due to the stronger field gradients in the inferior slice that currently are

not included in the signal model in (3.4).

3.8 Conclusion and Discussion

We have proposed a method for reconstructing dynamic R∗

2 and field maps for fMRI data

with the same temporal resolution as T ∗

2 -weighted imaging. This was done using a lin-

ear approximation to the temporal changes in R∗

2 and field maps relative to a previously

determined reference map. Simulations showed the reconstruction outperformed both T ∗

2 -

weighted and four-echo R∗

2 reconstructions in detecting active voxels. For the quantitative

R∗

2 estimation the proposed reconstruction did considerably better than the four-echo R∗

2

reconstruction but about the same as the T ∗

2 -weighted reconstruction after converting it to

∆R∗

2 and excluding the ẑR0 shift. However, there was a slight drift present in the ∆R∗

2 time

series, which may explain the lower detection performance of the T ∗

2 -weighted reconstruc-

tion compared to the proposed reconstruction. Adding a linear drift regressor into the GLM

model did improve the performance of the T ∗

2 -weighted reconstruction, but still not to the

level of the proposed reconstruction.

For the in vivo data all the reconstructions showed a similar trend to the simulation re-

sults for the superior slice, less so for the inferior slice. Since the inferior slice is closer to

the sinuses it is more affected by field gradients than the superior slice. The effects of the

gradients are not in the signal equation for any of the reconstructions used here. However,

when compared to T ∗

2 -weighted reconstruction, the proposed reconstruction does rely on

a mono-exponential relaxation model which can introduce model bias in areas with high
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gradients [54, 55]. Adding gradients in the signal equation in (3.4) [47] may also alleviate

this model mismatch for the proposed reconstruction. This is something that needs further

investigation. Any further comparisons in terms of detection performance for the in vivo

data would need more acquisitions and estimation of test-retest reliability [62].

The compute time and the performance of the algorithm depends mainly on the number

of refinements used to find ẑj . It was shown in the simulations that L = 5 for the first

time frame and L = 2 for other time frames was adequate. The compute time for the first

time frame was 60.3s, which includes forming D (4.7s) and finding the β values to satisfy

our desired resolution (19.2s), and subsequent time frames took 17.7s. This time could be

reduced by reusing common parts of A for all time frames. The reconstruction is then two

times longer than T ∗

2 -weighted reconstruction since L = 2, but with the added benefit of

correcting for field drift and getting R∗

2 estimates.

Currently, the algorithm does not include any motion correction. Since all the simula-

tions were done without motion the performance of the algorithm with motion has not been

assessed. However, since it relies on the reconstructed map f̂ , one would assume that any

motion in the data is going to translate into changes in f̂ . This may make the algorithm

more sensitive to motion induced errors than T ∗

2 -weighted image reconstruction, where all

the frames can be reconstructed independent of past or future time frames.

One simple method for motion correction would be to estimate rigid body motion pa-

rameters from T ∗

2 -weighted images, using the first time frame as the reference frame. We

would then use those motion parameters when reconstructing ẑj for the same data to cor-

rect f̂ in the system matrix for any motion. This method and others need to be investigated

further but ultimately motion correction must be included in the algorithm for it to be

robust.

In addition to excluding motion there is also an assumption of blood inflow being lim-

ited. Under this assumption f̂ should be time frame invariant when reconstructing ẑj for

all j. One way to limit the effects of inflow enhancement is to acquire the data by ei-
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ther increasing TR or decreasing the flip angle [35], which respectively puts limitations

on the data acquisition and lowers SNR. This effect could also be decreased by jointly re-

constructing f̂ and ẑj . However, due to the higher dimensionality of this ill-conditioned

reconstruction of both spatial maps, longer readouts and further regularization of f̂ would

be needed. This would potentially be at a cost of higher compute times due to the increased

complexity.

In our nonuniform regularization design there are mainly three limitations. Firstly, we

form the spatially nonuniform penalty once and then only based on ẑR0. This can result in

time frame varying resolution for voxels with significant temporal changes in zj . Addition-

ally, any spatial resolution variations due to ẑIj are not compensated since we only account

for spatial variations in R∗

2. Secondly, we chose the regularization parameter arbitrarily to

satisfy a desired FWHM. There are alternative methods available to choose this parameter

[22], such as cross validation. Thirdly, since

∣∣∣f̂
∣∣∣ is multiplicative in D, voxels with low

∣∣∣f̂(~rn)
∣∣∣ will have very little regularization. This could be alleviated by smoothly extending

high

∣∣∣f̂(~rn)
∣∣∣ voxels over the low valued voxels to decrease the variance of the estimates.

These design limitations need further investigation, especially with respect to resolution

uniformity, reconstruction compute time and bias/variance trade-off.

The simulated and in vivo k-space data was acquired using a single shot spiral-out tra-

jectory. The accuracy of the algorithm does depend on the readout length of the trajectory

that is used to acquire the data. For instance, a fully sampled single shot spiral-in followed

by an undersampled spiral-out was shown to have higher correlation values than using

only spiral-in data [63]. Further investigation of the behavior of the algorithm for various

trajectories and readout lengths is needed.

To initialize the algorithm we used data collected at the start of the fMRI study to re-

construct zI0, then zR0, and finally f . The reconstruction of f̂ may be sensitive to errors

in ẑ0, which may especially come from ẑR0 since log fitting is very sensitive to noise. An

alternative solution would be to use a joint reconstruction algorithm [42, 43], where ẑ0 and
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f̂ are simultaneously reconstructed by minimizing one regularized cost function instead of

minimizing separate cost functions for each spatial map.
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Chapter 4

Spatial Resolution Analysis of Quadratic

Penalized Least-Squares with a Separate

Real and Imaginary Roughness Penalty1

4.1 Introduction

Iterative image reconstruction methods are growing in popularity for many imaging de-

vices. This usually involves iteratively optimizing a cost function that fits the acquired data

to a physics-based signal model. Since the data received from the imaging device is gen-

erally contaminated with noise, the reconstructed images can have errors due to noise if

the problem is badly conditioned. One way to improve the conditioning and thus reduce

variance is to add a regularization to the cost function at the price of additional bias to

the reconstructed image. For example, one common regularization function is the spatial

roughness penalty, where the bias materializes as a reduction in spatial resolution.

For complex valued images, the conventional roughness penalty penalizes equally the

real and imaginary parts. Sometimes, unconventional roughness penalties are needed, for

example in separate regularization of magnitude and phase [64, 65] or the real and imag-

inary parts, which is the topic of this chapter. This type of regularization has been used

in digital holography [66] and functional magnetic resonance imaging (fMRI) as seen in

1This chapter is based on [59].
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Chapter 3.

The regularization parameters of the roughness penalty dictate how smooth the recon-

structed image becomes and it can be challenging to choose these parameters sensibly. One

method is to base that choice on a desired spatial resolution for the reconstructed image.

Spatial resolution can be quantified as the full width half max (FWHM) of a point spread

function (PSF), sometimes referred to as an impulse response function (IRF). To find the

regularization parameters that achieve the desired resolution, the PSF and its FWHM is

calculated for a wide range of values of the regularization parameters. This is followed

by an interpolation from the desired FWHM to the resulting regularization parameters. By

using those parameters in the reconstruction algorithm it should give images that have the

desired resolution.

For computational efficiency it would be advantageous to only have to compute the PSF

for one spatial location. This inherently assumes that the PSF is shift invariant, i.e., that

the PSF, and hence its FWHM, is uniform across the reconstructed image. However, for

some image reconstruction algorithms the PSF is shift variant. This is undesirable since

the reconstruction now introduces spatially varying resolution in the reconstructed images.

By making the penalty appropriately spatially variant this resolution nonuniformity can

be counteracted. But one is still left with evaluating the PSF multiple times to find the

regularization parameters that achieve the desired resolution.

Some methods have been proposed to design spatially varying penalties based on local

impulse responses [23, 24] to correct for spatially varying resolution. This has been used

previously for a quadratic penalized least-squares (QPLS) cost function using the conven-

tional roughness penalty [24]. By using a very reasonable approximation it was also shown

that the local impulse response can be calculated using FFT to further reduce compute time.

However, this approach is not directly applicable to the case when the real and imaginary

parts of the image are to be regularized separately.

This chapter presents a fast method to calculate an approximate local impulse response
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for a separate real and imaginary roughness penalty. This allows us to use a computation-

ally efficient algorithm to evaluate the local impulse response when finding the regular-

ization parameters needed for a desired spatial resolution. This analysis can also be used

to design a spatially varying roughness penalty, as was shown for the reconstruction in

Chapter 3 to impose an approximately uniform resolution.

4.2 Local Impulse Response Using Separate Real and

Imaginary Regularization

We assume the following discrete and linear model for the noisy acquired data vector y:

y = Ax + ǫ, (4.1)

where vector x contains the unknown object that is being imaged, A is a linear transform

from image space to acquired data space, sometimes called the system matrix, and vector ǫ

contains samples of noise in the acquired data. Quadratic penalized least-squares (QPLS)

is a common method to estimate x from y using the model in (4.1) and can be solved

efficiently using an iterative gradient descent algorithm, like conjugate gradient. A QPLS

reconstruction problem can be described as follows:

Ψ(x) =
1

2
‖y − Ax‖2 + R(x)

x̂ = arg min
x

Ψ(x) ,
(4.2)

where 1
2
‖y − Ax‖2

is called the data fit term and R(·) is a quadratic penalty, used to

improve the overall conditioning of the problem.

Here, we would like to use a spatial roughness penalty that separately penalizes the real
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and imaginary parts of x as follows:

R(x) =
1

2

(
β1 ‖C1xR‖2 + β2 ‖C2xI‖2) , (4.3)

where the subscripts R and I refer to the real and imaginary part of x respectively. Also,

C1 and C2 are real valued differencing matrices that compute some order of finite differ-

ences (most common are first and second order) for xR and xI respectively and β1 and β2

are regularization parameters that control the tradeoff between noise and spatial resolution

in x̂. We would like to develop a computationally fast framework that chooses β1 and β2

to achieve a desired spatial resolution for x̂R and x̂I in (4.2) based on its local impulse

response.

Finding the local impulse response of a QPLS reconstruction involves calculating the

first and second order gradients of Ψ(x) [24]. Since (4.3) involves xR and xI, it is not

clear how these gradients would be formed when using that penalty. We address this prob-

lem by first considering a previous resolution analysis using the conventional roughness

penalty term presented in [24] and secondly reformulate Ψ(x) with (4.3) so that analysis

can be used to easily derive the local impulse response of a QPLS reconstruction with the

regularization in (4.3).

To review the resolution analysis in [24], lets suppose R(·) is the conventional rough-

ness penalty, given as follows:

R(x) =
1

2
β ‖Cx‖2 =

1

2
β
(
‖CxR‖2 + ‖CxI‖2) , (4.4)

where C is a differencing matrix and β is the regularization parameter. This penalty puts

equal weight on the real and imaginary parts of x and thus can be considered a special case

of (4.3) with β1 = β2 = β and C1 = C2 = C. Using this roughness penalty in (4.2),

the gradients of Ψ(x) are easily found and it has been shown in [24] that the local impulse
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response at spatial position n is given as follows:

ln = (A′A + βC ′C)
−1

A′Aen, n = 1, . . . , N (4.5)

where ln is the local impulse response and en is a column vector with 1 at vector element

position n and zeros elsewhere (Kronecker impulse).

The method used to derive the local impulse response presented in (4.5) does not apply

when using our preferred penalty in (4.3). Instead, we propose to form a stacked cost func-

tion with separate real and imaginary regularization. This stacked cost function looks like

Ψ(x) with the conventional penalty in (4.4) and thus allows us to derive the local impulse

response of the stacked cost function using the type of analysis presented in [24].

4.2.1 Stacked Cost Function With Separate Real and Imaginary Reg-

ularization

We first rewrite all the matrices and vectors in a stacked format, as follows:

yS =




yR

yI


 , xS =




xR

xI


 ,

AS =




AR −AI

AI AR


 , CS =




CS1 0

0 CS2


 ,

where CS is block diagonal with CS1 =
√

β1C1 and CS2 =
√

β2C2. Note that β1 and β2

can be chosen independently of each other. Using these definitions for the stacked matrices

and vectors we can form a new stacked cost function ΨS(xS) as follows:

ΨS(xS) =
1

2
‖yS − ASxS‖2 +

1

2
‖CSxS‖2 . (4.6)

The original goal was to solve (4.2) with a roughness penalty that separately penalized
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the real and imaginary parts of x. The question is, are we still effectively doing that by min-

imizing the stacked cost function in (4.6). For this to be true, we first need to show that the

data fit terms of both cost functions are equivalent, i.e., that ‖yS − ASxS‖2 = ‖y − Ax‖2
,

and secondly that the stacked penalty in (4.6) is separately penalizing the real and imaginary

parts of x.

To show that ‖yS − ASxS‖2 = ‖y − Ax‖2
we need two steps. Step one is to relate the

error of the stacked vectors yS −ASxS to the error of the complex valued vectors y −Ax

as follows:

yS − ASxS =




yR

yI


−




AR −AI

AI AR







xR

xI




=




yR − (ARxR − AIxI)

yI − (AIxR + ARxI)




=




ℜ (y − Ax)

ℑ (y − Ax)


 ,

where ℜ (·) and ℑ (·) are the real and imaginary parts respectively. From this we see that

the error of the stacked vectors equals the stacked error of the original complex valued vec-

tors. Step two is to show that the squared l2 norm of a complex valued vector r = rR + irI

equals the squared l2 norm of its stacked version rS. This can be shown as follows:

‖r‖2 =
(
rT

R − irT
I

)
(rR + irI)

= rT
RrR + rT

I rI + i
(
rT

RrI − rT
I rR

)

= rT
RrR + rT

I rI, since rT
RrI = rT

I rR

= ‖rS‖2 .

Using these two relationships between the stacked vectors and the complex valued vectors
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we see that:

‖yS − ASxS‖2 =

∥∥∥∥∥∥∥




ℜ (y − Ax)

ℑ (y − Ax)




∥∥∥∥∥∥∥

2

= ‖y − Ax‖2 ,

and hence that the data fit terms of Ψ(x) and ΨS(xS) are equivalent.

The stacked penalty in (4.6) can be easily shown to equal our preferred penalty in (4.3),

as follows:

1

2
‖CSxS‖2 =

1

2
x′

SC
′

SCSxS

=
1

2

[
x′

R x′

I

]



β1C
′

1C1 0

0 β2C
′

2C2







xR

xI




=
1

2
(β1x

′

RC ′

1C1xR + β2x
′

IC
′

2C2xI)

=
1

2

(
β1 ‖C1xR‖2 + β2 ‖C2xI‖2) . (4.7)

This shows that by minimizing ΨS(xS) in terms of xS we are able to enforce a separate

real and imaginary regularization and still maintain the same data fit as when minimizing

Ψ(x). As before we could minimize the stacked cost function in (4.6) using an iterative

gradient descent algorithm such as the conjugate gradient algorithm. This can be done effi-

ciently as shown in Appendix A, but our focus here is to characterize the spatial resolution

properties of (4.6).

4.2.2 Stacked Local Impulse Response

Since the stacked cost function in (4.6) looks just like the QPLS cost function using the

conventional penalty in (4.4), we can use exactly the same methods as were used in [24] to

derive the stacked local impulse response. This is written as follows:

lSn = (A′

SAS + C ′

SCS)
−1

A′

SASeSn, (4.8)
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where,

lSn =




lRn

lIn


 , eSn =




(1 − α)en

αen


 , α ∈ {0, 1}

A′

SAS =




ℜ (A′A) −ℑ (A′A)

ℑ (A′A) ℜ (A′A)


, C ′

SCS =




β1C
′

1C1 0

0 β2C
′

2C2


 ,

(4.9)

where α is a variable that we set to 0 to calculate the point spread function of the real part

and 1 for the imaginary part. Using (4.8) we can now characterize the spatial properties of

a QPLS reconstruction that separately penalizes the real and imaginary parts.

4.3 Approximate Stacked Local Impulse Response

Evaluating (4.8) directly to calculate the real and imaginary local impulse responses could

involve taking an inverse of A′

SAS + C ′

SCS which would be extremely time consuming

and memory intensive. We would like to make this evaluation faster on the assumption that

both A′

SAS and C ′

SCS are locally circulant. This assumption allows us to approximate the

inverse with an FFT followed by an inverse of a sparse matrix and finally an IFFT. This

section describes the details of this fast approximation and verifies that the stability of the

inverse is not compromised.

4.3.1 Fast Calculation

Suppose C ′

1C1, C ′

2C2 and A′A are circulant, which makes ℜ (A′A) and ℑ (A′A) also

circulant. It is well known that circulant matrices are diagonalizable using FFT transforms
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as follows:

ℜ (A′A) = QΛ1Q
−1, ℑ (A′A) = QΛ2Q

−1,

C ′

1C1 = QΩ1Q
−1, C ′

2C2 = QΩ2Q
−1

where, Q−1 is the orthonormal 2D DFT matrix and Λ1, Λ2, Ω1 and Ω2 are diagonal matri-

ces given by,

Λ1 = diag
{
Q−1ℜ (A′A) e1

}
, Λ2 = diag

{
Q−1ℑ (A′A)e1

}
,

Ω1 = diag
{
Q−1C ′

1C1e1

}
, Ω2 = diag

{
Q−1C ′

2C2e1

}
.

(4.10)

Column n of a circulant matrix is a copy of its first column that has been circularly shifted

n places. Using this in conjunction with the circular shift property of the DFT transform,

the diagonal matrices in (4.10) can be equivalently calculated for any en, by accounting for

the added phase due to the shift, as follows:

Λ1 = diag
{

diag
{

e−i∠(Q−1en)
}

Q−1ℜ (A′A) en

}
,

Λ2 = diag
{

diag
{

e−i∠(Q−1en)
}

Q−1ℑ (A′A) en

}
,

Ω1 = diag
{

diag
{

e−i∠(Q−1en)
}

Q−1C ′

1C1en

}
,

Ω2 = diag
{

diag
{

e−i∠(Q−1en)
}

Q−1C ′

2C2en

}
.

(4.11)
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Using these FFT formulations we get for A′

SAS the following:

A′

SAS =




ℜ (A′A) −ℑ (A′A)

ℑ (A′A) ℜ (A′A)




=




QΛ1Q
−1 −QΛ2Q

−1

QΛ2Q
−1 QΛ1Q

−1




=




Q 0

0 Q







Λ1 −Λ2

Λ2 Λ1







Q−1
0

0 Q−1




= QDΛSQ
−1
D ,

where,

QD ,




Q 0

0 Q


 , ΛS ,




Λ1 −Λ2

Λ2 Λ1


 .

In a similar manner we get for C ′

SCS the following:

C ′

SCS =




β1C
′

1C1 0

0 β2C
′

2C2




=




Q 0

0 Q







β1Ω1 0

0 β2Ω2







Q−1
0

0 Q−1




= QDΩSQ
−1
D ,

where,

ΩS =




β1Ω1 0

0 β2Ω2


 .
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Using these equalities we can rewrite the stacked local impulse response in (4.8) as follows:

lSn = (A′

SAS + C ′

SCS)
−1

A′

SASeSn

=
(
QDΛSQ

−1
D + QDΩSQ

−1
D

)
−1

QDΛSQ
−1
D eSn

= QD (ΛS + ΩS)
−1

ΛSQ
−1
D eSn. (4.12)

Thus for the case when C ′

1C1, C ′

2C2 and A′A are circulant, we have reduced the calcu-

lation of the stacked local impulse response considerably since it now involves only the

inverse of ΛS + ΩS, which are both sparse block matrices with diagonal blocks, and an

FFT and IFFT operations.

For most imaging problems C ′

1C1, C ′

2C2 and A′A are not exactly circulant. However,

if they are locally circulant then (4.12) can be shown to be locally approximate. For these

matrices to be locally circulant implies that their stacked local impulse response of one

image voxel is similar to the response of its neighboring voxels. For example, a Toeplitz2

matrix is locally circulant due to its circulant-like structure. Here, C ′

1C1 and C ′

2C2 are

Toeplitz and although A′A is generally not Toeplitz it is often approximately so in many

MRI problems. Thus we can now locally approximate C ′

1C1, C ′

2C2 and A′A, and hence

ℜ (A′A) and ℑ (A′A), as follows:

C ′

1C1en ≈ QΩ1Q
−1en, C ′

2C2en ≈ QΩ2Q
−1en,

A′Aen ≈ QΛQ−1en, (4.13)

ℜ (A′A)en ≈ QΛ1Q
−1en, ℑ (A′A)en ≈ QΛ2Q

−1en,

where Ω1, Ω1. Λ1 and Λ2 are defined in (4.11) and Λ = Λ1 + iΛ2. We note that (4.13)

2For simplicity we use “Toeplitz” instead of “block Toeplitz with Toeplitz block”
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implies we can approximate the stacked local impulse response as given in (4.12) such that:

lSn ≈ QD (ΛS + ΩS)
−1

ΛSQ
−1
D eSn. (4.14)

4.3.2 Stability Analysis of the Stacked Impulse Response

We know that C ′

1C1, C ′

2C2 and A′A are nonnegative definite, and thus have real and non-

negative eigenvalues. The matrix ΩS as defined in (4.11) is thus approximately nonnegative

definite since its elements are approximately the eigenvalues of C ′

1C1 and C ′

2C2. However,

it is not obvious if ΛS is nonnegative definite and if that were not the case, there would exist

β1 and β2 such that the inverse of ΛS + ΩS would be undefined. This could cause stability

issues when calculating the stacked local impulse response. To investigate this we need to

relate the eigenvalues of ΛS to the eigenvalues of A′A under the local impulse response

approximation given in (4.13).

We first need to express the elements of Λ1 and Λ2 as functions of the elements of Λ.

Using the approximation in (4.13), we have:

Q−1ℜ (A′A)en = Q−1ℜ (A′Aen)

≈ Q−1ℜ
(
Q−1

ΛQ−1en

)

= Q−1QΛQ−1en + (QΛQ−1en)
∗

2

=
1

2
v +

1

2
Q−1 (Qv)∗ , (4.15)

where Λ = diag{λ} and v is a vector with kth element vk = λk ei∠(Q−1en)
k and ∗ is the

conjugate operator. The expression above involves a conjugate of the IDFT of v, which for

element n in the vector simplifies as follows:

[(Qv)∗]n =

(
K−1∑

k=0

Qnkvk

)∗

=
K−1∑

k=0

Q∗

nkv
∗

k =
K−1∑

k=0

Qnkv
∗

k =
[
Qv∗

−

]
n
,
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where k is the index of the conjugate pair that goes with k and v− has those elements. Thus

(Qv)∗ can be rewritten as an IDFT of a circularly shifted version of v. Using this in (4.15),

we now get for the kth element,

[
Q−1ℜ (A′A)en

]
k
≈ 1

2

(
vk + v∗

k

)

=
1

2

(
λk ei∠(Q−1en)

k + λk e
−i∠(Q−1en)

k

)
.

Using this expression, the diagonal elements of Λ1 (4.11), which we write here as λ1k, can

be expressed in terms of the eigenvalues of A′A as follows,

λ1k ≈ e−i∠(Q−1en)
k

1

2

(
vk + v∗

k

)
=

1

2
(λk + λk) . (4.16)

This ensures the eigenvalues of ℜ (A′A) are approximately real and nonnegative under the

local impulse response approximation. Similarly, the eigenvalues of ℑ (A′A) under the

local impulse response approximation can be written in terms of the eigenvalues of A′A as

follows:

λ2k ≈ 1

2i
(λk − λk) , (4.17)

which makes the eigenvalues of ℑ (A′A) to be approximately purely imaginary.

Now we use (4.16) and (4.17) to form ΛS, which is a 2 × 2 block matrix where each

block is a diagonal matrix and the main diagonal is real and off-diagonals are strictly imag-

inary. However, this does not tell us yet if the eigenvalues of ΛS are real and non-negative.

By using a well know property that eigenvalues of a matrix are invariant to elementary

row and column operation, we can use those operations to make ΛS into a block diagonal

matrix with K matrices that are each 2 × 2 matrices, where matrix number k is given as

follows: 


λ1k −λ2k

λ2k λ1k


 .
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Since all the submatrices along the diagonal are the same, we only need to find the eigen-

values of that to see if those are real and nonnegative and hence all the eigenvalues of ΛS

are also. We find the eigenvalues α by solving for the characteristic equations as follows:

∣∣∣∣∣∣∣

λ1k − α −λ2k

λ2k λ1k − α

∣∣∣∣∣∣∣
= 0

⇒ α2 − 2λ1kα + λ1
2
k + λ2

2
k = 0.

Using (4.16) and (4.17) the two roots α1,2 that solve this equality are given as follows:

α1,2 =
2λ1k ±

√
4λ1

2
k − 4

(
λ1

2
k + λ2

2
k

)

2

=
2λ1k ±

√
−4λ2

2
k

2

≈ 1

2
(λk + λk) ±

1

2

√
(λk − λk)

2

=
1

2
(λk + λk) ±

1

2
(λk − λk) .

If A′A has real and nonnegative eigenvalues λk under the local impulse response approx-

imation, we see that α1,2 and hence the eigenvalues of ΛS are also approximately real and

nonnegative. This makes the matrix sum ΛS + ΩS invertible and thus the local impulse

response exists using the proposed fast calculation.

This implies that to ensure the stability of the approximation in (4.14) we may need

to enforce real and nonnegative λk values. This is usually done in local impulse response

calculations. In addition to this the same may also need to be enforced for the elements of

ΩS.
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Figure 4.1: Simulation maps used to evaluate the accuracy of the local point spread func-

tion (LPSF) approximation when A′A is not Toeplitz but approximately so. (a) Initial

magnetization f ; (b) R∗

2 map zR ; (c) Field map zI .

4.3.3 Implementation Details

To implement a fast version of the approximate stacked local impulse response approxi-

mation in (4.14), we need to form ΛS and ΩS fast and efficiently. The key to that is to

use (4.11) to form Ω1 and Ω2. However, to form ΛS, we first find Λ by taking an FFT of

A′Aen as per (4.13). We can then form Λ1 and Λ2 using (4.16) and (4.17) respectively.

Since ΛS and ΩS are both sparse the inverse can be performed very quickly.

To maintain the stability of the algorithm, we enforce the FFT coefficients of C ′

1C1,

C ′

2C2 and A′A to be strictly real and nonnegative. As per the previous stability discussion,

this ensures that ΛS and ΩS have also real and nonnegative eigenvalues.

4.4 Simulations

To evaluate the accuracy of the local impulse response approximation proposed in (4.12)

we use as an example a system matrix from the reconstruction discussed in Chapter 3.

There we wanted to reconstruct changes in R∗

2 relaxation rate map zR and field map zI us-

ing a stacked cost function as in (4.6). There, A in the signal model (4.1) has the following
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elements:

amn = f(~rn) e−tm ž(~rn) tm e−i2π(km·~rn) ,

f , [f(~r1) , . . . , f(~rN)] , ž , [ž(~r1) , . . . , ž(~rN)] ,

where f is the magnetization after excitation, ž (assumed to be known) is the complex

valued spatial map of the reference R∗

2 (real part) and field map (imaginary part) and km is

sample number m of the k-space trajectory used to acquire the MR data, which in this case

is a spiral.

We simulated two cases to evaluate the accuracy and performance of the approximate

stacked local impulse response in (4.14) compared to its exact form in (4.8). The first case

had f = 1 within the reconstruction mask and ž = 0 so that A′A was Toeplitz, and hence

locally circulant. The second case had a more realistic f and ž as shown in Figure 4.1(a) -

4.1(c), for which A′A is only approximately Toeplitz.

We calculate the exact stacked local impulse response by fully forming A′

SAS and

C ′

SCS and computed the approximate one as described in Section 4.3.3 where A was

formed in a fast and memory efficient version manner [20, 25]. We chose the regularization

to be first-order differences for both the real and imaginary parts. The regularization pa-

rameters β1 and β2 were chosen so that the fast approximate stacked local impulse response

gave a FWHM of 1.35 and 1.5 voxels for the real and imaginary parts respectively.

For the case when A′A is Toeplitz, Figure 4.2(a) shows the locations where the stacked

local impulse response and its approximation were evaluated. Since FWHM of the impulse

response is commonly used for resolution evaluation, the absolute difference in FWHM

calculated using the exact and approximate stacked local impulse response is shown in

Figure 4.2(b) - 4.2(c) for the real and imaginary parts respectively. Figure 4.2(d) - 4.2(f)

shows the same for the case when A′A is approximately Toeplitz.

For the exact method the average FWHM for the real and imaginary parts was 1.36
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Figure 4.2: FHWM difference when evaluating it based on the stacked local impulse re-

sponse and its approximation. The results when A′A is Toeplitz are shown in (a)-(c) and

when it is approximately Toeplitz in (d)-(f). (a)&(d) Spatial positions where the stacked lo-

cal impulse response and its approximation were evaluated rendered on top of f ; Absolute

FWHM difference between the local impulse response and its approximation for (b)&(e)

zR and (c)&(f) zI , with the outline of f shown for reference.
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and 1.51 voxels respectively when A′A was Toeplitz and 1.36 and 1.51 voxels respectively

when A′A was approximately Toeplitz. Comparing Figure 4.2(b) - 4.2(c) and Figure 4.2(e)

- 4.2(f) we do note that the FWHM difference between the approximation and exact im-

pulse response is greater when A′A is approximately Toeplitz. This is also apparent from

the root mean squared (RMS) FWHM difference of the real and imaginary parts, which is

respectively only 0.013 and 0.009 when A′A is Toeplitz but 0.018 and 0.028 when A′A is

approximately Toeplitz. Despite this, the FWHM difference for both cases is under 3%.

In terms of compute performance, the exact method took about 2200 seconds to cal-

culate the local impulse response for all spatial positions shown in Figure 4.2 but the

approximate method took only about 13 seconds. This is a huge compute acceleration

and is even more impressive considering that on average the accuracy is within 3% of the

FWHM of the exact local impulse response.

4.5 Discussion

We presented a fast method to approximate the stacked local impulse response for an it-

erative reconstruction algorithm, where we separately penalize the real and the imaginary

parts of the image. This method was shown to be stable, fast and accurate in estimating the

local impulse response at various spatial positions. This was indicated by the comparisons

of simulation data for the approximate and exact stacked local impulse response, where the

approximation was shown to have a RMS error of around 2% and approximately 170 times

faster.

From the simulation results in Figure 4.2 we note that the biggest errors in the FWHM

values seem to be located close to the edges of f . This would indicate that the approximate

local impulse response does not hold well there, i.e., A′A is not locally circulant in those

areas. This seems to indicate a weakness in the approximation. This is further supported

from the fact that if we exclude the FWHM differences that are closest to the edge of f the
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RMS FWHM difference reduces from 0.018 to 0.015 for the real part and from 0.028 to

0.018 for the imaginary part.

At first this would seem to be a problem that is unavoidable. However, from the resolu-

tion analysis of the reconstruction presented in Chapter 3, we note that by using a spatially

variant penalty, any spatial nonuniformity caused by f can be accounted for. In fact we

can generally state that using a spatially variant penalty allows for an evaluation of the

local impulse response using a system matrix that is Toeplitz and hence the problem of

non-Toeplitzness can be circumvented.

Finally it should be mentioned that a further analysis of other separate penalties also

needs to be analyzed, such as separate magnitude and phase penalties.
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Chapter 5

Fast and Motion Robust Dynamic R∗
2

Reconstruction for Functional MRI1

5.1 Introduction

This chapter builds on the work presented in Chapter 3, where we introduced a fast iterative

reconstruction of the complex valued rate map z, whose real and imaginary parts are R∗

2

and field maps, for functional MRI (fMRI) data. In its original form the signal equation

in terms of z has a nonlinear relationship to the acquired k-space data. To make the re-

construction fast we made a linear approximation to the signal equation around a known

reference map ž. The approximation was then used to form a new cost function that was

quadratic in terms of the current rate map. This cost function could be minimized using

a fast iterative algorithm such as conjugate gradient (CG). Once a new rate map had been

estimated, we could use that as a new reference and repeat the minimization. This could

be repeated until the original cost function converged. If the data consists of a time series

of images, such as in fMRI, we can use the z estimated for a prior time frame as an initial

reference map for the current time frame.

One of the major faults of this method was that it assumed that the initial magnetization

f of the object was static for all the time frames. This is only true in the absence of subject

motion and blood inflow changes (both flow and volume) while acquiring the fMRI data.

1This chapter is based on [67, 68].
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Although these factors can be controlled to some degree, they are close to impossible to

completely eliminate. For this reason we developed a fast image reconstruction algorithm

that builds on the work in Chapter 3, but also reconstructs f dynamically to control for

motion and inflow effects.

The structure of this chapter is as follows. We start by defining the MR signal equation

and form a penalized least squares cost function that we would like to minimize in terms

of f and z. As previously stated this cost function is nonlinear in terms of z, but is linear

in terms of f (see Section 5.2). Next we use the linear approximation to the MR signal

equation and from that form a new penalized cost function that approximates the original

cost function. We propose to minimize this new cost function using an alternating mini-

mization algorithm and review the quadratic penalties and the dual echo k-space trajectory

we propose to use for this reconstruction (see Section 5.3). Then we simulate fMRI data

and investigate the performance of the proposed joint reconstruction and compare it to the

conventional iterative reconstruction usually used for fMRI data (see Section 5.4). Finally

we look at some phantom MR data and human fMRI data corrupted by motion to evaluate

the performance of the reconstruction (see Section 5.5).

5.2 Model Based Joint Reconstruction of R∗
2, Field Map

and Magnetization

In functional magnetic resonance imaging (fMRI) the MR signal s(t; z(~r) , f(~r)), including

R∗

2 relaxation and off-resonance, is conventionally modeled as follows:

s(t; z(~r) , f(~r)) =

∫
f(~r) e−tz(~r) e−i2π(~k(t)·~r) d~r, (5.1)
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where f(~r) is a map of the initial magnetization after excitation, ~k(t) is the k-space trajec-

tory, ~r is the spatial coordinate and z(~r) is the complex valued rate map:

z(~r) = zR(~r) + izI(~r) ,

where the real valued zR(~r) and zI(~r) are the R∗

2 relaxation and field maps respectively.

The measured MR data y = [y1, . . . , yM ] from an MRI scanner is modeled as (5.1) con-

taminated with additive iid Gaussian noise [6] as follows:

ym = s(tm; z(~r) , f(~r)) + ǫm, m = 1, . . . , M. (5.2)

We would like to jointly reconstruct f(~r) and z(~r) from y by minimizing a regularized cost

function. This allows us to estimate an R∗

2 map that is robust to noise, motion, blood inflow

and off-resonance. The final goal is then to use the resulting R∗

2 maps for fMRI analysis.

Jointly reconstructing the continuous-space f(~r) and z(~r) maps from the discrete y is

an ill-posed inverse problem. By parametrizing both maps as follows:

f(~r) ≈
N∑

n=1

f(~rn) b(~r − ~rn) , z(~r) ≈
N∑

n=1

z(~rn) b(~r − ~rn) , (5.3)

where b(·) is a spatial basis function, this reconstruction is simplified to the point of being

computationally tractable. Instead of estimating spatially continuous maps, the problem is

reduced to reconstructing all the complex valued parameters f(~rn) and z(~rn). Here, b(·)

is assumed to be the 2D or 3D rect function (the voxel basis), making f(~rn) and z(~rn) the

height of a voxel basis with its center at ~rn.
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If (5.3) is used in (5.1), we get the discrete-space MR signal s(t; z, f ) as follows:

s(t; z, f ) = Φ(~k(t))

N∑

n=1

f(~rn) e−tz(~rn) e−i2π(~k(t)·~rn) , (5.4)

z = [z(~r1) , . . . , z(~rN)] , f = [f(~r1) , . . . , f(~rN)] ,

where Φ(~k(t)) is the Fourier transform of the basis function b(·). This form of the signal

equation can now be rewritten in a matrix-vector format as follows:

s(z, f) = A(z) f , (5.5)

where the elements amn(z) of the system matrix A(z) are:

amn(z) = Φ(~k(tm)) e−tmz(~rn) e−i2π(~k(tm)·~rn) , m = 1, . . . , M, n = 1, . . . , N. (5.6)

Using (5.5), we can now write the acquired MR data from (5.2) in a matrix-vector format:

y = A(z) f + ǫ. (5.7)

From (5.7) we note that the acquired data y that we get during an fMRI experiment is

an iid Gaussian random vector. This implies that the maximum likelihood estimator (MLE)

of f and z from the MR data is equivalent to a least squares optimization of the residual

error of y and A(z) f . However, to make the estimator more robust to noise, especially

in areas where f is small, this estimator will be regularized using a roughness penalty.

The reconstruction is thus formed by minimizing a penalized log-likelihood cost function

ΨPLL(f , z) as follows:

ΨPLL(f , z) =
1

2
‖y − A(z) f‖2 + R1(f) + R2(z) ,

{
f̂ , ẑ

}
= arg min

f ,z
ΨPLL(f , z) ,

(5.8)
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where the data fit term is the l2 norm of the residual error of data and signal model and

R1(f ) and R2(z) are quadratic spatial roughness penalties, to be defined later.

A minimization problem that has two parameters that need to be estimated, as stated

in (5.8), can be solved using an alternating minimization. There, the cost function is min-

imized relative to one parameter while the other is kept constant in an alternating fashion

until the cost function has converged if both steps are monotonic. The cost function in (5.8)

in terms of f while keeping z constant is quadratic, which can be solved fast and efficiently

using the conjugate gradient (CG) algorithm. However, when it comes to z, the prob-

lem becomes nonlinear and non-convex, which calls for potentially slower optimization

algorithms.

In Chapter 3 we developed a method where estimating z was simplified and sped up

considerably by a linear approximation using a reference rate map ž [56]. Although this

method does not guarantee monotonic descent for the cost function in (5.8), one could use

the majorizer derived in Appendix B as a fallback option. Here we use a similar proce-

dure to simplify the alternating minimization in (5.8) so that CG can be used to solve both

minimization problems.

5.3 Fast and Motion Robust R∗
2 Reconstruction

Suppose we acquire some additional time frames of k-space data at the beginning of an

fMRI run. From this additional data we can estimate a complex valued reference rate map

ž using conventional methods of R∗

2 and field map estimation. These can either be fast but

less accurate conventional methods or slow and accurate iterative methods.

Assuming this reference rate map is a good approximation of the rate map that we

want to estimate, we now form the following first-order approximation as was proposed in
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Chapter 3:

e−tz(~rn) = e−tž(~rn) e−t(zj(~rn)−ž(~rn))

≈ e−tž(~rn) (1 + (−t) (zj(~rn) − ž(~rn)))

= e−tž(~rn) − (−t) e−tž(~rn) ž(~rn) + (−t) e−tž(~rn) z(~rn) . (5.9)

This affine approximation allows the MR signal equation s(t; z, f ) to be approximated as

follows:

s(t; z, f ) ≈ Φ(~k(t))
N∑

n=1

f(~rn) e−tž(~rn) e−i2π(~k(t)·~rn) −

(−t) Φ(~k(t))
N∑

n=1

f(~rn) e−tž(~rn) e−i2π(~k(t)·~rn) ž(~rn)+

(−t) Φ(~k(t))

N∑

n=1

f(~rn) e−tž(~rn) e−i2π(~k(t)·~rn) z(~rn) ,

which can be written in a more compact matrix-vector format:

s(z, f) = A(z) f ≈ s(z, f ; ž)

s(z, f ; ž) , A(ž) f − D(−t) A(ž) D(f ) ž + D(−t) A(ž) D(f )z,

where D(·) is a diagonal matrix where the argument is on the diagonal and the elements of

A(·) are given by (5.6). This allows us to approximate the MR signal so that both f and z

have a linear relationship to the signal equation.

This approximation can now be used to form a new cost function, which is an approx-

imation to the cost function in (5.8). This cost function is referred to here as an affine

approximation to the penalized log likelihood, and ẑ and f̂ are found by minimizing it as
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follows:

ΨAPLL(f , z; ž) =
1

2
‖y − A(ž) f + D(−t) A(ž) D(f) ž − D(−t) A(ž) D(f )z‖2

+ R1(f ) + R2(z) ,
{
f̂ , ẑ

}
= arg min

f ,z
ΨAPLL(f , z; ž)

(5.10)

which can be minimized using an alternating minimization algorithm. Unlike in (5.8), both

minimizations in the alternating minimizations are now quadratic so fast reconstruction

algorithms such as CG can be used.

The accuracy of the reconstruction depends on the accuracy of the affine approximation

in (5.9). Similar to what was proposed in Chapter 3, we refine z by updating ž using the

latest estimate of z in the alternating minimization algorithm. This will gradually improve

the affine approximation and lead to a more accurate f̂ and ẑ. This refinement process can

be repeated until the cost function in (5.8) has converged.

5.3.1 Alternating Minimization of ΨAPLL(f , z; ž) for fMRI Data

The alternating minimization algorithm for a single time series of fMRI data consists of

a one time initialization and three steps that are repeated until all time frames have been

reconstructed. What follows is a general description of that process. Here we use j and l

as the time frame and refinement indexes respectively and the estimate of z for time frame

j and refinement l is then noted as ẑ
(l)
j .

To initialize the algorithm, we need to estimate a z that can be used as a ž for the first

time frame of the fMRI data. For that purpose, additional feature-rich k-space data can be

acquired at the start of each scan of an fMRI study. We then estimate an initial ž either by

using separate estimation of R∗

2 [35–37, 50–52, 69] and field maps [7, 70] or slow nonlin-

ear optimization algorithms [42, 43] of that k-space data. After reconstructing this image
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we repeat on three general steps to reconstruct all the time frames for the fMRI data. In

the context of that general description, the initial ž is referred to as ẑ
(0)
1 and j and l are

initialized as j = l = 1.

The first step is to minimize the cost function in (5.10) with respect to f . This is done by

setting z = ž = ẑ
(l−1)
j and formulating a new quadratic cost function ΨAPLL,1

(
f ; ẑ

(l−1)
j

)

as follows:

ΨAPLL,1

(
f ; ẑ

(l−1)
j

)
, ΨAPLL

(
f , ẑ

(l−1)
j ; ẑ

(l−1)
j

)
− R2

(
ẑ

(l−1)
j

)

=
1

2

∥∥∥y − A
(
ẑ

(l−1)
j

)
f
∥∥∥

2

+ R1(f ) ,

(5.11)

where any constants have been subtracted from the original cost function in (5.10). Note

that this cost function is the same if this problem were formulated using the original cost

function in (5.8) instead of its affine approximation. The estimate f̂ j is then equal to the

minimum of this cost function, which can be found using fast NUFFT [20] or Toeplitz [19]

based CG reconstructions.

The second step is to minimize the cost function in (5.10) with respect to z. This is done

by setting f = f̂ j and formulating a new quadratic cost function ΨAPLL,2

(
z; f̂ j, ẑ

(l−1)
j

)

as follows:

ΨAPLL,2

(
z; f̂ j , ẑ

(l−1)
j

)
, ΨAPLL

(
f̂ j, z; ẑ

(l−1)
j

)

=
1

2

∥∥∥ỹ
(
f̂ j, ẑ

(l−1)
j

)
− B

(
f̂ j, ẑ

(l−1)
j

)
z

∥∥∥
2

+ R2(z) ,

(5.12)

where the data vector ỹ
(
f̂ j , ẑ

(l−1)
j

)
and system matrix B

(
f̂ j , ẑ

(l−1)
j

)
are defined as fol-

lows:

ỹ
(
f̂ j, ẑ

(l−1)
j

)
, y − A

(
ẑ

(l−1)
j

)
f̂ j + D(−t) A

(
ẑ

(l−1)
j

)
D
(
f̂ j

)
ẑ

(l−1)
j

B
(
f̂ j, ẑ

(l−1)
j

)
, D(−t) A

(
ẑ

(l−1)
j

)
D
(
f̂ j

)
.
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The minimum of this cost function is referred to as ẑ
(l)
j , which can be found using the same

previously mentioned fast CG based reconstructions [19, 20]. One thing to note here is that

in this cost function there is a multiplicative relationship between f̂ j and the parameter of

interest z. This could potentially cause a coupling between the final estimates f̂ j and ẑj ,

which we need to be aware of.

The third step is to evaluate if the joint reconstruction for this time frame has converged

and if so move on to the next time frame if one exists. If the cost function in (5.8) has

not converged, we then redefine l , l + 1 and go back to the first step. However, if it has

converged and j is not at the final time frame J we define:

ẑ
(0)
j+1 , ẑ

(l)
j = ẑj,

and move to the next time frame (j , j + 1), reset the refinement index (l , 1) and go

back to the first step of the algorithm. If j is at the final time frame the algorithm is done.

Before using ẑ
(l)
j to estimate a new f j , we enforced an non-negativity constraint on the

real part of ẑ
(l)
j to make certain that the R∗

2 values used in the system matrix were positive.

If this is not done there a possibility that the negative R∗

2 values could cause instability

issues in the reconstruction.

5.3.2 K-Space Trajectory Design

To improve the accuracy of the estimated relaxation rate map it has been shown to be ben-

eficial to oversample near the center of k-space [43]. This is due to the MR signal being

higher close to the center of k-space, so having a lot of samples in that area should help

separate the effects of f and z in the signal equation.

A trajectory that revisits often the center of k-space as it samples the data would be

ideal, such as radial or rosette [71] trajectories. The rosette trajectory was strongly advo-

cated and used in a previous paper where both f and z were estimated using nonlinear
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optimization [43]. However, the rosette trajectory puts a very high strain on the gradi-

ent system and is susceptible to eddy currents and trajectory distortions. This can cause

model mismatch in the reconstruction of data acquired from an MRI scanner and can lead

to distortions in image space.

The spiral trajectory is much better behaved in terms of trajectory distortions than the

rosette trajectory. Even though it does sample heavily the center of k-space, there is not

enough information from one spiral readout to estimate both f and z without resorting to

a non-quadratic regularization and thus increasing computation time significantly. Here we

propose to acquire the data using two spiral readouts where the first one is acquired right

after the RF excitation and the other is acquired with BOLD weighting. This results in a

T2-weighted and T ∗

2 -weighted readouts respectively which should result in a rich enough

data set to estimate f and z accurately.

Even though two spiral readouts give an adequate amount of samples to estimate both

maps, there is still a lot less samples from the center of k-space compared to if the data were

collected using the rosette trajectory. This was demonstrated in [43], where four consecu-

tive spiral readouts were shown to give worse results than a rosette trajectory of the same

readout length. However, in that work the reconstruction did not use any regularization,

which if used reduces the data dependence of the reconstruction. The regularization is gen-

erally based on a prior assumption on some properties the reconstructed images. Thus, if

regularization is used it has to be taken into consideration when deciding on an acquisition

method.

5.3.3 Regularization Design

The proposed reconstruction method uses regularization for both estimates of f and z.

This allows the reconstruction to make use of some prior information about the character-

istics of either image and thus can work well with less data. This comes at a price of a user

controlled bias in the reconstructed images.
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For this reconstruction we chose to use a quadratic roughness penalty for both parame-

ter maps, defined as:

R1(f ) =
1

2
β1 ‖C1f‖2

R2(z) =
1

2

(
β21 ‖C1zR‖2 + β22 ‖C2zI‖2) ,

where C1 and C2 are first and second order differencing matrices and β1, β21 and β22

are user selected tuning parameters that control the trade-off between noise and resolu-

tion. There are various ways of choosing these parameters and here we do that based on a

predetermined desired resolution.

In Section 3.4 we showed how a quadratic spatial roughness penalty produced spatially

varying local resolution for the resulting z estimates. In our case this is particularly prob-

lematic for f and the R∗

2 map zR since both of these maps need to have uniform resolution

for functional analysis purposes. However, for the field map zI non-uniform resolution is

an advantage if the regularization smooths less where f is large and more where f is small

[70].

In Section 3.4 we proposed an approximate correction to the resolution non-uniformity.

This was done by adding a diagonal weighting matrix D with diagonal elements given by

(3.22). It turns out that this analysis is still relevant to the proposed alternating minimization

reconstruction.

In particular, the elements of a diagonal matrix D1 that approximately makes the mini-

mum of (5.11) have spatially uniform resolution are given as follows:

[
d1

(
ẑ

(l−1)
j

)]
n

=

√√√√
∑M

m=1 c2
m e−2tm ẑR

(l−1)
j (~rn)

∑M
m=1 c2

m e−2tmzR

,

where cm , Φ(~k(tm)) tm and zR is the median R∗

2 value within the brain. The elements of

the diagonal matrix D21 that makes the estimated R∗

2 from minimizing (5.12) have spatially
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uniform resolution are given as follows:

[
d21

(
f̂ j , ẑ

(l−1)
j

)]

n
=
∣∣∣f̂j(~rn)

∣∣∣

√√√√
∑M

m=1 c2
m e−2tm ẑR

(l−1)
j (~rn)

∑M
m=1 c2

m e−2tmzR

.

When it comes to the field map estimate we want to smooth more where f is small and

smooth less where its large. Looking at the correction that is needed for resolution uni-

formity in R∗

2 we note that this exact behavior would be seen if we would not use D21

to correct for the resolution nonuniformity. Thus, D22 to reconstruct the field map is a

constant diagonal matrix defined as:

[
d22

(
f̂ j , ẑ

(l−1)
j

)]
n

= median
(
d21

(
f̂ j, ẑ

(l−1)
j

))

Note that all the diagonal weighting matrices D are dependent on the previous estimates

of z or/and f . However, if we were to update these matrices every time a new estimate of

either map is found, the cost functions would be a moving target. Thus we implemented

the reconstruction such that we only updated these matrices once the cost function has con-

verged as per a predefined stopping rule. For the first time frame we update all the matrices

three times since the initial ž is usually not very close to z. For all other time frames we

update the matrices only once.

The stopping rule that we use here to decide when we have run enough refinements so

that all weighting matrices can be updated is quite conservative. Here, we chose it such

that if the normalized error of the current refinement of f relative to its previous refinement

increased compared to the similarly defined normalized error of the previous refinement we

deem the cost function as converged. This can be expressed with the following inequality:

∥∥∥f̂
(l) − f̂

(l−1)
∥∥∥

∥∥∥f̂
(l)
∥∥∥

>

∥∥∥f̂
(l−1) − f̂

(l−2)
∥∥∥

∥∥∥f̂
(l−1)

∥∥∥
,
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Figure 5.1: Baseline simulation maps from digital phantoms ((a) and (b)) and real hu-

man images ((c)-(f)). (a) Digital f phantom with the edge of the reconstruction mask for

reference; (b) Digital zR0 phantom; (c) zI0 from real data; (d) f with the edge of the

reconstruction mask for reference; (e) zR0; (f) zI0.

where l is the refinement index. Then we either updated all D and continue estimating the

images for the current time frame or move to the next one.

5.4 Simulations

We simulated a time series of k-space data to further analyze the proposed joint reconstruc-

tion of f j and zj . The k-space data was generated using the exact signal equation as given

in (5.4). Here, we chose to use a dual echo spiral out k-space trajectory, where the length of

each readout is 4633 samples or 18.5ms long. The echo time for the second readout (TE2)

was chosen to be 30ms, unless stated otherwise, to give an adequate BOLD weighting.

All the simulation maps are 64×64 as is the size of the reconstructed images. Figure 5.1

shows the baseline simulation maps for f , R∗

2 and field maps for both a digital and collected

human data based phantoms. Figure 5.2 shows the spatial maps and time series used to gen-
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Figure 5.2: Simulation maps and graphs to generate the functional time series for both dig-

ital and collected data based phantoms. Spatial weights to generate functional changes in:

(a) Digital zR phantom; (b) Digital f phantom; (c) zI associated with digital phantoms; (d)

zR from collected data; (e) f from collected data; (f) zI based on collected data. Simulated

functional temporal changes in (g) zR and (h) f . Simulated hardware related drift in (i) zI
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erate the fMRI simulations for both types of phantoms. Figure 5.2(a) and 5.2(d) shows the

four “sites” of activation along with the edge of the phantom for reference, all simulated by

changing R∗

2 as given by the activation waveform in Figure 5.2(g). The top “site” was in a

place of higher off-resonance than the others and the bottom “site” has active voxels close

to the edges of the simulated phantom. The bilateral activations are to replicate bilateral

motor activation. To make the simulations more realistic we also include a global drift in

off-resonance, which is regularly seen in fMRI studies [45] and task correlated changes in

f that simulate in-flow changes. Figure 5.2(b) and 5.2(e) shows the two “sites” where that

occurs. One of the “sites” was intentionally put exactly in the same spatial position as the

left bilateral activation.

5.4.1 Initialization: Robustness to Motion and Functional Changes

A possible issue with the reconstruction is how sensitive it is to the choice of the first ž for

some time frame. This is especially a concern if there has been motion, inflow changes or

functional changes between the time the data for ž was collected and the time the data that

is being reconstructed with this ž. To investigate this, we simulated 3 time frames, with

TE1 = 4.59ms and TE2 = 30ms. The first two time frames were used to estimate ž by

delaying the echo times by 2ms for the first time frame relative to the second one using

conventional methods to estimate field map [7] and R∗

2 [50] as discussed in Section 5.3.1.

To simulate motion, the third time frame was moved in-plane by 3 voxels in x and 1

voxel in y directions. To simulate inflow and functional changes in the third time frame we

also had an additive peak change of 1% in f , 2.5% in zR and 3Hz in zI relative to their

respective median values. The spatial location of these changes is shown in Figure 5.2(a)

- 5.2(b). We performed 50 alternating minimizations of (5.11) and (5.12) and updated the

penalty with new weights to maintain uniform resolution every time the reconstruction was

deemed as having converged as described in Section 5.3.3.

Figure 5.3 show the NRMSE and RMSE plots for f̂ , ẑR and ẑI for the third time
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Figure 5.3: Error plots over 50 alternating minimizations for f̂ and ẑ. The error plots

are all relative to the respective simulation maps. (a) Normalized root mean squared error

(NRMSE) for f̂ ; (b) Root mean squared error (RMSE) for ẑR and ẑI .
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Figure 5.4: Reconstructed (a) f̂ , (b) ẑR and (c) ẑI after 50 alternating minimizations and

the absolute error of (d) f̂ , (e) ẑR and (f) ẑI .
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frames. From the plots we see that the reconstruction has stabilized after 10 iterations.

Also we note that the NRMSE goes further down for f̂ as we update the penalty with new

weights at iteration 21 and 35.

Figure 5.4 shows f̂ and ẑ after 50 alternating minimizations and the absolute error of

that estimate relative to the respective simulation map. The absolute error maps indicate

that even though the initial ž was shifted by several voxels in both x- and y-direction, the

reconstruction was able to a not too unreasonable estimate of all the parameters. The error

maps also show how both f̂ and ẑR are more sensitive to estimation error close to sharp

edges. This is something that could possibly be improved by incorporating an edge aware

roughness penalty.

5.4.2 Echo Time Dependence of the Dual Echo Spiral Out K-Space

Trajectory

When using a dual echo spiral out where the second echo has a fixed echo time TE2 =

30ms we can still choose when the first echo is acquired. Since that choice could impact

the performance of the reconstruction, we would like to look at the effects of possible

choices for the echo time of the first echo. More specifically we will focus on how our

choice affects the eventual fMRI analysis when using the estimated images from the joint

reconstruction.

We simulated four variations of the fMRI time series as described above, where each

one had a different echo time TE1 for the first echo. Our choices for TE1 were 4.59ms,

6.86ms, 9.14ms and 11.4ms, i.e., from the earliest to the latest echo time possible. Addi-

tive iid Gaussian noise was included in all four simulation data sets. The amount of noise

corruption was set such that the second k-space readout at TE2 = 30ms for the first time

frame had SNR=55. From that we calculated the variance of the noise and used that to

generate the noise for the simulated dual echo readout for all time frames.

To evaluate the effectiveness of each TE1 choice we reconstructed the 100 time frame
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Figure 5.5: Results from GLM analysis of the simulated functional changes and drift from

Figure 5.2(g)-5.2(i). Z-scores for reconstructed time series of (a) zR , (b) f and (c) zI for

the four choices of TE1 (left to right) at 4.59ms, 6.86ms, 9.14ms and 11.4ms.

fMRI data using the proposed reconstruction, and performed a general linear model (GLM)

analysis on the resulting time series of images. We analyzed f , R∗

2 and field map time se-

ries separately. For f and R∗

2 time series we used the activation waveform as a regressor

but for the field map we had the drift waveform as a regressor.

Figure 5.5 shows the resulting z-score maps for each image across all the echo time

differences. We see that a longer time between the two echos results in less coupling in the

activation maps of R∗

2 and the inflow maps of f . Also, there is a minor smoothing effect

in the R∗

2 maps and the field map drift effect is captured better as the echo times get closer.

Both of these observations indicate that as the echos are further apart, the estimated f and
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Figure 5.6: The effect on the reconstructed f when adding an impulse in zR . (a) Spa-

tial positions of impulses shown with a white ’x’ on top of the baseline zR ; (b) Resulting

impulse responses in the reconstructed zR (left) and the effect on f (right).

zR maps are less coupled. This indicates that the accuracy of the three estimates improves

as the echo times are further apart.

To further evaluate how much interaction there is between the f and zR estimates, we

looked at what the effect of adding an impulse in zR had on the estimated f . To do this,

we generated simulation data that was 47 time frames. Each time frame had one impulse

in zR and across all time frames the spatial position of that impulse was varied. We also

generated another data set with 47 time frames with no impulses. These noiseless data sets

were reconstructed using the joint reconstruction. To find the impulse response of the re-

construction the resulting zR and f images with no impulse were subtracted from the ones

that had an impulse.

Figure 5.6(a) shows the impulse spatial positions and Figure 5.6(b) resulting impulse

responses for both zR and f . From this we see that there is some coupling between the

two estimated images. The average ratio of the zR and f impulse responses for all the

voxels where the impulse response peaks is about 3.79. This implies that for a maximal

change in zR of 2.5% from the median value that is often seen in fMRI (0.4254 1/sec in this

simulation), results in a possible 0.1123 change in the simulated f , or about 0.75% change

from its median value. However, as is supported by the simulation results in Figure 5.5,

this percent change is low enough that it is generally below the noise level in fMRI data.
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Figure 5.7: Results of the GLM analysis for the simulated functional data, with and without

in-plane motion. The z-score maps of the simulated brain function contrast are shown zR

(a) with in-plane motion and (b) without in-plane motion.

Even though we only analyzed how changes in zR can influence estimates of f a similar

relationship exists with changes in f influencing the estimates of zR .

5.4.3 Performance of Joint Reconstruction with Motion Corrupted

fMRI Data

To evaluate the performance of the joint reconstruction when dealing with motion corrupted

fMRI data, we simulated an fMRI experiment where the data was corrupted by in-plane

motion. To get a perfect registration the in-plane motion was deliberately made to be an

integer multiple of the voxel width. This was to avoid any performance issues of the reg-

istration algorithm. At time frames [1, 26, 51, 76] we shifted the image by [0,−1,−2,−3]

voxels in x direction and [0,−1, 0, 1] voxels in y direction relative to the initial position.

The time series was analyzed using GLM with the in-plane shift undone. The GLM

was setup to account for any linear drift in the time series, by including a linear regressor.

For comparison we also reconstructed the same functional simulation but now without any

in-plane motion.

Figure 5.7 shows the results of the GLM analysis. It shows the z-score maps of the
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simulated brain function contrast for zR with and without the simulated in-plane motion.

Overall the performance of the reconstruction seems to be similar when reconstructing data

with and without motion corruption. This is further shown when we threshold the maps

with an uncorrected p-value of 0.001. For that threshold we get 92 true positives (TP) and

2 false positives (FP) when reconstructing data with in-plane motion but 100 TP and 1 FP

for data without in-plane motion. This indicates the joint reconstruction deals well with

motion corrupted data.

5.5 Experimental Data

We acquired data from a 3T Signa GE scanner to evaluate the reconstruction for data from

an MRI scanner. We collected images of both phantoms and humans to evaluate two things

in particular. First, the phantom data was used to evaluate the temporal stability of the re-

constructed R∗

2 images, caused by magnetic field drifts frequently observed in fMRI studies

and was discussed in Section 2. Secondly, the human data was used to evaluated the per-

formance of the joint reconstruction for fMRI analysis. Here, we specifically focused on

its performance under severe subject head movement during an fMRI study.

5.5.1 Temporal Stability under MRI Hardware Related Magnetic

Field Drift

The GE resolution phantom was used to collect the images to evaluate how magnetic field

drift affects BOLD weighted data both in conventional T ∗

2 -weighted images and R∗

2 images

from the joint reconstruction. To understand the impact of not accounting for field drift

when reconstructing fMRI data, we looked at a slice that had considerable in-plane off-

resonance. Also, to look at the role through-plane gradient has we acquired the slice with

two different slice thicknesses. The first one was 4mm which is pretty standard in whole

brain fMRI studies and the second one 1mm.
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Figure 5.8: Estimated baseline maps from the joint reconstruction for the slice of interest

and across both slice thicknesses. The reconstructed images for the 4mm slice thickness

are shown for (a) zR , (b) zI and (c) f . The results for the 1mm slice are shown for (d) zR ,

(e) zI and (f) f .

When acquiring the dual echo spirals, the second echo time was set to 35ms but the first

was set to TE =6.85ms and TE =4.59ms for the 1mm and 4mm slice thickness respectively.

These were the earliest we could acquire the first echo. We acquired 100 time frames, 18

slices (although we only looked at one of them) with TR =1.5s and 90◦ flip angle. We

then ran the joint reconstruction on both data sets and performed an iterative T ∗

2 -weighted

image reconstruction [19] for each readout. Both reconstructions had a roughness penalty

that was setup to give the same spatial resolution for the reconstructed R∗

2 images and T ∗

2

images.

After reconstruction, we performed a GLM analysis on the time series of f , R∗

2 and

field maps from the joint reconstruction and the T ∗

2 -weighted images from both echos. In

all cases we estimated a linear drift effect along with a baseline using GLM and converted

those results to z-scores maps. The baseline maps were used to visually evaluate the effects
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Figure 5.9: Linear drift effect z-scores from the GLM analysis of both slice thickness and

for all the reconstructed images. (left to right) Results shown for the reconstructed images

of zR , zI , f , T ∗

2 -weighted image for the first echo and T ∗

2 -weighted images for the second

image. The upper row shows results for 4mm slice and the lower row for 1mm slice.

of different slice thickness for the joint reconstruction. The z-score maps of the linear drift

effect were used to evaluate the size of that effect and to form a density histogram.

Figure 5.8 shows the estimated baseline maps from the joint reconstruction for the slice

of interest and across both slice thicknesses. We see that for the estimated baseline zR there

are higher R∗

2 values in the 4mm slice close the edges of the phantom compared to the 1mm

slice thickness. This indicates that those areas are dominated by through-plane gradients,

which are not accounted for in the reconstruction, and are explained by the reconstruction

model as an increase in R∗

2 values to account for the loss in signal in the second echo com-

pared to the first one. This indicates that the reconstruction is sensitive to estimation errors

in R∗

2 for areas with a high through-plane gradient, such as close to the sinuses.

Figure 5.9 shows linear drift effect z-scores from the GLM analysis of both slice thick-

ness and for all the reconstructed images. From these results we see that a linear drift effect

is clearly visible for the T ∗

2 -weighted images for both echos. This effect is even visible for

the first echo for the 1mm slice thickness. If we compare this to the effect size seen in zR

estimates we see that R∗

2 maps from the joint reconstruction are not as greatly affected by

the field drift. The linear drift is correctly captured by the zI images, as clearly seen from

Figure 5.9.
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Figure 5.10: Density histograms for the linear drift z-scores of zR and the T ∗

2 -weighted

image for the second echo (TE = 35ms) for (a) 4mm and (b) 1mm slice thickness. The

histograms were produced only from voxels within the phantom.

To compare the potential effect the linear drift can have in fMRI studies, we also made

a density histograms for the linear drift z-scores of zR and the T ∗

2 -weighted image for the

second echo (TE = 35ms). Figure 5.10 shows these results for both slice thicknesses for

voxels within the phantom. In both cases there is a clear indication that the R∗

2 maps per-

form better in both cases. That being said, for both slice thicknesses there still seems to

be lingering linear drift effect in the zR estimates, where the mean of the curves are 1.32

for 4mm and 1.00 for 1mm. This can also be seen in the z-score maps in Figure 5.9. This

seems to be scanner related, since these drifts were not noticeable in the simulations where

we simulated field map drift. Any drift in the scanner amplifiers could explain this effect,

due to the previously shown coupling between zR and f estimates.

5.5.2 In Vivo fMRI Experiment with Intentional Head Motion

To evaluate the joint reconstruction under motion corrupted fMRI data, we performed an

fMRI experiment where we instructed the subject to move their head randomly while

performing a task. This experiment was repeated without motion for comparison. The

selected task was a visually cued finger tapping task, where the subject was instructed to

lie still for 20s and tap their fingers for 20s, repeated five times. Here the echo times were
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Figure 5.11: Voxels above an uncorrected threshold with p-value 0.001 for two different

slices and for data with and without intentional head movement. In (a) is a representative

slice that shows visual activation and (b) motor activation. For both (a) and (b) the first and

second columns show results for zRj and T ∗

2 -weighted images respectively and they are

overlaid on top of the first time frame of f and the T ∗

2 -weighted image respectively. For (a)

and (b) the first and second rows show results for intentional and non-intentional motion

respectively.
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TE = 4.59ms and TE = 30ms for the first and second echos respectively, 24 4mm slices

and TR = 1.6s.

We reconstructed the images using the joint reconstruction and also used an iterative

reconstruction [19] to estimate the T ∗

2 -weighted images from the second echo. We slice

time and motion corrected both time series using tools from the FSL 4.0 software pack-

age.2 The registration was performed directly to the T ∗

2 -weighted images but for the zR we

first estimated the registration parameters from the estimated f images and applied those

registration parameters to the zR . For activation detection we used GLM analysis for both

images, where we controlled for linear drift and timing offsets using a linear regressor and

the activation regressor derivative respectively.

Figure 5.11 shows the voxels above an uncorrected p-value of 0.001 (zthr = 3.07) for

two slices from both reconstructions of the fMRI data with intentional and non-intentional

head motion. The anatomical overlay for the R∗

2 and T ∗

2 -weighted based results used the

first frame of f and T ∗

2 -weighted magnitude image respectively. For both the intentional

motion and non-intentional motion and across slices, zRj has more voxels above the thresh-

old than the conventional T ∗

2 -weighted images. In terms of robustness to motion corruption

zR gives slightly better results for both slices, but not categorically so. This would have to

be investigated further.

5.6 Conclusion and Discussion

We proposed a joint reconstruction method that estimates the initial magnetization image

f , R∗

2 and field map for a time series of MR data such as used in functional MRI. The

reconstructed images have been shown to be robust to motion and blood in-flow, i.e., tem-

poral changes in f , both in simulations and real data. Also, the model was able to capture

magnetic field drift as a true drift in the field map. This was shown in phantom data that

2Software available at http://www.fmrib.ox.ac.uk/fsl/
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was collected from an MRI scanner and, although not shown, the same can be said of

the simulations that included field map drift. In terms of activation detection, the recon-

structed R∗

2 maps produced improved results when compared to T ∗

2 -weighted images, both

in simulations and for real data.

We found that the method performed well by using a dual echo spiral-out readout. One

thing that we did notice was that the further apart the echo times, the smaller of a coupling

effect we got in the reconstructed zR and f j estimates. In our discussion we put a fixed

echo time for the second echo at 30ms. If we would move that further back, that could

potentially reduce this coupling even further. However, even though that would work well

in the simulations presented here, any real data would have to take into consideration the

additional signal loss from through-plane gradients. Ultimately this is a compromise that

needs further investigation.

Through-plane gradients were not specifically included in the signal model used for the

joint reconstruction. However, to get an accurate R∗

2 estimate, this is something that needs

to be added to the model. It would make the reconstruction more robust in areas of higher

susceptibility differences such as close to the sinuses or ear canals. The question of how

we would first estimate a gradient map and also how we would update that gradient map

due to head motion while acquiring the data needs further investigation. An idea of how

that could be done is presented in future work section.

The apparent coupling between the reconstructed f j and zR is a concern for the joint

reconstruction. Even though we showed in simulations that changes in R∗

2 cause changes in

f the same could be said of changes in f affecting R∗

2 estimates. This degrades the quan-

titative and qualitative results we get for the R∗

2 estimates using the joint reconstruction.

There are two possible things we can look at to potentially address this coupling effect.

The first is a redesign of the penalty that we use for f . The second is to consider different

k-space trajectory designs.

One problem of using a quadratic roughness penalty for both zR and f with the same
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effective resolution is that any separation of the two parameter maps has to be done by

the data fit in the cost function. However, as we see from (5.12) and the definition of

B
(
f̂ j , ẑ

(l−1)
j

)
, there is a multiplicative relationship between z and f̂ , which we cannot

avoid with the proposed joint reconstruction. This implies that rethinking the penalty term

for f is needed to decrease this coupling further. One such idea would be to use a spar-

sity penalty on the dynamic changes in f relative to some baseline f map. This would

however make the the cost function in (5.11) non-quadratic and could potentially have an

impact on the reconstruction speed. Also, for the areas where there are changes in f it is

not guaranteed that there would be a reduction in this coupling effect.

In [43] it was suggested that a rosette trajectory would be a more effective trajectory

than multi-echo spirals for a non-penalized estimate of all three parameters in the joint re-

construction. Since we now have a penalty to impose restrictions on the solution of the

reconstruction algorithm, this conclusion may not apply any longer. However, it is far from

being clear that the proposed two echo spiral is the best trajectory to use to estimate the

parameters. We noted in simulations that by a simple shift in the echo time of the first

echo, we were able to reduce this coupling in fMRI results. This indicates that there could

be different trajectories that reduce it further. For example a four echo spiral where each

spiral is twofold undersampled, so that all four echos combined have the same number of

samples as the two fully sampled echos used here, could be a better option. This is because

such a sampling pattern would allow us to sample the center of k-space more often than two

echos, but not put too much strain on the gradient hardware to induce eddy currents. This

trajectory and others for use with the joint reconstruction would need further investigation.

The performance of the joint reconstruction for fMRI data improves when compared

to T ∗

2 -weighted images. However, further investigation is needed to assess how reliable

and consistent the estimated R∗

2 images are. This is with a specific focus on the functional

detection, i.e., how reliable do areas of activation show up in human scanning when we use

the estimated R∗

2 images. Methods such as an estimate of test-retest reliability of human
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fMRI data proposed in [72] and applied in [62] would be a good tool to use for further

assessment. This would require repeated scans from several subjects.
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Chapter 6

Conclusion and Future Work

6.1 Dynamic Reconstruction of R∗
2 Images for fMRI

The initial motivation for the work presented in this dissertation was to develop a fast model

based iterative image reconstruction of R∗

2 and field map to be used in fMRI. However, both

of these parameters have a nonlinear relationship to the MR signal equation that would re-

quire slow optimization algorithms to estimate. It turns out that the temporal changes in

R∗

2 and field map as we acquire each time frame in fMRI is relatively slow. This allowed

us to make a linear approximation to the signal equation around a reference R∗

2 and field

map thus significantly reducing the compute time of the estimate as was shown in Chap-

ter 3. This allowed us to reconstruct an R∗

2 map from one fully sampled k-space trajectory,

thus maintaining the same temporal and spatial resolution of conventional fMRI acquisition

methods. This was at the minor cost of having to acquire some small amounts of additional

data at the start of each fMRI experiment to estimate an initial reference R∗

2 and field map.

Any data collected from the MRI scanner is going to be contaminated with noise. To

make the reconstruction robust to noise we added a quadratic roughness penalty to the

cost function. Here we chose to separately penalize R∗

2 and field maps. This was be-

cause the field map is generally more spatially smooth compared to R∗

2. The R∗

2 maps is

more an inherent property of the tissue in each voxel of the image and thus follows brain

structure but the field map is associated with the magnetic field which is more smooth
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than the underlying tissue structure. By stacking the vectors in the cost function, we were

able to reformulate the problem as a quadratic cost function while maintaining the sepa-

rate regularization of both maps. By including this regularization we were able to reduce

the data dependence of the reconstruction, which allowed us to use more commonly used

trajectories such as spirals to estimate R∗

2.

One of the side effects of using a regularization function for this problem, was that it

introduced spatially nonuniform resolution for the R∗

2 maps. Since these estimates are in-

tended for fMRI analysis it was preferred that the spatial resolution of the R∗

2 estimates be

nearly uniform. To enforce this property we developed a nonuniform roughness penalty

for R∗

2 that accounted for this spatially varying resolution. As was shown in Chapter 3 this

was quite effective. To set the regularization parameter to the right value to achieve some

desired resolution, we also developed a fast approximate method of evaluating the local

impulse response of the reconstruction algorithm. Chapter 4 concluded that this approxi-

mation was accurate and fast. This allowed us to quickly evaluate the resolution properties

of the spatially nonuniform roughness penalty so that we could tune the regularization in a

computationally efficient manner.

Finally, the last part of the work is presented in Chapter 5. There we improved the

reconstruction in Chapter 3 by also estimating the magnetization of the object. This was

feasible by acquiring some data right after RF excitation in addition to the conventional

BOLD weighted readout. We were able to show that the reconstruction was robust to mo-

tion and any temporal changes in the magnetization such as inflow of fresh blood that is

generally a confound in conventional fMRI images. This potentially opens the door to also

analyzing the magnetization for temporal structures associated with the functional changes.

This made the reconstruction produce even more viable and robust estimates of R∗

2, thus

paving the way for a fast method to estimate quantitative measure of functional activation.

107



6.2 Future Work

The future work section can be split into two categories. The first category are ideas that

can further improve the reconstruction algorithm to produce more accurate estimates of R∗

2.

The second category are ideas that relate to specifically evaluating the possible improve-

ments of using R∗

2 maps for fMRI analysis both in terms of detection and quantification.

Below we highlight some of the major ideas but do note this is not a complete list. There

are other smaller ideas that are presented after each chapter.

6.2.1 Future Improvements to the Joint Reconstruction Algorithm

Incorporating through-plane gradient in the signal model for the joint reconstruction

One of the things that is apparent is that the reconstruction does need to be improved in

areas of high susceptibility. Those areas are generally dominated by high through-plane

gradients that cause faster signal decay. Since the model used in this reconstruction does

not account for the source of this additional decay, the R∗

2 values can be higher than they

actually are in these areas. There has already been prior work that first derives a 2D MR

signal model that includes effects of the slice profile and through-plane gradient and then

proposes an efficient method to include these effects in the MR signal model [47]. That

model could be used in the joint reconstruction proposed in this dissertation and possibly

maintain a similar computational speed as the current version of the reconstruction. Since

there is a possibility that R∗

2 is correlated with through-plane, we also have to assess the

impact on the R∗

2 estimates when adding through-plane to the signal model.

Updating through-plane gradient maps for fMRI time series

Connected with the previous suggested future work is the fact that if through-plane gradi-

ents are used in the reconstruction for fMRI data, motion will affect the through-plane map
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at each time frame. If we were to also jointly estimate through-plane gradients we would

require more data which may reduce the temporal resolution of the fMRI time series. How-

ever, it has been suggested that the field map has a strong correlational relationship to the

through-plane gradients [73]. Such a relationship could be modeled and estimated from

some additional data at the start of the fMRI study. Since we are estimating field maps for

every time frame we could use this relationship to update the through-plane gradient map

for every time frame.

K-space trajectory design for the joint reconstruction

Even though double echo fully sampled spiral-out was used to acquire the data in the joint

reconstruction there is no indication that it is in some sense the best choice. For example,

a four echo undersampled spiral-out would distribute measurements close to the center of

k-space more evenly over the total readout than the double echo fully sampled spiral would.

However, there is no obvious way of seeing if that gives a more accurate estimate of R∗

2.

Other choices need to be explored and compared in terms of the quality of the resulting R∗

2

estimates.

Further enhancement of a spatially uniform roughness penalty

The roughness penalty that was used for estimating the rate map z tried to keep the spatial

resolution uniform across the object. However, the design that we developed is an approx-

imation. Also, it does not account for any influence of spatial variability due to the field

map, only the R∗

2 map is accounted for. Some empirical simulation did indicate that the

field map plays some role in causing spatial resolution nonuniformity. This needs to be

investigated further and addressed if possible.
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6.2.2 Future Applications for R∗
2 Maps in fMRI

Test-retest reliability of R∗

2 in humans

Simulating fMRI data can only go so far in assessing the performance of a reconstruc-

tion for fMRI data. The real test is to see if there is tangible evidence that this is also the

case when scanning humans. This needs to be investigated further than was done in this

dissertation. More subjects and repeated scans for each subject is needed to formulate a

test-retest reliability for the reconstruction. We can form ROC curves using that analysis

which allows us to quantify any potential improvements in detection performance when

using R∗

2 maps.

Longitudinal stability of R∗

2 as a measure of activation

Many fMRI applications call for repeated scans of subjects to monitor long-term changes

in the functional responses to certain tasks. To be able to compare all the results it is impor-

tant to separate changes due to physiology (this is of interest) and hardware stability (this

is a nuisance effect). Since R∗

2 can be directly associated to actual physiological changes

related to functional activity, it would make for an ideal candidate for these longitudinal

studies. However, we still need to assess the long term temporal stability of R∗

2 before it

can be used regularly in such studies.

Multi-modal imaging using R∗

2

The future of functional imaging undoubtedly lies in trying to merge the information from

the multiple sources that are available today to measure functional activity. To do this it

helps to have quantifiable measurements when merging this information across different

modalities, e.g., EEG and fMRI or near infrared spectroscopy (NIRS) and fMRI. One thing

that is needed is to assess how viable R∗

2, as a measure of physiological changes associated

with brain function, can help in this regard. This needs to be looked into further.
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Appendix A

Fast Gradient Based Optimization of a

Quadratic Stacked Cost Function

A.1 Introduction

Suppose the acquired complex-valued MR data vector y can be modeled as follows:

y = Ax + ǫ,

where A is the system matrix, x is the parameter of interest and ǫ is iid Gaussian noise.

A common method of estimating x is to minimize a quadratic penalized negative log-

likelihood cost function, that is given as follows:

Ψ(x) =
1

2
‖y − Ax‖2 + R(x) , (A.1)

where R(x) is usually a quadratic spatial roughness penalty. If the roughness penalty that

is needed is supposed to separately penalize the real part xR and imaginary part xI of x as

follows:

R(x) =
1

2

(
β1 ‖C1xR‖2 + β2 ‖C2xI‖2) ,
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the cost function can be formulated in an equivalent quadratic stacked format as follows:

ΨS(xS) =
1

2
‖yS − ASxS‖2 + RS(xS) , (A.2)

where the definitions of the stacked vectors and matrices is given in Section 4.2.1. Estimat-

ing x is now performed by minimizing ΨS(xS) in terms of the real valued stacked vector

xS. The goal is then to perform this using an iterative optimization algorithm in a memory

efficient and computationally fast manner. Our choice was to use the conjugate gradient

(CG) optimization algorithm.

Using CG to minimize the quadratic cost functions in (A.1) and (A.2) involves finding

the negative gradient of the cost function. In both cases the cost function gradient is a sum

of the data fit and the penalty gradients. Calculating the penalty gradient is fast for both

cost functions but the same cannot be said of the data fit gradient.

For (A.1) it involves the forward- and backprojections of the system matrix A, e.g.,

Ax and A′y respectively. There have been very efficient ways developed to calculate the

forward- and backprojections [19, 20] using FFT or NUFFT [25] and A can be stored using

only the components that form the matrix. However, for (A.2) the AS is twice the size of

A and also involves the forward- and backprojection of the real and imaginary parts of A

which are not easily accelerated using similar methods as for A. We propose to acceler-

ate the data fit gradient calculation of (A.2) using the already accelerated data fit gradient

calculation of (A.1), by linking the result of the latter with the former.

A.2 Fast Gradient Calculation of a Stacked Cost Function

We will start by analyzing how the real and imaginary parts of the negative gradient of the

data fit term of (A.1) looks like. It is given as a sum of two terms, as follows:

−∇x

1

2
‖y − Ax‖2 = A′y − A′Ax.
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Those two terms can now be written in their real and imaginary parts. The first term comes

as follows:

A′y =
(
AT

R − iAT
I

)
(yR + iyI)

=
(
AT

RyR + AT
I yI

)
+ i
(
AT

RyI − AT
I yR

)
, (A.3)

and the second term as:

A′Ax =
(
AT

R − iAT
I

)
(AR + iAI) (xR + ixI)

=
(
AT

R − iAT
I

)
[(ARxR − AIxI) + i (ARxI + AIxR)]

=
[
AT

RARxR − AT
RAIxI + AT

I ARxI + AT
I AIxR

]
+

i
[
AT

RARxI + AT
RAIxR − AT

I ARxR + AT
I AIxI

]
. (A.4)

The negative gradient of the data fit term of (A.2) is also given with a sum of two terms,

as follows:

−∇xS

1

2
‖yS − ASxS‖2 = A′

SyS − A′

SASxS.

The first term can be written as follows:

A′

SyS =




AT
R AT

I

−AT
I AT

R







yR

yI




=




AT
RyR + AT

I yI

AT
RyI − AT

I yR


 , (A.5)
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and the second term as follows:

A′Ax =




AT
R AT

I

−AT
I AT

R







AR −AI

AI AR







xR

xI




=




AT
R AT

I

−AT
I AT

R







ARxR − AIxI

ARxI + AIxR




=




AT
RARxR − AT

RAIxI + AT
I ARxI + AT

I AIxR

AT
RARxI + AT

RAIxR − AT
I ARxR + AT

I AIxI


 . (A.6)

Comparing (A.3) to (A.5) and (A.4) to (A.6), we can state the following:

−∇xS

1

2
‖yS − ASxS‖2 =




ℜ
(
−∇x

1
2
‖y − Ax‖2)

ℑ
(
−∇x

1
2
‖y − Ax‖2)


 .

This allows us to calculate the negative gradient of the stacked data fit term using the real

and imaginary parts of the negative gradient of the complex valued data fit term. This

allows us to use any previously developed acceleration methods.
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Appendix B

Majorizing A Nonlinear Least Squares

Problem to Estimate R∗
2

and Field Map

Estimating a rate map z using MR signal equation for a fixed magnetization f can be setup

as a nonlinear least squares problem of the following cost function:

Ψ(z) =
1

2
‖y − s(z)‖2 , (B.1)

where s : CN → CM is the discrete valued MR signal equation:

s(z) = [s(t1; z) , . . . , s(tM ; z)]

s(t; z) , Φ(~k(t))

N∑

n=1

f(~rn) e−tz(~rn) e−i2π(~k(t)·~rn) , (B.2)

z = [z(~r1) , . . . , z(~rN)] , f = [f(~r1) , . . . , f(~rN)] .

It would be advantageous to find a majorizer for this cost function since the linear approxi-

mation discussed in Chapter 3 and Chapter 5 does not guarantee monotonic descent for the

cost function in (B.1), which is what we would like to minimize.

To find the majorizer we first examine the gradient and then the Hessian of the cost

function. The row gradient ∇ of Ψ(z) is given as follows:

∇Ψ(z) = (s(z) − y)∇s(z) ,
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and the Hessian as follows:

∇2Ψ(z) =

M∑

m=1

(s(tm; z) − ym) Hm + ∇s(z)∇s(z) ,

where ∇ is the column gradient. For the MR signal equation in (B.2) we now get:

[∇s(z)]mn = [A(z)]mn = Φ(~k(tm))
N∑

n=1

f(~rn) (−tm) e−tmz(~rn) e−i2π(~k(tm)·~rn)

[∇s(z)]lm =
[
A(z)′

]
lm

= Φ(~k(tm)) ∗

N∑

n=1

f(~rl)
∗ (−tm) e−tmz(~rl)

∗

ei2π(~k(tm)·~rl)

[∇s(z)∇s(z)]ln =
[
A(z)′ A(z)

]
ln

=

M∑

m=1

∣∣∣Φ(~k(tm))
∣∣∣
2

t2mf(~rl)
∗ f(~rn) e−tm(z(~rl)

∗+z(~rn))

· e−i2π(~k(tm)·(~rn−~rl))

Hm = Φ(~k(tm)) t2m · diag{[h1, . . . , hN ]}

hn , f(~rn) e−tmz(~rn) e−i2π(~k(tm)·~rn) ,

where ∗ is the complex conjugate.

If we can find matrices Um and U for all z such that:

(s(tm; z) − ym) Hm � Um, ∇s(z)∇s(z) � U , (B.3)

where � is defined as:

M(z) � K ⇔ x′M(z) x ≤ x′Kx, ∀x ∈ C, (B.4)

we can find a quadratic surrogate that majorizes (B.1) with the following curvature:

J =
∑

m

Um + U .

The objective is then to find the matrices Um and U that satisfy (B.3) and are not
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dependent on z. To do this we utilize the following inequality:

x′M(z) x ≤ ‖M(z)‖Frob ‖x‖
2 , (B.5)

and the following assumptions:

fmax , max(|f(·)|) (B.6)

zR(·) ≥ 0 ⇒ e−tm(zR(~rl)+zR(~rn)) ≤ 1. (B.7)

First we would like to find a matrix U , such that x′ (∇s(z)∇s(z)) x ≤ x′Ux. To do

this we use (B.5). We now have the following:

‖∇s(z)∇s(z)‖Frob =

√√√√
N∑

l=1

N∑

n=1

∣∣[A(z)′ A(z)
]
ln

∣∣2. (B.8)

We can show using the triangle inequality, (B.6) and (B.7) that:

∣∣[A(z)′ A(z)
]
ln

∣∣ =

∣∣∣∣∣

M∑

m=1

Φ(~k(tm)) 2t2mf(~rl)
∗ f(~rn) e−tm(z(~rl)

∗+z(~rn)) e−i2π(~k(tm)·(~rn−~rl))

∣∣∣∣∣

≤
M∑

m=1

∣∣∣Φ(~k(tm)) 2t2mf(~rl)
∗ f(~rn) e−tm(z(~rl)

∗+z(~rn)) e−i2π(~k(tm)·(~rn−~rl))
∣∣∣

=

M∑

m=1

∣∣∣Φ(~k(tm))
∣∣∣
2

t2m |f(~rl)| |f(~rn)| e−tm(zR(~rl)+zR(~rn))

≤
M∑

m=1

∣∣∣Φ(~k(tm))
∣∣∣
2

t2mf 2
max,

and if we define the constant α1 as:

α1 ,

M∑

m=1

∣∣∣Φ(~k(tm))
∣∣∣
2

t2mf 2
max,
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we can use that and (B.8) to show that the following inequalities hold:

‖∇s(z)∇s(z)‖Frob ≤

√√√√
N∑

l=1

N∑

n=1

α2
1 ≤

√
N2α2

1 = Nα1.

If we define α , Nα1 we can use this to show the following:

x′ (∇s(z)∇s(z)) x ≤ ‖∇s(z)∇s(z)‖Frob ‖x‖
2

≤ α · ‖x‖2 = x′ (αI)x.

From this we see that U = αI where I is the identity matrix.

Next is to find the series of matrices Um such that x′ ((s(tm; z) − ym) Hm) x ≤

x′Umx. Again we use the inequality in (B.5). The Frobenius norm is as follows:

‖(s(tm; z) − ym) Hm‖Frob = |(s(tm; z) − ym)| · ‖Hm‖Frob . (B.9)

We now get using the triangle inequality, (B.6) and (B.7) that:

|s(tm; z) − ym| ≤ |s(tm; z)| + |ym|

=

∣∣∣∣∣Φ(~k(t))

N∑

n=1

f(~rn) e−tz(~rn) e−i2π(~k(t)·~rn)

∣∣∣∣∣ + |ym|

≤
∣∣∣Φ(~k(t))

∣∣∣ ·
∣∣∣∣∣

N∑

n=1

f(~rn) e−tz(~rn) e−i2π(~k(t)·~rn)

∣∣∣∣∣+ |ym|

≤
∣∣∣Φ(~k(t))

∣∣∣ ·
(

N∑

n=1

∣∣∣f(~rn) e−tz(~rn) e−i2π(~k(t)·~rn)
∣∣∣
)

+ |ym|

≤
∣∣∣Φ(~k(t))

∣∣∣ ·
(

N∑

n=1

fmax

)
+ |ym|

=
∣∣∣Φ(~k(t))

∣∣∣Nfmax + |ym| .
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The Frobenius norm of Hm is given as follows:

‖Hm‖Frob =

√√√√
N∑

l=1

N∑

n=1

|[Hm]ln|
2 =

√√√√
N∑

n=1

|[Hm]nn|
2,

since Hm is a diagonal matrix. We now get for the diagonal elements:

|[Hm]nn| =
∣∣∣Φ(~k(tm)) t2mf(~rn) e−tmz(~rn) e−i2π(~k(tm)·~rn)

∣∣∣

≤
∣∣∣Φ(~k(tm))

∣∣∣ t2mfmax.

To simplify, we define the following two constants:

β1,m ,

∣∣∣Φ(~k(t))
∣∣∣Nfmax + |ym| , β2,m ,

∣∣∣Φ(~k(tm))
∣∣∣ t2mfmax.

Using these definitions we can now find an upper bound on Frobenius norm in (B.9) that is

not dependent on z as follows:

‖(s(tm; z) − ym) Hm‖Frob ≤ β1,m

√√√√
N∑

n=1

β2
2,m =

√
Nβ1,mβ2,m.

If we define βm ,
√

Nβ1,mβ2,m, we can show that:

x′ ((s(tm; z) − ym) Hm) x ≤ ‖(s(tm; z) − ym)Hm‖Frob ‖x‖
2

≤ βm ‖x‖2 = x′ (βmI)x.

From this we can see that if Um = βmI .

From this discussion we see that there does exist a quadratic surrogate that majorizes

(B.1) with the following curvature:

J =
∑

m

Um + U =

(
∑

m

βm + α

)
I,
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that implies that the following quadratic surrogate function:

Q
(
z; z(n)

)
= Ψ(z) + ∇zΨ

(
z(n)

) (
z − z(n)

)
+

(
∑

m βm + α)

2

∥∥z − z(n)
∥∥2

,

where z(n) is iteration n when optimizing (B.1). The update of z in the minimization is

then:

z(n+1) = z(n) +

(
∑

m

βm + α

)
∇zΨ

(
z(n)

)
.

If we use this surrogate it guarantees that Ψ(z) in (B.1) descends monotonically.
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