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ABSTRACT 

 

Improving and Assessing Propensity Score Based Causal Inferences in  

Multilevel and Nonlinear Settings  

 

by 

 

Benjamin M. Kelcey 

 

Co-Chairs: Kenneth Frank and Brian McCall 

 

 

Recent calls for accountability have focused on scientifically based research that isolates 

causal mechanisms to inform both the policies and practices of education. A major 

challenge in aligning educational research with such standards has been to develop 

methods that can address the interdependency and multilevel structure of teaching and 

learning and approximate randomized experiments using observational data. In this 

dissertation, I carried out three studies that centered on improving causal inferences 

drawn from observational studies in common educational settings. In the first study, I 

developed several models for estimating multilevel propensity scores (PSs) and examined 

their effectiveness for causal inference. The results suggested consistent gains from 

multilevel PSs that allow differential influence of the group on its individuals. The results 

further suggested that covariate selection in multilevel PSs can play a large role, both 

relative to model type and in an absolute sense. The second study then developed a 

method to construct PSs in an effective and efficient manner using two pivotal 

relationships. The method made use of each covariate’s relationship with the treatment 

and commonly available outcome proxies (e.g. pretest measures) to construct PSs that 

minimizes the mean-square error (MSE) of the treatment effect estimator. The results of 

the study suggested that an effective and efficient approach to constructing the PS might 



 x

be to include those covariates whose relationship with the outcome is at least half the 

magnitude of the respective relationship with the treatment. In the final study, I develop 

an index that assesses the sensitivity of inferences in binomial regression models by 

extending the impact threshold of a confounding variable framework (Frank, 2000). Each 

of these methods is then applied to observational data to demonstrate how these methods 

can advance the quality and robustness of causal inferences in educational research. 
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CHAPTER I 

 

Introduction 

 

Educators, educational policy makers and educational researchers must attend to 

causal inference because education is fundamentally a pragmatic enterprise (Raudenbush, 

2005; Frank, Maurolis, Duong & Kelcey, 2009). If a new program, pedagogy or school 

structure contributes to learning, then we should adopt it (Cook, 2002).  If not, then we 

should not. With the current environment of accountability and passage of federal 

educational programs such as No Child Left Behind (NCLB), attention has focused on 

the need for evidenced-based educational research. The pragmatic nature of education 

gives rise to a need for discerning the causal effects of various educational interventions. 

The empirical evidence generated through such studies in education has pervasive policy 

implications that are useful at both local and national level. In recent years, such 

empirical evidence has been aimed at ‘scientifically based research’. In particular, Part 

A., Sec. 9101 of the No Child Left Behind Act, defines “Scientifically Based Research” 

as 

(A)  …research that involves the application of rigorous, systematic, and objective 

procedures to obtain reliable and valid knowledge relevant to education activities 

and programs; and 

(B)  includes research that ...  

  (iv) is evaluated using experimental or quasi-experimental designs in 

 which individuals, entities, programs, or activities are assigned to different 

 conditions and with appropriate controls to evaluate the effects of the condition of 

 interest, with a preference for random-assignment experiments, or other designs 
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 to the extent that those designs contain within condition or across-condition 

 controls;...” 

In research, this focus on scientifically based educational research has predominantly 

translated into research studies based on the principles of randomized experimental 

designs as they tend to balance both observed and unobserved pretreatment 

characteristics of experimental units. 

Experiments potentially offer more robust and unbiased estimates of the treatment 

effect because the expectation is that they balance both measured and unmeasured 

pretreatment differences. This property tends to reduce the threat of imbalanced group 

assignment. However, the balancing property is often mitigated by several practical 

considerations. One such factor is the difficulty of implementing a truly randomized 

experiment. Among other concerns, it can be difficult to ensure that subjects assigned to 

the treatment group were actually assigned at random. One can envision an experiment 

where the treatment is tutoring for students in an after school program. Though in an 

experiment this additional resource would be randomly assigned, in actual practice 

teachers or principals might assign those students that they feel need the tutoring program 

the most. Another factor is the high cost of an experiment. As the balancing properties of 

an experiment are asymptotic, it is important that sample sizes for groups are relatively 

large and align with the hypothesized treatment effect size. Attention to such 

considerations in educational interventions enacted at the teacher or school level are 

particularly pertinent as the relevant sampling units are schools or teachers rather than 

students. From a more philosophical perspective, it has also been suggested that 

experiments represent a certain departure from reality (Heckman, 2005). That is, in 

authentic representations of phenomena, subjects self-select into or are placed by 
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program organizers in treatment groups that are presumably beneficial to them 

(Heckman, 2005). In an experiment people are artificially placed in a treatment condition 

they would not necessarily choose to be part of. This argument is similar in nature to the 

medical effectiveness versus efficacy consideration. Whereas the medical effectiveness of 

a drug can be viewed as the impact of a drug under near perfect conditions, the efficacy 

of a drug is the impact it has under normal widespread use. 

The difficulty of implementing randomized studies in education has historically 

made observational studies more feasible when considering the effects of treatments or 

policies that are difficult to randomize. In this type of study, where there is an absence of 

random assignment, groups are potentially imbalanced on pretreatment characteristics 

that may or may not influence the outcome. That is, there may be systematic differences 

between the treatment groups beyond the treatment status. As a result, differences in 

outcomes may be a function of pretreatment imbalances between the groups rather than a 

treatment effect. A historic example of this may be found in assessing the benefit of 

attending a private Catholic school. That is, researchers have asked whether attending a 

private Catholic school has a significant impact on students’ learning above and beyond 

the impact seen in public schools. Though private Catholic school students frequently 

score higher on common achievement tests, opposing arguments have suggested that this 

difference in achievement is a result of private Catholic school students maintaining a 

higher aptitude or supportive family to begin with. In other words, the opposition has 

suggested that the population of students in public schools is dissimilar from the 

population in private Catholic schools. To address such systematic differences, 

researchers have developed a number of tools to adjust for differences using analytic 
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methods such as matching, stratification or model based covariance adjustments. 

Consequently, a primary objective in the design and analysis of observational data is to 

control for alternative explanations through statistical adjustment. Although many such 

adjustments offer accurate estimation of treatment effects, their accuracy is tempered by 

the threat of an unmeasured baseline imbalance between the groups. Further, it is likely 

unrealistic in a variety of situations to assume that every factor that influences the 

treatment assignment has been measured. In such a case, and potentially in every 

observational study, two subjects who are identical on measured characteristics may have 

an unequal probability of being assigned to the treatment or control groups because of 

differences on an unmeasured characteristic. Estimates of the treatment effect when this 

residual bias is present can not be considered causal estimates as the relationship can 

plausibly be attributed to alternative differences between groups. Though inferences 

surrounding causal effects are generally more reliable when they are based on 

randomized experiments, observational studies are commonly used for answering causal 

questions in education for a number of reasons alluded to earlier. Experiments in 

education, for example, tend to have a high cost compared to observational studies. 

Further such randomized studies are generally less representative of the target population 

than observational studies. Another reason may be related to theory and hypothesis 

building. Observational studies are often more apt to answer a number of exploratory 

questions. They are frequently well suited to provide a reasonable basis for preliminary 

assessment of a treatment and subsequent design of a randomized experiment. Yet 

another reason is the complexity of the education process. For instance, in assessing the 

effect of teacher knowledge on a student’s achievement it is difficult to envision how one 
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might conduct a randomized experiment. That is, because teacher knowledge is likely a 

characteristic acquired and developed over a large span of time, it is extremely difficult 

treatment to randomize. However, given the current era of school and teacher 

accountability and emphasis on teacher quality, one might suspect that teacher knowledge 

might improve both teacher quality and the learning of students. Given such impetus, 

how might we assess the contribution of teacher knowledge to student achievement? 

Though randomized experiments would be optimal in most situations, they are likely 

difficult in the current example (e.g. Rubin, 1974). As a result, researchers often rely on 

observational data and analytical adjustments to assess the effects of complex treatments. 

A central goal then is to improve the quality of inferences drawn from observational data. 

The purpose of this dissertation was to improve the value of such causal 

inferences in observational studies. In particular, the dissertation examined methods to 

improve causal inferences drawn from observational studies along three general 

dimensions of causal inference. These three general dimensions are the design of the 

study, the analysis of the data and drawing inferences from such analyses (Rubin, 2007). 

More specifically, the design dimension underscores the intended plan to setup treatment 

groups and measure important variables for a sample of the target population such that 

useful inferences may be drawn from the study. The analytic dimension emphasizes the 

use of statistical adjustments to address imbalances among treatment groups to serve two 

primary purposes: to increase the precision of comparisons and to remove initial bias due 

to confounding variables. The final dimension, drawing inferences, draws attention to the 

generalizability of the analytic findings and speculates how hidden sources of bias may 
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alter such inferences. Along these three dimensions, I attempted to improve causal 

inferences using observational data in several capacities pertinent to education.  

The first study was aimed at advancing the capacity of observational studies in 

terms of study design as well as analysis. In particular, I attempted to improve such 

inferences by developing several approaches to estimate treatment effects using a more 

holistic view of how treatments are assigned in educational settings. Teaching and 

learning represents a multilevel system where students, teachers and schools affect each 

other and do so in differential manners. As a result, a pivotal consideration in assessing 

the effects of treatments within such schooling systems is the reciprocal influence of 

schools, teachers and students. To attend to this influence, the first study developed and 

assessed several different multilevel propensity score (PS) structures one might consider 

in adjusting for group influence in treatment assignment. That is, the first study attempted 

to improve inferences in these systems by explicating the processes by which groups (e.g. 

schools) may influence individual treatment assignments. I conceptually developed 

potential treatment assignment mechanisms and adapted PS methods to address the 

manners in which groups might help decide the treatment status of an individual. Such 

developments improve causal inferences by identifying not only comparable individuals, 

but also individuals who are in comparable groups and are influenced by their respective 

groups in similar manners. Consequently, inferences are now based on the contrasting 

outcomes among those individuals who have similar personal and group characteristics 

rather than just similar personal characteristics. Further, the study attempted to explicate 

the comparative contribution of PS model type to variable specification in terms of the 

quality of the treatment effect estimator. More specifically, I examined several PS model 
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types and the inclusion of different covariates in estimating the treatment effect in terms 

of bias, variance and mean-squared error (MSE). Such exploration attempted to make 

clear the influence of different model and variable types so as to inform PS construction 

in multilevel settings. More generally, such exploration attempted to inform the study 

design dimension by assessing the need to measure and control for groups’ contribution 

to overt bias. Further, the study addresses the analytic dimension by contrasting the 

different analytical models one might use to adjust for the group influence in treatment 

assignment. The method was then applied to a study concerning the effect of teacher’s 

literacy knowledge on first graders’ reading achievement. 

The second study was positioned to improve the analytic dimension as well as 

inform the design dimension of causal inferences. The second study improved inferences 

drawn from observational studies by improving the quality of the treatment effect 

estimators. In particular, by making use of measured variables, I attempted to improve 

causal inferences by identifying the most effective and efficient variables to include in 

the PS. Though it is common in practice to include all available variables when 

specifying the PS and/or to model the treatment assignment ignoring each variable’s 

relationship with the outcome, recent analytical and empirical results have suggested 

otherwise (e.g. Brookhart et al., 2006). In particular, research has shown that the 

reduction in bias by including a variable in the PS can be exceeded by a decrease in 

efficiency. Further, ignoring variables’ relationship with the outcome discounts the 

duality of confounding by constructing comparison groups that are not the most effective 

and efficient for a given outcome. That is, the influence of a variable on the bias or 

variance of an estimator depends on a variable’s relationship with both the treatment and 
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the outcome. For instance, including or excluding a variable strongly related to the 

treatment but unrelated to the outcome does not bias the estimator, however including it 

does add substantial variance to the estimator. By linking two pivotal covariate 

relationships with the MSE of the treatment effect estimator, I estimated thresholds at 

which a variable is likely to increase or decrease the MSE of the treatment effect 

estimator if included in the PS. More conceptually, the background variables one 

attempts to match individuals on tend to play a large role in the accuracy and consistency 

of the treatment effect estimate. As a result, I developed a method to construct the PS 

such that the bias and variance of the treatment effect estimator are jointly minimized 

given the observed data. Such construction attempts to identify those variables whose 

reduction in bias is exceeded by their contribution to variance. Accordingly, the treatment 

effect estimator tends to have a density centered at and concentrated around the true 

treatment effect. Inferences from observational data are improved by selecting the 

covariates that provide a combination of a precise and accurate estimate given the data. 

More generally, the study informs the analytic dimension of causal inference by 

identifying those variables to include in the PS and informs the design dimension by 

identifying those variables whose measurement is pivotal. The study is followed by an 

example in which I examined the effect of kindergarten retention as a school policy on 

the school’s average math achievement. 

In the final study, I attempted to inform the debate about inferences drawn from 

observational studies by assessing the robustness of such inferences. This study was 

primarily intended to advance the inferential dimension of causal inference. Whereas the 

first two studies advanced the design and analysis dimensions of inference drawn from 
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observational studies, they did not address the threat of an unobserved confounding 

variable. Because observational studies do not randomize the treatment assignments, the 

potential for unobserved variables to be imbalanced among treatment groups always 

exists. As a result, though a primary objective of causal inference in observational studies 

may be to identify, measure and adjust for confounding variables, a secondary objective 

is to then speculate about the remaining unobserved bias. To assess the unobserved bias 

or imbalance needed to change such inferences, I developed a framework to estimate the 

magnitude of an imbalance needed to change an inference. More specifically, I made use 

of two pivotal covariate relationships to extend the Impact Threshold of a Confounding 

Variable to binomial regression models (BRMs) (Frank, 2000). That is, similar to a 

sensitivity analysis, I developed thresholds that index the minimum relationships an 

unobserved covariate must have to invalidate an inference. The method I developed 

allows one to quantify the absolute sensitivity of an inference in BRMs by ascertaining a 

specific threshold at which an inference is invalidated. The results inform causal 

inference by quantifying the conditions necessary to invalidate a statistical inference at a 

given α level. In turn, I applied this index to an international data set (SACMEQ) 

concerning the effect of parental education level on reading achievement.  

Throughout each of these studies and settings, I additionally focused on the roles 

of specific covariate relationships in informing causal inference. Because a primary task 

of observational studies is to measure and adjust for confounding variables, I studied the 

influence of different variable relationships on the properties of the treatment effect 

estimator. In particular, I examined the role of each covariate’s relationship with the 

outcome and the treatment and how they might guide and inform inferences as well as 
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study design in multilevel and nonlinear settings. Throughout the three studies, a 

common condition and implication emerges: in designing a study, estimating an effect 

and drawing inferences, the variables measured and adjusted for tend to dominate the 

model or structure in which they are considered. As a result, a second common thread 

among the studies is assessing and understanding the differential contributions of 

variables and models to the quality of the treatment effect estimator. In each of the 

studies, focus is additionally placed on harnessing the influence of covariates to improve 

estimation. That is, by linking each covariate’s unique relationship with the outcome and 

treatment to the treatment effect estimator, I developed methods to improve the properties 

of the treatment effect estimator. In particular, in my first study I investigated the 

contribution of covariates with different relationships among several multilevel PS 

structures in terms of the effectiveness and efficiency of the treatment effect estimator in 

multilevel settings. The second study then examined how such covariate relationships can 

be used to improve treatment effect estimators in multilevel settings when using the PS. 

Finally, in my third study I used those same covariate relationships to understand the 

robustness of inferences in non-linear settings by extending the impact threshold of a 

confounding variable to binomial regression models (Frank, 2000). Using this framework 

and line of inquiry, this dissertation attempted to advance causal inference in education 

observation data via three statistical methods.  
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CHAPTER II 

 

 

The Roles of Multilevel Propensity Scores and Variable Selection in Multilevel  

Settings 

 

Introduction 

Causal inference in educational settings often poses unique complexities as a 

result of the multilevel structure in which teaching and learning take place. In particular, 

students and their learning experiences tend to be grouped within a class and in turn such 

classes are clustered within schools. Such grouping or clustering often invokes 

dependencies among students within the same class and school. For instance, a disruptive 

student in one class may affect the learning opportunities in another. In addition, students 

within a classroom share the same teacher and his or her ability to teach effectively. 

Further, students within a school tend to share similar resources and are governed by the 

same management and policies. In estimating conditional associations between outcomes 

and treatments of interest, such dependencies within the data have been considered 

through a variety of structures such as multilevel modeling (e.g. Raudenbush & Bryk, 

2002). 

One such framework that attempts to advance such associational inference to 

causal inference is the Rubin Causal Model (RCM) (e.g. Holland 1986). As previously 

discussed, the RCM formalizes causal inference by focusing on the idea of potential 

outcomes and a treatment assignment mechanism. In particular, under the RCM and its 
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additional assumptions, unbiased estimates of the treatment effect can be obtained if the 

treatment assignment is conditionally independent of the potential outcomes given the 

observed covariates. One method that attends to such a framework by providing such 

conditional independence or strong ignorability of the treatment assignment is the 

propensity score (PS) (Rosenbaum & Rubin, 1983a).  

Unlike standard parametric methods that control for confounding in an outcome 

model, PS methods rely on a model of treatment assignment to adjust for confounding 

(Brookhart, Schneeweiss, Rothman, Glynn, Avorn & Sturmer, 2006). In observational 

studies where researchers do not know the true treatment assignment mechanism, 

researchers attempt to infer the treatment assignment mechanism from the observed data. 

Though literature has addressed multiple methods to infer such assignment, literature has 

been relatively scarce concerning those structures common in educational studies. In 

particular, the multilevel structure of educational data presents properties atypical to 

common applications of the PS. In other words, the nested structure in observational 

studies in education makes inferring the treatment assignment mechanism more difficult. 

For example, in observational education studies that resemble multi-site randomized 

trials, treatments are assigned to individuals within each site. Such assignment is often 

based on a student’s characteristics as well as his/her school’s characteristics and 

membership. Correspondingly, selection bias may originate from both the individual and 

group level. When inferring the treatment assignment mechanism in such studies one 

must consider the contribution of individuals to their selection into treatments but also the 

contribution of their respective groups to their treatment assignments. That is, not only 

are the outcomes multilevel, but also the treatment assignment mechanism is multilevel. 
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Thus, a central issue in extending PS methods to observational education data is to 

appropriately address the potential nested nature of treatment assignment. Further, 

inferring such multilevel mechanisms can be difficult in the presence of many 

pretreatment covariates that may plausibly influence the treatment assignment. In 

particular, as the influence of the group on the individual’s treatment assignment grows, 

researchers must not only consider the pretreatment covariates but also the interactions 

between groups and individuals. As the inclusion or exclusion of such pretreatment 

covariates can strongly affect the subsequent bias and variance of the treatment effect 

estimator, a second issue facing researchers using multilevel PS methods is how to select 

variables to be included in the PS model.  

Literature has proposed hierarchical generalized linear models (HGLMs) with 

random intercepts to specify an individual’s treatment probability (Hong & Raudenbush, 

2006; Kim & Seltzer, 2007). This research has suggested HGLMs were superior to single 

level models as they produced better balance on covariates. Yet the empirical 

effectiveness of such an approach in terms of the treatment effect estimator over fixed 

effects models or more complex mixed effects models has not been examined. Further 

such research has been limited to the dichotomous treatments and has not considered 

continuous treatments. Moreover, such research has offered little concerning the 

inclusion of covariates with various relationships in specifying multilevel PS’s and what 

role they may play in multilevel PS’s. In particular, common approaches such as 

including every available variable often become intractable when estimating complex 

mixed effects models as the number of cross level interactions and random effects grow 

quickly. Even when including all the available variables in the PS represents a feasible 
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approach, estimator variance with finite sample sizes can play a significant role in 

estimating treatment effects. Literature has shown that including effects related to the 

treatment but not to the outcome can increase the variance of the estimator considerably 

(Brookhart et al., 2006). As multilevel PS models may consider treatment assignment, in 

part, via random effects that may be related in various degrees to the outcome, it is 

important to understand how treatment assignment random effects relate to the outcome 

random effects and thus affect estimation of the treatment effect. 

Research Questions 

In this study I developed general framework for inferring multilevel treatment 

assignment mechanisms and assessed the performance of several fixed effects and mixed 

effects PS models that attempt to parametrically estimate such multilevel mechanisms. In 

particular, I evaluated the performance of different structural and stochastic PS 

specifications in the estimation of a treatment effect in which the true treatment 

assignment mechanism is multilevel in nature. I focused such inquiry on the situations 

where the true treatment assignment mechanism is influenced by individual level 

covariates, group level covariates and random effects based on both the group nesting 

structure and their interactions with individual characteristics. As such, I allowed the 

influence of individual characteristics on treatment status to vary by group. Using this 

treatment assignment mechanism and a nested outcome, I examined four questions: 

1. How can we differentiate the different multilevel treatment assignment mechanisms and 

their corresponding propensity scores models? 

2. How can we extend the multilevel propensity score framework to continuous treatments? 
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3. To what extent does the structure (e.g. fixed, mixed effects) of the propensity score 

model influence the properties of the treatment effect estimator when treatment 

assignment is multilevel in nature? 

4. To what extent does variable specification of the multilevel propensity score affect 

estimates of the treatment effect? 

 In addressing the first two questions I considered five different PS model 

structures that may be considered to account for influence of the group on the individuals 

treatment assignment.  

1. Single level logistic PS model that considers individual and group characteristics but does 

not account for nested group effects (Single level). 

2. Single level logistic PS model that considers individual and group characteristics and 

accounts for nested group effects through fixed effects (Single level with fixed group 

effects). 

3. Multilevel PS model that utilizes random group effects for the intercept only in addition 

to both individual and group covariates (Simple multilevel). 

4. Multilevel PS that utilizes random group effects for the intercept only but allows non-

randomly varying slopes (cross level interactions) in addition to both individual and 

group covariates (Moderate multilevel). 

5. Multilevel PS model that utilizes random group effects for intercepts and slopes in 

addition to both individual and group covariates (Complex multilevel). 

 I addressed the second set of questions by considering three different types of 

covariates at each level. Allow X to indicate individual covariates and W to indicate 

group level covariates. The first type of covariate (X1,W1) represents true confounders in 
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that it is both related to the outcome of interest as well as the treatment assignment. The 

second type (X2,W2) represents those covariates related to the outcome but unrelated to 

the treatment assignment whereas the third type (X3,W3) represents those covariates 

unrelated to the outcome but related to the treatment. Using such covariates I examined 

the effect of including seven different covariate combinations in the PS specifications on 

the bias, variance and mean-squared error (MSE) of the treatment effect estimator:  

1. Only variables related to the both the treatment and outcome (1). 

2. Only variables related to the outcome (2). 

3. Only variables related to the treatment (3). 

4. Variables related to the treatment and outcome plus those related to only the outcome (4). 

5. Variables related to the treatment and outcome plus those related to only the treatment 

(5). 

6. Variables related to only the treatment plus those related only to the outcome (6). 

7. All available variables (7). 

Theoretical Framework 

Whereas statistical inference aims at determining significant associations, causal 

inference investigates a cause and effect relationship and requires more elaboration of the 

mechanism(s) by which a treatment affects an outcome. Although statistical inference 

does not necessarily imply the causality of a mechanism, valid statistical inference is 

generally considered supportive evidence of a cause and effect relationship. Several 

causal models have been posited. However, the current dominant theory of causality 

utilizes Rubin’s Causal Model (Rubin, 1974; Holland, 1986). Based on the concept of the 
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counterfactual, two structures form the basis for this model: the theory of potential 

outcomes and the concept of a treatment assignment mechanism.  

In the former, Rubin’s framework suggests that every experimental unit has a 

unique potential outcome for each potential assigned group membership (e.g. one 

outcome for treatment and one for control). Based on these potential outcomes, the causal 

effect of the treatment is estimated by contrasting these different outcomes. More 

formally Rubin defines a causal effect as: 

… the causal effect of one treatment, E, over another, C, for a 

particular unit and an interval of time from t1 to t2 is the 

difference between what would have happened at time t2 if the 

unit had been exposed to E initiated at t1 and what would have 

happened at t2 if the unit had been exposed to C initiated at t1 

(Rubin, 1974, p. 689). 
 

Though this simple model of causality serves as a powerful tool, it is hindered by the 

fundamental problem of causal inference (Holland, 1986). As the Rubin Causal Model 

(RCM) estimates the causal effect of a treatment on a single subject by contrasting the 

outcome when the subject was exposed to the treatment and the outcome without the 

treatment the fundamental problem surfaces as we can not observe outcomes to multiple 

treatments on the same subject over the same period of time (Rubin, 1974; Holland & 

Rubin, 1983; Rosenbaum, 1984).  

In the case of two alternative treatment conditions, I use Z as the treatment 

indicator such that Z = 1 if the treatment of interest was received and Z = 0 otherwise. 

The causal effect, δi, on an outcome, Y, for the i
th

 experimental unit, is the difference 

between the potential outcomes. More explicitly the causal effect is the difference 

between the potential outcome when receiving the treatment (1)

i
Y given Z = 1 and the 

potential outcome when receiving the control (0)

i
Y given Z = 0,  
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δi= (1)

i
Y - (0)

i
Y         (2.1)  

where the superscripts denote the potential outcomes with respect to the treatment 

indicator. The fundamental problem makes observing individual causal effects 

impossible, as we can not observe a single person’s response, for example, to both taking 

a drug and not taking a drug during the same time period. Although, this feature prevents 

us from observing the treatment effect on an individual, it does not preclude us from 

estimating the average causal effect of the treatment over a population. Though we can 

not estimate a unit specific causal effect, we can estimate the average causal effect, E[δ], 

using sample statistics to estimate the average potential outcome for each group. In 

particular, by randomly sampling experimental units from a population and randomly 

assigning them to treatment conditions, we can ensure each unit has an equal probability 

of being assigned to each treatment. As a result, contrasting the average group treatment 

effects produces an unbiased estimate of the average treatment effect. In general, if we let 

(1)
Y and (0)

Y be random variables that denote the potential outcomes associated with the 

treatments, the average causal effect is equivalent to the difference between the average 

potential outcome of exposing all units in the population to one treatment and that of 

exposing all units to the alternative treatment, E[Y
(1)

] – E[Y
(0)

] where E[·] denotes 

expectation. First, subject to assumptions subsequently discussed, we can write  

 

(1) (0)

(1) (0)

(1) (0)

(1) (0)

[ ] [ ]

[ ] [ ]

[ | 1] [ | 0]

[ ]

E E Y Y

E Y E Y

E Y Z E Y Z

E Y Y

δ = −

= −

= = − =

= −

 (2.2) 
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(e.g. Winship & Morgan, 1999). However, obtaining such equalities and resulting 

unbiased estimates of average causal effects from a random sample is dependent on the 

tenability of two major assumptions.  

The first assumption is the Stable Unit Treatment Value Assumption (SUTVA) 

(Cox, 1958). This assumption requires “the observation [or potential outcome] on one 

unit should be unaffected by the particular assignment of treatments to the other units” 

(Cox, 1958). Furthermore, it assumes that the potential outcomes of an experimental unit 

are independent of the treatments assigned to other experimental units, and that there is a 

single version of each treatment (Rubin, 1986). In essence, this assumption specifies that 

each subject has exactly one potential outcome under each group assignment. For 

example, if subjects have multiple potential outcomes based on not only his or her own 

treatment assignment but also on the treatment assignment of others, then there is no 

longer a one dimensional causal estimand. In such a case a researcher might relax 

SUTVA by defining multiple causal estimands and appropriately contrast outcomes (e.g. 

Verbitsky & Raudenbush, 2004). This assumption in conjunction with random sampling 

ensures that 

 ( ) ( )[ | 1] [ ]i iE Y Z E Y= =  (2.3) 

in (2.2) for i in {0,1} when there are two treatments. 

The second assumption is strong ignorability of treatment assignment. This 

assumption corresponds with the second structure in Rubin’s causal model (the concept 

of a treatment assignment mechanism). The treatment assignment mechanism is the 

process by which some subjects were assigned to the treatment group and others were 
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assigned to a control condition. In experiments this assignment mechanism is known and 

is completely random. However, in observational studies the assignment mechanism has 

non-random components and must be appropriately considered to provide unbiased 

estimates of each of the potential outcomes. Appropriate control for the non-random 

assignment mechanism is known as strong ignorability. More precisely, the assignment 

mechanism is strongly ignorable if treatment assignment is independent of potential 

outcomes given measured pretreatment characteristics. One assumes that after taking into 

account measured pretreatment characteristics, the treatment assignment was random. In 

this way, Rubin’s causal model attempts to approximate the experimental quality of 

balanced groups. Though SUTVA is often a realistic assumption in various observational 

study designs, the strong ignorability assumption is a directly untestable assumption that 

potentially threatens all causal inferences. Strong ignorability is a critical and large 

assumption that amounts to accepting the conditional independence of the treatment 

assignment and potential outcomes. This assumption ensures that all units (or stratified 

units) have a nonzero probability of being assigned to a treatment and this probability is 

constant for all experimental units in the population. As a result, we can write 

 ( ) ( ) ( )[ ] [ | 1] [ | 0]i i iE Y E Y Z E Y Z= = = =  (2.4) 

in (2.2) for i in {0,1} when there are two treatments. Thus, given the validity of these 

assumptions, an unbiased estimate of the population average treatment effect can be 

obtained from the differences in sample means.  

Though such an approach provides a statistical method for causal inference its 

validity and unbiasedness rests on the ignorability of treatment assignment. In particular, 
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substantive theory or empirical evidence might suggest that the outcome and treatment 

assignment vary within a population based on pretreatment characteristics. In other 

words, the probability of being assigned to each treatment varies across the experimental 

units. As a result, the strong ignorability of treatment assignment assumption is violated. 

However, if those pretreatment characteristics that influence the treatment assignment are 

observed, one can restrict comparisons to those units that have similar probabilities of 

receiving treatment conditional on the pretreatment characteristics. Accordingly, we swap 

the assumption of unconditional ignorability of treatment assignment for the conditional 

ignorability of treatment assignment assumption. We now assume that the treatment one 

receives is conditionally independent of the potential outcomes Y
(1)

 and Y
(0)

 when the 

influential pretreatment characteristics are fixed. Under SUTVA and a random sample it 

can be shown that  

 (1) (1) (1) (1)[ | ] [ | 1, ] [ | 0, ] [ | ]E Y E Y Z E Y Z E Y= = = = = = = = =X x X x X x X x  (2.5) 

 (0) (0) (0) 0)[ | ] [ | 0, ] [ | 1, ] [ | ]E Y E Y Z E Y Z E Y= = = = = = = = =X x X x X x X x  (2.6) 

where X denotes the set of pretreatment covariates that confounds the causal effects of 

treatments on the outcomes. Departing from the unconditional approach, we estimate the 

average causal effect, δ, with sample statistics by first estimating the effects for each 

subpopulation defined by X. Using (2.5) and (2.6) 
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(1) (0)

(1) (0)

(1) (0)

(1) (0)

[ | ] [ | ]

[ | ] - [ | ]

[ | 1, ] - [ | 0, ]

[ | ] - [ | ]

E E Y Y

E Y E Y

E Y Z E Y Z

E Y E Y

δ = −

=

= = =

=

X = x X = x

X = x X = x

X = x X = x

X = x X = x

 (2.7) 

Second, assuming approximate homogeneity of the treatment effect, we average the 

causal effect estimates across the groups defined by X weighting by the density of X. 

Through the RCM we can make explicit the assumptions needed for causal inference. 

Such a framework helps understand and identify those causal questions that are tractable. 

Furthermore, this framework provides a strong conceptual basis from which we can 

explore statistical methods to infer causality and estimate causal effects.  

 Of particular interest in this dissertation are those statistical methods within the 

RCM framework that are used to study the effects of treatments in observational data. In 

observational data a researcher makes no attempt to manipulate the situation generating 

the data. As a result, the fundamental problem with observational data is that, for 

example, students and schools choose their situations or treatments according to some 

criteria. Accordingly, in estimating causal effects, researchers must adjust for all factors 

that led the individual or school to their choice that might also be correlated with the 

outcome of interest. To appropriately adjust for the factors influencing choice or 

treatment assignment, researchers have developed a variety of methods to support causal 

inferences using observational data. 

 Traditionally, researchers have used ordinary least squares regression (OLS) to 

study the impact of school resources on outcomes (e.g., Coleman et al 1966). In the 

cross-sectional case, the analyst relies on a specification such as,  
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 Y Xβ Zδ ε= + +  (2.8) 

where X represent the control variables the analyst is attempting adjust for, β are the 

corresponding coefficients of the control variables, Z is the treatment assignment with 

coefficient δ, and ε is the error. However, among other assumptions, such an approach 

assumes, that all confounding variables have been measured and that there is a specific 

parametric relationship between the treatment and the outcome to which OLS is sensitive 

to. Further, such assumptions rely heavily on extrapolation in that they frequently 

estimate the counterfactual by extending the regression line beyond the scope of the data. 

As a result, OLS estimates are likely inaccurate in a variety of settings.  

 In a similar approach, regression discontinuity relies on the existence of a 

treatment assignment rule or cutoff. In particular, in regression discontinuity designs 

participants are assigned to a treatment groups based solely on a particular pretreatment 

characteristic. Those participants that are above the cutoff receive one treatment and 

those below the cutoff receive another. Such designs often supply inferences similar to 

randomized experiments in that the treatment assignment is known to be unrelated to all 

confounders except that which determined the treatment. Though such a design is 

formidable, in observational data, rarely does a single pre-treatment variable decide the 

treatment assignment and rarely is there such a sharp or even fuzzy cutoff such that all 

above a certain value received the treatment.  

 Another possible method for causal inference in observational studies is an 

instrumental variable approach. Such an approach relies on the existence of an instrument 

or in other words a variable correlated with the treatment but uncorrelated with the 

outcome conditional on other covariates. This approach attempts to identify variables that 
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would not be expected to independently alter outcomes but do so only through an 

endogenous measured variable. Though this approach offers unbiased estimation of 

causal effects when a number of assumptions are met, its utility on observational data is 

reliant on the existence of a high quality instrument. Consequently, its use is generally 

limited to situations in which there are identifiable and measured exogenous events, e.g. 

certain policy changes, which have no direct effect on the outcome but rather work 

exclusively through an endogenous variable.  

A fourth possible method for causal inference in observational data is the PS and 

is the focus of this investigation. In particular, the focus of this study is causal inference 

in observational studies when a high quality instrumental variable or pretreatment cutoff 

variable is unavailable and PS based approaches provide a reasonable approach. PS based 

methods conceptually attempt to identify and contrast similar units to estimate a causal 

effect. Though such an approach has considerable flexibility in that it does not require a 

type of quasi-experimental setting that prior approaches did, it requires other 

assumptions. For instance, it assumes that one can reasonably infer the treatment 

assignment from the measured covariates and that all covariates that influenced the 

treatment assignment were measured.  

Causal inference in observational studies with PS based approaches within the 

RCM conceptually attempts to mimic a randomized experiment in which the treatment 

assignment mechanism is known to be a function of measured pretreatment covariates X. 

In assuming this approach with observational data, the primary task then is to infer the 

treatment assignment mechanism from the measured data. In the case were the treatment 

assignment can be reasonably inferred 
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In the case of two treatments, the PS represents the conditional probability of 

assigning each experimental unit to the treatment of interest. That is, assuming two 

different treatment conditions where Z=1 represents the treatment of interest and Z=0 

represents some control condition, the PS, e(X), is  

 ( ) ( 1| )e P Z= =X X  (2.9) 

Accordingly, if adjustment on all measured covariates is sufficient for unbiased 

estimation of the treatment effect, then so is adjustment on the PS (Rosenbaum & Rubin, 

1983a). That is, treatment assignment is conditionally independent of potential outcomes 

give the PS. The PS acts as a unidimensional balancing score in which all the information 

relevant to balancing treatment assignment in X is extracted in e(X). As a result, 

conditioning on e(X) balances the distributions of X between the treatment and control 

groups and thus ensures the strong ignorability of treatment assignment assumption 

needed for causal inference in the RCM. Accordingly, units with similar PS values but 

different treatment assignments can serve as counterfactuals estimates for the missing 

potential outcome. In other words, the expected difference in the observed responses to 

different treatment conditions when the PS is held fixed is an unbiased estimate of the 

average treatment effect.  

In a similar manner, the case of a continuous single level treatment has been 

extended as the generalized propensity score (GPS) (e.g. Imai & Van Dyk, 2004). 

Whereas in the dichotomous treatment situation there are only two potential outcomes 

under the RCM, in the continuous treatment case there are a set of outcomes. More 

formally, the GPS framework first assumes that Z is continuously distributed measure, 
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( ){ }z

i
Y for z in Z , Z and X are defined on a common probability space and that ( )Y Y Z=  

is a well defined random variable (Hirano & Imbens, 2004). Under such assumptions, for 

unit i's outcome Y and treatment assignment z, we can define the unit-level dose response 

function as  

 ( ) inz

i
Y for z Z  (2.10) 

In evaluating the causal effect of a continuous treatment our interest lies in the average 

dose-response function 

 ( )( ) [ ]z

i
z E Yµ =  (2.11) 

Hirano & Imbens (2004) define the GPS as  

 ( , )E e Z X=
�

 (2.12) 

where  

 
|

( , ) ( | )
Z X

e z x f z x= �
� �

 (2.13) 

and ( , )e z x
�

 is the conditional density of the treatment given the covariates. In other words 

the GPS represents the conditional probability of assigning each experimental unit to one 

of the levels of the treatment of interest. Similar to the standard PS, the GPS has a 

balancing property such that within strata defined by the GPS, the probability that Z=z 

does not depend on the value of the covariates X. In other words when matching exactly 

on the GPS 

 { }| ( , )X I Z z e z X⊥ =
� �

 (2.14) 

where I is an indicator. As a result, the conditional distribution of the treatment 

assignment is independent of the outcomes 

 ( )( | ( , ), ) ( | ( , ))z

Z i i Z i
f z e z X Y f z e z X=

� �
 (2.15) 
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That is, if ignorability of the treatment assignment with respect to the potential outcomes 

given the measured covariates is valid, then the potential outcomes will be independent of 

the treatment assignment given the. Consequently the GPS is similar to the PS in that it 

helps satisfy the RCM by providing strong ignorability of treatment assignment. 

 In observational studies, though X have been observed, the PS is generally 

unknown and needs to be estimated from the data. Though we generally do not have the 

true PS in observational data, estimated PS’s tend to operate like true PS’s in that 

comparing units on a fixed score tends to balance covariate distributions between 

treatment groups (Rosenbaum & Rubin, 1983a). In particular, theory has suggested that 

use of the empirical PS is often more effective than use of the actual PS as it tends to 

remove empirical confounders or chance imbalances due to sampling variability (Robins, 

Mark & Newey, 1992; Rosenbaum, 1987).  

Uses of Propensity Scores 

 The literature surrounding the use of PS’s has proposed several alternative uses of 

PS’s for causal inference. In particular, since the PS is a tool to identify comparable units 

by balancing the distribution of their pretreatment covariates, the PS needs to be used to 

contrast treatment levels. In this project, I consider three alternative uses of PS’s:  

subclassification, matching and inverse probability of treatment weighting (IPTW).  

Stratification on the Propensity Score 

 A first use of the PS is to separate the experimental units in to subclasses of 

similar PS values. Such division creates similar covariate distributions among the 

treatment groups within a subclass. As a result, within a subclass the observed responses 

of the control units provide a reasonable basis for inferring the counterfactual responses 
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of the treatment units. Typically, subclassifying on fives classes of equal size removes 

approximately 90% of the bias associated with the measured covariates Rosenbaum & 

Rubin, 1983a; Cochran, 1968).  

Matching on the Propensity Score 

 A second use of the PS is to match experimental units on the basis of the PS. The 

intention with this use is to create comparable sets of treated and control subjects. Similar 

to stratification, matching units on the PS creates similar covariate distributions among 

the treatment groups. As a result, the matched control unit responses provide a reasonable 

basis for inference on the counterfactual responses for the matched treatment units. 

Though exact matching on the PS is optimal, approaches such as matching the nearest 

available neighbor are utilized to make inference tractable (e.g. Rosenbaum, 1989). In 

particular, this use is most appropriate when there is a large reservoir of potential control 

units available. Though greedy matching schemes such as nearest neighbor provide 

simple approaches, it may not be optimal in terms of minimizing differences within 

matches (Rosenbaum, 1993). An alternative algorithm which attempts to minimize such 

global differences within matches is full matching (Hansen, 2004; Rosenbaum, 1991). In 

particular, this algorithm uses network flow designs (Hansen & Klopfer, 2006) and 

results in the smallest average distance within matched sets and contains one or more 

subjects from each treatment group in each matched set. In this study, I focused on the 

use of full matching as implemented in the R package optmatch (Hansen & Klopfer, 

2006) to study multilevel PS’s used for matching in HLMs. 

Weighting on the Propensity Score 
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 A third use of the PS is to weight by the inverse probability of receiving the 

treatment (Robins, Hernan & Brumback, 2000). In particular, weights are constructed for 

experimental units by first estimating their probability of receiving treatment and then 

weighting them by the inverse of the probability in a parametric or non-parametric 

procedure. Such an approach creates a pseudo-population for each treatment group 

through weighting by the inverse probability of receiving the treatment. Under strong 

ignorability, the weighted mean difference between the treatment groups is a consistent 

estimate of the average treatment effect. However, such an approach relies heavily on the 

estimated weights and is easily influenced by the estimation and parametric structure of 

both the propensity model and the outcome model when used.  

Combining PS and Parametric Outcome Models 

 The PS is a method designed to provide ignorability of the treatment assignment 

rather than directly estimate a treatment effect. In adopting one of the three above PS uses 

researchers subsequently evaluate the average treatment effect by contrasting the 

appropriate outcomes. In doing this one may additionally utilize a parametric or non-

parametric structure to model the conditional relationship between the treatment and the 

outcome (e.g. Rosenbaum & Rubin, 1983a). When parametric structures are appropriate, 

research has demonstrated benefits from combining the PS with, for example, regression 

adjustment (e.g. Hirano & Imbens, 2002; Kleyman & Hansen, 2008). Moreover, Robins 

and Rotnizky (1995; Robins, Rotnizky & Zhao, 1995) demonstrated that as long as only 

one of the models, either that for the conditional mean of the potential outcomes given 

covariates, or that for the treatment variable given the covariates, is correctly specified, 

the resulting estimator will be consistent. Of particular interest to this study and 
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educational research in general, is addressing the multilevel nature of many educational 

phenomena. In particular, because students within the same classroom share the same 

teacher and school, we would like our treatment effect estimator to take into account the 

lack of independence between students. Consequently, this study focuses on adjusting for 

imbalances through the three different PS uses above within the context of a parametric 

multilevel model (e.g. Correnti & Rowan, 2007). Such an approach combines the 

estimated PS with a standard parametric HLM to address the nonrandom treatment 

assignment and the multilevel nature of education using a linear approximation of 

achievement. 

Observational Study Design & Model 

 In educational research and other fields, research data often have a hierarchical 

structure. That is, the individual subjects of study may be classified or arranged in groups 

which themselves have qualities that influence the study. In this case, the individuals can 

be seen as the first level of units in the study and the groups into which they are arranged 

are second level units. Indicated by the questions and focus of this study, I concentrated 

on estimating PS for use in multilevel outcome models. To address the nested structure of 

the outcome, I utilized a hierarchical linear model (HLM) (Raudenbush & Bryk, 2002). 

In HLMs each level of the nested structure is formally represented by its own sub-model. 

For example, in a two level model where students are considered to be nested within 

schools, we can represent the level one student model as 

 0

1

P

ij p ij ij

p

Y Xπ π ε
=

= + +∑  (2.16) 

where Y represents an outcome such as math achievement, π0 is the average student score 

adjusted for the student variables, X, and the corresponding coefficients, πp while ε has a 
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normal distribution with mean zero and variance σ
2
. To link the students and schools, we 

can represent the school through a sub-model or level two school model as  

 0 00 0 0

1

Q

q qj j

q

W rπ β β
=

= + +∑  (2.17) 

where β00 is the average adjusted achievement for school, β0q is average effect of 

covariate, Wq, on adjusted achievement with corresponding coefficients, β0q and r0j is the 

random effect of school j and has a normal distribution with mean zero and variance τπ. 

These sub-models articulate relationships among covariates within a given level and, in 

turn, express how variables at one level influence relations occurring at other levels 

(Raudenbush & Bryk, 2002). 

 As PS’s intend to mimic randomized experiments, I focus this study on the HLM 

multi-site observational designs most closely resembling multi-site randomized designs. 

In multi-site randomized designs the experimental units are individuals within each site. 

In particular, within each site individuals are assigned to different treatments. Though 

such assignment is at random in an experiment, in an observational study both the 

individual and group potentially contribute, in various ways, to each individual’s 

treatment assignment. Consequently, if both the group and individual influence the 

treatment assignment, the correct PS will be a function of both individual and group 

covariates. 

Variable Selection in Propensity Scores 

A primary utility of the PS model approach is its potential ability to mimic 

randomization by making the treatment assignment conditionally independent of 

potential outcomes given the observed covariates. However, this utility is often tempered 

by the difficulty of correctly specifying the PS. In particular, the bias and variance of the 
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treatment effect estimator strongly depend on the subset of observed variables included in 

the construction of the PS, especially in finite sample sizes. Consistent estimators ensure 

that the variance and bias of the treatment effect estimator goes to zero as the sample size 

approaches infinity. However, such consistent estimators in finite sample studies provide 

much less protection from the variance of an estimator as chance imbalances are much 

more likely. Relevant to education studies with hierarchical outcomes and group level 

treatments, such variability of the treatment effect estimator often plays a large role as the 

effective sample size depends on the number of groups rather than individuals. Consider 

Figure (2.18), in which, for a given sample size, two different consistent estimators are 

graphically compared. Though the first estimator, θ1, is unbiased, its density is 

thoroughly dispersed throughout the parameter space indicating the estimator’s 

variability. In contrast, the second estimator, θ2, is slightly biased but its density is 

concentrated around its center. Consequently, we are forced to develop a criterion that 

accounts for both bias and variance in order to evaluate which estimator is more 

appropriate. 

   
Figure(2.18): Density of two different estimators: Black is unbiased but fairly dispersed 

and red is slightly biased but concentrated around the estimand, θ 

 

To attend to this tradeoff, Rubin and Thomas (1996) derived approximations for 

the reduction in the bias and variance of an estimated treatment effect using the PS. Such 

θ  θ+ε 
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derivations support including all variables related to the outcome regardless of their 

relationship with the treatment assignment. Additionally, their derivations demonstrated 

that including variables that are strongly related to treatment assignment but unrelated to 

the outcome can increase the variance of the estimator without a corresponding decrease 

in bias. Accordingly, theoretical literature has suggested: (1) including variables 

unrelated to the treatment assignment but related to the outcome and (2) the exclusion of 

variables that are related to the treatment assignment but unrelated to the outcome as such 

an approach decreases bias without increasing variance (Rubin & Thomas, 1996; 

Brookhart et al., 2006). In other words, one should exclude those variables resembling 

the properties of an instrumental variable and if such a variable can be conceptualized as 

a high quality instrument consider an instrumental variable approach. To attend to the 

tradeoff between bias reduction and variance inflation caused by variable selection in the 

PS, such literature has considered the mean-squared error (MSE) of the treatment effect 

estimators corresponding to various variable choices (e.g. Brookhart et al., 2006). In 

particular because MSE summarizes the contribution of both the bias and variance of an 

estimator it can represent the quality of an estimator. That is, 

 2ˆ ˆ(bias( )) var( )MSE θ θ= +  (2.19) 

Despite literature assessing the structure and specification of such single level outcome 

and PS models, little is known concerning the performance of such strategies in 

multilevel situations with finite sample sizes. 

 Though there are practical strategies to constructing the PS such as a stepwise 

approach, constructing the PS model in such ways may impair the ability of the PS to 

contrast meaningfully comparable groups as they exclusively focus on the treatment 
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without consideration for the outcome. Consequently, they neglect the duality of 

confounding by ignoring the effects of variables that are related to the outcome but 

weakly related to treatment assignment. Such neglect often results in increased treatment 

effect estimator variance without a corresponding decrease in bias. Similarly, although 

including a variable that has little to no relationship with the outcome but a strong 

relationship with the treatment does not bias the estimator, it can add substantial variance 

to the estimator. Though most studies use treatment effect estimators that are consistent, 

adding such variance in finite sample sized studies can detract significantly from the 

quality of the estimator. To better understand the bias–variance tradeoff in constructing 

multilevel PS’s I assessed the performance of PS’s with different covariate combinations 

in estimating the treatment. 

Methods 

Developing and Differentiating Propensity Scores for Multilevel Mechanisms 

 I first attend to the how we might conceptualize the involvement of the group in 

the selection processes. Next, I pose several models to estimate such mechanisms and 

discuss their implications and additional considerations. Third I extend the multilevel PS 

framework to include continuous treatments. Next, I discuss its implications and 

additional considerations including how the score may be used. Finally, I assess the 

performance of the PS’s in conjunction with different sets of variables. 

In single level PS analyses researchers assume that the potential outcomes are 

independent of the treatment assignment given the measured covariates. That is, 

 ( ) |i
Y Z X⊥

�
 (2.20) 
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Using the properties of the PS, one can achieve similar strong ignorability via the PS in 

that the potential outcomes will also be independent of the treatment assignment given 

the PS 

 ( ) | ( )i
Y Z e X⊥

�
 (2.21) 

However, in studies where the treatment assignment mechanism involves some influence 

from the group an individual belongs to, (2.21) may no longer hold. As a result we must 

now take into account the role of the group in deciding treatment status 

 ( ) | , , , ,i

X W
Y Z X U W U r⊥
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 (2.22) 

where X
�

 represent the observed individual level covariates, 
X

U
�

 represent the 

unobserved individual level covariates, W
�

 represent the observed group level covariates 

which include group membership, 
W

U
�

 represent the unobserved group level covariates 

and r
�

 represent random effects of the group. Since (2.21) is no longer a reasonable basis 

for assuming ignorability, we must now specify the PS or the probability of receiving the 

treatment as a function of both individual and group membership and characteristics. 

Whereas  

 ( z) ( , )
X

P Z f X U= =
� �

 (2.23) 

estimated the PS in the single level case, we now must rely on 

 ( ) ( , , , , )
X W

P Z z f X U W U r= =
� � � � �

     (2.24) 

to specify the PS and account for the group level influence.  

 Tantamount to estimating multilevel treatment assignment mechanisms is 

accepting that the influence of pretreatment covariates on the treatment assignment may 

differ substantially between groups and/or individuals. In applying a multilevel approach 
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to the PS, we must consider the context and processes of the multilevel settings as the 

manner in which differences in selection processes manifest may dictate the approach 

needed (Kim & Seltzer, 2007). The main consideration is how the group selection 

processes actually differ. Specifically, we need to identify whether, simply, the average 

treatment level varies between groups or, more complexly, if the average treatment level 

varies and the magnitude of slopes linking individual covariates to treatment vary (Kim 

& Seltzer, 2007). For instance, in hierarchical linear models, these differences are often 

referred to as a random intercept model and a random intercept and random slope model, 

respectively. Failure to account for such differences in the selection mechanisms, when 

they exist, will bias the treatment estimator. In addition, though there may be certain loss 

of efficiency in accounting for such differences when they do not exist, this does not bias 

the estimator. Furthermore, as subsequently affirmed in other contexts, the potential loss 

of efficiency from utilizing a multilevel structure when it is untrue is most likely 

dominated by the potential bias added by ignoring the multilevel structure.  

Differentiating Mechanisms 

 In the context of education, attending to how treatment selection mechanisms 

differ among groups, estimating a common single level PS and restricting comparisons to 

individuals within the same group has been a historical approach (Rosenbaum, 1986). 

Such an approach attempts accounts for group effects by only contrasting individuals 

within the same group. Restricting comparisons to individuals within group on any 

multilevel PS presents an attractive approach as it has several utilities. First, restricting 

comparisons to within groups preserves the natural hierarchical relationships and allows 

us to contrast comparable units. For example, depending on the true selection 
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mechanism, matching within groups may potentially adjust for unobserved group level 

covariates as they are common within matches. Another advantage of restricting 

comparisons to within groups is it facilitates the study of variation in treatment effect 

between groups (Hong & Raudenbush, 2006; Kim & Seltzer, 2007). In particular, if our 

focal research question is directly interested in the extent to which the treatment effect 

varies between groups, then it is useful, and perhaps more accurate, to consider within 

group matches so as to explicitly balance covariates within each group and ensure more 

accurate estimates of the treatment effect at each group. 

 The equivalence of such an approach and a multilevel PS that explicitly considers 

group membership, and thus variation in the selection mechanism, is dependent on the 

true selection mechanism. In particular, if the selection mechanism acts such that group 

membership and covariates contribute solely to the average treatment level probabilities, 

then restricting comparisons to within groups based on the single level PS that ignores 

group membership is an effective way to control for group selection bias (Kim & Seltzer, 

2007). This approach blocks on group membership, and thus on observed and unobserved 

group covariates, and constrains interactions between group covariates and membership 

with individual covariates to be zero. As a result all contributions from the group 

membership cancel out within comparable sets and this will be an effective approach in 

providing unbiased and consistent estimates of the treatment effect. Although this 

approach potentially addresses the group’s role in treatment assignment in certain 

circumstances, it has several practical and theoretical limitations. Practically, the utility of 

within group comparisons is often mitigated by the lack of comparable individuals within 

each group. In particular, restricting comparisons to within group memberships generally 
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requires a large reservoir of treatment and control individuals in each group. Studies that 

examined the effects of treatments that are uncommon or are enacted at the individual 

level often constrain the pool of potential comparisons as it can be difficult to identify 

comparable individuals within groups. Theoretically, using a common single level PS, 

even if restricting comparisons to within groups, assumes that the selection processes are 

fixed among groups up to a constant for each group. In other words, in a parametric 

model, a common single level PS would assume that the coefficients do not vary, whether 

in a fixed or random manner, among groups but rather only the intercept does. However, 

under other circumstances mechanisms may allow the effects of individual covariates 

differ among groups as each group weights the cross level interactions differently and 

such cross level interactions are modified by group level covariates thereby producing 

different scores. In general this will result in different comparisons though Kim and 

Seltzer (2007) note the unique case when only one slope is random and certain 

comparisons such as nearest neighbor matching are used. Under this unique condition 

matching within groups using a single level PS will produce the same matches as those 

multilevel PS’s that address the varying coefficients and cross level interactions as the 

numerical valued propensities will differ in value but absolute ranking will remain 

consistent. Consequently, if the influence of individual characteristics on the treatment 

assignment vary among groups or are modified by the group characteristics, ignoring the 

clustering and/or cross level interactions between covariates and group memberships, 

even when using within group comparisons, can misidentify comparable units and 

provide spurious inferences. 
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To address the practical and theoretical limitations of the single level approach, 

literature has proposed several parametric options focusing on hierarchical generalized 

linear models (HGLMs) (Hong & Raudenbush, 2006; Kim & Seltzer, 2007; Raudenbush 

& Bryk, 2002). Such approaches tend to allow for more flexibility in that they allow the 

selection processes to differ between groups. In developing a framework for multilevel 

PS’s I considered five different ways in which the selection processes may differ based 

on past literature and posed an additional process. For each of these processes I 

considered a different parametric model. The first model is a common single level model 

that incorporates both the individual covariates as well as the group level covariates but 

does so by ignoring group membership. Further, by ignoring group membership the 

single level assumes individuals in the same group to be independent of each other. In the 

dichotomous treatment case, this can be estimated using the logistic regression model 

within the generalized linear model framework. Using matrix notation we can specify this 

model as  

 ( )
1

p
log X W

p
β γ= +

−

�� � �
 (2.25) 

(McCullagh & Nelder, 1983). In particular, in using the single level model, one assumes 

that the true treatment assignment mechanism is uninfluenced by group membership and 

that group characteristics contribute to an individual’s propensity in a common manner 

across all groups. That is, an individual’s group membership offers no information 

concerning his or her treatment assignment and further such group membership does not 

modify the influence of any individual characteristics as they are also constant across all 

groups.  
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 The second model type I considered was a single level fixed effects regression 

model. Specifically, this approach advances the single level model only in that it includes 

a series of indicator variables for group membership in conjunction with the individual 

and group characteristics 

 ( )
1

p
log X W I

p
β γ π ε= + + +

−

�� � �� ��
 (2.26) 

where I
�

is an indicator matrix corresponding to group membership. As this model is 

saturated with respect to the group memberships, it does tend to account for group 

influence. However, this model still neglects the potential differential functioning of 

individual covariates in influencing the treatment assignment. The third model type I 

considered was a HGLM or a generalized linear mixed effects model with the previous 

fixed effects and only a random intercept effect (e.g. Pinheiro & Bates, 2000). This 

approach considers the influence of the individual and the group as well as the group 

membership and the dependence of individuals within a group. In mixed form it is 

 0( )
1

p
log X W r

p
β γ= + +

−

�� � � �
 (2.27) 

where r
�

is a single random effect for each group such that 0 ~ (0, )r N τ
� �

. Under this 

particular model, one assumes that the group influences the treatment assignment of its 

members in a common way. In a two level example where students are nested in school 

and treatments are assigned to students under this mechanism, the school has a constant 

and uniform influence on each of its students. In a practical example where we consider 

individual tutoring the treatment, this model might be appropriate if school membership 

and characteristics increase or decrease each of its students chances of receiving tutoring 

in a common way.  
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 Fourth I consider another HGLM or generalized linear mixed effects model with 

the previous fixed effects and single random effect for the intercept but also cross-level 

interactions between the covariates. In mixed notation we have 

 0( )
1

p
log X W XW r

p
β γ π= + + +

−

�� � � �� � �
 (2.28) 

This model permits more flexibility as to the assumptions of the groups’ influence. In 

particular, this model assumes that the group has a shared common influence on all of its 

individuals as before but also that the group characteristics interacts with individual 

characteristics to modify the role of such individual characteristics in predicting treatment 

assignment. For example, if English tutoring was the treatment, schools with a higher 

percentage of teacher certified in teaching English as a second language may increase the 

odds that students in their schools with limited English proficiency receive the treatment 

as these teacher may an increased perceived benefit for these students. In other words, 

groups may now additionally influence certain subsets of their individuals by inflating or 

deflating their probabilities of receiving treatment. The fifth model was a generalized 

linear mixed effects model with previous fixed effects and cross-level interactions 

between the covariates and now a random group effect for the each individual covariate. 

In mixed model form we can specify this as  

 ( )
1

p
log X W XW Xr

p
β γ π= + + +

−

�� � � � �� � �
 (2.29) 

where ~ (0, )r MVN τ
� �

. In other words, this model considers the treatment assignment 

mechanism to be composed of individual influence (X), a common group influence (W, 

r0), a differential influence on subgroups of individuals that is common across all groups 
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(XW) and now an additional differential influence on subgroups that is unique to each 

group (Xr). 

 The multilevel models posed represent an increasing complex treatment 

assignment mechanism. Accordingly, I term then simple, moderate and complex. That is 

a simple multilevel treatment assignment mechanism can be modeled using (2.27); a 

moderate multilevel treatment assignment mechanism can be modeled using (2.28); and a 

complex multilevel treatment assignment mechanism can be modeled using (2.29). 

Further, as the first two models posed are not strictly speaking multilevel models I call 

them a common single level model (2.25) and a common single level model with fixed 

group effects (2.26). 

 Each mechanism engages variation at the group level, however, they maintain 

different assumptions. The common single level assumes that group membership is does 

not contribute any variation in treatment assignment but group level covariates do. The 

common single level with fixed group effects assumes that both the group membership 

and group covariates contribute and that observations are independent. Further each 

multilevel mechanism engages variation meaningfully different ways. For instance, 

simple multilevel PS assumes the contributions of the covariates from the individual level 

to the probability of treatment assignment as fixed across all groups. In such a case, the 

variation in the selection process is solely a function of group membership. Increasing the 

complexity of the mechanism, the moderate PS assumes variation comes from group 

memberships and the interaction between group covariates and individual covariates. 

Further, the complex PS assumes variation comes from group memberships, the 

interaction between group covariates and individual covariates and additionally the 
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interaction between group membership and individual covariates. The difference between 

the processes can be conceptualized as the simple mechanism implying that all members 

of the same group share the same shift in probability of receiving a treatment level 

regardless of their personal characteristics and that shift is determined by the group 

covariates only. In the moderate case, this mechanism implies that all members of the 

same group receive a shift in probability based on that common membership and an 

additional shift in probability based on the interactions between individual covariates and 

the group characteristics. Finally the more complex mechanism implies that all members 

of a the same group receive a shift in probability based on that common membership, an 

additional shift in probability based on the interactions between individual covariates and 

the group characteristics and yet another shift in probability based on the interactions 

between individual covariates and group membership. Under the presence of the complex 

mechanism, cross-level interactions between group membership and individual covariates 

influence the probability so that each group has a different PS equation.  

 In applying multilevel PS’s, utilizing such models requires thoughtful 

consideration of how the units were selected into treatments. Theoretically assessing 

whether a selection process implies that only the average treatment level varies between 

groups or if the average treatment level varies and the magnitude of slopes vary can be 

difficult especially when dealing with treatments that are not well studied. However, in 

observational studies, because treatment assignment is not necessarily being directly 

studied, the essential purpose of constructing a PS remains to make the potential 

outcomes independent of the treatment assignment rather than to test hypotheses 

concerning the treatment assignment. As a result, empirically assessing the treatment 
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assignment mechanism often aligns with the PS purpose. Because the multilevel PS’s 

represent nested models in the sense that the smaller simpler models constrain certain 

complex, larger parameters to be zero, we can empirically assess which mechanism most 

closely aligns with the selection process. Further, the mechanism that most closely aligns 

with the observed selection process theoretically most closely mimics randomization in 

that the treatment assignment will be random within comparable sets individuals. As a 

result, the identified mechanism should theoretically provide the most bias reduction in 

the treatment effect estimator without adding unnecessary variance.  

Next, to address the nature of various treatments in education, I developed a 

framework to utilize the PS when the treatment is continuous and is influenced by both 

individuals and groups. In particular, drawing on literature, I extended the dichotomous 

multilevel PS to continuous treatments by combining the GPS with the dichotomous 

multilevel PS (Hong & Raudenbush, 2006; Kim & Seltzer, 2007; Hirano & Imbens, 

2004). That is, how might one construct the PS in multilevel settings when the treatment 

represents a continuous or dosage treatment? 

Following Hirano & Imbens (2004), I first assume that Z is continuously 

distributed measure, ( ){ }z

i
Y for z in Z , Z and X are defined on a common probability space 

and that ( )Y Y Z=  is a well defined random variable (Hirano & Imbens, 2004). Under 

such assumptions, for unit i's outcome Y and treatment assignment z, we can define the 

unit-level dose response function as  

 ( ) inz

i
Y for z Z  (2.30) 

Further, I assume our interest in evaluating the causal effect of a continuous treatment 

lies in the average dose-response function 
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 ( )( ) [ ]z

i
z E Yµ =  (2.31) 

I then define the multilevel GPS for continuous treatments as  

 ( , , , , )E e Z X W XW Xr=
� � � � ��

 (2.32) 

where  

 
| , , ,

( , , , x , ) ( | , , x , )
Z X W XW Xr

e z x w w xr f z x w w xr= � � � � ��

� � � � �� � � � � ��
 (2.33) 

and ( , , , x , )e z x w w xr
� � � � ��

 is the conditional density of the treatment given the covariates. 

Further, as before, z is the treatment assignment, x are the individual level covariates, w 

are the group level covariates, xw are the cross level interactions and r are the random 

effects which account for group membership and interact with the individual covariates 

(xr). In other words the multilevel GPS represents the conditional probability of assigning 

each observational unit to one of the levels of the treatment of interest. Similar to the 

standard PS, the multilevel GPS has a balancing property such that within strata defined 

by the multilevel GPS, the probability that Z=z does not depend on the value of the 

covariates X. In other words when matching exactly on the multilevel GPS 

 { } | ( , , , , )X I Z z e z X W XW Xr⊥ =
� � � � � ��

 (2.34) 

where I is an indicator. Next assume that we have measured all variables at both the 

individual and group level that influence the treatment assignment such that the potential 

outcomes are independent of the treatment assignment given the pretreatment covariates. 

Formally, 

 ( ) | , , ,z

i
Y Z X W XW Xr⊥

� � � � ��
 (2.35) 
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for all z in Z. Similar to the canonical PS, it can be shown that the conditional distribution 

of the treatment assignment given the multilevel GPS is also independent of the potential 

outcomes (Appendix A). Formally,  

 ( )( | ( , , , , ), ) ( | ( , , , , ))z

Z i i Z i
f z e z X W XW Xr Y f z e z X W XW Xr=

� � � � � � � � � �� �
 (2.36) 

That is, if ignorability of the treatment assignment with respect to the potential outcomes 

given the measured covariates is valid, then the potential outcomes will be independent of 

the treatment assignment given the multilevel GPS. Consequently the multilevel GPS is 

similar to the canonical PS and GPS in that it helps satisfy the RCM by providing 

ignorability of treatment assignment. 

 In a manner similar to that of the multilevel PS for a dichotomous treatment, we 

can conceptualize the treatment assignment mechanism in at least five ways. However, as 

treatment now represents a continuous outcome, we can parametrically estimate the PS or 

the conditional density of the treatment assignment mechanism using models for 

continuous treatments. That is, a possible way to estimate the single level model (2.25) is  

 Z X Wβ γ ε= + +
�� � � � �

 (2.37) 

The single level fixed model (2.26) now becomes  

 Z X W Iβ γ π ε= + + +
�� � � �� ��

 (2.38) 

Further the multilevel simple (2.27), moderate (2.28) and complex models (2.29) can now 

be represented by  

 Z X W XW Xrβ γ π ε= + + + +
�� � � � � �� �� �

 (2.39) 

where π
�

is constrained to be zero in the simple case, and r
�

is a single random effect for 

group membership in the simple and moderate cases but represents multiple random 

effects in the complex case. 
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Efficacy of Multilevel PS’s & Role of Covariates in Multilevel PS’s 

There is theoretical and practical motivation for developing multilevel PS’s when 

multilevel treatment assignment mechanisms exist. Theoretical motivation stems from the 

potential of the group to influence individual’s treatment assignments and to do so in 

different ways. Practical motivation stems from limitations such as the inability to 

identify comparable sets of individuals within each group. Despite these motivations, the 

impact of ignoring such group influences when they exist (e.g. opting for single level or 

simple over complex multilevel) is unknown. In particular, it is informative to understand 

the tradeoffs in implementing a complex multilevel PS as opposed to a simple multilevel 

PS or single level PS. For instance, in assuming the true treatment assignment mechanism 

is a complex multilevel mechanism, theoretically employing a complex multilevel PS 

should reduce bias as compared to other PS’s. However, as seen in the PS variable 

selection literature, the reduction of such bias in finite sample sizes may or may not be 

negligible (e.g. Brookhart et al., 2006). Further, such bias reduction is often coupled with 

an increase in variance. In particular, because the complex multilevel PS necessarily 

represents a more complex model in the sense that it utilizes more fixed and random 

effects, the variance of the corresponding treatment effect estimator can be inflated when 

compared to simpler models. In other words the bias reduction advantages of the 

multilevel PS are potentially met with variance inflation disadvantages representing the 

well known bias-variance tradeoff. As a result, in finite sample sizes, the various 

multilevel PS’s may not represent a superior to that of a single level PS’s.   

To assess the performance of the structures in multilevel settings in the context of 

different PS uses and types of variables, I performed four Monte Carlo simulation 
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experiments. Whereas as prior work in multilevel PS’s has focused more so on assessing 

multilevel PS through their performance through covariate balance, I shift focus to the 

treatment effect estimator (Kim & Seltzer, Hong & Raudenbush, 2006). Although the 

balancing property of the PS is a salient feature and diagnostic tool in empirical analyses, 

such focus in a simulation study where the true PS as well as other parameters are known 

is tangential. In particular, given the theoretical and previous simulation results as well as 

the design of this simulation study, models using the true PS score may achieve superior 

balance despite often producing inferior treatment effect estimators (Rubin & Thomas, 

1996; Brookhart et al., 2006). In other words, the focus of this study is on how multilevel 

PS’s influence treatment effect estimation rather than balance. Accordingly, to evaluate 

the various PS’s in providing high quality treatment effect estimates, I followed single 

level PS literature and evaluated the PS’s on the basis of the bias, variance and MSE of 

the corresponding treatment effect estimator. 

To understand the role of such structures when estimating PS’s, I examined the 

extent to which the each of the five multilevel PS structures posed influenced our 

estimates of the treatment effect. More specifically, I assessed the performance of each of 

the five structures in estimating the treatment effect when the true assignment mechanism 

was complex multilevel. Because the PS is a method to approximate ignorability of the 

treatment assignment rather than a treatment effect estimator, I combined the PS with 

matching, stratification or IPTW and an HLM outcome model to understand in practice 

how such choices affect an estimated treatment effect multilevel settings. As a result, I 

focused my inquiry on the performance of multilevel PS’s implemented in HLM outcome 

models.  
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Further, to a large extent, the performance of the five multilevel PS’s and three PS 

uses above in providing unbiased and efficient estimates depends on which types of 

variables are included in the PS. Accordingly, I extended the study to include three 

different types of variables based on prior literature: (1) those related to both the 

treatment and outcome; (2) those related to the outcome; and (3) those related to the 

treatment. In assessing the performance, I considered seven different variable 

combinations that one could include in the PS.  

1. Only variables related to the both the treatment and outcome (1). 

2. Only variables related to the outcome (2). 

3. Only variables related to the treatment (3). 

4. Variables related to the treatment and outcome plus those related to only the outcome (4). 

5. Variables related to the treatment and outcome plus those related to only the treatment 

(5). 

6. Variables related to only the treatment plus those related only to the outcome (6). 

7. All available variables (7). 

 The first experiment examined the properties of the treatment effect estimator when using 

the different PS structures for a dichotomous treatment with other fixed parameters discussed 

below. Using each combination of the five different structures of PS models posed crossed 

with the three different PS uses and seven different PS variable specifications, I constructed 

PS models and then subsequently used them in HLM outcome models. The second 

experiment was similar, however, I assessed such performances among continuous 

treatments rather than dichotomous treatments. In addition, I limited the PS uses to 
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stratification on the PS as matching or IPTW in the case of continuous treatments are not 

well studied. Figure (2.40) displays the simulated relationships.  

W3         W1      W2 

X3          X1       X2 

 

 

   Z          Y 

 

Figure(2.40): Relation of variables: X. indicates individual level characteristics and W. 

indicates group level characteristics 
 

 In the third and fourth simulation experiments, I examined the sensitivity of the results 

from experiment one and two by altering the magnitude of the various relationships that 

seemed most relevant. These analyses were carried out by holding all other parameters fixed 

at their default values while a single parameter was altered. In particular, I consider nine 

different data generation parameters that may influence the performance of the PS’s and their 

corresponding treatment effect estimators. The first parameter varied was the probability of 

receiving the treatment (p). Specifically, the original experiment used a 0.5 probability of 

receiving the treatment whereas in the sensitivity analyses I used probabilities of 0.1 and 0.9. 

The second parameter I varied was the treatment effect (δ). In the original experiment I used 

a true treatment effect of 0.3 whereas second I used 0.1 and 0.5. Such values in educational 

data typically align with small, moderate and large effect sizes (Cohen & Cohen, 1988). 

Third, I varied the variance of the random effects from an original value of 0.2 to 0.1 and 0.3 

(τ) as such values are typical in educational data (Coe & Hanita, 2009). Fourth I varied the 

correlation between the measured variables from a default value of 0.1, to 0 and 0.2 (ρx). 

Such values are fairly arbitrary although they generally represent weak to moderate 

relationships in social science data.  Fifth I introduced a parameter that invokes a correlation 
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between the random group effects on the treatment assignment and the random group effects 

on the outcome (ψ). Because prior literature in single level models has suggested that 

including variables minimally related to the treatment assignment but related to the outcome 

in the PS, this parameter allows us to understand how the relation of the outcome random 

effects and the treatment assignment random effects influences the treatment effect estimator. 

For example, as the bias reduction of a complex multilevel PS can be moderated an increase 

in variance, understanding the role of this parameter helps shed light on the bias variance 

tradeoff. In particular, I hypothesized that data with higher covariance between the outcome 

and treatment assignment random effects would increase the benefit of the using a complex 

multilevel PS in terms of both bias and variance. As a result, to understand the role of ψ I 

varied it from its default covariance of 0.01 to 0 and 0.05. As I am aware of no literature that 

considers such a parameter, the values and range have been subjectively chosen. Sixth, I 

varied the number of groups from the original value of 100 to 50 and 500 (nj). Fifty groups 

was selected as a lower bound as it has been suggested that 50 groups is generally a lower 

threshold from which to effectively use multilevel models (Maas & Hox, 2005; Moinedden, 

Matheson & Glazier, 2007). Further, the upper bound of 500 groups was selected since few 

educational studies exceed this many schools. Seventh, in constructing the treatment 

assignment and the outcome I allowed the influence of each covariate to vary from a default 

of 0.5 to 0.2 and 0.8 (β). Again, though such values are fairly arbitrary, they represent typical 

effect sizes in educational literature. Next, I allowed the intra-class correlation to vary from a 

default of 0.2 to 0.1 and 0.3 (ρτ). Although such values align with those typically found in 

educational outcomes, such values for the treatment assignment are not well studied and 

highly dependent on the treatment (Coe & Makoto, 2009). As a result, I assumed these values 



 52 

as on the basis of educational outcomes and the subsequent application. Finally, in the case 

of stratification on the PS, I varied the number of subclasses from five to ten (S). Although, 

the number of strata is subjective and is often dependent on the common support in one’s 

data, five has been a common though arbitrary number and is generally associated with 

removing about 90% of the bias (Rosenbaum & Rubin, 1983a).  

All four simulation experiments employed the same data generating process. I 

generated the individual characteristics (X1, X2, X3) and group characteristics (W1, W2, W3) 

from two separate multivariate normal distribution with mean 0 and covariance matrices ∑x 

and ∑w: 
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∑ ∑  (2.41) 

In the dichotomous treatment case, I designed the treatment such that it represented the 

realization of a dichotomous variable given individual characteristics and group 

characteristics. In particular both the dichotomous and continuous treatment experiments 

allow the true treatment assignment mechanism to be a complex multilevel mechanism. 

For both dichotomous experiments, the true treatment assignment mechanism followed 

the hierarchical generalized linear model: 
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for s in 0, 1, 2, 3 and us~ multivariate normal with mean 0 and covariance matrix 
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As depicted by Figure (2.40), the variables X2 and W2 as well as their interactions and 

random effects were constrained to be zero in (2.42). In the case of a continuous 

treatment experiments the treatment represented a normally distributed variable 

influenced both by individual characteristics and group characteristics. For both 

continuous experiments, the true treatment assignment mechanism followed the 

hierarchical linear model:  
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where Z is the treatment, 2~ (0, )
treatment

Nε σ and u0 ~N(0,τ). Similar to the dichotomous 

experiments, the variables X2 and W2 as well as their interactions and random effects 

were constrained to be zero in (2.44).  

Further the true outcome model for both experiments was a random intercept only 

hierarchical linear model (HLM) 
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where Z is the treatment, 2~ (0, )
outcome

Nε σ and u0 ~N(0,τ) and the coefficients and random 

effects of X3 and W3 in (2.45) are constrained to zero according to Figure (2.40).  
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To estimate the treatment effect for each data set and approach in each 

experiment, I combined the three uses of the PS with a HLM (Hong & Raudenbush, 

2006; Brookhart et al., 2006). Specifically, I constructed PS strata on the basis of 

quintiles and deciles of the logit of the PS and matches based on a full matching 

algorithm (Hansen & Klopfer, 2006). Further, in the dichotomous treatment case I 

constructed weights based on the inverse of the probability of receiving treatment 

(Robins, Hernan & Brumback, 2000). When using matching or stratification I utilized 

indicators and modeled the outcome as a HLM as follows:  
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2 :

q
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∑
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where q is the number of strata or matches minus one. When using the IPTW PS, I utilize 

(2.46) without indicators and use weights. To compare the estimates based on the 

different model structures and specifications, I used the results of the Monte Carlo 

simulation experiment to estimate the bias and mean-squared error (MSE) of each 

approach. I estimated these quantities for a given approach using: 
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M

δ δ
=

= −∑  (2.48) 

where M represents the number of simulated data sets.   
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Results 

 The results are presented in five general sections. The first section addresses the 

choice of PS model by contrasting the bias, variance and MSE of the five posed models. 

In particular, this section restricts contrasts to those estimates based on the same covariate 

specification and PS use. The next section addresses the role of covariate specification in 

the PS. That is, it only focuses on comparing which variables are included in the PS for a 

given PS model and PS use. The third section then focuses on contrasting the different PS 

uses for a given covariate specification and PS model. The fourth section then merges the 

first three by making comparisons across PS uses, covariate specifications and PS model 

choices. The final section then examines how the various sensitivity parameters above 

may influence the above results. 

 In this first section I compared the differences in PS model choice through the 

bias, variance and MSE of the corresponding treatment effect estimator. The first 

experiment I considered used stratification on the PS for a dichotomous treatment. Using 

the default parameters listed above, I contrasted the five model choices for a variety of 

variable specifications presented in Table (2.49). Evident from the rounded estimates in 

Table (2.49), the complex multilevel PS tended to illustrate the best performance in terms 

of MSE. Specifically, when the true confounders are included in the PS (e.g. X1, W1) the 

complex multilevel PS out performs the other PS model choices. However, when the true 

confounders were excluded from the PS the complex multilevel PS was regularly 

outperformed by other PS model choices. Similarly, in terms of bias, the complex 

multilevel PS tended to dominate the other model choices except when excluding the true 

confounders. Accordingly, one can see a certain bias-variance tradeoff in opting for more 
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or less complex models. That is, while multilevel PS’s tended to account for selection 

bias, they did so at a cost of inflated variance. Such a tradeoff makes it evident that 

relevant, high quality variables are most effective in constructing the PS.  

Table(2.49): Rounded estimates of bias, variance and MSE for the dichotomous strata 

default experiment 

Model Type 10
2
x 

(1) 

X1W1 

(2) 

X2W2 

(3) 

X3W3 

(4) 

X1X2W1W2 

(5) 

X1X3W1W3 

(6) 

X2X3W2W3 

(7) 

X1X2X3W1W2W3 

Bias 4.12 18.97 19.42 1.73 1.70 17.91 2.75 

Variance 0.10 0.17 0.21 0.08 0.10 0.17 0.07 Single 

MSE 0.27 3.77 3.98 0.11 0.13 3.38 0.15 

Bias 4.65 19.53 19.10 2.08 2.06 17.68 3.34 

Variance 0.10 0.18 0.21 0.07 0.10 0.17 0.07 Single with fixed 

MSE 0.32 4.00 3.85 0.12 0.14 3.29 0.19 

Bias 3.82 19.29 19.12 1.37 1.36 17.62 2.45 

Variance 0.10 0.18 0.21 0.07 0.10 0.17 0.07 Simple 

MSE 0.25 3.90 3.86 0.09 0.12 3.27 0.13 

Bias 3.53 19.23 19.25 1.79 1.77 17.72 2.07 

Variance 0.10 0.18 0.22 0.08 0.11 0.17 0.07 Moderate 

MSE 0.22 3.87 3.92 0.11 0.14 3.31 0.12 

Bias 1.78 18.42 19.78 0.00 0.06 17.96 0.07 

Variance 0.10 0.17 0.22 0.07 0.11 0.18 0.08 Complex 

MSE 0.13 3.57 4.14 0.07 0.11 3.40 0.08 

*Estimates are multiplied by 100 and rounded off to two decimal points for ease of presentation. As such 

MSE may not be exactly equal to bias squared plus variance. 

 

 Shifting to the IPTW PS use in the dichotomous treatment case, I saw very similar 

trends. Though the relative ordering changed in certain instances, when including the true 

confounders, the complex multilevel PS regularly offered a lower MSE compared to the 

other models. Further, such models also tended to reduce bias the most. Table (2.50) 

presented the rounded estimates.  

Table(2.50): Rounded estimates of bias, variance and MSE for the dichotomous IPTW 

default experiment 

Model Type 10
2
x 

(1) 

X1W1 

(2) 

X2W2 

(3) 

X3W3 

(4) 

X1X2W1W2 

(5) 

X1X3W1W3 

(6) 

X2X3W2W3 

(7) 

X1X2X3W1W2W3 

Bias 4.16 18.37 17.52 1.59 0.29 16.55 3.47 

Variance 0.10 0.20 0.23 0.08 0.11 0.20 0.09 Single 

MSE 0.29 3.57 3.30 0.10 0.13 2.94 0.21 

Bias 3.12 18.37 16.78 -0.52 -0.47 15.81 2.42 Single with fixed 

Variance 0.10 0.18 0.23 0.08 0.12 0.20 0.07 
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MSE 0.20 3.56 3.04 0.08 0.12 2.70 0.13 

Bias 2.65 18.30 16.97 -0.34 -0.40 15.98 2.27 

Variance 0.10 0.18 0.23 0.08 0.11 0.20 0.07 Simple 

MSE 0.17 3.53 3.10 0.08 0.11 2.75 0.12 

Bias 4.29 18.28 17.36 0.59 0.95 16.22 2.64 

Variance 0.11 0.18 0.22 0.08 0.12 0.19 0.07 Moderate 

MSE 0.29 3.52 3.23 0.08 0.12 2.82 0.14 

Bias 2.42 17.85 18.93 -0.01 0.27 17.20 0.24 

Variance 0.11 0.20 0.25 0.07 0.11 0.21 0.08 Complex 

MSE 0.16 3.38 3.83 0.07 0.11 3.16 0.07 

*Estimates are multiplied by 100 and rounded off to two decimal points for ease of presentation. As such 

MSE may not be exactly equal to bias squared plus variance. 

 

Similarly, matching on the PS for a dichotomous treatment and stratifying on the PS for a 

continuous treatment yielded similar results. However, to a small extent the advantage of 

using a complex multilevel PS over the others was dampened. That is, the reduction in 

MSE from a complex multilevel PS over the other models tended to be somewhat less on 

average. Table (2.51) presents the matching estimates whereas Table (2.52) presents the 

stratification on a continuous treatment estimates. 

Table(2.51): Rounded estimates of bias, variance and MSE for the dichotomous matching 

default experiment  

Model Type 10
2
x 

(1) 

X1W1 

(2) 

X2W2 

(3) 

X3W3 

(4) 

X1X2W1W2 

(5) 

X1X3W1W3 

(6) 

X2X3W2W3 

(7) 

X1X2X3W1W2W3 

Bias -0.43 18.87 20.03 -2.52 -2.67 18.22 -2.17 

Variance 0.26 0.45 0.56 0.20 0.23 0.54 0.20 

Single MSE 0.25 4.01 4.56 0.26 0.30 3.85 0.25 

Bias 0.76 18.05 18.76 0.21 0.31 17.38 0.08 

Variance 0.24 0.41 0.60 0.16 0.20 0.49 0.17 

Single with fixed MSE 0.25 3.66 4.11 0.16 0.20 3.51 0.17 

Bias 1.86 18.20 19.43 -0.03 -0.26 17.32 0.21 

Variance 0.20 0.45 0.55 0.18 0.23 0.51 0.16 

Simple MSE 0.23 3.75 4.32 0.18 0.23 3.50 0.16 

Bias 1.69 18.08 19.34 -0.98 -0.52 17.42 -0.24 

Variance 0.19 0.45 0.58 0.17 0.22 0.52 0.18 

Moderate MSE 0.22 3.72 4.31 0.18 0.22 3.55 0.18 

Bias 1.30 17.21 19.77 -0.09 0.10 17.51 0.25 

Variance 0.20 0.48 0.64 0.15 0.20 0.56 0.17 

Complex MSE 0.21 3.44 4.54 0.15 0.20 3.62 0.17 

*Estimates are multiplied by 100 and rounded off to two decimal points for ease of presentation. As such 

MSE may not be exactly equal to bias squared plus variance. 
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Table(2.52): Rounded estimates of bias, variance and MSE for the continuous 

stratification experiment default 

Model Type 10
2
x 

(1) 

X1W1 

(2) 

X2W2 

(3) 

X3W3 

(4) 

X1X2W1W2 

(5) 

X1X3W1W3 

(6) 

X2X3W2W3 

(7) 

X1X2X3W1W2W3

Bias 3.99 10.40 11.84 2.73 4.85 11.02 4.84 

Variance 0.01 0.02 0.04 0.02 0.03 0.03 0.03 Single 

MSE 0.17 1.11 1.44 0.09 0.26 1.24 0.26 

Bias 3.98 10.81 11.76 3.30 3.54 11.01 3.56 

Variance 0.01 0.03 0.04 0.01 0.02 0.03 0.02 Single With Fixed 

MSE 0.17 1.20 1.42 0.12 0.14 1.24 0.14 

Bias 3.84 10.77 11.80 3.14 3.05 11.04 3.07 

Variance 0.01 0.03 0.04 0.01 0.01 0.03 0.01 Simple 

MSE 0.16 1.19 1.43 0.11 0.11 1.25 0.11 

Bias 3.50 10.75 12.26 2.51 3.16 11.44 3.17 

Variance 0.01 0.03 0.04 0.01 0.01 0.03 0.01 Moderate 

MSE 0.13 1.18 1.54 0.08 0.11 1.34 0.11 

Bias 3.49 10.36 14.28 2.38 2.90 13.16 2.91 

Variance 0.01 0.02 0.05 0.01 0.01 0.04 0.01 Complex 

MSE 0.13 1.10 2.09 0.07 0.10 1.77 0.10 

*Estimates are multiplied by 100 and rounded off to two decimal points for ease of presentation. As such 

MSE may not be exactly equal to bias squared plus variance. 

 

 Despite the promising performance of the multilevel complex PS in each of the 

given simulations, this approach did not always dominate the others. For instance, the 

multilevel complex PS was particularly weak when including only variables related to the 

treatment assignment (e.g. combination (3) X3,W3) or those variables related only 

treatment and only to the outcome (e.g. combination (6) X2,X3,W2,W3). In other words if 

one can confidently identify confounding variables to enter in to the PS the complex 

multilevel PS may present a useful option. However, if one cannot confidently identify 

confounders, simpler PS model such as the single level with or without fixed group 

effects may offer an advantage.  

Despite the MSE advantage of the complex multilevel PS over the other models 

with certain variable specifications, the absolute magnitude of such advantage in any case 

is relatively small. Specifically, the advantage of using the most appropriate model in any 

of the above circumstances is small relative to including the most appropriate variables. 
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When contrasting the seven different PS variable specifications, I noted the wide range in 

MSE among the different combinations. In particular, whereas the MSE’s when 

examining PS model choice had relatively little fluctuation between models with the 

same variables (vertical columns in tables), variable selection (horizontal rows in tables) 

in the PS played a much larger role. For instance, for a given PS model such as complex 

multilevel, the estimates of MSE based on the seven PS covariate specifications ranged 

from 0.10 to 2.00 whereas within a fixed covariate specification the choice of PS model 

results in a much more constricted range of around 0.10 to 0.20. Such a pattern is evident 

in each of the simulations regardless of PS use or treatment type. Further, I saw PS’s that 

excluded the true confounder (X1,W1) had considerably more bias and MSE than those 

that did not. In addition, I saw evidence that using variables that constitute the true PS’s 

((5) X1,X3,W1,W3) frequently resulted in higher MSE than other specifications. 

Specifically, PS models that included the true confounders and those only related to the 

outcome (e.g. (4) or (7) X1,X2,W1,W2) tended to produce the minimum MSE. Consistent 

with literature on non-nested outcomes, including all available variables may decrease the 

efficiency of the estimator and thus increases MSE (Brookhart et al., 2006).  

Next I turn to comparing the three different PS uses within dichotomous 

treatments. Each of the three PS uses takes on a different but valid approach to adjusting 

for selection bias. In terms of MSE of the treatment effect estimator in multilevel models, 

stratification, IPTW and matching tended to have similar performances. There was some 

evidence that stratification and IPTW slightly outperformed matching, however such a 

difference was small. The differences in MSE between PS uses were generally 
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comparable to the differences in MSE between PS models. In other words, relative to 

variable specification, both PS use and PS model choices changed the MSE little.  

In looking at the results of each section holistically, there is evidence to suggest 

that when complex multilevel treatment assignment mechanisms exist, complex 

multilevel PS’s may be more appropriate. However, such evidence is relatively weak in 

that the relative gain in terms of MSE in using such an approach is small. Further, such 

gains are increasingly small when compared to how much PS model variable 

specification contributes to MSE. For instance, for a dichotomous treatment in which we 

have stratified on the PS, adopting a complex multilevel PS with true confounders and 

those only related to the outcome, the average error of our estimate would be 

approximately 0.026. However, if we rather adopted a single level model with fixed 

group effects using the same variables our average error would go us to approximately 

0.03. In other words using a complex multilevel PS over a fixed effects single level PS 

would reduce our average error by about 0.004 or 13%. In contrast, the average error 

rises much more when excluding relevant variables. For example, in adopting a complex 

multilevel PS that excludes true confounders but includes those variables related to the 

treatment only, the average error is about 0.19. However, using the complex multilevel 

PS with the true confounders and those related to the outcome only yields an average 

error of about 0.026. The difference in errors resulting from variable selection represents 

a much larger range than resulting from model choice. Similarly, although highly 

dependent on context, the PS use matters very little in comparison to variable selection as 

evident from the tables above.  
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Results of the next set of experiments, which examined the sensitivity of these 

results to different parameter specifications, indicated qualitatively similar findings. My 

assessment of the sensitivity of the above results to various parameters indicated that the 

results tended to be fairly insensitive to the parameters I varied. In particular, of the nine 

parameters, I noted that only four of them exerted even minimal influence within the 

range I examined. The first parameter that altered some of the above findings was the 

probability of receiving treatment. Specifically, only with the IPTW PS use did the 

results change. Though qualitatively similar to the original results, the absolute 

magnitude of the MSE when using IPTW on the PS increased when the probability 

deviated from 0.5. Despite the trimming the weights at the 5
th

 and 95
th

 percentiles, such a 

result is likely due to the overweighting of certain observations that empirically appear to 

have extremely high or low probabilities. Also, such sensitivity is may be due to the 

sensitivity of the logit link to misspecifications. A potentially more robust link when 

using IPTW may be the robit link (e.g. Gelman & Meng, 2005). Next, increasing the 

number of strata used when stratifying on the PS tended to universally decrease MSE. 

Because one generally increases the homogeneity within strata when using more 

subclasses, such comparisons tend to remove bias although at a decreasing return. 

One parameter that did tend to generate noticeable influence over the MSE of the 

treatment estimator, was the magnitude of the variable coefficients (β). In particular, 

decreasing the size of β tended to reduce the separation in MSE between models. That is, 

when variables contribute little to inferring treatment assignment the difference among 

multilevel PS’s shrinks considerably. Likewise, increasing β tended to expand the 

separation in MSE between models. In other words, when the imbalances among 
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treatment groups are relatively large, utilizing a multilevel PS tends to reduce the MSE 

noticeably. In a similar vein, increasing the amount of variation the group is responsible 

for in deciding an individual’s treatment assignment tends to have some influence. When 

predicting the treatment assignment, increasing the variation at the group level (τ) tends 

to separate PS model choices. More specifically, the benefit of using a multilevel PS 

increases as τ increases. Table (2.53) provides an overview of the sensitivity analysis 

results by presenting the MSE for the fourth variable PS specification which includes 

both true confounders and those variables only related to the outcome. 

Table(2.53): Sensitivity of results to parameters (MSEx100) 

  
Dichotomous 

Strata 

Dichotomous 

IPTW 

Dichotomous 

Match 

Continuous 

Strata 

  V4 V4 V4 V4 

Original Single 0.15 0.21 0.26 0.09 

 Single with fixed 0.19 0.13 0.16 0.12 

 Simple 0.13 0.12 0.18 0.11 

 Moderate 0.12 0.14 0.18 0.08 

 Complex 0.07 0.07 0.15 0.07 

P=0.1 Single 0.07 0.54 0.21 NA 

 Single with fixed 0.12 0.35 0.17 NA 

 Simple 0.11 0.18 0.18 NA 

 Moderate 0.08 0.24 0.15 NA 

 Complex 0.07 0.17 0.15 NA 

P=0.9 Single 0.07 0.4 0.24 NA 

 Single with fixed 0.12 0.25 0.19 NA 

 Simple 0.11 0.19 0.18 NA 

 Moderate 0.08 0.28 0.16 NA 

 Complex 0.07 0.2 0.15 NA 

Strata=10 Single 0.02 NA NA 0.02 

 Single with fixed 0.03 NA NA 0.03 

 Simple 0.03 NA NA 0.03 

 Moderate 0.02 NA NA 0.02 

 Complex 0.02 NA NA 0.02 

Effect=0.1 Single 0.17 0.28 0.15 0.08 

 Single with fixed 0.22 0.18 0.14 0.12 

 Simple 0.16 0.18 0.12 0.11 

 Moderate 0.13 0.2 0.15 0.08 

 Complex 0.09 0.09 0.14 0.07 

Effect=0.5 Single 0.16 0.25 0.15 0.07 

 Single with fixed 0.2 0.15 0.18 0.12 

 Simple 0.13 0.14 0.14 0.11 
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 Moderate 0.12 0.16 0.16 0.08 

 Complex 0.06 0.06 0.15 0.07 

Tau_u=low Single 0.17 0.23 0.28 0.08 

 Single with fixed 0.19 0.19 0.23 0.13 

 Simple 0.14 0.17 0.19 0.12 

 Moderate 0.13 0.18 0.2 0.09 

 Complex 0.08 0.09 0.15 0.06 

Tau_u=high Single 0.15 0.3 0.24 0.13 

 Single with fixed 0.22 0.17 0.14 0.11 

 Simple 0.15 0.16 0.15 0.1 

 Moderate 0.12 0.17 0.14 0.08 

 Complex 0.06 0.06 0.14 0.06 

Rho=low Single 0.13 0.24 0.2 0.08 

 Single with fixed 0.15 0.15 0.15 0.09 

 Simple 0.12 0.14 0.19 0.08 

 Moderate 0.1 0.15 0.15 0.07 

 Complex 0.08 0.07 0.15 0.05 

Rho=high Single 0.16 0.21 0.19 0.13 

 Single with fixed 0.21 0.14 0.19 0.15 

 Simple 0.15 0.13 0.2 0.13 

 Moderate 0.12 0.14 0.18 0.1 

 Complex 0.09 0.07 0.16 0.11 

Psi=low Single 0.15 0.22 0.23 0.1 

 Single with fixed 0.19 0.16 0.14 0.12 

 Simple 0.12 0.15 0.15 0.11 

 Moderate 0.12 0.16 0.15 0.08 

 Complex 0.07 0.07 0.15 0.07 

Psi=high Single 0.16 0.22 0.19 0.09 

 Single with fixed 0.2 0.13 0.14 0.12 

 Simple 0.14 0.12 0.15 0.11 

 Moderate 0.11 0.15 0.16 0.08 

 Complex 0.06 0.06 0.19 0.07 

N=50 Single 0.17 0.21 0.26 0.09 

 Single with fixed 0.19 0.17 0.19 0.12 

 Simple 0.15 0.16 0.16 0.12 

 Moderate 0.15 0.12 0.18 0.09 

 Complex 0.1 0.08 0.18 0.07 

N=500 Single 0.14 0.15 0.19 0.09 

 Single with fixed 0.15 0.15 0.18 0.1 

 Simple 0.11 0.12 0.15 0.09 

 Moderate 0.12 0.13 0.15 0.07 

 Complex 0.06 0.07 0.13 0.06 

Beta=0.2 Single 0.08 0.07 0.14 0.02 

 Single with fixed 0.09 0.07 0.14 0.03 

 Simple 0.08 0.06 0.14 0.03 

 Moderate 0.08 0.06 0.13 0.02 

 Complex 0.07 0.06 0.15 0.02 

Beta=0.8 Single 0.38 0.43 0.21 0.11 
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 Single with fixed 0.35 0.38 0.18 0.19 

 Simple 0.24 0.34 0.18 0.18 

 Moderate 0.22 0.29 0.16 0.11 

 Complex 0.07 0.06 0.14 0.1 

Tau=0.1 Single 0.19 0.3 0.20 0.06 

 Single with fixed 0.23 0.21 0.17 0.1 

 Simple 0.18 0.2 0.24 0.09 

 Moderate 0.15 0.26 0.22 0.07 

 Complex 0.13 0.14 0.20 0.06 

Tau=0.3 Single 0.26 0.26 0.35 0.17 

 Single with fixed 0.2 0.16 0.11 0.13 

 Simple 0.15 0.15 0.11 0.12 

 Moderate 0.12 0.14 0.14 0.09 

 Complex 0.06 0.05 0.12 0.06 

 

Discussion 

Though the results are specific to the parameters and data considered, they 

primarily suggested that researchers should consider multilevel PS’s when it is likely the 

treatment assignment is influenced by group characteristics. Though there is a certain 

potential for loss in efficiency in accounting for such differences when they do not exist, 

this loss tended to be dominated by the potential bias added by ignoring the multilevel 

structure. As a result utilizing multilevel PS’s tends to slightly improve the quality of the 

treatment estimator in terms of bias and MSE. However, the advantages of adopting a 

multilevel PS were moderated by several factors. First, the reduction in bias tended to 

noticeably exceed the increase invariance only when a complex multilevel PS was used. 

That is, in a number of circumstances the loss of efficiency tended to dominate the bias 

reduction in the simple and moderate multilevel PS’s when compared to the single level 

models. Only when we fully adjusted for the multilevel nature of the treatment 

assignment did we see the reduction in bias dominate the increase in variance. More 

significantly, the advantages of using a multilevel PS are often moderated by the type of 

variables one has to include in the PS. In particular, if one does not have true 
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confounders, those related to both the treatment and the outcome, one should consider 

adopting simpler PS models. Further, the results suggested that variable selection in the 

PS construction plays a much larger role than the type of model used. As is evident from 

the data above, the contribution of the PS model type is minimal compared to the 

contribution of variable selection. This study suggested that for the simulated data, MSE 

was generally minimized when we included those variables that were related to the 

outcome only in addition to the true confounders. The study also indicated that variables 

unrelated to the outcome but related to treatment assignment insert noise and make strata 

boundaries, matches or weights less clear. Such noise tended to increase variance without 

necessarily decreasing bias and thus tended to result in higher MSE. Such results are 

consistent with recent literature and suggest that using an approach that includes all the 

available variables or includes only those variables that predict the treatment assignment 

may decrease the quality of the estimator (Brookhart et al., 2006). Such results raise 

questions about the validity of common PS construction methods such as including all 

available variables or forward/backward stepwise variable selection. Such strategies 

exclusively focus on the treatment without consideration for the outcome and thus impair 

the ability of the PS to contrast appropriate groups based on the outcome under study. 

Examination of the results of sensitivity analyses provided evidence that the variable 

selection problem is complex in nested treatments and requires much further study. 

Evident from these analyses, variable selection played a much larger role that did any of 

the parameters considered. As a result, the centrality of advancing PS’s may rest more on 

understanding the concurrent relationships that each variable possesses that in appropriate 

model selection. Further PS variable selection in real data analyses is much more 
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complicated than the data generated in this study as multilevel settings pose a variety of 

complex situations and variable relationships not considered.  

Application  

Teacher quality has recently been a high priority in education literature, in part as 

a result of the No Child Left Behind Act (NCLB, 2001). This act requires states and 

schools to provide every student with highly qualified teachers and requires teachers to 

demonstrate subject matter competency through various means. In meeting these 

requirements states and schools have struggled to identify and understand the 

components of teacher quality and those attributes that are most representative of the 

components. Though definitions of teacher quality vary among states as well as within 

states, the core of teachers’ competency is the specialized knowledge in the subject in 

which they teach. In the area of reading, indices of teachers’ knowledge used to estimate 

teacher quality have primarily been indirect measures or “proxies” of knowledge (e.g., 

attainment of certification or an advanced degree in a reading-related area) rather than 

direct measures of knowledge about reading. However, research has not consistently 

demonstrated significant associations between such proxies of teacher knowledge and 

student achievement (Croninger, Rice, Rathbun, & Nishio, 2003). Research has 

considered qualifications such as attainment (e.g. Scholastic Aptitude Test) (Ballou, 

1996; Ehrenberg & Brewer, 1995); years of teaching experience (Darling-Hammond, 

2000; Hanushek, Kain, O’Brien, & Rivkin, 2005). Refined measures, such as number of 

courses or major, have sometimes been found to be related to students’ academic gains 

(e.g., Croninger, et al., 2003), but not all studies have shown significant effects (Darling-

Hammond, 2000; Goldhaber & Brewer, 2000).  It is possible that more direct measures of 
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teachers’ content knowledge in the area in which they are teaching could provide a better 

index of teacher quality.  

In this application I focused on the extent to which teachers’ knowledge about 

early reading contributes to their students’ progress in reading. In particular, I assessed 

whether there is a direct measurable relationship between teachers’ knowledge about 

reading and students’ reading achievement, above and beyond that accounted for by other 

common teacher quality markers. That is, although attained credentials may exhibit some 

relationship with student literacy achievement, teacher’s literacy knowledge may 

additionally boost his/her effect on a child’s literacy. I included in my investigation a 

second question, and that is whether teacher literacy knowledge, as assessed by the 

current measure, is evenly distributed among schools. Specifically, as a byproduct of 

examining and controlling for teacher and school factors that influence teacher literacy 

knowledge, I assess whether teacher literacy knowledge is concentrated in certain 

schools.  

In designing a study to determine the effects of teacher knowledge about reading 

on students’ reading acquisition, an important problem is identifying the types and extent 

of knowledge that teachers need to hold. This problem is particularly complex for 

teachers of beginning reading because, unlike mathematics and science, it is difficult to 

identify the content of instruction.  Beginning reading instruction focuses on students’ 

acquisition of processes of word reading and comprehension. Teachers’ knowledge might 

be thought of as incorporating both an understanding of the process of reading and the 

methods by which children acquire skill in this process. A necessary aspect of the study, 

therefore, was developing a theoretical framework of teachers’ knowledge about early 
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reading and designing and investigating the measure that reflected this theoretical 

framework (Kelcey, Carlisle, Rowan, Phelps & Johnson, 2008). In content domains other 

than reading, measures of teachers’ knowledge have focused on pedagogical content 

knowledge, a construct that involves the intersection of the knowledge that teachers’ need 

to impart and the methods used to convey this knowledge to students (Shulman, 1986). In 

contrast, theoretical frameworks and previous empirical studies of reading have focused 

on the extent to which teachers’ hold linguistic knowledge about reading—that is, content 

knowledge. Because the framework and contents of measures of teachers’ knowledge are 

likely to affect the outcome of a study of the measure as an index of teacher quality, I 

provide background in previous studies and discussion of the design of the study I carried 

out. 

Rationale for Designing a Measure of PCK in Reading 

In designing the current measure Kelcey et al. (2008) investigated the view that 

linguistic knowledge is the content knowledge that teachers of early reading must hold to 

be effective in teaching early reading. Such a view posits that teachers need to understand 

the linguistic structure of words to teach children to read; further, children need to 

understand how their oral language maps onto the written forms of words. In addition to 

placing emphasis on linguistic knowledge, the measure places emphasis on situated 

linguistic content knowledge. The premise is that teachers of early grades need to focus 

on not only a teacher’s content knowledge but also their use of their knowledge in 

teaching reading. In contrast to proxies, a measure of content knowledge would allow 

researchers to explicitly assess a critical aspect of teacher quality. That is, in using 

proxies such as master’s degrees, it may be unclear as to which skills gained through 
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attaining a master’s degree actually drive the effect of teacher quality or teacher 

knowledge on student literacy achievement (Kelcey et al., 2008).  

Recent studies of teacher knowledge 

Despite interest in assessing teachers’ knowledge about reading, identifying such 

knowledge and examining its relationship to student achievement has remained 

inadequately specified in past research. Insufficient measurement of such knowledge has 

limited the causal conclusions one can draw. However, current interest in understanding 

and measuring teachers’ knowledge and instructional capabilities has accelerated, and 

appropriate methods for studying the validity of such measures have improved. Included 

in such methods are efforts to examine the effects of professional development on 

teachers’ knowledge and to examine the effects of teachers’ knowledge on their practices 

and their students’ reading.  

The relation of teacher literacy knowledge and student achievement in literacy in 

the early elementary grades has been examined in relatively few studies. Those that do 

focus on such relationships have methodological features that make it difficult to infer the 

possible causality of teachers’ knowledge about reading on their students’ progress in 

reading. Two studies (Bos, Mather, Narr & Babur 1999; McCutchen, Abbott, Green, 

Beretvas, Cox, Potter, Quiroga & Gray, 2002) carried out assessments of teachers’ 

knowledge about the linguistic foundations of reading, before and after teachers attended 

a program of professional development, but they then compared students’ reading 

performance of teachers who did and did not attend the professional development 

program. Performance on the teacher knowledge measure did not figure into these 

analyses (Bos et al., 2001; McCutchen, Harry, et al., 2002). Other studies focused on 
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students’ year-end performance rather than gains in reading over the year (Foorman & 

Moats, 2004). In addition, most of these studies did not directly assess the contribution of 

teachers’ knowledge about reading to their students’ gains in reading after taking into 

account other indices of teacher quality. Instead, the analytic strategy often focuses on 

unconditional comparisons. For instance, Foorman and Moats (2004; Moats & Foorman, 

2003) compared teachers in terms of their attained teacher knowledge as part of a 

professional development program but without taking into account aspects of teachers’ 

professional background, such as degree attainment. In such circumstances, estimates can 

not be considered as causal effects of teacher knowledge, as the effect is entangled with 

other characteristics and may represent the summative effect of teacher quality.  

To address this, one recent study by Cirino, Pollard-Durodola, Foorman, Carlson 

and Francis (2007), more rigorously assessed teacher knowledge by linking teachers with 

their students, as well as controlling for other teacher quality factors. Though this study 

found no effect of teacher knowledge on student achievement, its measure of teacher 

knowledge is a composite measure of teacher quality which includes a teacher knowledge 

component rather than directly considering teacher knowledge.  

Second, those studies that do attempt to isolate the contribution of teacher 

knowledge to student achievement tend to ignore the influence of school and student 

characteristics. The information provided about the schools and students is sparse, and 

characteristics of the schools and students have often not been taken into account in the 

statistical analyses. Again, such estimates are difficult to consider as causal, because 

student, teacher, or school characteristics convolute the estimates. There is a strong 

likelihood that the larger context in which reading is taught affects student outcomes, as 
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demonstrated recently by Kainz and Vernon-Feagans (2007). These researchers found 

changing patterns in the family and school factors that affected the development of 

reading skills from kindergarten through third grader. 

With regards to student achievement, most studies find greater variance within 

classrooms than between classrooms or schools (Raudenbush & Bryk, 2002). As teacher 

knowledge is a teacher characteristic and is implemented to an entire class, the amount of 

variance it can account for is likely to be relatively limited. In addition, the complexity of 

the factors that affect students’ reading outcomes and the difficulty of measuring teacher 

knowledge restrict my expectation that teachers’ knowledge will account for their 

students’ gains in reading across a year. Instead, a measure of teachers’ knowledge might 

explain a rather small amount of the variance in students’ reading gains across a year. 

Evidence that modest expectations of the impact of the current measure of 

teachers’ literacy knowledge on students’ reading improvement is realistic comes from an 

earlier study (Carlisle, Correnti, Phelps, & Zeng, in press). The measure of teacher 

knowledge in this study focused on teachers’ content knowledge about reading that was 

disseminated at the professional development seminars attended by teachers in Reading 

First schools in Michigan (Moats’ Language Essentials for Teachers of Reading and 

Spelling; Moats, 2003). Using hierarchical linear modeling, the researchers controlled for 

socio-demographic characteristics at the student level and entered into the teacher level 

various characteristics of the teachers as professionals (e.g., certification status, 

educational attainment). The outcomes were the performances of first graders on two 

subtests of the Iowa Tests of Basic Skills, Word Analysis and Reading Comprehension, 
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controlling for students’ prior ability. The results showed no direct effects of teacher 

knowledge on students’ gains in word analysis and reading comprehension. 

The current study I report in this paper addresses the limitations of previous 

studies, the goal being a methodologically sound investigation of teachers’ knowledge 

about reading. The study focuses on the knowledge about reading held by teachers in 

Reading First schools in Michigan. Reading First is Part B of the No Child Left Behind 

legislation, designed to improve the reading achievement of kindergarten through third-

grade students in high poverty schools with chronic underachievement in reading. My 

primary research question is the extent to which first grade teachers’ literacy knowledge 

effects student literacy achievement. The theoretical framework focuses necessarily on 

the question of the nature and extent of knowledge about reading that contributes to 

effective early reading instruction. Further, the design of the study intentionally takes into 

account the characteristics of schools and teachers that have not met these challenges 

successfully in the past. In this study I examined teachers’ knowledge about reading by 

using their propensity to be a high-knowledge teacher and include various other indices 

of knowledge and experience (proxies such as educational attainments) so that 

interrelations of factors that influence teachers’ knowledge acquisition are captured by 

the analysis.  

Data 

 The data for this study were derived from the Reading First program in Michigan. 

Reading First is Part B of Title 1 of the No Child Left Behind Law of 2001. This 

legislation provides funding to support improvement of reading instruction in 

kindergarten through grade three in school districts with high levels of poverty and 
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underachievement in reading. As part of this study, researchers collected demographic 

survey and student achievement data from student, teachers and schools in the entire 168 

schools that participated in the Reading First program and evaluation for the 2006-2007 

school year. To qualify for Reading First funding in Michigan, districts had to meet 

eligibility requirements of low reading achievement (i.e., 40% or more of 4th-grade 

students scoring below the proficiency cut point on the state assessment, Michigan 

Evaluation of Academic Performance, Reading; MEAP) for 2 of the preceding 3 years, 

and low income (e.g., 1,000 or more students from families below the poverty line). Of 

this state Reading First population, approximately 77% of grade one teachers volunteered 

to allow researchers to investigate the effects of teacher knowledge on student reading 

achievement. Collectively, the 373 volunteer teachers instructed over 5,720 students and 

were nested in 138 schools. Of those teachers who agreed to take part in research 297 

grade one teachers had sufficient student data to be to be included in the analytic sample. 

Although we were unable to conduct this study with the full population of 

Michigan Reading First teachers, we did have available data for both the population and 

research sample. This allowed us to compare the characteristics of the two groups to 

determine the extent to which the volunteer sample differed from the larger population of 

teachers. On nearly all measures, the two groups were minimally different. The only 

noteworthy difference between the two groups was on the measure of teachers’ 

knowledge. On this measure, the volunteers scored significantly higher than the full 

population. Thus, with respect to teachers’ knowledge, the research sample is not 

representative of all Reading First teachers in Michigan. Tables (2.54) to (2.56) compare 
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the characteristics of the population who volunteered for research in the current study and 

the general state Reading First population.  

Table(2.54): Characteristics of Reading First Research Students vs. Reading First State 

Student Population 
State Population Analytic Sample   

N=9187 N=5720 

Disability 0.09 0.10 

Limited English Proficiency 0.12 0.11 

Special Education 0.04 0.04 

Free or Reduced Lunch 0.73 0.71 

Hispanic 0.11 0.12 

White 0.36 0.40 

Hawaiian 0.00 0.00 

African-American 0.42 0.39 

Asian 0.01 0.01 

American Indian 0.01 0.01 

DIBELS Fall NWF Score 22.56 23.73 

Male 0.51 0.50 

Average age (in months) 84.56 84.67 

ITBS-Reading Comprehension 149.58 149.85 

ITBS-Word Analysis 148.72 149.14 

 

Table(2.55): Characteristics of Reading First Research Teachers vs. Reading First State 

Teacher Population 

Characteristic 

State 

population 

N=524 

Analytic 

Sample 

N=297 

White 0.76 0.83 

African-American 0.16 0.10 

Hispanic 0.04 0.07 

Bachelors in Elementary Education 0.69 0.69 

Bachelors in Early Childhood Education 0.07 0.09 

Bachelors in Literacy Education 0.01 0.01 

Bachelors in Special Education 0.15 0.15 

Masters Degree 0.64 0.60 

Masters in Elementary Education 0.33 0.58 

Masters in Early Childhood Education 0.14 0.08 

Masters in Literacy Education 0.16 0.14 

Masters in Special Education 0.16 0.38 

Post Masters Degree 0.06 0.05 

Standard Certification 0.66 0.68 
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Provisional/Temporary Certification 0.20 0.21 

Reading Certification 0.04 0.06 

Special Education Certification 0.19 0.10 

High years teaching 0.49 0.49 

Number of Professional Trainings 3.55 3.74 

Teacher New to Reading First in 2006-07 School Year 0.15 0.16 

Average age of students in classroom 84.91 84.92 

Average percent of male students in classroom 0.53 0.53 

Average number of students in Special education 0.08 0.08 

Average percent of disabled students in classroom 0.14 0.14 

Average percent of limited English proficiency of students classroom 0.11 0.11 

Average percent of students eligible for free or reduced lunch in classroom 0.72 0.72 

Average percent of Hispanic students in classroom 0.11 0.11 

Average percent of White students in classroom 0.41 0.41 

Average percent of Hawaiian students in classroom 0.00 0.00 

Average percent of African-American students in classroom 0.38 0.38 

Average percent of Asian students in classroom 0.01 0.01 

Average percent of American-Indian students in classroom 0.01 0.01 

Average fall NWF/ORF of classroom 23.05 23.05 

 

Table(2.56): Characteristics of Reading First Research Schools vs. Reading First State 

School Population 

Characteristic 

State population 

N=165 

Analytical Sample 

N=138 

Male 0.52 0.52 

American Indian 0.01 0.01 

Asian 0.01 0.01 

African-American 0.50 0.46 

Hispanic 0.12 0.13 

White 0.35 0.38 

Percent eligible for free or reduced lunch 0.74 0.77 

Proportion of male teachers  0.07 0.07 

Proportion of white teachers 0.79 0.78 

Proportion of African American teachers 0.15 0.15 

Proportion of Hispanic teachers 0.05 0.05 

Proportion of Asian teachers 0.01 0.01 

Proportion of teachers with bachelors degree in Elementary Education 0.69 0.71 
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Proportion of teachers with bachelors degree in Early Childhood Education 0.08 0.09 

Proportion of teachers with bachelors degree in Literacy Education 0.01 0.01 

Proportion of teachers with bachelors degree in Special Education 0.16 0.15 

Proportion of teachers with any masters degree 0.61 0.61 

Proportion of teachers with masters degree in Elementary Education 0.38 0.39 

Proportion of teachers with masters degree in Early Childhood Education 0.08 0.08 

Proportion of teachers with masters degree in Literacy Education 0.11 0.11 

Proportion of teachers with masters degree in Special Education 0.30 0.3 

Proportion of teachers with post masters degree 0.04 0.05 

Proportion of teachers with standard certification 0.64 0.63 

Proportion of teachers with provisional or temporary certification 0.23 0.24 

Proportion of teachers with reading certification 0.05 0.04 

Proportion of teachers with special education certification 0.14 0.12 

Average number of professional trainings 3.45 3.49 

Proportion of  teachers with high number of years experience 0.46 0.45 

Proportion of teachers new to reading first in 06-07 0.21 0.21 

 

Measures of Students’ Reading Achievement 

The outcome measures for this study were the Iowa Test of Basic Skills (ITBS) 

standardized subtests concerning word analysis and reading comprehension published by 

Riverside Publishing. Word Analysis involves identifying and matching sounds and 

spelling elements of words. Reading Comprehension involves selecting responses to 

questions that followed short passages. The measure of students’ performance was the 

developmental standard score (SS). According to information reported in the ITBS test 

manual, the median SS is 150 for first graders (The University of Iowa, 2003). 

As reported by Riverside, the reliability (computed with Kuder-Richardson 

Formula 20) for each subtest for grade one is as follows: Word Analysis: .85; Reading 

Comprehension: .91. Content validity was established through designing a measure that 

corresponded to widely accepted goals of reading instruction in schools across the nation; 

the skills and abilities have been judged to be appropriate through a process that includes 

curriculum review, preliminary item tryout, national item tryout, and fairness review. 

Information on predictive validity was not available for grades earlier than fourth; 
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however for fourth grade, performance on ITBS significantly predicted performance on 

12
th

-grade Iowa Test of Education Development (.68) and 12
th

-grade grade point average 

(.53) (Hoover, Dunbar, Fisbee, et al., 2003). 

The measure of prior achievement is drawn from the Dynamic Indicators of Basic 

Early Literacy Skills (DIBELS) assessment, DIBELS is a set of fluency measures of early 

reading skills used to assess elementary students’ progress in reading. For this study, one 

subtest, Nonsense Word Fluency (NWF), was used to establish status in reading in the 

fall of the year. NWF entails decoding two- or three-letter nonsense words on a printed 

page; credit is given for the number of letters correctly decoded in 1 minute. Though an 

additional pretest is desirable, namely the ITBS tests from the prior year, these scores are 

unavailable as it is not administered in kindergarten. Technical information in a 

document downloaded from the DIBELS website provides information on alternate form 

reliability of DIBELS measures (Assessment Committee, 2002). For NWF, the median 

was .83 for first graders. In terms of validity (Assessment Committee, 2002) concurrent 

validity, for NWF concurrent validity for first graders who had also taken the Woodcock 

Johnson Readiness had a median of .51.  

Teacher Measures 

   The primary source of data on teachers’ backgrounds was the Teacher’s Quest 

which was administered in the fall and winter of 2006 as well as the spring of 2007. This 

self-administered questionnaire focused on establishing measures of teacher experience, 

certification, education and professional training. Three sources of information came 

from this self-administered questionnaire:  Language and Reading Concepts, Practices 

That I Use, and Teacher Information. The Teacher Information section gathered 
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information about teachers’ personal and professional characteristics such as race/ethnic 

background, undergraduate major, graduate major, attainment of a master’s degree, type 

of certification they currently hold, and the type and amount of professional trainings 

they have attended. These factors were represented in a simple yes or no manner 

(represented through indicator variables) with the exception of professional trainings and 

workshops. For professional trainings, I constructed two measures of professional 

training. The first was a simple sum of the number of trainings completed by the teacher 

and the second was an indicator variable that separated those teachers that had completed 

more than the median number of trainings (median=3). Moreover, in summing the 

number of professional trainings, the measures excluded trainings listed as “other” as I 

could not validate the merit of such trainings. Acceptable professional trainings included 

the following options:  Reading Recovery, Michigan Literacy Progress Profile (MLPP), 

LIFT, LETRS, Leading Professional Dialogues, Orton Gillingham, Spaulding, KLP 

(Kindergarten Literacy Profile), Six Traits Writing, Four Blocks, and DIBELS. 

Language and Reading Concepts (LRC) is the measure of teacher knowledge and 

was developed as part of the Evaluation of Reading First in Michigan to be aligned to the 

professional development program in 2003-2005—the LETRS program (Moats, 2003; 

Kelcey et al., 2008). LETRS provides research-based lessons in the language basis for 

reading instruction and is made up of nine modules. In Michigan’s professional 

development program includes instruction in each of these modules. Overall, the teachers 

received about 3 hours of instruction and practices for each module. LRC was developed 

to assess teachers’ knowledge of principles and information in the LETRS program. In 

2004-2005, LRC consisted of three measures, one administered in the fall, one in the 
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winter, and one in the spring. In the subsequent year, fall 2005, the best 17 items were 

taken from these three forms to make up a single measure of reading knowledge. In the 

current administration, fall 2006, based on psychometric and theoretical properties of 

previous administrations, the focus of the test has shifted towards reading comprehension 

content and pedagogical knowledge (Phelps & Schilling, 2004). These items consist of 

the following: eight items (3-10) focus on phonemic awareness, phonics, and spelling; the 

remaining 9 items (11-19) focus on syntax/grammar, semantics/vocabulary, 

comprehension and comprehension instruction (Kelcey et al., 2008).   

Psychometric analysis of the LRC teacher knowledge measure was conducted 

using data from the full population of first grade teachers participating in Michigan 

Reading First. Using Item Response Theory (IRT) (Hambleton, Swaminathan, & Rogers, 

1991) and the software program BILOG I investigated scale properties and to scored 

participants (Mislevy & Bock, 1997) using a one parameter (Rasch) models. The IRT 

scale properties were 0.69 for IRT reliability and -1.13 for the test information maximum. 

The test information curve is presented in Figure (2.57). The LRC assessment for 

first grade teachers has an information maximum below an average ability, providing the 

greatest power for reliably distinguishing among teachers at an ability of level of over 1 

standard deviation below the mean. The information curve for the first grade teachers 

falls rapidly from the maximum dropping below an information of 2 at a teacher ability 

level of roughly a half standard deviation above the mean.  
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Figure(2.57): LRC (Teacher knowledge) Test Information Curve and Standard Error 
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 In assessing the effect of the teacher knowledge captured by the LRC measure 

independent of other factors, I included a measure of the practices teachers use as to 

compare teachers with similar practices. I utilize the self reported practices measure from 

the fall, winter and spring teacher questionnaires. The measure of instructional practice 

consists of 42 student activities in phonemic awareness, phonics, fluency, vocabulary, 

comprehension, and writing that teachers are likely to use in early elementary literacy 

instruction. At each of the three administrations, teachers were directed to mark all 

instructional activities in which their students participated during the past full week of 

school. The set of activities marked by teachers provided a snap shot of the combination 

of practices teachers emphasize in their literacy instruction, emphasizing the richness of 

activities in which teachers engage students. I created one parameter IRT scale scores for 

each administration using Bilog and estimated scores based on the full state population of 

teachers participating in Michigan Reading First. The final total score is the average of 

the three administration scale scores and represents an overall measure of the emphasis 

that teachers place on the 42 student activities.  

School and District Characteristics  

 The measures of school characteristics used in this study were drawn from the 

Michigan Department of Education website (www.michigan.gov/mde). This source 
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provided data that was independent of the Reading First surveys. From this source, I 

constructed five measures. First, I identified the student population based on the percent 

of students that were male/female in a school. Second, I created an index based on the 

percentage of each race category (white, African-American, Hispanic, Asian, American 

Indian, Hawaiian, other). Third, I established a proxy measure for the socio-economic 

status of a school through the percentage of students that were eligible for free or reduced 

lunch. Finally, I estimated the collective qualities of Reading First teachers and students 

by aggregating all teacher and student covariates up to the school level. For instance, I 

recorded the proportion of teachers holding a masters degree and average DIBELS fall 

score. 

Missing Data 

Missing data retains the potential to bias parameter estimates and is a common 

complication in observational studies. Analyses with such partial data require making 

strong analytical assumptions that are unverifiable and often violated (e.g. missing 

completely at random (MCAR), Rubin, 1976). Analyses of this sort have the potential to 

misestimate effects and lead to erroneous inferences since most statistical inference tools 

are based on complete data sets. Rather than remove those students or teachers that have 

incomplete data, I employed the multiple imputation to impute missing values (e.g. 

Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001). Multiple imputation 

assumes data are missing at random (MAR), a, perhaps, more plausible assumption than 

the missing completely at random (MCAR) assumption of listwise deletion (Rubin, 

1976).  
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In this study, approximately ten percent of teachers and students had at least one 

missing data point resulting from teacher/student mobility and/or absenteeism on the day 

the data collection instruments were administered. Missing data analyses did not detect a 

significant difference in the observed covariates for students with missing data when 

compared to students without missing data. Additionally, although unverifiable directly, 

the data suggest that student and teacher missing data were unrelated to achievement and 

teacher knowledge and I accepted the MAR assumption. To appropriately address this 

missing data issue, I employed multiple imputation. In each imputation procedure, I 

based the student imputations on the full state population and considered all available 

variables measured at all levels to increase the robustness of inferences to violations of 

the MAR assumption (Peugh & Enders, 2004).  

Analyses 

My analyses are separated into two independent and parallel strands, each of 

which focuses on a single outcome. The first strand examines the causal effect of teacher 

literacy knowledge on individual student achievement in word analysis, while the second 

focuses on reading comprehension. In both of the models, my strategy consisted of two 

stages to approximate these causal estimands. In the first stage, I used the observational 

data to approximate an experiment using extensions of the canonical PS presented above. 

In the second stage, I combined PS stratification with hierarchical linear models to 

estimate the causal effects of teacher knowledge.  

Applying the Rubin causal model (1974), I defined the effect of teacher 

knowledge on a student within his or her classroom as the difference between outcomes 

at various levels of treatment (teacher knowledge). More formally, using the continuous 
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treatment measure of teacher knowledge, I defined the set of potential outcomes for 

student i in classroom j and in school k as 

Y= ( )

ijk

T
Y , for ti in (T) where i ={1, …, n}      (2.58) 

where Т is the set of potential treatment (continuous teacher knowledge) values and ( )

ijk

T
Y  

is a random variable that maps a particular potential treatment, ti, to a potential outcome 

(Imai & Van Dyk, 2004). A first main assumption is the stable unit treatment value 

assumption (SUTVA) (Rubin, 1990). In this study, this assumption precludes the 

possibility of interference between students in different classrooms and thus accepts that 

the effect of a teacher’s literacy knowledge on students in his/her classroom is 

independent of whether another teacher has high or low literacy knowledge. A second 

assumption needed is strong ignorability of treatment assignment (Rosenbaum & Rubin, 

1983a). In the current context this assumption implies that the distribution of the teacher 

knowledge does not depend on potential outcomes given the observed covariates. Though 

SUTVA may be a tenable assumption as grade one presents self-contained classrooms 

and students experience minimal interaction with other teachers and their respective 

students, the ignorability of the treatment assignment need may not be tenable without 

proper adjustment as this is an observational study. In particular, teacher knowledge is a 

characteristic that is potentially intertwined with many pretreatment conditions. In theory, 

the likelihood that a teacher has a high degree of literacy knowledge is likely associated 

with his or her demographic characteristics; professional training and education, etc. 

Additionally, a school’s and/or district’s selection of teachers with a high degree of 

literacy knowledge is potentially associated with school/district characteristics. To make 

the assumption of strong ignorability reasonable, I utilized the PS.  
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Propensity Score Model 

The multilevel dataset contains a set of variables that, theoretically, may be 

predictive of teacher knowledge and therefore predispose certain teachers to high teacher 

knowledge. Though literature on measuring teacher literacy knowledge effectively is 

scarce, there is strong evidence in the educational literature that levels of knowledge 

(usually student knowledge) tend to be clustered and be influenced by school 

characteristics and membership (e.g. Raudenbush & Bryk, 2002). Moreover, literature 

has demonstrated the clustering of high quality teachers in more affluent schools and 

districts (Weiler & Mitchell, 1992). Such relationships and clustering likely influence the 

dispersion of teacher knowledge. As a result, modeling the treatment assignment 

mechanism properly requires thoughtful consideration of these relationships. That is, I 

must effectively identify and estimate the varying selection mechanisms by which 

schools and districts assign teachers to a treatment level (i.e. simple, moderate or 

complex multilevel treatment assignment mechanism). For instance, one can envision 

that a teacher’s education may be fairly predictive of teacher knowledge in a school with 

a heterogeneous population whereas education may be trivial in its influence in a school 

with a homogeneous population. Such a setting would necessitate estimation that 

considers the differences in teachers as well as schools. Failure to account for such 

individual and group differences in the selection mechanisms, when they exist, will tend 

to bias the treatment estimator. Further to address the continuous nature of the treatment, 

I constructed the PS via a HLM as described above. Preliminary diagnostic analyses 

supported linearity as a feasible approximation of the true score.  
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A primary advantage of using the PS based approach has been its potential ability 

to mimic randomization. However, this advantage is often tempered by the difficulty of 

correctly specifying the PS as the bias and variance of the treatment effect estimator 

strongly depends on the subset of observed variables included in the construction of the 

PS. Theoretical literature has suggested that inclusion of variables unrelated to the 

treatment assignment but related to the outcome is vital, as their inclusion tends to 

decrease the variance of the estimator without increasing bias (see Variable Selection 

study within; Rubin & Thomas, 1996; Brookhart, Schneeweiss, Rothman, Glynn, Avorn 

& Sturmer, 2006). Moreover, it has also been suggested to exclude variables that are 

related to treatment assignment but unrelated to outcome as they increase variance 

without an accompanying decreasing in bias. Though such suggestions provide clear 

theoretical guidance, applying such principles in practice can be difficult. Further the 

difficult of such considerations increases when treatment assignment is multilevel. When 

treatment assignment is multilevel the number of explanatory covariates, cross level 

interactions and potential random slopes may increase rapidly. Datasets with even an 

average number of covariates and moderately large sample sizes may run into estimation 

problems as a result of limited degrees of freedom. Consequently, estimating PS’s that 

are multilevel in nature requires an effective and efficient estimation strategy for variable 

selection. As evident from the literature, a variable selection strategy based on 

maximizing the prediction of the treatment only will neglect variables that are related to 

the outcome but weakly related to treatment assignment. 

Further in the current context, literature on measuring and defining teacher 

knowledge is relatively weak and unsupported and the current measure represents on 
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going research. Consequently, I relied on empirical evidence for model selection. 

Because of the number of teachers, my approach to constructing the level one (teacher) 

portion of the PS model was to include all measured teacher level variables. However due 

to the limited degrees of freedom for higher levels, I utilized a variable selection method 

similar to the Variable Selection study contained within. Whereas the Variable Selection 

paper within focused on the outcome-covariate and treatment covariate relationships 

separately, the current PS was constructed using the product of these relationships. In 

particular, using the pretest as a proxy for the outcome, I included those covariates in the 

PS whose product was the strongest in absolute magnitude. Similar to the Variable 

Selection paper within, I quantified such relationships through weighted partial 

correlations where the weights were estimated by the error variance and group level 

variances (see Variable Selection chapter). 

For both word analysis and reading comprehension, I considered a three level 

propensity model where teachers are nested in schools which are nested in districts as 

each level illustrates significant variance (Table (2.59)).  

Table(2.59): Unconditional Variance Components for Propensity Model 

Component Variance 

Residual (e) 0.753 

Schools (r) 0.096* 

Districts (u) 0.063* 

* Chi-squared test p-value is < 0.01 

 

My propensity model indicated that whether the teacher was African-American, whether 

the teacher had a bachelor’s degree in early childhood education and whether the teacher 

had a reading certification varied randomly (e.g. complex multilevel mechanism) Using 

the following models I estimated each teacher’s propensity to have teacher knowledge 

(complete specifications and variable list can be found in Kelcey et al., 2008): 
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Propensity Model: 
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=

= + +∑  (2.62) 

Applying the continuous treatment PS model, I subclassified teachers with similar 

values of the fitted propensity using quintiles and assessed balanced. When the PS is 

correctly estimated the observed covariates tend to be balanced among different levels of 

the treatment. Though there are more promising tools to assess comparability or balance, 

I assessed the comparability of subjects after estimating and controlling for the PS using 

the linear model (Hong & Raudenbush, 2006; Imai & Van Dyk, 2004). As I do not have a 

binary treatment but rather a continuous treatment, I compared models that omitted the 

estimated PS with models that conditioned on the estimated propensity function (Imai & 

Van Dyk, 2004). In the bi-variate model which omitted the estimatedPS, observed 

teacher knowledge is regressed on each covariate, individually, and the corresponding t-

value for the respective covariate’s coefficient is presented. For each covariate, I placed 

the PS adjustment at the teacher level and the covariate at its proper level and use the 

propensity model previously specified: 

Bi-variate Model:  

Level 1 (Teacher): 0 1jkl pjkl jkl
TK Xπ π ε= + +  (2.63) 

Level 2 (School): 0 00 0kl
rπ β= +  (2.64) 
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Level 3 (District): 00 000 00l
uβ γ= +  (2.65) 

In the tri-variate model teacher knowledge is regressed on the same respective covariate 

as well as adjusted for the PS. 

Tri-variate Model:  

Level 1 (Teacher): 0 1 2jkl pjkl jkl jkl
TK X PSπ π π ε= + + +  (2.66) 

Level 2 (School): 0 00 0kl
rπ β= +  (2.67) 

Level 3 (District): 00 000 00l
uβ γ= +  (2.68) 

where PS represents the propensity score. The models are identical except that, in the 

latter, I controlled for the estimated propensity in each regression. The initial t-statistics, 

expectedly, are approximately normally distributed and show major covariate imbalances 

between levels of teacher knowledge (Appendix C). The t-statistics resulting from 

conditioning on the PS, are much closer to 0 since the model conditioned on the PS 

(Appendix C). As a result, balance on observed covariates for the teacher level as well as 

higher levels on teacher variables can be reasonably assumed.  

  Further to assess common support or adequate overlap between the estimated PS 

densities I extended the binary treatment idea of common support to the continuous 

treatment case. In the dichotomous treatment case, common support first requires a lack 

of perfect separability (linear, curvilinear, or otherwise) between the control and 

treatment groups implying that the probability of being a treatment or control can not be 

0 or 1. Accordingly, dichotomous common support also requires that the propensity to 

receive treatment is not perfectly correlated with the actual treatment received, implying 

that there was some randomness in the process. In practice with binary treatments, the 

adequate common support condition is ensured by the simple presence of both treatment 
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and control subjects in each stratum. The presence of both treatment and control groups 

in each stratum ensures the variance of the treatment condition within each stratum is not 

equal to zero, whereas the absence of both conditions implies the variance within a 

stratum is zero. This assessment ensures that the propensity for treatment and actual 

treatment are not perfectly correlated. Analogous to the dichotomous treatment situation, 

the continuous treatment PS common support condition requires ensuring that each PS 

based stratum contains adequate observed treatment variability and that the predicted 

level of treatment is not perfectly correlated with observed level of treatment. Appendix 

C displays this variation in observed teacher knowledge within each stratum. Moreover, 

the inter-strata overlap of actual levels of teacher knowledge, evident from the overlap 

between all interquartile ranges with all other strata, is complete and sufficient (i.e. all 

strata interquartile ranges have some considerable overlap with all other strata 

interquartile ranges). This complete overlap strongly suggests common support and 

sufficiently indicates a considerable lack of perfect correlation between the predicted and 

observed levels of teacher knowledge. Consistent with these graphs, bi-variate the 

correlation between the estimated PS’s and observed treatment levels was less than 

perfect: ρ=0.88. 

 Finally, to understand the potential roles of the different multilevel treatment 

assignment mechanisms, I estimated three different PS’s. The first represents a more 

historical approach and ignores clustering of teacher knowledge. With this approach, 

which I call a single level PS, I estimated the propensity to be a teacher with high literacy 

knowledge to solely be a function of teacher covariates. In essence, this approach 

implicitly considers the selection process as fixed across all schools/districts. The second 
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PS was the simpler multilevel PS while the third was the complex multilevel PS. Thus the 

estimated PS’s represented increasingly complex views of the selection mechanism. 

Estimating these alternatives has several theoretical and practical utilities. First, I used PS 

adjustment to mimic randomization by comparing those subjects whose multivariate 

distribution of pretreatment covariates is similar. In this manner the PS assists in breaking 

any relationship between the treatment selection mechanism and the potential outcomes 

to approach unbiased estimates of the treatment effect. As a result, PS’s that more 

accurately model the true selection mechanism may approximate the properties of 

randomization better than those which do not. In the current context, although true 

treatment selection mechanism is unknown, we can examine the comparative fit of the PS 

models to the data. As the PS models represent increasingly parsimonious views of the 

selection mechanism, I take advantage of the nested nature of PS models and compared 

the models’ deviances. Under likelihood theory the distribution of the difference in 

deviances between nested models under the null hypothesis (of no difference) should 

have approximately a χ
2
 distribution with degrees of freedom equal to the difference in 

the number of parameters. Examining such differences may inform us about the general 

fit of each model relative to the others and identifies which model most closely resembles 

the true selection mechanism. As a result, such direct statistical comparisons help suggest 

which model most closely mimics randomization. 

Further, contrasting such PS’s and their respective estimates has several practical 

informative utilities. First, as estimating multilevel PS’s can be a complex process, it is 

informative to understand whether this added complexity offers plausibly more accurate 

estimates. Second, in the case where there is little difference between the estimates, it is 
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informative to understand the potential drawback of using the more complex options. In 

particular it is informative to examine the loss of efficiency resulting from a multilevel 

propensity framework. Third, it can be reassuring to get similar estimates from PS’s 

constructed in different ways.  

Outcome Models 

Similar to the simulations above, I combined the PS stratification with regression 

adjustment using a HLM (e.g. Hirano & Imbens, 2002; Kleyman & Hansen, 2008). 

Specifically, I utilized the end of grade word analysis and reading comprehension 

outcomes from the ITBS subtests to examine the effects of teacher literacy knowledge. At 

level one, I considered seven student covariates that are historically related reading 

achievement. The first, male (π1), is an indicator of whether the student is male. The 

second, age, (π2) is a continuous measure of students age in months. The third, disabled 

(π3), is an indicator that specifies whether a student has a known learning disability. 

Fourth, I considered whether a student has limited English proficiency (LEP) (π4) and 

fifth I included an indicator for children who are eligible for free or reduced lunch (π5). 

Sixth, I considered an indicator of whether a student is white (π6). Lastly, I entered a 

measure of prior achievement (π7). At the higher levels, I rely solely on the PS strata 

indicators and an intercept random effect at each level to adjust for selection bias.  

Sensitivity Analysis 

In addition to estimating the causal effects of teacher knowledge on student achievement, 

I assessed the robustness of my inferences to the inclusion of an unmeasured variable via 

a sensitivity analysis (e.g. Rosenbaum, 1995). Such analyses describe the magnitude of 

the relationships of an unobserved variable needed to alter the original inference. I 
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attempted to control for overt known bias through the PS stratification and assumed that 

any unmeasured covariates, U, are independent of treatment assignment given the 

measured covariates. I constructed a sensitivity index from the set of observed measures 

to determine if the model estimates are significantly influenced by potential hidden biases 

resulting from unobserved covariates. For the each statistically significant teacher 

knowledge effect, I examined whether the estimates would be significantly altered by 

additional adjustments for a hypothetical unmeasured confounder. My approach to 

determining the robustness of my estimates conceptualizes finite list of variables as being 

a representative sample of potential confounding variables (Hong & Raudenbush, 2006). 

Accordingly, I examined the impact of omitting one of the measured potential 

confounders on the estimates of teacher knowledge. I use these adjusted estimates as an 

index to gauge the robustness of the teacher knowledge effect.  

Hidden bias may originate from any level in multilevel analyses, however I limit 

my sensitivity analyses to level two to correspond with the level the treatment was 

administered. I started by assuming that there exists an unmeasured teacher level 

covariate, U, comparable to the measured covariates. The impact of the omission of U on 

the estimate of teacher knowledge is dependent on the differences in teacher knowledge 

for the levels of U, represented by Γ, and its relationship with the outcome, represented 

by ∆. This impact is then potentially modified by the relationship between U and the 

measured covariates. Specifically, the impact of U on the treatment estimate may be 

reduced or absorbed if U is correlated with measured covariates (Frank, Duong, Maroulis 

& Kelcey, 2008). However, in my analyses, I considered U to be uncorrelated with all 
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measured covariates thereby assigning U the maximal impact. First I estimate the Γ 

relationship, that of the treatment’s with each of the covariates, X, such that 

 000 00 00 00 0( )  [ ( )] ( ) [ ( ) ] 
i i k j i

i j

E TK W X A v r eγ γ γ= + + Γ + + + +∑ ∑  (2.69) 

where e ~ N(0, σ
2
), r ~ N(0, τπ) and v ~ N(0, τβ); Aj, Xk and Wi are level one, two and three 

variables, respectively, in the propensity model. Then, I examined each covariate’s, Xi, 

hierarchical relationship with the outcome, ∆, controlling for those covariates at level one 

considered in the original achievement model  

 000 00 00 0( )  ( ) [ ( ) ] 
k j i

j

E Y X A v r eγ γ= + ∆ + + + +∑  (2.70) 

where e ~ N(0, σ
2
), r ~ N(0, τπ) and v ~ N(0, τβ); Ai and Xi the level one and two variables 

respectively. Using these two relationships, I constructed multiple hypothetical 

unmeasured random variables, U. Using U, the unmeasured confounder, and the original 

estimate of the treatment effect, δ, I created a new estimate of the teacher knowledge 

effect, δ
*
, that takes in account the unmeasured confounder 

δ
*
= δ + Γ (∆)      (2.71) 

I then sequentially assessed the sensitivity of the treatment to the addition of each U 

individually. That is, I assessed how different my inferences would be when assuming 

  Y    TK | Xmeasured         vs.   Y    TK | Uk, Xmeasured   (2.72) 

Results 

 I present the results in four sections. The first section attends to the characteristics 

and distribution of high knowledge teachers among teachers, schools and districts. The 

next section describes the results of the model based estimates of the teacher knowledge 

effect and is followed by a section that explicates the sensitivity of such estimates to 
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unmeasured characteristics through a sensitivity analysis. The final section contrasts 

estimates based on PS construction that ignores clustering.  

 Several teacher, school and district level characteristics present strong 

relationships to a teacher’s level of literacy knowledge. In particular, I saw that a 

teacher’s knowledge was related to his or her race, negatively related to new to Reading 

First status, class’s racial makeup and classroom practice. In particular, those teachers 

that emphasized a breadth of activities over a few activities tended to perform lower. In 

contrast, a teacher’s knowledge was positively related to his or her reading certification 

status and educational specialization. In particular, I saw that specializing in literacy 

education, whether at the master’s or bachelor’s level is associated with higher 

knowledge scores. Similar to those teacher characteristics that influenced knowledge, a 

school’s student and teacher racial compositions, the proportion of teachers specialized in 

literacy education along with the proportion of teachers maintaining a reading 

certification illustrated strong relationships with knowledge. In addition, the average 

number of professional trainings of teachers within a school attend demonstrated a strong 

relationship. Finally, the characteristics of a district also played a prominent role in 

predicting its teachers’ levels of knowledge. Paralleling prior levels, the racial 

composition of the teachers and students within a district illustrated the most association 

with knowledge. However, at this level, the percent of students eligible for free or 

reduced lunch as well as the average prior achievement levels were related to knowledge. 

 Overall, these relationships strongly influenced the construction of comparable 

teacher sub-groups. The PS I developed indicated that teachers with a propensity to have 

higher levels of teacher knowledge tended to differ on most characteristics when 
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compared with those teachers who maintained a propensity to have lower teacher 

knowledge levels. Although multicollinearity may convolute interpretation in propensity 

models, I noted that high teacher knowledge teachers tended to be white, specialize in 

literacy education and be experienced in teaching. Schools that maintained teachers with 

higher levels of teacher knowledge tended to have a high percent of teachers that were 

white, low percent of students that were African-American and had higher levels of 

approved professional training. Finally, districts that retained high knowledge teachers 

tended to have a lower percent of students that were African-American, higher percent of 

teachers that were white, and a higher percent of teachers that had obtained a masters 

degree. 

 I hypothesized that the teacher literacy knowledge examined here may not be 

evenly distributed among schools/districts but rather clustered within some 

schools/districts. As there is little research concerning the distribution of teacher literacy 

knowledge among schools/districts, I employed the multilevel PS model to empirically 

assess and subsequently address the clustering of knowledge in schools/districts. My 

analyses indicated that approximately 11% of the variation in teacher literacy knowledge 

is attributable to the school level and 7% is attributable to the district level (Table (2.59)). 

Though there is little prior research to compare this with, this decomposition is suggests 

substantial clustering and is similar, in magnitude, to those components found in student 

achievement. Moreover, such estimates are based on a Michigan Reading First sample-a 

group of districts and schools that are, to some extent, more homogeneous than the entire 

population of U.S. schools. Such estimates supported the hypothesis that schools/districts 

unevenly attract and retain high literacy knowledge teachers.  
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 Using PS adjustments to create comparable sub-groups of teachers, I examined 

the effect of teacher knowledge on reading achievement via the ITBS subtests 

considering word analysis and reading comprehension. Using fully unconditional models, 

I partitioned the variance in each student outcome into three components representing the 

variance among schools, the variance of teachers within school and the variance among 

students within classrooms. As is typical, the majority of variation in student achievement 

was attributed to the students within classrooms component. The variation in this 

component often represents the variation in factors such as natural aptitude, motivation, 

family support but also is inclusive of measurement error. I saw smaller, yet statistically 

significant, estimates of the variance at higher levels. I found that the estimates of teacher 

and school components were responsible for roughly 9% of the achievement variation 

each. Table (2.73) presents the HLM estimates of the variance components for both the 

fully unconditional models as well as the final models. 

 

Table(2.73): Variance Components for Achievement Models 

 Word Analysis Reading Comprehension 

Component 

Final 

Model 

Unconditional 

Model 

Intercept 

Reliability (λ) 
Final 

Model 

Unconditional 

Model 

Intercept 

Reliability (λ) 

Teachers (r) 0.08 0.10 0.67 0.06 0.08 0.61 

Schools (u) 0.03 0.08 0.51 0.018 0.08 0.51 

Residual (e) 0.57 0.81  0.60 0.87  

 

 The achievement model estimates of the effect of teacher literacy knowledge on 

student literacy achievement are presented in Table (2.74). The reading comprehension 

subtest produced the only statistically significant finding. In particular, my achievement 

model estimates the effect of teacher knowledge on this subtest to be 0.096 (p=0.008) 

That is, holding all other factors constant, for a one standard deviation increase in teacher 
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knowledge I observe approximately a 0.096 standard deviation gain in student reading 

comprehension achievement over a one year period. Subsequent analyses concerning the 

word analysis subtest indicated that teacher knowledge has a small positive effect on 

student literacy achievement but is indistinguishable from zero.    

Table(2.74): HLM Achievement Results 

 Word Analysis Reading Comprehension 

Effect Estimate SE T DF
1 

P-value Estimate SE t DF
1 

P-value 

Intercept (π0) 0.03 0.03 1.02 137 0.31 0.02 0.02 1.13 137 0.26 

 Teacher Knowledge (β01) 0.04 0.03 1.19 291 0.24 0.10 0.04 2.69 291 0.01 

 Strata 1 (β02) 0.07 0.08 0.89 291 0.37 0.15 0.08 1.90 291 0.06 

 Strata 2 (β03) 0.03 0.06 0.44 291 0.66 0.04 0.06 0.69 291 0.49 

 Strata 4 (β04) -0.04 0.05 -0.80 291 0.42 -0.05 0.06 -0.80 291 0.43 

 Strata 5 (β05) -0.02 0.07 -0.25 291 0.80 -0.04 0.06 -0.62 291 0.53 

Age in months (π1) 0.00 0.00 -1.65 3763 0.10 0.00 0.00 -1.37 725 0.17 

Fall non-sense word fluency (π2) 0.03 0.00 37.14 5707 0.00 0.03 0.00 33.25 5707 0.00 

Male Student (π3) -0.07 0.02 -3.52 2956 0.00 -0.14 0.02 -6.27 5707 0.00 

Student Eligible for 

 Free or Reduced Lunch (π4) 
-0.15 0.03 -5.14 5707 0.00 -0.20 0.03 -7.09 5707 0.00 

Disabled Student (π5) -0.31 0.05 -6.56 3896 0.00 -0.22 0.04 -5.21 290 0.00 

Limited English Proficiency  

Student (π6) 
-0.08 0.05 -1.82 578 0.07 -0.12 0.04 -2.86 186 0.01 

White Student (π7) 0.23 0.03 7.62 5707 0.00 0.22 0.03 6.52 5707 0.00 
1
Degrees of freedom (and all other statistics) are adjusted for multiple imputation process (Raudenbush & 

Bryk, 2002) 

 

 Collectively, the models naturally suggest that student level factors were the most 

significant predictors of reading achievement. Most covariates at the student level 

illustrated strong relationships with both outcomes, including prior achievement measures 

(i.e. fall non-sense word fluency). This measure predicted students who had scored higher 

on the measure tended to score higher on both reading achievement outcomes when 

compared with those students who scored lower on the measure. A Student’s race, 
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eligibility for free or reduced lunch and disability also played prominent and typical roles 

in predicting both outcomes in all three grades.  

 For the significant reading comprehension treatment effect, δ, I regarded it as 

sensitive to the strong ignorability assumption if it’s new estimate, δ
*
, was not 

significantly different from zero. In particular, examining all possible δ
*
, I considered δ 

to be sensitive if the omission of an unmeasured covariate, U, with magnitude equal to X 

(measured covariate) created enough bias to alter my inference (p>0.05) (Appendix B).  

 The reading comprehension sensitivity analyses indicated that my estimate of 

teacher knowledge is robust to a wide range of characteristics but illustrates sensitivity to 

an unmeasured confound at the magnitude of a class’s average prior achievement 

measure. Such sensitivity is typical, as measures of prior achievement often demonstrate 

the strongest impact in achievement models (Bloom, 2005). However, there is strong 

evidence that the inclusion of additional covariates accounts for decreasing amounts of 

variance once the most predictive (e.g. pretests) are considered (Bloom, 2005). 

Finally, I compared three different types of PS’s: single level, simple and complex 

multilevel. Initially, as they are nested sub-models of each other, I conducted hypothesis 

tests comparing the fit of each of the three PS’s. Hypotheses tests revealed that the fit of 

the multilevel complex PS was superior to both simpler representations (p<0.01). 

Furthermore, in comparing the multilevel simple with the single level PS, I found similar 

evidence to suggest that multilevel simple had a superior fit (p<0.01). 

In contrasting the respective PS based estimates of teacher knowledge I saw 

noticeable differences. In particular, for reading comprehension and word analysis, in 

utilizing the multilevel complex PS rather than a single level PS, I saw an increase in the 
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estimated effect by a factor of about 2.5. In a similar but less magnified manner, selecting 

a multilevel complex rather than a single level PS translated into an increase in the 

standard error by a factor of slightly less than 2 (Table (2.75)). I expected such increases 

in standard errors as multilevel models expand traditional single level models by 

including additional covariates and cross-level interactions. However, it is informative to 

understand the magnitude of the reduction in efficiency by using multilevel models to 

estimate PS’s. The bias-variance tradeoff is an important exchange to consider when 

contrasting propensity models. Its importance lies in the construction of the 

counterfactual. In particular, a main purpose in adopting the multilevel framework for the 

PS is to reduce bias by estimating the counterfactual via comparable individuals and 

groups. However, if that reduction in bias is linked with a high loss of efficiency, a 

benefit of the multilevel PS is weakened. My results for this data suggest this is not the 

case. For this data, I saw that the potential reduction in bias dominates the potential loss 

of efficiency from adopting a multilevel complex PS. This result is well aligned with both 

theoretical and applied literature concerning PS (Rubin & Thomas, 1996).  

Table(2.75): Summary of teacher knowledge effects based on different propensity models 
 Effect Size (SE)

 

Propensity Model Word Analysis Reading Comprehension 

Multilevel Complex (Current) 0.041 (0.035) 0.096 (0.035)** 

Multilevel Simple 0.042 (0.03) 0.047 (0.028)^ 

Single Level 0.016 (0.024) 0.038 (0.019)^ 

** p<0.01 *p<0.05 ^p<0.1 

In comparing the reading comprehension estimates based on the multilevel simple and 

the single level PS’s there is a small yet relative difference in the estimates. However, in 

examining the incremental change in estimates (single to multilevel simple to multilevel 

complex), the largest shift in estimation comes from adopting the multilevel complex. In 

this data, this may provide evidence that not only is a single level PS largely inadequate 
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but also a multilevel simple PS is inadequate. In contrast, with word analysis see a 

noticeable change when comparing estimates based on the single level  model to those of 

the multilevel simple or multilevel complex models but see virtually no change when 

comparing the multilevel simple with the multilevel complex. Finally, though I estimated 

the models with the same data, it is reassuring that all estimates are positive and 

(marginally) significant.  

Conclusion  

 In summary, my analyses revealed mixed evidence of whether the measure of 

teacher knowledge affects student reading achievement. My results demonstrated small 

effect sizes, in which statistically one effect can plausibly be prescribed to chance. 

Although such evidence is contrasting, I speculated that the measure of teacher 

knowledge may be more appropriate for gains in reading achievement as it is aligned 

with such content. In particular, analyses of the preliminary teacher knowledge measure 

(i.e. 2004 and 2005) from prior studies (Carlisle, Correnti, Zeng, submitted) indicated 

that the measure was dominated by word analysis tasks such as phoneme comprehension.  

Methodologically, I saw considerable separation in estimates using different PS models. 

Assuming the selection processes do indeed follow a mechanism that varies between 

schools in the complex manner, it is evident that ignoring such mechanisms may bias the 

causal estimate considerably. Theoretically, given the treatment mechanism is truly 

multilevel in nature, by correctly specifying the structural and stochastic form of the PS 

one can achieve strong ignorability of the treatment assignment. As a result, an 

approximation of a randomized experiment is most faithfully achieved through multilevel 

PS. 
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Chapter III 

Variable Selection in Propensity Score Models for Multilevel Settings 

Introduction 

In studies that examine the causal effect of some treatment on an outcome of 

interest, propensity score (PS) methods and the Rubin Causal Model have become 

standard techniques (Rosenbaum & Rubin, 1983; Holland, 1986). Unlike standard 

parametric methods that control for confounding in an outcome model, PS methods rely 

on a model of treatment assignment to adjust for confounding (Brookhart, Schneeweiss, 

Rothman, Glynn, Avorn & Sturmer, 2006). In many observational education studies, it is 

difficult for researchers to confidently identify all relevant sources of selection bias. In 

such cases researchers are faced with a wide array of pretreatment covariates that may 

plausibly influence the treatment assignment. As the inclusion or exclusion of such pre-

treatment covariates can strongly affect the subsequent bias and variance of the treatment 

effect estimator, a central issue facing researchers using PS methods is how to select 

variables to be included in the PS model. As a result, construction of the PS plays a 

critical role in estimating causal effects and often requires practical strategies merging 

both theoretical and empirical evidence.  

As observational education data often offer a wide range of characteristics that 

may be related to the treatment assignment and/or the outcome, it is central to understand 

how the inclusion of such covariates in the PS model affects treatment effect estimation. 
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Though preliminary research has explored the role of covariates with various 

relationships in the PS model, such research is limited in that it does not explicitly attend 

to the properties of the treatment effect estimator. In particular, common approaches such 

as including every available variable in the PS tends to focus exclusively on a single 

property of the estimator such as bias. Though the bias of an estimator is central, sole 

focus on the bias may degrade other properties that are highly relevant when faced with 

finite sample sizes. For instance, with finite sample sizes, sampling variation plays a 

significant role in estimating treatment effects. Consider an estimator which uses a single 

person’s treatment effect as the estimator of the average treatment effect. While such an 

estimator is unbiased it will tend to have high variance as the estimate will likely be 

dependent on which person is chosen as a result of sampling variability. Such an 

estimator is undesirable in that it does not balance the tradeoff between the bias and 

variance of an estimator. Further, even when taking into account such a tradeoff through 

consistent estimators, the balance between the bias and variance of the treatment effect 

estimator is still critical in research with finite samples. Additionally, in considering 

studies with group level treatments, effective sample sizes are often reduced as the 

sample size is based on the number of observations at the group level rather than that at 

the individual level. For example, in studying the effect of kindergarten retention policies 

on the average achievement of schools, though we may have a student sample size in the 

thousands, the sample size most relevant in determining the bias and variance of a group 

level treatment effect estimator is the number of schools. In addressing such balances, 

literature has indicated that including covariates related to the treatment but not to the 

outcome in PS models can increase the variance of the estimator without a corresponding 
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reduction in bias of the estimator (Brookhart et al., 2006). Yet, it may be difficult to 

identify and exclude such variables as most variables will have non-zero empirical 

relationships with the outcome in finite samples. Furthermore, standard PS model 

building strategies such as using every available variable or forward/backward stepwise 

regression neglect such considerations.  

Research Questions 

In this study I developed a PS model building method to measure the quality of 

the treatment effect estimator in terms of mean-squared error (MSE). Since MSE can be 

written as  

 2ˆ ˆ(bias( )) var( )MSE θ θ= +  (3.1) 

I developed a method that explicitly attends to the tradeoff between the bias and variance 

of an estimator. Specifically, I developed a method that identifies thresholds for which 

the reduction in bias of the estimator from adding a covariate is surpassed by a 

corresponding increase in variance. Such an approach emphasizes the importance of both 

the bias and the variance of an estimator through the MSE. Using this framework, I asked 

seven questions in the context of hierarchical linear models (HLMs): 

1. How shall we define a framework for variable selection in propensity scores 

models that explicitly balances the bias and variance of a treatment effect 

estimator? 

2. How can we extend the framework in (1) to encompass hierarchical data? 

3. How shall we define and identify meaningful thresholds in which adding a 

variable with certain relationships to the PS model generally decreases the quality 

of the HLM estimator? 
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4. Do different uses of the PS have different thresholds? In particular, how do the 

thresholds of stratifying, matching, IPTW and covariance adjustment on the 

propensity score compare within the contexts of HLMs? 

5. What are the properties of treatment effect estimators based on propensity score 

models built in this manner? 

6. How does this method compare with standard propensity score model building 

techniques such as stepwise AIC selection and including all available variables? 

7. Using the framework developed, how can we construct an empirical PS model 

building method that balances the bias and variance of the treatment effect 

estimator?  

To address the first question, I developed a method based on the concept of impacts 

(Frank, 2000). Specifically, I focused on the two relationships defined by an impact: a 

covariate’s unique relationship with the treatment and that covariate’s unique relationship 

with the outcome. Using these relationships, I developed a method to construct PS 

models which balances the bias and variance of the estimator. In particular, I used 

Frank’s framework to identify thresholds in which adding certain covariates would only 

increase the MSE of the treatment effect estimator. Subsequently, I adapted this method 

to address nested outcomes and group level treatments and assess its properties in such 

contexts by comparing its properties to that of standard PS model building strategies. In 

addressing these questions, I considered and compared the thresholds of four common 

uses of the PS within a hierarchical linear outcome model framework: (1) Stratification 

on the propensity score, (2) Inverse-probability-of-treatment weighting, (3) Covariance 

adjustment on the propensity score and (4) Matching on the propensity score. 
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Theoretical Framework 

Causal Inference Using Observational Data the Propensity Score 

 Observational data are collected from a wide array of existing situations in 

education. In such data a researcher makes no attempt to manipulate the situation 

generating the data. As a result, the fundamental problem with observational data is that 

students and schools choose their situations or treatments according to some criteria. 

Accordingly, in estimating causal effects, researchers must adjust for factors that led the 

individual or school to their choice that might also be correlated with the outcome of 

interest. To appropriately adjust for the factors influencing treatment choice or 

assignment, researchers have developed a variety of methods to support causal inferences 

using observational data. 

 Traditionally, researchers have used ordinary least squares regression (OLS) to 

study the impact of school resources on outcomes (e.g., Coleman et al 1966). In the 

cross-sectional case, the analyst relies on a specification such as,  

 Y Xβ Zδ ε= + +  (3.2) 

where X represent the control variables the analyst is attempting adjust for, β are the 

corresponding  coefficients of the control variables, Z is the treatment assignment with 

coefficient δ, and ε is the error which has a normal distribution with mean zero and 

variance σ
2
. However, among other assumptions, such an approach assumes, that all 

confounding variables have been measured and that there is a specific parametric 

relationship between the treatment and the outcome. OLS tends to be sensitive to such 

omitted variable and parametric structure assumptions. Further, such assumptions rely 

heavily on extrapolation in that they frequently estimate the counterfactual by extending 
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the regression line beyond the scope of the data. As a result, OLS estimates are likely 

inaccurate in a variety of settings.  

 In another approach, regression discontinuity relies on the existence of a treatment 

assignment rule or cutoff. In particular, in regression discontinuity designs participants 

are assigned to a treatment groups based solely on a particular pretreatment characteristic 

or set of characteristics. Those participants that are above the cutoff receive one treatment 

and those below the cutoff receive another. Such designs often supply inferences similar 

to randomized experiments in that the treatment assignment is known to be unrelated to 

all confounders except that which determined the treatment. Though such a design is 

formidable, in observational data, rarely does a single pre-treatment variable decide the 

treatment assignment and rarely is there such a sharp or even fuzzy cutoff such that all 

above a certain value received the treatment.  

 Another possible basis for causal inference in observational studies is an 

instrumental variable approach. Such an approach relies on the existence of an instrument 

or in other words a variable correlated with the treatment but uncorrelated with the 

outcome conditional on other covariates. This approach attempts to identify variables that 

would not be expected to independently alter outcomes but do so only through an 

endogenous measured variable. Though this approach offers unbiased estimation of 

causal effects when a number of assumptions are met, its utility on observational data is 

reliant on the existence of a high quality instrument. Consequently, its use is generally 

limited to situations in which there are identifiable and measured exogenous events, e.g. 

certain policy changes, that have no direct effect on the outcome but rather work 

exclusively through an endogenous variable.  
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A fourth possible basis for causal inference in observational data is the PS and is 

the focus of this investigation. In particular, the focus of this study is causal inference in 

observational studies when a high quality instrumental variable or pretreatment cutoff 

variable is unavailable and PS based approaches provide a reasonable approach. PS based 

methods conceptually attempt to identify and contrast similar units to estimate a causal 

effect. Though such an approach has considerable flexibility in that it does not require a 

type of quasi-experimental setting that prior approaches did, it requires other 

assumptions. For instance, it assumes that one can reasonably infer the treatment 

assignment from the measured covariates and that all covariates that influenced the 

treatment assignment were measured. Below I provide more detail. 

Causal inference in observational studies with PS based approaches within the 

RCM conceptually attempts to mimic a randomized experiment in which the treatment 

assignment mechanism is known to be a function of measured pretreatment covariates X. 

In assuming this approach with observational data, the primary task then is to construct 

the PS such that the potential outcomes are independent of the treatment assignment 

given the PS.  

In the case of two treatments, the PS represents the conditional probability of 

assigning each experimental unit to the treatment of interest. That is, assuming two 

different treatment conditions where Z=1 represents the treatment of interest and Z=0 

represents some control condition, the PS, e(X), is  

 ( ) ( 1| )e P Z= =X X  (3.3) 
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Accordingly, if adjustment on all or a subset of measured covariates is sufficient for 

unbiased estimation of the treatment effect, then so is adjustment on the PS (Rosenbaum 

& Rubin, 1983a). That is, treatment assignment is conditionally independent of potential 

outcomes given the PS if the treatment assignment is conditionally independent of the 

potential outcomes given the measured covariates. The PS acts as a unidimensional 

balancing score in which all the information relevant to balancing treatment assignment 

in X is extracted in e(X). As a result, conditioning on e(X) balances the distributions of X 

between the treatment and control groups and thus ensures the strong ignorability of 

treatment assignment assumption needed for causal inference in the RCM. Accordingly, 

units with similar PS values but different treatment assignments can serve as 

counterfactuals estimates for the missing potential outcome. In other words, the expected 

difference in the observed responses to different treatment conditions when the PS is held 

fixed is an unbiased estimate of the average treatment effect. In observational studies, 

though X have been observed, the PS is generally unknown and needs to be estimated 

from the data. Though we generally do not have the true PS in observational data, 

estimated PS’s tend to operate like true PS’s in that comparing units on an estimated but 

fixed score tends to balance covariate distributions between treatment groups 

(Rosenbaum & Rubin, 1983a). In particular, theory has suggested that use of the 

empirical PS is often more effective than use of the actual PS as it tends to remove 

empirical confounders or chance imbalances due to sampling variability (Robins, Mark & 

Newey, 1992; Rosenbaum, 1987).  

Uses of Propensity Scores 
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 The literature surrounding the use of PS’s has proposed several alternative uses of 

PS’s for causal inference. In particular, since the PS is a tool to identify comparable units 

by balancing the distribution of their pretreatment covariates, the PS needs to be used to 

contrast treatment levels. In this project, I consider four alternative uses of PS’s: 

covariance adjustment, subclassification, matching and inverse probability of treatment 

weighting (IPTW).  

Covariance Adjustment on the Propensity Score 

 A first use of the PS is to directly adjust for it using covariance adjustment in a 

parametric model. Though such use may be straight forward, it often requires a high 

degree of confidence in the specified PS model and often relies on extrapolation similar 

to linear regression. In particular, if there are nonlinear or non parallel response surfaces 

between the treatment groups, the average treatment effect may be misestimated. In 

general, the problem a researcher faces in this use is that the linear discriminant based on 

the observed covariates may not be a monotone function of the PS. For example, if the 

variance and covariance matrices in the treatment groups differ, then covariance 

adjustment using the PS can increase rather than decrease bias. As a result, literature has 

generally steered clear of this option and relied on alternative approaches. Though this 

use of the PS in isolation requires caution, it can often be combined with other uses of the 

score such as subclassification and then embedded in a parametric model to improve the 

robustness of treatment effect estimates.  

Stratification on the Propensity Score 

 A second use of the PS is to separate the experimental units in to subclasses of 

similar PS values. Such division creates similar covariate distributions among the 
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treatment groups within a subclass. As a result, within a subclass the observed responses 

of the control units provide a reasonable basis for inferring the counterfactual responses 

of the treatment units. For instance, stratifying on quintiles of the logit of the PS tends 

removes approximately 90% of the bias associated with the measured covariates 

(Rosenbaum & Rubin, 1983a; Cochran, 1968). However, the number of strata needed 

tends to be influenced by the homogeneity or balance of covariates within subgroups 

between the treatment and control groups. 

Matching on the Propensity Score 

 A third use of the PS is to match experimental units on the basis of the PS. The 

intention with this use is to create comparable sets of treated and control subjects. Similar 

to stratification, matching units on the PS creates similar covariate distributions among 

the treatment groups. As a result, the matched control unit responses provide a reasonable 

basis for inference on the counterfactual responses for the matched treatment units. 

Though exact matching on the PS is optimal, approaches such as matching the nearest 

available neighbor are utilized to make inference tractable (e.g. Rosenbaum, 1989). In 

particular, this use is most appropriate when there is a large reservoir of potential control 

units available. Though greedy matching schemes such as nearest neighbor provide 

simple approaches, it may not be optimal in terms of minimizing differences within 

matches (Rosenbaum, 1993). An alternative algorithm which attempts to minimize such 

global differences within matches is full matching (Hansen, 2004; Rosenbaum, 1991). In 

particular, this algorithm uses network flow designs (Hansen & Klopfer, 2006) and 

results in the smallest average distance within matched sets and contains one or more 

subjects from each treatment group in each matched set. In this study, I focus on the use 
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of full matching as implemented in the R package optmatch (Hansen & Klopfer, 2006) to 

study impact based PS’s used for matching in HLMs. 

Weighting on the Propensity Score 

 A fourth use of the PS is to weight by the inverse probability of receiving the 

treatment (Robins, Hernan & Brumback, 2000). In particular, weights are constructed for 

experimental units by first estimating their probability of receiving treatment and then 

weighting them by the inverse of the probability in a parametric or non-parametric 

procedure. Such an approach creates a pseudo-population for each treatment group 

through weighting by the inverse probability of receiving the treatment. Under strong 

ignorability, the weighted mean difference between the treatment groups is a consistent 

estimate of the average treatment effect. However, such an approach relies heavily on the 

estimated weights and is easily influenced by the estimation and parametric structure of 

both the propensity model and the outcome model when used. Consequently, to make this 

method more robust to extreme observations, researchers often down weight extreme 

probability observations so that they do not exert undue influence. For instance, extreme 

weights may by those below the 5
th

 percentile or beyond the 95
th

 percentile. Such extreme 

weights are then trimmed and given weights equal to the 5
th

 or 95
th

 percentile. 

Combining PS and Parametric Outcome Models 

In adopting one of the four above PS uses, researchers subsequently evaluate the 

average treatment effect by contrasting the appropriate outcomes. In doing this one may 

additionally utilize a parametric or non-parametric structure to model the conditional 

relationship between the treatment and the outcome (e.g. Rosenbaum & Rubin, 1983a; 

Cochran, 1973). When parametric structures are appropriate, research has demonstrated 
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benefits from combining the PS with, for example, regression adjustment (e.g. Hirano & 

Imbens, 2002; Kleyman & Hansen, 2008). Moreover, Robins and Rotnizky (1995; 

Robins, Rotnizky & Zhao, 1995) demonstrated that as long as only one of the models, 

either that for the conditional mean of the potential outcomes given covariates, or that for 

the treatment variable given the covariates, is correctly specified, the resulting estimator 

will be consistent. Of particular interest to this study and educational research in general, 

is addressing the multilevel nature of many educational phenomena. In particular, 

because students within the same classroom share the same teacher and school, we would 

like our treatment effect estimator to take into account the lack of independence between 

students. Consequently, this study focuses on adjusting for imbalances through the four 

different PS uses above within the context of a parametric multilevel model (e.g. Correnti 

& Rowan, 2007). Such an approach combines the estimated PS with a standard 

parametric HLM to address the nonrandom treatment assignment and the multilevel 

nature of education using a linear approximation of achievement. 

Observational Study Design & Model 

 In educational research and other fields, research data often have a hierarchical 

structure. That is, the individual subjects of study may be classified or arranged in groups 

which themselves have qualities that influence the study. In this case, the individuals can 

be seen as the first level of units in the study and the groups into which they are arranged 

are second level units. Indicated by the questions and focus of this study, I concentrate on 

building impact based PS models for use in multilevel outcome models. To address this 

nested structure I utilize a hierarchical linear model (HLM) (Raudenbush & Bryk, 2002). 

In HLMs each level of the nested structure is formally represented by its own sub-model. 
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For example, in a two level model where students are considered to be nested within 

schools, we can represent the level one student model as 

 0

1

P

ij j p pij ij

p

Y Xπ π ε
=

= + +∑  (3.4) 

 

where Yij represents an outcome such as math achievement for the i
th

 student in school j, 

π0 is the average student score adjusted for the student variables, X, and the 

corresponding coefficients, πp while εij has a normal distribution with mean zero and 

variance σ
2
. To link the students and schools, we can represent the school through a sub-

model or level two school model as  

 0 00 0 0
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where β00 is the average adjusted achievement for school, β0q is average effect of 

covariate, Wqj, on adjusted achievement and r0j is the random effect of school j and has a 

normal distribution with mean zero and variance τπ. These sub-models articulate 

relationships among covariates within a given level and, in turn, express how variables at 

one level influence relations occurring at other levels (Raudenbush & Bryk, 2002). 

 Though the general context of this study and scope of PS’s focus on observational 

studies where treatment assignment was not controlled by the researcher, it is useful to 

outline the design of the randomized experiment one is trying to emulate using the PS 

and further adjustments. The method I discuss subsequently can be applied in a variety of 

settings and study designs, however, I focus this study on the HLM most closely 

resembling cluster randomized designs. In cluster randomized designs the experimental 
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units are groups rather than individuals. Accordingly, intact groups are randomly 

assigned to treatments not individuals. For example, viewing schools as the grouping 

structure and students as the individual units, we may randomly assign fifty percent of 

schools and their respective students to a mathematics program that groups students by 

abilities and assign the remaining fifty percent of schools and their respective students to 

a non-ability grouping curriculum. Consequently the school level is the experimental unit 

as students in the same school provide the school’s overall response to the treatment. 

Because the cluster level randomization ensures that treatments received by the students 

are independent of their potential outcomes, there is no need for random assignment of 

students to the clusters to obtain unbiased estimates of the treatment effect. Specifically, 

if the treatment, Z, is independent of the outcome, Y, and the school covariates, W, then it 

is also independent of the student covariates, X. Accordingly, cluster randomized designs 

are specifically considered when a treatment is inherently assigned at the school level. 

Such designs have become common in social science research as they facilitate 

inferences concerning group level treatments in a manner that acknowledges group 

constraints and dependencies of members within groups.  

 Though cluster randomized experiments ensure treatment assignment is ignorable, 

observational studies that reflect cluster randomized experiments may violate the 

ignorability assumption needed for the RCM. In particular, when treatments are assigned 

non-randomly at the cluster level, imbalances at the cluster level may insert bias into the 

treatment effect estimate. Moreover, though student characteristics co-vary with the 

outcome they are independent of the treatment assignment as treatments were assigned 

based on the characteristics of the entire group rather than of any individual. For 
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example, a school may have selected to group their math students by ability because their 

respective abilities were highly variable. Here, students only influence the treatment 

mechanism in aggregate rather than individually. Consequently, the school level 

covariates that influence the treatment assignment, including the student level aggregates 

and their higher moments, are sufficient in removing all bias from the treatment effect 

estimator. Specifically, though ignorability is not met with unconditional comparisons of 

treatment groups, it is accomplished when we condition on (only) the school level 

factors. That is, the treatment assignment, Z, is independent of the student covariates, X, 

and potential responses, Y, given the school characteristics, W.  

 In addition to providing unbiased estimates, it is often of interest to use efficient 

estimators. Though omitting the student covariates, X, in estimating the treatment effect 

will provide unbiased estimates, one can often more fully understand the within  group 

processes and increase the precision of estimates by including the student covariates in 

the outcome model to explain some of the variation in the outcome. Excluding student 

covariates from the outcome model essentially ignores additional information and is 

impractical for applied researchers. To align with the goal of providing an effective and 

efficient estimator, I included group mean centered student level covariates in the first 

level of the outcome HLM. Their inclusion parallels more realistic analyses by allowing 

insight into group processes while increasing efficiency.  

Variable Selection in Propensity Scores 

A primary utility of the PS model approach is its potential ability to mimic 

randomization by making the treatment assignment conditionally independent of 

potential outcomes given the observed covariates. However, this utility is often tempered 
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by the difficulty of correctly specifying the PS. In particular, the bias and variance of the 

treatment effect estimator strongly depend on the subset of observed variables included in 

the construction of the PS, especially in finite sample sizes. Consistent estimators ensure 

that the variance and bias of the treatment effect estimator goes to zero as the sample size 

approaches infinity. However, such consistent estimators in finite sample studies provide 

much less protection from the variance of an estimator as chance imbalances are much 

more likely. Relevant to education studies with hierarchical outcomes and group level 

treatments, such variability of the treatment effect estimator often plays a large role as the 

effective sample size depends on the number of groups rather than individuals. Consider 

Figure (2.18), in which, for a given sample size, two different consistent estimators are 

graphically compared. Though the first estimator, θ1, is unbiased, its density is 

thoroughly dispersed throughout the parameter space indicating the estimator’s 

variability. In contrast, the second estimator, θ2, is slightly biased but its density is 

concentrated around its center. Consequently, we are forced to develop a criterion that 

accounts for both bias and variance in order to evaluate which estimator is more 

appropriate. 

  
Figure(3.6): Density of two different estimators: Black is unbiased but fairly dispersed 

and red is slightly biased but concentrated around the estimand, θ 

 

θ  θ+ε 



 117 

To attend to this tradeoff, Rubin and Thomas (1996) derived approximations for 

the reduction in the bias and variance of an estimated treatment effect using the PS. Such 

derivations support including all variables related to the outcome regardless of their 

relationship with the treatment assignment. Additionally, their derivations demonstrated 

that including variables that are strongly related to treatment assignment but unrelated to 

the outcome can increase the variance of the estimator without a corresponding decrease 

in bias. Accordingly, theoretical literature has suggested: (1) including variables 

unrelated to the treatment assignment but related to the outcome and (2) the exclusion of 

variables that are related to the treatment assignment but unrelated to the outcome as such 

an approach decreases bias without increasing variance (Rubin & Thomas, 1996; 

Brookhart et al., 2006). In other words, one should exclude those variables resembling 

the properties of an instrumental variable and if such a variable can be conceptualized as 

a high quality instrument consider an instrumental variable approach.  

Though such suggestions provide clear theoretical guidance in PS model 

construction, applying such principles in practice can be complex. Although certain 

relationships may be theoretically hypothesized to be zero, empirically they may be 

nonzero. Furthermore, though bivariate relationships may be nonzero, multivariate 

relationships may approach zero. Consequently, Rubin (1997) suggests that variables 

related to the treatment assignment and theoretically unrelated to the outcome but which 

empirically demonstrate some nonzero relationship with the outcome, may be important 

to include. He argues that if such a variable had even a weak effect on the outcome, the 

bias inserted into the estimator by excluding the variable in the propensity model may 

dominate any potential loss of efficiency the estimator would experience by including the 
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variable for a reasonable sized study (Rubin, 1997). In addition, Robins, Mark and 

Newey (1992) derived analytical results which demonstrated that the asymptotic variance 

of an estimator based on a potential treatment model is not increased and is often 

decreased as the number of parameters in the potential treatment model is increased. As a 

result, literature has suggested that the size of the PS model should increase proportional 

to the study sample size (Brookhart et al., 2006). In practice, such perspectives would 

suggest including many or all available variables, as variables rarely have zero 

relationships empirically. 

 In the context of education, classifying such associations between a covariate and 

an outcome is difficult as a result of the fundamentally multilevel nature of teaching and 

learning. For instance, in observational education studies that resemble cluster 

randomized trials, treatments are assigned to and enacted by schools as an entire unit 

rather than individual students. As a result, in estimating a covariate-outcome 

relationship, one must take into account the lack of independence with groups. To add to 

the variable selection problem, observational education data often offer a large and wide 

range of characteristics that illustrate non-zero relationships. It is central to understand 

how the inclusion of such covariates in the PS model affects the properties of the 

treatment effect estimator.  

Though theoretical guidelines are emerging (Rubin, 1997; Brookhart et al., 2006), 

PS model construction in educational literature has generally relied on three approaches. 

The first such approach is stepwise selection. In this approach the treatment is initially 

modeled as a function of all available covariates. Subsequently, a researcher removes the 

covariate with the highest p-value greater than some critical p-value (e.g. 0.05). Next, we 



 119 

refit the model and remove the remaining least significant predictor provided its p-value 

is great than the critical value. This process is repeated until all covariates with p-values 

greater than the critical value are removed. Similarly, forward stepwise selection reverses 

the process by starting with no predictors and adding the most significant covariates 

sequentially. A third stepwise approach is to select a model based on an information 

criterion such as the Akaike (AIC) (e.g. Venables & Ripley, 2002). The stepwise AIC 

approach combines a forward and backward stepwise procedure to select a model that 

minimizes 

 2 ( ) 2AIC ln L p= − +  (3.7) 

 

where ln(L) is the log-likelihood and p is the number of parameters in the model. Another 

common approach, for observational education data sets with a sufficient number of 

sampled groups, is to estimate the PS using every available variable. Such an approach 

tends to privilege the bias of an estimator over its variance at all costs. In other words 

such an approach automatically selects the more dispersed estimator in Figure (2.18). 

 Though such strategies are often practical, constructing the PS model in the above 

manners impair the ability of the PS to contrast meaningfully comparable groups as they 

exclusively focus on the treatment without consideration for the outcome. Consequently, 

they neglect the duality of confounding by ignoring the effects of variables that are 

related to the outcome but weakly related to treatment assignment. Such neglect often 

results in increased treatment effect estimator variance without a corresponding decrease 

in bias. Similarly, although including a variable that has little to no relationship with the 

outcome but a strong relationship with the treatment does not bias the estimator, it can 

add substantial variance to the estimator. Though most studies use treatment effect 
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estimators that are consistent, adding such variance in finite sample sized studies can 

detract significantly from the quality of the estimator. A method that uses the PS to 

remove bias in an effective and efficient manner rather than precisely predicting 

treatment assignment should result in a more robust and reliable estimate. To this end I 

develop a method to balance the bias and variance of the estimator.  

The Propensity Score as a Design and Analytic Tool 

In a sense the PS can take on at least two different roles in facilitating causal 

inference. The first is as a design tool that solely provides balance of treatment 

assignments or randomization of treatments. In this capacity, one uses the PS solely to 

provide a reasonable basis for assuming randomization of treatments. That is, through PS 

uses such as matching, use of the PS as a design tool conceptually attempts to mimic 

randomization of the treatments. By identifying similar units based on their likelihoods to 

be assigned to different levels of the treatment, here the PS is used to devise a type of 

quasi-experiment. However, as a design tool, once the PS has provided a reasonable basis 

for such randomization through, for example, matches, the PS has no further involvement 

in estimating treatment effects. That is, using the PS as a design tool, one completely 

ignores the observed outcome processes and only utilizes the PS to devise a study that 

mimics randomized treatment assignment within groups with a common PS. 

Conceptually such use is similar to designing an experiment where one does not have 

access to the outcomes and randomizes treatments. Such an approach takes on more of a 

designed based approach in that it conceptualizes the sole role of the PS as a tool to make 

potential outcomes independent of the treatment assignment.  
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In a more integrated view, I consider the PS as both a design and analytic tool. In 

particular, though the PS is still used as a design tool to identify similar units, it takes an 

additional role as a tool for assessing treatment effects. In particular, as an analytic tool, 

the PS is used in the analyses of the outcome processes and their relations to the 

treatment. Such use helps facilitate identification of meaningfully comparable units rather 

than just simply comparable units. For instance, assume some treatment intends to 

improve mathematics achievement and is non-randomly assigned to students in a manner 

that depends on two characteristics of the students. First, suppose that students with low 

prior abilities are more likely to receive the treatment and second suppose students with 

blue eyes are more likely to receive the treatment. Further suppose, that we have no 

theory or evidence to suggest that the color of one’s eyes will influence mathematics 

achievement, however we know that in this particular example the color of one’s eyes did 

influence the treatment assignment. Using the PS exclusively as a design tool, we would 

holistically ignore the fact that, both theoretically and empirically, the color of one’s eyes 

will have no effect on mathematics achievement. As a result, we will construct the PS 

model without any consideration of how eye color may influence mathematics 

achievement. Accordingly, we will then identify comparable students and, assuming we 

are matching on the PS, hope to match students who have similar prior abilities and 

similar eye color. Moreover, though two students have identical prior abilities, if they 

have different eye colors they will likely not be identified as comparable because they do 

not have the same eye color. In which case we may either ignore these students in 

estimating the effect or, more pragmatically, find other students who have slightly 

different prior abilities but the same eye colors and identify these students as better 
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matches. As a result, the quality of our matches for the given outcome may be 

compromised because of our eye color restriction. In contrast, using the PS as both a 

design and analytic tool would indicate to the analyst that although eye color influenced 

treatment assignment it did not influence mathematics achievement. As a result, there is 

no need to include eye color in construction of the PS and we should identify comparable 

students on the basis of prior ability only.  

Further including a variable such as eye color may not provide protection against 

unknown confounding variables. Specifically, matching on all characteristics relevant to 

the treatment assignment including, for example eye color, regardless of their relation to 

the outcome will not necessarily absorb or reduce the bias of an unknown confounding 

variable. That is, one might suggest that although eye color is not directly related to the 

mathematics achievement, it may be related to an unknown confounding variable and the 

inclusion of eye color in the PS may absorb some of the bias resulting from the omission 

of the unknown confounder’s (Frank, Maurolis, Duong & Kelcey, 2009). This suggests 

eye color might act as a type of proxy for the unknown confounder. However, such 

absorption, or reduction in bias caused by an unknown confounder by the adjustment on a 

measured variable, is limited by the treatment-covariate and outcome-covariate 

relationships. Further, such absorption can be summarized by the product of the 

treatment-covariate and outcome-covariate relationships (Frank et al., 2009). 

Consequently if either of the treatment-covariate or outcome-covariate relationships is 

zero, no absorption or protection can occur. In other words, if eye color has no 

relationship with mathematics achievement (outcome-covariate relationship is zero) then 

it will offer no protection against an unknown variable which is confounded with the 
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treatment effect (e.g. Figure (3.8)). In a similar manner, even if a variable does have some 

small relationship to the outcome and an unobserved variable, it can still only provide 

protection against the portion of the unobserved that it has in common which has already 

been accounted for. For example, in Figure (3.9) the observed variable can only account 

for the portion of the outcome-unobserved relation that is in common for all three 

variables (represented by a star). 

Figure(3.8): Variable Relationships (1) Figure(3.9): Variable Relationships (2) 
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Moreover, the inclusion of the observed variable depicted in Figure (3.8) (e.g. eye 

color) in the PS will decrease the efficiency of the corresponding treatment effect 

estimator without a corresponding reduction in bias. In this manner and in the 

identification and construction of meaningfully comparable units, we are not only 

respecting the duality of confounding but also using it to our advantage. 

Using the PS as a design and analytic tool potentially identifies more meaningful 

comparisons for the process being studied and may do so in a manner that improves the 

MSE of our treatment effect estimator. Specifically, though the design approach may 

provide unbiased estimates of the treatment effect, it may do so in an inefficient manner 

as it requires the analyst to match on student characteristics that do not influence the 

outcome. Such an approach tends to increase the variance of the estimator by creating 

noise in the estimates. If we consider the case where an analyst must choose from 
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hundreds of covariates, most of which frequently offer little to no information beyond 

core measure such as prior ability, we potentially add considerable amounts of noise and 

variability to our estimates. 

If we accept the role of the PS to be both a design and analytic tool, we can 

potentially identify those covariates that truly influence both the treatment assignment 

and the outcome. However, such benefits are mediated by the potential to misestimate 

effects or their inferences as a result of using the observed outcomes in constructing 

meaningfully comparable groups. That is, the practical use of such an approach requires 

knowledge of the outcomes or each covariate’s relation to the outcome. Educational data 

that focus on the effects of interventions on achievement, however, have several features 

salient to this potential difficulty. Specifically, with regards to achievement, I address 

such difficulties in educational data by making use of a host of potentially available 

proxies. In other words, in order to construct meaningfully comparable groups while 

preserving the quality of inferences, we might consider using alternative measures of 

achievement to construct groups that are meaningfully comparable for the outcome of 

interest.  

A first approach makes use of measures included in the current data that are 

generally known to be highly correlated with the outcome. In educational research where 

a post-test measures of achievement is the outcome, a measure of prior ability or pretest 

measure would often fit well in this approach. In this approach one would substitute the 

pretest for the outcome and construct the PS based on the proxy covariate-outcome 

relationships. A second similar approach is to use data for previous studies or earlier 

waves to estimate the outcome-covariate relationships. In this approach, for each 
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potential PS variable, one would use data from similar study or prior wave to estimate the 

outcome-covariate relationships and inform PS construction. A third approach is to use 

cross-validation. In particular, when there a large amount of data exists, one can feasibly 

take a training or random sub-sample of the data and construct the PS based on the sub-

sample’s relationships. Subsequently, using the structural form determined in the training 

data, one would carry out the outcome analysis with the remainder of the data.  

In a sense, utilizing proxies parallels a randomized experiment that utilizes covariates 

known to covary with the outcome to the increase power and precision of an estimator. If 

randomization was faithfully implemented, there should be little to no relation between 

the covariates and the treatment. However, because of the non-zero outcome-covariate 

relationships, adjustment on the covariates should decrease the variance of the treatment 

effect estimator. In this sense, rather than focus solely on an unbiased estimate, we utilize 

the outcome-covariate relationships as an analytic device to reduce the variance of the 

estimate and focus on an unbiased and efficient estimate. 

Methods 

Defining a Framework for Variable Selection 

The method I propose makes use of the two central relationships each observed 

covariate has to summarize the bias that would be inserted by its omission in the PS 

model. The first relationship is that between the covariate and the treatment (Γ-

relationship) and the second is that between the covariate and the outcome (∆-

relationship) (Gastwirth, Krieger & Rosenbaum, 1998). Drawing on Frank (2000), I 

quantify such relationships through sample (partial) correlations. Within the context of 

linear models, confounding can be demonstrated through measures of linear association 
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such as correlation (e.g. Anderson, Auquier, Hauck, Cakes, Vandaele, Weisberg, Bryk & 

Kleinman, 1980). However, whereas Frank (2000) focuses on the product of these 

relationships, their use in the current context diverges. Although the product of these 

relationships summarizes the potential bias reduction of a variable on a treatment effect 

estimator, developing a PS model that exclusively focuses on this product may privilege 

the bias of an estimator over its variance. For example, such an approach would fail to 

discriminate between which relationship dominates the product. As a result, variables that 

are highly related to the treatment but minimally related to the outcome may be selected 

while those that are highly related to the outcome and minimally related to the treatment 

may be excluded. This would diverge with literature as it suggests including all variables 

related to outcome regardless of their relationship with the treatment and excluding those 

with minimal relation to the outcome. As the focus of this study is to develop a method 

that centers on bias and variance rather than bias alone, I retain the relationships defining 

an impact but do so using individual relationships rather than their product to understand 

the role each plays. 

To balance the bias and variance of an estimator, I measured the estimator in 

terms of MSE. In particular, since MSE can be expressed as a function of the variance 

and bias of an estimator it provides a unique metric. Though there are numerous 

alternative criteria which may be used to judge the quality of an estimator, MSE is 

relevant in the current context for several reasons. First, since MSE is a function of the 

bias and variance of an estimator, it explicitly attends to the joint minimization of these 

quantities. Second, using MSE one can completely separate the contributions of bias and 

variance to the error of an estimator. This separation affords us explicit insight into how 
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different types of variables contribute to the quality of an estimator. Third, in the current 

context, the multilevel treatment effect estimator is the maximum likelihood estimator 

which has an asymptotically normal distribution. Further, under a number of assumptions 

the minimum variance unbiased estimator for continuous normal distributed random 

variable is that which minimizes the squared error (e.g. Garthwaite, Joliffe & Jones, 

2002). As such a particularly relevant criterion to judge the quality of an estimator is the 

mean squared error (MSE). 

To see how MSE can be divided into separate components, we first write the 

definitions of bias, variance and MSE as  

 ˆ ˆ( ) [bias E=θ θ]-θ  (3.10) 
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 (3.11) 
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where E[ 
.
] is the expectation, θ̂ is the estimator, θ is the estimand, and θ  is the estimate 

of the first sample moment. We can expand the MSE of an estimator as 
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Using (3.13), we see that minimizing the MSE of an estimator explicitly translates into 

balancing the tradeoff between the bias and variance of an estimator. 
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Using these relationships in a manner similar to sensitivity analyses (e.g. 

Rosenbaum, 1986; Frank, 2000; Hong & Raudenbush, 2004), I examined the effect of the 

concurrent relationships on MSE thereby contrasting the potential reduction in bias with 

the potential increase in variance each covariate supplies. In particular, using the Γ- and 

∆-relationships, I identified those variables whose inclusion in the PS will generally 

reduce the MSE of the corresponding treatment effect estimator. 

Defining Thresholds 

I defined these thresholds for a given treatment-covariate or Γ-relationship as the 

point in which the outcome-covariate or ∆-relationship causes the MSE of the treatment 

effect estimator to increase in comparison to its current MSE if such a covariate was 

added. Conceptually, such a threshold represents the point at which the reduction in bias 

(squared) is exceeded by an increase in variance in the treatment effect estimator. Though 

this method relies heavily on measures of linearity to summarize confounding, such 

measures are potentially representative of confounding in (hierarchical) linear models. As 

a result, bias tends to be reduced by inclusion of a covariate that has nonzero correlation 

with the outcome and nonzero correlation with the treatment. However, such reduction in 

bias is often met with an increase in variance thus emphasizing the need to balance the 

two properties. Alternative approaches that select covariates for the PS based solely on 

their relationship with the treatment, risk increasing the variance of the estimator without 

necessarily significantly decreasing bias. As a result, a PS model constructed based on 

such a threshold attempts to reduce the MSE of the treatment effect estimator. Though 

such thresholds would be most informative if they could be estimated from a given data 

set, such an approach is not generally possible as estimating the MSE requires prior 
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knowledge of the true treatment effect. As a result, under some assumptions, I developed 

an approach for estimating thresholds through simulation to provide a model of how one 

might approach PS model construction. 

Extending the Framework to Hierarchical Outcomes 

Implementing an impact based PS model approach for use with a hierarchical 

linear outcome and group level treatment requires us to address two additional 

considerations first. The initial extension is identifying the two components of an impact 

as partial correlations rather than zero-order correlations. That is, I specify the Γ-

relationship as the partial correlation between the logit of the treatment and the covariate 

of interest controlling for the other covariates and the ∆-relationship as the partial 

correlation between the outcome and covariate of interest controlling for the other 

covariates. This approach ensures the potential reduction in bias is not already accounted 

for. For instance, entering two variables that are co-linear may be redundant in terms of 

reducing the bias of the estimator. As a result, adding both would not necessarily 

decrease bias but likely increase the variance of the estimator. Though the need for this is 

evident in single level settings, in multilevel settings we must extend this to partial out 

relationships at both levels. Second, in the context of multilevel settings, complications 

are added as a result of the hierarchical nature of relationships. In particular, in estimating 

the relationship of a level two covariate with a level one outcome we need to consider 

random group effects and uneven sample sizes within groups. As a result, the estimated 

relationships between variables are likely to be more accurate in large groups than small 

groups thus creating unequal variance in the estimates. My approach capitalized on the 

approximation of maximum likelihood estimation in HLMs by weighted least squares 
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(WLS) when the variance components, σ
2
 (error variance) and τ (group level variance), 

can be estimated and covariates are group centered (Seltzer, Kim & Frank, 2006). In 

particular, Seltzer, Kim and Frank (2006) show the weighted least squares regression 

based on cluster weights λj ,the aggregated level one covariates and level two covariates 

often provides an estimate extremely close to that of maximum likelihood in HLM 

(Seltzer et al., 2006). In such cases one should group center level one predictors and base 

the cluster weights, λj, on  

 
2

1

( / )
j

j
n

λ
σ τ

=
+

 (3.14) 

where σ
2
 is the residual variance, τ is the between cluster variance and nj is the number of 

level one units in group j. To address the hierarchical nature of educational data, I utilize 

a weighting scheme based on this ML-WLS estimation similarity to approximate 

magnitudes of the Γ- and ∆-relationships for each variable. 

Using this framework, I assessed the effect of adding a covariate to the PS model 

on MSE using the respective unique hierarchical partial correlations. In other words, I 

consider the magnitudes of the partial weighted correlations such that these correlations 

represent the relationships exclusive of what other covariates (at all levels) in the model 

supply. Though the ultimate use of the PS will generally not be a simple covariance 

adjustment on the PS in the final HLM outcome model, the construction of strata and 

matched groups based on the PS will be considered through covariance adjustment via 

strata or matching indicator variables in the final HLM outcome model. Such an approach 

allows the PS to be a proxy for the respective indicator variables. Consequently a 

decrease in the bias of our HLM treatment effect estimator should manifest since 
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confounding can be demonstrated by the correlation of a covariate with the outcome and 

the treatment in linear models (Frank, 2000; Anderson et al., 1980).  

Identifying Thresholds 

 To develop such thresholds, I identified the MSE thresholds of covariates in the 

PS model by simulation and provide insight through derivation in the cases of the using 

covariance adjustment or IPTW on the PS in the outcome model. 

To gain insight on the effect of including a covariate in a PS model, I considered 

estimating the treatment effect using the PS as a covariate in the HLM outcome model. 

Here, for simplicity, I assume we have a two level model where the treatment is at level 

two and is represented by an indicator variable, Z, the PS is entered as a level two 

covariate, e(X), and we do not consider individual variables. We write  
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where εij has a normal distribution with mean zero and variance σ
2
, and u0j has a normal 

distribution with mean zero and variance τ. Moreover, I assume the WLS approach 

outlined above provides a good approximation of the ML parameter estimates resulting in 

the following model 

 0 1 ( )j j jY Z eγ γ ε= + + +X  (3.16) 

In estimating the parameters of (3.16) via WLS, γ1 is equivalent to 
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where r.. indicates the sample correlation, s. indicates the standard deviation and e(X) 

indicates the PS. In addition, the variance of 1̂γ  is equivalent to 
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where n-q-1 indicates the degrees of freedom. Without loss of generality I assume Y , Z 

and the remaining variables have been standardized such that each has a variance of one 

and let Y replace Y  for notational convenience. Given an estimand, θ, we can represent 

the bias of (3.17) by  

 1 1
ˆ ˆ( ) ( )bias Eγ γ θ= −  (3.19) 

 where we can estimate the expectation of γ1 using the population correlations, ρ.., with  
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Accordingly the MSE of the treatment effect estimator can be estimated by 
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Next, given two different PS’s, eω(X) and eΩ(X), let the first PS be constructed with n-1 

variables and the second be constructed with n variables of which the first n-1 are the 

same. In general, we would like for the inclusion of an additional covariate in the PS to 

improve the MSE( ω̂γ ), indicating that  

 ( ) ( )
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Thus, we can estimate a threshold for the inclusion of the n
th

 variable by identifying the 

values for which the MSE of the estimator based on the first PS becomes equal to the 

MSE of the estimator based on the second PS. That is  

 ( ) ( )
ˆ ˆ( ) ( )
e X e X

MSE MSE
ω

γ γ
Ω

=  (3.23) 

Consequently, using (3.21) we can obtain the threshold by setting the two equal 
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After reducing expression (3.24) (Appendix F), we can estimate the threshold in terms of 

ρyz, ρye(X) and ρze(X) using the quadratic equation 
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where a=n-q-1=degrees of freedom. In addition, as e.(X) represents a regression of Z on 

X, if we utilize a linear probability model to estimate the PS we have 

 
.

2 2

ze (x) .Rρ =  (3.26) 

where 2

.R represents the respective coefficient of determination or proportion of treatment 

variance explained by the predictors (e.g. Cohen, Cohen, West & Aiken, 2003). That is, 

because  

 2 2

ˆ( ) zzz by e XR ρ=  (3.27) 

 

where ẑ are the predicted values of z based on the regression 

 z X β=  (3.28) 

we can reduce the correlation between the treatment and the PS to (3.26) or the 

correlation between the treatment and the covariates included in the PS. In other words 
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Using this property in conjunction with the property 
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we can solve for the roots in terms of ρye(X)  and thus can solve for the threshold in terms 

of the treatment-covariate relationship (e.g. Cohen et al., 2003). Here βi is the regression 

coefficient for covariate Xi obtained from regressing the treatment on the selected group 

of covariates and .xi
ρ is the zero order treatment-covariate correlation. Furthermore, βi can 

be obtained in a manner analogous to (3.17) through 
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In a similar manner, I provide insight into treatment effect estimators which use 

the PS as a weight (i.e. IPTW) in the HLM outcome model. Analogous to covariance 

adjustment on the PS we can estimate the treatment effect using (3.15) by dropping the 

e(X) term and weighting by the inverse probability of treatment. Thus γ1 in (3.16) can be 

estimated via  
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where r.. represents weighted correlations. Now these weights are estimated by 
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where λj is obtained from (3.14) and the denominator is obtained from the estimated PS. 

As a result, (3.23) can be re-expressed as  
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and a threshold can be estimated by solving for 
.| ( )yz e x

ρ . Such derivations conceptually 

illustrate how regression adjustment on the PS can be reduced to a series of correlations 

among covariates. However, practically such approximations rely on multiple 

assumptions. A first assumption, is the approximation of the maximum likelihood 

estimator in random intercept HLMs by aggregated WLS described above. In particular, 

because eliminating a variable from the PS often reduces MSE by small margins, the 

approximation may mask such small changes. That is, excluding a single variable from 

the PS may only decrease the MSE by a very small amount which the WLS 
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approximation may miss. Additionally, such derivations rely on the validity of a linear 

probability model in specifying the probability of receiving the treatment. That is, one 

could rather rely on the approximation of a nonlinear probability function such as the 

logit by the linear probability model. Such models tend not to be common practice as 

they may exceed the 0 to 1 space of probability. Further, one may again lose small yet 

relevant amounts of information due to the approximations. Moreover, the approximation 

of a logit model by a linear probability model can be especially poor when probabilities 

are beyond the range of 0.25 to 0.75.  

Thresholds and Properties of Impact Based Construction 

In identifying impact thresholds for including covariates in the PS and to estimate 

several properties of PS model based estimators based on such thresholds, I utilized 

Monte Carlo style simulation experiments. In particular, using simulated data I conducted 

multiple experiments to shed light on the properties and procedures of such an approach. 

First, I approximated thresholds for the simulated data by estimating and comparing the 

MSE for models that included a covariate of interest in the PS versus those that excluded 

it. Subsequently, I assessed how such thresholds might change when varying several 

parameters relevant to educational data through sensitivity analyses. Third, I assessed the 

power and type one error rate of constructing the PS based on the initial thresholds. 

Fourth, I addressed how we might consider updating the thresholds throughout the PS 

model building process. Fifth, I assessed the performance of utilizing proxies for the 

outcome to estimate the relevant relationships rather than directly using the outcome. 

Last, I explored what gains might be lost when a large number of potential PS variables 

exist and we are forced to use the thresholds in a sequential manner rather than evaluating 
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all potential specifications. Below I describe the motivation to understand several 

properties of this approach. 

Estimating Thresholds 

To understand how PS construction based on such thresholds performs and its 

properties I first estimated the thresholds using simulated data. I approximated thresholds 

by estimating the treatment effect and its properties when the PS model contains 

covariates with various Γ-relationships for increasing ∆-relationships. That is, holding the 

Γ-relationship constant, I assessed the MSE of the corresponding treatment effect 

estimator for various values of the ∆-relationship. In particular, I estimated the treatment 

effect m times and then recorded the estimator’s corresponding bias, variance and MSE. 

Subsequently, I re-specified the PS model such that it excluded the covariate of interest 

and estimate the treatment and corresponding properties. The threshold for a Γ-

relationship is identified as the ∆-relationship in which including the covariate of interest 

in the PS model increases the MSE of the treatment effect estimator compared to the PS 

model without it. Because the ∆- and Γ- relationships are represented as partial 

correlations rather than zero order correlations, the dependence of thresholds on other 

covariates may be minimized.  

Sensitivity To Parameters 

Next, to understand how such thresholds may be influenced by several 

parameters, I assessed the sensitivity of the thresholds to several parameters that were 

initially fixed using simulated data. Specifically, I examined how they might be 

influenced by the following parameters: the between group variance, the number of 

groups, the probability of receiving treatment and the magnitude of the effect size. To 
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address such variation, I explored the sensitivity of PS impact thresholds by altering the 

limited set of parameters above while fixing the others. In particular, I fixed the total 

number of individuals while requiring a minimum number individuals in each group, the 

variation in treatment assignment explained, the variation in outcome explained, the 

variation of covariate values within a group, the level one and two coefficients and the 

partial correlation matrices of the covariates. Through these experiments I evaluated the 

properties of the PS based treatment effect estimator within the HLM framework in terms 

of bias, variance and MSE of the estimator. Such exploration intended to shed light on 

variable selection in different situations.  

Power and Type 1 Error 

 After estimating thresholds for several data schemes, I assessed the properties of 

the treatment effect estimator based on PS’s constructed using such thresholds. The larger 

goal of the PS based methods is often to replicate the properties of a randomized 

experiment. In particular, such replication attempts to make feasible the strong 

ignorability assumption that randomization provides. In addition, to the strong 

ignorability of the treatment assignment, several other properties of randomized 

experiments are desirable. In particular, in replicating an experiment, such methods hope 

to also attain a type 1error rate consistent with the desired α-levels. In other words, given 

that there is no true treatment effect, we would like to incorrectly reject the corresponding 

null hypothesis at a level that matches the chosen type 1 error rate. In a similar manner, 

we would like to retain the power to detect treatment effects when they exist. For 

instance, in a study comparing two groups, we would like our analytic methods to match 
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the probability in randomized experiments of rejecting the null hypothesis when the null 

is not true.  

The effect of using an impact based approach to identify meaningfully 

comparable units on the type 1 error rate as well as power is of interest. As impact based 

construction of the PS model relies on minimizing the MSE which in turn involves the 

variance of the estimator, it maybe hypothesized that the type 1 error rate may be 

inflated. To understand how the type 1 error rate may be influenced, I conducted an 

additional Monte Carlo experiment comparing the type 1 error rates among the different 

PS construction methods. More specifically, using the impact thresholds, the stepwise 

procedure and the all available variables methods described previously, I estimated the 

type 1 error rate at 0.05 level for each method when using the aforementioned parameters 

and 25 variables. 

Static vs. Dynamic Impact Construction 

Next, I evaluated the performance of PS’s constructed using the estimated 

thresholds in several settings. The sensitivity analyses aimed to provide insight as to the 

feasibility of identifying approximate thresholds for PS construction. In particular, the 

sensitivity analyses intend to examine whether and how the thresholds display some 

dependency on the parameters assessed. For instance, is it feasible for a given dataset to 

estimate one set of thresholds for the entire PS construction process and will such an 

approach fail to take into account the constantly changing values of relevant parameters? 

If not, the thresholds may be under or over estimated and may compromise some of the 

gains made by impact based construction. That is, for a given dataset it may be most 

beneficial to adjust one’s thresholds to the current PS iteration in order to account for any 
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changes in parameters and thresholds. In other words, the thresholds for including a 

variable depend on which variables you have already included through the Γ and ∆ 

quantities but also depend on how previously included variables changed other relevant 

parameters. This gives rise to a certain static versus dynamic impact based construction 

of the PS. Put differently, using a static approach one might identify thresholds at the 

beginning of the PS construction phase and utilize those thresholds for each iteration in 

the PS construction process. Alternatively, a more dynamic approach might be to re-

identify such thresholds at each iteration. In other words, after including a covariate in the 

PS, we might not only update the Γ- and ∆-relationships but also update the other 

parameters discussed so that our thresholds consider both the change in the partial 

correlations as well as change in the other parameters. In this way, one might call this a 

more dynamic approach in that it updates all parameters involved. 

In addition, though optimally one would consider and assess all potential sets of 

covariates, it is often more practical to construct a PS model in a step by step fashion. As 

a result, even when taking into account the stable (observed) quantities in one’s data such 

as sample size, the PS model building procedure sequentially modifies multiple 

parameters, e.g. amount of variance explained, continuously requiring adjustments to 

such thresholds. As a result, in order to effectively and consistently decrease the MSE of 

the treatment effect estimator using impact based construction one may need to trade 

static thresholds for more dynamic thresholds. In other words, if the thresholds illustrate 

some dependency on the sensitivity parameters, an alternative approach would be to 

adjust thresholds to align most closely with each phase of construction. Identifying such 

thresholds would require constant assessment of the sensitivity parameters. Such an 
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approach could be simplified by directly comparing the MSE of each estimator, thereby 

implicitly using the thresholds. That is, we would include a variable in the PS only if it 

directly decreases the MSE.  Formally, covariate Xn is included in the PS only if the  
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However, such an approach assumes a priori knowledge of the true treatment 

effect. As a result, a more tractable approach may be to identify thresholds for a range of 

parameters. To assess and compare the performance of both the dynamic and static 

impact methods in conjunction with the all and step methods, I conducted an additional 

simulation. That is, in the static approach I re-estimated only the Γ-and ∆- relationships 

after a new covariate is added to the PS and did not re-estimate the other relevant 

parameters but rather rely on the initial and fixed estimates and their corresponding 

thresholds. In contrast, the dynamic approach re-estimated each parameter and the 

corresponding thresholds. To understand how the dynamic approach sustains the intended 

reduction in MSE while the static approach deflates the intended reduction in MSE, this 

simulation was done with a large number of available potential covariates. In other 

words, it is likely that the benefits from continuously updating the parameter estimates 

and their respective thresholds may only be realized when there are a number of 

adjustments. 

Use of Outcome Proxies 

 Above I discussed several salient features of educational data that make it 

plausible to use proxies for the outcome to estimate relevant relationships. Specifically, I 

offered three different potential approaches: using prior ability as a proxy for the outcome 

when it represents a similar ability meausre, using prior waves of data as proxies for the 
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outcome and covariates, and using a subsample for cross validation. Each approach has 

some desirable properties as well as some sources of uncertainty. In particular, the proxy 

approach relies heavily on the availability of a measure known to be highly correlated 

with the outcome and likely correlate with other covariates in a similar manner. However, 

when available, this approach allows one to construct the model using the actual data 

collected and allows one to retain the full sample size. Similarly, using prior waves of 

data to construct the PS allows one to retain the full sample for the outcome analysis but 

admits uncertainty as the data from similar studies or prior waves may not capture the 

idiosyncratic features as the current data. In contrast, the cross-validation approach 

requires one to effectively give up a portion of the collected sample size. In doing so one 

adds uncertainty in terms of a reduced sample size, but one also eliminates uncertainty as 

we are able to directly use the outcome rather than a proxy. 

To attend to these tradeoffs, I conducted a simulation assessing the proxy 

approach with the cross-validation approach using each of the construction methods and 

PS uses. Specifically, I assessed the MSE of the treatment effect estimator when using a 

proxy outcome, e.g. pretest, with a correlation of 0.70 with the outcome versus a cross-

validation approach using a random 50% sub-sample. Further, each experiment used a 

group size of 500 and estimated a MSE using 500 simulations. 

Stepwise 

A second issue that arises when practically implementing the impact based 

approach is model selection. Though not specific to the impact based construction 

method, developing a model that measures some criterion, be it R
2
, AIC, or in the impact 

case the MSE of the treatment effect estimator involves multiple decisions, most of which 
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usually hinge on prior decisions. Model selection approaches should assess the 

appropriate criterion for all possible models and select the model that optimizes the 

criterion. However, with large sets of observations and variables, such an approach is 

computationally difficult. As a result, such approaches often rely on suboptimal 

procedures such as a step by step approach. Although impact based construction 

addresses this through the way it characterizes the relevant relationships, i.e. conditional 

relationships, it is not fully immune to pitfalls faced by other stepwise procedures. In 

particular, one can envision a scenario where an impact constructed PS model depends on 

the order in which one considers potential covariates. For instance, suppose we have only 

two covariates and that the first, X1, exceeds the appropriate impact threshold and thus 

should be included in the PS model. However, suppose we decide to first consider 

covariate X2 and it as well exceeds the appropriate threshold. After inclusion of X2 in the 

PS model, we re-assess the X1 covariate and now find that it no longer exceeds its 

threshold. In this example, the construction of the PS depends on the order in which we 

consider potential covariates. In order to resolve this, the approach most faithful to the 

impact based method and its corresponding minimization of MSE would be to consider 

all possible combinations. For example, one would consider sets of covariates. That is, 

because the Γ- and ∆- relationships are conditional relationships, one can additionally 

consider adding a group of covariates all at once. In such cases we simply define the Γ- 

and ∆-relationships as the collective correlation coefficients which are conditional upon 

those covariates already in the PS model. As a result, similar to other model building 

procedures, we could consider all potential combinations of covariates. However, such an 

approach is practically infeasible in all but the largest studies and even then remains 
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computationally expensive with even a moderate number of measured variables. 

Consequently, for larger datasets the impact based construction method can be practically 

implemented using procedures similar to a stepwise approach. Whereas stepwise selects 

models based on AIC or p-values, the impact based criteria selects models that improve 

the treatment effect estimator in terms of MSE. In other words, the impact based 

approach swaps one criteria for another but does so in a manner that places focus on the 

quantity of ultimate interest. To examine the effect of sequentially adding covariates to 

the PS based on thresholds, I conducted another simulation. 

Simulation Design 

I simulated data to embody several typical instances in educational data. In 

particular, when such literature was available, I based parameter values on educational 

literature which has demonstrated common values for the parameters I considered. Each 

of the simulation experiments employed similar data generating processes. I generated 

the individual characteristics, X*, (e.g. X1, X2, X3) and group characteristics, W*, (e.g. W1, 

W2, W3) from two multivariate uniform distributions within the range [-5,5]. 

Subsequently, for a given experiment and threshold, I specified the desired partial 

correlation matrices ∑x|X and ∑w|W: 

 

11 12 13 11 12 13

x| 21 22 23 w| 21 22 23

31 32 33 31 32 33

a a a b b b

a a a b b b

a a a b b b

   
   

= =   
   
   

∑ ∑X W  (3.36) 

where the elements of ∑x|X and ∑w|W represent the partial correlation controlling for other 

variables respectively. Using  

 2 2

xy xy| x y x y(1 )(1 )r r r r r r= − − +X X X X X  (3.37) 

to specify the zero order correlations, we have zero order correlation matrices ∑x and ∑w: 
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11 12 13 11 12 13

x 21 22 23 w 21 22 23

31 32 33 31 32 33

a a a b b b

a a a b b b

a a a b b b

   
   

= =   
   
   

∑ ∑  (3.38) 

Using X*, W*, ∑x and ∑w and Cholesky decomposition I generated X and W such that 

they conform to ∑x , ∑w , ∑x|X and ∑w|W.   

 The treatment was designed such that it represents the realization of a 

dichotomous variable given group characteristics. For all experiments, the true treatment 

assignment mechanism will follow the generalized linear model: 

 0

1

( ( 1))
wq

j j

j

logit P Z Wγ γ
=

= = +∑  (3.39) 

for qw group level covariates. As depicted by Figure (3.40), three types of variables were 

considered with various magnitudes: true confounders (e.g. W1), those only related to the 

outcome (e.g. W2) and those only related to the treatment (e.g. W3). Though some 

variables are not directly related to the treatment assignment (e.g. W2) all variables 

possess some empirically non-zero relationship due to chance. 

 

W3         W1      W2 

 

X3          X1       X2 

 

 

Z       Y 
 

Figure(3.40): Relation of variables: X. indicates individual level characteristics, W. 

indicates group level characteristics, Z indicates the treatment and Y is the outcome 

 

The true outcome model for each experiment was a hierarchical linear model with 

a random intercept 
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where Z is the treatment effect, 2~ (0, )
outcome

e N σ , u0 ~N(0,τoutcome) and excluded are those 

variables unrelated to the outcome depicted in Figure (3.40) (e.g. X3 and W3). 

For each experiment, I estimated the treatment effect for each data set and each 

PS method (i.e. stratification, matching, IPTW, covariance adjustment) using a HLM 

(Hong & Raudenbush, 2006). Specifically, when stratifying or matching, I modeled the 

outcome as a HLM as follows:  
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where S represents either the number of strata or matched groups minus one for the 

subclassification or matching approach, respectively. When considering covariance 

adjustment on the PS, I use the HLM estimator 
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 (3.43) 

where e(W) is the estimated PS for each group. When considering IPTW, I use (3.43) 

without the PS but weight each group appropriately. Using the results of the Monte Carlo 

simulation experiment, I estimated the bias and mean-squared error (MSE) of each 

approach using: 
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and 

 � 2

1

1ˆ ˆ( ) ( )
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M

i

i

MSE
M

γ γ
=

= −∑θ  (3.45) 

where M represents the number of simulated data sets and the variance of the estimator 

can be estimated using (3.13).   

Results 

Thresholds 

I present the results in six parts. First, I examined the estimated thresholds along 

with their trends and differences among the different uses of the PS. Second, I examined 

the sensitivity of the estimated thresholds to the variation of those parameters listed 

above. Third, I present the estimated power and type one error rate for the simulated data. 

Fourth, I explore the benefits and drawbacks of using a static versus a dynamic approach 

to PS model building based on the estimated thresholds. Fifth, I discuss the performance 

of the estimator when estimating variable relationships via a proxy variable or cross 

validation. Sixth, I present the results of using a sequential approach to constructing PS’s 

based on the estimated thresholds. 

To make simulations tractable, I initially assumed the values for those parameters 

that were allowed to vary. I subsequently discuss how their values varied and what their 

variation may imply in the sensitivity analyses. First, the probability of receiving 

treatment, p, was set to 0.5 to reflect a 50% chance of receiving the treatment. Second, 

the correlation coefficient between the logit of the treatment and covariates in the PS 

model save the one of interest, Γ*, was set to 0.3 and the correlation coefficient between 

the outcome and covariates in the PS model save the one of interest, ∆*, was set to 0.7. 

Taken together with their subsequent ranges in the sensitivity analyses, such values 
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represent treatments and outcomes where there is little understanding of their variation to 

where there is a great deal of explanation as to why they vary. Next, the correlation of the 

covariate of interest and the logit of the treatment, Γ, was given an initial value 0.3. Such 

a value tends to represent a moderate correlation in the social sciences and taken together 

with the sensitivity analyses the range represents small, moderate and large relationships 

in the educational data (Cohen & Cohen, 1988). Similarly, the treatment has an initial 

effect size, δ, of 0.3 representing moderate effect whereas the sensitivity analyses 

examine a small and large effect. The intra-class correlation (ICC) was set to 0.2 to 

reflect the common variance partition found in educational achievement data (Coe & 

Makoto, 2009). I set the group sample size, nj, to 100. Again such a value represents the 

middle ground between the values used in the sensitivity analyses. Collectively, such 

group sizes were chosen to represent a lower bound for effective use of multilevel models 

and a practical upper bound for educational data (Maas & Hox, 2005; Moinedden, 

Matheson & Glazier, 2007).  

Figure (3.46) displays the relationship between the MSE and the ∆-relationship 

for a covariate with a Γ-relationship of 0.3. Specifically, the y-axis displays the difference 

in MSE (i.e. the MSE of the estimator based on the larger PS, Ω, minus the MSE of the 

estimator based on the smaller PS, ω) and the x-axis represents the ∆-relationship of the 

covariate of interest (partial correlation between the covariate and the outcome). The 

threshold is identified as the point in which the curve crosses the horizontal line of zero, 

indicating that the MSE(Ω) is equal to the MSE(ω). In other words, when a curve is 

below the x-axis the covariate should be included in the PS model as it will decrease the 

MSE of the corresponding treatment effect estimator. Conversely, when the curve is 
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positive the covariate should not be added to the PS model as its inclusion will tend to 

increase the MSE. 

Figure(3.46): Change in MSE of the HLM estimator as a function of the covariate’s ∆-

relationship. Change in MSE represents the MSE of the HLM estimator based on the 

large PS model minus the MSE of the HLM estimator based on the small PS model. 

 

 Figure (3.46) and similar figures suggest several interesting properties in this data. 

First, excluding a single covariate from the PS model potentially has a considerable 

amount of influence on the MSE of the corresponding treatment effect estimator. 

However, the magnitude of such influence heavily depends on the covariate’s ∆-

relationship.  

 Similarly, from figure (3.46) it is also evident that although there is a threshold, 

the decision to include or exclude a single variable will have a small effect on the MSE of 

the estimator unless that variable has a strong relationship with the outcome. However, 

when we compare this added MSE with the magnitude of the MSE for the correct PS 

model its addition is considerable. For example, given the above parameters including a 

true treatment effect size of 0.30, constructing the PS using a single additional variable 
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Blue: Match 

Red: IPTW 

Green: Cov 
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which has a Γ-relationship of 0.30 and a ∆-relationship of 0.1 and subclassifying on it in 

an HLM outcome model would add roughly 0.0015  or 0.039 to the average error. In 

other words, in estimating a treatment effect of 0.30 the inclusion of a single additional 

covariate that falls short of the threshold in the PS would increase the error by roughly 

10% of the treatment effect. Put on a different scale, adding a covariate to the PS model 

when its ∆-relationship does not meet the minimum threshold value for its corresponding 

Γ-relationship would increase the overall MSE of the treatment effect estimator by over 

26% ( 0.0025 or 0.05 versus 0.0025 0.0015+  or 0.063). Though this additional error 

is relatively small, when considering the inclusion of many covariates into the PS, the 

contribution to MSE of covariates that do not meet their respective thresholds is 

potentially summative. That is, because the ∆- and Γ-relationships are specified as 

conditional relationships each covariate’s contribution to the overall MSE may be 

somewhat unique. In other words, the change in MSE represents the average additional 

change in MSE for the inclusion of a single variable with specified ∆- and Γ-relationships 

(or set of variables with the said ∆- and Γ-relationships). As a result, adding several 

variables to the PS which do not attain the threshold can exceedingly detract from the 

quality of the estimator. For instance, assuming the error is additive, adding ten variables 

which fail to attain their respective thresholds to the PS will increase the average error of 

the estimator by more than 0.0015*10  or 0.12. In the current context, assuming those 

value of ∆ and Γ above, the average error would be 0.0025 10*0.0015+ or 0.13. Such 

additional error represents more than a 200% increase in the average error of the 

estimator. More generally, the magnitude of such additional error represents more than 

30% of the actual treatment effect, 0.30. In other words, for this simulated data if the 



 151 

structural form of the outcome model were correct and we used an unbiased estimator of 

the treatment effect, our construction of the PS in a manner that neglects such threshold 

considerations might, on average, cause us to misestimate the treatment effect by 

approximately 0.13 if there were 10 variables in the PS that did not meet their respective 

thresholds. 

 Next, from Figure (3.46) we tend to see an ordering of the thresholds 

corresponding to the different PS uses. In particular, the PS use with the highest threshold 

tends to be subclassification on the PS. In other words, including covariates in the PS 

model when one intends to use subclassification on the PS in an outcome model requires 

higher ∆-relationships relative to the other uses (e.g. matching, IPTW, covariance 

adjustment). As subclassification tends to be a coarse adjustment, the MSE is decreased 

only when the variable is at least moderately related to the outcome. Corresponding to the 

high threshold for subclassification is a diminished change in MSE as the ∆-relationship 

increases relative to the other PS uses. Put differently, using subclassification on the PS 

one tends to incur a smaller, gradual increase in MSE by excluding covariates with 

moderate to high ∆-relationships relative to the other uses. This is evident in Figure 

(3.46) as subclassification curve tends to decrease at a rate slower than the other uses. 

Such results also suggest that subclassification on the PS may provide the most protection 

against unmeasured confounding variables. In contrast, using the PS as IPTW in an 

outcome model tends to have lower thresholds but increased MSE at lower ∆-

relationships levels. Put another way, if an analyst intends to use IPTW on the PS in the 

outcome model, he/she should include covariates in the PS model with smaller ∆-

relationships than if he/she were to use subclassification on the PS. In addition, if using 
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the PS for IPTW the exclusion of covariates with moderate to strong relationships with 

the outcome will tend to result in a MSE that is higher relative to the corresponding MSE 

based on subclassification. In other words, IPTW tends to be a more fine-tuned 

adjustment as compared with subclassification. 

 Though Figure (3.46) illustrates the thresholds for several different uses of the PS, 

it does not show how these thresholds change for different parameters. A particularly 

relevant parameter when identifying such thresholds is the magnitude of the Γ-

relationship. As the MSE of the treatment effect estimator is influenced by both the ∆- 

and Γ-relationships, minimizing the MSE requires the exclusion of those covariates 

whose decrease in bias is exceeded by its increase in variance. Figure (3.47) displays how 

the threshold changes as a function of Γ-relationship.  

Figure(3.47): ∆-relationship thresholds as a function of a covariate’s Γ-relationship.  

 

 Similar, to previous thresholds, we see that subclassification on the PS tends to 

have the highest threshold for most of the Γ-relationships. In other words, for a covariate 

with a given Γ-relationship, the magnitude of the ∆-relationship has to be higher for the 
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inclusion of a given covariate to decrease corresponding MSE when using 

subclassification compared to the other uses. Additionally, the thresholds tend to increase 

at a similar rate and, for the most part, preserve their order. That is, subclassification 

tends to have the highest threshold, followed by covariance adjustment, followed by 

matching, and finally followed by IPTW. These relationships suggest that although a 

covariate may explain portions of the treatment assignment mechanism, its value in 

estimating the treatment effect using a PS based estimator is modified by its relationship 

to the outcome. As a result, covariates strongly related to the treatment assignment 

mechanism may actually decrease the quality of the estimator in terms of MSE if they do 

not have corresponding relationships similar in magnitude with the outcome. Though the 

thresholds vary, a rough rule of thumb for assessing the value of a covariate in similar 

data is that the ∆-relationship should be at least half the size of the Γ-relationship in order 

for its inclusion in the PS to decrease the MSE of the corresponding treatment effect 

estimator. This rough rule could be further supplemented by recognizing that when using 

subclassification or covariance adjustment the ∆-relationships should, for the most part, 

be slightly above half the magnitude of the Γ-relationships and when using matching or 

IPTW the ∆-relationship should be slightly below half the magnitude of the Γ-

relationship. Table (3.48) provides a summary of the thresholds for four different uses of 

the PS. Table (3.48) combines several values of the Γ-relationship along the top with four 

different uses of the PS along the left side and lists the corresponding ∆-relationship 

thresholds inside the table. In other words, values inside the table represent the minimum 

∆-relationships covariates must have for a given Γ-relationship and PS use in order for 

them to reduce the MSE of the corresponding treatment effect estimator. 
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Table(3.48): Impact construction thresholds for default simulation 

 Γ=0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 

Subclassification 0.06 0.10 0.13 0.16 0.17 0.19 0.22 0.26 0.28 

Covariance  0.05 0.07 0.10 0.12 0.15 0.17 0.22 0.26 0.28 

Matching 0.04 0.06 0.07 0.09 0.10 0.12 0.17 0.23 0.27 

IPTW 0.02 0.03 0.04 0.07 0.08 0.11 0.16 0.20 0.23 

 

Comparing Approaches 

To attend to how this approach compares to other standard approaches, I first 

examined conceptually how the impact based construction method measures the 

treatment effect estimator. Second, for each data set and use of the PS, I compare the 

bias, variance and MSE of models constructed by impacts with those constructed by 

standard PS model building procedures by contrasting their estimated densities. In 

particular, I consider two alternative PS construction methods: a stepwise AIC approach 

(e.g. Hastie & Pregibon, 1992) and an including all available variable approach.  

 Figures (3.49) to (3.56) conceptually contrast the different PS model construction 

approaches in terms of MSE. Specifically, each figure displays the MSE of the HLM 

treatment effect estimator based on each of the three PS construction methods and Γ-

relationship as a function of the ∆-relationship. For instance, for covariates with a Γ-

relationship of 0.10 Figure (3.49) displays the average MSE of the treatment effect 

estimator as a function of the stepwise approach (blue), the all approach (black) and the 

impact approach (red). In these figures, the y-axis represents the average MSE of the 

HLM treatment effect estimator and the x-axis represents the ∆-relationship for a 

covariate we may include in the PS. In Figure (3.49), the blue line represents the MSE for 

a PS model constructed using the stepwise approach. I note that for Figure (3.49) the all 

approach (black line) is plotted on top of the blue line until the ∆-relationship reaches 
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0.10 and plotted on top of the red line thereafter. Specifically, the stepwise PS model 

tends to exclude the covariate of interest, regardless of its ∆-relationship. As a result, we 

see that it lowers MSE only when the ∆-relationship is less than about 0.10. The black 

line in Figure (3.49) represents the MSE for a PS model that includes all available 

variables regardless of their ∆-relationships. This approach tends to reduce MSE only if 

the covariate has a ∆-relationship greater than 0.10. Finally, the red line represents the 

MSE for a PS model constructed using the impact approach. Specifically, this approach 

includes only those covariates whose ∆-relationship exceeds the threshold corresponding 

to its Γ-relationship. Evident from the Figure (3.49), for a Γ-relationship of 0.10 the 

impact approach is similar to the stepwise approach until it reaches the ∆ threshold and 

then is similar to the all approach. In particular, when focusing on the inclusion/exclusion 

of a single variable with a Γ-relationship of 0.10, the stepwise approach will almost 

always exclude the potential covariate regardless of it ∆-relationship. The effect of 

excluding the potential covariate is highly dependent on the ∆-relationship. That is, when 

the ∆-relationship is small it can actually be beneficial to exclude the covariate, whereas 

when the ∆-relationship is high it can be costly to exclude the covariate. Alternatively, 

the all approach incurs a MSE higher than stepwise for small values of the ∆-relationship 

but clearly dominates the stepwise approach when the ∆-relationship is high. Figure 

(3.49)  clearly depicts the bias-variance tradeoff that we are trying to balance. 

Specifically, the impact based approach conceptually attempts to move between these 

approaches in a manner that always minimizes the MSE. That is, the impact based 

approach conceptually chooses the estimator with the minimum MSE. To see this in 

Figure (3.49), I note that the red line representing the impact approach lies directly on the 
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blue line representing stepwise until about a ∆-relationship of 0.10. Thereafter, the red 

impact line switches and lies directly on the black line representing the all approach. For 

example, for any ∆-relationship greater than 0.10, the impact approach will make 

inclusion decisions identical to the all approach. Similarly, though not generally true, in 

Figure (3.49) the impact approach tends to make decisions similar to the stepwise 

approach when the ∆-relationship is less than 0.10. Subsequent figures with Γ-

relationships of 0.10 illustrate similar concepts but adjust the point at which the impact 

approach switches from the stepwise approach to the all approach based on the method 

by which we use the PS in the outcome model. 

Figures (3.49) to (3.52): MSE of the treatment effect estimator as a function of the 

outcome-covariate relationship for each construction method for a covariate with a 

treatment-covariate relationship of 0.10. 

Figure(3.49)     Figure (3.50) 

 

Figure(3.51)     Figure (3.52) 
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 In a similar manner, Figures (3.53) to (3.56) illustrate the tradeoff that minimizes 

the MSE of the treatment effect estimator for Γ-relationships of 0.30. For example, in 

Figure (3.53) the black line represents the MSE of the all approach. As the stepwise 

approach generally includes a covariate in the PS model if it has a partial correlation with 

the outcome of 0.30, the line depicting the stepwise approach lies on the all approach 

black line. In other words both the stepwise and all approaches will include the covariate 

regardless of the ∆-relationship. In contrast the impact approach (red) only includes 

covariates that meet or exceed the threshold corresponding to their Γ-relationships. As a 

result, for covariates with a Γ-relationship of 0.30 it excludes covariates whose ∆-

relationship is less than 0.19. Thus, in this example, the impact approach deviates from 

both the stepwise and all approach when the ∆-relationship is less than 0.19 and then 

merges with the other two approaches thereafter. Such a hybrid approach minimizes MSE 

for a given set of potential covariates to be included in the PS model. 

 In comparing the performance of impact based approach with the stepwise and all 

approaches, we see that the relative gain depends to a large extent on the Γ-relationship 

and to some extent on the method by which we use the PS in the outcome model. When 
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the Γ-relationship is a 0.10 and we are subclassifying on the PS, we see about a 4% 

decrease in MSE when comparing the impact approach with the all approach for ∆-

relationships less than 0.10. When contrasting the impact based approach with the 

stepwise approach, we see the impact based approach offering increasingly large 

decreases in MSE after the threshold. In other words, though the impact based approach 

provides a considerable reduction in MSE over the all approach, it provides a much larger 

advantage when compared to the stepwise approach. When we increase the Γ-relationship 

to 0.30 (Figure (3.53) we tend to see larger reductions in MSE. As the step and all 

approaches are similar in this context, I only contrast the impact with the other two. 

Specifically, though the reduction depends on the magnitude of the ∆-relationship, we see 

about a 10-15% reduction in MSE for covariates whose ∆-relationship does not meet the 

threshold.  

 Contrasting such gains across uses of the PS we see similar, but varying, levels of 

reduction in MSE. For instance, with matching, IPTW and covariance adjustment, the 

reduction in MSE from using the impact based approach over the others is slightly 

smaller than that of subclassification and again depends largely on the magnitude of the 

Γ-relationship.  
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Figures (3.53) to (3.56): MSE of the treatment effect estimator as a function of the 

outcome-covariate relationship for each construction method for a covariate with a 

treatment-covariate relationship of 0.30. 

Figure(3.53)     Figure (3.54) 

 

Figure(3.55)     Figure (3.56) 

 

 In a similar manner, I next directly compared the bias, variance and MSE of the 

HLM estimators based on the PS constructed by impacts with those constructed by 

standard PS model building procedures by contrasting their estimated densities. Figures 

(3.59) to (3.58) display the HLM estimator densities based on the PS construction type 

for each of the PS uses. For all PS uses, we see several properties of the estimators based 

on how the corresponding PS was formed. The estimator based on constructing the PS 

using the impact based approach has the most density in the neighborhood of the 

treatment effect, δ =0.3, in that it has least dispersion around its mode. In contrast, the all 
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available variables approach tends to be the most dispersed regardless of the PS use and 

the step approach falls in between the other two.  

Figure(3.57): Densities for IPTW  Figure(3.58): Densities for Covariance  

      Adjustment 

  
 

Figure(3.59): Densities for   Figure(3.60): Densities for   

 Subclassification   Matching 

 
In addition, Table (3.61) estimates the bias, variance and MSE of the each PS use and 

construction method. Specifically, I considered the properties of the HLM random 

intercept estimator using covariance adjustment on individual level variables and the four 

different PS adjustments. Though the simulations indicate some finite sample bias when 

using the IPTW use, all estimators appear to be virtually unbiased. As a result, the main 
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contribution to the MSE is the variance of the estimator. Further in contrasting the MSE 

of each estimator, Table (3.61) suggests that although the magnitude depends on the PS 

use, the impact based construction method consistently provides an estimator with lower 

MSE. 

Table(3.61): Bias, variance and MSE of the treatment effect estimators by PS use and PS 

construction method 
 Strata IPTW Cov Match 

 All Step Impact All Step Impact All Step Impact All Step Impact 

Bias 0.0024 0.0038 0.0050 0.1053 0.0812 0.0658 0.0025 0.0049 0.0065 0.0200 0.0284 0.0160 

Var 0.0025 0.0023 0.0021 0.0050 0.0027 0.0033 0.0020 0.0025 0.0019 0.0035 0.0037 0.0027 

MSE 0.0025 0.0024 0.0022 0.0161 0.0093 0.0076 0.0020 0.0025 0.0019 0.0039 0.0045 0.0029 

 

Type 1 Error 

I next turn to the power and type one error rate of the impact method. The results 

for the type 1 error rates for each combination of PS construction method and PS use in 

the outcome model are displayed in Table (3.62). In general, we see that the type 1 error 

rates tend to be close to the target α-level of 0.05. However, we do see slightly inflated 

and deflated type 1 error rates depending on both the construction method as well as the 

end use of the PS in the outcome model. More specifically, the stepwise PS construction 

method tends to have a slightly inflated type 1 error rate indicating that it rejects the null 

hypothesis more than the nominal 5% level. Though the type 1 error rate varies by how 

one uses the PS in the outcome model, we consistently see that using the stepwise 

construction method inflates the type 1 error by slightly less than 1%. The impact 

construction method tends to have a slightly less consistent trend across PS uses. In 

particular, when using the impact construction method combined with subclassification 

or covariance adjustment, the type 1 error rate is slightly deflated. In contrast, using the 
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impact method with the IPTW tends to slightly inflate the error whereas using it with 

matching tends to be consistent with the nominal α-level. 

Table(3.62): Type 1 Error Rates (α=0.05) 

 Strata Match IPTW Cov Average 

All 0.044 0.046 0.045 0.043 0.045 

Impact 0.049 0.050 0.058 0.049 0.051 

Stepwise 0.059 0.058 0.055 0.059 0.058 

 

 It is also of interest to examine how such type 1 errors are distributed among 

variable selection. Specifically of interest is whether eliminating an increasing percentage 

of the potential PS construction variables inflates or deflates the type 1 error rate. Figure 

(3.63) graphically summarizes the type 1 error rates for all construction methods by 

plotting the treatment’s p-value as a function of the percent of potential variables 

included in the PS. That is the blue dots indicate the p-values relative to the percent of all 

the available covariates the stepwise method selected to construct the PS; the red dots 

indicate the same but for the impact method; and finally the black dots indicate the p-

values when including all the available variables in the PS. Generally we see type 1 error 

rates similar to the nominal level of 0.05. In addition, though obviously dependent on the 

data, the nature of the plot allows us to gauge how many variables each method tends to 

include in the PS. In particular, I note that the stepwise approach to constructing the PS 

values parsimony as it tends to use about 10-30% of the available variables. Substantially 

higher is the impact approach as it tended to use between 80-90% of the available 

variables. Despite the difference in the number of variables used, we tended to see a close 

alignment of both point estimates and inferences resulting from the all and impact 

methods. Such alignment presents an interesting result. Specifically, the alignment of 
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inferences resulting from constructing the PS using all available variables and just the 

impact variables suggests that the impact relationships may adequately capture the 

relevant imbalances between groups. In other words, one could construct the PS using all 

available variables to provide maximal protection against biased estimates, however, one 

does so at a cost and that cost is a loss in efficiency. In contrast, one could capture 

virtually the same protection with a reduced cost in terms of efficiency using impact 

based construction. As a result, we can decrease the MSE of our estimates without a 

significant associated inflation of the type 1 error. 

Figure(3.63): Type 1 error rates for stepwise, impact and all based PS construction 

methods

 
Power 

 In a similar manner, it is of interest whether the impact approach compromises the 

power in detecting a treatment effect. To identify the theoretical power of a cluster-

randomized experiment that the current PS and HLM methods try to mimic, I estimated 

the approximate power of a cluster-randomized trial with similar parameters. Using 

Optimal Design (Spybrook, Raudenbush, Liu & Congdon, 2006), the approximate power 

of such a cluster randomized trial is slightly above 0.80 (Figure (3.64)).  
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Figure(3.64): Power as a Function of the Number of Clusters for the Hypothetical 

Cluster-Randomized Experiment the Current Study Attempts to Replicate 

 

 

In other words, the probability of rejecting the null hypothesis of no treatment effect 

when in fact there is a treatment effect of 0.30 is approximately 0.8. Similar to the 

simulation assessing the type 1 error rate, I estimated the power of each PS construction 

method in conjunction with each PS use in the HLM using simulations. Table (3.65) 

summarizes the power for each combination. Similar to the type 1 error rate results, the 

power of all such construction methods and PS uses tended to align well with the 

theoretical estimates of power in the corresponding cluster randomized experiments. 

Notably, IPTW tended to have the highest power of all PS uses regardless of which 

method was used to construct the PS. However, practically the differences are negligible. 

Table(3.65): Power of PS construction methods and PS uses 

 Strata Match IPTW Cov Average 

All 0.802 0.805 0.847 0.810 0.816 

Impact 0.808 0.816 0.850 0.832 0.827 

Stepwise 0.833 0.781 0.845 0.833 0.823 

 

 In summary, though the impact method attempts to minimize the variance of the 

estimator by removing those variables that have no effective relationship with the 
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outcome, it does so conditional upon the potential bias reduction provided by those 

variables. As a result, regardless of the PS use, the simulations suggest that using the 

impact based construction does not comprise the power or type 1 error rates of the HLM 

estimator. Though an approach that solely minimizes bias or variance can detract from 

the quality of the estimator, using an approach that simultaneously minimizes the bias 

and the variance may improve the quality of the estimator without a corresponding 

inflation of type 1 error or decrease in power. For this reason, impact construction tends 

to capture the salient imbalances present among treatment groups in a manner that 

respects the ratio of the parameter estimate to its standard error. As a result, it potentially 

provides inferences similar to the all available variable PS construction approach. Such 

results emphasize the dual foci in estimating an effect: that of eliminating bias and that of 

minimizing variance. Sole focus on either can compromise the overall quality of the 

estimator. Table (3.66) displays the correspondence of inferences resulting from the 

HLM treatment effect estimator based on the three different PS construction methods. 

Table (3.66) shows that the all and impact methods make the same statistical inferences 

97% of the time. Similarly, constructing the PS using the stepwise approach, one will 

tend to make statistical inferences similar to the all variables approach 95% of the time. 

Such results suggest that the impact method of constructing PS scores has less influence 

on statistical inferences than on point estimates. That is, though we see improved point 

estimates, the inferences resulting from impact construction of the PS tend to align with 

the all available variables approach.  

Table(3.66): Probability of Obtaining the Same Inference by PS construction method 

 All Step Impact 

All 1   

Step 0.95 1  

Impact 0.97 0.95 1 
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Sensitivity of Thresholds to Observable Quantities 

 To provide insight as to how such thresholds may change as assumptions change, 

I conducted a variety of sensitivity analyses. These analyses were carried out by holding 

all other parameters constant at their default values and while varying a single parameter. 

As a result, we can examine how the thresholds are potentially related to the various 

parameters. I broke these analyses into two strands, sensitivity to directly observable 

quantities and sensitivity to those quantities that are not directly observable (though often 

testable).  

 In the first set of these sensitivity analyses, I focused on how such thresholds 

change as a function of relevant and observable quantities. In particular, I independently 

varied five parameters. First, I altered the probability of receiving the treatment, p, from 

the default of 0.50 to 0.90 as well as 0.10. These values were selected to understand how 

deviations from 0.5 might influence the thresholds. In particular, between the ranges of 

approximately 0.25 to 0.75, the logistic function is roughly linear. Beyond this range, the 

function takes on a more non-linear shape and potentially influences the thresholds in a 

different manner. Second, to encompass those studies that have little information as to the 

treatment assignment mechanism as well as those studies that are examining well studied 

treatments, I varied the Γ* parameter or the correlation coefficient between the logit of 

the treatment assignment the observed predictors from 0.30 to 0.60 and 0.10. In a similar 

manner, I also varied the ∆* parameter representing the correlation coefficient between 

the observed variables and the outcome. The ∆* parameter was varied from its default of 

0.70 to 0.30 and 0.80. Next, I altered the intra-class correlation, ICC, coefficient from 
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0.20 to 0.10 and 0.30. Such values align with those typically found in educational 

outcomes (Coe & Makoto, 2009). Further, such values additionally align with the 

subsequent application. Finally, I varied the group size, nj, from 100 to 50 and 500. Fifty 

groups was selected as a lower bound as it has been suggested that 50 groups is generally 

a lower threshold from which to effectively use multilevel models (Maas & Hox, 2005; 

Moinedden, Matheson & Glazier, 2007). Further, the upper bound of 500 groups was 

selected since few educational studies exceed this many schools. 

 The results of the sensitivity of the thresholds to observed quantities are presented 

in Table (3.67). In each of the sensitivity analyses, the same essential pattern prevailed: 

the effect of the inclusion of a covariate in the PS model on the MSE of the HLM 

treatment effect estimator depended on the Γ- and ∆-relationships. Moreover, those 

covariates minimally related to the outcome but related to the treatment increased the 

variance of the estimator without decreasing bias. Further, the inclusion of covariates 

related only to the outcome decreased variance without affecting bias and the exclusion 

of those covariates related to both the outcome and the treatment yielded a biased and 

inefficient estimator. However, the alteration of the observable simulation quantities 

changed thresholds and, in some cases, changed the relative order of the thresholds. 

 First, we saw that as we increase the probability of receiving the treatment, p, our 

thresholds tended to increase for the subclassification and covariance adjustments uses of 

the PS. However, in opposition the thresholds for the matching and IPTW uses of the PS 

tended to stay at magnitudes similar to that of a probability of 0.5. Next, as we increased 

the explanatory power of the observed covariates in the PS model for the treatment, Γ*, 

we saw a consistent decrease in the magnitude of the threshold for all uses. That is, 



 168 

holding all other parameters constant including ∆*, as we increase the explanatory power 

of the covariates for the treatment, we should add covariates to the PS model at a lower ∆ 

threshold. This aligns with the initial finding that in order to benefit from a variable’s 

inclusion in the PS its ∆-relationship should exceed its Γ-relationship. With other words, 

if the covariates currently in PS model have a stronger Γ*-relationship than they do a ∆*-

relationship, we need to recover the optimal balance and thus should include variables 

that would improve that balance in any way. Similarly, if we decrease Γ* while holding 

∆* constant, the threshold becomes larger regardless of use. Paralleling such shifts, if we 

increase or decrease the relationship between the outcome and the covariates in the PS 

model (∆*) while holding those covariates’ relationship with the treatment (Γ*) constant, 

our thresholds will also increase or decrease respectively. That is, only a covariate with a 

relatively strong relationship with the outcome and smaller relationship with the 

treatment will likely improve our estimator once we have explained the majority of the 

variation in the outcome. Next, when altering the intra-class correlation, ICC, we are 

inherently shifting the proportion of each individual outcome the group is responsible for. 

Consequently, increasing the ICC tends to increase thresholds whereas decreasing the 

ICC tends to decrease the thresholds. In other words, the more the variation in the 

outcome the group is responsible for the earlier one should add group level covariates to 

the PS model. Finally, I considered the group size and its influence on the corresponding 

thresholds. Specifically, in this data the thresholds illustrated inverse relationships with 

the group size. That is, as one increases the group size, thresholds tend to decrease and 

vice versa. In other words, in this simulated data, larger group sizes allowed us to include 

more variables in the PS. 
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Table(3.67): Sensitivity of Thresholds to Observed Quantities 

 Subclassification Matching IPTW Cov 

P=0.1 0.21 0.12 0.11 0.19 

P=0.9 0.20 0.12 0.11 0.18 

Γ*=0.1 0.20 0.14 0.12 0.18 

Γ*=0.6 0.17 0.12 0.09 0.16 

∆*=0.3 0.17 0.10 0.09 0.17 

∆*=0.8 0.19 0.13 0.12 0.18 

ICC=0.1 0.20 0.13 0.12 0.18 

ICC=0.3 0.17 0.10 0.10 0.17 

nj=50 0.20 0.13 0.13 0.18 

nj=500 0.16 0.08 0.07 0.17 

 

 The results of the sensitivity of the thresholds to unobserved quantities are 

presented in Table (3.69). The first parameter I varied in this set of sensitivity analyses 

was the treatment effect, δ. In particular, because higher treatment effects tend to invoke 

increasing dependencies in the Γ- and ∆-parameters it is possible that higher treatment 

effects may change such thresholds (Pan & Frank, 2004). Take an artificial extreme 

example where we have an outcome being predicted by a treatment and confounding 

variable and the treatment is the variable of interest. If we allow the correlation between 

the outcome and treatment to be very high, e.g. 0.95, then if the confounder is highly 

correlated with the treatment (Γ-relationship) then the confounder will also be highly 

correlated with the (∆-relationship). In particular, the ∆- and Γ-relationships are not 

independent and their product or impact tends to follow an approximate Beta distribution 

(Pan & Frank, 2004). As a result, such dependencies may skew thresholds. In the original 

experiment I used a true treatment effect of 0.3 whereas in the second I used 0.1 and 0.5. 

Such values in educational data typically align with small, moderate and large effect sizes 

(Cohen & Cohen, 1988). The results across uses of the PS were consistent in their 

direction but differed in magnitude. Specifically, as the treatment effect decreased or 
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increased so did the corresponding threshold. Moreover, a decrease in treatment effect 

size tended to be associated with larger decreases in the threshold as compared to similar 

increases in the effect size with the exception of the covariance adjustment. In particular, 

excluding a variable when there is a small treatment effect tended to add a shrinking 

amount of bias to the estimator. That is, with a small treatment effect covariates tend to 

remove smaller amounts of bias. However when the treatment effect was large the 

inclusion/exclusion of a single covariate (depending on the Γ- and ∆-relationships) can 

add/subtract a considerable amount of bias. In turn such bias tends to add significantly to 

the MSE. Such relationships have extended effects as well. In particular, though higher 

effect sizes tend to have higher thresholds, the bias incurred by excluding a variable that 

exceeds the threshold (i.e. ∆ >ψ) grows much more rapidly with large effect sizes than 

with smaller effect sizes. For example, in Figure (3.68) if we were to exclude a variable 

in the PS model that has a ∆-relationship of 0.6, the increase in MSE will be larger if the 

true effect size is 0.5 (dashed) as opposed to 0.3 (solid). In a corresponding manner, 

identifying variables to omit from the PS when there is a small effect size is much more 

difficult as the difference in MSE between the small and large models becomes much 

smaller as illustrated by the gradual sloping and elongated curve (dotted) in Figure (3.68). 

In other words, when there are small effect sizes (e.g. 0.10) the amount of MSE that can 

be eliminated by using impact based construction decreases.  

  Figure(3.68): Example of Elongated Curves indicating earlier thresholds but less bias 
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Next, I considered a series of variables, interactions and higher order terms that 

may potentially be omitted in an analysis. First, I examined the sensitivity of the 

thresholds to an unmeasured group level variable with moderate relationships to both the 

outcome and the treatment. Subsequently, I assessed such sensitivities to excluded 

interactions and higher order terms among measured variables. In general, simulations 

indicated that thresholds would decrease when we have not taken into account an 

unmeasured variable. However, the change in thresholds when excluding an interaction is 

less clear but remains minimal. In addition, the scale of such decreased thresholds 

depends on the strength of the Γ- and ∆-relationships of the omitted variable.  

Table(3.69): Sensitivity of Thresholds to Unobserved Quantities 

 Subclassification Matching IPTW Cov 

δ=0.1 0.15 0.10 0.08 0.15 

δ=0.5 0.20 0.13 0.13 0.19 

Omitted W 0.18 0.10 0.08 0.16 

Omitted Quadratic W  0.18 0.10 0.09 0.17 

Omitted W2W3 

interaction 

0.19 0.13 0.13 0.18 

Omitted ZW3 

interaction 

0.16 0.13 0.11 0.18 

 

Static vs. Dynamic Impact Construction  

Dotted: δ=0.1 

Solid: δ=0.30 

Dashed: δ=0.50 
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Turning to the changing nature of the thresholds, I present the results comparing 

the larger scale implementation of the static, dynamic, all and stepwise approaches are 

presented in Table (3.70). In particular, the table contrasts the approaches when 25 

variables are available for the inclusion into the PS.  

Table(3.70): MSE of PS Construction Methods and Uses when a Large Set of Potential 

Covariates Exists 

 Subclassification Matching IPTW Cov 

All 0.0335 0.0561 0.0215 0.0321 

Step 0.0539 0.0674 0.0216 0.0450 

Dynamic Impact 0.0224 0.0342 0.0212 0.0223 

Static Impact 0.0294 0.0523 0.0215 0.0300 

 

We see that although prior simulations with only a few variables indicated that the static 

impact construction approach lowers MSE when we have appropriately identified the 

thresholds based on all parameters, not updating the thresholds as the parameters change 

throughout the PS model building process diminishes the benefit of using impact based 

construction. Alternatively, when using a dynamic impact based approach, we can retain 

much of the original benefit of using the impact based approach. Consequently, though 

identifying fixed thresholds for one’s data is of some value, a superior approach might be 

to generate a series of thresholds corresponding to each step which allow you to evaluate 

the inclusion of a variable in the PS based on current estimates of the parameters. 

Use of Proxies for Outcome 

I conducted two further simulation experiments to assess the efficacy of using the 

pretest as a proxy for the outcome and using a cross validated approach to construct the 

PS. In particular, using simulated data similar to that above, I assessed the MSE of the 

treatment effect estimator when the PS model was built using the estimated thresholds 
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and the ∆-relationships were estimated via the pretest or random subsample. The results 

of the experiment are presented in Tables (3.71) and (3.72). 

Table(3.71): MSE of Treatment Effect Estimator when the PS is Constructed Using a 

Pretest Proxy Correlated at 0.70 

 Strata IPTW Cov Match 

 All Step 
Proxy 
Impact 

All Step 
Proxy 
Impact 

All Step 
Proxy 
Impact 

All Step 
Proxy 
Impact 

Bias -0.0028 0.0074 -0.0029 -0.0036 -0.0128 -0.0016 -0.0021 0.0061 -0.0026 -0.0031 -0.0073 0.0211 

SD 0.0374 0.0412 0.0361 0.0917 0.0938 0.0911 0.0412 0.0436 0.0374 0.0374 0.0374 0.0316 

Var 0.0014 0.0017 0.0013 0.0084 0.0088 0.0083 0.0017 0.0019 0.0014 0.0014 0.0014 0.0010 

MSE 0.0014 0.0018 0.0013 0.0084 0.0090 0.0083 0.0017 0.0019 0.0014 0.0014 0.0014 0.0014 

 

Table(3.72): MSE of Treatment Effect Estimator when the PS is Constructed Using Cross 

Validation with 50% of the Sample 

 Strata IPTW Cov Match 

 All Step 
CV 

Impact 
All Step 

CV 
Impact 

All Step 
CV 

Impact 
All Step 

CV 
Impact 

Bias 0.0007 0.0028 0.0026 -0.0009 0.0035 0.0082 0.0019 0.0021 0.0021 -0.0013 0.0033 0.0021 

SD 0.0548 0.0520 0.0500 0.1217 0.1241 0.1200 0.0566 0.0548 0.0510 0.0933 0.0721 0.0624 

Var 0.0030 0.0027 0.0025 0.0148 0.0154 0.0144 0.0032 0.0030 0.0026 0.0087 0.0052 0.0039 

MSE 0.0030 0.0027 0.0025 0.0148 0.0154 0.0144 0.0032 0.0030 0.0026 0.0087 0.0052 0.0039 

 

 Of immediate interest, I saw that for all uses and construction methods, building a 

PS on the basis of a proxy such as a pretest, provides a treatment effect estimator with 

lower MSE than doing so with cross validation. Using a cross validation based approach 

tends to nearly double MSE when compared to the MSE of a proxy based approach. 

However, in contrasting the cross validation and proxy based approaches, it is evident 

that the cross validation approach provides more bias reduction than the proxy approach. 

Constructing the PS by taking a random cross validation sample from the dataset should 

theoretically not bias estimates. Tables (3.71) and (3.72) provide empirical support for 

this hypothesis as cross validation had virtually no bias and considerably less than the 

proxy method. In contrast, constructing the PS based on a proxy measure that has less 

than perfect correlation with the outcome should theoretically bias estimates. However, 
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such bias should be proportional to the strength of the proxy-outcome relationship. That 

is, as the strength of the proxy-outcome relationships increases the bias should decrease. 

Empirical support of this hypothesis is also evident in the results. Specifically, the results 

tended to illustrate residual bias that was frequently large relative to the cross validation 

results. Where the proxy based approach dominates the cross validation based approach 

is in terms of variance. Specifically, the proxy based approach tends to have about half 

the variance of the cross validation based approach. The proxy approach allows us to 

retain the full sample size whereas the cross validation approach reduces our sample size 

by half. As a result, theoretically, I hypothesized that the cross validation approach would 

have higher variance than the proxy approach. As a result, the two approaches 

outperform each other on different criteria. Accordingly the question then centers on the 

comparative contributions of the methods to the bias and variance of the estimator. In 

assessing the comparative contributions in the above tables, I noted that the magnitude of 

the bias is small relative to the variance. That is, the contribution of bias to the quality of 

the estimator is overshadowed by the contribution of variance.  

Such results parallel the motivation behind this study in that in finite sample 

studies the variance of an estimator can play a role equal to or larger than the bias of an 

estimator. Such results also suggest careful attendance to such issues in applied settings. 

For example, researchers who have access to very large sample sizes and expect the study 

to be replicated, might decide to privilege the bias of an estimator. In such cases, it may 

be of better use to construct the PS using cross validation. Such an approach will likely 

offer a less biased or unbiased estimate of the true treatment effect. However, in moderate 

or small sized studies, researchers are perhaps more effective if they consider the bias 



 175 

variance tradeoff. Accordingly, if researchers have access to an outcome proxy such as 

the pretest, they should strongly consider constructing the PS using the proxy method. 

Use of such a method will likely improve the quality of estimation. 

Further, the sub-optimality of such a step by step construction approach is also 

evident in Tables (3.71) and (3.72). In particular, because of the large set of covariates 

considered, only a step by step construction approach to the impact method was feasible. 

Though the MSE of the impact approach tends to offer estimators with less MSE than 

that of the all approach, we expected the MSE of the impact based approach to be 

considerably less than the MSE of the all approach. Such step by step procedures in 

conjunction with the proxy or cross validation tend to erode the reductions in MSE in 

practical model building. Despite such challenges, both the proxy and cross-validation 

approaches retained MSEs lower than stepwise in these simulations. 

Discussion 

 The simulation experiments revealed that the model that best predicted treatment 

assignment did not yield a PS that minimized the treatment effect estimator in terms of 

MSE. Rather, the optimal model was the one that included only those variables whose 

contribution to the variance of the estimator was exceeded by its reduction in bias. This 

finding is consistent with the advice of Brookhart et al. (2006), Rubin and Thomas (1996) 

in that one should include in a PS model all variables thought to be related to the 

outcome, regardless of whether they are related to the treatment assignment. This study 

potentially advances such findings in that the impact based construction approach helps 

us quantify the magnitude of variable relationships to the outcome needed to effectively 

improve estimation. That is, such findings not only reinforce the necessity of including 
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covariates unassociated to the treatment assignment but related to the outcome, but also 

quantify how strong that relation to the outcome needs to be. In the simulated data 

considered the strength of a covariate’s relationship with the outcome needed to be at 

least half the size of the relationship with the treatment in order for its inclusion in the PS 

to decrease the MSE of the corresponding treatment effect estimator. Further, the impact 

based approach allows us to effectively and efficiently remove both systematic and non-

systematic bias. In other words, for any given finite dataset, there are both actual 

confounders and empirical confounders. Whereas actual confounders lie along the causal 

pathway in the population, empirical confounders represent some small and usually 

statistically insignificant association or imbalance between covariates and the treatment 

assignment that arose by chance in a given sample. If such covariates additionally possess 

some nonzero relation to the outcome, then they are empirical confounders for that 

particular study. Though the systematic bias from such empirical confounders tends to 

zero as we take repeated samples and execute further studies, including such empirical 

confounders in a PS model for the study at hand removes the nonsystematic bias due to 

the chance association between the covariate and treatment assignment and improves the 

estimate for the study at hand. The removal of this nonsystematic bias tends to reduce the 

variance of an estimator thereby concentrating its density around its mean. This advice 

correlates with the theoretical finding that it can be advantageous to use an empirically 

estimated PS rather than the true population PS (Robins, Mark & Newey, 1992; 

Rosenbaum, 1987; Brookhart et al., 2006).  

 In efficiently removing such nonsystematic bias, the study indicated that if a 

covariate is related to the treatment assignment and has a relationship with the outcome 
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less than the appropriate threshold, its inclusion in the PS model will increase the 

variance of the corresponding treatment effect estimator without decreasing bias. Such 

results come from the additional noise inserted into the estimated PS which causes an 

unnecessary inflation of the correlation between the estimated PS and the treatment 

assignment. In the case covariance adjustment or IPTW on the PS in an outcome model, 

including such a variable in the PS increases the covariance between the treatment and 

the PS increases and in turn increases the variance of the estimated treatment effect. 

Similarly, when context utilizing subclassification or matching on the PS in an outcome 

model, including covariates that do not meet the thresholds add noise to the estimated PS 

randomly misclassify or mismatch units with respect to important confounders. 

 In conclusion, the results presented in this study provide insight as how to identify 

variables to be included in the PS when it is used in conjunction with a HLM. Although 

such results are consistent with theoretical results the thresholds by which to 

include/exclude variables are dependent on the specification of the data generating 

process and the choice of different parameter values. Through sensitivity analysis, I 

varied the parameters that noticeably where the most relevant while fixing the probability 

distributions and other structural elements of the study. My findings and the analytical 

results presented by Rubin and Thomas (1997) and Robins et al. (1992) raise questions 

about the optimality of standard model building strategies for the construction of PS 

models, particularly in the setting of small to moderate sized studies. Model building 

algorithms that solely aim to create good predictive models of the treatment assignment 

neglect the duality of confounding and in turn often neglect the goals of the study. That 

is, as the ultimate goal of a study is often to effectively estimate a treatment effect, the 
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purpose of utilizing the PS is to effectively and efficiently control for confounding so as 

to improve the properties of the treatment effect estimator rather than to predict the 

probability of receiving treatment. A variable selection criterion based exclusively on 

constructing the best possible treatment assignment model, be it best in prediction or in 

parsimony, will miss key variables related only to the outcome. Such an approach may 

miss important confounders that have a weak relation to the treatment but a strong 

relation to the outcome and detract from the quality of our estimate. Such auxiliary focus 

inherently limits the potential of observation data.  

Example 

 As an example of how these methods might be applied to a substantive research 

question, I applied them to a study concerning school retention policies. That is, I asked 

what is the effect of allowing students to be retained, for any reason, on the average 

achievement level of a school? Holding a student back from advancing to the next grade 

is one potential approach to address persistently low performance by both students and 

schools (e.g. Roderick, Bryk, Jacobs, Easton & Allensworth, 1999). Advocates of school 

retention policies have suggested that when underperforming students are retained in a 

grade, classrooms tend to be more homogeneous (Shepard & Smith, 1988). As a result, 

teachers may be more able to manage their classrooms and target the learning needs of 

their students. Further, such management and targeted instruction within classrooms may 

potentially lead to increased average achievement across schools. However, in opposition 

some developmental psychologists have suggested that grade retention may constrain a 

student’s cognitive and social development (Morrison, Griffith & Alberts, 1997). Further 
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such retention may negatively affect a child’s self-esteem and can increase their risk of 

dropping out in subsequent years (Roderick et al., 1999; Shepard, 1989).  

Such school retention considerations have gained considerable attention in recent 

years, in part, as a result of initiative such as the No Child Left Behind act (NCLB) 

(NCLB, 2001). In particular, as schools have been under increasing pressure to be 

accountable for their student’s performance and achievement they have assessed retention 

as a possible mechanism by which to increase progress (e.g Roderick et al., 2003; 2004). 

For instance, Chicago Public Schools and other schools throughout the country have 

adopted policies that end social promotion or in other words allow students to be retained 

if they have not satisfied the goals of the current grade level (Roderick et al. 2004). 

Although there have been a large number of studies and reviews concerning the effects of 

retention, the majority of such studies have focused on retention as an individual level 

treatment (Hong & Raudenbush, 2004; Jimerson, 2001; Holmes, 1989). Further, literature 

has tended to assume that the individual level treatment effect will generalize to the effect 

of school level retention polices. However, such aggregated assumptions may be 

misleading as the adoption of such policies by schools rather than individuals invokes a 

certain dependency in the data. That is, in assessing the effect of a school level policy 

such as retention we need to address the multilevel structure of the data. As a result, the 

effect of school retention policies on the average achievement of schools is inherently a 

multilevel question where students can be considered to be nested within schools.   

To assess the effect of school level retention on school’s average achievement, I 

used data from the Early Childhood Longitudinal Study Kindergarten cohort (ECLS-K). 

ECLS-K is a longitudinal dataset of a nationally representative sample of students, their 
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families, teachers and the school they attend. Data on over 17,000 students were collected 

during three main time points: fall and spring of the kindergarten year and spring of the 

first grade year. Such a design has enabled researchers to consider the abilities and 

characteristics of schools and their students using multiple time points. Further, in this 

study schools reported whether it was the school’s policy to allow retention of students 

based on any factor. That is, schools based on their collective attributes, including the 

distribution of students’ abilities, selected their treatment status based on their perceived 

needs and anticipated benefits of assuming a social promotion or retention policy. 

Correspondingly, we can view the treatment, allowing retention, as being assigned at the 

cluster or school level. Within the context of ECLS-K, I considered the treatment to be 

attending a school that has allows retention during the second year of the study. The 

achievement metric of interest in this sample and this study was a mathematics score and 

a reading score which were both scaled using item response theory. Moreover, these 

scaled scores have been equated on the same scale to ensure comparability of the scores 

across time. Using these structures, I estimated the average effect of retention on math 

reading achievement separately using PS’s constructed via the thresholds identified above 

in conjunction with two HLMs. 

As the ECLS-K dataset represents observational data, the treatment assignment 

mechanism is unknown and needs to be inferred to approximate ignorability of the 

treatment assignment. The ECLS-K dataset contains a rich set of variables that, 

theoretically, may be predictive of which type of retention policy a school adopts. My 

approach to constructing the PS first involved identifying a suitable outcome proxy such 

as a pretest. In the ECLS-K dataset, the math and reading achievement from the spring of 
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the first year have correlations exceeding 0.7 with the final math and reading 

achievement measures respectively. Accordingly, I used these measures as proxies for 

their respective outcomes in order to estimate each observed covariate’s relationship with 

the outcome (∆-relationship) and construct the PS in impact based manner. Further as 

such ∆- relationships take on a hierarchical structure, I utilized the weighted partial 

correlations. In particular, because such weights are based on the error variance (σ
2
) and 

group variance (τ) which in turn depend on which covariates are considered at the student 

level, I first identified several student level covariates that have been historically related 

to student achievement. Although the inclusion of such covariates does not necessarily 

reduce the bias of the retention policy effect estimate, it likely improves the efficiency of 

the estimator. That is, because school retention policy is a school level treatment, 

ignorability of the treatment assignment can be achieved using school characteristics 

only. The first student characteristics I selected were the respective prior achievement 

measures from the first year. Second, I considered the gender of the student and third I 

considered two measures of socio-economic status. 

To identify those observed variables that potentially influence a school’s retention 

policy, I relied on prior literature. In particular, the covariates I considered for inclusion 

in the PS were based on those identified in Hong and Raudenbush (2006). The covariates 

included an extensive list of student and teacher aggregates and school variables 

including demographic characteristics, school characteristics and type, principal 

characteristics, school resources, neighborhood characteristics, assessment scores, home 

life and activities, parental involvement, physical and mental health, teacher 

characteristics, teacher and parent assessments, school learning experience and class 
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composition (Appendix D). From this list I constructed the PS based on those variables 

whose ∆-relationship exceeded the threshold corresponding to its Γ-relationship 

suggested by the previous simulations. That is, I constructed the PS using only those 

variables which had a weighted partial correlation with the proxy outcome roughly twice 

as large as its weighted partial correlation with the logit of the treatment assignment.  

Because the impact construction method attempts to construct meaningfully 

comparable groups for a given outcome, PS’s may differ depending on the outcome of 

interest. That is, the impact based construction method decides which variables to include 

in the PS on the basis of the estimated ∆-relationships and Γ-relationships and the ∆-

relationships change depending on the outcome. As a result, in assessing the effect of 

school policies that allow retention on the average math and reading achievement scores, 

I constructed two different PS’s. The impact based PS for math identified 55 variables 

from which to predict the probability of adopting the school retention policy whereas the 

reading selected 54 (Appendix E). Though the PS models highly resembled each other, 

they did have a few differences. Specifically, whereas the PS for math achievement 

included the percent classified as gifted or talented in the school, the percent of students 

tutored in math, frequency of report cards and the regularity of unstructured play, the 

reading PS did not. In contrast, the reading PS included the severity of problems with 

gangs the school faces, a student’s former teacher and his/her approaches to learning and 

the average number of gifted and talented within a classroom whereas the math PS did 

not. 

To use these PS’s to approximate the ignorability of the treatment assignment, I 

next employed stratification on the respective PS’s. In particular, using the deciles of the 
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logit of the PS I divided the schools into ten strata. After identifying the retention and 

non-retention schools within each stratum, I found no significant difference above the 

expected α-levels between the groups on the covariates using the general linear model. 

Tables (3.73) and (3.74) summarize the distribution of the logit of the PS for each stratum 

for the math and reading PS’s.  

Table(3.73): Balance of Logit of the Propensity Score for Retention Policy for 

Mathematics Achievement 

 Retention Schools  
Non-retention 

Schools 

Stratum N Mean SD N Mean SD 

1 54 -0.33 0.18 65 -0.40 0.24 

2 64 -0.03 0.05 54 -0.01 0.06 

3 61 0.16 0.06 58 0.17 0.05 

4 66 0.34 0.05 52 0.34 0.04 

5 74 0.49 0.04 45 0.49 0.04 

6 68 0.63 0.05 50 0.64 0.05 

7 74 0.82 0.06 44 0.81 0.06 

8 90 1.06 0.08 29 1.06 0.07 

9 98 1.46 0.17 20 1.42 0.15 

10 113 2.25 0.43 6 1.96 0.19 

 

Table(3.74): Balance of Logit of the Propensity Score for Retention Policy for Reading 

Achievement 
 Retention Schools  Non-retention Schools 

Stratum N Mean SD N Mean SD 

1 67 -0.37 0.27 43 -0.32 0.17 

2 63 0.01 0.06 46 0.00 0.06 

3 73 0.19 0.05 36 0.20 0.05 

4 68 0.34 0.04 41 0.34 0.04 

5 73 0.47 0.04 36 0.48 0.04 

6 88 0.64 0.05 21 0.62 0.05 

7 81 0.83 0.07 28 0.85 0.05 

8 89 1.10 0.07 20 1.08 0.07 

9 99 1.48 0.15 10 1.42 0.12 

10 102 2.23 0.41 8 2.49 0.56 

 

Similar to the simulations above, I employed a hierarchical linear model with a 

random intercept to estimate the effect of a school retention policy. In particular, as prior 

literature and preliminary analyses have suggested that there was no systematic variation 
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in the treatment effect across strata, I approximated the treatment using a hierarchical 

linear model (Hong & Raudenbush, 2006). The level one model concerning students was 

 0
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Y Xπ π ε
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= + +∑  (3.75) 

   

where Yij represents math or reading achievement for the i
th

 student in school j, π0 is the 

average student score adjusted for the student variables, X, and the corresponding 

coefficients, πp, while εij has a normal distribution with mean zero and variance σ
2
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school level model was 
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where β00 is the average adjusted achievement for school, δ is the average effect of school 

policies which allow retention, β0q is average effect of strata Sqj, on adjusted achievement 

and r0j is the random effect of school j and has a normal distribution with mean zero and 

variance τπ. Specifically, I used strata indicators and the school level I used the student 

level covariates mentioned above to address any remaining intra-stratum bias and 

increase the efficiency of the estimator.  

The results of the analyses are presented in Tables (3.77) and (3.78). Using an 

impact based PS in conjunction with a hierarchical linear model suggested that on 

average a school’s retention policy was not significantly associated with an increase or 

decrease in the school’s overall achievement.  

Table(3.77): Average School Retention Policy Effect on Math Achievement 

Fixed Effect Estimate SE t 

Average math achievement in non-retention school (β00) 23.27 0.34 69.05 
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School retention policy effect (δ) -0.01 0.18 -0.04 

Math achievement from spring of first year (π1) 0.61 0.01 73.75 

Math achievement from fall of first year ((π2) 0.16 0.01 15.89 

Female (π3) -0.30 0.09 -3.27 

SES (π4) 0.60 0.09 6.69 

Mother's education level (π5) 0.07 0.03 1.92 

PS stratum 2 (β02) 0.40 0.34 1.19 

PS stratum 3 (β03) 0.43 0.33 1.29 

PS stratum 4 (β04) 0.31 0.33 0.93 

PS stratum 5 (β05) 0.27 0.34 0.82 

PS stratum 6 (β06) 0.12 0.34 0.36 

PS stratum 7 (β07) 0.33 0.35 0.95 

PS stratum 8 (β08) 0.30 0.36 0.83 

PS stratum 9 (β09)  -0.74 0.36 -2.03 

PS stratum 10 (β010) -0.68 0.38 -1.82 

 

Table(3.78): Average School Retention Policy Effect on Reading Achievement 

Fixed Effect Estimate SE t 

Average reading achievement in non-retention school (β00) 26.91 0.70 38.28 

School retention policy effect (δ) -0.01 0.11 -0.14 

Reading achievement from spring of first year (π1) 0.70 0.02 45.70 

Reading achievement from fall of first year ((π2) 0.35 0.02 18.68 

Female (π3) 2.60 0.17 15.34 

SES (π4) 1.86 0.17 11.19 

Mother's education level (π5) 0.24 0.06 3.71 

PS stratum 2 (β02) 0.40 0.74 0.55 

PS stratum 3 (β03) 0.48 0.75 0.64 

PS stratum 4 (β04) -0.11 0.74 -0.15 

PS stratum 5 (β05) 0.35 0.74 0.47 

PS stratum 6 (β06) 0.34 0.76 0.44 

PS stratum 7 (β07) -0.55 0.75 -0.72 

PS stratum 8 (β08) -1.14 0.77 -1.49 

PS stratum 9 (β09)  -1.59 0.77 -2.07 

PS stratum 10 (β010) -4.66 0.79 -5.92 

 

More specifically, my estimates suggested that for both math and reading there was 

virtually no statistical or practical difference between those schools that allow student 

retention and those schools that did not allow it. Further, earlier simulations exploring the 

impact based PS construction method suggest that such estimates tend to be more 
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concentrated around the true effect of such retention policies when compared to estimates 

based on using all the available variables or stepwise construction of the PS. However, 

such focus on school policy without a corresponding focus on student level retention risk 

factors and the differential likelihoods and criteria by which schools retained children, 

may not present a holistic picture of retention (Hong & Raudenbush, 2006). 
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CHAPTER IV 

Robustness of Causal Inferences in Binomial Regression Models 

Introduction 

In education observational studies that assess the effect of a treatment, researchers 

frequently rely on measuring and adjusting for potential confounding variables to provide 

sound estimates of the treatment effect. However, in such studies it is virtually impossible 

to measure all potential confounding variables. Further, researchers are frequently unable 

to measure all variables that are hypothesized to be confounded with the treatment for a 

given outcome. Yet, without proper adjustment for all confounding variables, common 

estimators may present biased estimates of the treatment. One alternative is to employ 

randomization of the treatment. In a randomized experiment the treatment assignment 

mechanism is known to be random and unrelated to subject’s potential outcomes as well 

as pretreatment characteristics. Randomization is an impartial method to construct group 

membership in that it ensures that any and all pretreatment differences are only by 

chance. Group construction in such a manner implies that chance imbalances between 

groups tend to zero as the number of subjects approaches infinity. This property provides 

us with a simple and known error distribution that converges. Consequently, in 

comparing the outcomes of the different groups after treatment, we can quantify our 

confidence about estimates of the treatment effect. However, such benefits are often 

mitigated by limitations of randomized experiments. For instance, there are numerous 
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situations where one can not feasibly randomize treatments for ethical or financial 

restrictions. Further, even when randomization may be feasible, the practical 

implementation can be contaminated as seen in studies such as the Tennessee class size 

experiment (Krueger, 1999).  

Another alternative when one can not measure an exhaustive list of confounding 

variables is to understand the sensitivity of one’s inferences to an unmeasured 

confounding variable. One such general framework for assessing the robustness of an 

inference is a sensitivity analysis (e.g. Rosenbaum, 1995; Frank, 2000). Through this 

general structure researchers have, in various ways, attempted to quantitatively evaluate 

the sensitivity of their claims to an omitted variable by assessing how much imbalance on 

an unknown covariate it would take to invalidate their inference. In this study, I extended 

Frank’s (2000) Impact Threshold of a Confounding Variable (ITCV) on a regression 

coefficient concept to encompass binomial regression models (BRMs). 

Though inferences from well implemented randomized studies have high internal 

validity they often offer lower external validity than observational studies. For example, 

though the Tennessee class size experiment indicated that class size reduction was 

associated with positive achievement gains in Tennessee, similar implementation in 

California did not result in such gains (e.g. California Legislative Analyst’s Office, 

1997). In other words, the sample and practical constraints of implementing a randomized 

experiment can often impede the goals of the study.  

 In a similar manner observational studies offer several advantages and drawbacks. 

For example, large scale observational studies tend to be significantly less expensive to 

implement. As a result, representative samples from the populations one hopes to draw 
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inferences on can be selected. In contrast to such high external validity, observational 

studies may have less internal validity. In particular, researchers do not have the benefit 

of randomly assigning subjects to groups. In this type of study, where there is an absence 

of random assignment, groups are potentially imbalanced on pretreatment characteristics 

that may or may not influence the outcome. As a result, differences in outcomes may be a 

function of pretreatment imbalances between the groups rather than a treatment effect. 

However, if such imbalances are accurately observed and measured, imbalances can be 

appropriately adjusted for by analytic methods such model based covariance adjustments. 

Although such methods offer accurate estimation of treatment effects, their accuracy is 

tempered by the threat of an unmeasured baseline imbalance between the groups. In such 

a case, and potentially in every observational study, two subjects who are identical on 

measured characteristics may have an unequal probability of choosing or being assigned 

to the treatment or control groups due to differences on an unmeasured characteristic.  

Recognizing the potential for imbalance in observational or quasi-experimental 

studies, I shift attention to the pragmatic question of how much imbalance there must be 

to invalidate an inference. That is, it is crucial to understand the quality of one’s 

inferences including the general sensitivity of one’s inferences to an unmeasured variable 

in such studies. Frank (2000) defines the ITCV in the linear regression model for 

continuous outcomes estimated by ordinary least squares (OLS). However, in many 

disciplines including education, there are discrete outcomes which have nonlinear 

relationships with treatments. Specifically, in this context I focus inquiry on the BRM as 

represented through generalized linear models (GLMs) (McCullagh & Nelder, 1983).  

Frank (2000) considers the ordinary least squares (OLS) regression model 
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 0 1y Zβ β ε= + +  (4.1) 

where Z is a treatment or variable of interest, with a continuous or discrete distribution, of 

which we are interested in estimating its coefficient, β1. Using the (OLS) framework 

estimator (4.1) provides an unbiased, efficient estimate of β1 given that the conditional 

expectation (on Z) of ε is zero. Implied by this assumption is there are no omitted 

variables correlated with both Z and ε or in other words no confounding variables. As 

confounding can be  characterized through correlation in linear models, Frank then asks, 

given β1 is statistically significant in model (4.1), for a given outcome-treatment 

correlation (hereafter referred to as the Φ-relationship), how large must the product of an 

unmeasured confounding variable’s, U, correlations with the outcome (hereafter referred 

to as the ∆-relationship) and the predictor of interest (hereafter referred to as the Γ-

relationship) be to make β1 insignificant in  

 0 1 2y Z Uβ β β ε= + + +  (4.2) 

This approach quantifies how much imbalance on an unobserved confounding variable is 

needed to invalidate an inference concerning β1. Similar to other sensitivity analyses, the 

measure can quantify under what circumstances β1 is insensitive to unobserved variables. 

Accordingly, when treatment assignment is well balanced and unrelated to other factors 

influencing the outcome and the test statistic is large, to invalidate the inference resulting 

from (4.1), the correlations of the unobserved variable with the outcome and with Z 

would have to be large. To quantify this sensitivity in terms of correlations Frank (2000) 

writes β1, its standard error and t-ratio in terms of correlations as  
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Here s. is the standard deviation, n is the sample size, q is the number of predictors 

excluding the intercept, ryu represents the ∆-relationship and ruz represents the Γ-

relationship and in general r.. is the appropriate zero correlation based on  
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Using these expressions Frank (2000) then derives the threshold for invalidating an 

inference as a function of the product of the ∆- and Γ-relationships based on the t-ratio 

inference statistic. In particular, using the product of the ∆-and Γ-relationships he derives 

the minimal confounder correlations necessary to invalidate the inference on β1 in (4.1). 

As a result, using only the known data, researchers can assess the sensitivity of their 

inference in (4.1) to an unmeasured confounding variable in terms of a common social 

science metric, correlation. 

Research Questions 

In this study, I investigated the concepts and methods of estimating the impact 

threshold of an unmeasured confounding variable in BRMs estimated by maximum 

likelihood (ML). Using the binomial model with a logit link, I examined two challenges 
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to extending the impact threshold to binomial regression models. The first is defining a 

framework within BRMs such that correlation represents a useful and meaningful 

statistic. The second is developing a method to approximate such thresholds. To this end I 

focused my research on the following questions: 

1. How can we extend the framework of Impact Threshold of a Confounding 

Variable to BRMs? 

2. Given the iterative nature of estimation and non-deterministic nature of point 

estimates by summary statistics in BRMs, how shall we define the Impact 

Threshold of a Confounding Variable in binomial regression models? What are 

the key extensions needed to replace ITCV? 

3. Can the distribution of inference statistics resulting from the impact of a 

confounding variable (test-statistic) be approximated well? If so, what is the 

approximate distribution? Does such a distribution provide an informative and 

practically useful (narrow) range for the impact of the confounding variable on 

the test-statistic of the treatment? 

4. Is the average test-statistic a monotonic function of the impact? 

5. How does the ITCV change for multiple predictors? 

Theoretical Framework 

 In models that consider continuous outcomes and homogeneity of variance, the 

standard linear model using the OLS estimator is the most common method for 

estimating parameters of interest. In OLS, the vector of parameters can be estimated in 

closed form by the least squares estimator which is equivalent to 

   β = (X
T
X)

-1
(X

T
Y)      (4.7) 
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where β represents the p x 1 vector of parameters of interest, X is the n x p design matrix 

which includes a vector of ones for the intercept and Y is the n x 1 matrix of responses. In 

such circumstances it can be shown that the OLS estimator is also the ML estimator when 

errors are normally distributed. In contrast, models that consider binary outcomes often 

exhibit heterogeneity of variance as the variance is linked to the mean. In such situations, 

the OLS estimator is not a desirable estimator as it is inefficient and its assumptions such 

as homoskedasticity are directly violated. In such circumstances the BRM is the most 

common model. In general, BRMs are part of a class of models known as generalized 

linear models (GLMs) which can be defined by specifying two components: the 

distribution of the response and the link function. In the first component, the distribution 

of the response is necessarily from the j-parameter exponential family of distributions of 

general form 

   f(y;θ) = exp{Σj Aj(θ) Bj(y)+ C(y)+D(θ)}       (4.8) 

   

where θ is the estimand, Aj(θ) and D(θ) are functions of θ alone and Bj(y) and C(y) are 

well-behaved functions of the data alone. The second component, the link function, 

specifies the relationship between the outcome and the parameters and is subsequently 

discussed. Although, the relationship between the outcome and the parameters is 

nonlinear with discrete outcomes, GLMs consider the transformed outcome to be linear 

in the parameters.  

 Conceptually, BRMs represent the outcome through some monotone continuous 

and differentiable function g(y) and model the expected response as a function of the 

covariates rather than the actual response. The transformation of the outcome is achieved 
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through a linearized version of the link function using a first order Taylor expansion. As a 

result BRMs utilize a link function, η, such that η = g(µ) and µ = E(Y). Using these 

relations BRMs linearize g(y) using a one step Taylor expansion as follows: 
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 In estimating the parameters of interest in BRMs, the ML estimator is the most 

common estimator
1
. Maximum likelihood theory conceptualizes the likelihood as a 

function of the parameters given the observed data and seeks to find the value of the 

parameter(s) that gives the largest probability to the observed data or in other words 

maximize the likelihood function. Resulting estimators have well studied properties and 

are asymptotically unbiased, efficient and normally distributed. Although ML estimators 

have desirable theoretical properties they frequently can not be estimated in closed form 

and require numerical methods to be maximized. For example, let Y1, Y2,…, Yn be 

independent and identically distributed binomial observations with probability πi, that is 

Y~ binomial (n, π). Moreover, assume we build a model using, say, two covariates and an 

intercept where Z is the treatment status for each covariate class, and U is the value of a 

confounding variable for each covariate class. Using the canonical logit link and three 

parameters β0, β1, and β2 we have the model 

 0 1 2ln( )
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p
Z U

p
β β β= + +

−
 (4.10) 

with corresponding log likelihood  

l = Σi ln
i

n

Y

 
 
 

 + β0Σi Yi + β1Σi ZiYi + β2Σi UiYi + Σi ln(1+exp[β0+β1Zi+β2Ui])  (4.11) 
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The corresponding score equations are 
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In such a model, closed form estimates for β are not available and maximizing the 

likelihood requires numerical optimization. As a result, sensitivity analyses can not 

generally be estimated using closed form. In BRMs the most common numerical method 

to maximize the likelihood is Fisher scoring which is equivalent to iteratively re-weighted 

least squares (IRWLS) (McCullagh & Nelder, 1983).  

Using this equivalence, we can recast ML estimation in BRMs as an iterative least 

squares regression model. Utilizing the above transformation, (4.9), we can summarize 

IRWLS algorithm by the following steps (where i indicates the i
th

 iteration): 

(1) Set estimates of �iη and �iµ  

(2) Form the adjusted linearized dependent variable ( )
i(y - ) |( )ii

iY
η

η µ η
µ

∂
= +

∂
 

(3) Form the weights � �1 2 | ( )( ) ii iw V
η

η µ
µ

− ∂
=

∂
 

(4) Estimate β
(i)

 using the weighted least squares estimator 

(5) Using β
(i) 

calculate the new values of the linear predictor, η
(i+1)

 and µ
(i+1)

 

(6) Repeat steps 2-5 until a convergence criterion is reached 
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Here the weights are based on the variance of Y
(i)

 in (4.9) which is 
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where V(
.
) is the variance function, µj is the mean or predicted response for observation j, 

and w are the weights for each observation which reflect the differing levels of 

uncertainty. For BRMs we have 
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To simplify notation we write the scoring algorithm for the i
th

 iteration in matrix form as 
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where β is vector of parameters, X is the design matrix, Y is the adjusted outcome vector 

and W is the weight matrix such that 
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Moreover, Y
(i)

 and the diagonal elements of W (e.g. wjj) represent the adjusted dependent 

variable and the inverse of the variance of the adjusted dependent variable on the i
th

 

scoring iteration in accordance to steps (2) and (3) above, respectively. 

Methods 

Extending the ITCV to BRMs 

BRMs do not specifically consider outcomes to have linear relationships with 

covariates but rather define the outcome to be linearly related to the covariates through 

the link function, η. That is, the link function is now a linear function of the covariates 

rather than the actual outcome itself. As a result, the utility of correlations in defining the 
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ITCV in BRMs now rests in using the link function (or linearized version of the adjusted 

dependent variable). More specifically, defining the ITCV in BRMs in terms of 

correlation requires us to consider the link function as the dependent variable rather than 

the original, untransformed outcome. For instance, in estimating correlations with the 

outcome for the binomial model with the logit link, we now consider the correlation 

between the predictor of interest and transformed random variable y, the logit of the 

observed binomial proportions. That is, we consider the correlation with the logit 

function of the binomial observed proportions, p̂ , such that 
ˆ

ln
ˆ1

( )p

p
η =

−
. In other 

words, we use the sample correlation, rxη, between the outcome (logit ( p̂ )) and predictor 

of interest is  
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where η is the natural logarithm of the estimated odds as oppose to the standard outcome, 

y. Further, in the case where the logit is undefined as a result of no observed successes, 

the logit of the outcome is adjusted by adding a half of success to the number of 

successes and totals (Agresti, 1996). This conceptual adjustment of the outcome from 

proportion to logit is a first step in framing the ITCV in BRMs.  

 The equivalence of ML estimation and IRWLS in BRMs provides a natural 

pathway to extend the concept of the ITCV to BRM. However, basing such estimation on 

zero order correlations as we did in the OLS case, takes on a more complex form 

resulting from the iterative nature of estimation, the distribution of the outcome and the 

unequal variance of the responses. In particular, there are several notable changes 
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including the outcome variable, the unequal variance of observations, the constraints of 

the dispersion parameter, the exchange of inference theory, and the numerical estimation 

of the parameters.  

 First, I attend to the weighted nature of IRWLS and, for the moment, assume the 

likelihood is maximized using a single iteration thereby making it equivalent to weighted 

least squares (WLS). Whereas OLS implicitly assumes the weight matrix, W, is the 

identity matrix as observations have equal variance, BRMs must explicitly consider and 

identify the potentially non-equal weights between observations. To address this 

variation, we now necessarily need to estimate weighted zero order correlations to ensure 

our estimator is efficient. More specifically, in OLS we estimated the correlation using 

the unbiased estimator: 
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Whereas in WLS (or IRWLS) we need estimate the correlations by the unbiased 

estimator: 
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and  
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and without loss of generality we assume 1iw =∑ . As a result, using the sample 

weighted correlation estimator, 
..w

r , rather than the usual sample correlation, r.., allows us 

to estimate weighted least squares regression coefficients using (4.3). That is, the WLS 

estimator of β1 in  (4.10) is equivalent to the following function of weighted correlations 
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Here, I have redefined the correlation to reflect the inherent unequal variance in the 

observations. In the same manner I adjust the standard error of β1 in that we must now 

replace each correlation, r.., with the corresponding weighted correlation, 
..w

r . In addition, 

standard errors in WLS for continuous outcomes allow the dispersion parameter to take 

any positive value less than infinity. However, in BRMs the dispersion parameter is 

constrained to be one by assumption. As a result, the standard errors need to be scaled by 

the estimate of the dispersion parameter, σ. That is, in OLS models (e.g. (4.2)) the  

    � � �
2

T -1var( ) (X WX) ( )σ=β     (4.27) 

whereas in  BRMs the 

   � � T -1var( ) (X WX)=β      (4.28) 
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Therefore, the OLS standard error of β1 from (4.4) misestimates the standard error of β1 

in (4.10) by a factor of σ. Consequently, we need to rescale the standard error of the 

correlation estimator by σ. Thus we modify (4.4) such that 
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Finally, as we are estimating the parameters with ML, the parameters no longer have an 

exact t-distribution. Maximum likelihood theory indicates that ML estimates are 

asymptotically normal implying that the distribution of our parameter estimates is best 

approximated by the z-distribution rather than the t-distribution. Accordingly, inferences 

about the parameter of interest are now based on  
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Defining the ITCV for BRMs 

Parameter estimates based on the principles above using only a single iteration 

would amount to WLS estimates rather than ML estimates. In order to obtain ML 

estimates we would need to utilize an iterative process that recycles the WLS parameter 

estimators but updates the adjusted dependent variable and observation weights until the 

parameter estimates converge. Tracking this part of the extension proves difficult as 

summary statistics such as correlation are not sufficient as they are not necessarily one-

to-one functions of the ML estimates (Rao, 1952; Berkson, 1957). To see this, consider 
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ML estimation of β1 in (4.10). By a property of the exponential family of distributions, if 

we write the probability density function as in (4.8), then 

T = 1 2 1 2

1 1 1
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T is a (minimal) sufficient statistic and is thus (jointly) sufficient for β (Garthwaite, 

Jolliffe & Jones, 2002, p. 30). As a result, the corresponding minimal sufficient statistics 

for β in (4.10) are:  
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Now, note that the relevant correlations can be written as  
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where s. is the standard deviation. Without loss of generality, assume that the data sets 

have been standardized such that each variable has a mean of 0 and standard deviation of 

1. As a result, we see that the correlations reduce to their respective minimal sufficient 

statistic scaled by a factor of 1/(n-1). Minimal sufficient statistics are not unique in that 

any one-to-one function of a minimal sufficient statistic is also a minimal sufficient 
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statistic (e.g. Casella & Berger, 2002, p. 282). In addition to T being minimal sufficient, 

note that (4.35) and (4.36) are also minimal sufficient when the variables are 

standardized.  

Although quantities such as correlation are theoretically sufficient for the ML 

estimates of the parameters in (4.10), practically they are not sufficient for estimation. As 

parameter estimates from ML estimates only reduce to closed form solutions in trivial 

models, numerical optimization, such as Fisher scoring above, must be employed. In 

general, such methods require more than a summary statistic such as correlation to 

identify parameter estimates as the weights of observations tend to be unknown. 

Consequently, correlation and other statistics do not uniquely identify the parameter 

estimates or inference statistics. As a result, different confounding variables with 

identical ∆- and Γ-values will alter the parameter estimates and test statistics in different 

ways. This concept is evident in many canonical sensitivity analyses as they result in 

intervals of inference statistics rather than a single inference statistic (e.g. Rosenbaum, 

1995). 

In order to address the second research question, I redefine the ITCV in BRMs by 

replacing the impact threshold with the average impact threshold of a confounding 

variable (AITCV). More specifically, I define the AITCV as the ∆-Γ product which 

reduces the average test-statistic of the treatment to some critical level (e.g. z = 1.96). 

That is, because specifying the Γ- and ∆-relationships does not uniquely identify a new 

test- statistic for the treatment but rather a range of test-statistics, I define the AITCV as 

the Γ- and ∆-relationships that produce an average test-statistic equal to some critical 

value (e.g. 1.96). For instance, to identify the average impact of a confounding variable 
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(AICV), one would first consider all confounding variables with a given Γ- and ∆-value 

and estimate how controlling for each confounding variable altered the original test 

statistic in (4.10). Subsequently, one would take the average of those test-statistics and 

call this the AICV. Similarly, to identify the AITCV, one would repeat this process until 

the average test statistic matched the critical value (e.g. 1.96 for α-level of 0.05 in a z-

distribution).  

Approximating the Distribution of the Inference Statistics 

A task in understanding the ability of such a threshold to summarize the impact of 

a confounding variable is to characterize the distribution of plausible test-statistics given 

the speculation parameters (i.e. Γ and ∆). In particular, as the ITCV framework defines 

the threshold with respect to inference, it is central to approximate the distribution of the 

resulting inferential statistics (i.e. test-statistic). That is, each confounding variable with 

fixed Γ- and ∆-relationships (e.g. correlations) may change the original test-statistic by 

differing amounts depending on the exact data points. As a result, specifying only the Γ- 

and ∆-relationships and controlling for the confounding variable does not determine a 

single new test-statistic but rather gives us a range of test-statistics. A crucial criterion 

from which to judge the ability of the AITCV approach to summarize this range is the 

dispersion and density of the test-statistics corresponding to the speculation parameters 

(i.e. Γ and ∆). Further, in approximating such a distribution, a central task is how to 

identify and appropriately consider the hypothesized relationships of potential 

confounding variables in the parameter space. Through Monte Carlo simulation analysis I 

randomly sampled from the parameter space of potential confounding variables and re-

estimated the treatment effect using (4.10). Repeating this process, I used the new 
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resulting sample test-statistics of the treatment to approximate their distribution and thus 

consider the impact of confounding variables with various ∆- and Γ-relationships. To 

evaluate the ability of the AITCV approach in summarizing the impact of a confounding 

variable in BRMs, I assessed this distribution in terms of concentrated density and 

dispersion. 

Under the average impact threshold of a confounding variable framework, 

specifying the ∆- and Γ-relationships does not determine an exact test-statistic. Moreover, 

closed form estimation of its distribution is intractable. However, the distribution of 

confounding variable impact as well as the AITCV can be approximated by Monte Carlo 

simulation experiments. In particular, I develop a general method that first approximates 

the distribution of inference statistics resulting from the addition of a confounding 

variable to the BRM and then estimates its central tendency and dispersion. The approach 

I develop to assess the robustness of a causal inference supposes that strong ignorability 

is not satisfied in  

 0 1ln( )
1

p
Z

p
β β= +

−
 (4.37) 

but is satisfied in (4.10).  

First, I approximate the average impact of an unobserved confounding variable 

and its distribution and subsequently find the threshold at the nominal α-level of 0.05. To 

identify the average impact, I use the weighted correlation of the link function (η) with 

the treatment and the confounding variable (4.22) to quantify the magnitude of the Γ- and 

∆-relationships. In particular, I consider two different estimators of confounding 

variables in the parameter space. Both estimators employ the same basic approach in that 

they simulate hypothetical confounding variables based on weighted correlations. The 
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first estimator, (0)

1β̂ , utilizes the zero order weights. That is, those weights estimated in the 

original, unadjusted data which are based on the binomial variance only. For instance, I 

simulated hypothetical confounding variables based on correlations weighted by the 

inverse of the binomial variance: 

 (1 )
j j j

n p p−  (4.38) 

where nj is the total sample size for covariate class j, and pj is the probability of success 

within that covariate class. The second estimator, ( )

1
ˆ kβ , utilizes the ML estimated weights 

resulting from estimation of (4.37). More specifically, this estimator uses weights from 

the final iteration of the IRWLS estimate from (4.37) to create hypothetical confounding 

variables. As a result, the weights in this estimator are adjusted to reflect the iterative 

solution to the model that only adjusts for the treatment (4.37). Using either weight, I 

simulate M confounding variables with specified ∆- and Γ-relationships and for each of 

the m confounding variables I estimate *

1m
β  in   
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for m in 1 to M. Thus each *

1m
β represents the effect of the treatment, adjusting for the m

th
 

hypothetical confounding variable of magnitude ∆ and Γ. This process is repeated for 

each of the m simulated confounding variables thereby creating a distribution of possible 

coefficients, standard errors and test-statistics. I then defined the average impact of such a 

confounding variable as the mean inference statistic. To fully characterize and understand 

the impact of various confounders, I approximated the distribution of the inference 

statistics resulting from inclusion of the hypothetical confounder with specified 
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relationships. In addition, I assessed the sensitivity of the approximated distribution to 

different study characteristics and model forms.  

Example 

 Before addressing several complex issues surrounding AITCV’s, I turn to a 

simple example to provide context. Similar to the example presented in Frank (2000), I 

apply the AITCV method to understand the relationship between family background and 

educational attainment but do so in an international context. The focus of this illustrative 

example is relationship between reading achievement and father’s education level for 

sixth grade students in South Africa’s Limpopo region. As indicated by Frank (2000) and 

previous studies in the United States, the relationship between family background and 

educational attainment has received a considerable amount of focus (e.g. Featherman & 

Hauser, 1976; Sobel, 1998). Similarly, within international contexts, the relationship of 

family background and achievement has been a consistent focus of inquiry (e.g. 

Buchmann, 2002; Lee, Zuze & Ross, 2005). In particular, as the educational level of a 

country's population embodies the human capital and human resources available for 

sustainable economic and social advancement, research that studies the influences, 

including family structures, that affect these educational levels are particularly relevant in 

building a country’s infrastructure (Lee, Zuze & Ross, 2005). Further, understanding the 

roles of relevant family characteristics are of particular interest as such characteristics 

tend to have comparatively large influences on achievement (Buchman, 2002). As a 

result, international scholars have devoted much attention to “…improving knowledge of 

the ways that the family affects children’s ability and motivation to learn and their 

academic achievement” (Buchmann, 2003, p. 4).  
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 Differing to a certain extent from education in the U.S., a common characteristic 

of education throughout the developing world is grade repetition (Lee et al., 2005). 

Within sub-Saharan Africa repetition rates have been consistently higher than in other 

developing countries. For instance, repetition rates in primary grades in sub-Saharan 

Africa in 2000 were around 20% in grades one through five whereas corresponding rates 

in developed countries were about 1% and 3-10% in other developing countries such as 

Latin America (Table 6: Internal efficiency: Repetition in primary school, in: Nguyen., 

Wu, & Gillis, 2005). In sub-Saharan Africa eligibility for promotion to the next grade is 

heavily influenced by the student’s ability to attain a minimum competency score on 

standardized tests. In particular, in the early grades, the literacy level of the student is of 

high relevance. In this descriptive example, I focus on the relationship between father’s 

education level and a student’s ability to meet the minimum competency score required. 

That is, our treatment or predictor of interest is the education level of a student’s father 

and our outcome is a dichotomous response where one indicates the child has met the 

minimum requirements and zero indicates that he/she has not. In this example I used data 

from the United Nations’ International Institute for Educational Planning (IIEP) and the 

Southern and Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) 

programs (Ross, Saito, Dolata, Ikeda, & Zuze 2004). Further, father’s education level is 

an ordinal variable constructed by researchers in SACMEQ where one indicate no formal 

schooling, two indicates some primary schooling, three indicates the completion of 

primary school, four indicates some secondary schooling, five indicates the completion of 

secondary school and six, indicates any exposure to post-secondary education. For 

illustrative purposes, I first strictly focus on unconditional comparisons or in other words 
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I do not control for any other variables thought to be relevant to educational attainment. 

Though father’s education level likely contributes to his child’s educational attainment, it 

is likely that such estimates are inflated as such an analysis fails to take into account other 

factors such as mother’s education level. The question of interest here focuses on the 

inference of whether father’s education would continue to have a significant association 

even when controlling for other factors. That is, given that there is a significant 

association between father’s education and a student’s attainment, how large must the 

relationships between a confounding variable and outcome (∆-relationship) as well as the 

confounding variable and the treatment (Γ-relationship) be to invalidate the inference that 

father’s education level is significantly associated with educational attainment?  

To address this question I utilized the AITCV framework described above. Using 

the AITCV method and simulation I looked to estimate the magnitude of the ∆- and Γ-

relationships of a confounding variable that would reduce the original test-statistic to an 

average test-statistic of 1.96. More specifically, I first estimated the treatment effect, β1, 

in (4.1) using the SACMEQ data and the respective BRM (Table (4.40)). My 

unconditional estimates indicated that there is a significant positive association between 

attaining the minimum literacy level and father’s education level. That is, the number of 

students who meet the minimum literacy level tends to increase as father’s education 

increases. As such associational inferences did not attempt to adjust for any confounding 

variables, I then asked what the magnitude of the ∆- and Γ-relationships for a 

confounding variable would have to be to change the original significant inference into 

an insignificant finding.  To assess the robustness of the original inference using the 

AITCV framework I then estimated the weighted correlation between the logit of success 
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and father’s education. In this artificial example that utilizes no controls, the 

unweighted/weighted correlation between educational attainment and father’s education 

level is around 0.91/0.92 indicating a strong linear relationship. The strength of such 

unconditional relationships in developing countries is often provided as evidence of the 

vast inequalities in such countries (e.g. Baker, Goesling & Letendre, 2002; Lee et al. 

2005).  

Table(4.40): Regression of Minimum Educational Competency on Father’s Education 

Level 

 Coefficient Standard Error Z-value 

Intercept (β0) -3.01 0.38 -7.95 

Father Education (β1) 0.37 0.09 4.38 

 

Next, I simulated multiple sets of confounding variables to identify the AITCV. More 

specifically, I first simulated a confounding variable with ∆- and Γ-relationships equal to 

0.75 and re-estimated the BRM controlling for the simulated confounding variable. Next, 

I repeated this process 1000 times and saved each new test-statistic for father’s education 

controlling for the confounding variable each time. I then averaged the 1000 test-statistics 

to identify the average impact of a confounding variable with ∆- and Γ-relationships 

equal to 0.75. Given this data my simulations indicated that a confounding variable with a 

0.75 Γ- and ∆-relationship would, on average, reduce the test-statistic from 4.38 to 2.6. 

As a result, I repeated this process with increasing Γ- and ∆-relationships until the 

average test-statistic was approximately 1.96. My analyses for this illustrative example 

indicated that the AITCV would be approximately 0.69 indicating that the ∆- and Γ-

relationships would need to be approximately 0.83. In other words, in order to alter our 

original inference we would need a confounding variable or set of confounding variables 

with ∆- and Γ-relationships roughly equal to 0.83. Though such relationships seem 
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excessively large, unconditional correlations between socio-economic status proxies such 

as father’s education and academic attainment in developing worlds tend to be strong 

(e.g. Baker, Goesling &Letendre, 2002). Although, I do not speak to the likelihood of a 

confounding variable exceeding such relationships, it does quantify the magnitude of 

relationships needed by confounding variable to indicate that father’s education is not 

significantly associated with educational attainment. Further such likelihood extensions 

can be addressed using Pan and Frank (2004) or Frank (2000). 

Estimating the AITCV 

Another difficulty resulting from the iterative nature of estimation is the complex 

interplay between the Γ- and ∆-relationships. Unlike the t-statistic resulting from OLS 

inference, the test-statistic resulting from MLE inference is not necessarily minimized 

when ∆ = Γ (ρηx = ρηu). As a result, estimation of an impact threshold requires numerical 

estimation for each data set. To develop such estimation techniques I first established the 

monotonicity of the average test-statistic given the impacts through simulation. That is,  

 
� �* ( ) * ( )[ ( ) | ] [ ( ) | ]ij lmE z k E z kδ δ>  (4.41) 

where 

 ( ) ( ) ( ) ( ) ( )and
U

ij i j ij lm

UZ
k k k

η
ρ ρ= <  (4.42) 

Using this property, I developed an iterative method that estimates the AITCV for a given 

data set. Initially the method sets the AITCV equal to the WLS ITCV. Next it evaluates 

the average inference statistic given the WLS ITCV. It then adjusts the AITCV up or 

down based on the previous evaluation and continues iteratively until the adjustment is 

sufficiently small.  

Extending the AITCV to Multiple Predictors 
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 Though the previous approaches have defined the ITCV for BRMs and outlined a 

practical method to estimate it, its use is limited to models that consider only a treatment 

and a single confounder. In order to make this method practically useful in the social 

sciences, we must extend it to include multiple covariates. For instance, we may estimate 

a treatment effect controlling for a number of known and measured covariates and then 

be interested in assessing the estimate’s sensitivity to an unmeasured confounder. That is, 

we are interested in  
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Such a model supposes that the outcome is influenced by multiple factors
2
. Drawing on 

Frank (2000), I redefine the relevant correlations as partial correlations which control for 

X where X is the vector consisting of covariates {X1,…Xp}. In other words, we replace the 

correlations in (4.26) with the following: 
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where  
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and γi, πi and λi are obtained by regressing η, Z and U on the covariates X. As a result an 

estimator corresponding to (4.26) which controls for multiple covariates can be written as  
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where each correlation and standard deviation in (4.44) to (4.48) is appropriately 

weighted. Accordingly, our speculation parameters now become 
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 (4.49) 

where the corresponding zero order correlations are determined by the equations 
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Departing from Frank (2000), I do not assume the weighted correlation between the 

covariates, X, and the unobserved confounding variable, U, to be zero. That is, though 

non-zero relationships between the unobserved variable, U, and the observed variables, 

X, partially absorb the impact of U on the estimated treatment effect in the linear model 

(Frank, Maurolis, Duong & Kelcey, 2009), such relationships do not necessarily absorb 

U’s impact in BRMs. Thus to consider the maximum impact of an unmeasured 

confounder in BRMs, one can not constrain such relationships to be zero. As a result, I 

allowed the correlations between the covariates and the unobserved confounding variable 

to vary by sequentially drawing random values from the Uniform distribution. More 

specifically, the bounds of the Uniform distribution were deflated from the interval [-1, 1] 

to recognize the constraints of several concurrent correlations. That is, the correlation 

between any two variables is constrained by the relation that each variable has with all 

other variables. In particular, this constraint is  

 
1 2 1 2 1 2

2 2(1 ) (1 )
x x ux ux ux ux

ρ ρ ρ ρ ρ∈ ± − + −  (4.52) 
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As a result, I estimated the constraints on the correlation between x1 and the confounding 

variable, U using (4.52). Using the constrained range as bounds, I drew a random 

correlation value from U(
1

( )lower

uxρ ,
1

( )upper

uxρ ) to represent the correlation between x1 and the 

confounding variable, U. In a similar manner, I estimated the bounds for the correlation 

between x2 and the confounding variable, U and randomly drew another value from the 

Uniform distribution to represent their correlation. This process was repeated until each 

correlation was randomly selected.  

Subsequently, I assessed whether the distribution of the resulting test-statistics is 

well approximated by the same distribution as in the simple regression case. I further 

assessed the sensitivity of the results to variation in several parameters. In particular, I 

examined how both the AITCV and the approximate distribution of the impacts would 

change as I altered the probability of success from its default of 0.5 to 0.1 and 0.9 and 

sample size (from n=50 to n=25 and n=500). In addition, I examined the sensitivity of 

the results to the assumed unconditional distribution of the unobserved confounder. That 

is, I assessed how the results might change when assuming U comes from a Beta rather 

than Uniform distribution. 

Finally, I examined the sensitivity of such results to the choice of the link 

function. First, I examined if the test-statistics resulting from models using a probit link 

followed a similar distribution. Second, I assessed the sensitivity of the link specification 

by allowing the true link function to be a probit and estimating both the model and the 

AITCV with the logit link. Such sensitivities help to understand the robustness of using 

an AITCV approach.  

Results of AITCV Estimation 
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 By varying a variety of data generation parameters, I simulated binomial 

outcomes, covariates, a treatment and a confounding variable. Through this simulation, I 

explored four dimensions of the AITCV framework for BRMs. I first examined the 

average impact of a confounding variable in simple BRMs. That is, initially, I examined 

how a confounding variable with various relationships affects the test-statistic of the 

treatment when there are no other covariates. In other words, I did not attempt to estimate 

the threshold but rather, first, understand how confounding variables of different 

magnitudes change the test-statistic of the treatment effect. In a similar manner, I next 

assessed the AITCV in BRMs with multiple covariates. For example, in assessing the 

effect of a treatment when there are measured confounders one includes those measured 

confounders in the regression model to better estimate the treatment effect. Third, I 

explored the sensitivity of such results to variations in several relevant parameters. 

Finally, I assessed the AITCV method and compared such thresholds to that of the 

original ITCV framework. 

 Within each of these dimensions, I focused my inquiry on four aspects of the 

framework. First, I assessed the accuracy of the AITCV method in estimating the true 

test-statistic. In other words, I estimated the nominal coverage of the AITCV. Second, I 

approximated the distribution of such test-statistics corresponding to *

1β in (4.39). Third, I 

examined the monotonicity of the average test-statistic given impacts. That is, as the 

product, k, of the speculation parameters (Γ and ∆) increases, the average test-statistic 

decreases. Finally, I assessed the sensitivity of the impact on the test-statistic to the 

relative contribution of Γ and ∆ to their product k. That is, for a given k how does the 

impact on the test-statistic change when, for example, Γ>>∆ (e.g. Γ ≈ k and ∆ ≈ 1)?  
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Simple Regression-Coverage of AITCV  

 First, I addressed the impact of a confounding variable in BRMs with no 

covariates beyond the treatment as shown in equation (4.37). In particular, given a 

treatment effect and corresponding test-statistic, I asked how the treatment’s test-statistic 

resulting from equation (4.37) would change with the inclusion of an unmeasured 

variable, U, with specified ∆- and Γ-relationships as in equation (4.39). To assess this I 

first randomly generated an unmeasured confounding variable from the Uniform 

distribution within the bounds of -5 to 5 with said relationships and recorded the new 

test-statistic of the treatment when controlling for this unmeasured confounding variable. 

Subsequently, I withheld the unmeasured confounding variable from estimation and 

generated 100 proxy confounding variables with the same ∆- and Γ-relationships from 

the same Uniform distribution. I reran (4.39) using the each proxy confounding variable 

(one at a time) and recorded the corresponding test-statistics of the treatment. The 100 

test-statistic created a distribution of possible test-statistics for the treatment effect when 

controlling for an unmeasured confounding variable with specified ∆- and Γ-

relationships. To understand properties of this approach I repeated this process 100 times 

for multiple combinations of ∆, Γ and Φ displayed subsequently. 

 The results of the experiment suggested that the simulation method outlined 

above is accurate among a wide array of covariance structures. Table (4.53) provides a 

summary for several combinations of the Φ-, Γ-, ∆- relationships. This table includes the 

coverage of the true test-statistic (i.e. the treatment’s test-statistic when controlling for the 

true confounding variable) by the test-statistics corresponding to controlling for the 

simulated confounding variables. Further, to summarize the range and dispersion of the 
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test-statistics corresponding to controlling for the simulated confounding variables, the 

table includes the average test-statistic and the standard deviations of those simulated 

test-statistics. In particular the first three columns specify the weighted partial 

correlations between the logit of the outcome and the treatment, Φ, between the treatment 

and the unobserved confounder, Γ, and between the logit of the outcome and the 

unobserved confounder, ∆. The next set of columns describes the coverage of the true 

test-statistic by the simulated test-statistic distribution using the standard deviations of the 

distribution. The next column then describes the average size of the corresponding 

standard deviations. Finally, the last column displays the percent of times one can reject 

the null hypothesis that the distribution of potential test-statistics resulting from the 

adjustment for an unmeasured confounding variable with Γ- and ∆-relationships is a Beta 

distribution. 

 Using the AITCV framework the estimated average test-statistic fell within ± 0.1 

of the true test-statistic 52% of the time and fell within ± 0.35 of the true test-statistic 

96% of the time. That is, the distribution of z(
*

1β ) from (4.39) tends to be tightly 

concentrated and the true test-statistic, z( 1β ), of the corresponding maximum likelihood 

estimate of the treatment effect, 1β , in (4.10) tends to be close to the center of the 

distribution. Similarly, approximately 83% of the time the true test-statistic fell within 

plus or minus two standard deviations of the average impact of a confounding variable 

with said relationships. Further, the simulations tended to indicate that such standard 

deviations tended to grow as the impact grew. That is, as the product of the Γ- and ∆-

relationship grew, the distribution of possible test-statistics became more dispersed. 

Finding an increasing imbalance between treatment groups to be associated with an 
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increasing range of possible inference statistics is well aligned with prior research (e.g. 

Rosenbaum, 1995). However, whereas in other approaches the plausible inference 

statistic tends to grow unabated and in an exponential manner as the imbalance grows, in 

the current approach the range grows slowly and such growth virtually discontinues. 

Further, the estimates in Table (4.53) are based on updated weights (4.37) as the zero 

order weights (4.38) had the same general results but produced approximately 30% wider 

intervals. 

Table(4.53): Examples of coverage of true test-statistic by estimated test-statistic 

distribution (in percent) and goodness of fit test for the empirical distribution vs. beta 

distribution 

Correlations 
Coverage (proportion) in ± 

Standard Deviations 

Ave. 

SD 

χ
2
 G.o.F. 

Beta
1
 Rejected (%)

 

Φ Γ ∆ 1 2 3   

0.30 0.10 0.10 0.54 0.82 0.96 0.029 9 

  0.50 0.52 0.78 0.94 0.085 1 

  0.70 0.57 0.87 0.94 0.143 7 

 0.50 0.10 0.59 0.82 0.97 0.138 6 

  0.50 0.55 0.85 0.98 0.137 6 

  0.70 0.47 0.84 0.93 0.146 7 

 0.70 0.10 0.5 0.79 0.96 0.192 23 

  0.50 0.53 0.77 0.96 0.177 14 

  0.70 0.48 0.79 0.95 0.133 3 

0.50 0.10 0.10 0.51 0.87 0.99 0.028 5 

  0.50 0.5 0.8 0.95 0.086 5 

  0.70 0.51 0.8 0.94 0.122 9 

 0.51 0.10 0.47 0.83 0.96 0.117 1 

  0.50 0.43 0.79 0.92 0.125 4 

  0.70 0.58 0.88 0.99 0.137 9 

 0.70 0.10 0.5 0.9 0.97 0.156 8 

  0.50 0.53 0.85 0.97 0.176 11 

  0.70 0.45 0.85 1.00 0.150 9 

0.70 0.10 0.10 0.61 0.87 0.97 0.021 13 

  0.50 0.54 0.83 0.97 0.100 4 

  0.70 0.59 0.84 0.98 0.094 3 

 0.50 0.10 0.58 0.89 0.98 0.089 3 

  0.50 0.5 0.85 0.98 0.103 4 

  0.70 0.56 0.85 0.98 0.127 6 

 0.70 0.10 0.48 0.81 0.97 0.116 4 

  0.50 0.53 0.86 0.98 0.124 5 

  0.70 0.47 0.83 0.96 0.137 6 

Average    0.118 6.8 
1
 Number of times H0 is rejected out of 100 (H0: Distribution of test-values is Beta(α,β), where α, β are 

estimated via MoM & ML) 
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 The second result suggested the distribution of these test-statistics is well 

approximated by a Beta distribution. More specifically I compared the simulated 

distribution of the resulting test-statistics to a theoretical Beta distribution in three ways. 

To compare them, first I used Pearson’s chi-squared goodness of fit test, second I 

contrasted their respective moments and third I examined the quantile-quantile plots. In 

conducting the chi-squared goodness of fit test, I first estimated the parameters of the 

Beta distribution as its location depends on the given dataset. To do this, I first estimated 

the parameters by using the method of moments estimator. Next, using the estimates 

produced by the method of moments as starting values, I estimated the parameters using 

the maximum likelihood estimator. Using these parameter estimates, I calculated the 

theoretical density of the beta distribution. I then divide the data into bins based on a 

formula that asymptotically minimizes the integrated mean
 
squared error (Scott, 1979) 

and conducted a Pearson chi-squared goodness of fit distribution test based on the null 

hypothesis that the empirical distribution comes from a beta distribution with the 

estimated parameters. This statistic  

 
2

2 ( )
k

O E

E

 −
Χ =  

 
∑  (4.54) 

has an asymptotic chi-squared distribution with K-2-1 degrees of freedom (where K is the 

number of bins, less 2 since estimating the two parameters of the Beta distribution). The 

result of the test are presented in the final column of Table (4.53). The results indicated 

that the chi-squared goodness of fit test was able to reject the null hypothesis at the 

nominal α-level of 0.05 an average of 6.8% of the time throughout a variety of data 
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structures. I speculated that the additional 1.8% may be the result of two factors. First, the 

distribution of the test statistic is only χ
2
 as sample size goes to infinity. Second, there is a 

considerable potential for small bin counts (e.g. <5) when estimating empirical 

distributions estimated by only 100 data points. 

 In contrasting the moments of the theoretical Beta distributions with the moments 

of the simulated test-statistic distribution, I compared the first four moments. Again the 

parameters of the theoretical are estimated by ML with the method of moments 

estimators providing the starting value. Table (4.55) contrasts the observed empirical 

moments with the expected moments. We see that the empirical distribution corresponds 

highly with the first two moments of the respective theoretical Beta distribution. 

However, in comparing the third and fourth moments, skew and kurtosis, some departure 

was evident.  

Table(4.55): Comparison of first four moments of the distribution of the test-statistics 

estimated by the AITCV method and the corresponding Beta distribution 

Φ Γ ∆ 
Expected 

Mean 

Observed 

Mean 

Expected 

Variance 

Observed 

Variance 

Expected 

Skew 

Observed 

Skew 

Expected 

Kurtosis 

Observed 

Kurtosis 

0.30 0.10 0.10 0.50 0.50 0.00 0.00 0.00 -0.09 -0.03 -0.16 

  0.50 0.50 0.50 0.01 0.01 0.00 -0.05 -0.16 -0.07 

  0.70 0.50 0.50 0.02 0.02 0.00 -0.04 -0.44 -0.04 

 0.50 0.10 0.50 0.50 0.02 0.02 0.00 -0.01 -0.41 -0.16 

  0.50 0.50 0.50 0.02 0.02 0.00 -0.06 -0.40 -0.11 

  0.70 0.50 0.50 0.02 0.02 0.00 -0.13 -0.46 -0.09 

 0.70 0.10 0.50 0.50 0.04 0.04 0.00 0.01 -0.73 -0.12 

  0.50 0.50 0.50 0.03 0.03 0.00 -0.02 -0.63 -0.21 

  0.70 0.50 0.50 0.02 0.02 0.00 -0.17 -0.38 0.05 

0.50 0.10 0.10 0.50 0.50 0.00 0.00 0.00 -0.13 -0.02 -0.15 

  0.50 0.50 0.50 0.01 0.01 0.00 0.02 -0.17 -0.11 

  0.70 0.50 0.50 0.02 0.02 0.00 -0.03 -0.33 -0.05 

 0.51 0.10 0.50 0.50 0.01 0.01 0.00 -0.01 -0.31 -0.20 

  0.50 0.50 0.50 0.02 0.02 0.00 0.04 -0.34 -0.23 

  0.70 0.50 0.50 0.02 0.02 0.00 -0.05 -0.41 -0.02 

 0.70 0.10 0.50 0.50 0.03 0.03 0.00 -0.03 -0.51 -0.15 

  0.50 0.50 0.50 0.03 0.03 0.00 -0.04 -0.62 -0.22 

  0.70 0.50 0.50 0.02 0.02 0.00 -0.04 -0.47 -0.08 
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0.70 0.10 0.10 0.50 0.50 0.00 0.00 0.00 -0.29 0.00 0.02 

  0.50 0.50 0.50 0.01 0.01 0.00 0.14 -0.23 -0.16 

  0.70 0.50 0.50 0.01 0.01 0.00 0.08 -0.20 -0.20 

 0.50 0.10 0.50 0.50 0.01 0.01 0.00 -0.07 -0.18 -0.17 

  0.50 0.50 0.50 0.01 0.01 0.00 0.00 -0.24 -0.19 

  0.70 0.50 0.50 0.02 0.02 0.00 0.07 -0.35 0.00 

 0.70 0.10 0.50 0.50 0.01 0.01 0.00 -0.16 -0.29 -0.13 

  0.50 0.50 0.50 0.02 0.02 0.00 -0.02 -0.34 -0.18 

  0.70 0.50 0.50 0.02 0.02 0.00 -0.02 -0.40 -0.17 

 

Table (4.55) suggests that the first two moments of these distributions tend to be identical 

whereas the third moment tends to deviate slightly (generally correct to the first decimal 

point) though in a symmetric manner. The fourth moment, however, tends to deviate to a 

higher degree. In addition to numerical assessment, I produced a quantile-quantile plots 

to graphically compare the quantiles of the generated distribution for each dataset with 

that of the Beta distribution. Figure (4.56) presents a typical quantile-quantile plot for 

such data.   

Figure(4.56): Example of typical quantile-quantile plot for distribution of 

test-values vs. beta distribution for simple regression 

 
 

 

 Next, such simulations provided evidence that on average as one increases the 

impact or product, k, of the Γ- and ∆-relationships, the average test-statistic tends to 
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decrease (Figure (4.57)). More specifically, through a wide range of relationships, the 

simulations indicated that the mean test-statistic produced for an impact decreases as the 

impact increases. Such results suggest that the average test-statistic has an inverse 

monotonic relationship with the impact which may facilitate an iterative threshold search 

procedure. That is, given the average test-statistic decreases as the impact increases, one 

can search for the AITCV using an algorithm that first estimates the threshold using WLS 

and then adjusts the threshold upwards (increase magnitude of impact) if the WLS 

threshold is above the nominal significance level (e.g. 1.96) and downwards (decrease the 

magnitude of the impact) if the WLS threshold is below the nominal significance level.  

Figure(4.57): Example of relationship between the average test-statistic and the impact 

(product of Γ- and ∆-relationships) for simple regression 

 
 Finally, I assessed how the split of k influences the average test-statistic. For 

example, such an assessment asks if the AITCV is k=0.25, how does the AITCV change 

when Γ=0.5 while ∆=0.5 as opposed to Γ=0.3125 while ∆=0.8 or similarly when Γ=0.8 

while ∆=0.3125? The simulations indicated that the split of the impact, k, has relatively 

little influence over the average treatment effect test-statistic resulting from the inclusion 

of a confounding variable. More specifically, though the average test-statistic is highly 
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dependent on k, when holding k constant, the split of the product between the Γ- and ∆- 

relationships generally only changes the second decimal point of the average test-statistic. 

Such results are revisited subsequently in the multiple regression case. 

Multiple Regression-Coverage of AITCV  

 In a manner similar to above, I assessed the impact of a confounding variable in 

BRMs with other measured covariates. That is, suppose an incomplete model of an 

outcome is  

 0 1 2 1 3 2 1ln( ) ...
1

p p

p
Z X X X

p
β β β β β += + + + + +

−
 (4.58) 

 

 as it excludes an important yet unmeasured confounding variable, U. As a result the 

correct model is actually 

 0 1 2 1 3 2 1 2ln( ) ...
1

p p p

p
Z X X X U

p
β β β β β β+ += + + + + + +

−
 (4.59) 

 

In particular, given a treatment effect and corresponding test-statistic that was estimated 

in the presence of nine other covariates e.g. (4.58), I now asked how the treatment’s test-

statistic would change with the inclusion of an unmeasured variable (e.g. equation (4.59)) 

with specified ∆- and Γ-relationships where these relationships are now specified as 

partial correlations (4.49). To assess this I first randomly generated an unmeasured 

confounding variable with said relationships from the Uniform distribution with bounds 

negative 5 to 5 and recorded the new test-statistic of the treatment when controlling for 

measured variables and unmeasured confounding variable. Subsequently, I withheld the 

unmeasured confounding variable from estimation and generated 100 proxy confounding 

variables with the same ∆- and Γ-relationships from the same uniform distribution. This 
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created a distribution of possible test-statistics for the treatment effect when controlling 

for an unmeasured confounding variable with specified ∆- and Γ-relationships. This 

process was repeated 100 times for multiple combinations of ∆, Γ and Φ. 

 The results of the experiment with multiple confounding variables suggested that 

the AITCV method improves as the number of covariates increases. Table (4.60) 

provides a summary for several combinations of the Φ-, Γ-, ∆- relationships, their 

coverage and their average standard deviations. Using the AITCV framework for 

multiple regression the estimated average test-statistic fell within ± 0.06 of the true test-

statistic 68% of the time and fell within ± 0.12 of the true test-statistic 96% of the time. 

That is, the distribution of the z(
*

1β )’s tended to be even more tightly concentrated around 

the true test-statistic, z( 1β ), when compared with that of the simple regression model 

above.  

Table(4.60): Examples of coverage of true test-statistic by estimated test-statistic 

distribution (in percent) and goodness of fit test for the empirical distribution vs. beta 

distribution when there are multiple measured confounders 
Correlations Coverage (proportion) in ± 

Standard deviations 

Ave. 

SD 

χ
2
 G.o.F.  

Beta
1
 Rejected (%)

 

Φ Γ ∆ 1 2 3   

0.30 0.10 0.10 0.677 0.953 0.997 0.021 6 
  0.50 0.664 0.952 0.999 0.034 3 
  0.70 0.687 0.952 0.998 0.038 5 
 0.50 0.10 0.693 0.950 0.996 0.046 4 
  0.50 0.678 0.958 0.996 0.046 6 
  0.70 0.676 0.954 0.998 0.048 7 
 0.70 0.10 0.674 0.950 1.000 0.090 10 
  0.50 0.666 0.960 1.000 0.086 8 
  0.70 0.685 0.948 0.997 0.099 3 

0.50 0.10 0.10 0.690 0.946 1.000 0.010 5 
  0.50 0.701 0.950 0.997 0.022 5 
  0.70 0.684 0.957 0.995 0.057 6 
 0.50 0.10 0.657 0.963 0.999 0.050 1 
  0.50 0.677 0.953 1.000 0.080 4 
  0.70 0.665 0.959 1.000 0.065 7 
 0.70 0.10 0.689 0.956 0.997 0.065 6 
  0.50 0.658 0.960 1.000 0.095 18 
  0.70 0.675 0.955 0.997 0.056 6 

0.70 0.10 0.10 0.671 0.952 0.998 0.013 9 
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  0.50 0.696 0.950 0.997 0.028 4 
  0.70 0.658 0.959 0.998 0.063 3 
 0.50 0.10 0.657 0.963 0.999 0.050 3 
  0.50 0.683 0.953 0.997 0.045 4 
  0.70 0.669 0.956 0.999 0.069 6 
 0.70 0.10 0.661 0.964 0.999 0.118 4 
  0.50 0.662 0.962 1.000 0.092 5 
  0.70 0.691 0.958 0.995 0.067 6 

Average 0.676 0.955 0.998 0.057 5.7 
1
 Number of times H0 is rejected out of 100 (H0: Distribution of test-values is Beta(α,β), where α, β are 

estimated via MoM & ML) 

 

 In addition, similar to the simple regression model results, as the impact grew so 

did the dispersion of the potential test-statistics. However, when there are multiple 

covariates in the model, I tended to see a diminished increase in the dispersion as the 

impact increased. In other words, not only is the impact of an unobserved confounding 

variable partially absorbed by measured covariates, but also the dispersion of the impact 

is partially absorbed. That is, the inter-relationships among the measured variables and 

the unmeasured variable allow the measured variables to act as proxies for the 

unmeasured variable. As a result, improving the balance between treatment groups or the 

quality of the controls in the model via measured variables absorbs the impact of an 

unmeasured confounding variable and narrows the range of the effect that impact can 

have on the test-statistic.  

 Such results are also consistent with the simple regression model above in that the 

AITCV method helps us better understand the effect of an unmeasured confounding 

variable with much more precision than other methods. As the interval of possible 

inference statistics grows as the imbalance grows in canonical methods, the AITCV tends 

to restrict the growth of such intervals. As the AITCV parameterizes the ∆- and Γ-

relationships as partial correlations, it is evident that the minimal growth in the range of 

possible inference statistics associated with increased imbalance between groups is not 
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directly due to the absorption of the unobserved confounding variable by measured 

variables. Rather, including multiple variables to some extent stabilizes the Fisher scoring 

iterations so that the adjusted dependent variable tends to change relatively little in 

comparing models (4.58) and (4.59). As a result, though an unobserved confounding 

variable with relatively large Γ- and ∆-relationships can have a large impact on the 

treatment effect estimate and its corresponding test-statistic, the range of its possible 

impact is restricted. For example, for a given dataset with a treatment that has a partial 

correlation with the logit of the outcome of 0.3 controlling for the measured covariates, 

the impact of an unmeasured confounding variable with a Γ-relationship of 0.1 and a ∆-

relationship of 0.1 on the treatment’s original test-statistic can be identified within ± 

0.042 of the true test-statistic over 95% of the time. Now if one asks a similar question 

but replaces the Γ- and ∆-relationships with higher partial correlation of say 0.7, the 

interval of possible test-statistics widens from ±0.042 to ±0.099 but coverage stays nearly 

the same at approximately 95%. In other words, for a given dataset, the AITCV 

framework would indicate that if you included a variable with Γ=∆=0.1 relationships, 

your test-statistic would drop from say 3.5 to say 3.1 ± 2(0.042) 95 % of the time. 

Similarly, if you included a variable with Γ=∆=0.7 relationships your test-statistic would 

drop from say 3.5 to say 1.5 ± 2(0.099) 95% of the time.  

 Next, corresponding with the simple regression case, the results from the multiple 

regression models suggested that the distribution of test-statistics is well approximated by 

a Beta distribution. I compared the simulated distribution of the resulting test-statistics to 

a theoretical beta distribution using Pearson’s chi-squared goodness of fit test, respective 

moments and quantile-quantile plots. The results of the chi-squared test are presented in 
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the final column of Table (4.60). The results indicated that the chi-squared goodness of fit 

test was able to reject the null hypothesis at the nominal α-level of 0.05 an average of 

5.7% of the time throughout a variety of data structures.  

 I next compared the first four moments of the theoretical Beta distribution with 

the moments of the simulated test-statistics distribution. Table (4.61) presents the results 

of the moments. Similar to the simple regression case, but more closely aligned, we see a 

high correspondence between the empirical distribution and the respective theoretical 

Beta distribution for the first two moments. When comparing the third and fourth 

moments, skew and kurtosis, we again saw some departure, however the departure was 

less than that of the simple regression case.  

Table(4.61): Comparison of first four moments of the distribution of the test-statistics 

estimated by the AITCV method and the corresponding Beta distribution 

Φ Γ ∆ 
Expected 

Mean 

Observed 

Mean 

Expected 

Variance 

Observed 

Variance 

Expected 

Skew 

Observed 

Skew 

Expected 

Kurtosis 

Observed 

Kurtosis 

0.30 0.10 0.10 0.50 0.50 0.00 0.00 -0.04 -0.12 -0.08 -0.05 

  0.50 0.50 0.50 0.00 0.00 0.04 -0.13 0.06 0.01 

  0.70 0.50 0.50 0.00 0.00 0.03 -0.27 -0.02 0.22 

 0.50 0.10 0.50 0.50 0.00 0.00 0.00 -0.11 -0.03 0.06 

  0.50 0.50 0.50 0.00 0.00 0.01 0.11 -0.04 0.14 

  0.70 0.50 0.50 0.00 0.00 0.01 0.08 -0.02 0.04 

 0.70 0.10 0.50 0.50 0.01 0.01 -0.01 0.08 -0.20 -0.18 

  0.50 0.50 0.50 0.01 0.01 -0.01 0.03 -0.22 -0.41 

  0.70 0.50 0.50 0.01 0.01 0.00 0.00 -0.17 -0.07 

0.50 0.10 0.10 0.50 0.50 0.00 0.00 0.02 -0.14 -0.02 -0.10 

  0.50 0.50 0.50 0.00 0.00 -0.03 0.02 0.04 0.03 

  0.70 0.50 0.50 0.00 0.00 -0.01 -0.20 -0.08 0.03 

 0.51 0.10 0.50 0.50 0.00 0.00 0.00 -0.03 -0.03 -0.26 

  0.50 0.50 0.50 0.01 0.01 -0.02 -0.01 -0.19 -0.34 

  0.70 0.50 0.50 0.00 0.00 -0.01 -0.04 -0.07 -0.28 

 0.70 0.10 0.50 0.50 0.00 0.00 0.01 0.08 -0.18 0.03 

  0.50 0.50 0.50 0.01 0.01 0.00 -0.01 -0.23 -0.36 

  0.70 0.50 0.50 0.00 0.00 0.02 -0.01 -0.01 -0.17 

0.70 0.10 0.10 0.50 0.50 0.00 0.00 -0.02 -0.18 0.01 -0.15 

  0.50 0.50 0.50 0.00 0.00 -0.01 -0.01 -0.01 0.15 

  0.70 0.50 0.50 0.00 0.00 0.02 0.09 -0.06 -0.24 

 0.50 0.10 0.50 0.50 0.00 0.00 0.00 0.08 -0.02 -0.01 
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  0.50 0.50 0.50 0.00 0.00 0.00 0.21 -0.04 -0.01 

  0.70 0.50 0.50 0.00 0.00 -0.01 -0.07 -0.16 -0.27 

 0.70 0.10 0.50 0.50 0.01 0.01 0.03 -0.05 -0.28 -0.46 

  0.50 0.50 0.50 0.01 0.01 0.00 0.01 -0.22 -0.44 

  0.70 0.50 0.50 0.00 0.00 0.01 0.11 -0.14 0.00 

 

 To graphically assess the fit of the Beta distribution, I also produced quantile-

quantile plots to compare the distributions. Similar to that of the simple regression case, 

the plots indicated a close alignment. However, such Q-Q plots in the multiple regression 

case tend to represent much more concentrated Beta distributions than their simple 

regression analogues. Figure (4.62) presents a typical quantile-quantile plot for such 

multivariate data. 

Figure(4.62): Example of typical quantile-quantile plot for distribution of test-values vs. 

beta distribution for multiple regression 

 

In summary, both the simple and multiple regression experiments indicated that the 

resulting distribution of test-statistics from controlling for an unobserved confounding 

variable is well approximated by a Beta distribution. In particular, as the first two 

moments of these distributions tend to be identical, the Beta distribution is a particularly 
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relevant distribution from which to approximate and understand the dispersion of such 

inference statistics. 

 Such alignment of the distribution of estimated test-statistics with the Beta 

distribution prompts further suggestions. For instance, because the Beta distribution has a 

finite range, it is possible that the impact an unobserved variable with given ∆- and Γ-

relationships has on an inference is limited. In other words we may be able to limit the 

maximum change in the test statistic for a given pair of given ∆- and Γ-relationships. This 

suggests a certain maximum impact of a confounding variable (MICV). For example, 

under such results an analyst could find the maximum impact threshold of a confounding 

variable (MITCV). Such an approach would suggest that although a variable with 

relationships equivalent to the MITCV would rarely invalidate an inference, it would 

represent the most conservative estimate of the robustness. Similarly, one could also 

speak of the minimal impact an unobserved confounding variable might have for a given 

∆- and Γ-relationship. Together the average, minimum and maximum thresholds may 

present a more holistic understanding of how inferences might change when controlling 

for an unobserved variable. 

 Next, I examined the whether the average test-statistic continued to decrease as 

one increases the impact or product, k, of the Γ- and ∆-relationships as it did in the simple 

regression case. The results of the experiment with multiple regression indicated a very 

similar pattern in that as the impact increases the average test-statistic decreases. This 

result supplies the basis for an algorithm to identify the AITCV in that the algorithm can 

crawl along the curve until it reaches the desired test-statistic (e.g. 1.96). Figure (4.63) 
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illustrates the estimated average test-statistic as a function of the impact for a given 

dataset.  

Figure(4.63): Average test-statistic as a function of the impact (product of Γ and ∆) 

 
 Finally, I assessed how the split of k influences the average test-statistic in 

multiple regression. In particular, I examined the influence of the split of k by considering 

impacts from 0.01 to 0.50 in increments of 0.01. Subsequently, for each fixed value of k I 

allowed the Γ-relationship to take on values from 0.05 to 0.90 in increments of 0.05 and 

assigned the ∆-relationship to quotient of k/Γ. I then estimated the average test-statistic 

for each Γ- and ∆- pair for a fixed k to understand how the split of k influences the 

average test-statistic. The influence of such splits tended to take on three general shapes. 

The first shape was similar to the cubic or sine curve whereas the second and third 

resembled more of a quadratic and asymptotically decreasing function (Figures (4.64) (a-

c).  

Figures (4.64) (a-c): Split of Impact Curves 

  (a)    (b)    (c) 



 230 

 
 

 However, regardless of which shape the split of the impact took on, the split of k 

had relatively little influence on both the range of test-statistics and the average test-

statistic. In particular, how k was broken up into Γ and ∆ tended to only affect the second 

decimal place of the average test-statistic. That is, although the split of k into Γ- and ∆-

relationships does slightly widen the intervals and change the averages, it practically has 

little effect as it only affects the second decimal place of the average test-statistic. In 

other words, it is the product of the ∆- and Γ-relationships that drives the impact of a 

confounding variable on an inference statistic rather than solely one relationship. Such 

results support the need to consider both relationships simultaneously in assessing the 

sensitivity of a treatment effect. 

Sensitivity of Results 

 To provide insight as to the sensitivity of the result in each of the four aspects 

discussed, I conducted sensitivity analyses. These analyses were carried out by holding 

all other parameters constant at their default values while a single parameter was varied. I 

broke these analyses into two strands, sensitivity to study characteristics and sensitivity to 

structural model choices. In particular, in examining the sensitivity to study 

characteristics I varied the probability of success from the default of 0.5 to 0.9 and 0.1 

and varied the sample size from the default of 100 to 500 and 25. Further, I examined the 
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sensitivity of the results to the assumed unconditional distribution of the unobserved 

confounder. In particular, I assessed how the results might change when assuming U 

comes from a Beta distribution. In terms of structural changes, I examined how the 

results varied when the true link function was a probit and we used the probit link. 

Further, I examined how results would vary when the true link function was the probit 

but we naively utilized the logit link. 

 In the first set of these sensitivity analyses, I assessed on how previous results 

might change as a function of the probability of success, sample size and unconditional 

distribution of U. The results are summarized in Table (4.65). To a large extent, we saw 

little change as we increased or decreased the probability of success in the outcome. 

However, there were two noticeable changes. First, when the probability deviated from 

0.5, the average distance of a standard deviation and thus the corresponding plausible 

test-statistic intervals tended to widen. In particular, through simulations, I estimated that 

on average the intervals would widen by approximately 10-15%. However in some 

specific instances the intervals widened up to 100%. In other words, although the 

coverage remained similar, the new distribution of z-statistics tended to me more 

dispersed than compared to when the probability of success was 0.5. Second, the 

approximation of the distribution of possible test-statistics by a Beta distribution was 

slightly degraded. In particular, though we rejected the null hypothesis that the 

distribution of test-statistics resulting from the impact of a confounding variable was near 

the nominal level of 5% when the probability of success was 0.5, with probabilities 

deviating from 0.5 we can now reject the null hypothesis between 7-11% of the time. In 

other words, when the probability markedly differs from 0.5 (e.g. 0.1 or 0.9) the 
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approximation of the possible test-statistics by the Beta distribution is slightly less 

accurate. Next I examined how sample size may influence the interval sizes and 

approximate distribution. First, when decreasing the sample size to 25, we saw that the 

impact of a confounding variable on the treatment’s test-statistic tended to be more 

dispersed. That is, the effect of an unmeasured confounding variable varies more widely 

as sample size decreases as the standard deviation was increased, on average, by 50%. 

The approximation of the resulting distribution of the test-statistics by the Beta 

distribution for higher sample sizes appears similar to that of original sample size as 

illustrated in Figure (4.66) Further, with increased sample size the chi-squared goodness 

of fit test was able to reject the distribution of the resulting test-statistics was a Beta 

distribution 5.5% of the time. However, in contrast, the chi-squared test suggested that 

we can reject the alignment of the distributions approximately 25% of the time when we 

reduce our sample size to 25. Next, when we randomly draw the values for U from a Beta 

distribution as opposed to a Uniform distribution, our results again remain similar to 

those prior. In particular, we only saw a slight increase (10%) in the magnitude of a 

standard deviation. Further, for each study characteristic change the coverage of the true 

test-statistic by the estimated distribution remained virtually unchanged. That is, 

approximately 68% and 96% of the time the true test-statistic fell within one and two 

standard deviation respectively.  

Table(4.65): Examples of the average size of a standard deviation for the estimated test-

statistic distribution of the treatment effect when adjusting for a unmeasured confounder 

in the presence of multiple measured confounders 
Correlations Original Change in Prob Change in Sample Size U~Beta(α,β) 

   Ave size of SD Ave size of SD 

Φ Γ ∆ 

Ave size 

of SD Decrease Increase Increase Decrease 

Ave size 

of SD 

0.3 0.1 0.1 0.021 0.016 0.021 0.015 0.019 0.020 

  0.5 0.034 0.048 0.050 0.047 0.044 0.045 

  0.7 0.038 0.050 0.049 0.045 0.079 0.049 

 0.5 0.1 0.046 0.092 0.085 0.080 0.083 0.079 
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  0.5 0.046 0.063 0.059 0.082 0.093 0.055 

  0.7 0.048 0.069 0.070 0.090 0.092 0.059 

 0.7 0.1 0.090 0.080 0.089 0.093 0.099 0.080 

  0.5 0.086 0.089 0.088 0.085 0.099 0.088 

  0.7 0.099 0.102 0.100 0.098 0.105 0.101 

0.5 0.1 0.1 0.010 0.016 0.015 0.018 0.021 0.019 

  0.5 0.022 0.031 0.030 0.034 0.082 0.034 

  0.7 0.057 0.075 0.080 0.067 0.071 0.069 

 0.5 0.1 0.050 0.079 0.080 0.049 0.115 0.065 

  0.5 0.080 0.091 0.090 0.079 0.108 0.089 

  0.7 0.065 0.087 0.085 0.063 0.093 0.080 

 0.7 0.1 0.065 0.069 0.067 0.069 0.089 0.067 

  0.5 0.095 0.097 0.094 0.099 0.121 0.094 

  0.7 0.056 0.072 0.073 0.055 0.111 0.069 

0.7 0.1 0.1 0.013 0.015 0.010 0.019 0.019 0.015 

  0.5 0.028 0.031 0.03 0.034 0.059 0.031 

  0.7 0.063 0.065 0.063 0.069 0.080 0.064 

 0.5 0.1 0.050 0.067 0.060 0.061 0.075 0.060 

  0.5 0.045 0.059 0.063 0.044 0.057 0.056 

  0.7 0.069 0.070 0.077 0.076 0.099 0.071 

 0.7 0.1 0.118 0.130 0.101 0.111 0.123 0.112 

  0.5 0.092 0.094 0.092 0.090 0.110 0.093 

  0.7 0.067 0.070 0.069 0.069 0.089 0.070 

Average 0.058 0.068 0.066 0.064 0.083 0.064 

 

Figure(4.66): Quantile-quantile plot of Beta distribution versus resulting test-statistics 

when sample size is 25 

 
 

 In the second set of sensitivity analyses, I assessed the sensitivity of the 

framework to the choice of link function. In particular, I examined how the results change 

when the true link function is a probit rather than a logit and we use a probit link. Further 

I assessed how the results might change when the true link is a probit but we use a logit 

link. For the estimated distributions of the test-statistics, Table (4.67) displays the 
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average size of the standard deviations and the estimated coverage for such distributions. 

In particular the first three columns specify the weighted partial correlations between the 

logit of the outcome and the treatment, Φ, between the treatment and the unobserved 

confounder, Γ, and between the logit of the outcome and the unobserved confounder, ∆. 

The next set of columns describes the original standard deviations and coverage for when 

the logit link was both used and was the proper link. The third set of columns describes 

similar standard deviations and coverage for when the probit link was both used and was 

the proper link. The final set of columns describes the same properties but when the true 

link function is the logit, however an analyst has used the logit link instead. 

Table(4.67): Sensitivity of coverage of true test-statistic by estimated test-statistic 

distribution (proportion) and average standard deviation of estimated test-statistic 

distribution when there are multiple measured confounders 
Correlations Original (Logit for Logit) Probit for Probit Logit for Probit 

   
Coverage 

in ± SDs 

Coverage 

in ± SDs 

Coverage 

in ± SDs 

Φ Γ ∆ 

Ave size 

of SD 
1SD 2SD 

Ave size 

of SD 
1SD 2SD 

Ave size of 

SD 
1SD 2SD 

0.3 0.1 0.1 0.021 0.677 0.953 0.016 0.677 0.955 0.019 0.677 0.956 

  0.5 0.034 0.664 0.952 0.042 0.690 0.952 0.048 0.680 0.956 

  0.7 0.038 0.687 0.952 0.067 0.680 0.958 0.071 0.679 0.959 

 0.5 0.1 0.046 0.693 0.950 0.090 0.677 0.955 0.086 0.671 0.957 

  0.5 0.046 0.678 0.958 0.086 0.684 0.952 0.089 0.680 0.955 

  0.7 0.048 0.676 0.954 0.097 0.685 0.953 0.068 0.674 0.957 

 0.7 0.1 0.090 0.674 0.950 0.099 0.683 0.953 0.143 0.693 0.946 

  0.5 0.086 0.666 0.960 0.113 0.687 0.955 0.102 0.680 0.959 

  0.7 0.099 0.685 0.948 0.081 0.689 0.954 0.097 0.688 0.955 

0.5 0.1 0.1 0.010 0.690 0.946 0.015 0.681 0.955 0.020 0.676 0.957 

  0.5 0.022 0.701 0.950 0.041 0.695 0.952 0.051 0.689 0.955 

  0.7 0.057 0.684 0.957 0.068 0.682 0.959 0.075 0.682 0.955 

 0.5 0.1 0.050 0.657 0.963 0.091 0.670 0.955 0.080 0.669 0.951 

  0.5 0.080 0.677 0.953 0.085 0.672 0.953 0.088 0.671 0.954 

  0.7 0.065 0.665 0.959 0.082 0.681 0.952 0.072 0.673 0.950 

 0.7 0.1 0.065 0.689 0.956 0.099 0.672 0.953 0.132 0.690 0.951 

  0.5 0.095 0.658 0.960 0.114 0.689 0.956 0.100 0.681 0.956 

  0.7 0.056 0.675 0.955 0.080 0.690 0.954 0.092 0.682 0.949 

0.7 0.1 0.1 0.013 0.671 0.952 0.015 0.675 0.957 0.019 0.673 0.957 

  0.5 0.028 0.696 0.950 0.044 0.688 0.954 0.054 0.687 0.951 

  0.7 0.063 0.658 0.959 0.067 0.685 0.956 0.065 0.669 0.958 

 0.5 0.1 0.050 0.657 0.963 0.090 0.673 0.954 0.061 0.674 0.957 

  0.5 0.045 0.683 0.953 0.087 0.679 0.955 0.089 0.680 0.947 

  0.7 0.069 0.669 0.956 0.092 0.684 0.956 0.087 0.669 0.957 

 0.7 0.1 0.118 0.661 0.964 0.098 0.689 0.955 0.098 0.682 0.956 

  0.5 0.092 0.662 0.962 0.111 0.691 0.955 0.140 0.679 0.959 

  0.7 0.067 0.691 0.958 0.084 0.689 0.954 0.078 0.690 0.954 
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Average 0.058 0.676 0.955 0.076 0.683 0.955 0.079 0.679 0.955 

 

The results suggested that the AITCV framework, as applied to the models with the logit 

link, has similar success when applying the framework to models using the probit link. In 

particular, though the average size of the standard deviation of the distribution of the 

potential test-statistics grows from an average of 0.058 to 0.076, the coverage remains 

almost identical. Further, when misapplying the logit link rather that the true probit link, 

we again found the size of the standard deviations to be slightly inflated but coverage 

remain the same.  

 I found similar evidence in examining the approximation of the estimated test-

statistic distribution by the Beta distribution. In particular, when we properly used the 

probit link the chi-squared test for the null hypothesis that the test-statistic distribution 

was a Beta distribution, I was only able to reject the null hypotheses 5.6% of the time. In 

comparing this with using the logit link properly (5.7%), both are only marginally above 

the nominal α-level of 0.05 and are nearly identical. In contrast, when improperly 

utilizing the logit link for the proper probit link, my simulations suggested that the chi-

squared test rejected the null hypothesis 8.6% of the time. In other words, the 

distributions of test-statistics resulting from the impact of a confounding variable with 

said Γ- and ∆-relationships is well approximated by the Beta distribution for both the 

logit and probit links and is slightly weakened when we have incorrectly specified the 

link function. 

 Similar to prior simulations, I examined the whether the average test-statistic 

continued to decrease as one increases the impact or product, k, of the Γ- and ∆-

relationships as it did in the simple and multiple regression case. The results of the 

experiment with both changes in the link function and changes in the study characteristics 
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indicated that as the impact increases the average test-statistic decreases. Figure (4.68) 

displays a pattern very similar to that of the logit case. Last, I reassessed how the split of 

k influences the average test-statistic when we make such changes to the simulations. 

Again, the split of k had relatively little influence on both the range of test-statistics and 

the average test-statistic indicating it is the product of the ∆- and Γ-relationships that 

drives the impact of a confounding variable on an inference statistic.  

Figure(4.68): Average test-statistic as a function of the impact when the logit link is 

misapplied in place of the correct probit link 

 
AITCV 

 Finally, I applied the AITCV framework to estimate the average impact threshold 

of a confounding variable at the nominal α-level of 0.05. In particular, I utilized the 

AITCV framework in conjunction with the monotonic relationship between the average 

test-statistic and the impact, k, to identify thresholds corresponding with p-values of 0.05 

for given datasets. The results indicated that on average as the partial correlation between 

logit of the response and the treatment increases the impact needed to invalidate that 

inference increases. However, the AITCV in binomial regression models is somewhat 

dependent on the characteristics of each particular dataset. In other words, datasets with 

identical correlation matrices may have slightly different AITCV depending on the each 
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study’s characteristics. Despite some dependency on study characteristics, the fluctuation 

in AITCV tends to decrease as the number of measured control variables increases. That 

is, the more variables we measure and include in our analysis, the more stable our 

AITCV becomes. For instance, Figure (4.69) displays the AITCV as a function of the 

partial correlation between the logit of the response and the treatment.  

 Figure(4.69): Variation in AITCV for datasets that use no control variables (red) 

and nine control variables (black) 

 
 

In particular, plotted in red are the AITCV’s for various datasets which do not use any 

control variables. In contrast, plotted in black are the AITCV’s for various datasets which 

use nine control variables in the BRM. Evident from the figure is the increased 

robustness of inferences stemming from those datasets with higher partial correlations 

between the logit of the response and the treatment. Further, the figure also illustrates the 

reduced dispersion of AITCV when controlling for multiple covariates. In other words, 

retaining relevant control variables in estimating a treatment effect not only adjusts your 

treatment effect estimate for imbalances and makes it more robust to unmeasured 

confounding variables but also reduces the range of the AITCV. Such a property 
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demonstrates a type of secondary absorption in that using control variables not only 

potentially absorbs the impact of a confounding variable but also partially absorbs the 

range of impacts a confounding variable can have. As a result, including measured 

covariates related to the response helps a researcher better identify both the treatment 

effect and the AITCV. 

 In addition to understanding how the AITCV changes as both a function of the 

response-treatment partial correlation and the number of control variables used, it can 

also be useful to compare the AITCV in BRMs with the ITCV in WLS models. 

Specifically, it can be informative to understand the difference between the thresholds. 

Figure (4.70) displays the four separate lines representing the average AITCV’s for a 

given response-treatment partial correlation in addition to the thick black y=x references 

line. Starting from the bottom we have a dashed black line which represents the ITCV 

using WLS with no control variables. Next, we have a dashed black line representing the 

ITCV using WLS multiple control variables. Next we have a solid red line representing 

the AITCV for no control variables. Finally we have the solid black line representing the 

AITCV when controlling for multiple variables.  

 

Figure(4.70): AITCV in BRMs (solid) versus the ITCV in WLS (dashed) for no (red) and 

multiple control covariates (black) 
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From this figure we can see that impact thresholds of BRMs tend to be higher than the 

corresponding thresholds in WLS. That is, for a given response-treatment correlation, 

inferences drawn from BRMs tend to be more robust than there WLS counterparts. I 

suggest two reasons for such increased thresholds. A first reason such thresholds are 

lower is that they are additionally influenced by the estimates of the dispersion parameter. 

As BRMs constrain the dispersion parameters to be one, we must adjust the standard 

errors by a factor equal to the estimated dispersion (e.g. (4.29)). Such adjustments affect 

the corresponding test-value and thus the thresholds. A second reason why such 

thresholds are higher on average, is the iterative nature of estimating the maximum 

likelihood estimate in BRMs. If we recast the Fisher scoring method as a IRWLS 

problem as above, it becomes evident that the adjusted dependent variable is pulled 

toward a linear combination of the variables in the model at each iteration. In other words 

if one has ten variables in a model and then considers an eleventh variable, the influence 

of that variable is constrained to some extent by its strength compared to the other ten in 

predicting the response. In contrast the maximum likelihood estimator in the linear model 

Thick solid: y=x 

Solid black: AITCV in BRMs 

(multiple) 

Dashed black: ITCV using WLS 

(multiple Solid red: AITCV for 
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(OLS or WLS) uses a single iteration and there is no need to form an adjusted dependent 

variable. As a result, the dependent variable is stable which allows for greater influence 

of a single variable. In other words, maximum likelihood estimates in BRMs are more 

dependent on the variables in the model because they require numerical estimation. 

Example for Multivariate Extension 

 To further illustrate how the AITCV may be applied in a given context, I extend 

the simple BRM example provided above to include a control variable. Whereas the first 

example estimated the unconditional association of father’s education with attaining the 

minimum literacy requirements for advancing to the next grade, this extension focuses on 

conditional comparisons. The focus of this illustrative example remains on the 

relationship between reading achievement and father’s education level for sixth grade 

students in South Africa’s Limpopo region. However, I now posit that mother’s education 

level is also associated with the child’s attainment potentially represents a measured 

confounding variable. More specifically, I first examined the BRM 

 0 1 2log ( ) ( )
1

( )
m

p
fathers mothers

p
β β β= + +

−
 (4.71) 

 

where fathers and mothers represents the educational level of the respective parent. 

Though father’s education level is likely associated with his child’s educational 

attainment, it is likely that in adjusting for mother’s education level the estimate of 

father’s education will diminish. Using the same SACMEQ data for the Limpopo region 

of South Africa, Table (4.72) presents the estimates of father’s education while holding 

mother’s education level fixed. 

Table(4.72): Regression of Minimum Educational Competency on Father’s and Mother’s 

Education Level 
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 Coefficient Standard Error Z-value 

Intercept (β0) -2.90 0.37 -7.85 

Father’s Education (β1) 0.19 0.09 2.19 

Mother’s Education (β2) 0.23 0.08 2.73 

 

Evident from contrasting Tables (4.40) and (4.72), the estimate of the relationship 

between father’s education level and minimum literacy competency decreases as does the 

test statistic though it remains significant. In other words, though it is unclear how 

mother’s education might confound father’s education, there is at least some overlap or 

collinearity between mother’s and father’s education. Now in conducting a sensitivity 

analyses we ask what must be the magnitudes of the ∆- and Γ-relationships an 

unmeasured confounding variable must possess in order to alter the significant inference 

for father’s education while controlling for mother’s education. That is, the question of 

interest focuses on whether the statistical inference based on (4.71) would be altered 

when controlling for other possibly unknown factors.  

To assess the robustness of the original inference using the AITCV framework I 

first estimated the weighted correlations between the logit of the binomial proportions, 

father’s education and mother’s education (Table (4.73)) using the weight from the final 

iteration of (4.71).  

Table(4.73): Weighted Correlations of Variables in (4.71) 

 Father’s Education Mother’s Education Logit of Binomial 

Proportion 

Father’s Education 1   

Mother’s Education 0.45 1  

Logit of Binomial 

Proportion 

0.56 0.56 1 

 

Next, I arbitrarily assigned a starting value of 0.5 to both the Γ- and ∆-relationships 

where they now represent the partial correlations with the unknown confounding variable 
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according to (4.44), (4.45) and (4.46). Next I randomly drew a number from the Uniform 

distribution to represent the correlation between the control variable, mother’s education 

and the unknown confounding variable whose bounds are estimated by (4.52) and are -

0.73 and 0.91 in this example. Using (4.50) and (4.51) I estimated the zero-order 

correlation matrix. Table (4.74) presents the zero-order correlation matrix between the 

variables in this analysis where Γ
zero

 and ∆
zero

 represent the zero-order correlation based 

on Γ and ∆.    

Table(4.74): Weighted Correlations of Variables in (4.71) Plus a Confounding Variable 

 Father’s 

Education 

Mother’s 

Education 

Logit of Binomial 

Proportion 

Unmeasured 

Confounder (U) 

Father’s Education 1    

Mother’s 

Education 

0.45 1   

Logit of Binomial 

Proportion 

0.56 0.56 1  

Unmeasured 

Confounder (U) 

Γ
zero

 U( ( )lower

umother
ρ , ( )upper

umother
ρ ) ∆

zero
 1 

 

Based on this correlation matrix, I generated a single unmeasured confounding variable, 

U, and re-estimated the effect and significance of father’s education on educational 

attainment using  

 (1)

0 1 2 3log ( ) ( ) ( )
1

( )
m

p
fathers mothers U

p
β β β β= + + +

−
 (4.75) 

 

Repeating this process 1000 times, including a new random draw from 

U( ( )lower

umother
ρ , ( )upper

umother
ρ ), I estimated how the test-statistic of father’s education would change 

if we had controlled for a confounding variable with an impact of 0.25 or Γ- and ∆-

relationships equal to 0.5. Taking the average of the 1000 test-statistics, I estimated that if 

we had controlled for a confounding variable with such relationships the average test-
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statistic would be 0.93. Based on prior simulation results concerning the monotonic 

relationship between the average test-statistic and the impact, this suggests that the 

AITCV is lower than 0.25. As a result, I next adjusted the impact and corresponding 

thresholds to something less than 0.25. I repeated this process until the average test-

statistic produced was at the critical value of 1.96. Such simulations suggested that the 

AITCV for the data at hand was 0.05 or roughly 0.22 for both the Γ- and ∆-relationships. 

That is, in order to alter our original inference we would need a confounding variable 

with ∆- and Γ-relationships roughly equal to 0.22. Though a variable with such Γ- and ∆-

relationships on average decreases the test-statistic of father’s education to 1.96, the 

effect of a confounding variable with such relationships takes on a range of values as 

discussed earlier and illustrated in (4.76). 

Figure(4.76): Histogram of Simulated test-statistics for Regression of Minimum 

Educational Competency on Father’s Education, Mother’s Education and a Hypothetical 

Confounding Variable 

 
 

As demonstrated in the figure, a confounding variable with Γ- and ∆-relationships of 0.22 

reduces the test statistic of father’s education from 2.19 to 1.96 on average. However, less 

frequently a confounding variable with those relationships reduces the test-statistic to as 

low as 1.8 or as high as 2.1. In other words, according to the simulation 68% of the time 
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the test-statistic for father’s education level when controlling for mother’s education and 

the hypothetical confounding variable, U, changes to a value between 1.91 to 2.01. 

Similarly, 96% of the time the test-statistic changes to a value of 1.85 to 2.06 and 99% of 

the time to a value of 1.80 to 2.11. Similarly, if we decided to be highly conservative, we 

might ask what the MITCV is. In other words what is the minimum ∆- and Γ-

relationships needed to invalidate the inference? Again, such a question represents the 

most conservative approach as it accepts that such ∆- and Γ-relationships would 

invalidate an inference only in the most extreme circumstances. In this particular data, the 

MITCV would be 0.03 or roughly 0.17 for the ∆- and Γ-correlations. Such values taken 

together with the AITCV present a more holistic picture. In other words, in assessing the 

robustness of this inference, we can now say that on average an unobserved confounding 

variable would need to have correlations with the treatment and outcome of 

approximately 0.22. However, in some rare circumstances an unobserved confounding 

variable with correlations as low as 0.17 with the outcome and treatment may invalidate 

our inference. Again, using either the AITCV or the MITCV I do not speak to the 

likelihood of such a confounding variable existing, however such an approach does 

quantify the magnitude of relationships needed by confounding variable to indicate that 

father’s education is not significantly associated with educational attainment when 

controlling for mother’s education.  
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Notes to Chapter IV 
 

1 
One could additionally consider a linear probability model. In such cases assessing the 

robustness of inferences could be directly accomplished by the original Impact Threshold 

of a Confounding Variable framework developed in Frank (2000). 

 
2 

Also of interest may be the robustness of an inference to multiple unobserved 

confounding variables. In such a case one might suggest the true model as  

 

 0 1 2 1 3 2 1 2 1 2ln( ) ... ...
1

p p p p j j

p
Z X X X U U

p
β β β β β β β+ + + += + + + + + + + +

−
 (4.77) 

 

Though such extensions are simple in the OLS linear model framework as they reduce to 

partial correlations, in the BRM framework such extensions may not be trivial. In 

particular, because in BRMs we solve for maximum likelihood estimates using iterative 

optimization methods, the adjusted dependent variable is constructed using a linear 

combination of the predicted variables. As a result, one can not necessarily reduce 

multiple unobserved confounding variables into a single unobserved confounding 

variable and obtain the same estimates or influences. This aspect is suggested for future 

research in the final chapter. However, if one were to use a linear probability model, the 

methods presented in Frank (2000) would be directly applicable. Alternatively, one could 

also view all unobserved confounding variables as measurements of a single unobserved 

latent confounding variable. 
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CHAPTER V 

CONCLUSION 

I have focused this dissertation on improving causal inferences in common 

educational settings. Such developments focused on two pivotal covariate relationships; 

the covariate’s unique relationship with the outcome and its unique relationship with the 

treatment. In my first study I argued that in educational settings one must frequently take 

into account the influence of the group in understanding both treatment assignment 

mechanisms and effects of such treatments. In other words, because teaching and learning 

are inherently part of a multilevel system, almost every educational intervention or 

treatment is likely influenced or mediated by group membership. Further, because of the 

complexity of these systems, I argued that it is likely that such influence will be 

heterogeneous among groups and among individuals within the group. As a result, in 

order to assume the strong ignorability of the treatment assignment in educational 

settings, we may frequently need to construct groups that are balanced on pretreatment 

covariates at all levels of the teaching and learning process. That is, assessing the effects 

of treatments without taking into account such influence may provide biased inferences 

and incomplete understandings of the teaching and learning processes.  

In accepting the potential for groups to exert influence over individuals’ treatment 

assignments, one is further challenged in specifying the manner in which the group 

effectively influences the individual’s treatment assignment. The challenge of 
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conceptualizing such treatment assignment mechanisms in multilevel settings arises 

because different groups may have very different influences over their respective 

members. Further, even within such groups, a group’s role in predicting the treatment 

assignment may vary among subgroups of individuals. To address the differential roles 

groups take on, I considered several manners by which groups may influences their 

respective individuals and suggested that appropriate identification of these mechanisms 

is important to effective and efficient estimation. My results suggested that while 

consideration of the differential roles groups take on in predicting treatment assignment 

was important, the model one uses to estimate such influence matters to a lesser extent. In 

other words, I claimed, in this first study as well as the others, that it is more crucial to 

include the appropriate variables in a model than to use a specific model. Such claims, 

however, were paired with additional complications. In particular, identifying 

‘appropriate’ variables to include in a PS model required some criterion by which to 

judge the inclusion of a variable.  

To advance understanding of which variables might be included in a PS, my 

second study developed an approach to select the most effective and efficient variables in 

observational studies resembling cluster randomized trials. I argued that despite the bias 

reduction one receives from approaches such as including all available variables, the 

unidimensional focus on bias frequently degrades the quality of the estimator. For 

instance, returning to an earlier example, estimating a treatment effect with a single 

person represents an unbiased estimate of the true treatment effect. However, such an 

approach is unrealistic as it tends to be inefficient and highly variability. For this reason, I 

focused this study on developing a strategy that would balance the bias and the variance 
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of the treatment effect estimator. Further, to extend support for the dominance of variable 

measurement and selection over model type, both the first and second studies assessed   

the efficacy of different PS uses. Specifically, in both studies I assessed the performance 

of using the PS as a stratification criterion, a case weight criterion and as a matching 

criterion. The results showed little difference among the three uses and thus lend 

credence, again, to the importance of measuring and adjusting for the appropriate 

variables over type of PS model or PS use. 

Maintaining focus on the importance of measuring and adjusting for the 

appropriate variables, in the final study I developed a method to assess the robustness of 

one’s inferences to an unmeasured confounding variable. In particular, the method 

attempted to quantify the magnitude of the two pivotal relationships the unmeasured 

confounding variable would need to have to invalidate the original inference in the 

context of binomial regression models (BRMs). In this study, I again assessed the role of 

model type within this framework. Consistent with the results of the first two studies, the 

study suggested that model type had very minimal influence over the results. For 

instance, using a probit link function as oppose to logit link function had next to no 

influence on the impact thresholds. The consistency of results among the three studies 

despite somewhat divergent settings supports the relative importance of the measurement 

and inclusion of appropriate variables as compared to the model type or PS use. Further, 

such consistency may be evidence to suggest the importance of measuring the appropriate 

variables in a variety of other situations. 

Substantively, the papers explored a range of important factors in education 

including teacher literacy knowledge, retention policies, and parental education. Such 
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factors emphasize the multilevel nature of the schooling in that they consider multiple 

sources of inputs. That is, the studies presented in this dissertation collectively explored 

the effect of individual student influence (i.e. parental education), shared 

teacher/classroom influence (i.e. teacher knowledge) and shared school influence (i.e. 

retention policies). The first study which examined the effect of teacher literacy 

knowledge on literacy achievement suggested a small but persistent and practically 

significant effect on reading comprehension. In other words, it is likely that one avenue 

by which teachers influence student achievement is teacher knowledge. However, 

because teacher knowledge and quality is likely influenced by or concentrated in certain 

schools, understanding its complex role likely requires deconstructing the school’s part in 

attracting, developing and retaining teachers with high knowledge. As a result, such 

measures of teacher quality will likely be a high priority as legislation continues to 

require highly qualified teachers for every student. The second study, which examined 

the effect of school retention policies on the average student achievement, offered 

findings concerning the influence of a school level factor. In particular, the second study 

suggested that there was no noticeable different in overall student achievement when 

comparing schools that allow retention and those that do not. Finally, the third study 

suggested that an important student level factor that contributes to student achievement is 

parental education. Though each study took on very different constructs at different 

levels of the schooling system, each study demonstrated the potential of factors external 

to the student in influencing student achievement. Such factors have been, and will likely 

remain important in understanding the processes that contribute to student learning.  
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In applying the methodological results to similar or alternative nonrandomized 

designs, questions arise about the generalizability of these results and implications. That 

is, how might the individual results (e.g. include variables that exceed the ∆ to Γ/2 ratio 

in the PS) as well as the collective results (e.g. the inclusion of appropriate variables in 

the model dominates the choice of model type) generalize to other situations? Application 

of these methods to other designs and studies may have several sources of variation to 

consider. Perhaps a first source of such variation is the study design elements. 

Specifically, these studies assessed various aspects of estimation and inference within the 

context of specific designs common to educational data and used a limited set of 

parameters. For instance, in the study concerning multilevel propensity scores, extending 

the results to other studies may at a minimum produce variation in the findings as a 

product of the study’s exclusive focus on multi-site randomized trial designs with only 

six variables. Similarly, the other studies concerning PS construction and robustness of 

inferences focused on designs resembling cluster randomized trials and individually 

randomized trials, respectively. Each of these designs retained idiosyncrasies that may 

not be present in other designs. A second potential source of variation in these studies 

may be the treatment type. The first and last studies expanded the type of treatment to 

include both dichotomous and continuous treatments whereas the second study 

exclusively examined dichotomous treatments. However, each of these studies 

exclusively considered treatments with homogeneous effects. Relaxing such constrictions 

may produce additional variations in the results. 

A third possible source of variation in these studies is the choice of analytic 

methods. In the variable selection study, I exclusively focused on a logistic model to 
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estimate the PS’s and a hierarchical linear model (HLM) with a random intercept to 

estimate the outcome model. It is possible that the estimated thresholds vary depending 

on choice of PS and outcome model. For instance, thresholds plausibly change when one 

considers a fixed effect model or uses nonparametric methods. Analogous, the remaining 

studies also imposed analytic constraints. The multilevel propensity score study strictly 

utilized hierarchical (generalized) linear models with an identity or logit link to estimate 

the propensity score. Similarly, the last study focused mainly on the BRMs with a logit 

link and to a lesser extent investigated the probit link. Varying such analytic constraints 

may also produce variation in the results. 

Despite the potential variation of such results in alternative designs and situations, 

the individual and collective results of these studies suggest a number of implications. 

Returning to the purposes of this dissertation, I partition the implications of each study 

along three dimensions of causal inference: study design, analysis and inference.  

A number of implications for the prospective and retrospective design of 

nonrandomized studies in education can be drawn from largely the first two papers but 

also from the last paper. Here, I use prospective design to refer to the planning and design 

phases of a study that take place before any data is collected. In contrast, I refer to the 

retrospective design phases as those that take place after the data has been collected 

which attempt to approximate a randomized experiment. Within the context of the first 

study which addressed multilevel treatment assignment mechanisms, the study suggested 

that researchers carefully attend to the role of group memberships and characteristics in 

constructing comparable groups of individuals. That is, if the treatment assignment is 

likely influenced by group membership or clustered among individuals within the same 
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group, ignoring the influence of the group may bias estimates. As a result, an initial 

implication for the prospective design of observational studies is that researchers should 

emphasize accurately measuring relevant variables at all levels that potentially influence 

the treatment assignment. However, the first two studies further developed and modified 

such design implications. In particular, the studies demonstrated that although a variable 

at any level may directly influence the treatment assignment, its relevance in removing 

bias from the treatment effect estimator is constrained by its relationship with the 

outcome. In the framework of the Rubin Causal Model (RCM), one might link such 

constraints to ignorability of the treatment assignment or the conditional independence of 

the potential outcomes and treatment assignment. For instance, assume the treatment 

assignment mechanism only depends on two sets of variables, X
�

and W
�

, where each 

variable in X
�

is additionally related to the outcome (e.g. ∆ ≠0) but each variable in W
�

is 

(conditionally) unrelated to the outcome (e.g. ∆ =0). Because W
�

’s conditional outcome-

covariate relationships ( ( )W∆
�

) are zero, the potential outcomes must be must be 

conditionally independent of the treatment assignment given X
�

. That is, 

 ( )( ) 0 |iW Y Z X∆ ≈ ⇒ ⊥
� �

 (5.1) 

In other words, the treatment assignment is ignorable when controlling only for X
�

. In this 

way we can use the duality of confounding to our advantage within the RCM.  

As a result of my analyses, a particularly relevant prospective and retrospective 

design implication emerges. When studying a treatment, we should first focus our efforts 

on collecting information on those variables related to the outcome. A further implication 

relevant for educational research is that one can still conduct high quality studies when 

studying relatively new treatments or treatments that not well understood as long as the 
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outcomes in the study are well understood. For example, though teacher knowledge is an 

attribute that has been of interest for some time, teacher knowledge and the factors which 

influence it are not very well understood. This dissertation suggested that the quality of 

our estimates relies less on identifying and measuring those factors which predict teacher 

knowledge and more on identifying those factors that influence student achievement. In 

other words as student achievement is an outcome that has been well studied, the findings 

suggested that high quality estimates of the treatment effect are still obtainable despite 

the lack of understanding concerning teacher knowledge. 

In the prospective design of a study, we might thus prioritize three classes of 

variables. First, we would like to measure those variables that have a strong relationship 

with the outcome regardless of their relationship to the treatment. Their measurement 

might be considered essential as they will at a minimum increase efficiency and likely 

decrease bias considerably. Second, we might focus our resources on those variables 

thought to be weakly related to the outcome. The utility of their measurement depends to 

a large extent on their relationship with the treatment. However, their measurement 

protects the study from unforeseen imbalances between the treatment groups which are 

especially important in treatments that are not well studied. The lowest priority variables 

are those that are historically unrelated to the outcome. Their value jointly depends on the 

magnitude of chance relationships with the outcome and their relationship with the 

treatment. In summary, rather than attend to the idiosyncrasies of a specific study’s 

treatment selection process, prospective design should largely privilege measurement of 

variables that retain stable relationships with the outcomes. 
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In a similar manner, the first two studies suggest that retrospective design should 

focus on constructing meaningfully comparable groups rather than simply comparable 

groups. That is, in the retrospective design of a study, it is advantageous to design 

comparable groups such that it approximates the most effective and efficient randomized 

study one can with the data. This may frequently imply that one should try to mimic a 

block randomized study by blocking on characteristics with which the outcome covaries. 

Further, given the extended range of variables to consider in multilevel settings, the 

results also suggested a complementary implication for the retrospective design of a 

study. That implication advocates precaution concerning which variables to include in the 

PS model. That is, the realized benefits of measuring such hierarchical memberships and 

variables as outlined in the prospective design are dependent on the variable’s respective 

empirical relationships with the outcome and treatment assignment. In particular, the 

second study implied that retrospective designs using the PS should construct the PS with 

the most effective and efficient covariates to improve the quality of their estimates in 

terms of MSE. A rough rule of thumb for the retrospective design of a study that emerged 

was to construct the PS using only those variables whose unique relationship with the 

outcome (∆) is at least half of its unique relationship with the treatment (Γ). In other 

words, for those variables whose ∆-relationship is less than half of the corresponding Γ-

relationship, the variable’s contribution to the variance of the treatment effect estimator 

likely exceeds the amount of bias reduction it supplies.  

Such results additionally underscore the importance of prospective designs that 

include outcome proxies such as a pretest measure. Prospective designs such as the pre-

post test design allow one to retrospectively design and efficient and effective quasi-
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experiment by estimating the ∆-relationships without actually using the observed 

outcome. This salient feature of educational data combined with the efficient bias 

reduction value of the pretest stresses the importance of obtaining a pretest measure. That 

is, though literature has widely demonstrate the benefit of having a pretest measure, this 

study further adds to and complements such literature. 

With respect to the analytic dimension of causal inference, the dissertation 

suggested several implications linked to those in the design dimension. First, the studies 

demonstrated that the similarities among various models tended to be greater than the 

differences among them. In other words, of the model types proposed in both the 

multilevel PS study and the AITCV study, each method had similar effectiveness in both 

removing bias and doing so in an efficient manner. In a similar manner, the studies also 

suggested strong similarities between PS uses. That is, weighting by the inverse 

probability of receiving the treatment, subclassifying or matching on the PS all tended to 

perform similarly. In contrast collectively the studies suggested the variables one includes 

in the PS may cause estimates to diverge considerably. In terms of implications for the 

analysis, these results suggest that quality of the estimator hinges more on the variables 

than the models. In other words, one should comparatively devote more time and 

resources to selecting variables than to selecting among several reasonable models. 

Accordingly, this emphasizes the role of the partnership between the substantive 

researcher and the statistician. 

Implications for the final generic dimension of causal inference, inferences, may 

also be drawn from each study. In particular, similar to the previous studies and literature, 

the collective results suggested that the appropriate adjustment for measured confounding 
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variables is crucial to the sensitivity of inferences for at least three reasons. First, their 

inclusion improves the quality of the estimator and associated inferences. Second, the 

inclusion of measured confounding variables can absorb the impact of unmeasured 

confounding variables (Frank et al., 2008). More specifically, the amount of influence an 

unmeasured confounding variable may have on an estimated treatment effect and its 

associated inference can be reduced or absorbed because of nonzero relationships of 

measured confounding variables with unmeasured confounding variables. Third, the 

adjustment for measured confounding variables additionally absorbs the impact of an 

unmeasured confounding variable by reducing the range of possible test statistics. That is, 

we saw absorption take on an expanded role in iteratively optimized models such as 

maximum likelihood estimates in binomial regression models. In other words, when one 

has not controlled for any confounding variables, the range of possible test statistics one 

would see when considering the impact of an unmeasured confounding variable tends to 

be larger than the range one would see when we had originally controlled for multiple 

measured confounding variables. The importance of such adjustments for multiple 

confounding variables illustrated in the last study has an implication for drawing 

inferences. That implication is that not only will one improve the quality of one’s 

estimates and inferences by adjusting for measured confounding variables, but one will 

also increase the robustness of such inferences to the constant threat of unmeasured 

confounding variables.  

Though these studies addressed several general research questions, their designs, 

analyses and inferential conclusions each focused on specific contexts. As a result, this 

research leaves room to explore in at least three directions. The first direction focuses on 
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understanding the generality of the results within the specified contexts whereas a second 

direction focuses on understanding the applicability of the current results to other 

contexts. Further, a third direction remains to extend such results to more complex 

settings that view education more holistically. 

The multilevel propensity score study attempted expand the scope of those factors 

which may influence the treatment assignment by assessing the different roles groups 

may have in influencing their members’ treatment assignments. Despite the increased 

scope, such a view still may not attend to the complexities of the schooling process. For 

instance, as schooling is a longitudinal process, students tend to belong to different 

groups over time. Such memberships may additionally inform students or teachers 

treatment choices. Similarly, learning and teaching tend to extend beyond the borders of a 

school and are plausibly influenced by external factors such as those represented by 

family and neighborhood characteristics. As a result, a more comprehensive picture may 

conceptualize the probability of being assigned to or selecting a certain treatment 

assignment as a function of neighborhoods, family, school, teacher and district 

characteristics. To address this more holistic understanding, I suggest using partial 

random effects or cross classified models. However, the conceptual basis for such an 

approach as well as the effectiveness of such models has not been studied. Future 

research in this area may focus on developing and evaluating the feasibility of such 

approaches. 

A further line of inquiry may examine the robustness of using fixed effects in 

estimating multilevel PS’s. In particular, the fixed effects model specification in study 

one tended to outperform the random effects models when the true confounding variables 
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were excluded. As a result, it illustrated a certain robustness to the omission of true 

confounding variables. Economic literature has long suggested this advantage of fixed 

effect models in traditional outcome models. However, a similar advantage in PS has not 

been studied to my knowledge. Future research assessing the generality of this protection 

in more complex situations may have widespread implications for PS models that 

consider group influence.  

A line of research emerging from the second study may be the applicability of the 

rough ∆ to Γ rule (i.e. include variables whose ∆-relationship exceeds half of its Γ-

relationship) to other study designs and models. Moreover, in the context of this 

dissertation, the applicability of that rule in the context of treatments that consider group 

influence is particularly relevant. Understanding how PS covariate inclusion thresholds 

may differ among different classes of models and within such classes is particularly 

relevant in estimating treatment effects using PS based methods.  

In addition, another relevant issue that arose in this study was the tradeoff 

between the bias and variance belonging to the proxy versus cross validation methods of 

estimating the outcome covariate relationships. In particular, future research might focus 

on the thresholds at which it becomes more effective to use cross validation than a proxy 

approach. Such research might focus on two different potential thresholds. The first is 

sample size. With an infinite sample size, theoretically the cross validation approach 

should dominate any proxy based approach. However, empirical research is done with 

finite sample sizes. Accordingly, identifying the sample size at which it becomes more 

effective to use a proxy based approach may be relevant for large and small sample 

studies. A second threshold of interest in educational data is the magnitude of the proxy’s 
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relationship with the outcome. In particular, in the current study if the proxy is correlated 

with the outcome at 0.70, the bias of the estimator tended to be overshadowed by the 

variance of the estimator. That is, a proxy correlated with an outcome at 0.70 tended to 

insert relatively little bias in to the estimates. However, we might consider other proxy or 

pretest measures that tend to be less correlated with the outcome. As a result, a relevant 

future issue in education is the point at which the relationship between the proxy and 

outcome become so low that the bias begins to dominate the variance of an estimator.  

Finally, the impact threshold of a confounding variable framework has some 

natural extensions beyond BRMs. In particular, future research might extend the 

framework to the larger class of generalized linear models (GLMs). That is, one might 

consider outcomes with distributions in the exponential family. In addition, within the 

context of the exponential family of distributions, it is of interest to consider the case of 

multiple confounding variables. In other words, rather than assess the robustness of an 

inference to a single unobserved confounding variable, one might ask how thresholds 

change if there are multiple unobserved confounding variables. In the OLS linear 

framework, such extensions are trivial as one can reduce the multiple unobserved 

variables into a single variable and still preserve the relevant relationships and statistical 

properties (Frank, 2000). However, iteratively optimized estimates may not preserve such 

convenience as a result of the changing adjusted dependent variable. For example, in 

GLMs the adjusted dependent variable is progressively pulled toward a linear 

combination of the variables. Such drift of the adjusted dependent variable toward other 

variables may alter those convenient properties seen in the OLS model. A final area for 

future research in this line is to understand the maximum and minimum impact an 
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unobserved confounding variable can have on an inference for a given ∆- and Γ-

relationship. That is, because the final study suggested that the distribution of possible 

test statistics is well approximated by a Beta distribution, future research may try to show 

that for a given ∆- and Γ-relationship the change in the test statistic is bounded. In other 

words, because the Beta distribution has finite bounds, future research might explore 

whether those bounds also apply to how the test statistics changes when controlling for an 

unobserved confounding variable. 
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APPENDIX A 

Derivation of Multilevel Propensity Score for Continuous Treatments 

Following the logic and notation of (Hirano & Imbens, 2004), assume Z is continuously 

distributed measure, ( ){ }z

i
Y for z in Z , Z and X are defined on a common probability space 

and that ( )Y Y Z=  is a well defined random variable (Hirano & Imbens, 2004). Further 

assume the ignorability of the treatment assignment such that 

 ( ) | , , ,z

i
Y Z X W XW Xr⊥

� � � � ��
 (5.2) 

Define unit i's outcome Y and treatment assignment z, we can define the unit-level dose 

response function as  

 ( ) inz

i
Y for z Z  (5.3) 

And let the average dose-response function be 

 ( )( ) [ ]z

i
z E Yµ =  (5.4) 

Next define the multilevel GPS for continuous treatments as  

 ( , , , , )E e Z X W XW Xr=
� � � � ��

 (5.5) 

where  

 
| , , ,

( , , , x , ) ( | , , x , )
Z X W XW Xr

e z x w w xr f z x w w xr= � � � � ��

� � � � �� � � � � ��
 (5.6) 

and ( , , , x , )e z x w w xr
� � � � ��

 is the conditional density of the treatment given the covariates.  

Theorem ( )( | ( , , , , ), ) ( | ( , , , , ))z

Z i i Z i
f z e z X W XW Xr Y f z e z X W XW Xr=

� � � � � � � � � �� �
 (5.7) 

For each z define a joint law for ( )( , , , , , , ( , , , , )z

i
Y Z X W XW Xr e z X W XW Xr

� � � � � � � � � � �� �
. Let 

F denote a conditional probability distribution and f denote a conditional density. Then 

using iterated integrals as in Hirano & Imbens (2004) 
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, , ,

, , ,

( | ( , , , , )) ( | , , , , ( , , , , )) ( , , x , | ( , , , , ))

( | , , , ) ( , , x , | ( , ,

Z i Z i iX W XW Xr

Z iX W XW Xr

f z e z X W XW Xr f z X W XW Xr e z X W XW Xr dF x w w xr e z X W XW Xr

f z X W XW Xr dF x w w xr e z X

=

=

∫

∫
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� � � � � � � � � � � � � � � � � � � �� � � � � � � �� �

� � � � � �� � � � � ��
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( , , , , ) ( , , x , | ( , , , , ))

( , , , , )

i iX W XW Xr

i

W XW Xr

e z X W XW Xr dF x w w xr e z X W XW Xr

e z X W XW Xr

=

=
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� � � ��

� � � � � � � � � �� � � � � �� �
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Now using Hirano and Imbens (2004) the left hand side of the equation can be rewritten 

as 
( ) ( )

, , ,
( | ( , , , , ), ) ( | , , , , ( , , , , )) ( , , , | ( , , , , ))z z

Z i Z i iX W XW Xr
f z e z X W XW Xr Y f z X W XW Xr e z X W XW Xr dF x w xw xr Y e z X W XW Xr= ∫ � � � � ��

� � � � � � � � � � � � � � � � � � � �� � � � � � � �� �

and by the assumption of ignorability 
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Z i Z
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 then 
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APPENDIX B 

 

Sensitivity Analysis Results 

 

Table(5.8): Sensitivity Analysis of Reading Comprehension Effect 

  Reading Comprehension 

Adjustment Variable 

Adjusted Effect 

 of TK (δ
*
) SE T P 

Unadjusted (original effect of teacher  

Knowledge, δ) 0.096 0.036 2.689 0.008 

Practice 0.106 0.036 2.958 0.003 

Male 0.098 0.036 2.737 0.007 

White Teacher 0.092 0.036 2.576 0.010 

African-American Teacher 0.087 0.036 2.445 0.015 

Hispanic Teacher 0.095 0.036 2.666 0.008 

Asian Teacher 0.097 0.036 2.711 0.007 

Bachelors in Elementary Education 0.094 0.036 2.639 0.009 

Bachelors in Early Childhood Education 0.096 0.036 2.689 0.008 

Bachelors in Literacy Education 0.095 0.036 2.670 0.008 

Bachelors in Special Education 0.095 0.036 2.668 0.008 

Masters Degree 0.096 0.036 2.690 0.008 

Masters in Elementary Education 0.100 0.036 2.803 0.005 

Masters in Early Childhood Education 0.096 0.036 2.682 0.008 

Masters in Literacy Education 0.099 0.036 2.766 0.006 

Masters in Special Education 0.096 0.036 2.688 0.008 

Post Masters Degree 0.096 0.036 2.697 0.007 

Standard Certification 0.091 0.036 2.555 0.011 

Provisional Certification 0.096 0.036 2.697 0.007 

Reading Certification 0.091 0.036 2.536 0.012 

Special Education Certification 0.097 0.036 2.720 0.007 

Number of Professional Trainings 0.081 0.036 2.262 0.024 

High teaching experience (three+ years) 0.091 0.036 2.547 0.011 

Teacher New to Reading First  

in 2006-07 School Year 0.090 0.036 2.529 0.012 

Average age of students in class 0.095 0.036 2.659 0.008 

Average non-sense word fluency score in class 0.044 0.036 1.234 0.218 

Proportion male in class 0.088 0.036 2.469 0.014 

Proportion in special education in class 0.096 0.036 2.685 0.008 

Proportion eligible for free or reduced  

lunch in class 0.071 0.036 1.981 0.048 

Proportion labeled as disabled 0.096 0.036 2.680 0.008 

Proportion with limited English  

proficiency 0.096 0.036 2.673 0.008 

Proportion Hispanic 0.098 0.036 2.729 0.007 

Proportion Asian 0.095 0.036 2.661 0.008 

Proportion White 0.074 0.036 2.065 0.040 

Proportion African-American 0.069 0.036 1.940 0.053 

Original standard error provides a reasonable estimate of the standard error of the adjusted estimate as by 

assumption U is unrelated to all other variables (Hong & Raudenbush, 2006) 
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APPENDIX C 

 

Additional Plots for Study 1 

 

Figure(5.9): Quantile-Quantile Plot of   Figure(5.10): Quantile-Quantile Plot 
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Figure(5.11): Variability in Observed Teacher Knowledge by Propensity Strata 
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APPENDIX D 

 

List of Pretreatment Covariates 

 

Taken from Hong, G., & Raudenbush, S. W. (2006). Evaluating kindergarten retention 

policy: A case study of causal inference for multi-level observational data. Journal of the 

American Statistical Association. 

 

 

Student-level covariates 

 

Demographic characteristics 

 

1. Age at kindergarten entry (P1AGEENT) 

2. Gender (FEMALE) 

3. Hispanic (HISPANIC) 

 

Assessment scores 

4. C4 reading IRT scale score (C4RRSCAL) 

5. C4 math IRT scale score (C4RMSCAL) 

6. C1 reading IRT scale score (C1RSCALE) 

7. C1 math IRT scale score (C1MSCALE) 

8. C1 general knowledge IRT scale score (C1GSCALE) 

9. C2 reading IRT scale score (C2RSCALE) 

10. C2 math IRT scale score (C2MSCALE) 

11. C2 general knowledge IRT scale score (C2GSCALE) 

 

Home SES/Home language/Home size and structure 

 

12. SES (WKSESL) 

13. Poverty (WKPOVRTY) 

14. Mother’s education (MOMED) 

15. Mother worked between child birth and kindergarten (MOMWK1) 

16. English as home language (HOMELANG) 

17. Number of siblings (P1NUMSIB) 

18. Single parent family (SGPARENT) 

19. Two-parent family (TWPARENT) 

 

Home literacy environment and other activities 

 

20. Amount of books at home (P1CHLBOO) 

21. Fall, K parent report of child’s frequency of reading books outside school 

(P1CHRBK1) 

22. Spring, K parent report of child’s frequency of reading books outside school 

(P2CHRBK1) 
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23. Home computer for child use (P2HOMECM) 

24. Extracurricular lessons (P2EXTR) 

 

Parent involvement in school and parenting 

 

25. Current school chosen (P1SCHCHC) 

26. Tuition paid for education (P2TUITIO) 

27. Parent educational expectation (P1EXPCTN) 

28. Parent attending school activities (P2NATTEN) 

29. Parents’ negative attitude toward parenting (NEGAPRT) 

 

Day care/Preschool/Head Start learning experience/Special services for the child 

 

30. Child ever in center-based care (P1CENTER) 

31. Child with reduced/free lunch (P2FRELCH) 

32. Child receiving special service/education (P2SPECND) 

 

Child physical and mental health 

 

33. Spring, K child fell behind due to health (T2FLBHND) 

34. Child with disability (P1DISABL) 

 

Teacher assessment of student status at the beginning and by the end of the kindergarten 

year 

 

35. Fall, K child literacy ARS score (T1ARSLIT) 

36. Fall, K child math ARS score (T1ARSMAT) 

37. Fall, K child general knowledge ARS score (T1ARSGEN) 

38. Fall, K teacher rating on child approaches to learning  (T1LEARN) 

39. Fall, K teacher rating on child self control (T1CONTRO) 

40. Fall, K teacher rating on child interpersonal skills (T1INTERP)  

41. Fall, K teacher rating on child externalizing problem behaviors (T1EXTERN) 

42. Fall, K teacher rating on child internalizing problem behaviors (T1INTERN) 

43. Spring, K child literacy ARS score (T2ARSLIT) 

44. Spring, K child math ARS score (T2ARSMAT) 

45. Spring, K child general knowledge ARS score (T2ARSGEN) 

46. Spring, K teacher rating on child approaches to learning  (T2LEARN) 

47. Spring, K teacher rating on child self control (T2CONTRO) 

48. Spring, K teacher rating on child interpersonal skills (T2INTERP)  

49. Spring, K teacher rating on child externalizing problem behaviors (T2EXTERN) 

50. Spring, K teacher rating on child internalizing problem behaviors (T2INTERN) 

51. Spring, K teacher rating on child language skills (T2RTLANG) 

52. Spring, K teacher rating on child science/social studies skills (T2RTSCI) 

53. Spring, K teacher rating on child math skills (T2RTMTH) 

54. Spring, K teacher report on child not working at best ability (T2ABIL) 
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Teacher report on instructional services for child 

 

55. Spring, K teacher report on child receiving individual tutored reading (T2TTRRD) 

56. Spring, K child in pull-out small group in reading (T2SGRDG) 

57. Spring, K child receiving individual tutored mathematics (T2TTRMTH) 

58. Spring, K child in pull-out small group in math (T2SGMTH) 

59. Spring, K child in in-class ESL program (T2INCESL) 

60. Spring, K child in gifted/talented program (T2GFTTAL) 

61. Spring, K child in program for behavioral problems (T2BEHPRB) 

62. Spring, K child in Title I reading (T2TT1RD) 

63. Spring, K child being active in structured play (T2STRPLY) 

64. Spring, K child being active in unstructured play (T2UNPLAY) 

65. Spring, K number of achievement reading groups in class (T2NORDGP) 

66. Spring, K child in the lowest reading group (T2RDGPLO) 

67. Spring, K child moving to a higher reading group (T2GPMVHI) 

 

Parent assessment of student status at the beginning and by the end of the kindergarten 

year 

 

68. Fall, K parent rating on child approaches to learning (P1LEARN) 

69. Fall, K parent rating on child self control (P1CONTRO) 

70. Fall, K parent rating on child social interaction (P1SOCIAL) 

71. Fall, K parent report on child being sad/lonely (P1SADLON) 

72. Fall, K parent report on child being impulsive/overactive (P1IMPULS) 

73. Spring, K parent rating on child approaches to learning (P2learn) 

74. Spring, K parent rating on child self control (P2CONTRO) 

75. Spring, K parent rating on child social interaction (P2SOCIAL) 

76. Spring, K parent report of child being sad/lonely (P2SADLON) 

77. Spring, K parent report of child being impulsive/overactive (P2IMPULS) 

 

Teacher report on parent involvement in school 

 

78. Spring, K teacher report on parent attending conferences (T2REGCON) 

79. Spring, K teacher report on parent coming for informal meetings (T2INFMTS) 

80. Spring, K teacher report on parent volunteering in school (T2VOLUNT) 

81. Spring, K teacher report on having other communications with parent (T2TCHCNF)  
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Classroom-level covariates 

 

Kindergarten learning experience  

 

82. Full-day kindergarten in Fall, K (A1HLFDAY) 

83. Full-day kindergarten in Spring, K (A2HLFDAY) 

84. Number of class hours per day in Fall, K (A1HRSDA) 

85. Days per week in Fall, K (A1DYSWK) 

86. Number of class hours per week in Fall, K (A1TIMEWK) 

87. Less than five days per week in Fall, K (A1SHRTWK) 

88. Time on teacher-directed whole class activity in Fall, K (B1TDWCLS) 

89. Time on reading and language arts instruction per day in Spring, K (A2RDLHR) 

90. Content coverage in reading and language arts curriculum in Spring, K (RDCURR) 

91. Encouraging invented spelling in Spring, K (A2INVSPE) 

92. Instructional activities with math symbols in Spring, K (SYMBLMTH) 

93. Content coverage in math curriculum in Spring, K (MTHCURR) 

94. Teacher frequency of borrowing books from library in spring, K (A2BORROW) 

95. Fall, K teacher report of unpaid preparation hours per week (B1NOPAYP) 

96. Fall, K teacher having different standards based on talent 

 

Kindergarten class composition/assignment 

 

97. Percentage of Hispanics in Fall, K class (A1PHIS) 

98. Proportion of 3 and 4 year olds in Fall, K class (A1PR34) 

99. Proportion of boys in Fall, K class (A1PRBOYS) 

100. Percentage of children in Fall, K class with preschool records (A1PCPRE) 

101. Class enrollment in Fall, K (A1TOTAG) 

102. Number of children in Fall, K class repeating kindergarten (A1REPK) 

103. Proportion of children in Fall, K class repeating kindergarten (A1PRREPK) 

104. Number of children in class recognizing letters at the start (A1LETTC) 

105. Teacher rating of behavior from the teacher in fall, K (A1BEHVR) 

106. Number of LEP students in Fall, K class (A1NMLEPC) 

107. Proportion of LEP students in Fall, K class (A1PRLEP) 

108. Number of students classified as gifted in Spring, K class (A2GIFT) 

109. Number of students taking part in gifted/talented program in Spring, K class 

(A2PRTGF) 

110. Number of students with disabilities in Spring, K class (A2DISAB) 

111. Kindergarten assignment in Fall, K based on preschool experience (A1PRESC) 

 

Kindergarten teacher characteristics  

 

112. Fall, K teacher holding different standards based on students’ capability 

(B1DIFSTD) 

113. Fall, K teacher spending unpaid preparation hours per week (B1NOPAYP) 

114. Fall, K teacher being Hispanic/Latino (B1HISP) 

115. Spring, K teacher being Hispanic/Latino (B2HISP) 
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116. Fall, K teacher years of experience of teaching preschool (B1YRSPRE) 

117. Spring, K teacher years of experience of teaching preschool (B2YRSPRE) 

118. Fall, K teacher years of experience of teaching kindergarten (B1YRSKIN) 

119. Spring, K teacher years of experience of teaching kindergarten (B2YRSKIN) 

120. Fall, K teacher years of experience of teaching first grade (B1YRSFST)  

121. Spring, K teacher years of experience of teaching first grade (B2YRSFST) 

122. Fall, K teacher years of experience of teaching ESL (B1YRSESL)  

123. Spring, K teacher years of experience of teaching ESL (B2YRSESL) 

124. Spring, K teacher years of experience of teaching bilingual education 

(B2YRSBIL) 

125. Fall, K teacher years of teaching experience at the school (B1YRSCH) 

126. Spring, K teacher years of teaching experience at the school (B2YRSCH) 

127. Fall, K teacher’s educational degree beyond the Bachelor’s (B1DEGREE) 

128. Spring, K teacher’s educational degree beyond the Bachelor’s (B2DEGREE) 

129. Fall, K teacher having taken ESL courses (B1ESL)  

130. Spring, K teacher having taking ESL courses (B2ESL) 

131. Fall, K teacher speaking other language (A1OTHLNG) 
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School-level covariates 

 

School poverty level and student composition 

 

132. Spring, K total school enrollment (S2KENRLS) 

133. Spring, K percentage of minority students enrolled (S2KMINOR) 

134. Spring, K school percentage of gifted/talented students (S2KGFTED) 

135. Spring, K school percentage of Hispanic students (S2PCTHSP) 

 

School type 

 

136. School enrollment as of 10/1/1998 (S2ANUMCH) 

137. Spring, K school instructional level (S2KSCLVL) 

138. Spring, K school average daily attendance (S2ADA) 

139. Spring, K school with ungraded classroom or transitional grade (S2UNGRAD, 

S2TRANS) 

140. Spring, K school with Kindergarten (S2KINDER) 

141. Spring, K school with grade levels between grade 1 – 5 (S2GRDLV1) 

142. Spring, K school with grade levels beyond grade 5 (S2GRDLV6) 

143. Spring, K school being public (S2PUBLIC) 

144. Spring, K school enrollment requiring academic records (S2ACADRC) 

145. Spring, K school Title 1 funding used for professional development (S2TT1PD) 

146. Spring, K school Title 1 funding used for other Title 1 purposes (S2TT1OTH) 

147. Spring, K school percentage of LEP children (S2LEPSCH) 

148. Spring, K school percentage of LEP children in K, transitional K, and transitional 

first grade (S2LEPKND) 

149. Spring, K special education students on IEP and 504 plan (S2IEP504) 

150. Spring, K children with disability receiving special services (S2DSBNO) 

151. Spring, K school with gifted/talented program in transitional K (S2GFTR) 

152. Spring, K school with gifted/talented program in grade 4 and 5 (S2GFT4TH 

S2GFT5TH) 

153. Spring, K school number of FTE classroom teachers (S2TCHFTE) 

154. Spring, K school number of FTE bilingual-ESL teachers (S2ESLFTE) 

155. Spring, K school lowest annual teacher salary (S2LOSLRY) 

156. Spring, K school highest annual teacher salary (S2HISLRY) 

157. Spring, K school percentage of Hispanic teachers (S2ETHNIC) 

158. Spring, K school percentage of Asian teachers (S2Q62ASN) 

 

School climate 

 

159. Spring, K principal report of school emphasis on language and number skills 

goals (S2GOAL1) 

160. Spring, K principal report of school emphasis on behavioral goals (BHVGOAL) 

161. Spring, K principal report of school being successful in providing help to low 

achievers (S2SUCC7) 

162. Spring, K principal report of school being successful in being open to new 
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ideas/methods (S2SUCC10) 

163. Spring, K principal report of teacher union and administration working together 

(S2TOGTHR) 

164. Spring, K principal report of standardized scores influencing evaluation of 

principal performance (S2SCORES) 

165. Spring, K principal report of raising performance level of low-achieving students 

influencing evaluation of principal performance (S2PRFLVL) 

166. Spring, K principal report of teacher and staff support influencing evaluation of 

principal performance (S2STFSPP) 

167. Spring, K principal report of other factors influencing evaluation of principal 

performance (S2OTHINF) 

 

Principal characteristics 

 

168. Spring, K principal gender (S2GNDER) 

169. Spring, K principal years of experience in teaching prek/Head start and K 

(S2YRPRKK) 

170. Spring, K principal years of experience in teaching the 2
nd

 grade or above 

(S2YR2ABV) 

171. Spring, K number of courses principal having taken in early childhood education 

or child development(S2CRSECD) 

172. Spring, K number of courses principal having taken having taken courses in ESL 

(S2CRSCDV) 

173. Spring, K number of courses principal having taken having taken courses in 

administration (S2CRSADM) 

174. Spring, K principal spending number of hours per week teaching (S2TEEECH) 

175. Spring, K principal spending number of hours per week with required paperwork 

(S2PPRWRK) 

176. Spring, K principal estimated percentage of children’s names known 

(S2KNWNME) 

 

School/teacher outreach to parent 

 

177. Fall, K teacher report of emphasizing importance of home-assisted kindergarten 

learning (B1KLRN) 

178. Fall, K parent report of school outreach to parents (P1OUTRCH) 

179. Spring, K parent report of school outreach to parents (P2OUTRCH) 

180. Spring, K teacher report of number of conferences with parents (A2NUMCNF) 

181. Spring, K teacher report of parent often seeing child’s work (A2SHARED) 

182. Fall, K teacher report of giving parents orientation at the beginning of the year 

(B1PRNTOR) 

183. Spring, K teacher report of giving parents orientation at the beginning of the year 

(B2PRNTOR) 

184. Spring, K school report of offering orientation programs (S2ORIENT) 

185. Spring, K teacher report of visiting students’ homes before the beginning of the 

year (B2HMEVST). 
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186. Spring, K school report of frequency of PTA/PTO meetings (S2PTAMT) 

187. Spring, K school report of frequency of sending report cards (S2RPRTCD) 

188. Spring, K school report of frequency of parent-teacher conference (S2PTCONF) 

189. Spring, K school report of frequency of performances for parents (S2INVITE) 

190. Spring, K school report of frequency of classroom programs for parents 

(S2CLASPR) 

191. Spring, K school report of frequency of fundraisers (S2FUNDRS) 

192. Spring, K school report of assistance/outreach to LM-LEP families (S2LEPHLP) 

 

Instructional resources 

 

193. Spring, K teacher’s use of instructional resources (A2RSRUSE) 

194. Spring, K school accommodation size (S2CHLDNM) 

195. Spring, K school number of instructional rooms (S2RMNUM) 

196. Spring, K school number of instructional computers (S2INSTCM) 

197. Spring, K teacher report of using computer equipment (A2COMP1) 

198. Spring, K teacher report of using software (A2SOFTW1) 

199. Spring, K teacher report of using heating/air conditioning (A2HTAC1) 

200. Spring, K school adequacy of facility (S2FACLTY) 

 

Neighborhood environment and school safety 

 

201. Spring, K school having problem with gangs (S2GANGRC) 

202. Spring, K children with weapons in school (S2WEAPON) 

203. Spring, K visitors being required to sign in (S2SIGNIN) 

204. Spring, K school taking more security measures (K2Q2SCRT) 

205. Spring, K school safety rating (K2Q3) 

206. Spring, K school with decorated hallways (K2Q6_A) 
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APPENDIX  E 

Covariates Used in Impact Based Propensity Scores 

School type Average teacher approach to learning 
spring 1

st
 year 

School urbanicity Average teacher rating of language skills 

Percent female Average teacher rating of math skills 

SES Average structured play comparison 

Mother’s education Average tutored in math 

Length of school day Average tutored in reading 

Percent with disability spring 1
st
 year Average unstructured play comparison 

Number classified as gifted or talented White percent 

Number of conferences with parent Hispanic percent 

Parent orientations Asian percent 

Average teacher experience in bilingual education  

Math score fall 1
st
 year  

General score fall 1
st
 year  

Math score spring 1
st
 year  

Math score spring 1
st
 year squared  

Reading score spring of 1
st
 year  

Reading score spring of 1
st
 year squared  

Decorated hallways  

Percent with disability fall 1
st
 year  

Parental approach to learning  

Average number of siblings  

Average self control of students  

Average frequency parents laugh with kids  

Average level of social interaction  

Average daily attendance  

Percent of Hispanic teachers  

Frequency of fundraisers  

Problems with gangs  

Gifted/talented program in transitional K  

Grade level Kindergarten  

Percent of names known  

School instructional level from SAQ  

Percent with LEP students in K  

Percent of LEP students in school  

Percent of Hispanic students  

Percent of Asian teachers  

Frequency of report cards  

Grade level transitional  

Other title on purpose  

Average teacher self control  

Average teacher interpersonal skill  

Average teacher approach to learning fall 1
st
 year  

Program for behavioral problems  
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Average number of teachers effect by health  

Average problem internalizing problem behaviors  
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APPENDIX F 

MSE and Threshold Derivations for Covariance Adjustment on the Propensity 
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APPENDIX  G 

Individual Paper Abstracts 

 

The Roles of Multilevel Propensity Scores and Variable Selection in Multilevel  

Settings 

 

Abstract 

Despite increasing popularity of propensity score (PS) methods, literature is relatively 

scarce concerning the use and construction of multilevel PS’s in estimating a treatment 

effect. In this study I examined several PS model types including a traditional logistic 

model and a multilevel logistic model in conjunction with a hierarchical linear outcome 

model in estimating the treatment effect in terms of bias and mean-squared error (MSE). I 

then examined variable selection for such models by illustrating how the choice of 

variables included in the PS model can affect bias, variance and MSE of an estimated 

treatment effect. The results suggest consistent but minimal gains from multilevel PS’s 

and, further, that variable selection in the PS model can play a large role, both relative to 

model type and in an absolute sense. The method is applied to a study concerning the 

effect of teacher’s literacy knowledge on first graders’ reading achievement.  
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Variable Selection in Propensity Score Models for Multilevel Settings 

Abstract 

The variables included in the estimation of a propensity score (PS) have a strong 

influence on the properties of the corresponding treatment effect estimator. This study 

developed a method to construct PS’s in a manner that attempts to minimize the mean-

squared error (MSE) of the corresponding treatment effect estimator. In particular, using 

commonly available outcome proxies such as pretest measures, the method utilizes each 

covariate’s relationship with the treatment and the outcome to construct a PS model that 

attempts to jointly minimize bias and variance. The study specifically focuses on 

multilevel observational studies in education that utilize the PS in conjunction with a 

multilevel outcome model to adjust for confounding variables. The method is applied to a 

study concerning the effect of school retention policies on the average math and reading 

achievement scores.  
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Robustness of Causal Inferences in Binomial Regression Models 

Abstract 

Binomial regression models (BRMs) used to test a hypothesis concerning a treatment 

assume the analyst has included all confounding variables. However, in observational 

studies it is frequently difficult to identify and measure exhaustively all confounding 

variables potentially leading to false inferences. In this study, I developed an index to 

assess the sensitivity of inferences in observational studies by extending Frank’s (2000) 

impact threshold of a confounding variable index from the linear model to BRMs. The 

extension is developed for both the simple BRM as well as the multiple BRM and is 

applied to a study concerning reading achievement in Limpopo, South Africa.
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