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CHAPTER 1

Introduction

The purpose of this dissertation is to present a numerical method for solving the

partial differential equations that arise from a variationally-derived model of gradient

plasticity. The main focus of the work is the employment of discontinuous Galerkin

finite element principles to alleviate the strict continuity requirements that arise from

the classical statement of the gradient plasticity problem in weak form. The model

of gradient plasticity chosen for this work is physically motivated by considering the

incompatibilities brought about by plastic deformation at the microscopic scale, and

manipulated via Stokes’ Theorem to obtain a continuum, tensorial treatment. Inte-

gration algorithms resembling those from the nonlinear classical theory of plasticity

are used to solve a pair of partial differential equations that amount to the macro-

scopic and microscopic equations of equilibrium. Some numerical examples are used

to demonstrate properties of the model and the method.

The novel contribution of this dissertation is the use of discontinuous Galerkin

concepts in the formulation of the incompatibility based gradient plasticity theory.

Algorithms for approximating the back-stress term in the yield condition are inves-

tigated, as well as integration algorithms for the mixed method.

This initial chapter provides some context for this work (Section 1.1) and an

overview of the topics considered in the remainder of the dissertation (Section 1.2).

1



2

1.1 Background

The theory of plasticity covers the response of materials that have experienced

loads exceeding their elastic limit, or outside of the realm in which the material can

be expected to fully recover to its original configuration. The material retains a per-

manent distortion by some measure, and this distortion is governed by an irreversible,

or dissipative, process. The physics underlying plastic deformation on a microscopic

scale dictates the mechanical behavior of a material at the macroscopic scale, but

is generally too complex to be modeled directly, and therefore phenomenological

models are usually employed.

The history of the theory of plasticity began with attempts to describe the per-

manent deformation observed in metals that had experienced loads exceeding their

elastic limit. Metals are generally polycrystalline materials, and at a microscopic

scale plastic deformation results in changes at the scale of the crystal lattice. A num-

ber of useful texts have been written on the subject including Hill (1950), Kachanov

(1971), and Lubliner (1990). Plastic deformation in metals is observed to be iso-

choric, or volume preserving. It follows that the deviatoric stress is responsible for

driving plastic flow in metals, since it does not cause a volume change. Classical J2

flow theory is named for its explicit relation to the second invariant of the deviatoric

stress.

Computationally, the increased availability of computing resources and develop-

ment of the finite element method for nonlinear problems allowed for the parallel

development of the computational formulation of plasticity. Standard texts for the

finite element method include Hughes (1987) and Zienkiewicz and Taylor (1989). Of

utmost importance was the development of numerical integration schemes for clas-
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sical plasticity, such as early work based on the radial return algorithm for perfect

plasticity presented in Wilkins (1963). Extensions for hardening and finite strain

for the radial return algorithm came in Krieg and Key (1976) and Key and Krieg

(1982). Significant generalization of those ideas were presented in Ortiz and Simo

(1986), Simo (1988a), Simo (1988b), and Simo (1992) where return mapping algo-

rithms were introduced and analyzed in the context of hyperelasticity, multiplicative

plasticity, and non-associative flow laws. Comprehensive references for the formula-

tion and implementation of integration algorithms for inelastic constitutive equations

can be found in Simo (1998) and Simo and Hughes (1998).

Gradient plasticity builds upon the classical theory of plasticity by introducing

fields within the constitutive theory that are themselves, in some manner, gradients of

strains. The motivation behind these additions are the inability of the classical theory

to account for such phenomena as size effects and softening pathologies. Size effects

are observed as a dependence of the plastic flow stress on a characteristic dimension

of the specimen. Softening is an observed decrease in strength of a material for a

given strain increment. Softening produces pathological mesh dependent behavior,

which is a manifestation of the non-uniqueness of the solution when softening moduli

are present, as the boundary value problem is ill-posed. Treatments for size effects

and softening can come from adding a length scale to the continuum formulation, as

in a gradient theory, or via numerical treatments, for example in a nonlocal damage

theory.

In Coleman and Hodgdon (1985) the authors are motivated by the observations

of adiabatic shear bands in metals and the softening of geological materials due to

the accumulation of damage. In an analysis of shear bands, they propose including

a term that accounts for the spatial derivative of the accumulated shear strain in
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the evaluation of the stress field. In the generalization to three dimensions, the term

becomes the Laplacian of the (scalar) accumulated distortion. It should be noted

that the authors make a point of proclaiming the model is constructed to produce

solutions similar to the observed behavior of some materials, and not motivated by

first principles.

Aifantis undertakes a physically motivated exploration of dislocation phenom-

ena, including the transition from micro-scale behaviors to the macro-scale, phys-

ically based finite deformation continuum theories, and applications of the theory

to localization problems (Aifantis, 1987). The author introduces second gradients

of the (scalar) equivalent plastic strain, similar to the work of Coleman and Hodg-

don, that serve to regularize the solution of softening boundary value problems. In

Muhlhaus and Aifantis (1991), a variational statement is presented that incorporates

the Laplacian of the plastic consistency parameter. The weak form of the statement

then requires the same interpolation functions for both the displacements and the

plastic parameter, but introduces the need for boundary conditions related to the

plastic fields.

The authors in Fleck and Hutchinson (1993) and Fleck et al. (1994) attempt a

physical derivation of a gradient plasticity model with the intention of predicting

size effects in materials. Motivated by a description of geometrically necessary dis-

locations in areas of a body with a gradient in strain, they incorporate the Cosserat

couple stress theory to construct a constitutive model that depends both on the

strain and the gradient of the strain. The model accounts for the accumulation of

geometrically necessary dislocations in areas of intense strain gradients, and the au-

thors use the model to explain observations of gradient dependent hardening in a

series of torsion tests on wire with diameters ranging from 12 to 170 µm.
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In Nix and Gao (1998), Gao et al. (1999), and Huang et al. (2000) the authors

propose a theory of mechanism based strain gradient plasticity. The authors are

motivated to resolve the observation in indentation experiments that the hardening

response for a material increases as the size of the indenter decreases. The pre-

sumably occurs due to the strong gradient in the localization zone adjacent to the

indenter. Again, the authors aim to account for the effective density of geometri-

cally necessary dislocations that arise due to strong gradients. To accomplish this

they introduce the concept of a dislocation density tensor, which is then used in the

construction of the (continuum) theory.

In Cermelli and Gurtin (2001) the authors formally develop the notion of the

Burger’s tensor, including a thorough review of the many forms a dislocation based

tensor has taken in the literature. Using that concept Gurtin (2004) and Gurtin

(2005) employ a micro force balance to derive balance laws for plastically deforming

materials that account for gradient effects via the dislocation tensor. It is upon these

theories that the model presented in this dissertation will be built.

Other approaches for introducing length scales, motivated by localization phe-

nomena in geological materials, are the nonlocal theories, where spatial dependence

of the local quantities is achieved via sampling fields within a finite radius. Typically

the nonlocal theories are concerned with the spatial dependence of damage, or the

accumulated degradation of a material with strain, as in Bazant et al. (1984) and

Bazant and Pijaudier-Cabot (1988). The length scale that is introduced is essen-

tially the radius by which the damage field is integrated within, as the integration

of damage dictates the width of shear bands in softening materials.

Experiments have been conducted with the expectation that at small enough

scales, the micromechanics provided by dislocation theory will dominate the behav-
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ior. Notably, in Fleck and Hutchinson (1993) microtorsion experiments are presented

and compared with microtension experiments. The torsion experiments exhibit a

marked dependence on the diameter of the copper wire, indicating a strong constitu-

tive dependence on the gradient of the strain, while the tension experiments show an

insignificant dependence on wire diameter. In Stölken and Evans (1998) the authors

develop a microbending test to determine the gradient dependence of very thin foils

of high purity nickel. The test method measures the deformed radius of curvature

of an elastically unloaded foil. The results show that for a given surface strain, the

applied bending moment increased noticeably as the thickness of the foil decreased,

giving further credence to the notion of a size effect for plasticity at small scales.

In Ma and Clarke (1995) the authors show that measured hardness for silver sin-

gle crystals is also dependent on the size of the indentation. As the indenter sized

decreased, especially below 10 µm, the measured hardness increased.

Each of the preceding gradient plasticity theories includes higher order terms as-

sociated with the newly introduced gradient dependence. For example, the theory

from Fleck and Hutchinson includes a third-order stress term when the displacements

are the only primal fields. Gurtin presents a model where an additional second-order

stress term is included. With the introduction of higher order gradients within weak

form of the plastic constitutive theory, usually in the form of partial differential

equations, higher-order boundary conditions become necessary. Physically based no-

tions of these boundary conditions have remained elusive, and in many cases are not

discussed beyond the acknowledgement that they exist. More stringent continuity

requirements also arise directly from the additional spatial derivatives found in gradi-

ent theories, specifically to address the additional boundary conditions. Additional

requirements limit or eliminate the use of classical numerical techniques for these
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higher-order theories.

The solution of higher-order theories by the finite element method involves em-

ploying some mechanism of achieving higher-order continuity of the basis functions

in the weak form. In particular, for fourth order theories assuming a displacement

based formulation, after repeated integration by parts, continuity requirements dic-

tate that the solution basis functions be C 1, which means that both the solution

and its first derivative are continuous. Constructing C 1 continuous basis functions

in three dimensions is reported as anything from very complicated to intractable in

the literature. An alternative approach is the introduction of another field, usually

representative of the gradient of the original field, which allows the relaxation of the

continuity requirements. Again, for a fourth-order theory each field would need C 0

continuity. These mixed methods, unfortunately inherit additional stability require-

ments. As pointed out in Brezzi (1990), applicability of mixed methods is determined

via mathematical analysis, which is generally a non-trivial task. Furthermore, stabil-

ity will depend on the specific interpolations chosen for each field, with the unsettling

result that some combinations of basis functions work, while others do not.

Discontinuous Galerkin (DG) methods are formulations in which the weak form is

written to include integrals across inter-element interfaces. In the context of elliptic

problems the fluxes that appear across the interfaces are approximated by so-called

numerical fluxes. These numerical fluxes can be used to capture discontinuities in

fields or manipulated in other ways to approximate derivatives in a distributional

sense, in effect achieving an approximation of greater continuity. DG methods started

appearing in the literature in the early 1970s. Reed and Hill (1973) developed a

DG method to solve the hyperbolic neutron transport equations, but the methods

were also being developed for elliptic problems. Nitsche (1971) proposed an early



8

symmetric and consistent method for elliptic problems that used an interior penalty,

and more recently Bassi and Rebay (1997) applied DG methods to the Navier-Stokes

equations by introducing a term later denoted as the lifting operator. Arnold et al.

(2002) presented a unifying analysis of methods for elliptic problems.

Discontinuous Galerkin methods have become attractive in view of the difficulties

associated with higher-order partial differential or differential-algebraic equations, in-

cluding the need for C 1-continuous elements. Discontinuous Galerkin based C 0 finite

element basis functions were developed for fourth-order elliptic problems related to

thin beam and plate theory and gradient elasticity in Engel et al. (2002). The pro-

posed methods used concepts from both the continuous and discontinuous Galerkin

as well as stabilization techniques where low-order polynomials were used and con-

tinuity requirements were weakly enforced via stabilization of interior facet terms.

Wells et al. (2004) and Molari et al. (2006) discuss strain gradient damage. The

fourth-order Cahn-Hilliard equation for phase segregation gets a treatment in Wells

et al. (2006). DG formulations for Kirchoff-Love plates and shells are presented in

Wells and Dung (2007) and Noels and Radovitzky (2008). Djoko et al. (2007a),

Djoko et al. (2007b) and McBride (2008) present a DG formulation for a gradient

plasticity model similar to that of Aifantis.

1.2 An Overview

Chapter 2 serves the purpose of providing an introduction to the field of clas-

sical plasticity, which for the duration of this dissertation will be set in the small

strain setting. To accomplish this relevant results from continuum mechanics and

classical elasticity are presented. Topics include kinematics, stress, balance laws, and

elastic constitutive equations. Plasticity is introduced, including a definition of the
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yield surface along with hardening laws and a derivation and discussion of the J2

theory of plasticity. Ideas and an algorithm for computational plasticity follow the

classical theory. The main focus of the section being the introduction of the finite

element method and its concepts, and integrating those concepts with the theoret-

ical ideas to arrive at numerical solution strategies for classical plasticity. Topics

include variational formulations, isochoric solution strategies, and numerical integra-

tion algorithms including a discussion of a radial return algorithm for J2 plasticity

with isotropic and kinematic hardening. A select few numerical results for classical

plasticity are then presented. Perfect plasticity and hardening are illustrated for a

torsional problem along with the differences between isotropic and kinematic hard-

ening in a cyclic loading problem. In addition, the well known pathological mesh

dependence of the classical methods is illustrated for a strain localization problem

when the material is softening.

Chapter 3 has an introduction to dislocations and a discussion of the role dislo-

cation motion plays in plastic deformation. Crystal structure and slip systems are

introduced as precursors to the notion of a dislocation. Edge and screw dislocations

are discussed, and an example of dislocation motion is presented. Hardening mech-

anisms related to the generation and interaction of dislocations are also presented.

Then, leading up to a gradient plasticity constitutive theory, the discrete notion of

incompatibility in a crystal lattice, or the Burger’s vector, is manipulated to arrive

at a continuum, tensorial quantity called the Burger’s tensor.

Chapter 4 uses the continuum concepts of Burger’s vector presented in Chapter 3

and constructs a constitutive model with a gradient dependence on the plastic part

of the displacement gradient. A free energy is chosen to incorporate conjugate pairs

for the elastic and plastic displacement gradients, as well as the curl of the plastic
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part of the displacement gradient. A microforce balance is then used to derive a pair

of partial differential equations that govern the macroscopic balance of momenta, or

equilibrium, and the microscopic balance of forces that can be interpreted as the flow

rule for the plasticity model.

Chapter 5 introduces discontinuous Galerkin methods by presenting a derivation

of a method that can be used for linear elasticity, which uses a discontinuous basis

for the displacement field. The structure of the variational formulation is noted, and

compared with other methods modeling higher order physics. The applicability of the

DG method for gradient plasticity is stated, followed by a derivation of the variational

statement of the coupled set of partial differential equations derived in Chapter 4.

DG methods are used to weakly enforce the necessary continuity requirements of the

plastic fields. An algorithm describing the implementation of the variational form

into a nonlinear finite element code is presented and discussed.

Chapter 6 provides numerical results using the implementation of the variational

formulation of gradient plasticity presented in this paper. To illustrate features of the

model, a cylinder undergoing a torsional deformation, which results in gradients in

the strain field, is simulated to produce the well established size effect for a plastically

deforming material at small scales. A comparison is made then to a uniform stress

field where gradient terms are shown to have no effect. Finally, a localization problem

is solved and the solution is shown to have mesh independent behavior when a length

scale is introduced via gradient terms in the plasticity model.

Chapter 7 consists of conclusions and final comments. Model strengths and weak-

nesses are discussed, including a brief discussion on the need for additional experi-

mental results, as well as possible future directions for both the gradient plasticity

model and DG methods.



CHAPTER 2

Classical Plasticity

The objective of this chapter is to present the ideas of classical plasticity from a

theoretical and computation perspective, and then provide some numerical examples,

in order to provide background for the gradient plasticity theory and implementa-

tion discussed later in this dissertation. Results from continuum mechanics are used

to develop the theory, and a classical solution algorithm is presented. The numer-

ical examples illustrate specific hardening and softening behavior for a selection of

boundary value problems.

2.1 Classical Theoretical Plasticity

The classical theory of plasticity can be viewed as an extension of the theory

of elasticity to account for nonlinear material behavior including permanent defor-

mation. For this reason the underpinnings of the theory of plasticity rely heavily

on the standard statements of elasticity, which in turn are based on the results of

continuum mechanics. For the purpose of this dissertation, subsequent discussion

will be restricted to the infinitesimal deformation theory.

2.1.1 Selected Results from Continuum Mechanics

Continuum mechanics is a classical subject with many modern applications rang-

ing from biology to electromagnetics, and of course, elasticity and plasticity. It is

a subset of the larger field of continuum theories. A number of texts exist on the

11
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subject of continuum mechanics, including Truesdell and Noll (1965) and Malvern

(1969), and more recently Holzapfel (2000) and Gurtin (2003). For a brief introduc-

tion to the subject of nonlinear continuum mechanics relevant to the work at hand,

please consult Appendix A. The remainder of this section selects specific results

from the general theory as the foundation for all subsequent developments.

Kinematics

The relevant results from the kinematics of linearized solid continua are the def-

inition of the displacement and the strain. In the small strain theory, the difference

between the reference and current configurations is assumed small, so henceforth the

domain of interest will be referred to as Ω.1 In words, the displacement, u, is the

departure of a material point, at current position x, from its original position X.

(2.1) u = x−X

The strain is a measure of the deformation the body has undergone, where defor-

mation is regarded as relative motion between neighboring material points. This is

distinct from the displacement, which includes both rigid translation and rotation,

neither of which contribute to the deformation (rigid actually implying no deforma-

tion) and hence should not impact the strain. For the purposes of this dissertation,

the infinitesimal strain tensor, ε, is used and is defined as the symmetric part of the

displacement gradient. For more details see Section A.1.

(2.2) ε =
1

2
(∇u+ (∇u)T)

Stress

Determination of the stress in a body under a given load is the primary concern for

both elasticity and plasticity. For a brief discussion of stress see Section A.2. In the

1As opposed to having two distinct configurations, the reference and the current.
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linear elastic theory a constitutive assumption is made that the stress is proportional

to the strain, ε, via the fourth-order elasticity tensor, C.

(2.3) σij = Cijkl : εkl

For small strains, the elasticity tensor can be defined as

(2.4) C = 2µ I + λ 1 ⊗ 1,

where λ and µ are the Lamé constants related to the Young’s modulus, E, and

Poisson’s ratio, ν, through the following

(2.5) λ =
E ν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

Also, I is the fourth-order symmetric identity tensor defined indicially as

(2.6) (I)ijkl =
1

2
(δikδjl + δilδjk)

where δij is the Kronecker delta, written in direct notation as the second-order iden-

tity tensor, 1. An alternative definition of the elasticity tensor, useful for use when

the volumetric and deviatoric response is assumed uncoupled,

(2.7) C = κ1 ⊗ 1 − 2µ

(
I − 1

3
1 ⊗ 1

)

uses the bulk modulus κ = E
3(1−2ν)

. Note that (2.4) has both major symmetries,

Cijkl = Cklij, and minor symmetries, Cijkl = Cjikl and Cijkl = Cijlk. The elasticity

tensor is positive definite,

(2.8) ψijCijklψkl > 0 ∀ψ 6= 0,

which indicates pointwise stability and also convexity, which lead to favorable solu-

tion properties. It is also strongly elliptic,

(2.9) nimjCijklnkml > 0 ∀n, m 6= 0,
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which can be related to the Hadamard condition (see Marsden and Hughes (1994)) of

the acoustic tensor indicating wave speeds in the material are real. Using (2.4) and

the concept that stress depends linearly on the strain yields the familiar constitutive

law for stress.

(2.10) σ = C : ε = 2µ ε+ λ tr(ε)1

Balance Laws

Balance laws are fundamental physical principles that govern the behavior of

materials. For a model of material behavior to have physical meaning, it must obey

the laws presented below. A summary of relevant results from Section A.3 will follow.

Balance of mass becomes conservation of mass for a closed system in the material

description of continuum mechanics, and for the purposes of this dissertation this

view will suffice. The local statement of the conservation of mass is simply that

material is neither created nor destroyed, and thus mass, m, remains constant.

(2.11) m =

∫

Ω

ρ dv = constant

The relevant results from the balance of momenta are the equilibrium equation

and the symmetry of the stress tensor, σij = σji. In the present work we will consider

quasi-static scenarios, which renders the right hand side of the equilibrium equation

null.

(2.12) divσ + b = 0, σij,j + bi = 0

2.1.2 Motivating Plasticity

The theory of plasticity is rooted in attempts to understand the behavior of metals

that have experienced loading outside their elastic regime. The results of such loading

is a permanent distortion, observed in metals as volume preserving. This isochoric
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deformation has been built into phenomenological constitutive theories of deformable

media, and this body of work comprises classical plasticity. The primary departures

from elasticity are: 1) the additive decomposition of strain into elastic and plastic

parts, 2) the construction of a yield surface which governs the admissible stress

states the body can be in, 3) the accompanying flow rule which governs the notion

of irreversibility of plastic flow, and 4) the stress response, including hardening. The

mathematical formulation that follows holds for rate-independent plasticity.

Additive Decomposition

It is assumed at the outset that the strain tensor admits decomposition into elastic

and plastic parts.

(2.13) ε = εe + εp

It should be noted that the plastic part of the strain tensor εp is defined below in

Section 2.1.2, and that the total strain, ε, can be thought of as an independent

variable, since it is a function of the displacements, which are to be solved for. For

this reason, the additive decomposition, (2.13) can be thought of as an expression

for the elastic strain, εe = ε− εp.

Stress Response

The stress response is driven by the elastic strain, which in lieu of (2.13) can be

expressed as:

(2.14) σ = C : (ε− εp).

Classical plasticity also introduces a strain-like variable, ξ, which is called the equiv-

alent plastic strain, conjugate to stress-like variables, q, that govern material hard-

ening, and thereby, the increased load necessary to continue deforming a material
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∂E(f = 0)

f > 0 (non − admissible)

n = ∂σf

(σ, q)

E(f ≤ 0)

Figure 2.1: The elastic domain, in stress space

already having undergone plastic deformation. The stress state will be restricted to

lie within the elastic domain, defined below, such that any stress state outside the

elastic domain is considered inadmissible.

Yield Criteria

As an idealization of plastic deformation, a yield surface is constructed which

defines the admissible states of stress of a material point. Define a function called

the yield criterion, f : S × R
m → R, where S, is the space of symmetric second-

order tensors and R
m is the space that the hardening fields live in. Then restrict the

admissible stress state to

(2.15) E := {(σ, q) ∈ S × R
m : f(σ, q) ≤ 0} .

Figure 2.1 illustrates the restriction of the possible states of stress to either within

or on the elastic domain. The yield surface, ∂E, is introduced as the boundary of

the elastic domain.

(2.16) ∂E := {(σ, q) ∈ S × R
m : f(σ, q) = 0}
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We will see that the restriction of the stress state, (σ, q), stated above is further

exploited to require that plastic deformation can only occur when the stress state

lies on the yield surface. Furthermore, the normal to the yield surface, n = ∂σf ,

plays an important role in the formulation of some models, see Section 2.1.3 below.

Flow Rule

Irreversibility of plastic flow is introduced by defining two functions, r : S×R
m →

S and h : S × R
m → R

m that govern the direction of plastic flow and the type of

hardening respectively. Then evolution equations are written for the plastic strain

and the equivalent plastic strain.

(2.17) ε̇p = γ r(σ, q), ξ̇ = γ h(σ, q)

These equations are termed the flow rule and the hardening law, respectively. Con-

sider a stress state inside the elastic domain; then the function f < 0 and corre-

spondingly γ = 0, indicating no plastic deformation is occurring. Now consider the

case where plastic deformation is occurring, γ > 0, then the stress state must lie on

the yield surface to be admissible, f = 0. Together, the consistency parameter, γ,

and the yield function, f , obey the Kuhn-Tucker complementarity conditions

(2.18) γ ≥ 0, f(σ, q) ≤ 0, and γf(σ, q) = 0.

Similarly, if the stress state lies on the yield surface, f = 0, then three possibilities

exist. For the case where plastic loading is occurring, γ > 0, the time rate of change of

the yield condition must be equal to zero, ḟ = 0. Also if ḟ < 0, then the consistency

parameter must be equal to zero, γ = 0. The last option is for both ḟ and γ to be

zero. Combining these possibilities results in the consistency requirement

(2.19) γḟ(σ, q) = 0.
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Equations (2.18) and consistency-requirement play an important role in the numerical

solution, where in practice, the yield condition is evaluated, and γ is activated only

for those materials points whose trial stress state is deemed inadmissible.

2.1.3 J2 Plasticity

The J2 theory of metal plasticity has been widely studied and is a standard

model used in simulating the response of metals undergoing plastic deformation. To

consider the origin of the name, first consider the deviatoric part of the stress.

(2.20) s = dev(σ) = σ − 1

3
tr(σ)1

Then the second principal invariant of s is denoted by J2 and defined as

(2.21) J2 =
1

2
s : s.

Experiments on metal plasticity indicate that the trace of the stress has no influence

on plastic deformation. For this reason the dependence of f upon σ is only through

the deviatoric stress, and we can write f(σ, q) = f(s, q). Furthermore, for isotropic

metals, it follows that f(s, q) = f(J1, J2, J3, q), where Ji is the corresponding prin-

cipal invariant. Now, by definition of s, we have J1 = tr (s) = 0. Experiments also

show that J3 has no influence on plastic deformation, leading to f(σ, q) = f(J2, q).

In the case of perfect plasticity, i.e. no hardening, we have for the yield criterion

(2.22) f :=
√

3J2 − σy ≤ 0.

The parameter σy is known as the yield strength of the material and represents the

stress at which the material yields under uni-axial tension. The yield criterion is also

often written in the alternate form

(2.23) f := ‖s‖ −
√

2

3
σy ≤ 0.
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Figure 2.2: a. isotropic hardening and b. kinematic hardening

Hardening Laws

The classical theory includes two types of hardening, isotropic and kinematic.

Isotropic hardening represents a uniform expansion of the yield surface, independent

of the direction of plastic flow. Classical kinematic hardening represents a translation

of the locus of the yield surface, in stress space, in the direction of plastic flow. An

illustration of the differences between isotropic and kinematic hardening in stress

space can be seen in Figure 2.2. In the figure, the αs are the locus of the yield

surface, and the R’s are the radii, and the +’s indicate an increment in hardening.

The difference between isotropic and kinematic hardening is not evident until the

loading path for the material is altered. For example, for cyclic loading from tension

to compression, during the tension portion of the curve the stress-strain curve would

appear identical. However, upon reverse loading into compression, the kinematic

hardening material would yield at a smaller (in magnitude) loading level than the

isotropic hardening material. A schematic of the stress-strain behavior for isotropic

and kinematic hardening, with linear hardening modulus H, Young’s modulus E,

and yield strength σy, can be seen in Figure 2.3.

With the inclusion of hardening, it is necessary to recast the yield condition,

(2.23), as

(2.24) f := ‖s− q‖ −
√

2

3
(σy + q) ≤ 0,
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Figure 2.3: Stress-strain, uniaxial loading, isotropic vs. kinematic hardening

where q is known as the back stress and governs kinematic hardening, while q is the

isotropic hardening parameter. Commonly used expressions for the hardening fields

are

(2.25) q̇ =
2

3
Hε̇p, q = K(ξ), ξ̇ =

√
2

3
ε̇P : ε̇p,

where ξ is a strain like hardening variable, and ξ is a scalar hardening variable.

Associative Flow

An associative flow rule asserts that the direction of plastic flow occurs in a

direction normal to the yield surface. Expressing the flow rule, (2.17), as associative

allows for the expression of the plastic strain rate and hardening variables in terms

of n, the normal to the yield surface. Define a tensor β = s− q.

ε̇p = γ∂βf = γn,(2.26)

q̇ =
2

3
Hγ∂βf =

2

3
Hγn,(2.27)

ξ̇ = γ∂qf = γ

√
2

3
(2.28)
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The normal vector to the yield surface, n can be determined from (2.24) as

(2.29) n = ∂βf =
β

‖β‖ .

Tangent Moduli

To derive the tangent moduli for the J2 plasticity model being considered we

need to consider the rate form of the stress equation, (2.14). Then substitute the

associative flow rule assumption for the plastic strain rate.

(2.30) σ̇ = C : (ε̇− γn)

To complete the definition of the rate form of the stress, it would be beneficial to

obtain an explicit representation of the consistency parameter, γ. Fortunately, we

can exploit the consistency condition, (2.19). To begin, assume that the stress state

lies on the yield surface and use the chain rule on the yield criterion, and then

substitute in known quantities.

ḟ = ∂βf : β̇ + ∂qf q̇(2.31)

= ∂βf : σ̇ − ∂βf : q̇ + ∂qf q̇(2.32)

= ∂βf : C : (ε̇− ε̇p) − ∂βf : q̇ + ∂qf∂ξqξ̇(2.33)

= n : C : ε̇− n : C : γn− n2

3
γH : n− 2

3
γK(2.34)

= n : C : ε̇− γ

(
n : C : n+

2

3
H +

2

3
K

)
(2.35)

We have used the fact that n : n = 1. Then, recognizing that ḟ = 0 by the

consistency conditions, we can manipulate (2.35) to obtain the desired result.

(2.36) γ =
〈n : ε̇〉

1 + H+K
3µ

Note that n : C : ε̇ = 2µ n : ε̇ since n is a deviatoric tensor, which follows from the

fact that tr β = 0 and (2.29). Then finally we can state the elastoplastic tangent
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moduli, which is valid for the case of plastic loading, or γ > 0. Beginning with the

rate form of the stress in (2.30), we can include the expression derived for γ and

(2.7).

(2.37) C
ep = κ1 ⊗ 1 + 2µ

{
I − 1

3
1 ⊗ 1 − n⊗ n

1 + H+K
3µ

}

The derivation of (2.37) is relevant for the case of linear isotropic and kinematic

hardening laws, as discussed in this section.

2.2 Computational Plasticity

Computational plasticity involves the formulation and implementation of numer-

ical algorithms to solve the global equilibrium equations and the local plasticity

equations. Finite element methods are the numerical schemes of choice for solving

boundary value problems in plasticity. Finite element methods are based on the

variational, or weak, statement of the boundary value problem under consideration,

along with the subsequent restriction to representation within a finite-dimensional

basis, hence the name. The beginning of this section will give a summary of ideas

related to the finite element method. Other topics of discussion are the numeri-

cal integration algorithms used in classical plasticity and treatment of the isochoric

constraint encountered during plastic flow.

In order to set the stage for discussion of the algorithms used in classical numerical

plasticity, the machinery of the finite element method will be presented in the context

of the linear theory of elasticity. From there the extension to the nonlinear theory of

plasticity is most natural. Developments in the next section will follow closely with

Hughes (1987), Chapter 2.
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2.2.1 Finite Elements

As a formal point of departure, consider the strong form of the boundary value

problem from classical elasticity. Consider a domain Ω with boundary ∂Ω composed

of disjoint subsets Γgi
and Γhi

such that ∂Ω = Γgi
∪ Γhi

.

Strong Form: Given bi : Ω → R, gi : Γgi
→ R, and hi : Γhi

→ R, find ui : Ω → R

such that

σij,j + bi = 0 in Ω(2.38)

ui = gi on Γgi

σijnj = hi on Γhi

where σij is defined via (2.3), and gi and hi are the prescribed displacements and

tractions respectively, for the ith component. Figure 2.4 illustrates the independence

of the boundary conditions in R
2. The strong form of the boundary value prob-

lem should be familiar to those with a strength of materials background. For the

quasi-static cases in question, the strong form of the problem specifies that static

equilibrium is achieved given the prescribed external loads and displacement con-

straints.

To formulate the variational statement of the problem, we need to choose the

space in which the trial solution and variational weighting function lie. Then the

variation form can be obtained by multiplying terms by the weighting function and

integrating over the domains. Usually, integration by parts is performed to transfer

a derivative over to the weighting function in second order problems, facilitating the

uses of C 0 basis functions, discussed below. For the trial solution space we have

(2.39) Si =
{
ui|ui ∈ H1(Ω), ui = gi on Γgi

}
,
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Γg1

Γh1

Ω Ω

Γh2

Γg2

Figure 2.4:
Independent specification of boundary conditions, including both traction and
displacement, for each component

where the index i indicates that the space is valid for the ith component of the

function, and H1(Ω) is a Sobolev space defined as

(2.40) H1(Ω) = {w|w ∈ L2;w,x ∈ L2} ; L2(Ω) =

{
w|
∫

Ω

w2dΩ <∞
}
.

Then the weighting space is similarly defined as

(2.41) Vi =
{
wi|wi ∈ H1(Ω), wi = 0 on Γgi

}
.

Note that the preceding spaces, Si and Vi have the displacement boundary con-

ditions constructed from within, and in particular, the weighting functions vanish

space on the known displacement boundary. These are known as the essential or

Dirichlet boundary conditions. Now we have enough to make the variational, or

weak, statement of the boundary value problem.

Weak Form: Given bi : Ω → R, gi : Γgi
→ R, and hi : Γhi

→ R, find ui ∈ Si such

that for all wi ∈ Vi,

(2.42)

∫

Ω

wi,jσij dΩ =

∫

Ω

wibi dΩ +

nsd∑

i=1

(∫

Γhi

wihi dΓ

)
.
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Standard exercises show the equivalence of the strong form and the weak form, for

example see Hughes (1987), Chapter 1. Notice that a derivative from the divσ term

has been transferred over to the weighting function, as mentioned above. The inte-

gration by parts gives rise to a boundary term in (2.42), called natural or Neumann

boundary condition.

Having obtained the variational form of the boundary value problem, the next step

is to construct approximations to the infinite-dimensional spaces that the trial solu-

tion and weighting functions reside in. For simplicity the finite-dimensional spaces

S h
i and V h

i are introduced, each with its own basis functions, usually consisting of

polynomials. Now we can represent approximations to the trial solution and weight-

ing function as products of basis functions and degrees of freedom.

(2.43) uh
i =

nnodes∑

A

NA(x)dA
i

The global vector uh
i in (2.43), being the size of the total number of nodes, A, is the

representation of the displacement field in the chosen basis, and as such NA(x) are

the basis functions and dA
i are the coefficients, or displacement degrees of freedom.

The argument, x, of the basis function explicitly indicates the spatial dependence

of the basis functions on the geometry of the domain. Similarly for the weighting

function,

(2.44) wh
i =

nnodes∑

A

NA(x)cAi ,

where cAi are the variational degrees of freedom. Using the same basis functions for

both the solution (displacements) and the weighting function makes the method a

Bubnov-Galerkin, or simply Galerkin, approximation. Now we can state the Galerkin

form of the boundary value problem.
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Figure 2.5: Isoparametric mapping for a linear triangle finite element

Galerkin Form: Given bi : Ω → R, gi : Γgi
→ R, and hi : Γhi

→ R, find uh
i ∈ S h

i

such that for all wh
i ∈ V h

i ,

(2.45)

∫

Ω

wh
i,jσ

h
ij dΩ =

∫

Ω

wh
i bi dΩ +

nsd∑

i=1

(∫

Γhi

wh
i hi dΓ

)
.

The concept of a finite element is the restriction of the finite-dimensional basis

from the global discretized system to a local one, NA(x) → NA
e (ξ), where (·)e

indicates a quantity of the element. The notion of an isoparametric finite element is

introduced by expressing the geometric interpolation in the basis as well, such as

(2.46) xe =
nen∑

A

NA
e (ξ)xA

e ,

where xA
e are the global coordinates of the nodes that comprise the finite element,

and nen is the number of element nodes. See Figure 2.5 for an illustration of the

local to global isoparametric mapping. We can then express the displacements and

weighting functions in terms of this local basis.

(2.47) uh
e =

nen∑

A

NA
e (ξ)dA

e , wh
e =

nen∑

A

NA
e (ξ)cAe

We can use (2.46) to take derivatives, with respect to the global coordinates, of

the functions in (2.47) using the chain rule and the spatial independence of the
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coefficients. For example the derivatives of the displacements can be written as

follows.

(2.48) (uh
e ),x =

∑

A

(NA
e )

,ξξ,x(dA
e )

We do not have an explicit expression for the term ξ,x, but because we have an

expression for the coordinates that uses the same basis functions as the solution

fields in terms of the local coordinates ξ, we can compute the inverse relation (x
,ξ)

−1

from (2.46). Using this we have an alternate expression for the local displacement

gradient.

(2.49) (uh
e ),x =

∑

A

(NA
e )

,ξ(x,ξ)
−1dA

e

Using a similar expression as in (2.49), the Galerkin Form can be restated by summing

contributions from the total number of element, nel.

Given bi : Ω → R, gi : Γgi
→ R, and hi : Γhi

→ R, find uh
i ∈ S h

i such that for all

wh
i ∈ V h

i ,

nel∑

e

(∫

Ωe

(wh
e ),x : C : (uh

e ),x dΩ

)
=

nel∑

e

(∫

Ωe

(wh
e ) · b dΩ +

nsd∑

i=1

(∫

Γhie

(wh
e ) · h dΓ

))(2.50)

Matrix Form: The matrix form of the problem comes from assembling the global

system of equations for all the degrees of freedom in the discretized domain. To do

so we call upon the notion of the finite element and consider the contribution to the

global system from the local element. Inserting the interpolation approximations

into (2.50) we can derive the element stiffness matrix. Consider the left hand side of

the equation, which can equivalently be expressed (after interpolation substitutions)
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as

(2.51)

nel∑

e


c

T

∫

Ωe

BTCB dV

︸ ︷︷ ︸
ke

d


 .

Here C is the matrix of elastic moduli derived from the fourth order tensor C. Now

consider the matrix B, which serves as the discrete symmetric gradient operator.

This is an operator used to act on vectors of coefficients to calculate the strain, or

the variation in strain. Note that since the coefficients have no spatial dependence,

the operator can be defined solely in terms of basis function derivatives. In two

dimensions the nodal gradient operator, Ba for local node a is

(2.52) Ba =




Na,1 0

0 Na,2

Na,2 Na,1



.

Note that for this two dimensional example, an assumption is made that the coeffi-

cients are ordered in (x,y) pairs as opposed to ordering all the x degrees of freedom

first and then y degrees of freedom. In the latter case Ba would have a slightly dif-

ferent form. Also note that, as presented, there is a factor of two difference between

the output of the symmetric gradient operator and the tensorial shear strain. This

is typically accounted for in the constitutive matrix C. Now, in the expression for

the element stiffness matrix, (2.51), the total elemental symmetric gradient operator

can be composed from each local node up to the total number of element nodes nen.

(2.53) B = [B1,B2, ...,Bnen
]

Using, (2.50), the local contributions are assembled into the global stiffness matrix,

K, and global force vector, F , via the finite element assembly operator, A. The
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finite element assembly operator maps local degrees of freedom at the nodes to global

degrees of freedom. For example for the stiffness matrix,

(2.54) K =
nel

A
e
(ke).

The global assembled system Kd = F is solved for the displacement degrees of

freedom, d. With the solution vector d, known, the element stress field can be

recovered using the constitutive matrix and symmetric gradient operator as

(2.55) σ = CBede,

where again, de would be the displacement coefficients restricted to the nodes com-

prising the element, and Be would be the gradient operator for that element.

Incompressible Elasticity

The isochoric nature of plastic flow mimics the behavior of an elastic material in its

incompressible limit, i.e. ν → 1
2
. For this reason finite element strategies for dealing

with incompressible elasticity are relevant for the development of numerical methods

for plasticity that do not exhibit locking. Locking is an observed phenomenon where

the degrees of freedom for the system are overconstrained by boundary conditions

and incompressibility, so that the only solution is trivially zero. It is a manifestation

of non-uniqueness in the solution for the trace of the stress, and can be alleviated

by projection techniques. One such approach that will be discussed here is the mean

dilatation formulation, first introduced in Nagtegaal et al. (1974), generalized in

Hughes (1980), and adapted to the finite-deformation regime in Simo et al. (1985).

A complete derivation of the method starts with the Hu-Washizu 3 field varia-

tional principle, which considers both stress and strain as well as displacements as

the primal field variables to be solved for. Consider the energy functional, Π, that
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represents the total amount of energy available.

Π(u,σ, ε) :=

∫

Ω

1

2
ε : C : ε dV +

∫

Ω

σ : (∇su− ε) dV

−
∫

Ω

u · b dV +

∫

Γh

u · h dS

(2.56)

Then we define the variations in displacements, stresses, and strains.

uξ = u+ ξw, σξ = σ + ξτ , εξ = ε+ ξγ

In the usual way, we derive the variational equations by exploiting the stationarity

condition

(2.57)
d

dξ
Π(uξ,σξ, εξ)|ξ=0 = 0.

Bringing the scalar derivatives within the integrals of (2.56), evaluating the scalar

parameter ξ = 0, and making standard arguments about the arbitrariness of the

variational functions we arrive at three separate equations that define the stationarity

condition. The first being defined with respect to the variations of the displacements.

(2.58)

∫

Ω

σ : ∇
sw dV −

∫

Ω

w · dV −
∫

Γh

w · h dV = 0

The second equation is with respect the variations in the stress,

(2.59)

∫

Ω

τ : (∇su− ε) dV = 0,

and the third equation is with respect to the variations in the strain,

(2.60)

∫

Ω

γ : (C : ε− σ) dV = 0.

To recover the mean-dilatation formulation, we can choose the following functions

of stress and strain as our additional variables, which are used to represent the

pressure and dilatation.

(2.61) p =
1

3
trσ; θ = tr(ε) = div(u)
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Then we can express the stress and the strain in terms of the pressure and dilatation

fields.

(2.62) ε = dev(∇su) +
1

3
θ1, σ = dev(C : ε) + p1

Inserting the expressions for stress and strain from (2.62) into the energy term σ :

(∇su− ε) yields

(2.63) σ : (∇su− ε) = p(divu− θ).

Using (2.63), the total energy functional can be written in terms of displacement,

pressure, and dilatation.

Π(u, p, θ) :=

∫

Ω

1

2
ε : C : ε dV +

∫

Ω

p(divu− θ) dV

−
∫

Ω

u · b dV +

∫

Γh

u · h dS

(2.64)

Next define the variations of primal fields, similar to above,

uξ = u+ ξw, pξ = p+ ξq, θξ = θ + ξγ.

Revisiting the stationarity condition, (2.57), the variational equations can be ex-

pressed as

∫

Ω

dev(∇sw) : C : dev(∇su) dV +

∫

Ω

div(w)p dV

−
∫

Ω

w · b dV −
∫

Γh

w · h dS = 0

in terms of displacement variations,

(2.65)

∫

Ω

q(div(u) − θ) dV = 0

in terms of pressure variations, and

(2.66)

∫

Ω

γ(
1

3
tr(C : ε) − p) dV = 0
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in terms of dilatation variations. From these three variational equations, we can

make the Galerkin approximation and define finite dimensional spaces for the fields

to reside in. For the displacements and their variations the usual spaces are used,

uh ∈ S h, wh ∈ V h, as above in (2.39) and (2.41). Then the pressure, its variation,

and the dilatation, and its variation are all assumed to be bounded, but discontinuous

across elements, i.e. ph, qh, θh, γh ∈ L
2(Ω). The implications of placing the additional

fields in L
2 are the absence of a need for continuous derivatives, allowing for a local

treatment. Definition of the interpolations of the primary fields and their variations

follow below (the subscript e will be dropped for notational simplicity, even though

the interpolations are still within the isoparametric structure).

uh =
nen∑

A=1

NAdA, wh =
nen∑

A=1

NAcA,

ph =

npp∑

B=1

ΓBαB, qh =

npp∑

B=1

ΓBβB,

θh =

npp∑

B=1

ΓBδB, γh =

npp∑

B=1

ΓBνB

Here, ΓB are the shape functions for the pressure and dilatation fields, and npp are

the number of points used to represent the pressure and dilatation. Using these

definitions we can revisit terms in the variational equations, starting with discrete

form of (2.65), we solve locally for the degrees of freedom using the matrix form of

the divergence operator, div u =
∑

a b
ada.

(2.67)

∫

Ωe

qh(div uh − θh) dV = βT

∫

Ωe

ΓT(bd− Γδ) dV = 0

which can be re-arranged to and solve for δ using the following, H =
∫

Ωe
ΓTΓ dV.

(2.68) δ = H−1

(∫

Ωe

ΓTb dV

)
d

Now we can define the modified discrete divergence operator from the definition
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θ = Γδ.

(2.69) b̄ = ΓH−1

(∫

Ωe

ΓTb dV

)
d

This leads us to the equivalent expression of θ = b̄d, which is now written in terms of

the displacement degrees of freedom. A similar procedure yields a simple expression

for the pressure using the bulk modulus, where κ = λ+ 2
3
µ.

(2.70) p = ΓTH−1

∫

Ωe

Γκθ dV

Using the discrete divergence operator, (2.69), we can reformulate the equilibrium

equation in terms of the modified discrete gradient operator, B, defined using the

standard symmetric discrete gradient operator B, and the identity matrix 1.

(2.71) B = B − 1

3
1b+

1

3
1b̄

And the equilibrium equation in matrix form, minus forcing terms, reduces to

(2.72)

∫

Ω

B
T
CB dV = 0,

where C is the matrix of elastic moduli generated from the elasticity tensor, C, as

before.

2.2.2 Radial Return

The classical integration algorithm for computational plasticity is referred to as

a closest point projection, which first appeared in the literature as the radial return

algorithm of Wilkins (1963). The basic concept behind the algorithm is a backward

Euler scheme used to integrate the equations of plasticity in time. In summary,

to move in time from tn to tn+1, first the yield surface needs to be evaluated for

every integration point in the domain assuming elastic constitutive behavior, which
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is termed the trial state. If the yield condition is violated, indicating that the trail

state is an inadmissible stress state at that point, a return mapping algorithm is used

to bring the stress state back to the yield surface.

A brief discussion of the radial return algorithm for linear isotropic and kinematic

hardening follows below. We will follow through with the presentation of section 2.1.3

to make matters concrete. To begin, we assume a complete characterization of the

state of the material at time tn, including the total strain, ǫn, plastic strain, ǫp
n, and

any hardening data, qn. Then the elastic strain and stress can always be calculated

using (2.13) and (2.14), which take the following discrete form.

(2.73) σn = C : (εn − εp
n)

As a reminder, the scope of this presentation lies within the small strain theory.

With the complete state at tn known, we calculate the increment in the strain

tensor obtained from the incremental displacement field, ∆u, arising from evaluating

the equilibrium equation. Then we calculate the trail state where(·)tr indicates a trial

state quantity.

(εe
n+1)

tr = εn + ∇
s(∆u) − εp

n(2.74)

σtr
n+1 = C : (εe

n+1)
tr(2.75)

qtr
n+1 = qn(2.76)

f tr
n+1 = f(σtr

n+1, q
tr
n+1)(2.77)

Generally, the discrete gradient calculation can be carried out using the modified

discrete symmetric gradient operator B (2.71), derived in section 2.2.1, especially if

volumetric locking is being observed in the global solution. For convenience, another

stress termed the relative stress is defined as ξtr
n+1 = σtr

n+1 − qtr
n+1
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In order to proceed, we need to be able to determine if a given stress state is

inadmissible by defining the yield condition, f(σ, q). To accomplish this we need to

revisit section 2.1.3 and use the discrete form of (2.24).

(2.78) f tr
n+1 := ‖dev σtr

n+1 − qtr
n+1‖ −

√
2

3
(σy + qn)

Where we recall (2.25) in the definition of (2.78), and σy is typically the yield stress

in tension. The equivalent plastic strain at time tn is denoted as αn, and for a linear

isotropic hardening model qn = Kαn.

After completely defining the trial state and determining which integration points

have violated the yield condition, i.e. f tr
n+1 > 0, a return mapping algorithm is

employed to locally return the local stress state to the yield surface. It is worth

noting that in the classical associative methods, see section 2.1.3 the normal to the

yield surface, nn+1 can be determined solely from the trial state.

(2.79) nn+1 =
dev σtr

n+1 − qtr
n+1

‖dev σtr
n+1 − qtr

n+1‖
=

ξtr
n+1

‖ξtr
n+1‖

At this point, for notational simplicity, the quantity γ∆t is usually written as ∆γ, and

it is this quantity which needs to be solved for. The classical methods exploit the fact

that, from consistency imposed at tn+1, f(σn+1, qn+1) = 0, and solve the nonlinear

equation for ∆γ in an iterative fashion using a Newton method. To illustrate the
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system set up in Simo and Hughes (1998), Chapter 3, consider

g(∆γ(k)) := −
√

2

3
K(α

(k)
n+1) + ‖ξtr

n+1‖

−
(

2µ∆γ(k) +

√
2

3
[H(α

(k)
n+1) −H(αn)]

)

Dg(∆γ(k)) := −2µ

(
1 +

H ′(α
(k)
n+1) +K ′(α

(k)
n+1)

3µ

)

∆γ(k+1) = ∆γ(k) − g(∆γ(k))

Dg(∆γ(k))

α
(k+1)
n+1 = αn +

√
2

3
∆γ(k+1)

with initial conditions ∆γ(0) = 0 and α
(0)
n+1 = αn, and kth iterate (·)(k). The system

is iteratively solved for ∆γ until |g(∆γ(k)| is small (i.e. less than some tolerance).

Other methods could be employed that use direct evaluation of f(σn+1, qn+1), which

is then driven to zero. The choice between these and other equivalent methods is

made on the basis of algorithmic convenience. An illustration of the example from

Simo and Hughes can be seen in Algorithm 2.1.

Algorithm 2.1 Consistency condition for classical plasticity

Initialize

∆γ0 = 0
α0

n+1 = αn

Iterate

while |g(∆γ(k))| > TOL do

g(∆γ(k)) := −
√

2
3K(α

(k)
n+1) + ‖ξtr

n+1‖ −
(
2µ∆γ(k) +

√
2
3 [H(α

(k)
n+1) − H(αn)]

)

Dg(∆γ(k)) := −2µ

(
1 +

H′(α
(k)
n+1)+K′(α

(k)
n+1)

3µ

)

∆γ(k+1) = ∆γ(k) − g(∆γ(k))

Dg(∆γ(k))

α
(k+1)
n+1 = αn +

√
2
3∆γ(k+1)

end while

Once the quantity ∆γ is obtained, then the stress state is corrected, along the
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direction (2.79) via the following update equations.

qn+1 = qn +

√
2

3
(H(αn+1) −H(αn))nn+1(2.80)

ε
p
n+1 = εp

n + ∆γnn+1(2.81)

σn+1 = σtr
n+1 − 2µ∆γnn+1(2.82)

In order to properly account for the tangent stiffness for a plastically deforming

material point, we need to be able the compute the algorithmic consistent tangent.

Again, for the model of J2 plasticity being discussed here, we can follow Simo and

Hughes (1998), Chapter 3, where the authors derive the consistent tangent. The

derivation begins with a differentiation of the algorithmic expression for the stress,

σn+1 = C : (εn+1 − ∆γnn+1 − εp
n), using the chain rule

(2.83) dσn+1 =

[
C − 2µnn+1 ⊗

∂∆γ

∂εn+1

− 2µ∆γ
∂nn+1

∂εn+1

]
: dεn+1

Then the two partial derivative quantities are given by

∂∆γ

∂εn+1

=

[
1 +

K ′(αn+1) +H ′(αn+1)

3µ

]−1

nn+1(2.84)

∂nn+1

∂εn+1

=
2µ

‖ξtr
n+1‖

(
I − 1

3
1 ⊗ 1

)
(I − n⊗ n) .(2.85)

The portion of the tangent due to plasticity then follows as

C∗ = − 2µ

‖ξtr
n+1‖

(
I − 1

3
1 ⊗ 1

)

− 2µ

[[
1 +

K ′(αn+1) +H ′(αn+1)

3µ

]−1

− 2µ∆γ

‖ξtr
n+1‖

]
nn+1 ⊗ nn+1.

(2.86)

Then the consistent elastoplastic tangent can be found by adding the plastic contri-

bution to the elastic contribution.

(2.87) Cep = C +C∗
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This tangent is then used to evaluate the element stiffness matrix, (2.51), where Cep

is used instead of C.

This completes the local radial return procedure, and the results are used in

the global system of equilibrium equations. A sketch of the algorithm can be seen

in Algorithm 2.2. The process repeats until the global residual is reduced to a

sufficiently small number. Once convergence is reached for a given time step, the

state is incremented and the solution process begins again, until the total simulation

time is reached.

2.3 Numerical Examples

To illustrate the concepts presented in chapters 2 and 2.2 some example simu-

lations are presented below. In particular, representative load-displacement curves

for a hardening material are shown along with proper convergence for a material

specimen in torsion. The differences between isotropic and kinematic hardening are

demonstrated for a boundary value problem with a reversal in loading. Also, the

pathological mesh dependence is observed when a material exhibits softening behav-

ior. This failure of convergence is of particular importance in modeling localization

and failure problems.

2.3.1 Hardening

For the purposes of demonstration, consider a cylinder placed in torsion. This

boundary value problem (BVP) produces a gradient in the strain field, and will be

used to show proper convergence for both perfect plasticity and isotropic hardening.

A schematic of the problem can be seen in Figure 2.6, which shows that one end

of the cylinder is fixed in all three degrees of freedom, while the other end of the

cylinder is given a prescribed rotation in the θ direction.
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Algorithm 2.2 Predictor-corrector algorithm for classical plasticity

Predictor stage

Compute trial state
for each element do

σtr
n+1,j = C : (∇sun+1 − εp

n)
qtr

n+1,j = qn

ξtr
n+1 = dev σtr

n+1,j − qn

f tr = f(σtr
n+1,j , q

tr
n+1,j)

if f ≥ 0 then

Add current element to list of plastic elements
else

σn+1,j = σtr
n+1,j

end if

end for

Corrector stage

for each element in set of plastic elements do

Compute plastic quantities
Find ∆γ from Algorithm 2.1

nn+1 =
ξ

tr

n+1

‖ξ
tr

n+1‖

αn+1 = αn +
√

2
3∆γ

Update quantities
σn+1 = σtr

n+1,j − 2µ∆γnn+1

ε
p
n+1 = ε

p
n + ∆γnn+1

qn+1 = qn +
√

2
3 (H(αn+1 − αn))nn+1

Compute consistent tangent from (2.86) and (2.87)
end for

Assemble global stiffness and residual
Solve for un+1,j+1

Check for global convergence
if ‖Rn+1,j‖ < TOL then

Advance state (·)n+1 → (·)n

else

Increment equilibrium iteration, j → j + 1, return to predictor
end if
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T

θ

Figure 2.6: Schematic of the torsion BVP

First consider the case of perfect plasticity, which coincides with a hardening

parameter of zero. This means that the deviatoric stress in the body cannot exceed

a certain value, no matter how much the body is deformed. This is a useful test since

we can obtain, in the asymptotic limit, an analytical solution for the torque when the

cylinder has entered the fully plastic regime. From elasticity we know that the torque

on a circular cross section is equal to the integral over the area of the shear stress

multiplied by the radius. In this case the shear stress is limited by perfect plasticity

to be τy = σy/
√

3, where τy is the yield stress in shear and σy in the uni-axial yield

strength. An expression for the torque follows.

T =

∫

A

(τyr)r dr dθ(2.88)

T =
σy 2π R3

3
√

3
(2.89)

For the particular problem in question, with material constants from Table 2.1, the

analytical solution for the applied torque is T = 147.371 [N-mm]. In Figure 2.7,

torque versus radians of twist are plotted for increasingly fine mesh densities. Each

curve is labeled by a mesh number. The number of tetrahedral elements for each
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Parameter Value [units]

Young’s modulus, E 200.0E3 [MPa]
Poisson’s ratio, ν 0.3
Yield strength, σy 975.0 [MPa]
Cylinder radius, R 0.5 [mm]

Table 2.1: Parameters used in the simulation of the torsion BVP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.05  0.1  0.15  0.2  0.25  0.3

analytical solution
Mesh 1
Mesh 2
Mesh 3
Mesh 4

T
or

q
u
e

[N
-m

m
]

radians

Figure 2.7: Perfect plasticity for the torsion BVP

mesh can be found in Table 2.2. The curves approach the analytical solution with

mesh refinement, which shows that the computed solution is converging to the correct

answer.

Next, we set the hardening parameter to be non-zero. As an example, we will

choose it to be 22∗103 [MPa] (simply for convenience). Then, the same torsion BVP

is solved for each of the meshes used in the perfect plasticity study, and the results

Mesh Number of tets

Mesh 1 1031
Mesh 2 3882
Mesh 3 12159
Mesh 4 21517

Table 2.2: Number of elements per mesh for the torsion BVP



42

 0

 50

 100

 150

 200

 250

 300

 0  0.05  0.1  0.15  0.2  0.25  0.3

Mesh 1
Mesh 2
mesh 3
Mesh 4

radians

T
or

q
u
e

[N
-m

m
]

Figure 2.8: Isotropic hardening for the torsion BVP

can be seen in Figure 2.8. Again, note that as the mesh is refined, the curves begin

to converge to one solution. It should be intuitive from Figures 2.7 and 2.8, even

without the mathematical machinery of a solution convergence analysis, that classical

plasticity with hardening and perfect plasticity are well-posed and well behaved. This

is true even rigorously, but is not the case where the hardening modulus becomes

negative, which is the subject of Section 2.3.2.

Another important example, reverse loading, differentiates isotropic hardening

from kinematic hardening. Recall from Section 2.1.3 that isotropic hardening ex-

pands the yield surface isotropically, whereas kinematic hardening is a translation of

the yield locus in stress space. Kinematic hardening is used to model the Bauschinger

effect, which is observed as a decrease in yield strength of a material when the di-

rection of loading is changed. In the isotropic case, upon reverse loading after ex-

periencing plastic deformation in the first direction, the radius of the yield surface

will have expanded, which leads to a compressive yield stress larger in magnitude
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tension compression

Figure 2.9: Cyclic loading: tension followed by compression
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Figure 2.10: Illustration of the Bauschinger effect

than the initial yield stress. For kinematic hardening, the radius of the yield surface

does not change, so that upon unloading the magnitude of the compressive yield

point turns out to be smaller than the initial yield stress by an amount equal to the

hardening experienced in the first stage. For a schematic of the loading, see Figure

2.9 and for a plot of both isotropic and kinematic hardening models, see Figure 2.10.

2.3.2 Softening

To illustrate the pathological mesh dependence induced by material softening,

we now consider a plane strain BVP of a plate in compression. The intent is to

reproduce a localization in the body such as a shear band, see Lewandowski and
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prescribed displacement

geometric imperfection

Figure 2.11: Schematic of the plane strain compression BVP

Greer (2005) and Meyers et al. (2003). For a schematic of the simulation, refer to

Figure 2.11. The plate is modeled with a geometric imperfection to force consistent

localization in a band oriented at 45◦. The same elastic properties were used as in the

torsion BVP above, but now the hardening modulus is prescribed as an exponentially

decreasing function of the equivalent plastic strain, α. The form of the hardening

modulus indicates material softening, and can be seen in (2.90).

(2.90) K(α) = 975.0 exp (−3α)

Figure 2.12 shows a negative slope on the load-displacement curve after the yield

point, and also that as the mesh is refined, the solution no longer begins to converge

to a unique solution as the slope tends to get more negative. Table 2.3 provides the

number of elements used in each of the four meshes, in ascending order. This is one

view of the mesh dependence associated with softening.

Another, somewhat more direct view of the mesh dependence of softening can

come from examination of the shear band produced for each mesh resolution, see

Figure 2.13. The equivalent plastic strain, α, was plotted on each deformed mesh,
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Figure 2.12: Softening in the plane strain compression BVP

Mesh Number of tets

Mesh 1 3420
Mesh 2 7998
Mesh 3 37226
Mesh 4 111916

Table 2.3: Number of elements per mesh for the plane strain compression BVP
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Figure 2.13: Equivalent plastic strain for each mesh

and set to the same scale for comparison. Note that there is no convergence of the

shear band as the mesh is refined, indicating an underlying ill-posedness of the clas-

sical theory. Mesh dependence in strain localization problems is a direct consequence

of the fact that the solution is not unique. The elements along the shear bands seen

in Figure 2.13 introduce a length scale to the problem by which the energy associated

with plastic deformation gets dissipated. Since there is no naturally occurring length

scale in the continuum formulation of the problem to govern the dissipation of energy,

every mesh with a different characteristic length scale will produce a different result,

the very definition of mesh dependence. One interpretation of this phenomenon is an

ill-posedness of strain softening problems, as the tangent modulus tensor loses strong

ellipticity. Various methods to introduce a length scale and regularize solutions have

been presented. Variational multiscale approaches are introduced in Garikipati and
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Hughes (1998) and Garikipati and Hughes (2000), where a fine scale is introduced

to model the microstructure. Nonlocal approaches were introduced in Bazant et al.

(1984), which introduce a length scale by integrating a volume with a given radius,

usually encompassing multiple element diameters. For gradient models, the intro-

duction of another gradient, say of the plastic strain, needs some sort of length scale

to remain dimensionally consistent. For example, the model in Aifantis (1987) that

includes the Laplacian of the equivalent plastic strain introduces such a length scale.

That model is applicable to problems of localization and shear as shown here. In

Fleck and Hutchinson (2001) multiple length scales are introduced in an effort to

model different micromechanical deformation mechanisms. These length scales can

then be utilized as mechanisms for energy dissipation, rendering the solution mesh

independent.



CHAPTER 3

Dislocation Based Plasticity

This chapter is devoted to an elementary discussion of dislocation theory in the

context of describing plastic deformation, and the extension of these ideas into a

continuum treatment. Dislocation theory provides some insight into the micro-

mechanical behavior of single and polycrystalline materials. In particular, the origins

of dislocation theory are concerned with metals, which are indeed polycrystalline.

Dislocation theory, however, does not provide a definitive model of plastic behav-

ior at the macro scale, the reason being that interactions between dislocations and

their surrounding environments, which may include obstacles such as grain bound-

aries or even other dislocations, are far too numerous and complex to be efficiently

modeled. All encompassing theory lacking, some aspects of plastic deformation can

be described quite well by dislocation theory and for that reason, and the fact that

the generally accepted mechanism for plastic flow is dislocation motion, it is worth

taking the time to understand.

3.1 Plasticity in Crystals

A crystal is a solid formed by a three-dimensional pattern of repeating atoms

which form a lattice. For metals, there are three particular patterns which occur

most often, hexagonal close packed (HCP), face centered cubic (FCC), and body

centered cubic (BCC). Figure 3.1 shows examples of each of these crystal structures,

48
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a) b) c)

Figure 3.1: Common metal crystals: a) FCC, b) BCC, c) HCP

Crystal Structure Metal

FCC Aluminum, Copper, Gold
BCC α-Iron, Tungsten
HCP Zinc, Magnesium

Table 3.1: Examples of FCC, BCC, and HCP metals

and Table 3.1 gives examples for each crystal structure. The notion of slip embodies

the idea of the relative motion between atoms. The lattice structure, or pattern,

gives rise to two crystallographic quantities, slip planes and slip directions. Slip

planes are planes which are parallel to the planes of atoms which have the closest

packing distance. The closest packing distance is the direction in which the distance

between atoms is the smallest. Within a slip plane, directions parallel to the closest

packing distance are called slip directions. Together for a given crystal, slip planes

and slip directions are known as slip systems. It is observed experimentally that

plastic deformation is the result of the slip, or relative atomic motion, along slip

planes under a given shear stress.

One method for determining the shear stress necessary to achieve slip along the

favorable crystallographic directions is know as Schmid’s law. Consider a single

crystal tensile specimen under a stress σ along its axis, which forms an angle φ with

the normal of a slip plane, and another angle λ with the slip direction. The shear

stress resolved along the slip plane that produces plastic deformation, known as the

critically resolved shear stress, can be seen in (3.1). For a schematic depiction of the
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slip plane

λ

σ

φ

Figure 3.2: Slip plane in a body under uniaxial tension

process, see Figure 3.2.

(3.1) τc = cosφ cosλ σ

If we consider that slip is the primary mechanism for plastic deformation, then

it is plausible to determine the shear stress necessary to displace one plane of atoms

over another. The result is the theoretical shear strength of a material. To calculate

a simple approximation, assume the stress necessary to move the top plane of atoms

in Figure 3.3 is periodic. This assumption is justified by noting that if the lattice is

initially in equilibrium, then a displacement of x = b will return it to equilibrium,

and a displacement of x = b/2 would place it in an unstable equilibrium.

(3.2) τ = τmaxsin
2πx

b

Now to first-order, τ = 2πτmaxx/b, and for a small displacement, x, we know from

elasticity that τ = Gγ, where the shear strain γ = x/a. It follows that

(3.3) τmax =
Gb

2πa
.

Observe that in (3.3), the theoretical shear strength of a material is within an order

of magnitude of the shear modulus G if b is close to a. The startling observation that
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a

b x τ

τ

Figure 3.3: Relative displacement of a whole plane of atoms

prompted development of the theory of dislocations was that actual measurements

of the shear strength of single crystals are three to five orders of magnitude less than

the shear modulus. Obviously, the mechanism for plastic deformation was not whole

planes of atoms in relative motion.

To resolve the discrepancy between the theoretical shear strength and measured

values the concept of dislocations as specific defects in the lattice was proposed by

both G.I. Taylor and E. Orowan circa 1934, for reference see the work by Taylor

Taylor (1938). The basic idea proposes dislocations as line defects in a lattice, or

a line of vacancies, which then permit the relative motion of only a few atoms to

achieve slip. This theory sufficiently accounts for observed shear strengths, as will be

seen below. Two basic types of dislocations exist: edge and screw. Edge dislocations

can be thought of as arising from inserting an extra plane of atoms into an existing

crystal. At the termination of the extra plane the lattice becomes distorted. The

imperfection in the distorted lattice can be characterized by the lack of closure of a

loop, or Burger’s circuit, through the unperturbed lattice around the imperfection.

This characterization is referred to as the Burger’s vector, and can be thought of as

a measure of the incompatibility of the lattice. For an illustration of the Burger’s

vector, b,1 for an edge dislocation, see Figure 3.4. Note that the dislocation line,

recalling that dislocations are line defects, would continue in and out of the page

from the point of imperfection, and that the dislocation line is perpendicular to the

1Not to be confused with a body force, which should subsequently be clear from the context.
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4

3

3b

3

Figure 3.4: An edge dislocation with Burger’s vector, b

Burger’s vector for an edge dislocation. A screw dislocation, as can be seen in the

three dimensional schematic in Figure 3.5, can be thought of as making a partial cut

through a lattice, and then displacing the cut portions in a shear direction until the

lattice lines up again. A significant distinction between edge and screw dislocations

is the fact that while edge dislocations have b perpendicular to the dislocation line,

screw dislocations have b parallel to the dislocation line. In reality, dislocations may

be of mixed character, meaning that a portion of the dislocation has edge character,

and a portion has screw character. However, the Burger’s vector is conserved.

To make concrete the connection between plasticity and dislocations, consider

a lattice with a dislocation present under an applied shear stress. When the stress

reaches a critical value, it becomes energetically favorable for bonds between atoms to

switch, effectively transporting the dislocation through the lattice. This dislocation

motion is the primary mechanism for plastic deformation in crystalline materials.

It is worth pointing out that while the presence of a dislocation within a crystal

lattice induces a local elastic stress field, plastic deformation is not realized until a
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Figure 3.5: A screw dislocation

sufficient applied stress causes that dislocation to move. A simple schematic of an

edge dislocation progressing through a lattice under an applied shear stress, τ , can

be seen in Figure 3.6.

A better approximation for the applied stress necessary to produce dislocation

τ

τ

τ

τ

τ

τ

Figure 3.6: Edge dislocation moving through a lattice
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motion than the theoretical shear strength (3.3) is given by the Peirls-Nabarro stress.

(3.4) τPN =
2G

1 − ν
exp

( −2πh

d(1 − ν)

)

In (3.4), h denotes the distance between adjacent planes of atoms, d denotes the

distance between atoms in each plane, G is the shear modulus, and ν is Poisson’s

ratio. The first notable observation from (3.4) is that the predicted critical shear

stress is on the order of experimental observations for single crystals. Second, as the

ratio h/d increases, τPN decreases, which corresponds to more densely packed planes

and/or larger separation between close packed planes, which is consistent with the

notion of slip systems playing an important role in a material’s plastic behavior.

Dislocation theory can also be applied to explain how a material work hardens

under an applied load. The notion of hardening at the micro-structural level can be

expressed as the increased load necessary to continue to move a dislocation through a

lattice when it has encountered an obstacle. This increased load manifests as harden-

ing in a macroscopic load displacement curve. Consider a polycrystalline aggregate,

such as a metal, comprised of multiple grains at different orientations. Then the crys-

tal structure is generally not continuous across grain boundaries. Consider also that

within each grain the crystal structure is likely imperfect and contains dislocations of

various character. Now consider an applied load sufficient in magnitude to produce

dislocation motion. Taking an elementary view yields two observations. First, as

dislocations move within a crystal grain, they will encounter other dislocations that

will serve as obstacles, increasing the stress necessary to propagate them further.

Second, grain boundaries will also act to impede the motion of dislocations, again

increasing the applied load necessary to produce dislocation motion. These are two

of the simplest examples of hardening in a polycrystalline material.

An explanation for the Bauschinger effect, discussed in Sections 2.1.3 and 2.3.1,



55

comes from the idea that dislocations tend to pile-up at grain boundaries. To further

this notion, the idea of dislocation annihilation needs to be introduced. Imagine

another edge dislocation, similar to Figure 3.4, except that the extra plane of atoms is

inserted from the bottom of the lattice instead of from the top. These two dislocations

would have opposite sign. It follows that when two dislocations of opposite sign

interact, the net result is dislocation annihilation, leaving the lattice unperturbed.

Another point to make is that dislocations of the same sign have stress fields that

tend to repulse one another. With these two concepts stated, the Bauschinger effect

can be explained as follows in two parts. First, upon loading dislocations of like sign

pile up at grain boundaries, creating a back stress due to the same sign repulsion.

Upon unloading, the repulsion aids in dislocation motion in the reverse direction,

effectively reducing the yield strength. The second part to the explanation assumes

that dislocations of the opposite sign are produced when the loading is reversed, and

the interaction of the new dislocations with those already existing causes annihilation,

reducing the total number of potential obstacles and the yield strength in the process.

It is left to describe how dislocations are produced within a crystal in order to

explain both the second explanation of the Bauschinger effect, and the fact that

some materials can achieve extremely high levels of plastic deformation. For the

latter, if the dislocation number was fixed from the initial state, a material would

be limited in the amount of plastic deformation it could experience by the number

of dislocations it has, which is not the case. One such explanation for dislocation

generation is known as a Frank-Read source. To begin, consider a dislocation line,

fixed at the nodes A and B, subject to an applied load. The obstacles preventing

the motion of the dislocations at A and B are not important for this description,

but could be point defects or other obstacles that render the dislocation immobile
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A

AA

AA

B

BB

BB

dislocation line

dislocation loop

Figure 3.7: A Frank-Read source for dislocation generation

at those points. Under the applied load, the dislocation line will bulge out in the

direction of the stress, and will eventually reach a critical point where it will spiral

around the pinning points. When the dislocation loop meets with itself, it annihilates

creating a complete dislocation loop and a new dislocation line between the pinning

points, A and B. For a visual depiction of the Frank-Read source, refer to Figure

3.7. Other dislocation generation mechanisms exist as well, such as multiple cross

slip, which will not be discussed here.

The ideas presented above represent just an elementary view of the science of

dislocations. Concepts such as temperature dependence, dislocation glide and climb,

velocity and density have been omitted from this discussion. It should be clear that

dislocation motion is capable of describing plasticity and hardening mechanisms in

single crystals and polycrystalline aggregates. Lacking is an efficient and general

bridge between the micro-mechanical behaviors and the macro-scale continuum the-

ories of plasticity. Subsequent developments in this document will attempt to address

this issue, presenting an incompatibility based hardening mechanism within the con-
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text of a continuum theory.

3.2 Extending Burger’s Vector to the Continuum

The objective of this section is to use the concept of the Burger’s vector, b, intro-

duced above and develop a continuum measure of incompatibility. The continuum

quantity that can be related to a measure of the incompatibility in a lattice is termed

the Burger’s tensor, and is denoted by G. The concept of the Burger’s tensor has

been extensively studied, for background see Cermelli and Gurtin (2001) and refer-

ences within. Modern treatments begin in the general setting with the multiplicative

decomposition of the deformation gradient into elastic and plastic parts, as in (3.5),

due largely to Lee (1969) and Kroner and Teodosiu (1972).

(3.5) F = F eF p

Note that in the context of finite deformation the additive decomposition, (2.13), no

longer holds in general, but can be recovered from the general theory under certain

small strain assumptions. The physical significance of (3.5) in the context of crystal

plasticity can be found in Asaro (1983), where the plastic part of the deformation

gradient, F p, is due solely to the plastic slip along the slip planes of the lattice in

question.

Using the multiplicative decomposition, various definitions of G are compared

and contrasted in Cermelli and Gurtin (2001). The main objective of the remainder

of this section will be to derive a G suitable for formulating a small strain contin-

uum constitutive theory, and for this reason the following material will follow closely

with the work in Gurtin (2004). We can restrict the theory to the small strain

context pertinent to this dissertation by recalling a particular definition of the de-

formation gradient seen in (A.9). Then the small strain version of the multiplicative
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decomposition of the deformation gradient becomes the additive decomposition of

the displacement gradient as in (3.6).

(3.6) ∇u = He +Hp

Here, He is now the elastic part of the displacement gradient, and Hp is the plastic

part of the displacement gradient. As plastic deformation is observed to be isochoric,

an additional restriction is placed on the plastic part of the displacement gradient, or

plastic distortion, namely trHp = 0. The insistence that Hp be deviatoric is similar

to the construction of εp as deviatoric in the classical theory. A pertinent feature

of the theory is that there is no assumption, a priori, that the plastic spin, ωp =

skew Hp,2 provides no contribution to the free energy of the plastically deformed

body as in the classical theory. In fact, assuming zero plastic spin is the simplest

possible assumption to recover the additive decomposition of strain in the classical

theory, because the classical theory only deals with strains, which are the symmetric

part of the displacement gradients. The inclusion of the plastic spin occurs as a

natural consequence of the characterization of the Burger’s tensor in a continuum

body. A measure of the incompatibility in the plastic distortion, Hp, can be related

to the Burger’s vector via Stokes’ theorem, which integrates an infinitesimal loop,

similar to the Burger’s circuit mentioned above. In the small strain setting where

configuration mapping terms can be neglected, for a smooth oriented surface, S with

boundary ∂S

(3.7)

∮

∂S

Hp dX =

∫

S

(curlHp)Tn dA,

where n is the unit normal to the surface S. Then the definition of the Burger’s

2Recall the Euclidean decomposition of a second rank tensor, T , into its symmetric and skew
symmetric parts, Tij = Sij + Wij , where Sij = Sji and Wij = −Wji. Then we say the Hp can be
decomposed into the plastic strain and plastic spin as Hp = εp + ωp.
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tensor follows as

(3.8) G = curlHp.

The quantity GTn gives a measure of the Burger’s vector, per unit area, for a plane

with unit normal, n. It is worth noting that for a theory to properly capture the

effects of the Burger’s tensor, the evolution of the plastic spin must be accounted

for, since Hp = εp + ωp, and G = curlHp. It follows that classical methods, which

do not have any notion of plastic spin, are not equipped to deal with the notion of

the Burger’s vector correctly.

The Burger’s vector, per unit area, GTn, can be thought of as evolving according

to a balance. Consider the time rate of change,

(3.9)
˙

GTn = (curl Ḣp)Tn = −div (−Ḣp(n×)),

where (n×) is the skew tensor (n×)ij = εirjnr, and Ḣp(n×) represents a tensorial

Burger’s vector flux through planes with normal n. As a result of this balance, we

have the following result,

(3.10) Ḣp(n×) = 0,

which holds at a particular point if and only if there is no Burger’s vector flow across

the plane with unit normal n.



CHAPTER 4

Gradient Plasticity

The objectives of this chapter are the development of a gradient dependent plastic-

ity constitutive model using the concepts introduced in Chapter 3. The constitutive

model is based on the work of Gurtin (Gurtin, 2004) and uses the concept of the

Burger’s tensor, G, introduced in Section 3.2.

4.1 Constitutive Model

To begin the development of the gradient dependent constitutive model, recall

the additive decomposition of the displacement gradient into elastic and plastic parts

from Section 3.2.

∇u = He +Hp

Also recall that trHp = 0, indicating the deviatoric nature of the plastic distortion.

A priority in development of the theory is a mechanism by which to account for

the Burger’s vector and Burger’s vector flux, and so the theory will depend on the

definition of the Burger’s tensor,

G = curlHp.

The principal of virtual power will be employed to derive the macroscopic balance

of momenta, and what Gurtin terms the microforce balance, by which we will deter-

mine the flow rule. In order to achieve a theory that accounts for incompatibilities,

60
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two stresses are introduced, T p and S, conjugate to Hp and G respectively. Then

we can define the internal power as

(4.1) Wint =

∫

Ω

σ : Ḣe + T p : Ḣp + S : Ġ dV

where σ is the Cauchy stress, T p is termed the microstress which has deviatoric

nature like Hp (tr T p = 0), and S is termed the defect stress. Next, the external

power can be defined as

(4.2) Wext =

∫

Ω

b · u̇ dV +

∫

∂Ω

S(n) : Ḣp + t(n) · u̇ dS,

where b is now the body force (not to be confused with the Burger’s vector which

henceforth will not be explicitly mentioned), t(n) is a macroscopic traction, and S(n)

is a microtraction related to the flow of dislocations across surfaces. All stress and

stress-like quantities are assumed to be invariant under superposed rigid rotations.

For a brief introduction to material frame invariance, or objectivity, see Section A.4

in the Appendix.

Using the expressions in (4.1) and (4.2), we denote a set of virtual velocities,

V = (w,v,V ) corresponding to u̇, Ḣe, and Ḣp. The following requirements are

placed on the virtual velocities, consistent with their non-virtual counterparts.

∇w = v + V(4.3)

tr(V ) = 0(4.4)

It is assumed that the virtual velocities transform under superposed rigid rotations

in a similar manner as the quantities from which they are derived, which gives v →

v +W for a rigid rotation, W , while V and curlV are invariant. We arrive at the

virtual internal and external power by inserting the relevant virtual terms into (4.1)
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and (4.2).

Wint(V ) =

∫

Ω

σ : v + T p : V + S : curl V dV(4.5)

Wext(V ) =

∫

Ω

b ·w dV +

∫

∂Ω

S(n) : V + t(n) ·w dS(4.6)

The principal of virtual power can then be stated as a balance between virtual

internal and external power, and frame indifference of the internal virtual power.

(4.7) Wint(V ) = Wext(V )

Next, the macroscopic momentum balances will be derived. As a validation ex-

ercise, we attempt to obtain the classical balance of momenta by considering a rigid

rotation, Q. The only term in the virtual power that is not invariant by construction

is v (the virtual velocity of Ḣe), which transforms as v+Q. As in the classical the-

ory, for invariance to hold, σ : Q = 0, which implies that the Cauchy stress must be

symmetric, precisely the same result obtained from the balance of angular momen-

tum.1 Now, considering a generalized virtual velocity V = 0, such that ∇w = v, we

can, in the standard way, use the divergence theorem to obtain the classical state-

ment of equilibrium and the traction condition. Starting with (4.7) and using (4.5)

and (4.6) with V = 0 we obtain

(4.8)

∫

∂Ω

t(n) ·w dS +

∫

Ω

b ·w dV =

∫

Ω

σ : v dV =

∫

Ω

σ : ∇w dV,

where the second equality holds since v = ∇w. We can use the divergence theorem

to obtain

(4.9)

∫

∂Ω

(t(n) − σn) ·w dS +

∫

Ω

(divσ + b) ·w dV = 0,

1In Gurtin’s work he does not assume at the outset, as we have here, that the stress, which
he denotes as T , is symmetric, and uses this exercise to show that the classical stress measure
is recovered. Here we are simply verifying what we already know from the balance of angular
momentum, namely that σ must be symmetric.
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from which, using the arbitrariness of w, we arrive at the desired result.

divσ + b = 0(4.10)

t(n) = σn(4.11)

The flow rule for this theory comes from a microforce balance. The microforce

balance can be thought of as the microscopic counterpart of the macroscopic balances.

To that end we introduce an identity that is essentially the integration by parts of

one of the terms in the virtual internal power. For tensor fields A and B,

(4.12) −
∫

∂Ω

(n×A) : BT dS =

∫

Ω

(
A : curlB −BT : curl (AT)

)
dV.

For a proof of (4.12), please see Appendix B, Section B.2. The tensor n× is the

skew object created from defining the axial vector n. This becomes a useful way to

restate the first term in (4.12). Moving on, we choose a virtual velocity w = 0, so

that v = −V , and we then write the associated virtual power relation from (4.7),

again using (4.5) and (4.6).

(4.13)

∫

∂Ω

S(n) : V dS =

∫

Ω

((T p − σ) : V + S : curlV ) dV

Now we use (4.12) to obtain

(4.14)

∫

∂Ω

(
S(n) + ((n×)S)T

)
: V dS =

∫

Ω

(
(T P − σ + (curl (ST))T

)
: V dV.

From this we deduce the microforce balance using the fact that V is deviatoric and

σ is symmetric.

(4.15) s = T p + (dev curl (ST))T

Where bs2 is the deviatoric part of the Cauchy stress. Similarly, we arrive at the

2Care must be taken to distinguish between the deviatoric part of the Cauchy stress, s, the
defect stress, S, and the microtraction, S(n).
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microtraction condition using the fact that for the skew tensor (n×)T = −(n×).

(4.16) S(n) = dev (ST(n×))

To complete the model we need to develop constitutive expressions for the various

stresses. In formulating the constitutive theory, a free energy is chosen of the form

Ψ(εe,G), and the macro and micro stresses are defined to be thermodynamically

conjugate to the kinematic tensors εe and G, respectively. The elastic free energy is

defined in the standard way as Ψe(εe) = 1
2
εe : C : εe, such that the usual definition

of stress results, σ = C : εe.

Ψ(εe,G) = Ψe(εe) +
1

2
k|G|2(4.17)

σ =
∂Ψ

∂εe
= C : εe(4.18)

S =
∂Ψ

∂G
= kG = k curlHp(4.19)

Taking the symmetric part of the additive decomposition of the displacement gradi-

ent, (3.6), we get an expression for the total strain, ε = εe + εp. From this we can

deduce an expression for the elastic strain, and thus recover the classical definition

of the Cauchy stress, restated here for convenience.

(4.20) σ = C : (ε− εp)

Next, a constitutive relation is assumed for the micro-stress,

(4.21) T p = Y (dp)Ḣ
p
,

where dp is an effective distortion rate.

(4.22) dp = ‖Ḣp‖ =
√
Ḣp : Ḣp
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With (4.18), (4.19), and (4.21) in hand, we can revisit the microforce balance, (4.15),

and state the flow rule.

(4.23) s−
(
dev curl (k curlHp)T

)T

= Y (dp)Ḣp

Attention is drawn to the form of (4.23), which is that of a flow rule with kinematic

hardening for k > 0 (recall (2.24)). In this interpretation, dev curl (k curlHp)T plays

the role of a deviatoric back stress. Rate independent behavior is obtained when the

function Y (dp) is specified to be σy/d
p, where σy is the uniaxial yield strength, and

this is the form that will be used henceforth.

For the partial differential equation describing the microforce balance, additional

boundary conditionals are necessary. For simplicity, we will concentrate on boundary

conditions that provide no expenditure of power on the boundary. To begin, we start

with the microtraction condition, (4.16). Then we introduce a projection operator,

P(e) = 1 − e⊗ e, which provides the projection onto the plane perpendicular to e.

Note that for the skew matrix associated with n, (n×)P(n) = (n×), which is true

because (n×)(n⊗n) = (n×n)⊗n and n×n = 0. Using the projection, we have

dev (ST(n×)) : Ḣp = (ST(n×)) : Ḣp(4.24)

= (ST(n×)P(n)) : Ḣp(4.25)

= (ST(n×)) : Ḣp
P(n).(4.26)

Thus we can arrive at two separate conditions providing a null expenditure of external

power, either

(4.27) dev (ST(n×)) = 0,

or

(4.28) Ḣp(n×) = 0,
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where we have utilized the fact that for a tensor A, AP(n) = 0 ⇐⇒ A(n×) = 0.

Consider the latter, the homogeneous essential boundary condition denoted the

microhard boundary condition. The microhard condition corresponds to a vanishing

flux of the Burgers vector, GTe, for all planes with normal e intersecting ΓH , where

ΓH is regarded as the microhard boundary, see Section 3.2. The complementary

natural boundary condition corresponds to a micro-stress free boundary, ΓS, and is

referred to as the microfree boundary condition.



CHAPTER 5

Discontinuous Galerkin Methods

Discontinuous Galerkin (DG) methods were first introduced in 1973 in Reed and

Hill (1973) which addresses the neutron transport equation. Essentially they de-

veloped a method that allows for a flux term to be discontinuous across element

boundaries. They demonstrate the new method’s superiority, in terms of accuracy

and robustness, over methods where the same flux is continuous. Further applica-

tion to problems from fluid mechanics came in Cockburn and Shu (1989) and Bassi

and Rebay (1997) and the references within. Efforts towards elliptic problems are

summarized and analyzed in Arnold et al. (2002). The main idea for the so called

interior penalty (IP) methods is the approximation of continuity in the unknown dis-

continuous variable by penalizing jump terms across element boundaries. Another

variant introduces a lifting operator which sums element boundary contributions.

5.1 Preliminaries

In order to present the ideas of DG methods in a familiar setting, below in Section

5.2, we will derive the DG variational statement for linear elasticity. In preparation

for that exercise certain concepts need to first be defined. Consider a domain, Ω,

discretized into a collection of disjoint subdomains or elements, Ωe. Then the collec-

tion of interior domains, Ω̃, is given as the union of all elements as in (5.1), and the

collection of interior domain boundaries, Γ̃, is given as the union of the intersection
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Ω

Γ̃

Ω̃

Figure 5.1: Interior domains and interior domain boundaries

of element boundaries as in (5.2).

Ω̃ =

nel⋃

e=1

int(Ωe)(5.1)

Γ̃ =

nel⋃

e1,e2=1

(
∂Ωe1

⋂
∂Ωe2

)
(5.2)

For an illustration of these concepts, refer to Figure 5.1.

Next, we define a discontinuous field, (5.3), the jump operator, (5.4), the average

operator, (5.5), and the element diameter, (5.6). The jump operator and average

operator are defined by elements on either side of the interior boundary in question,

denoted by the superscript + and −, as seen in the definition of the discontinuous

field, refer to Figure 5.2.

Discontinuous field : f±
∣∣∣

eΓ
= lim

ε→0
f(x∓ εn)(5.3)

Jump operator : [[f ]] = f+ − f−(5.4)

Average operator : 〈f〉 =
1

2

(
f+ + f−

)
(5.5)

Element diameter : h = diam(Ωe)(5.6)
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e

Figure 5.2: Schematic of a shared interior facet, e

[[f ]]
〈f〉

Ω−
eΩ+

e e

f+

f−

Figure 5.3: Jump and average of a scalar field, f

For tensorial fields, f , an alternate definition of the jump operator can be used that

utilizes the normals, with respect to the attached elements, of the interior boundary,

n+ and n−.

(5.7) Jump operator : [[f ]] = f+n+ + f−n−

Using the fact that n+ = −n−, (5.7) can also be written as [[f ]] = (f+ − f−)n+,

which will be useful for subsequent developments. For an illustration of the jump

and average for a scalar field, refer to Figure 5.3.

5.2 DG Variational Statement for Linear Elasticity

Matters proceed with an exploration of the concepts of DG methods within the

familiar context of linear elasticity. To begin with, recall the strong form of the
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statement presented in Chapter 2.2 in (2.38), and for simplicity, assume an absence

of body forces and applied tractions. For the description of the DG variational form,

we now assume that the trial solution and weighting spaces can be discontinuous

across element boundaries. Now the accompanying trial and solution spaces are

simply in L2, which incidentally consists of a larger set of functions.

Si = {ui|ui ∈ L2(Ω), ui = gi on Γgi
}(5.8)

Vi = {wi|wi ∈ L2(Ω), wi = 0 on Γgi
} .(5.9)

As before, we multiply through by a weighting function and perform integration

by parts. Now consider that the domain of interest is discretized into a collection

of disjoint subdomains, such as triangles in two dimensions or tetrahedra in three

dimensions. As a consequence of the discontinuity of the displacements, interior

domain boundary terms that resemble tractions arise after the integration by parts,

see (5.10).

(5.10)

∫

Ω

wi,jCijklu(k,l) dΩ −
∫

eΓ

[[wi

(
Cijklu(k,l)nj

)
]] dΓ = 0

From here, we say that for equilibrium to hold in the same sense as for the continuous

problem, the traction terms on the interior boundaries must be continuous, which

implies that the jumps in those terms must evaluate to zero in a weak sense.

At this point, the symmetric DG interior penalty method for linear elasticity is

stated, and the following discussion will show consistency of the method by deriving

the Euler-Lagrange equations. Recalling the assumption of no body forces or applied

tractions, and appropriate definitions of the function spaces we have:
∫

Ω

wi,jCijklu(k,l) dΩ −
∫

eΓ

[[wi]]〈
(
Cijklu(k,l)nj

)
〉 dΓ

−
∫

eΓ

[[ui]]〈
(
Cijklw(k,l)nj

)
〉 dΓ +

α

h

∫

eΓ

[[wi]][[ui]] dΓ

︸ ︷︷ ︸
penalty term

= 0.
(5.11)
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Derivation of the Euler-Lagrange equations will make use of the following identity.

(5.12) [[figi]] = 〈fi〉[[gi]] + [[fi]]〈gi〉

For a proof of (5.12), please see Appendix B, Section B.1. Beginning with (5.11),

motivated by the desire to obtain an expression similar to (5.10), we add and subtract

the following, noting the net result is simply zero.

(5.13) +

∫

eΓ

〈wi〉[[(Cijkluk,l)nj]] d Γ −
∫

eΓ

〈wi〉[[(Cijkluk,l)nj]] d Γ

Incorporating (5.13) with (5.11), we make use of the identity in (5.12).

(5.14)

∫

eΓ

[[wi(Cijkluk,l)nj]] dΓ =

∫

eΓ

[[wi]]〈(Cijkluk,l)nj〉 dΓ +

∫

eΓ

〈wi〉[[(Cijkluk,l)nj]] dΓ

After the preceding manipulations, we have a set of terms as follows.

∫

Ω

wi,jCijklu(k,l) dΩ −
∫

eΓ

[[wi(Cijkluk,l)nj]] dΓ

−
∫

eΓ

[[ui]]〈(Cijklw(k,l))nj〉 dΓ +

∫

eΓ

〈wi〉[[(Cijkluk,l)nj]] d Γ

+
α

h

∫

eΓ

[[wi]][[ui]] dΓ = 0.

(5.15)

Integration by parts on (5.15)1,2 yields the classical domain term from linear elasticity,

(5.16)

∫

Ω

wi(Cijkluk,l),j dΩ =

∫

Ω

wi,jCijkluk,l dΩ −
∫

eΓ

[[wi(Cijkluk,l)nj]] dΓ,

such that, with standard arguments about the variations, the Euler-Lagrange equa-

tions are stated below.

∫

Ω

wi(Cijkluk,l),j dΩ = 0(5.17)
∫

eΓ

[[ui]]〈
(
Cijklw(k,l)

)
nj〉 dΓ = 0(5.18)

∫

eΓ

〈wi〉[[(Cijkluk,l)nj]] d Γ = 0(5.19)
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Interpretation of (5.17) reveals the standard equilibrium condition, written in strong

form as div σ = 0. The other equations, (5.18) and (5.19), are weak impositions

of the continuity of displacement and traction, respectively. The equations, (5.17)–

(5.19) show consistency between the symmetric DG IP method and the classical

continuous method.

Note that the penalty term adds a positive definite contribution, stabilizing the

formulation. The choice of the penalty parameter, α, is usually obtained via trial and

error, as values that are too small fail to stabilize the solution, whereas values that

are too large ill-condition the system, impacting accuracy. For the linear elasticity

problem, good behavior is observed for penalty values on the order of 100 to 10000

times an elastic modulus such as E or λ. Figure 5.4 compares the solutions of

the continuous and discontinuous Galerkin linear elastic methods. The contours

in Figure 5.4 are the magnitude of the displacement. In particular, two different

values of α are shown, illustrating poor stability for the choice of small penalty

parameter. The continuous and stable DG solutions are identical, however the size

of the system being solved varies drastically. The cubic mesh shown has 64 nodes and

162 elements. For the continuous solution in three dimensions, there are 64×3=192

degrees of freedom. For the DG system, each element has 12 degrees of freedom

corresponding to the 4 nodes of each tetrahedron and 3 dimensions. So the total

number of degrees of freedom come to 12×162=1944, an order of magnitude greater

than for the continuous problem. The computational cost of DG is certainly not

justified for linear elasticity.

Another formulation can be derived by following the presentation in Brezzi et al.

(2000), which itself is a modified version of the method discussed in Bassi and Rebay

(1997). The formulation is based on the construction of a lifting operator defined on
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Figure 5.4: Continuous solution, DG solution, α=1E4 λ, DG solution, α=1E-4 λ

the element interior boundaries. First, consider the union of adjacent elements, E,

and the shared edge as e, as in Figure 5.2, then for the linear elasticity problem, the

lifting operator can be defined as follows.

(5.20)

∫

E

v : re(u) dΩ = −
∫

e

〈v〉[[u⊗ n]] dΓ

Then an additional function is defined as the sum of the edge contributions from the

lifting operator.

(5.21) R(u) =
∑

e∈eΓ

re(u)

Then the variational statement for the lifting variation of the DG formulation for

linear elasticity can be written.

∫

Ω

(wi,j +Rij(w))Cijkl(u(k,l) +Rkl(u)) dΩ+

∑

e∈eΓ

η

∫

Ω

re
ij(w)Cijklr

e
kl(u) dΩ = 0

(5.22)

Now a new stabilization parameter, η is introduced. The lifting formulation carries

advantages over the IP formulation, namely that the method is stable for η > 0,

see Brezzi et al. (2000). However the lifting formulation is also more expensive to

compute during the finite element assembly.
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5.3 DG Methods for Higher Order Theories

For linear elasticity, either the DG IP method or the lifting method are consid-

erably more complicated than the physics require. For that reason, it would not be

effective nor efficient to solve linear elastic problems with those methods. However,

the ability to approximate inter-element continuity positions DG methods to han-

dle higher order theories nicely. One of the most prominent challenges with higher

order theories are the continuity requirements of the solution fields. For a fourth-

order problem, after successive integration by parts to move derivatives over to the

weighting function, C 1 continuity is required of the basis for second gradient terms to

make sense. The additional degrees of freedom necessary in a C 1 formulation (versus

the standard C 0 formulation) impose difficulties in implementation, particularly for

three dimensional problems, as well as permitting undesirable oscillatory behavior

on the interior of the element not seen in the standard case. Mixed methods, which

to some extent address the two issues raised above, have their own drawbacks, in-

cluding stability requirements that aren’t easily discernible. However, DG methods

allow for the formulation and solution of fourth-order theories without the need to

impose C 1 continuity or introduce additional solution fields.

To illustrate the practical application, a few examples where DG methods are

applied to fourth-order problems are presented. First, consider the Cahn-Hilliard

equation, which is a fourth-order nonlinear parabolic partial differential equation

with origins in governing phase segregation in binary alloys, but which has also been

used to model multiphase fluid flow, image processing, and planet formation, see

Wells et al. (2006) and references therein. The DG formulation studied is a variant

of the symmetric DG IP method derived above for linear elasticity, and performs
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comparably to a mixed formulation, possibly admitting lower-order polynomial in-

terpolation and having no reliance on the stability condition inherent in the mixed

formulation.

Another example can be found in Wells et al. (2004), which discusses a gradient-

dependent damage model. Gradient damage models can be used to model strain

localization in the presence of softening, an example of which is seen in Section 2.3.2,

as well as size effects in materials. Again, the authors use a variant of the symmetric

DG IP formulation for the damage variable, and the results from the rather simple

model compare well with the chosen benchmark solution.

In Engel et al. (2002) the authors discuss the application of DG methods to

thick beams and plates. Currently, the most prominent formulations for struc-

tural elements add a rotational solution field to ensure proper continuity at the

element boundaries, driven again by the C 1 continuity requirement emanating from

the fourth-order theory. For example, the DG formulation of Poisson-Kirchoff plate

theory presented uses a symmetric IP method and employs no derived variables such

as rotations, simplifying matters. Furthermore, in Wells and Dung (2007) the au-

thors use a lifting formulation and show improved stability properties over the IP

method. Further research into this area is warranted as high fidelity plate and shell

simulations are in high demand.

Lastly, the adaptation of DG methods into strain gradient plasticity theories are

the most relevant for this dissertation. Some of the earliest and most successful at-

tempts at adding gradient terms into plasticity models came from Aifantis (1987),

where the author added a Laplacian of the equivalent plastic strain into the flow

rule in an effort to regularize strain localization problems. However, the formulation

involved the use of C 1 basis functions. A more recent approach utilizing DG method-
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ologies is given in McBride (2008), where the author uses, again, the symmetric DG

IP method to evaluate the Laplacian of the equivalent plastic strain. The methodol-

ogy and algorithms that form the core of the work in this dissertation, which begin

in earnest in the next section, are modeled somewhat after those in McBride (2008).

5.4 Variational Formulation for Gradient Plasticity

From the previous section we arrived at two partial differential equations, the first

describing the macroscopic equilibrium condition, or balance of linear momentum,

and the second governing the flow rule for the gradient plasticity model.

div σ + b = 0(5.23)

T p − s︸ ︷︷ ︸
standard term

+
(
dev curl (k curlHp)T

)T

︸ ︷︷ ︸
gradient term

= 0(5.24)

We will derive a formulation from (5.23) and (5.24), first by noting explicitly how

the two equations are coupled. To accomplish this they will be restated solely in

terms of u and Hp.1

div C : (∇su− εp) + b = 0(5.25)

Y

dp
Ḣp − C : (dev ∇

su− εp) +
(
dev curl (k curlHp)T

)T

= 0(5.26)

It follows that the coupling of the equations comes from the Cauchy stress terms

in both equations, specifically the displacement gradient and the symmetric part of

Hp.

For the equilibrium equation, we proceed in a similar fashion as in Chapter 2.2 to

arrive at a weak statement of (5.23), namely integration by parts after multiplying

through by a weighting function, w, and integrating over the domain. In abstract

1Recall that εp = symHp.
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notation,

(5.27) (∇w,C : (∇su− εp))Ω = (w, b)Ω + (w, t(n))Γt
.

Where Γt is the part of the boundary with prescribed tractions. In a similar fashion,

we arrive at a weak statement of (5.24), where now we are using integration by

parts to transport a curl over to the weighting function, V . First we note that

A : BT = AT : B, and then we use the result of (4.12) on the gradient term of the

flow rule and the fact that V is constructed to be deviatoric.

(5.28)
(
V T, curl (k curlHp)T

)
Ω

= (curl V , k curlHp)Ω − (V ,ST(n×))Γ

Then noting the microtraction condition, (4.16), applicable for the microtraction

boundary, ΓS, the statement of the classical Galerkin weak form of the problem is

the following: Find {u,Hp} ∈ S × P ⊂ H1(Ω) × devH1(Ω) s.t. ∀ {w,V } ∈

V × Q ⊂ H1(Ω) × devH1(Ω)

(∇w,σ)Ω = (w, b)Ω + (w, t(n))Γt
(5.29)

(V ,T p − s)Ω + (curl V , k curlHp)Ω = (V ,S(n))ΓS
(5.30)

With two primal fields, the displacements, u, and the plastic distortion, Hp, the

resulting formulation necessarily involves a mixed method. The solution of the dis-

placement field will come in the standard way, using a piecewise continuous basis.

The treatment of the flow rule is the main topic for the rest of this section. The classi-

cal statement of the gradient plasticity model could be implemented using continuous

interpolations for both u and Hp. However, the solution spaces, P,Q ⊂ devH1(Ω)

imply a minimum of 32 degrees of freedom for Hph ∈ P1(Ωe). If the regularity

assumptions can be relaxed, i.e. if we can choose P,Q ⊂ dev L2(Ω), then the min-

imum number of degrees of freedom can be reduced to 8, and, furthermore, larger
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functional spaces become available. Continuity would still be required, but could be

enforced in a weak sense, which motivates use of DG methodology in constructing

an alternate variational formulation.

Revisiting Section 5.2 for motivation in manipulating the equations, we consider

discontinuous Hp and arrive at the following equation in terms of interior domains,

Ω̃ and interior facets, Γ̃.

(V ,T p − s)Ω + (curl V , k curlHp)eΩ

+ ([[V ,ST(n×)T]])eΓ = (V ,S(n))ΓS

(5.31)

We then apply the following identity to (5.31).

(5.32) [[A(n×) : B]] = [[A(n×)]] : 〈B〉 + 〈A〉 : [[B(n×)T]]

The proof of (5.32) can be found in Appendix B, in Section B.3. It is a variant of the

identity in Section B.1, and its motivation becomes apparent below. Now employing

(5.32) on the relevant term in (5.31) yields the following.

(V ,T p − s)Ω + (curl V , k curlHp)eΩ

+ ([[V (n×)]], 〈ST〉)eΓ + (〈V 〉, [[ST(n×)T]])eΓ = (V ,S(n))ΓS

(5.33)

An IP method requires two more pieces, a consistent term for the weak continuity of

Hp(n×), and a penalty term. The first such term is motivated again by the desire

for symmetry with the term that arises naturally through integration by parts.

(5.34) (〈(k curl V )T〉, [[Hp(n×)]])eΓ

Recall that S = k curlHp from (4.19). The penalty term appears as

(5.35)
α k

h
([[V (n×)]], [[Hp(n×)]])eΓ.

Note that the penalty parameter, α, gets multiplied by the gradient modulus, k, in

(5.35). Lastly, the term with [[ST(n×)T]] is omitted, as it will return below when the
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Euler-Lagrange equations are derived to serve the purpose of enforcing continuity of

the microtraction.

All the components are in place to state the symmetric DG IP variational for-

mulation for the model of gradient plasticity discussed above. Find {uh,Hph} ∈

S h × Ph ⊂ H1(Ω) × devL2(Ω) s.t. ∀{wh,V h} ∈ V h × Qh ⊂ H1(Ω) × devL2(Ω)

macroscopic equilibrium is satisfied,

(5.36) (∇wh,σh)Ω = (wh, b)Ω + (wh, t)Γt
,

and the flow rule is also satisfied,

(V h,T ph − σh)Ω + (curl V h, k curlHph)eΩ

+([[V h(n×)]], 〈(k curlHph)T〉)eΓ + (〈(k curl V h)T〉, [[Hph(n×)]])eΓ

+
α k

h
([[V h(n×)]], [[Hph(n×)]])eΓ = (V h,S(n))ΓS

.

(5.37)

Variational consistency of the formulation is demonstrated by applying integra-

tion by parts to arrive at (5.42)–(5.46). Note that to recover the curl-curl domain

term in the flow rule we need to reverse the steps of the derivation using (5.32) after

adding and subtracting the term with [[ShT
(n×)T]]. Modelling the steps from the

linear elastic case and focusing on the flow rule, we add the following to the method:

(5.38) + (〈V h〉, [[ShT
(n×)T]])eΓ − (〈V h〉, [[ShT

(n×)T]])eΓ,

and now we can use (5.32), giving,

(5.39) ([[V h,ShT
(n×)T]])eΓ = +(〈V h〉, [[ShT

(n×)T]])eΓ + ([[V h(n×)]], 〈ShT〉)eΓ.
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After these manipulations, the terms remaining in the flow rule can be seen below.

(V h,T ph − σh)Ω + (curl V h, k curlHph)eΩ

+([[V h,ShT
(n×)T]])eΓ + (〈(k curl V h)T〉, [[Hph (n×)]])eΓ

−
(
〈V h〉, [[(k curlHph)T (n×)]]

)
eΓ

+
α k

h
([[V h(n×)]], [[Hph(n×)]])eΓ = (V h,S(n))ΓS

.

(5.40)

Integration by parts can be used on (5.40)2,3 to recover the curl-curl domain term.

(5.41) (V hT
, curl(k curlHph)T)Ω = (curl V h, k curlHph)eΩ + ([[V h,ShT

(n×)T]])eΓ

Similar integration by parts occurs for the macroscopic equilibrium equation in the

standard way. The resulting Euler-Lagrange equations are stated below.

(
wh, div σh + b

)
Ω

= 0(5.42)

(
V h,T ph − σh + (curl(k curlHph)T)T

)
eΩ

= 0(5.43)

(〈(k curl V h)T〉, [[Hph (n×)]])eΓ = 0(5.44)

(
〈V h〉, [[(k curlHph)T (n×)]]

)
eΓ

= 0(5.45)

(
V h, (ST (n×) − S(n))

)
ΓS

= 0(5.46)

From these Euler-Lagrange equations it is clear that the exact solution also satisfies

the interior penalty discontinuous Galerkin weak from (5.36) and (5.37), which is

the classical requirement for consistency of a finite element formulation. Note that

(5.45) is equivalently expressed as
(
〈V h〉, [[ShT

(n×)]]
)

eΓ
= 0, implying continuity of

the microtraction in a weak sense. Now note that, using standard arguments about

the arbitrariness of the weighting function, V , we have enforced the flow rule, and

weak continuity of the primal field and the microtraction, verifying consistency. As

mentioned above, for C 0-continuous Hph, i.e. Hph ∈ P1(Ωe), at least 32 degrees

of freedom are needed. However for C −1-continuous Hph, i.e. Hph ∈ P0(Ωe), only
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8 degrees of freedom are needed. The reduction in degrees of freedom is attractive,

but the cost is that for Hph ∈ P0(Ωe), the gradient/backstress component of the

model lies entirely within the interior penalty term, which depends on the penalty

parameter α.

5.5 Implementation

Implementation of the model is carried out in a nonlinear finite element code using

a Newton-Raphson iterative procedure. The FEniCS project was chosen to be the

framework for the implementation. Please refer to Appendix C for an overview of the

FEniCS project. The displacement field is chosen to be C 0 continuous, or piecewise

continuous, in the standard way, while the plastic displacement gradient field in

chosen to be C −1 continuous, or piecewise constant. This choice of space for Hp

significantly reduces the number of degrees of freedom necessary for representation,

as mentioned above, and also simplifies the notion of boundary conditions for the

flow rule PDE. The microhard and microfree boundary conditions apply only to the

boundary of the plastic domain, and thus for linear or higher-order fields, it would

be possible for the elastic-plastic boundary to exist within elements and special

consideration would be necessary to properly define the normal vector and hence

apply boundary conditions. For piecewise constant plastic fields, the most natural

decision is to use the element faces which are already available, and no additional

surfaces need to be created to apply boundary conditions.

Using piecewise constants for Hp simplifies the variational formulation since all

the curl terms evaluate to zero. The benefit of this is simplicity and efficiency, while

the drawback is the aforementioned issue with the gradient term being inseparable

from the penalty term. Also, we will be considering only Dirichlet boundary con-
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ditions and no body forces, which further simplifies the formulation. Lastly, the

solution procedure will be solving for increments in displacement and plastic distor-

tion, and so interpolations will be written for incremental quantities. For complete-

ness, the simplified variational form is stated as: find {δuh, δHph} ∈ S h × Ph ⊂

H1(Ω) × devL2(Ω) s.t. ∀{wh,V h} ∈ V h × Qh ⊂ H1(Ω) × devL2(Ω) macroscopic

equilibrium is satisfied,

(5.47) (∇wh,σh)Ω = 0,

and the flow rule is also satisfied,

(5.48) (V h,T ph − σh)Ω +
α k

h
([[V h(n×)]], [[Hph(n×)]])eΓ = 0.

The interpolations for the solution and variational fields are defined as

δuh =

nnodes∑

a

N ada δwh =

nnodes∑

a

N aca,(5.49)

δHph =

np∑

b

φbηb δV h =

np∑

b

φbθb,(5.50)

where the index a cycles through the number of nodes in the element, and the index

b cycles through the number of integration points used to represent the Hp degrees

of freedom. Since we will be using piecewise constants to interpolate Hp, we will

only have one integration point per element. Also the basis functions in (5.50) will

simply be identity matrices. Henceforth, for notational simplicity, the superscript h

denoting finite dimensional approximations, will be dropped. The resulting system

differs from the plasticity model discussed in Chapters 2 and 2.2 in a number of

ways. First, due to the gradient term, the plastic fields are governed by a PDE,

with implications of a larger system of equations to solve. Second, the system of

equations now includes a term defined on the interior facets, Γ̃, stemming from the
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DG formulation. Third, the plastic field Hp is not necessarily a symmetric tensor,

and in fact, its deviation from symmetry will solely come from the gradient term.

As in the standard case, a yield surface needs to be defined. Recall that the

gradient term has the appearance of a backstress, call it β, in the flow rule. Then

using the concepts discussed in Chapter 2, we formulate the yield surface.

(5.51) f(σ,β) := ‖s− β‖ −
√

2

3
σy

And the restriction holds that f ≤ 0.

The temporal solution is achieved via a backward Euler time integration scheme,

therefore the solution procedure is implicit. To do this, a given time step is concerned

with advancing the solution from the time tn to the time tn+1, where the time step

∆t is then defined as tn+1 − tn. Since the data at tn is known (as it is potentially a

converged solution), the algorithm is constructed using plastic quantities defined at

tn. To begin, we will define some algorithmic quantities below. Consider the Cauchy

stress at time tn+1.

(5.52) σn+1 = C : (εn+1 − εp
n+1)

Where εn+1 = ∇
sun+1 and εp

n+1 = symH
p
n+1. For the microstress T P we need to

approximate the quantity Ḣp.

(5.53) T
p
n+1 =

σy

dp
Ḣp ≈ σy

dp

(
H

p
n+1 −Hp

n

∆t

)

Recall the equation for dp, (4.22) which can be approximated as

(5.54) dp
n+1 ≈

∥∥∥
H

p
n+1 −Hp

n

∆t

∥∥∥ =
‖Hp

n+1 −Hp
n‖

∆t
.

Combining (5.53) and (5.54) the time step factors cancel by construction, which

necessitates rate independent stress. A simplified representation of the microstress,
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without the time step factors, can be seen in (5.55), which has the form of a magni-

tude times a direction. Note that for this formulation, the magnitude of T p is fixed

to be σy.

(5.55) T
p
n+1 = σy

(
H

p
n+1 −Hp

n

‖Hp
n+1 −Hp

n‖

)

A predictor-corrector solution strategy is used. A discussion of the strategy fol-

lows below, and the algorithm can be seen in Algorithm 5.1. A trial state is evaluated

and the yield condition is checked during the predictor stage, and solution of the flow

rule is computed for the set of elements that have violated the yield condition in the

corrector stage. This solution strategy is analogous to that of classical plasticity,

the main difference being the global solution of the flow rule PDE in the gradient

plasticity case, versus the local solution in the classical case.

For the predictor stage, we first apply the Dirichlet boundary conditions assuming

elastic constitutive behavior and solve to get an initial guess for the displacement

field at tn+1. Then we define the trial state with respect to the displacements at time

tn+1, but the plastic fields at time tn, as mentioned above. Again, (·)tr denotes a

quantity in its trial state.

σtr
n+1 = C : (∇sun+1 − εp

n)(5.56)

βtr
n+1 = βn(5.57)

f tr
n+1 = f(σtr

n+1,β
tr
n+1)(5.58)

Now the yield condition is evaluated using (5.51), and any element that violates the

requirement that f ≤ 0 is determined to be in the set of plastic elements.

In the corrector stage, the flow rule PDE is assembled and solved in an iterative

fashion using a Newton-Raphson method. We assume that the displacement field,
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Algorithm 5.1 Predictor-corrector algorithm for gradient plasticity, global equilibrium
iteration j, and time step n + 1

Predictor stage

if j == 0 then

Use elastic tangent
else

Compute trial state
for each element do

σtr
n+1,j = C : (∇sun+1 − εp

n)

βtr
n+1,j = βn

f tr = f(σtr
n+1,j ,β

tr
n+1,j)

if f ≥ 0 then

Add current element to list of plastic elements
else

σn+1,j = σtr
n+1,j

end if

end for

end if

Corrector stage

while flow rule residual, ‖Rp
n+1,k‖ > TOL do

for each element in set of plastic elements do

Compute plastic quantities
∆Hp

n+1,k = H
p
n+1,k −Hp

n

d̃p
n+1,k = ‖∆Hp

n+1,k‖
T

p
n+1,k =

σy

fdp
n+1,k

∆Hp
n+1,k

σn+1 = C : (∇sun+1 − εp
n+1,k)

end for

Assemble Kp
n+1,k, R

p
n+1,k

Solve (5.67) and update Hp
n+1,k+1 = H

p
n+1,k + δHp

Increment flow rule iteration, k → k + 1
end while

Assemble global equilibrium (5.79) solve for un+1,j+1

Check for global convergence
if ‖Req

n+1,j‖ < TOL then

Advance state (·)n+1 → (·)n

else

Increment equilibrium iteration, j → j + 1, return to predictor
end if
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and thus the strain, is constant during the iterative solve of the flow rule. In this

sense the method proposed is a staggered approach at solving a coupled pair of PDEs.

In order to assemble the system, certain quantities need to be computed. The first

of these is the incremental quantity ∆Hp
n+1,k, where k is the current iterate in the

flow rule iterative solve.

(5.59) ∆Hp
n+1,k = H

p
n+1,k −Hp

n

Then a rate independent approximation for dp is made as

(5.60) d̃p
n+1,k = ‖∆Hp

n+1,k‖,

from which T p
n+1,k is computed as

(5.61) T
p
n+1,k =

σy

d̃p
n+1,k

∆Hp
n+1,k.

To evaluate the Cauchy stress, the plastic strain is computed and the stress is calcu-

lated via (5.52). Equations (5.61) and (5.52) define the microstress and the Cauchy

stress, which are regarded as element quantities in the set of plastic elements that

make up the plastic domain. The other term from (5.48) considers quantities defined

on the interior facets of the plastic domain, and uses the current iterate of Hp
n+1,k

and the normal vector for the facet being integrated, meaning that no fields need to

be computed to assemble that term. The residual for the method then comes from

assembling the variational form with the current iterate.

(5.62) R
p
n+1,k = (V ,T p

n+1,k − σn+1)Ω +
α k

h
([[V (n×)]], [[Hp

n+1,k(n×)]])eΓ

When assembled into matrix form, (5.62) can be expressed as

(5.63) θT
{
R

p
n+1,k

}
,
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where the vector θ are the degrees of freedom associated with V , as seen in (5.50).

Lastly, the flow rule needs to be linearized with respect to an increment in Hp. The

approach taken is a first-order Taylor expansion of the residual.

(5.64) Rn+1,k+1 = Rn+1,k +
∂Rn+1,k

∂Hp : δHp = 0

The linearization of the flow rule, to obtain the derivative term in (5.64), can be seen

in the Appendix in Section B.4, and the result is shown below.

∂Rn+1,k

∂Hp : δHp =

V ,


 σy

d̃p
n+1,k

1 ⊗ 1 − σy

d̃p
3

n+1,k

∆Hp
n+1,k ⊗ ∆Hp

n+1,k + C


 : δHp




Ω

+
αk

h
([[V (n×)]], [[δHp(n×)]])eΓ

(5.65)

From (5.65), the consistent tangent can be assembled into the stiffness matrix for

the flow rule, Kp
n+1,k, and iteratively solved for δHp

k, the increment in the plastic

distortion. In matrix form the system for the flow rule, (5.64), looks as

(5.66) θT
{
R

p
n+1,k

}
+ θT

[
K

p
n+1,k

]
η = 0,

where η is the vector of degrees of freedom associated with δHp. Due to the arbi-

trariness of the variational degrees of freedom θ, we arrive at the following system,

for η.

(5.67)
[
K

p
n+1,k

]
η = −Rp

n+1,k

Then the iteration proceeds with the update of the field using (5.67) and the inter-

polations for δHp in (5.50)

(5.68) H
p
n+1,k+1 = H

p
n+1,k + δHp

k,

and k → k + 1.
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The backstress, βn+1, comes directly from the flow rule, (5.24), and as such is

defined as

(5.69) βn+1 =
(
dev curl

(
k curlHp

n+1

)T)T

.

However, the choice of a constant basis forHp renders (5.69) insufficient to determine

the backstress, since the curl terms evaluate to zero. In order to construct a consistent

backstress the variational form of the flow rule, and specifically the fact that it is

driven to zero, is exploited. Given a converged solution of the flow rule where we are

substituting (5.69) in for the gradient term,

(5.70) T
p
n+1 − dev σn+1 + βn+1 = 0,

we can approximate the back stress as,

(5.71) βn+1 ≈ T p
n+1 − dev σn+1.

Inspection of the method shows that for a hardening modulus of zero, k = 0,

T
p
n+1 = dev σn+1 and no backstress is accumulated. Intuitively, the backstress term

comes directly from the interior facet gradient term. In practice, once the flow rule

solution procedure has converged, βn+1 is calculated, and the solution of macroscopic

equilibrium follows.

The solution of the equilibrium equation follows a successful solution of the flow

rule. In a similar fashion the Hp degrees of freedom are held constant during this

solve, and further, the fact that the flow rule has been satisfied is exploited, which

essentially allows the whole mixed system to be assembled and solved. The global

equilibrium residual, for iterate j, is constructed as

(5.72) R
eq
n+1,j =





(∇w,σn+1,j)Ω

0




,
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which in matrix form appears as,

(5.73)





c

θ





T


R
eq
n+1,j

0




,

where the 0 is indicative that the flow rule has already been satisfied, leaving a zero

residual for the Hp degrees of freedom. After relatively simple linearization, the

equilibrium tangent can be split into partitions defined as

(∇w,C : ∇
sδu)(5.74)

+ (∇w,−C : (sym δHp))Ω(5.75)

+ (V ,−C : ∇
sδu)Ω(5.76)

+


V ,


 σy

d̃p
n+1,k

1 ⊗ 1 − σy

d̃p
3

n+1,k

∆Hp
n+1,k ⊗ ∆Hp

n+1,k + C


 : δHp




Ω

+
αk

h
([[V (n×)]], [[δHp(n×)]])eΓ,

(5.77)

which lead to the matrix equations for the linearized global equilibrium system.

(5.78)





c

θ





T






R
eq
n+1,j

0





+



Kuu

n+1,j Kuh
n+1,j

Khu
n+1,j Khh

n+1,j








d

η






 = 0

The result of (5.78), when considering the arbitrariness of the variations, is the

system of equations seen below.

(5.79)



Kuu

n+1,j K
up
n+1,j

K
pu
n+1,j K

pp
n+1,j








d

η





= −





R
eq
n+1,j

0





Note that the matrix Kpp
n+1,j is precisely the same matrix from the converged solu-

tion of the flow rule, Kp
n+1,k, and thus can be reused during assembly of the global

equilibrium system. At this time, the global system is assembled and solved. How-

ever, further manipulation of the system is possible, and could impact the efficiency
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of the algorithm. Consider the global system in (5.79), which can be written into

two equations.

Kuu
n+1,jd+Kup

n+1,jη = −Req
n+1,j(5.80)

K
pu
n+1,jd+Kpp

n+1,jη = 0(5.81)

Concentrating on (5.81), we can solve for the vector η, in terms of the displacement

degrees of freedom d.

(5.82) η = −
[
K

pp
n+1,j

]−1
K

pu
n+1,jd

Now we can use the result of (5.82) by substitution into (5.80) to arrive at the

following equation.

(5.83)
(
Kuu

n+1,j −Kup
n+1,j

[
K

pp
n+1,j

]−1
K

pu
n+1,j

)
d = −Req

n+1,j

The previous process is not unlike static condensation for a local field, however the

matrix to be inverted in this case, [Kpp
n+1,j], is global by nature due to the interior

facet terms, and cannot be reduced down to a matrix inversion at the element level.

Nevertheless, manipulation of the system into (5.83) deserves attention and will be

studied in future work.



CHAPTER 6

Numerical Results

In order to test the model formulation and implementation, a number of simu-

lations were run. Specifically, this Chapter will focus on boundary value problems

that illustrate the features of the gradient plasticity model. The first problem ex-

amined will be the cylinder under torsion discussed in Section2.3, mainly because

the solution exhibits a spatially varying strain field which produces a gradient in the

displacement gradient and in Hp. These gradients activate pertinent features of the

model that uniform strain fields do not. A comparative example will be given for

uniaxial tension. Next, the plane strain compression problem from Section 2.3 will

be studied for the effect of the gradient model on the localization phenomenon. The

gradient hardening term in the model provides a length scale by which dissipation

occurs, as opposed to any inherent mesh size.

6.1 Torsion

The implementation seen in Algorithm 5.1 for the DG IP formulation is first

applied to the torsional boundary value problem. Please see Figure 2.6 to recall

the scenario. The first set of simulations are intended to show that as the gradient

modulus, k, is varied, a proportional increase in hardening is observed. To ensure

that the mesh resolution is sufficient to resolve the gradients, three meshes are used

for a constant domain size and constant hardening modulus. The number of elements

91
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Mesh Number of tets

Mesh 1 1031
Mesh 2 3882
Mesh 3 6826

Table 6.1: Number of elements per mesh for the DG torsion problem

Figure 6.1: Picture of Mesh 3 for the DG torsion problem

in each mesh used can be seen in Table 6.1, and a picture of Mesh 3 can be seen in

Figure 6.1. In Figure 6.2 the relative change between the torque curves is sufficiently

small to justify the use of Mesh 3 for our studies. Ideally, mesh resolutions similar

to those seen in Section 2.3.1 would be used in the comparison to the analytical

solution for perfect plasticity would be used. However, additional computation cost

introduced by the DG formulation place practical restrictions on the mesh size for

the initial implementation of this model. Further refinement studies will follow more

efficient implementations.

In Figure 6.3, k is varied from 0 (perfect plasticity) to 1000 [MPa-mm2] using a

constant domain size and Mesh 3 from Table 6.1. The response of the model shows

increased hardening, in terms of the applied torque versus twist, as k is increased.

To illustrate that the torsion problem, or another similar boundary value prob-
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Figure 6.4: No hardening for model in tension

lem, is necessary to show the gradient dependence of the model, consider uniaxial

tension. The solution will be a constant stress field throughout the domain, and the

corresponding jump in Hp will be zero, with a net result of zero hardening in the

model. It is worth noting that for this reason, the kinematic hardening introduced

in this model is not a mechanism by which to model the Bauschinger effect, seen in

Section 2.3.1 and discussed in Section 3.1, which can be observed in uniaxial cyclic

loading. Figure 6.4 shows the lack of effect that the gradient term has on a uniaxial

stress field with a gradient modulus k = 1000.0. In this case, since the hardening

term is not activated, the response of the model is elastic-perfectly plastic. The

number of elements for the meshes used in Figure 6.4 varied monotonically from 6

tetrahedral elements for Mesh 1 to 384 for Mesh 4 for a cubic geometry.

The first of our objectives in formulating the gradient model presented in this

dissertation is the ability to model a size effect in a plastically deforming material.

To accomplish this, a series of cylinders of various radius a, ranging from 1 mm to
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Figure 6.5: Size effect of varying the cylinder radius

0.125 mm, were meshed and subjected to the same torsional boundary conditions

as previously discussed. Figure 6.5 shows that, for a constant gradient hardening

modulus k=20, as the radius of the cylinder is decreased, the normalized hardening

response increases, indicating an inverse relationship between size and hardening.

The size effect cannot be captured by the classical theory, since it does not include

an inherent length scale.

6.2 Localization

The second main objective of the gradient formulation is the ability to achieve

mesh independent solutions for localization problems. As discussed earlier, the soft-

ening pathologies illustrated in Section 2.3.2 can be alleviated by the introduction of

a length scale by which energy can be dissipated. To this end, linear isotropic hard-

ening is added to the gradient plasticity model, following the procedures outlined

in Chapter 2. The implementation, however, differs due to the fact that the primal
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Figure 6.6: Mesh dependent softening

plastic field is now a global variable. Nevertheless, the main ideas remain the same.

To show the impact that the gradient formulation has on a localization problem,

we will revisit the plane strain compression problem, and apply the DG IP gradient

plasticity formulation to it. See Figure 2.11 to recall the boundary value problem.

The value of the linear isotropic hardening modulus used for this study is fixed at

-2000 MPa.1 To revisit the behavior of the model with a negative linear isotropic

hardening modulus, simulations were run for three different meshes, and the results

can be seen in Figure 6.6, which compares with the results from the classical imple-

mentation seen in Figure 2.12. The number of elements for Meshes 1-3 correspond

to the values in Table 2.3.

Introduction of a non-zero gradient modulus has the effect of introducing a length

scale that serves to define a finite volume over which energy can be dissipated. For

1As opposed to the exponential hardening law used in Section 2.3.2. The load displacement
curves come out nearly the same in each case, and it should be clear that the pathology exists for
both of these cases.
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Figure 6.7: Mesh independent softening via the gradient model

the problem under question, a gradient modulus of 200 [MPa-m2] is used. Figure 6.7

illustrates the effect that the gradient plasticity model has on the softening problem.

The force versus displacement curves essentially lie on top of each other, providing

evidence that the model does indeed alleviate the pathology associated with soften-

ing.



CHAPTER 7

Concluding Remarks

This dissertation presented a formulation of a gradient plasticity model cast in

a discontinuous Galerkin framework. Attention was paid to the classical theory

in order to illustrate the foundation of concepts central to the field of plasticity.

Details regarding finite element implementation and example problems examining

features of the classical theory were also presented. The principles behind discontin-

uous Galerkin methods were discussed along with an example of the DG variational

formulation in the simple setting of linear elasticity. The relationship between dis-

locations and plasticity, specifically dislocation motion, was examined and used as

a basis for a continuum theory of a gradient dependent constitutive model. Varia-

tional principles along with the DG machinery were employed to derive a variational

statement of the gradient plasticity problem fit for implementation into a nonlinear

finite element code. Numerical results were generated for a select number of bound-

ary value problems that illustrated desirable features of the proposed model, namely

the ability to predict a size effect for bodies undergoing plastic deformation, and the

regularization of softening problems leading to mesh independent solutions.

The defining characteristic of this work was the utilization of the symmetric

DG IP method in formulating the flow rule. This allowed for the use of piecewise

discontinuous functions for Hp. A novel investigation into the approximation of the

back-stress term in the yield condition was undertaken, comparing a utilization of the
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lifting operator approach to approximate the curl operator, versus an exploitation

of the flow rule. Furthermore, the integration algorithm for the mixed system was

investigated, the result being a staggered scheme that conceptually resembles the

predictor-corrector strategy of the classical method.

Despite the published results justifying the effort of developing a gradient plas-

ticity theory, the search for clean, reproducible experimental methods is ongoing

because of the assumptions and difficulty in handling the specimen and loading con-

ditions at such small scales. In particular for the microtorsion experiments presented

in Fleck and Hutchinson (1993), another valid explanation for the hardening response

could be constructed if the grain size in the copper wires also decreased with diam-

eter, as grain size is a known influence on the ability of a material to harden. No

characterization of the grain size was discussed, so the topic is still open for debate.

Experiments at these scales are not straightforward. Good results, however, are nec-

essary for a meaningful model validation exercise. Validation entails comparisons

between numerical predictions and experimental data for the purpose of determining

if the correct physics have been incorporated into the model. Comparison efforts

can be focused both towards legacy data found in the literature and also at results

of current work. At this time, the model presented in this dissertation would not

sufficiently describe the hardening response of a material in a validation exercise. To

make the model generally applicable, other well known hardening mechanisms would

have to be incorporated into the theory, and any future extension of the model should

incorporate other mechanisms of physically motivated isotropic and kinematic hard-

ening.

As another direction of future research, more efficient implementation would fa-

cilitate a greater ability to study the behavior of the method, and should proceed in
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a parallel finite element code. In terms of the constitutive model, the extension to

finite deformation is necessary for applicability to a wider variety of problems, pos-

sibly coinciding with the inclusion of other hardening mechanisms. Further research

on how to apply the DG methodology in the context of finite deformation should also

follow. The lifting formulation for the proposed model should be investigated, since

it adds the possibility of separating the hardening term away from the stabilization

term. Other theories of gradient plasticity should be implemented as well to gauge

a comparison between effectiveness and efficiency.
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APPENDIX A

Nonlinear Continuum Mechanics

The following section presents a short introduction to nonlinear continuum mehcanics.

Familiarity with direct and indicial notation is assumed. Specific results are used in

Chapter 2 in the discussion about classical theoretical plasticity. For more detailed

expositions, refer to the cited continuum mechanics texts (Truesdell and Noll, 1965;

Malvern, 1969; Holzapfel, 2000; Gurtin, 2003).

A.1 Kinematics

Kinematics is the study of motion and deformation in continuum bodies. We

postulate the existence of a body, defined as an open subset of R
3, as a collection

of an infinite number of material points. The placement of all material points in

the body at a given time is termed a configuration. The reference configuration

of a body, Ω0, with the material points in their reference positions, X ∈ Ω0, is

arbitrary, but for convenience is often chosen such that none of the points within

the body have experienced any motion or deformation. The initial configuration of a

body coincides with the placement of the body at the time t = 0. For simplicity, it is

further assumed that the initial configuration and reference configuration are one and

the same (which is certainly not necessary). At some time, t > 0, after experiencing
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X x

ϕ

Ω0

Ωt

Figure A.1: Reference and current configuration, motion of a continuum body

loads in some manner, the body exists in its current, or deformed, configuration,

Ωt, with the material points at the current coordinates, x. The motion of the body,

ϕ : Ω0 × [0, T ] → R
3 is a mapping from the reference to the current configuration,

as depicted in Figure A.1, where Ω0 := Ω0 ∪ ∂Ω0; ∂Ω0 being the boundary of

Ω0. Quantites in the reference configuration will henceforth be termed material

quantities, while those in the current configuration will be termed spatial quantities.

The spatial displacement of the body, u(x, t), is a vector field that relates the

placement of the material point in the current configuration to the position it had

in the reference configuration.

(A.1) u = x−X

By this definition and because we have assumed that the initial and reference place-

ments of the body coincide, the displacement vector vanishes in the reference config-

uration.

The velocity and acceleration are also defined for the body in both the reference

and current configurations. The material versions of the velocity and acceleration
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and the first are second time derivatives of the mapping.

(A.2) V (X, t) =
∂ϕ

∂t
, A(X, t) =

∂2ϕ

∂t2

The spatial velocity field is determined from the material time derivative of the

motion, or v = ∂x
∂t

. Finally, the spatial acceleration, determined from the material

time derivative of the spatial velocity can be evaluated as follows.

(A.3) a = v̇ =
∂v

∂t
+ ∇v v

The deformation gradient, F , is a tensor that is used to characterize the defor-

mation of a body as it transforms from the reference configuration into the current

configuration. A derivation of the deformation gradient can easily be accomplished

by considering a material curve in the reference configuration, parametrized by ξ,

X = Γ(ξ). Recall that a material curve is undeformed and associated with the ref-

erence configuration, Ω0. After imposition of a motion, or deformation mapping, ϕ,

the material curve deforms into a spatial curve, x = γ(ξ, t) (spatial quantities will

depend on time, whereas the material curve will not be a function of time). The

spatial curve can then be described parametrically as

(A.4) x = ϕ(Γ(ξ), t),

which upon taking derivatives holding time fixed to determine the tangent to the

spatial curve yields

(A.5) dx =
∂γ

∂ξ
dξ.

Similarly for the material curve

(A.6) dX =
∂Γ

∂ξ
dξ.
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Now using the chain rule and (A.4) to define a relationship between the material

curve and spatial curve tangent vector we arrive at

(A.7) dx = F (X, t) dX,

where the formation gradient F is defined as

(A.8) F (X, t) =
∂ϕ

∂X
=

∂x

∂X
.

The formation gradient is considered a two point tensor since one argument, x, lives

in the current configuration while the other, X, lives in the reference configuration.

F is generally a nonsingular or invertible, which implies that detF 6= 0. The deter-

minant of F is an important quantity called the jacobian determinant, detF = J ,

and physical arguments, such as the impenetrability of matter, dictate that J > 0.

In order to aid later discussion it is useful to show that F can be written in terms of

the displacement vector, u. By combining (A.1) and (A.8) we arrive at the following

alternate expression for the deformation gradient, in terms of displacements, where

1 is the second-order identity tensor.

(A.9) F = 1 +
∂u

∂X

Various strain measures have been proposed, usually as functions of F , which

asssist in the characterization of the material response. One such strain measure will

be introduced here, called the Green-Lagrange strain tensor, E, which is a material

tensor. To define E it is convenient to first define the right Cauchy-Green tensor,

C = F TF . Then the Green-Lagrange strain tensor follows, using 1 as the second-

order identity tensor.

(A.10) E =
1

2
(C − 1) =

1

2
(F TF − 1)
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E is a nonlinear measure of strain which can be illustrated by expanding out (A.10)

using the alternate definition of F , (A.9).

E =
1

2

(
(1 +

∂u

∂X
)T(1 +

∂u

∂X
) − 1

)
(A.11)

=
1

2

(
∂u

∂X
+ (

∂u

∂X
)T + (

∂u

∂X
)T ∂u

∂X

)
(A.12)

It is evident from (A.11) that E is quadratic in the displacements. A simple view

of linearizing this theory that coincides with the classical small strain tensor, ε, is

to consider the quadratic term a higher-order term that can be omitted under the

assumption of infinitesimal displacements. Then the classical symmetric strain tensor

is recovered.

(A.13) ε =
1

2

(
∂u

∂X
+ (

∂u

∂X
)T

)

A.1.1 Scaling Between the Reference and Current Configurations

It is useful to be able to express quantities in either the reference or current con-

figuration. To accomplish this recall from (A.7) that for material and spatial curves

the tangents of the curves are mapped via the deformation gradient. Next we can

consider the relationship between surfaces in the reference and current configuration.

Define a surface in Ω0 parametrized using ξ1 and ξ2 as R(ξ1, ξ2). Similarly for the

surface in Ωt use r(ξ1, ξ2). Elemental areas for R and r are then cross products of

the tangent vectors of each of the parametrized directions.

dR

dξ1
× dR

dξ2
=

dR
dξ1

× dR
dξ2∥∥∥dR

dξ1
× dR

dξ2

∥∥∥

∥∥∥∥
dR

dξ1
× dR

dξ2

∥∥∥∥ = NdA(A.14)

dr

dξ1
× dr

dξ2
=

dr
dξ1

× dr
dξ2∥∥∥ dr

dξ1
× dr

dξ2

∥∥∥

∥∥∥∥
dr

dξ1
× dr

dξ2

∥∥∥∥ = nda(A.15)

Now we can note that the spatial elemental area can also be expressed using the

deformation gradient to map the tangent vectors from the reference to the current
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configuration.

(A.16) n da =

(
F

dR

ξ1

)
×
(
F

dR

ξ2

)

Recalling A useful formula, Nanson’s formula can be stated for a, b ∈ R
3 and second-

order tensor A,

(A.17) Aa×Ab = det(A)A−T(a× b).

Using (A.17) in (A.16) yield the important result.

(A.18) nda = det F F−T NdA.

Then consider an elemental volume, dV , parametrized by three vectors, u,v,w.

(A.19) dV = (u× v) ·w

The volume element in the current configuration can be written using the deformation

gradient as

(A.20) dv = (Fu× Fv) · Fw.

Relating the two is a simple process involving the (A.17) and the transpose of a

tensor and the result follows.

(A.21) dv = det F dV = JdV

A.2 Stress

If we consider a deformable body, then a loading of that body produces inter-

actions between neighboring material points. The concept of stress is a natural

consequence of these interior interactions. Cutting an imaginary plane through our
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dS

Ω0

N

T

Ωt

ds

n

t

ϕ

Figure A.2: Reference and current configuration, tractions on interior surfaces

two configurations in Figure A.1, an interior surfaces dS, in the reference configura-

tion, and ds in the current configuration, are created. See Figure A.2 for a visual

depiction of the quantities in the two configurations. The normal vectors of these

new surfaces are N and n respectively. Now consider that forces are acting between

the two portions of the body divided by the plane. With forces and surfaces we

can define the notion of a traction vector, which has units of stress; force per unit

area. The Cauchy traction vector follows as the force measured per unit surface area

defined in the current configuration. Similarly, in the reference configuration, the

first Piola-Kirchhoff traction vector is the force per unit surface area defined in the

reference configuration. In differential form, the force can be related to the surface

elements and tractions.

(A.22) df = t ds = T dS

A specific relationship between the tractions (t and T ) on a surface and the

normals (n and N ) to that surface was proposed by Cauchy. He states that there is

a linear relationship between the normal vector into the traction vector.

Cauchy’s Stress Theorem There exist unique second-order tensor field σ and
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P so that

t = σn(A.23)

T = PN(A.24)

where σ is a spatial second-order tensor labeled the Cauchy, or true, stress, and P

is a two point tensor, like F , labeled the first Piola-Kirchhoff, or nominal, stress. A

detailed proof of Cauchy’s Theorem can be found in Gurtin (2003), and the result is

so widely used it will not be reproduced here.

The relationship between the Cauchy stress and the first Piola-Kirchhoff stress

can be discerned using Nanson’s formula. First consider that since the material and

spatial representation of the tractions are equivalent, we can equate them.

(A.25) t ds = T dS

Next we can invoke Cauchy’s stress theorem to rewrite (A.25) in terms of σ and P .

(A.26) σn ds = PN dS

Now (A.18) can be used to write the spatial normal vector in terms of the material

frame, and the result expresses the first Piola-Kirchhoff stress in term of the Cauchy

stress.

(A.27) P = JσF−T

It will be shown below in Section A.3.2 that the Cauchy stress in symmetric, which

implies that PF T = FP T, and it follows that the first Piola-Kirchhoff stress is

generally non-symmetric.
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A.3 Balance Laws

The balance laws are fundamental concepts in continuum mechanics, meaning

that they apply for any material. To make the same statement in a stronger fash-

ion, the balance laws must be satisfied in a material for all time in order for the

description of that material to fit within physical limitations as we understand them.

The quantities that must remain in balance are mass, linear momentum, angular

momentum, and energy. Each will be discussed subsequently.

A.3.1 Balance of Mass

If the restriction is made to the description of solid bodies that are neither losing

nor gaining mass by any means of flux or source, then we can state the balance of

mass as the conservation of mass. Define the reference density ρ0(X) as mass per

unit volume, and integrating over the whole volume we can express the mass, m, in

the reference configuration. Exploiting the notion that the mass is constant we can

also define the spatial density, ρ(x, t), and integrate over Ωt to arrive at the same

mass.

(A.28) m =

∫

Ω0

ρ0(X) dV =

∫

Ωt

ρ(x, t) dv

Using (A.21), (A.28), and standard localization arguments, we can arrive at the mass

continuity equation.

(A.29) ρ0X = ρ(x, t)J(X, t)

Since the mass is constant, we note that ρ̇0 = 0, which implies from (A.29) that ˙ρJ =

0. Expanding this out using J̇ = J div v gives the spatial form of the conservation

of mass.

˙ρJ = ρ̇J + ρJ̇ = J(ρ̇+ ρ div v) = 0(A.30)
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A.3.2 Balance of Momenta

Momentum balance principles are used to define the equations of motion for a

body, and excluding polar continua, also result in a symmetric Cauchy stress tensor.

Linear Momentum

Elementary definition of linear momentum of a particle is simply its mass times its

velocity. Generalization of this concept to a continuum body constitutes integrating

the density multiplied by the velocity vector over the proper configuration.

(A.31) L(t) =

∫

Ω0

ρ0V dV =

∫

Ωt

ρv dv

The rate of change of linear momentum is due to resultant forces, F r(t), acting

on the body, L̇(t) = F r(t). Bodies satisfying this balance are in equilibrium. The

resultant force vector can be decomposed into boundary terms (traction) and body

force terms. First consider the spatial description.

(A.32) F r(t) =

∫

Ωt

t ds +

∫

∂Ωt

b dv

Now, we can employ Reynold’s transport theorem to take the material time derivative

of the spatial term in (A.31) and combining with (A.32) we arrive at

(A.33)

∫

Ωt

ρv̇ dv =

∫

∂Ωt

t ds +

∫

Ωt

b dv.

Lastly, Cauchy’s stress theorem is called upon again to write the tractions in term

of a stress, σ. Then the divergence theorem is used to convert the boundary integral

into a domain integral.

(A.34)

∫

∂Ωt

t ds =

∫

∂Ωt

σn ds =

∫

Ωt

divσ dv.
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What results, after localization, by combining (A.34) with (A.33) are the local equa-

tions of equilibrium.

(A.35) divσ + b = ρv̇, σij,j + bi = ρv̇i

Angular Momentum

Angular momentum relative to a fixed point, r, is (not to be confused with J ,

the jacobian determinant) essentially r ×L(t).

(A.36) J(t) =

∫

Ω0

r × ρ0V dV =

∫

Ωt

r × ρv dv

Similar to the treatment above in Section A.3.2, we define a resultant moment equal

to the rate of change of the angular momentum.

(A.37) J̇(t) = M(t) =

∫

∂Ωt

r × t ds +

∫

Ωt

r × b dv

Again, we use Reynold’s transport theorem to take the material time derivative of

J(t) where we note that ˙r × v = r × v̇.

(A.38)

∫

Ωt

r × ρv̇ dv =

∫

∂Ωt

r × t ds +

∫

Ωt

r × b dv

Using Cauchy’s stress theorem and the divergence theorem on the boundary traction

term gives rise to two terms after the distribution of the derivative. In indicial

notation

(A.39)

∫

∂Ωt

εijkrjtk : ds =

∫

∂Ωt

εijkrjσklnl ds =

∫

Ωt

(εijkrjσkl,l + εijkσkj)dv.

Now combining (A.39) with (A.38) and reorganizing terms, we have indicially

(A.40)

∫

Ωt

εijkrj(v̇k − bk − σkl,l) dv =

∫

Ωt

εijkσkj dv.
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Upon inspection of (A.40) note that the left hand side contains the local form of the

balance of linear momentum, or equilibrium, (A.35). This must be satisfied for all

time, which implies the following with the arbitrariness of the elemental volume

(A.41) εijkσkj = 0,

which can only be satisfied if

(A.42) σkj = σjk.

This is the classical result dictating the symmetry of the Cauchy stress tensor.

A.4 Objectivity

The principal of objectivity is a fundamental concept in continuum mechanics, so

much so that theories that do not abide by it are summarily dismissed out of hand.

The basic intuitive idea behind it is that physics and physical laws should not be

affected by the location of the observer, or similarly by a shift in the location of the

observation. What this amounts to is a restriction on the functional forms of tensors

used to describe material behavior.

A change is observer can be equivalently expressed as a rigid body motion of the

current configuration. So given the current position of a body described by x, we

denote positions of a body that has undergone a superposed rigid body motion by

x+. The relation between the two can be expressed as

(A.43) x+ = c(t) +Q(t)x.

Here, c(t) is an arbitrary translation, and thus only a function of time, and Q(t),

is a proper orthogonal tensor, also only a function of time. It follows that the

deformation gradient in the “+” configuration is F+ = Q(t)F . The requirement for
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spatial tensors to be objective is that they transform according to the rule (for a

tensor σ),

(A.44) σ+ = Q(t)σQT(t).

Tensors defined in the reference configuration, for example the right Cauchy-Green

tensor C = F TF , are invariant under superposed rigid body motions.

(A.45) C+ = F+T
F+ = F TQT(t)Q(t)F = C

For a theory of constitutive behavior to have any physical significance, the tensor

measures used to describe the behavior must behave objectively.
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APPENDIX B

Supplementary Topics

B.1 Jump-Average Identity : I

We set out to prove the identity, for scalar fields f and g,

[[fg]] = 〈f〉[[g]] + [[f ]]〈g〉.

To accomplish this we will begin with the right hand side and work back to the left

hand side. Recalling the definitions of jump, (5.4), and the average, (5.5), we expand

the right hand side of the assertion:

avef [[g]] + [[f ]]〈g〉

=
1

2
(f+ + f−)(g+ − g−) + (f+ − f−)

1

2
(g+ + g−)

=
1

2

(
f+g+ − f+g− + f−g+ − f−g− + f+g+ + f+g− − f−g+ − f−g−

)

=
1

2

(
2f+g+ − 2f−g− + (f+g− − f+g−) + (f−g+ − f−g+)

)

= f+g+ − f−g−

= [[fg]]

And the proof is complete.
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B.2 Curl Integration by Parts

We set to prove the following identity, with tensor fieldsA andB and unit normal

n to boundary ∂Ω.

−
∫

∂Ω

(n×A) : BT dS =

∫

Ω

(
A : curlB −BT : curl (AT)

)
dV

To accomplish this we will expand the left hand side in indicial notation and

manipulate using integration by parts to obtain the right hand side.

−
∫

∂Ω

εirpnrApjBji dS = −
∫

Ω

(εirpApjBji) ,r dV

= −
∫

Ω

(εirpApjBji,r + εirpApj,rBji) dV

=

∫

Ω

(ApjεpriBji,r −BjiεirpApj,r) dV

Here we have used the property of the alternating tensor, εpri = −εirp, and the fact

that its gradient is zero.

B.3 Jump-Average Identity: II

We set out to prove the following identity, with tensor fields A and B and unit

normal n.

[[A(n×) : B]] = [[A(n×)]] : 〈B〉 + 〈A〉 : [[B(n×)T]]

To accomplish this we will start by expanding the right hand side and working
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back to the left hand side.

[[A(n×) : B]]

= [[A(n×)]] : 〈B〉 + 〈A〉 : [[B(n×)T]]

= (A+(n+×) +A−(n−×)) :

(
B+ +B−

2

)
+

(
A+ +A−

2

)
: (B+(n+×)T +B−(n−×)T)

=
A+(n+) :

B+

2
+A+(n+) :

B−

2
+A−(n−) :

B+

2
+A−(n−) :

B−

2
+

A+

2
: B+(n+×)T +

A+

2
: B−(n−×)T +

A−

2
: B+(n+×)T +

A−

2
: B−(n−×)T

=
A+(n+) : B+ +A−(n−) : B−

+A+(n+) :
B−

2
−A+(n+) :

B−

2
+A−(n−) :

B+

2
−A−(n−) :

B+

2
+

= A+(n+×) : B+ +A−(n−×) : B−

= [[A(n×) : B]]

Where fact that A : B(n×)T = A(n×) : B and also that (n+×) = −(n−×) were

used extensively. This completes the proof.

B.4 Linearization of the Flow Rule

This section describes the linearization of the flow rule for the DG IP formulation

for implementation in a Newton-Raphson iterative scheme. In order to linearize, it

is necessary to define the algorithmic approximation of Ḣp,

(B.1) Ḣp =
H

p
n+1,k −Hp

n

∆t
,

where Hp
n is the previous converged solution at time tn, and Hp

n+1,k is the current

solution at time tn+1 and iteration k. It is then convenient to define a term to simplify

the writing of the forms,

(B.2) ∆Hp = H
p
n+1,k −Hp

n.
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Next we can state the approximation for the effective distortion rate, (4.22),

(B.3) d̃p
n+1 = ‖∆Hp

n+1,k −Hp
n‖,

and recall the expression for the microstress, (5.61).

With these definitions in hand, we want to compute the directional derivative in

the direction of an increment in Hp, which we will denote as δHp. This leads us to

the following substitution

(B.4) H
p
n+1,k = H

p
n+1,k + ǫ δHp,

for use in the directional derivation defined as

(B.5) DA =
d

dǫ
A
∣∣∣
ǫ=0
.

We can then systematically insert the expressions previously derived for each term

in the variational form, and take the directional derivative to obtain the desired

linearization. Using the variations of Hp
n+1,k, as in (B.4), we can define quantities

that will need to be differentiated. First the increment in the plastic distortion.

(B.6) ∆Hp(ǫ) = H
p
n+1,k + ǫδHp −Hp

n = ∆Hp
n+1,k + ǫδHp

Then the plastic strain,

(B.7) εp(ǫ) =
1

2

(
H

p
n+1,k + ǫδHp + (Hp

n+1,k + ǫδHp)T
)

= ε
p
n+1,k + ǫ sym δHp,

followed by the effective distortion rate.

(B.8) d̃p(ǫ) = ‖∆Hp(ǫ)‖ = ‖∆Hp
n+1,k + ǫδHp‖

Finally, the microstress, which incorporates both (B.6) and (B.8),

(B.9) T p(ǫ) =
σy

d̃p(ǫ)
∆Hp(ǫ),
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and the Cauchy stress. Note that for the Cauchy stress the total strain term has no

iterate subscript, due to the fact that the displacement field is held constant during

the solution of the flow rule.

(B.10) σ(ǫ) = C : (∇sun+1 − εp(ǫ)) = C :
(
∇

sun+1 − (εp
n+1,k + ǫ sym δHp)

)

It is necessary to employ the directional derivative on the variational form. Starting

with (5.48), we can take derivatives of the domain integral, by first moving the scalar

derivative inside of the integral.1

(B.11)
d

dǫ
(V ,T p(ǫ) − σ(ǫ))Ω

∣∣∣
ǫ=0

=

(
V ,

d

dǫ
(T p(ǫ)) − d

dǫ
(σ(ǫ))

)

Ω

∣∣∣
ǫ=0

It follows that we need to evaluate the derivative of the two stress variation terms.

Consider the directional derivative of the microstress,

(B.12)
d

dǫ
(T p(ǫ))

∣∣∣
ǫ=0

=
d

dǫ

(
σy

d̃p(ǫ)
(∆Hp(ǫ))

)∣∣∣
ǫ=0
.

Using the product rule of differentiation, we can separate (B.12) in two terms.

d

dǫ
(T p(ǫ))

∣∣∣
ǫ=0

=σy

(
d

dǫ
(d̃p(ǫ))−1

) ∣∣∣
ǫ=0

∆Hp
n+1,k+

σy

d̃p
n+1,k

(
d

dǫ
∆Hp(ǫ)

) ∣∣∣
ǫ=0

(B.13)

To arrive at the last result we have used the fact that d̃p(ǫ)
∣∣∣
ǫ=0

= d̃p
n+1,k and

∆Hp(ǫ)
∣∣∣
ǫ=0

= ∆Hp
n+1,k. Repeated use of the chain rule facilitates the evaluation of

the first term on the right hand side of (B.13).

(B.14) σy

(
d

dǫ
(d̃p(ǫ))−1

) ∣∣∣
ǫ=0

∆Hp
n+1,k = − σy

d̃p
3

n+1,k

(∆Hp
n+1,k ⊗ ∆Hp

n+1,k) : δHp

Straight forward evaluation of the second term on the right hand side of (B.13) yields

(B.15)
σy

d̃p
n+1,k

(
d

dǫ
∆Hp(ǫ)

) ∣∣∣
ǫ=0

=
σy

d̃p
n+1,k

δHp.

1We can do this because the variation of a definite integral is equal to the definite integral of
the variation, see Lanczos (1970).
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Next consider the Cauchy stress term, from (B.11), expanded out using (B.10).

(B.16)
d

dǫ
(σ(ǫ))

∣∣∣
ǫ=0

= −C : (sym δHp)

Inserting the expression in (B.14), (B.15), and (B.16) into the appropriate positions

in (B.11), we have the complete linearization of the domain term in the flow rule.

(B.17)


V ,


 σy

d̃p
n+1,k

1 ⊗ 1 − σy

d̃p
3

n+1,k

∆Hp
n+1,k ⊗ ∆Hp

n+1,k + C


 : δHp




Ω

The remaining term in the DG IP formulation for the flow rule is linear in Hp, and

therefore can simply be stated.

(B.18)
αk

h
([[V (n×)]], [[δHp(n×)]])eΓ

The combination of (B.17) and (B.18) yields the linearization of the flow rule and

thus the tangent to be used in the iterative solution scheme.
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APPENDIX C

FEniCS

The FEniCS project, Dupont et al. (2003), Logg (2007) (www.fenics.org), is an

open source suite of codes with the goal of automating the solution of partial differ-

ential equations. To achieve this goal, the project consists of a number of component

codes that handle a different step in the solution process. The core components of

FEniCS consist of the following: 1) the variational form of the PDE written in a

form language, 2) tabulation of finite element basis functions and quadrature rules

for integration, 3) translation from the variational form into a common interface for

finite element assembly, 4) a solver interface between the code generated from the

variational form and the linear algebra library. Of particular interest to this disser-

tation were the expression of the PDEs describing equilibrium and the flow rule, and

the solver interface.

The FFC (Kirby and Logg (2006), Kirby and Logg (2007), Ølgaard et al. (2008))

component is used to describe the variational equations in a form language and trans-

late those into C++ code. This python based code essentially reads in a variational

form written in a form language, including specification of basis functions and ele-

ment types, and translates it into a set of finite element specific methods. The ability

of FFC to automatically generate code for the DG operators, jump and average, that
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arise in the DG variational statement for the flow rule is a pertinent feature related

to the subject of this dissertation. For the implementation presented in Section 5.5,

an example of the flow rule written in the form language of FFC can be seen below.

dot(V, Tp− s) ∗ dx+

alpha(′+′) ∗ k(′+′)/aveh(′+′) ∗ dot(mult(jump(Hp), skwM(n(′+′))),

mult(jump(V), skwM(n(′+′)))) ∗ dS

Here, for an example instance of the form language, the *dx operator indicates

integration over the domain, and *dS indicates integration over the interior domain

boundaries, (the analog of Γ̃).

After the code generation of the variational forms, the Newton-Raphson solver

algorithm is written in another core FEniCS component named DOLFIN, Logg and

Wells (2009). DOLFIN includes support for meshes, i/o, interfaces to linear algebra

libraries, and finite element assembly algorithms based on the code generated by

FFC. It also includes a class for solving non-linear PDEs. To use this class, code is

generated for the residual, or the linear form of the PDE. Similarly code is generated

for the linearized tangent, or the bilinear form of the PDE, which is used to assemble

the stiffness matrix. Then the stiffness matrix and residual vector are repeated called

during the solution process.
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