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ABSTRACT

Ideally, a user’s system would automatically organize, locate, and manage their data. Unfor-

tunately, this ideal is currently elusive, as evidenced by the considerable e�ort users expend

in organizing and �nding their data, and the plethora of tools available helping them to do

so.

Context—the set of facts and features surrounding data—is a promising aspect to aid

in this information management problem. For instance, a user’s system can observe his or

her actions to determine which data is pertinent to other data, reordering and extending

results during searches. �is dissertation describes and evaluates such a scheme, which uses

causally-related inputs to outputs to drive its contextual index. A �eld study with a prototype

of this architecture indicates that the system increases user-perceived satisfaction in search.

Unfortunately, while this context proves useful, it is only maintained locally. A user’s

social neighborhood, however, can provide signi�cant advantages for the collaborative shar-

ing of context. Challenges arise, as naïvely adding context sharing to a system complicates

it from the user’s point of view: it becomes a new entity to manage. As well, any such mech-

anism must also respect personal boundaries on disclosure.

�is work advocates leveraging acts of sharing to imbue context access rights. With this

system, context is encapsulated in frames of reference, and these frames follow objects as

they are shared. Frames render a separation of concerns: a recipient holding one partic-

ular frame cannot see the context residing in a frame not disclosed. Frames can be split

and merged as contexts and circumstances change. To support the ad-hoc, spontaneous

collaborations that occur naturally between individuals, the system eschews vestiges of cen-

tralized control and its eventual-consistency model aids mobile and disconnected users. A

user study suggests this framing scheme is palatable to users and a prototype demonstrates

contextual exchange induces negligible performance overheads.

�is research aims to help ameliorate the information management problem and to fa-

cilitate the formation of ad-hoc, spontaneous collaborative groups.

ix



CHAPTER 1

INTRODUCTION

If Edison had a needle to �nd in a

haystack, he would proceed at once

with the diligence of the bee to

examine straw a�er straw until he

found the object of his search…I

was a sorry witness of such doings,

knowing that a little theory and

calculation would have saved him

ninety per cent of his labor.

Nikola Tesla (1856–1943)

As storage capacity continues to increase, the number of �les belonging to an individual

user, whether a home or corporate desktop user, has increased accordingly [20, 62]. �is

information has become increasingly hard to manage, �nd, and retrieve as its scope has

grown. �e principal challenge is no longer e�ciently storing this data, but rather organizing

it. As data spans the boundaries of multiple users, machines, and administrative domains,

the task becomes increasingly challenging still. �is is especially true with spontaneous,

collaborative sharing, which can include anything from a document for review to family

photos. While distributed �le systems provide global naming of persistent objects, allow

universal access across clients, and ensure reasonable access control, users o�en turn to other

mechanisms, such as email [98], to coordinate data sharing.

To address these challenges, researchers have turned to context [21]—features that de-

scribe the creation, use, and classi�cation of data—as it holds signi�cant promise for simpli-

fying the organization, retrieval, and management of data. Indeed, a recent study showed

that most users organize and search their repositories using context [90]. Such techniques

include sticky notes [43], user tagging [31], location tagging [77], semantic links [3] and

attributes [29], provenance identi�cation [63], recent history [23], or—as explored in this

research—context-enhanced personal desktop search [85].
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�e notion that individuals will organize their repositories is �awed, as most users can-

not appreciate the long-term bene�t of this organization [51]. Ad hoc sharing, coupled with

users’ laissez-faire attitude in organizing their �les, o�en leads to disorganized data repos-

itories as �les become scattered across di�erent directories, machines, and storage devices.

�e result? Even disciplined users have trouble �nding old data [84].

To this end, several personal desktop search tools have emerged that build an index of the

contents of a user’s �le system and provide rapid search over that index. �ese search tools

are, however, incomplete solutions: they index content, but not context. �ey capture only

static, syntactic relationships, not dynamic, semantic ones. One can instead use context to

e�ectively aid these content-only search tools [85]. �e �rst thrust of this research presents

We�, a context-enhanced search tool. We� yields an increase inuser-perceived search quality

over traditional static indexing, as a �eld study demonstrates.

Perhaps most importantly, these information managing tools have access only to infor-

mation stored on a user’s local machine—other sources are not indexed and unsearchable.

However, a user’s social neighborhood provides enormous leverage for context sharing and

collaborative work. Unfortunately, simply adding context to a system presents complica-

tions for the user: it becomes a new entity to manage. �is is unpleasant for shared objects

and especially painful when sharing without a common administrative domain of control.

Ideally, when one party creates or captures context for an object, their friends with copies of

that object should bene�t without imposing undue burdens on any of them.

To illustrate this, consider someone returning from a vacation and sharing pictures with

far-�ung family and friends. Typically, this is done via email [98] or some other simple

web service mechanism. Some �le types permit inclusion of local metadata, which could

be used to represent limited forms of context. Unfortunately, each type has a unique and

o�en opaque structure. Worse, changes to context at one site require explicit redistribution

of the enclosing �le. Any non-local context—for example, inferring subjects of photos or

distilling links to other relevant photos [80]—is lost entirely. For such a simple task, heavy-

weight mechanisms providing direct support for contextual sharing, authentication, and

access control are unlikely to provide value.

In this vision, users e�ectively form communities based on the objects that they share.

Challenges arise as these peers are frequently scattered geographically with varying levels of

connectivity, computing power, and storage, are formed in an ad-hoc manner in di�erent

administrative domains, and must be weakly trusted.

Any solution to this data management problem has an important constraint: it must

respect the trust boundaries and access limits that exist in the real world. Such trust bound-

aries arise naturally with the increasing importance of collaboration. For example, as scien-

2



tists from di�erent �elds and institutions work on a problem, they must share data relevant

to the project at hand without giving access to irrelevant data. Of course, researchers are not

the only people with such con�icting demands. Consider a physician with a private practice.

She interacts with family, friends, and colleagues, and uses machines at home and in both

o�ces that are administered by di�erent people. Family members viewing photographs of

her children certainly cannot have access to any work-related materials. At the same time,

the physician prefers to guard details of her home life from coworkers.

�is dissertation, as its second thrust, presents Ligature, a system that acts as an attach-

ment point for contextual data. Ligature supports a general interface for building a wide

variety of distributed contextual applications. It provides a separation of concerns between

an object and its context, allowing its context to grow and evolve over time. It also ensures a

user’s context is to do with as they please, rather than be tied to third-party providers. Liga-

ture supports mobile and disconnected users, is scalable, and is self-organizing, requiring no

centralized infrastructure. �ese features assist the ad hoc, spontaneous collaborations that

manifest themselves regularly in everyday life. Ligature operates with minimal system over-

head and, importantly, includes a new abstraction for specifying trust boundaries, which a

user study demonstrates is reasonably palatable to users.

�ere are two utilitarian impacts from this work to society. First, �nding the right infor-

mation without undue e�ort has become a critical problem in almost every facet of society;

this research aids in ameliorating this information management problem. Second, this work

reduces the adversity in the formation and operation of ad hoc, spontaneous collaboration.

Such collaborations arise o�en, particularly in the sciences. �ey require sharing of data,

cannot a�ord centralized administration, and must respect personal boundaries on disclo-

sure.

1.1 Thesis Statement

In response to this problem, this dissertation sets out to demonstrate the following thesis

statement:

Context holds signi�cant promise for simplifying the organization and retrieval of

data and can be shared in a spontaneous, ad-hoc manner while respecting bound-

aries on disclosure.

�is thesis is validated with the following steps:

1. �e design of We�, an architecture for capturing context that reorders and extends

traditional content-only personal desktop search.

3



2. �e construction of a methodology for evaluating said system with a �eld study, which

indicates users �nd We�’s search results superior to current desktop search tools.

3. An architecture, Ligature, for sharing this and other context among other users with

primitives to set boundaries on disclosure.

4. �e evaluation of the usability of Ligature—that is, whether users understand the pri-

vacy modalities present in the architecture—and the performance overhead of the sys-

tem. �e results indicate the system scales with user ability and bears minimal system

overhead.

�e remainder of this document explores these four thrusts.

1.2 Overview of the Dissertation

�e dissertation is organized as follows.

Part I: Employing Context shows how context can improve the retrieval of data; specif-

ically, in this case, to assist personal �le search tools. Such traditional content-only search

tools build a content index from a user’s repository and provide search capabilities across it.

Chapter I: Employing Context describes the architecture for a context-enhancing personal

desktop search. We� augments and reorders results from static search tools with additional

hits extracted from a contextual index. Background tasks infer a user’s context to build this

index by interposing on application system-call behavior. �is chapter introduces the no-

tion of using strict causality to build the contextual index, provides detailed descriptions of

the other necessary component algorithms, and describes a prototype system for capturing

this context.

Evaluating such a system proves tricky, as it requires a user’s corpus, search history, and a

reasonably lengthy period of contextual state for model learning. Further, standard metrics,

such as precision and recall, while useful, fail to judge the user-perceived di�erence in result

set orderings. Chapter 3: User Evaluation of We� explains the di�culties in devising such

in-lab scenarios, and this work instead opts for a �eld study with non-expert users, which

are likely representative of the population at large. �e chapter presents the methodology

and execution of an in-�eld evaluation. Users run We� privately on their own machines

for a month and the system tracks their search history. At the conclusion of the study, a

selection of previously executed queries is presented to the user, ordered via content-only

and context-enhancing methods, and they rate each ordering. �e results of 27 participants

proves that contextual search systems using causality as the dynamic indexing component

do yield user-perceived improvements in search results. Also included as part of this chapter

is an exploration of personal search behavior.
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Given that context is useful in simplifying data retrieval, a nagging question is: can this

context be e�ectively shared? Importantly, considerable data sharing occurs in an manner

among those not belonging to a common administrative domain of control; any e�ective sys-

tem must also support this ad-hoc collaboration without placing an undue burden on the

user. �is is the focus of Part II: Sharing Context. �is research proposes to break this stale-

mate by leveraging acts of sharing to automatically exchange contextual information without

requiring centralized repositories, strong identities, or other vestiges of a single domain of

administrative control. In this vision, users spontaneously form communities based on the

objects they share. �is coupling/decoupling between objects and contexts allows context

to grow and evolve over time, detaches context from third-party providers, and provides

an intuitive and deterministic condition for contextual exchange by imbuing trust through

sharing. To this end, Chapter II: Sharing Context introduces a framework for aiding con-

textual sharing that meets these precepts. Applications, such as We�, use Ligature to share

context among interested parties.

Of course, such proactive sharing of context brings with it risks, as any system must re-

spect real-world trust boundaries and access limits. Chapter 5: Contextual Frames describes

a mechanism and enclosing calculus that provides a simple and expressive explicit abstrac-

tion for specifying boundaries on disclosure. Basically, frames are enclosures around some

context about an object, accruing context and following the objects to which they are bound.

Context within a frame remains separate and independent from other frames. A user can

bind more than one frame to an object, and fork, combine, or destroy them. �e chapter

concludes with several case studies.

Chapter 6: Email Sharing Patterns presents common sharing patterns—which guide Lig-

ature’s architectural design decisions—by the way of a large-scale study of email deliveries.

Chapter 7: Supporting Ligature’s System Model describes Ligature’s architecture and proto-

type implementation. �e architecture is self-organizing, requiring no additional infrastruc-

ture; eventually consistent, aiding users’ mobile and ephemeral nature; and fair, as resources

expended are proportion to the number of objects a user shares. �e chapter also describes

several applications, including a synergistic version of We�, constructed atop this architec-

ture.

Ligature is only bene�cial if users can e�ectively employ its disclosure model. Chap-

ter 8: Evaluation of Ligature presents a user study of contextual frames, where several tasks

of varying di�culty were given to both novice and expert computer users to complete. �e

results of this study are encouraging, as the mechanisms scale with task di�culty: novice

users were able to complete the easy and moderate tasks in almost all cases, while expert

users were able to complete the di�cult tasks as well. In addition, as context is metadata
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and, hence, subservient to primary data and uses, any context storage and exchange sys-

tem must require minimal overhead. �is chapter also pro�les the performance overhead

of exchanging context, the overhead of contextual frames, and the application performance

penalty of using Ligature as a backing store for context. In all cases, Ligature’s overhead is

negligible.

Finally, Chapter 9: Conclusions & Future Work discusses this research’s results as well as

important avenues for future work.
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PART I

EMPLOYING CONTEXT

CHAPTER 2

DESIGN OF WEFT—CONTEXT-ENHANCED

PERSONAL FILE SEARCH

�at which is static and repetitive is

boring. �at which is dynamic and

random is confusing. In between

lies art.

John Locke (1632–1704)

To reduce the friction users experience in �nding their data, many personal search tools

have emerged. �ese tools build a content index o�ine and allow keyword search across this

index. Despite their growing prevalence, most of these tools are, however, incomplete solu-

tions: they index content, not context. �ey capture only static, syntactic relationships, not

dynamic, semantic ones. To see why this is important, consider the di�erence between com-

piler optimization and branch prediction. �e compiler has access only to the code, while

the processor can see how that code is commonly used. Just as run-time information leads

to signi�cant performance optimizations, users �nd contextual and semantic information

useful in searching their own repositories [90].
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Figure 2.1: Architecture of context-enhanced search.

Context-enhanced search is beginning to receive attention, but it is unclear what dy-

namic information is most useful in assisting search. Soules and Ganger [85] developed a

system, named Connections, that uses temporal locality to capture the provenance of data:

for each new �le written, the set of �les read “recently” form a kinship or relation graph,

which Connections uses to extend search results generated by traditional static, content-

based indexing tools. �is context attempts to capture the way in which many individuals

recall events and items (e.g., “I know I was working on my report when I read that paper”).

Temporal locality is likely to capture many true relationships, but may also capture spurious,

coincidental ones. For example, a user who listens to music while authoring a document in

her word processor may or may not consider the two “related” when searching for a speci�c

document. �ese post-hoc errors can be even more precarious: that same word processor,

minimized to the background and generating auto-save events, will tie together many unre-

lated �les.

To capture the bene�t of temporal locality while avoiding its pitfall, this research intro-

ducesWe�1, a search tool using a di�erent mechanism to deduce provenance: causality. �at

is, We� uses data �ow through and between applications to impart a more accurate relation

graph. �is context-enhancing search has been implemented for Windows platforms.

1In plain weaving, two parallel yarns, one horizontal and one vertical, form a fabric; a “we�” yarn

is the complement to a “warp” yarn.
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We�’s architecture matches that of Soules and Ganger [85] and is shown in Figure 2.1.

We� augments traditional content search using kinship relations between �les. A�er the

user enters keywords in the search tool, the tool runs traditional content-only search using

those keywords—the content-only phase—and then uses the previously constructed rela-

tion graph, a data structure storing contextual relationships, to reorder these results and

identify additional hits—the context-enhancing phase. �ese new results are then returned

to the user. Background tasks on the user’s machine periodically index a �le’s content for the

content-only phase and monitor system events to build the relation graph for the context-

enhancing phase.

�ere is a decoupling between the content-only and context-enhancing phases. �is not

only simpli�es the design and allows plug-in replacements for the content-only phase, it also

permits exclusive study of the search tool’s context-enhancing e�ects without necessitating

analysis of any interactive e�ects. �is is particularly apropos when studying the space and

time overheads of the context-enhancing phase (§3.3).

�is chapter describes: (1) how We� translates and encodes context from system-level

actions into user-level beliefs; (2) how We� uses these relationships to locate and re-rank

related data during a search; (3) the advantages and pitfalls of this approach; (4) a We�

prototype; and (5) a survey of related work.

2.1 Inferring Kinship Relationships

A kinship relation f → f ′, where f and f ′ are �les on a user’s system, indicates that f is an

ancestor of f ′, implying that f may have played a role in the origin of f ′. �ese relationships

are encoded in the relation graph, which is used to reorder and extend search results in the

context-enhancing phase.

�is work evaluates two methods of deducing these kinship relations: temporal locality

and causality. Both methods classify the source �le of a read as input and the destination �le

of a write as output by inferring user task behavior from observed actions.

2.1.1 Temporal Locality Algorithm

�e temporal locality algorithm2, as employed in Soules and Ganger [85], infers relations

by maintaining a sliding relation window of �les accessed within the previous t seconds

system-wide. Any write operation within this window is tied to any previous read operation

within the window.

2�is is known as the read/write operational �lter with directed links in Soules and Ganger [85],

which was found the most e�ective of several considered.
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Read w Copy to clipboard

Read u Read v Relation Window

Time

Figure 2.2: An example time diagram. �is �gure is used to illustrate the di�erences between the

contextual algorithms.

Consider the sequence of system events shown in Figure 2.2. �ere are three processes,

A, B, and C, running concurrently. C reads �les u and v, A reads �les x and y. B reads w

and copies data to A through a clipboard IPC action initiated by the user. Following this, A

then writes �le z.

�e relation window at z’s write contains reads of y, w, and v. �e temporal locality

algorithm is process agnostic and views reads and writes system-wide, distinguishing only

between users. �e algorithm thus returns the relations {y → z,w → z, v → z}.
�e relation window attempts to capture the transient nature of a user task. Too long a

window will cause unrelated tasks to be grouped, but too short a window will cause relation-

ships to be missed.

2.1.2 Causality Algorithm

Rather than using a sliding window to deduce user tasks, this research proposes viewing

each process as a �lter that mutates its input to produce some output. �is causality algo-

rithm tracks how input �ows—at the granularity of processes—to construct kinship rela-

tions, determining what output is causally related to which inputs. �is is known as where-

provenance [11], as it is knowledge linking “where” the output data came from.

Speci�cally, whenever a write event occurs, the following relations are formed:

(a) Any previously read �les within the same process are tied to the current �le being writ-

ten; and

(b) Further, the algorithm tracks IPC transmits and its corresponding receives, forming

additional relationships by assessing the transitive closure of �le system events across

these IPC boundaries.
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Temporal Locality Causality

Handles noise 7 3

Disparate tasks running concurrently (e.g., music player)

Transition periods 7 3

Handles temporary period when switching between disparate tasks.

Long-lived processes 7 3

Lengthy operations (e.g., a long compilation build)

Monolithic processes 3 7

Same process used for disparate tasks (e.g., emacs).

Hidden channels 3 7

e.g., the user exercising her brain as the clipboard.

Table 2.1: Temporal locality and causality algorithm comparison.

�at is, for each relation f → f ′, there is a directed le�-to-right path in the time diagram

starting at a read event of �le f and ending at the write of �le f ′. �ere is no temporal bound

within this algorithm.

Reconsidering Figure 2.2, A reads x and y to generate z; the causality algorithm produces

the relations {x → z, y → z} via condition (a). B produces no output �les given its read of w,

but the copy-and-paste operation represents an IPC transmit from B with a corresponding

receive in A. By condition (b), this causes the relation w → z to be made. C’s reads are

dismissed as they do not in�uence the write of z or any other data.

2.1.3 Comparison

Table 2.1 outlines the di�erences between the temporal locality and causality algorithms.

Causality forms fewer relationships than temporal locality, attempting to avoid many

false relationships. Unrelated tasks happening concurrently are more likely to be deemed

related under temporal locality, while causality is more conservative.

During transition periods when a user switches between disparate tasks, there is a tempo-

rary period where incorrect relations may form under temporal locality, which is mitigated

by the causality algorithm.

A user working on a spreadsheet with her music player in the background may form

spurious relationships between her music �les and her document under temporal locality,

but not under causality; those tasks are distinct processes and no data is shared. Addition-

ally, if she switches to her email client and saves an attachment, her spreadsheet may be an
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ancestor of that attachment under temporal locality if the �le system events coincide within

the relation window.

A user opening a document in a word processor, writing for the a�ernoon, then saving

it under a new name would lose the association with the original document under temporal

locality, but not causality. Causality more accurately captures the unit of work in these long-

lived processes.

Monolithic processes used for many di�erent tasks, such as the emacs text editor, will

likely fare worse under causality. A user working with her text editor to author several unre-

lated documents within the same process would have spurious relations formed with causal-

ity, but perhaps not from temporal locality.

Causality can fare worse under situations where data transfer occurs through hidden

channels due to loss of real context. �is is most evident when a user exercises her brain as

the “clipboard,” such as when she reads a value o� a spreadsheet and then keys it manually

into her document. As future work, it may be possible to use window focus to demarcate user

tasks [72] as a means to group related processes together and capture these hidden channels.

Indeed, there is subsequent work in capturing and indexing the user interface layer, which

is more directly coupled to user interaction, for contextual search [38].

2.1.4 Relation Graph

Relations formed are encoded in the relation graph: a directed graph whose vertices repre-

sent �les on a user’s system with edges constituting a kinship relation between �les and the

weight of that edge representing the strength of the bond. �e edge’s direction represents an

input �le to an output �le. Figure 2.3 on the next page shows an example relation graph.

For each relation of the form f → f ′, the relation graph consists of an edge from ver-

tex f to vertex f ′ with the edge weight equaling the count of f → f ′ relations seen. To

prevent heavy weightings due to consecutive writes to a single �le, successive write events

are coalesced into a single event in both algorithms.

2.2 Reranking and Extending Results

A�er a query is issued, the tool �rst runs traditional content-only search using keywords

given by the user, and then uses the relation graph to reorder results and identify additional

hits. �is basic architecture is identical to that of Soules and Ganger [85].

Each content-only result is assigned its relevance score as its initial rank value. �e re-

lation graph is then traversed breadth-�rst for each content-only result. �e path length,
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budget.xls (a)

memo.doc (b)



memo.doc (c)



expenserep.doc (d)



Figure 2.3: An example relation graph. �is is used to illustrate the workings of the basic BFS algo-

rithm.

P, is the maximum number of steps taken from any starting node in the graph during this

traversal. Limiting the number of steps is necessary to avoid inclusion of weak, distant rela-

tionships and to allow the algorithm to complete in a reasonable amount of time.

Further, because incorrect lightly-weighted edges may form, an edge’s weight must pro-

vide some minimum support threshold to be a viable candidate: it must make up a mini-

mum fraction of the source’s outgoing weight or the sink’s incoming weight. Edges below

this weight cuto� are pruned. As link weights are not normalized, the weight cuto� is ex-

pressed as a link weight ratio, which provides an online normalization method.

�e tool runs the following algorithm, called basic BFS3, for P iterations. Let Em be the

set of all incoming edges to node m, with enm ∈ Em being a given edge from n to m and

γ(enm) being the fraction of the outgoing edge weight for that edge. wn0 is the initial value,

its content-only score, of node n. �e α value dictates how much trust is placed in each

speci�c weighting of an edge. At the i-th iteration of the algorithm:

wm i
= ∑

enm∈Em

wn i−1
⋅ [γ(enm) ⋅ α + (1 − α)] (2.1a)

A�er all P runs of the algorithm, the total weight of each node is:

wm =

P

∑
i=0

wm i
(2.1b)

In Equation (2.1a), heavily-weighted relationships and nodes with multiple paths push

more of their weight to node m. �is matches user activity as �les frequently used together

will receive a higher rank; infrequently seen sequences will receive a lower rank. �e �nal

result list sorts by Equation (2.1b) from highest to lowest value. �ough straightforward, this

breadth-�rst reordering and extension mechanism proves e�ective [85].

As an example, consider a search for “project budget requirements” that yields a content-

only phase result of budget.xls with weight wa0 = 1.0. Assume that during the context-

enhancing phase, with parameters P=3, α=0.75 and no weight cuto�, the relation graph
3In Soules [83], this is now known as basic breadth-�rst expansion or basic-BFE.
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shown in Figure 2.3 is loaded from disk. Take node expenserep.doc, abbreviated as d. �e

node’s initial weight is wd0 = 0 as it is absent from the content-only phase results. �e algo-

rithm proceeds as follows for P iterations:

wd1 = wa0 ⋅ [γ(ead) ⋅ α + (1 − α)] by (2.1a)

= 1.0 ⋅ [(7/10) ⋅ 0.75 + 0.25] = 0.775

wd2 = 0 as wa1=0

wd3 = 0 as wa2=0

Finally, the total weight of node d is:

wd = 0 + 0.775 + 0 + 0 = 0.775 by (2.1b)

�e �nal ordered result list, with terminal weights in parentheses, is: budget.xls (1.0), ex-

penserep.doc (0.775), memo.doc (0.475) and memo.doc (0.475). In this example, both

memo �les have identical terminal weights; ties are broken arbitrarily.

2.3 Advantages and L imitations

Context-enhanced search provides three main advantages over purely content-only search.

First, the system may increase recall by locating more relevant items for a search. Second, it

may also locate opaque objects that cannot be indexed by a content-only mechanism (e.g.,

multimedia �les). �ese two rewards allow users to �nd more of their relevant data. Last,

We� may re-rank existing content-only search results, particularly those that have close rel-

evance scores, to more accurately re�ect user work patterns.

�e are, however, several limitations to this approach. �ere is an initial learning curve

to build a reasonable relation graph. Without this state, We� cannot provide any improved

search capabilities. Second, the system requires initial seeding of content-only search re-

sults, which may be inadequate in environments with many opaque objects (e.g., a working

set dominated by multimedia �les). �ird, a user’s context undoubtedly changes over time,

but the system as of yet does not perform any hysteresis; a procedure, as well as an analysis

of, decaying relationships over time is necessary. Lastly, there is potential for poor relation

inference and the consequential false positives. Particularly with the latter, We� only cap-

tures application-level behavior, which may not directly correlate to user actions and true

relationships. Both the temporal locality and causality algorithms are quite blunt, though

they provide a useful starting point to glean relationships.
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Interposed

File System Operations

Opening and closing �les

CreateFile† CreateFileEx† __lopen CloseHandle

Reading and writing �les

ReadFile ReadFileEx WriteFile WriteFileEx

Moving, copying, and unlinking �les

MoveFile† MoveFileEx† CopyFile† CopyFileEx† DeleteFile†

IPC Operations

Clipboard (DDE) GetClipboardData SetClipboardData

Mailslots CreateMailSlot†

Named pipes CreateNamedPipe†

Other

Process creation and destruction CreateProcess† ExitProcess

Not Interposed

IPC Operations
Sockets WM_COPYDATAa Shared Memoryb

Microso� RPC COM

†Both ANSI and Unicode versions of these marked calls.
aAlso known as “data copy.”
b�is is known as “�le mapping” in Windows parlance.

Table 2.2: �e system calls the search tool interposes on.

2.4 Implementation

�e implementation of We� runs on Windows NT-based systems. We� uses a binary rewrit-

ing technique [42] to trace all �le system and interprocess communication calls. Such a user

space solution was chosen as it allows tracking high-level calls in the Win32 API.

When a user �rst logs in, the prototype instruments all running processes, interposing

on our candidate set of system calls as listed in Table 2.2. It also hooks the CreateProcess call,

which will instrument any subsequently launched executables. Care was required to not

falsely trip anti-spyware tools. Each instrumented process reports its system call behavior

to a background collection daemon, which uses idle CPU seconds, via the mailslots IPC

mechanism. For performance reasons, each process amortizes 32K or 30 seconds worth

of events across a single message. �e collection daemon contemporaneously creates two

relation graphs: one using temporal locality (§2.1.1) and one using causality (§2.1.2).
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If a �le is deleted, its node in the relation graph becomes a zombie: it relinquishes its

name but maintains its current weight. �e basic BFS algorithm uses a zombie’s weight in

its calculations, but a zombie can never be returned in the search result list. We� currently

does not prune zombies from the relation graph.

Content indexing is done using Google Desktop Search (GDS)4 with its exposed API.

�e actual internals of GDS are unfortunately opaque, but we expect it to use state-of-the-art

information retrieval techniques to conduct its searches. GDS was chosen over other content

indexing tools, such as Indri [1], because of its support for more �le types. All queries enter

through We�’s interface: only GDS’s indexing component remains active, its search interface

is turned o�. GDS also indexes email and web pages, but We� prunes these from the result

set.

A complication arises, however. GDS allows sorting by relevance, but it does not expose

the actual relevance scores. �ese are necessary as they form the initial values of the basic

BFS algorithm (§2.2). We� uses:

ψ(i) =
2(n − i)
n(n + 1)

(2.2)

to seed the initial values of the algorithm. Here, n is the total number of results for a query,

and i is the result’s position in the result list. Equation (2.2) is a strict linear progression

with relevance values constrained such that the sum of the values is unity, roughly matching

the results one would expect from a TF/IDF-type system [4]. Soules [83] found that Equa-

tion (2.2) performs nearly as well as real relevance scores: it produces a 10 improvement

across all recall levels in Soules’s study, while real relevance scores produce a 15 improve-

ment.

Users interact with the search system through an icon in the system tray. When conduct-

ing a search, a frame, shown in Figure 2.4, appears, allowing the user to specify her query

keywords in a small text box. Search results in batches of ten appear in the upper part of the

frame. A snippet of each search result, if available, is presented, along with options to pre-

view the item before opening. Previewing is supported by accessing that �le type’s ActiveX

control, as is done in web browsers.

Users may temporarily suspend tracing for up to 10 minutes by clicking a button found

in the tool’s system tray menu. �e 10 minute limit prevents users from forgetting to resume

tracing, which may signi�cantly hamper contextual indexing.

In most desktop search applications, We� included, the search system is available to

users immediately a�er installation. Because the content indexer works during idle time and

little to no activity state has been captured to build the relation graph when �rst installed,

4http://desktop.google.com
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Figure 2.4: A screen shot of the search interface.

search results during this initial indexing period are usually quite hapless. We� warns users

that during this initial indexing period their search results are incomplete.

�e We� prototype uses a relation window of 30 seconds and basic BFS with a weight

cuto� of 0.1 and parameters P = 3 and α = 0.75. �ese parameters were validated by

Soules and Ganger [85].

To prevent excessively long search times, We� restricts the context-enhancing phase

to 5 seconds and returns intermediate results from basic BFS if this threshold is reached.

Although, as shown in our evaluation (c.f. §3.3.3), the system rarely hits this limit. Due

to our unoptimized implementation, a commercial implementation is expected to perform

slightly better than our results would suggest.

2.5 Related Work

�ere are various static indexing tools for one’s �lespace. Instead of strict hierarchal nam-

ing, the semantic �le system [29] allows assignment of attributes to �les, facilitating search

over these attributes. �ese attributes comprise of category-keyword pairs; users can create

virtual directories, potentially recursive, to re�ne their view by category. For example, this

document could be assigned “University of Michigan” for the category “institution.” Since
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most users are averse to ascribing keywords to their �les, the semantic �le system provides

transducers to distill �le contents into keywords. �e semantic �le system focuses on the

mechanism to store attributes, not on content analysis to distill these attributes.

�e HAC semantic �le system [34] is similar to the semantic �le system, but instead

of providing di�erent views of a user’s �les, it maps the actual query onto the �le system:

users can add or remove �les to the query by simply manipulating the directory using stan-

dard UNIX tools. Nebula [9] is semantic �le system where properties (key-value pairs) are

assigned to �les and views scoped to particular properties are possible. Basically, Nebula

provides relational database access primitives to build semantic queries. Prospero [70] is

another semantic �le system that deals with providing views of a global name space. While

other semantic �le systems deal with an attribute-based mechanism, Prospero provides

views based on pathnames. �at is, one can create a journals directory that contains all

of their journals that may be housed in di�erent directories. �is allows users to place re-

lated documents together, even though they may belong to di�erent paths in their personal

namespace.

�e previously mentioned semantic �le systems have failed to gain traction with users as

these systems rely on either user input or content analysis to ascertain attributes. Assigning

attributes for �les is extremely tedious and caustic to users; naturally, most users fail to do

so.

Instead, many content-based search tools have emerged. �ese include Google Desktop

Search and Windows Desktop Search5, among others. �ese systems extract a �le’s content

into an index, permitting search across this index. While the details of such systems are

opaque, it is likely they use forefront technologies from the information retrieval community.

Several such advanced research systems exist, Indri [1] being a prime example. �ese tools

are orthogonal to We� in that they all analyze static data with well-de�ned types to generate

an index, ignoring crucial contextual information that establishes semantic relationships

between �les.

�e seminal work in using gathered context to aid in personal desktop �le search is by

Soules and Ganger [85] in the form of a �le system search tool named Connections. Con-

nections identi�es temporal relationships between �les and uses that information to expand

and reorder traditional content-only search results, improving average precision and recall

compared to Indri. We� uses some component algorithms from Connections (§2.2) and our

evaluation compares against its temporal locality approach (§2.1.1).

We�’s notion of provenance is a subset of that used by the provenance-aware storage sys-

tem (PASS) [63]. PASS attempts to capture a complete lineage of a �le, including the system

5http://www.microsoft.com/windows/products/winfamily/desktopsearch
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environment and user- and application-speci�ed annotations of provenance. A PASS �lesys-

tem, if available, would negate the need for We�’s relation graph. Indeed, the technique used

by PASS to capture system-level provenance is very similar to the causality algorithm (§2.1.2).

Other systems interpose on �le accesses and application use, in a similar vain to the

causality algorithm, to capture and delineate user tasks [22, 44, 79]. �ese context-aware

tasks are then used in an human-computer interactive way for activity display. It may be

possible to augment these techniques to aid in reducing incorrect relations (false positives)

and extracting new ones (false negatives) for the contextual index, though these algorithms

su�er from their own post-hoc errors: background tasks and the multitasking nature of user

work patterns can identify incorrect task groupings.

Several systems leverage other forms of context for �le organization and search.

Phlat [16] is a user interface for personal search, running on Windows Desktop Search, that

also provides a mechanism for tagging or classifying of data. �e user can search and �l-

ter by contextual cues such as date and person. We� provides a simpler UI, permitting

search by keywords only (§2.4), but could use Phlat’s interface in the future. Another sys-

tem, called “Stu� I’ve Seen” [23], remembers previously seen information, providing an in-

terface that allows a user to search their historical information using contextual cues. �e

Haystack project [43] is a personal information manager that organizes data, and operations

on data, in a context-sensitive manner. Lifestreams [25] provides an interface that uses time

as its indexing and presentation mechanism, essentially ordering results by last access time.

Our provenance techniques could enhance these systems through automated clustering of

semantically-related items.

2.6 Summary

�is chapter presents the architecture as well as a set of component algorithms for context-

enhanced personal �le search. Further, it provides a description of an implementation of

this architecture. �e following chapter outlines the di�culties in evaluating such a system,

motivating the need for a user study with the prototype implementation.
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CHAPTER 3

USER EVALUATION OF WEFT

Attempt the end, and never stand

to doubt;

Nothing’s so hard but search will

�nd it out.

Robert Herrick (1591–1674)

As part of our evaluation, this research conducts a user study with We�’s prototype im-

plementation to measure a user’s perceived search quality directly. To accomplish this, two

common techniques from the social sciences and human-computer interaction are adapted

to the area of personal �le search: �rst, a randomized, controlled trial to gauge the end-to-

end e�ects of our indexing technique; and second, a repeated measures experiment, where

users evaluate the di�erent indexing techniques side-by-side, locally on their own machines.

�is style of experiment is methodologically superior as it measures quality directly while

preserving privacy of user data and actions.

�e results indicate that the causal provenance algorithm fares better than using tempo-

ral locality or pure content-only search, being rated 17 higher, on average over all queries,

than the other algorithms by users with minimal space and time overheads. �is chapter

describes this user study in detail.

3.1 Experimental Approach

Traditional search tools use a corpus of data where queries are generated and oracle result

sets are constructed by experts [4]. Two metrics, precision (minimizing false positives) and

recall (minimizing false negatives), are then applied against this oracle set for evaluation.

Personal desktop search systems, however, are extremely di�cult to study in the labora-

tory for a variety of reasons. First, as these systems exercise a user’s own content, there is
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only one oracle: that particular user. All aspects of the experiment, including query gener-

ation and result set evaluation, must be completed by the user with their own �les. Second,

a user’s search history and corpus are private. Since the experimenter lacks knowledge of

each user’s data, it is nearly impossible to create a generic set of tasks that each user could

perform. Even if it were possible for a researcher to compose a set of generic tasks, as op-

posed to tasks motivated by the user, this has been shown to a�ect search performance [47].

�ird, studying context-enhanced search is further complicated by the need to capture a

user’s activity state for a signi�cant length of time, usually a month or more, to develop the

dynamic indices—an impractical feat for an in-lab experiment.

In lieu of these di�culties with in-lab evaluation, Soules and Ganger [85] constructed

a corpus of data by tracing six users for a period of six months. At the conclusion of their

study, participants were asked to submit queries and to form an oracle set of results for those

queries. Since each user must act as an oracle for their system, they are loathe to examine

every �le on their machine to build this oracle. Instead, results from di�erent search tech-

niques were combined to build a good set of candidates, a technique known as pooling [4].

Each search system can then be compared against each oracle set using precision and recall.

While an excellent initial evaluation, such a scheme may exhibit observational bias: users

will likely alter their behavior knowing their work habits are being recorded. For instance, a

user may be less inclined to use her system as she normally would, for she may wish to con-

ceal the presence of some �les. It is tough to �nd users who would be willing to compromise

their privacy by sharing their activity and query history in such a manner.

Further, to generate an oracle set using pooling, we need a means to navigate the result

space beyond that returned from content-only search. �at is, we need to use results from

contextual indexing tools to generate the additional pooled results. However, the lack of

availability of alternative contextual indexing tools means that pooling may be biased toward

the contextual search tool under evaluation, as that tool is the only one generating the extra

pooled results.

We also care to evaluate the utility of the tool beyond the metrics of precision and recall,

as they fail to gauge the di�erences in orderings between sets of results. �at is, two identi-

cal sets of results presented in di�erent order will likely be qualitatively perceived di�erently.

Also, while large gains in mean average precision are detectable to the user, nominal improve-

ments remain inconclusive [2]. We would like a more robust measurement that evaluates

this perception of search quality.

For these reasons, we conduct a user study and deploy an actual tool participants can

use. We run a pre-post measures randomized controlled trial [6, 49] to ascertain if users per-

ceive end-to-end di�erences between content-only search and the causality algorithm with
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basic BFS. �is study suggests that the tool is useful to users, but measuring end-to-end

e�ects conclusively requires a probative degree of replication. In lieu of this, we conduct

a repeated measures experiment to qualitatively measure search quality directly and conclu-

sively: we ask users to rate search orderings of their previously executed queries constructed

by content-only search and of results from the di�erent dynamic techniques.

A pre-post measures randomized controlled trial is a study in which individuals are al-

located at random to receive one of several interventions. One of these interventions is the

standard of comparison, known as the “control,” the other interventions are referred to as

“treatments.” Measurements are taken at the beginning of the study, the pre-measure, and at

the end, the post-measure. Any change between the treatments, accounting for the control,

can be inferred as a product of the treatment. In this setup, the control group handles threats

to validity: that any exhibited change is caused by some other event than the treatment. For

instance, administering a treatment can produce a psychological e�ect in the subject where

the act of participation in the study results in the illusion that the treatment is better. �is is

known as the placebo e�ect.

As an example, consider that we have a new CPU scheduling algorithm that makes inter-

active applications feel more responsive and we wish to gauge any user-perceived di�erence

in performance against the standard scheduler. To accomplish this, we segment the popu-

lation randomly into two groups, one which uses the standard scheduler, the control group,

and the other receives the improved scheduler, the treatment group. Neither group knows

which one they belong to. At the beginning of the study, the pre-measure, we ask users to

estimate the responsiveness of their applications with a questionnaire. It’s traditional to use

a Likert scale in which respondents specify their level of agreement to a given statement. �e

number of points on an n-point Likert scale corresponds to an integer level of measurement,

where 1 to n represents the lowest to highest rating. At the end of the study, the post-measure,

we repeat the same questionnaire. If the pre- and post-measures in the treatment group are

statistically di�erent than the pre- and post-measures in the control group, we can conclude

the new scheduler algorithm is rated better by users.

Sometimes it is necessary or useful to take more than one observation on a subject, either

over time or over many treatments if the treatments can be applied independently. �is is

known as a repeated measures experiment [6, 49]. In the scheduler example, we may wish

to �rst survey the subject, randomly select an algorithm to use and have the subject’s system

run the algorithm for some time period. We can then survey the subject again and repeat.

In this case, we have more than one observation on a subject, with each subject acting as its

own control.
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Traditionally, one uses ANOVA to test the statistical signi�cance of hypotheses among

two or more means without increasing the α (false positive) error rate that occurs with using

multiple t-tests. With repeated measures data, care is required as the residuals aren’t uniform

across the subjects: some subjects will show more variation on some measurements than on

others. Since we generally regard the subjects in the study as a random sample from the

population at large and we wish to model the variation induced in the response by these

di�erent subjects, we make the subjects a random e�ect. An ANOVA model with both �xed

and random e�ects is called a mixed-e�ects model [75].

3.1.1 Randomized Controlled Trial

In the study, we randomly segment the population into a control group, whose searches

return content-only results, and a treatment group, whose searches return results reordered

and extended by basic BFS using a relation graph made with the causality algorithm.

To reduce observational bias and protect privacy, the tool does not track a user’s his-

tory, corpus, or queries, instead reporting aggregate data only. During recruitment, upon

installation, and when performing queries, we speci�cally state to users that no personal

data is shared during the experiment. We hope this frees participants to use their machines

normally and issue queries without hindrance.

�e interface of both systems is identical. To prevent the performance of the unopti-

mized context-enhancing implementation from unduly in�uencing the treatment group,

both groups run the extended search, but the control group throws away those results and

uses content-only results exclusively.

�e experiment is double-blind: neither the participants nor the researchers knew who

belonged to which group. �is was necessary to minimize the observer-expectancy e�ect;

that unconscious bias on the part of the researchers may appear during any potential support

queries, questions, or follow ups. �e blinding process was computer controlled.

Evaluation is based on pre- and post-measure questionnaires where participants are

asked to report on their behavior using 5-point Likert scale questions. For example, “When

I need to �nd a �le, it is easy for me to do so quickly.” Di�erences in the pre- and post-

measures against the control group indicate the overall e�ect the causality algorithm has in

helping users �nd their �les. We also ask several additional questions during the pre-survey

portion to understand the demographics of the population and during the post-survey to

elicit user feedback on the tool.

We pre-test each survey instrument on a small sample of a half-dozen potential users

who are then excluded from participating in the study. We encourage each pre-tester to
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ask questions and utilize “think-alouds,” where the participant narrates her thought process

as she’s taking the survey. Pre-testing is extremely crucial as it weeds out poorly worded,

ambiguous, or overly technical elements from surveys. For example, the �rst iteration of

the survey contained the question, “I o�en spend a non-trivial amount of time looking for

a �le on my computer.” Here, the word “non-trivial” is not only equivocal, it is confusing. A

more understandable question would be to set an exact time span: “I o�en spend 2 minutes

or more a day looking for a �le on my computer.”

We also conducted a pilot study with a small purposive sample of colleagues who have

trouble �nding their �les. �is allowed us to vet the tool and receive feedback on our study

design. Naturally, we exclude these individuals and this data from the overall study.

3.1.2 Rating Task

We wish to evaluate the n di�erent dynamic algorithms against each other. Segmenting the

study population into n randomized groups can make �nding and managing a large enough

sample di�cult. More importantly, as we will show, controlled experiments on broad mea-

surements for personal search behavior are statistically indistinguishable between groups;

we believe users have di�culty judging subtle di�erences in search systems a�er the fact.

To that end, we also perform a repeated measures experiment. As we can safely run

each algorithm independently, we concurrently construct relation graphs using both the

temporal locality and causality algorithms in both groups. At the conclusion of the study,

we choose up to k queries at random that were previously successfully executed by the user

and re-execute them. Di�erent views, in random order, showing each di�erent algorithm’s

results are presented; the user rates each of them independently using a 5-point Likert scale.

We use these ratings to determine user-perceived di�erences in each search algorithm.

We de�ne “successfully executed” to be queries where the user selected at least one result

a�er execution. To prevent users from rating identical, singular result lists—which would

give us no information—we further limit the list of successful queries by only considering

those where at least one pair of algorithms di�ers in their orderings. With this additional

constraint, we exclude an additional 2 queries from being rated.

�e rating task occurs at the end of the study and not immediately a�er a query as we

eschew increasing the cognitive burden users experience when searching. If users knew they

had to perform a task a�er each search, they might avoid searches because they anticipate

that additional task. Worse, they might perfunctorily complete the task if they are busy. In a

longer study, it would be bene�cial to perform this rating task at periodic intervals to prevent

a disconnect with the query’s previous intent in the user’s mind. Previous work has shown

a precipitous drop in a user’s ability to recall computing events a�er one month [17].
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Control Treatment Overall

Participants 14 13 27
Gender F=7, M=7 F=5, M=8 F=12, M=15 χ21 = 0.0464, p<0.830

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Age 26.2 25.6 26.0 t25 = 0.3713, p<0.714

Computing Hours/Day 7.21 6.76 7.00 t25 = 0.4298, p<0.671

Frequency of Computer Use† 4.64 4.77 4.70 t25 = −0.5982, p<0.555

Computer Skill† 3.57 3.61 3.59 t25 = −0.1405, p<0.889

M
ea
n
ac
ro
ss
gr
o
u
p

Organizational E�ort† 3.78 3.69 3.74 t25 = 0.2773, p<0.784

†5-point Likert ratings

Table 3.1: Self-reported demographics of the study population.

Finally, we re-execute each query rather than present results using algorithm state from

when the query was �rst executed. �e user’s contextual state may change between when the

query was executed and at the time of the experiment; any previous results could be invalid

and may potentially cause confusion.

In the experiment, we chose k=7 queries to be rated by the user. We anecdotally found

this to provide a reasonable number of data points without incurring user fatigue. Four al-

gorithms were evaluated: content-only, causality, temporal locality and a “random-ranking”

algorithm, which consists of randomizing the top 20 results of the content-only method.

�e rating task measures intra-user disagreement between the algorithms. �at is, for

a query, the study examines a user’s attitude between each algorithm’s results for only that

speci�c query. Content-only indexing is the baseline for comparison, or control, in this ex-

periment; the study tests how much better or worse each other algorithm is against it. Inter-

user disagreement between all users’ intra-user disagreements then similarly generalizes the

algorithms to the population at large.

Since users are evaluating their own queries, this method correctly captures intents. For

example, users presented with the query “triangle” and a set of results may very di�erently

judge whether the search was successful: each user may respectively believe the search refers

to either a polygon, the musical instrument, or a three-party social situation, all dependent

on their perceived intent. As this study is evaluating a user’s own queries, it can correctly

capture his or her stated intent.

3.2 Experimental Results

�e study ran during June and July 2006, starting with 75 participants, all undergraduate or

graduate students at the University of Michigan, recruited from non-computer science �elds.
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Each participant was required to run the so�ware for at least 30 days, a period allowing

a reasonable amount of activity to be observed while still maintaining a low participant

attrition rate. Of the initial 75 participants, 27 (36), consisting of 15 men and 12 women,

completed the full study—more than four times the number of Soules and Ganger [85]. �e

self-reported demographics of the sample population are shown in Table 3.1. �ose who

successfully completed the study received modest compensation.

To prevent cheating, the system tracks its installation, regularly reporting if it’s opera-

tional. We are con�dent that we identify users who attempt to run the tool for shorter than

the requisite 30 days. �e average study length was 32.3 days (σ=2.2, min = 30, max = 38).

Further, to prevent users from creating multiple identities, participants must supply their

institutional identi�cation number to be compensated. In all, we excluded 4 users from the

initial 75 because of cheating.

3.2.1 Randomized Controlled Trial

Evaluating end-to-end e�ects as in the controlled trial yields suggestive, though not statis-

tically signi�cant, results. Achieving signi�cance would require a probative number of par-

ticipants given our resources. �is portion of the study indicates that the repeated measures

experiment is a superior alternative for studying personal desktop search tools.

Figure 3.1 shows box-and-whisker plots of 5-point Likert ratings for key survey questions

delineated by control and treatment group. For those unfamiliar: on a box-and-whiskers

plot, the median for each dataset is indicated by the center dot, the �rst and third quar-

tiles, the 25th and 75th percentiles respectively—the middle of the data—are represented

by the box. �e lines extending from the box, known as the whisker, represent 1.5 times

this interquartile range and any points beyond the whisker represent outliers. �e box-and-

whiskers plot is a convenient method to show not only the location of responses, but also

their variability.

Figure 3.1a is the pre- and post-measures di�erence on a Likert rating on search behavior:

“When I need to �nd a �le, it is easy for me to do so quickly.” Figures 3.1b and Figure 3.1c

are post-survey questions on if the tool would change their behavior in organizing their

�les (i.e., “I would likely put less e�ort in organizing my �les if I had this tool available”)

or whether this tool should be bundled as part of every machine (i.e., “this tool should be

essential for any computer”). With all measures, the results are statistically insigni�cant

between the control and treatment groups (t25 = −0.2876, p<0.776; t25 = 0.0123, p<0.9903;

t25 = −0.4995, p<0.621, respectively).

We also consider search behavior between the groups. Figure 3.2 on page 28 shows the

rank of the �le selected a�er performing a query. �ose in the treatment group select items
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Figure 3.1: Pre- and post-measures di�erences between control and treatment groups: (a) Di�erence

between pre- and post-measures 5-point Likert rating of “When I need to �nd a �le, it is easy for me

to do so quickly.” While the treatment group has a slightly higher median di�erence, the results are

statistically indistinguishable. (b) 5-point Likert rating of “I would likely put less e�ort in organizing

my �les if I had this tool available.” (c) 5-point Likert rating of “�is tool should be essential for any

computer.” (N = 27)

placed higher in the result list than those in the control group, although not signi�cantly

(t51 = 1.759, p<0.0850).

�e treatment group returns more results on average (15.5 results per query) than the con-

trol group (11.1 results per query) as Figure 3.3 attests. While this may seem natural—the con-

textual reordering and extension mechanism is pooling additional items into the result set—

the increase in the number of results is not statistically signi�cant (t180 = −1.443, p<0.1507).

We divide query execution into sessions, where each session represents a series of seman-

tically related queries. Following Cutrell et al. [16], we de�ne a session to comprise queries

with an inter-arrival rate of less than 5 minutes. �e session length is the number of queries in

a session, or, alternatively, the query retry rate. As Figure 3.4 on page 29 shows, the treatment

group has a shorter average session length (t97 = 2.136, p<0.042), with geometric mean ses-

sion lengths of 1.30 versus 1.66 queries per session, respectively. 13.5 and 19.0 of sessions

in the control and treatment groups, respectively, ended with a user opening or previewing

an item.

�is data is, however, inconclusive. While at �rst blush it may appear that with the causal-

ity algorithm users are selecting higher ranked items and performing fewer queries for the
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Figure 3.2: �e rank of �les opened by users a�er a search CDF.
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Figure 3.3: Number of results returned per query CDF.
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Figure 3.4: Session length CDF.

same informational need, it could be just as well that users give up earlier. �at is, perhaps

users fail to select lower ranked items in the treatment group because those items are irrel-

evant. Perhaps users in the treatment group fail to �nd what they are looking for and cease

retrying, leading to a shorter session length. In hindsight, it would have been bene�cial

to ask users if their query was successful when the search window was closed. If we had

such data available, we could ascertain whether shorter session lengths and opening higher

ranked items were a product of �nding your data faster or of giving up faster.

�ese results are suggestive of the bene�ts of context-enhanced search, but are not sta-

tistically signi�cant. �e lack of signi�cant end-to-end e�ects stems from the relatively low

sample size coupled with the heterogeneity of the participants. To achieve statistical signi�-

cance, the study would require over 300 participants to a�ord the standard type II error of

β = 0.2 (power t-test, ∆ = 0.2, σ = 0.877, α = 0.05). Attaining such a high level of replication

is prohibitively expensive given our resources. Instead, our evaluation focuses on the rating

task.

3.2.2 Rating Task

�e rating task yielded conclusive results. Sixteen out of the 27 participants rated an aggre-

gate total of 34 queries, for an average of 2.13 queries per subject (σ=1.63). �ese 34 rated
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Figure 3.5: Box-and-whisker plots of each algorithm’s ratings delineated by subject. �e algorithms

are: content-only (“N”), causality (“C”), temporal locality (“T”), and random (“R”).

queries likely represent a better candidate selection of queries due to the “successfully ex-

ecuted” precondition (§3.1.2): the study only ask users to rate queries where they selected

at least one item from the result set for that search. Eleven participants failed to rate any

queries: 3 users failed to issue any, while the remaining 8 failed to select an item from one

of their searches.

�ose remaining 8 issued an average of 1.41 queries (σ=2.48), well below the sample

average of 6.74 queries (σ=6.91). �ese likely represent failed searches, but it is possible that

users employ search results in other ways. For example, the preview of the item might have

been su�cient to solve the user’s information need or the user’s interest may have been in

the �le’s path. Of those queries issued by the remaining 8, users previewed at least one item

17 of the time but never opened the �le’s containing directory through the interface. To

con�rm our suspicions about failed search behavior, it would have been bene�cial to ask

users as to whether their search was successful.
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Figure 3.5 on the previous page shows a box-and-whiskers plot of each subject’s ratings

for each of the di�erent algorithms. Subjects who rated no queries are omitted from the

plot for brevity. Some cursory observations across all subjects are that the causality algo-

rithm usually performs at or above content-only, with the exception of subjects U3 and U16.

Temporal locality is on par or better than content-only for half of the subjects, but is rated

exceptionally poorly, less than a 2, for a quarter of subjects (U3, U9, U13 and U16). Surpris-

ingly, while the expectation is for random to be exceedingly poor, it is o�en only rated a

notch below other algorithms.

Rigorous evaluation requires care as we have multiple observations on the same subject

for di�erent queries—a repeated measures experiment. Observations on di�erent subjects

can be treated as independent, but observations on the same subject cannot. �us, we de-

velop a mixed-e�ects ANOVA model [75] to test the statistical signi�cance of our hypothe-

ses.

Let yi jk denote the rating of the i-th algorithm by the j-th subject for the k-th query. Our

model includes three categorical predictors: the subject (16 levels), the algorithm (4 levels),

and the queries (34 levels). For the subjects, there is no particular interest in these individu-

als; rather, the goal is to study the person-to-person variability in all persons’ opinions. For

each query evaluated by each subject, we wish to study the query-to-query variability within

each subject’s ratings. �e algorithm is a �xed e�ect (βi), each subject then is a random ef-

fect (ζ j) with each query being a nested random e�ect (ζ jk). Another way to reach the same

conclusion is to note that if the experiment were repeated, the same four algorithms would

be used, since they are part of the experimental design, but another random sample would

yield a di�erent set of individuals and a di�erent set of queries executed by those individuals.

�erefore, our model is as expressed in Equation (3.1).

yi jk = βi + ζ j + ζ jk + єi jk (3.1)

ζ j ∼ N(0, σ 2
1 ) ζ jk ∼ N(0, σ 2

2 ) єi jk ∼ N(0, σ 2)

A maximum likelihood �t of Equation (3.1) is presented in Table 3.2. Each βi represents

the mean across the population for algorithm i. �e temporal locality algorithm is statisti-

cally indistinguishable from content-only search (t99 = −0.880, p<0.3812), while the causal-

ity algorithm is rated, on average, about 17 higher (t99 = 2.93, p<0.0042). Random-ranking

is rated about 36 worse on average (t99 = −6.304, p<0.0001).

Why is temporal locality statistically indistinguishable from content-only? Based on in-

formal interviews, we purport the cause of these poor ratings is temporal locality’s tendency

to build relationships that exhibit post-hoc errors: the fallacy of believing that temporal suc-

cession implies a causal relation.
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95 Conf. Int.
Algorithm βi Lower Upper p-value†

Content only 3.55 3.16 3.93
Causality 4.13 3.75 4.52 0.0042
Temporal locality 3.37 2.98 3.76 0.3812
Random 2.28 1.93 2.67 <0.0001

σ1 0.383 0.176 0.831
σ2 0.486 0.294 0.805
σ 0.815 0.710 0.935

†In comparison to content-only.

Table 3.2: MLE estimate of the mixed-e�ects model given in Equation (3.1).

For example, U16 was a CAD user that only worked on a handful of �les for most of

the tracing period (a design she was working on). �e temporal locality algorithm caused

these �les to form supernodes in the relation graph; every other �le was related to them.

Under results generated by the temporal locality algorithm, each of her queries included her

CAD �les bubbled to the top of the results list. U9 was mostly working on his dissertation

and every �le, as well as some of his music, was lightly related to each other. �e temporal

locality algorithm created a relation graph with 21,376 links with geometric mean weight

of 1.48 (σl=0.688); the causality algorithm, an order of magnitude fewer, with 1,345 links

and a geometric mean weight of 9.79 (σl=1.512). In his case, it appears that the temporal

algorithm naïvely created many lightly-weighted super�uous relations compared with the

causality algorithm.

A user’s work habits will a�ect the utility of provenance analysis techniques. Temporal

locality’s tendency to generate large numbers of lightweight false-positive relationships can

be detrimental in many cases, making more conservative techniques such as causality more

broadly applicable.

�e random reordering shares equivalent precision and recall values as content-only

search, but is rated about 35.7 worse on average. We expect a random ordering to do phe-

nomenally worse, but hypothesize that personal search tools are still in their infancy. �at

is, attention in the research community has been placed on web search; only recently has

desktop search become a priority, and there is appreciable room for improvement. It may

also be that users are simply content with having their desired result on the �rst page and

are apathetic to each result’s relative ordering within that page. More work is required to

understand a user’s perception of search orderings.
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We further analyze any interactions between other covariates such as the demographics

of participants or user features (e.g., size of disk, number of �les, folder depth). We �nd

these covariates either to be statistically insigni�cant or, because of the limited sample size,

to over �t any model.

3.3 Performance

�e results indicate that context-enhancing search with the causality algorithm building the

contextual index increases user satisfaction with their �le search results. Such a system,

however, is only e�ective if minimum additional system resources are required for building,

storing, and traversing the relation graph created by this algorithm. �is section eschews

discussion of content indexing overheads as these are already known [60].

3.3.1 Tracing Performance

We measure the impact building the relation graph has on foreground performance with

the Postmark synthetic benchmark [45]. Postmark is designed to measure �le system per-

formance in small-�le Internet server applications such as email servers. It creates a large set

of continually changing �les, measuring the transaction rates for a workload of many small

reads, writes, and deletes. While not representative of real user activity in desktop systems,

Postmark represents a particularly harsh setup for the collection daemon: many read and

write events to a multitude of �les inside a single process. Essentially, Postmark’s workload

creates a densely-connected relation graph.

We run 5 trials of Postmark, with and without tracing, with 50,000 transactions and

10,000 simultaneous �les on an IBM �inkpad X24 laptop with a 1.13 GHz Pentium III-M

CPU and 640 MB of RAM, a meek machine by today’s standards. �e results are shown

in Figure 3.6a. Under tracing, Postmark runs between 7.0 and 13.6 slower (95 conf.

int.; t8=7.211, p<0.001). Figure 3.6b shows a CDF of Postmark’s transaction times with and

without tracing across a single run. �ere is a relatively constant attenuation under tracing,

which re�ects the IPC overhead of the collection daemon and the additional disk utilization

due to relation graph updates. �is additional slowdown caused by relation graph construc-

tion is in line with other Win32 tracing and logging systems [55].

3.3.2 Space Requirements

We examine the additional space required by the relation graphs. During the user study, the

tool logged the size of each relation graph every 15 minutes. Figure 3.7 on the following page
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Figure 3.8: Search times CDFs for queries issued during the user study.

shows relation graph growth over time for the heaviest user in the sample, U3. Each relation

graph grows linearly (r2 = 0.861 and r2 = 0.881 for causality and temporal locality, respec-

tively). For those unfamiliar, the coe�cient of determination, termed r2, is a measure of

correlation: it represents the fraction of variance explained by the proposed model. For ex-

ample, an r2 of 0.90 indicates that the model accounts for 90 of the variance in the data,

signaling a very good �t.

While the worst case graph growth is O(F2), where F is the number of �les on a user’s

system, these graphs are generally very spare: most �les only have relationships to a handful

of other �les as a user’s working set at any given time is very small. In one year, we expect

the causality relation graph for U3 to grow to about 44 MB; in �ve years, 220 MB. �is is

paltry compared to the size of modern disks and represents an exceedingly small fraction of

the user’s working set. �ese results suggest that relation graph size is not an obstacle.

3.3.3 Search Performance

�e time to answer a query must be within reasonable bounds for users to �nd the system

usable. In our implementation (§2.4), we bound the context-enhancing phase to a maximum

of 5 seconds.

For every query issued during the user study, we log the elapsed wall clock time in

the content-only and context-enhancing phases. Figure 3.8 shows these results. Half of all
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trace of the author’s system, the time spent loading the relation graph and executing the basic BFS

algorithm against the number of edges in the relation graph. (5 trials per query; standard deviations

were within 2 of the mean for each data point and are therefore omitted from the plot.)

queries are answered within 0.8 seconds; three-quarters within 2.8 seconds, but there is a

heavy tail. �e context-enhancing phase takes about 67 of the entire search process on

average. We believe these current search times are within acceptable limits.

Recall that the context-enhancing phase consists of two distinct subphases: �rst, the

loading of the relation graph, followed by execution of the basic BFS algorithm (§2.2). To

understand the performance impact of these subphases, previous queries issued by the au-

thor were re-executed for 5 trials each under a cold cache with the relation graph from a

6-month trace. Figure 3.9 shows the time spent for each query based on the number of

edges from the relation graph loaded for that query. For non-empty graphs, loading the

relation graph took, on average, between 3.6 and 49.9 longer (95 conf. int.) than the

basic BFS subphase (paired t15 = −2.470, p<0.026).

Both loading the relation graph and basic BFS execution support linear increase mod-

els (r2 = 0.948 and r2 = 0.937, respectively) with regard to the number of edges in the graph.

�is is apparent as each subphase requires both Ω(F2) space and time, where F is the num-

ber of �les on a user’s system. As E = O(F2), where E is the number of edges, this naturally

translates to the linear O(E) growth observed. As these are lower bounds, the only way

to save space and time would be to ignore some relationships. If we could predict a priori
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Question µ̃ IQR

I would prefer an interface that shows more information. 4.0 1.0
I �nd it easy to think of the correct search keywords. 4.0 1.0
I would prefer if I could look over all my machines. 4.0 3.0
I like the interface. 3.0 2.0
�is tool should be essential for any computer. 3.0 1.0
I would likely put less e�ort in organizing my �les if I had
this tool available.

3.0 2.0

I would prefer if my email and web pages are included in
the search results.

2.0 3.0

Table 3.3: Speci�c user feedback at the end of the study. At the conclusion of the study, additional

feedback, with 5-point Likert ratings, was solicited from treatment group users (N = 13).

which relationships were most relevant, we could calculate, at the expense of accuracy, Equa-

tion (2.1a) for those pairs. Further, we could cluster those relevant nodes together on disk,

minimizing disk I/Os during graph reads.

3.4 User Feedback

During the post-survey phase of the study, the questionnaire contained additional 5-point

Likert ratings. A tabulation of subject’s responses for the treatment group are shown in

Table 3.3. Likert ratings are treated as an ordinal level of measurement and are hence sum-

marized by the median and, as a measure of variance, the interquartile range (IQR), which

is the di�erence between the third and �rst quartiles or, alternatively, the middle 50 of the

data.

An area for improvement is the user interface. Our results are presented in a list view

(Figure 2.4), but using more advanced search interfaces, such as Phlat [16], that allow �l-

tering through contextual cues may be more useful. Di�erent presentations, particularly

timeline visualizations, such as in Lifestreams [25], may better harness users’ memory for

their content. �ere is a relatively strong positive correlation (ρ = 0.698) between liking

the interface and �nding the tool essential; a better interface will likely make the tool more

palatable for users.

Based on informal interviews, we found that participants used the search tool as an aux-

iliary method of �nding content: they �rst look through their directory hierarchy for a par-

ticular �le, switching to keyword search a�er a few moments of failed hunting. Participants

neglect to use the search tool as a �rst-class mechanism for �nding content. A system that
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Figure 3.10: Distribution of the number of queries among users.

is integrated into the OS, including availability from within application “open” dialogs, may

cause a shi� in user’s attitudes toward using search to �nd their �les. Indeed, new operating

systems available a�er this study was conducted now include this functionality.

We found it surprising that users wished to exclude email and web pages from their

search results; two-thirds of users rate this question a three or below. Our consultations

reveal that many of these users dislike a homogeneous list of dissimilar repositories and

would rather prefer the ability to specify which repository their information need resides in.

�at is, a user knows if they’re searching for a �le, email or web page, let them easily specify

which. We need not focus on mechanisms to aggregate heterogeneous forms of context

spread across di�erent repositories into a unifying search result list, but to simply provide

an easy mechanism to re�ne the search to a speci�c repository.

3.5 Personal Search Behavior

Finally, as part of this work, we explore the search behavior of the sample population. To

maintain participants’ privacy, we are only able to provide aggregate data points. Also, recall

that for privacy reasons we do not log any information about the content of users’ indices or

search results.

Our population issued 182 queries; the distribution per user is shown in Figure 3.10. �e

average number of queries issued per user is 6.74 (σ=6.91). Most queries, 91, were fresh,
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having never been issued before. About 9 of search terms were for �lenames. Since Win-

dows XP lacks a rapid search-by-�lename tool similar to UNIX’s slocate, users were employ-

ing We� to �nd the location of �les they already knew the name of. Most queries were very

short, averaging 1.16 words (σ=0.462). �is is slightly shorter than the 1.60 and 1.59 words

reported for the desktop tools Phlat [16] and SIS [23], respectively, and comparatively very

short to the average of 2.8 words for web searches [102].

Figure 3.11 on the preceding page shows when queries are issued a�er installation. A

sizable portion of queries are issued relatively soon a�er installation as users are playing

with the tool. Even though the tool warns users that search results are initially incomplete

because the content indexer has not built enough state and the relation graph is sparse (§2.4),

it may be prudent to disallow searching until a reasonable index has been built as not to

create an unfavorable initial impression.

Figure 3.12 shows the last access time and last modi�cation times of items opened a�er

searching. �e starred versions represent last access and modi�cation times of queries issued

at least a day a�er installation. During the �rst day, users might be testing the tool against

recent work and, hence, recently accessed �les. Anecdotal evidence of this e�ect can be

observed by the shi�ed last accessed curve. A�er the warm-up period, half of all �les selected

were accessed within the past 2 days. It appears users are employing the tool to search for

more than archival data.

3.6 Conclusion

By measuring users perception of search quality with the rating task (§3.2.2), this research

shows that using causality (§2.1.2) as the dynamic re-indexing component increases user

satisfaction in search, being rated 17 higher on average over all queries than content-only

indexing or temporal locality. While the contextual search mechanism only suggested in-

creases in end-to-end e�ects in the randomized controlled trial (§3.2.1), this stemmed from

an insu�ciently large sample size. It is prohibitively expensive to secure such high levels of

replication, making the rating task a more appropriate methodology for evaluating personal

search systems. �ese results validate that using the provenance of �les to reorder and ex-

tend search results is an important complement to content-only indexing for personal �le

search.
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PART II

SHARING CONTEXT

CHAPTER 4

LIGATURE—AN ARCHITECTURE FOR

SHARING CONTEXT

�ere is no delight in owning

anything unshared.

Seneca (c. 4 BC–AD 65)

Sharing objects, such as sending a paper out for review or sharing photos among friends

and family, is an everyday occurrence. �ese objects are o�en associated with contextual in-

formation that describes and extends them. Unfortunately, most sharing mechanisms lose

this context. Even when static context is preserved, it cannot be easily modi�ed by the spon-

taneous collaborations formed by object sharing. �is research presents Ligature1, a service

that supports shared contextual data across a user’s social neighborhood, allowing di�erent

groups access to di�erent contexts as appropriate. �e system requires no common admin-

istrative domain of control and employs an eventually-consistent model, aiding scalability

1A ligature is something that bonds or connects. For instance, in music, a ligature is a symbol

that connects multiple notes together in some meaningful way.
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and user mobility. �is research further describes a prototype of this architecture and shows

that context can be shared with minimal overhead, while a user study demonstrates that the

system’s disclosure model scales with task di�culty.

4.1 System Features

Part I: Employing Context showed the usefulness of context, particularly in aiding the re-

trieval of data. Unfortunately, while this context proves useful, it is only maintained locally.

However, when a party creates or captures context, they may want to share it with other in-

terested parties. To illustrate this, consider a researcher presenting at a conference and a�er

meeting a colleague from another institution, wishing to share some additional data with

her. Typically, this is done via email [98], though any context—for example, provenance

information [63] or links to other relevant data [3]—is lost entirely. �is context could be

embedded inside the objects themselves or sent via some context-aware archive, but that

makes updates—especially with collaborative contextual applications—extremely painful.

Context sharing, as the preceding example exempli�es, o�en occurs impetuously among

ad-hoc groups without a common administrative domain of control: heavyweight mecha-

nisms providing direct support for contextual sharing along with authentication and access

control are unlikely to provide value. In addition, any context sharing system should not

excessively burden users by making context a new entity to manage. For instance, requir-

ing users to explicitly delineate the context shared to each respective peer quickly becomes

a management nightmare. However, any implicit sharing of context must respect a user’s

boundaries of disclosure. �e researcher, for example, will likely share di�erent context

with her colleague than with her research group or her boss, even though the underlying

object is the same.

Ligature is a system supporting �exible management and sharing of context among spon-

taneous groups of collaborators. Figure 4.1 shows how services interact with the Ligature

service. In this scenario, there are two services, a note taking service, where users can attach

notes to objects, and a tagging service, where free-form labels can be assigned to objects.

�e Photo Viewer uses a standard tags API to retrieve and set tags; this API performs calls

to the tags service as needed. Each service, each with its own presentation layer, uses the ar-

chitecture’s primitives to respectively store, remove, and query an object’s context. Ligature

is responsible for transmitting context to other interested parties.

Ligature’s model of context departs from the current state of a�airs in three ways. First, it

provides a separation of concerns between an object and its context. Rather than store con-

text in the object itself, Ligature’s model allows context to be structured, and to grow and
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Figure 4.1: Illustration of how Ligature and its services interact. In this example, applications (e.g., a

photo viewer) hook into respective services that run atop the Ligature service, which handles com-

munication and contextual exchange among a user’s social neighborhood.

evolve over time. Second, rather than tie context to third-party providers, Ligature ensures

a user’s context is her own to do with as she wishes. �ird, and most important, it provides

reasoned conditions for implicit context sharing by exploiting acts of data sharing to auto-

matically exchange related context. �e system does not require centralized repositories,

strong identities, or a single domain of administrative control.

In Ligature, users spontaneously form communities based on the objects they share.

�ose holding a particular object form a coterie, also sharing context on that object. �is

model places boundaries on con�dentiality and disclosure: the trust the sender imbues by

sharing the object with the recipient carries over to its context (i.e., “I sent you the object,

you get its context.”). �e resulting conditions for contextual exchange are simple and deter-

ministic, and match user expectations about the meaning of sharing [95, 98].

�is one-to-one mapping between objects and contexts is adequate for the common case,

but breaks down when di�erent contexts for the same object are necessary. To support these

boundaries of disclosure, Ligature extends the model with the addition of explicit contextual

frames—enclosures around some context about an object—along with primitives for manip-

ulating them. Frames accrue context and follow the objects to which they are bound. A user

can bind more than one frame to an object, and duplicate, combine, or destroy them. Dis-

tributed replicas of a frame are kept eventually-consistent, preserving scalability and user

mobility.

Ligature is self-organizing, requiring no centralized infrastructure. For disseminating

context, Ligature uses a publish/subscribe model [24] that prefetches an object’s context,

eliminating wide-area latencies from the critical path and coping with disconnected peers.

�e resulting system is lightweight, and usable even on modest platforms [97].
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As an example of a solution with Ligature, consider a researcher preparing to give a talk

at another lab overseas. Before leaving, she asks her co-author, who is located at another

university and does not share a common administrative domain, for a copy of the “slides

for the talk.” Upon arriving, she discovers there are a few graphs she needs to be able to

present the details behind the experiments. Unfortunately, due to time zone di�erences,

her colleague is unavailable. Rather, she asks her system for the “source documents” for

the talk; those documents that were most important in actually preparing this set of slides.

It retrieves, via provenance records [63] stored as context and already fetched by Ligature,

a set of candidate links from which she can choose. Importantly, work on a similar topic

prepared by her colleague as a consultant to another company is not made available to her;

that information is in a frame not disclosed. Among the candidate source documents is the

original conference paper. Armed with this paper, she is now prepared for her presentation.

As part of this work, we constructed a prototype of Ligature and a common set of appli-

cations. �is prototype indicates the additional mechanisms have a negligible performance

impact. We also performed a user study, giving both novice and expert computer users sev-

eral tasks of varying di�culty to complete using Ligature’s frame mechanisms. �e results of

this study are encouraging as the mechanisms scale with task di�culty: novice users were

able to complete the easy and moderate tasks in almost all cases, while expert users were

able to complete the di�cult tasks as well.

4.2 Related Work

�e closest system to Ligature is Gra�ti [58]. Gra�ti uses a client-server model, which limits

its usefulness among collaborators not belonging to a single administrative domain. Con-

text is shared via object similarity in Gra�ti, not based on sharing and disclosed through

contextual frames, as is with Ligature. While Gra�ti supports two separate contextual appli-

cations, tags and explicit relationships between �les, Ligature is general; its model supports

a large variety of applications, including those o�ered by Gra�ti.

Several eventually consistent replicated systems exist. Coda’s [48] disconnected recon-

ciliation protocols allow servers and mobile clients to reconcile with each other. In addi-

tion, Ficus [37] and Ivy [65] both develop optimistic replication algorithms for distributed

�le systems. Bayou’s [91] anti-entropy protocol is based on pair-wise communication be-

tween hosts and propagation of write operations; ordering constraints, as well as application-

supplied con�ict resolvers on write-write con�icts, maintain consistency.

Publish/subscribe systems [24] decouple senders and listeners of data by arbitrating mes-

sages through a broker. Subscribers express their interest in a set of events and are noti�ed
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when a publisher produces such an event. Ligature is such a publish/subscribe system where

consumers subscribe to the context of a particular object.

Contextual frames are based on information �ow controls [66], which curb improper

data dissemination through labeling and information �ow analysis. �ere is a di�ering scope

of these techniques: �ow controls are a �ne-grained mechanism to respect constraints on

data sharing, while frames are merely a disclosure barrier.

�ere is substantial related work within both the semantic web and collaborative author-

ing communities. We use their work in semantic markup languages, particularly RDF [59],

as the basis for Ligature’s knowledge base. Additionally, web annotations [92] permit the

semantic mark-up of web documents, but chie�y concerns itself with knowledge base repre-

sentation (i.e., RDF) and automatic and manual tools to ease user burden in distilling these

annotations. Actual dissemination is assumed to be a centralized store. Similarly, the pur-

pose of collaborative authoring systems (e.g., MESSIE [81]) is to facilitate group editing and

digital whiteboarding, not to act as a framework for storing and exchanging semantic meta-

data. �ey are therefore centralized, shunning ad-hoc group formation; strongly consistent;

and usually only support a �at, unstructured data layout.

Considerable work exists in merging the semantic web with peer-to-peer technolo-

gies [87]. RDFPeers [12] is a peer-to-peer system where users subscribe to RDF content.

It uses a DHT [88] to answer attribute and range queries over this RDF data. �is system,

and decentralized RDF storage and querying systems like it (i.e., Edutella [68] and its succes-

sor [69]), are orthogonal to Ligature. Ligature enables disconnected operation and engen-

ders contextual exchange around shared objects. Particularly with the latter, it also permits

sharing disparate context among the same or di�erent peers through the use of contextual

frames.

Several systems leverage forms of context for improved organization. Phlat [16] is a user

interface for personal search that also provides a mechanism for tagging data. Phlat’s im-

plementation ties tags to the local �le system by storing them in resource forks in the �le

system. �e Semantic �le system [29] permits applications to store �le attributes, in the form

of key-value pairs, within the �le system. LiFS [3] extends this model to support inter-�le

links as well. Sedar [57] is a peer-to-peer semantic �le system that uses the concept of seman-

tic hashing to facilitate clustering of semantically-close objects. �e Haystack project [43] is

a personal information manager that organizes data, and operations on data, in a context-

sensitive manner. �ese systems only deal with context at the local level. By employing

Ligature, synergism among a user’s social neighborhood could be exploited.
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CHAPTER 5

CONTEXTUAL FRAMES

A set of ideas, a point of view, a

frame of reference is in space only

an intersection, the state of a�airs at

some given moment in the

consciousness of one man or many

men, but in time it has evolving

form, virtually organic extension.

John Dos Passos (1896—1970)

Ligature is built around the notion of a contextual frame: an abstraction that encapsulates

context for a particular perspective of an object. �e system provides mechanisms for frame

creation, modi�cation, deletion, and combination. �ese mechanisms are integrated into

�le system operations, providing a natural, yet transparent set of extensions, both within

a single user’s namespace as well as across disjoint users’ stores. To illustrate the nature of

contextual frames, we provide example scenarios, and conclude with a discussion of these

design points.

5.1 Frames : Encapsulating Context

�e contextual frame is Ligature’s central abstraction. It is the unit for encapsulating context,

and the means by which context is associated to objects. �e frame-object relationship is

many-to-one: each frame must be bound to exactly one object, but an object may have zero

or more frames bound to it. A frame consists of: a globally unique, opaque identi�er; a

pointer to the object it is describing; and the object’s context.

Context acquired for an object is always associated with some particular frame—the

frame of reference. Context is stored within the frame itself in a structured manner and

can be any serializable data, including links to other objects. Context is represented as a
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log of idempotent notation operations, which exclusively consists of adding or removing

contextual data. Applications can also inspect the context stored within frames or across the

entire context repository through the use of a query language, as well as establish callbacks

to be noti�ed when some contextual key changes.

�e hosts possessing a frame are said to be in its coterie. Such possession imbues both

read and write access to all coterie members for all of a frame’s context. It is unclear whether

enabling policies other than full rights—which would complicate the system by requiring

ownership semantics—is indeed useful, especially as almost all interpersonal sharing grants

full rights [98] and there is no evidence to suggest context is any di�erent. Judging how well

this �ts with Ligature’s use cases is still ongoing research.

When an object is shared, its bound frames are also shared. Distributed updates are rec-

onciled with an eventual consistency mechanism [91], aiding scalability and the ephemeral

nature of peers. �is meets most users’ expectations as it mirrors the consistency semantics

of other successful distributed systems, mainly the world wide web. Particularly, with web

search, most engines are not particularly fresh—pages are re-indexed with a periodicity of

days [54]—but the popularity of these sites is testament to their usefulness. �e uni�ed log is

assumed to have a total ordering. When causal ordering is not su�cient to provide such a to-

tal order, one can be imposed arbitrarily by any unique client identi�er. �is scheme allows

for semantically con�icting updates, but contextual systems typically already take on this

burden. For example, tagging systems might use histograms to represent di�ering opinions

amongst users [31].

5.2 Frame Manipulation

It is reasonable to expect that people will share the same object for a variety of purposes,

and so the same object may well be bound to di�erent frames at di�erent times and circum-

stances. Ligature provides several mechanisms to manipulate the frames binding an object,

supporting this notion of coteries. Frames may be controlled explicitly through the use of

an API, or implicitly as a side-e�ect of object operations.

5.2.1 Frames API

Table 5.1 on the next page presents the frame operations. Frames can be created via either

new or fork. �e new operator creates a blank frame, while fork creates a new frame with

a copy of the old frame’s contents. A�er one frame is forked from another, the two remain

independent; updates to one do not a�ect the other, and vice versa. Frames are unbound
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F = new(O) Creates a new frame F bound to object O.
L = catalog(O) Returns the list of frames, L, bound to object O.
expire(F) Unbinds frame F, marking it ready for garbage collection.

F ′ = fork(F) Returns a duplicate of frame F bound to its same object.
attach(F ,G) Joins context from frame G to frame F forever (i.e., F = F ∪G).

Table 5.1: Summary of the frame operations.

once(F ,G):
G′ = fork(G)
attach(F ,G′)
expire(G′)

(a)

functional(F ,G):
H = fork(F)
attach(H, F)
attach(H,G)
return H

(b)

symmetric(F ,G):
attach(F ,G)
attach(G , F)

(c)

Figure 5.1: Common attach idioms. (a) Join context in G’s frame into F’s frame only once. (b) A side

e�ect-free version of attach: return a new frame with context linked between frames F and G. (c)

Join context symmetrically between F and G.

from their objects by the expire operator, and are marked for later deletion, which occurs

when any context has been safely reconciled. An application can obtain the catalog of all

frames for an individual object.

�e most interesting operator is attach, which takes two frames, F and G, and from that

point on, context added to G is also propagated to F. In e�ect, attach confers trust from

the source frame’s coterie to that of the sink frame. Attach is perpetual, imperative, and

asymmetric. �ose who prefer one-shot semantics to perpetual propagation can achieve

them by using the once idiom in Figure 5.1a. Likewise, one can produce a side e�ect-free

union of two frames using the functional idiom in Figure 5.1b. Finally, reciprocal attach

operations produce symmetric results with symmetric, as in Figure 5.1c.

5.2.2 Implicit Frame Changes

While users could explicitly perform all frame manipulations, doing so would be an un-

reasonable burden and will undoubtedly produce ambiguities. Instead, Ligature performs

implicit manipulations as a side e�ect of object operations in an e�ort to handle most cases.

Table 5.2 summarizes these events.

On creation, an object is given a new, blank frame. Reading an object does not change

its frame state. An object that is renamed retains its current set of frames, and a copy of

an existing object is bound to forked copies of the existing frames. File deletion removes
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P creates O Object O receives a new, blank frame.
P inspects O —.
P renames O to O′ All frames follow the name change.
P copies O to O′ Object O′ receives forked copies of object O’s frames.
P deletes O Frames are lazily garbage collected.
P mutates O to O′ Equivalent to creation of new object O′.
P links O to O′ Same as copy.

Table 5.2: �e frames calculus. Here, O is an object and P is a principal acting on that object.

any associated frames with the expire operator; they can be reaped once any pending local

updates have been reconciled.

�e interesting case is object mutation, where there are several options:

1. Symmetrically attach the antecedent’s frames. �is e�ectively retains the current set

of frames unchanged. �is option, however, seems particularly unsatisfactory if the

object is also shared by others. In such cases, two di�erent objects have the same

context and updates to either object’s frames re�ect in both objects. As these two

objects are now di�erent and are used in di�erent circumstances and di�erent coteries,

this is awkward.

2. Fork the antecedent’s frames. �e system could instead fork copies of the antecedent’s

frames, but in many cases, acquired context for the original object will no longer be

relevant. As a simple example, down-sampling an image will likely keep most of its

context intact, except any resolution tags inserted as context. Requiring applications

to provide resolvers is precarious, as they usually cannot discern the semantics of user

actions [96].

3. Attach the antecedent’s frames. �is is particularly perilous, as any new context to the

original object also applies to its descendant. With the exception of extremely narrow

circumstances, there are no general use cases where this option is bene�cial.

4. Create a new frame for the descendant. �e system could create a new frame, com-

pletely divorced from the old, in the descendant on object mutations. �is mitigates

ambiguities present in the previous proposed options and is the solution currently

employed by Ligature. Whether this �ts well with all its expected use cases is ongoing

research.

Finally, a hardlink e�ectively creates, from the user’s perspective, what feels like a new

object. �is object has a new name and, consequently, a new set of circumstances surround-

ing it. Similarly, the referent object’s frames are forked to the destination object. However,
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disregard(O):
for all F ∈ catalog(O) do
expire(F)

end for

(a)

clean(O):
disregard(O)
F = new(O)

(b)

subset(O , L, O′):
hardlink(O , O′)
disregard(O′)
for all F ∈ L do

F ′ = new(O′)
symmetric(F ′, F)

end for

(c)

Figure 5.2: Common frame composites. (a) Disregard: Object O is frame-less and no further context

is shared. (b) Clean: Remove all frames from object O and start anew. (c) Subset: �e new object O′

only has object O’s frames in set L.

hardlinks pose problems in the face of referent mutation. If a link’s referent is mutated, there

is no clear mapping to the reference; modifying the reference’s frames would be confusing to

users. On the other hand, initially binding the same set of frames to both referent and refer-

ence dispels the notion that names inside a repository are signi�cant to end users. Ligature’s

approach attempts the least aggrieving outcome. In any event, users seldom use links.

5.3 Sharing Model

�e frame operations, coupled with their calculus in the presence of object operations, pro-

vide su�cient leverage for Ligature to support the automatic sharing of context across co-

teries. However, there are still some additional idioms that are needed to express common

behaviors.

5.3.1 Common Composites

To prevent an object from containing and propagating context, the disregard composite, as

shown in Figure 5.2a, is used. For instance, this could be used to share a personal picture on a

user’s web page free of context. Similarly, the clean composite in Figure 5.2b clears all frames

and starts fresh. �is is mostly used to divorce an object from its source. For example, if a

user downloads a paper from a conference website, they may wish to disassociate all previous

frames and make the object their “own.”

By default, sharing an object shares all of its frames. One can expose a subset of an

object’s frames with the subset composite in Figure 5.2c. Here, hard links ensure cheap

replication costs. �e ensuant object can be shared and acted upon by the user or application

developers; changes re�ect between it and its parent object via the symmetric attach.
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5.3.2 Revocation

Revoking membership within the coterie is handled by forking the frame and re-sharing

that frame with all parties except those individuals being removed. �is parallels the archi-

tecture’s semantics and handles revocation ambiguities, such as if two individuals contem-

poraneously revoke each other’s membership. In this case, there will be two distinct coteries

that, if desired, must be reconciled out-of-band.

5.3.3 Log Truncation

Users, especially in a reviewing scenario, may wish to truncate a frame’s log such that any

intermediate context is completely discarded from view by others. Ligature provides an

application that copies a frame’s current context—essentially, the tail of its log—into a new

frame.

5.3.4 Monikers

Users, as a means of distinguishing frames within an object, may assign a moniker for the

frame, which acts as another piece of context. In addition, arguments to context operations

may be overloaded with this moniker so as to operate on a speci�c set of frames; the default

is to operate on all frames. Within the �le manager UI, frames, displayed via their monikers,

form an overlay atop the object’s own namespace. Users can navigate this “framespace” to

observe and manipulate frames with the previously mentioned operations.

5.4 Putting It All Together : A Case Study

To see how these mechanisms might work in concert, consider the familiar scenario of sub-

mitting a paper to a conference. Suppose Alice, Bob, and Carol are authors, all sharing the

manuscript. With just this simple set of actors, it would be su�cient to allow possession of

the paper to imbue full rights on all acquired context.

However, such a simple model quickly breaks down. For example, suppose Alice believes

there are potential research opportunities with Dave, and wishes to send him a copy of the

paper for his perusal. Dave could include a note expressing his thoughts, but if Alice wishes

to discreetly receive this feedback, this must be in a coterie separate from her co-authors

Bob and Carol. �is problem is exacerbated when the paper is submitted, for the program

committee, as well as the reviewers, all hold a copy of the paper but have a separation of

concerns.
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Bob
F Fd

Dave

Alice F Fd

Carol
F

new

The authors—Alice, Bob, and Carol—all share the paper bound by frame F . Alice

sends the paper with a new frame Fd to Dave.

(a)

Alice
Fs

Chair
Fs G1 G2 G3 G4

G1 G2 G3 G4

Reviewers

new new new new

Alice, the lead author, submits the paper by creating a new frame Fs and shar-

ing it with the chair of the program committee. The chair creates four new

frames (Gi )—one for each reviewer—so that each reviewer’s comments and an-

notations remain independent.

(b)

Alice Fs

Chair Fs G1 G2 G3 G4

G1 G2 G3 G4

Reviewers

G

PC

attach
attach

attach
attach

The chair attaches each of the reviewer’s frames (Gi) into a frameG that is shared

with the rest of the PC. Context flows in the direction of the arrows, whichmeans

the PC and the chair, but not the reviewers, exclusively see the full set of reviews.

(c)

Figure 5.3: Submission to a conference illustration using contextual frames. �e bold arrows indicate

a sharing action and the �le object is the paper being submitted.
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Fd
Dave

Alice Fd Fe

Fe
Evefork

Alice, believing collaboration with Eve may be possible, wishes for her to inde-

pendently peruse Dave’s comments and annotations. She forks frame Fd into

frame Fe , which is then shared with Eve.

(d)

Fd
Dave

Alice Fd Fe

Fe
Eve

attach

attach

Later, Alice decides to bring Eve and Dave together, having received Eve’s affir-

mation regarding future collaboration. She attaches frame Fd and frame Fe as

shown; context flows in both directions between the frames.

(e)

Figure 5.3 (continued): Submission to a conference illustration. �e bold arrows indicate a sharing

action and the �le object is the paper being submitted.

Simply using email or a web service is unacceptable, as while it may be adequate for

one-time comments and annotations, it is insu�cient for other ancillary forms of context,

such as tags or provenance information, which would be lost entirely. Such mechanisms also

separate context from its object, increasing its managerial burden and, importantly, updates

become especially painful.

To begin, the authors all share the paper bound by a common frame, as shown in Fig-

ure 5.3a on the preceding page. Frame F’s coterie is Alice, Bob, and Carol. To share the paper

separately with Dave, a colleague given the paper for early review, Alice creates a new frame

that is only disclosed to him. Since the frame is only shared between Alice and Dave, any

context is separate and independent from that which is shared with Bob and Carol.

Likewise, when submitting the paper, Alice, the lead author, creates a new frame that is

shared with the program chair, as shown in Figure 5.3b. To keep the submission process blind

and to maintain independence of reviews, the chair creates a new copy for each reviewer,

sharing the paper along with each respective frame. Each reviewer adds their evaluation,

and with this setup, each reviewer’s context is shared with the chair, but not with each other.
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Naturally, the chair would like to collect all reviews and have them automatically shared

with the program committee without his involvement. He would attach each reviewer’s con-

texts into a collective whole, as shown in Figure 5.3c. Context �ows only in the direction of

the arrows to a new frame G, shared with the PC. �e asymmetry of this frame attachment

ensures that the complete set of reviews is hidden from the reviewers. As context is updated

in each source frame, it automatically �ows to its destination frame without the chair’s in-

volvement. A�er the committee meeting, the chair includes a note to frame Fs shared with

Alice indicating acceptance of the paper, along with the anonymized set of reviews.

Later, suppose Alice, a�er having read Dave’s comments, believes potential wider rang-

ing collaboration is possible, perchance with Eve: Alice could create a new frame, copy

Dave’s thoughts into it, and relay the frame along with the paper to Alice. In essence, Al-

ice forks the frame she shares with Dave into an independent, duplicate frame, as shown in

Figure 5.3d.

A�er receiving a�rmation from Eve about future collaboration, Alice may wish to bring

all parties together. She can do this by attaching both frames, as shown in Figure 5.3e. Alice

desires an escalation of trust such that Dave and Eve e�ectively belong to the same coterie;

the persistent symmetric �ow of context between both frames ensures this.

5.5 More Case Studies

Given this framework, we further envision scenarios like the following with the system.

Scenario #1 (Collaboration/Group control) Elizabeth, upon hearing a talk, believes there

may be important avenues of joint work with the speaker, John. She sends the latest tech-

nical report of her work encased in a new frame to John in hopes of gauging his thoughts.

Context, including notes, document annotations, and links to other work John adds to the

report is thus only shared with Elizabeth. John believes there may be potential wider ranging

collaboration and sends Elizabeth’s report to a colleague, Kimberly, along with a fork of his

and Elizabeth’s frame. Kimberly receives all of John’s context, but is isolated from Elizabeth.

Later, having received Kimberly’s a�rmation regarding future collaboration, John symmet-

rically attaches all frames together: he, Kimberly, and Elizabeth now all share context.

Scenario #2 (Frames as a disclosure barrier) Sue, a geneticist, stores gene sequences using

the standard �le format necessary for her tools. Her system automatically determines and

stores the provenance [63] of each sequence as context, e�acing the need to keep a separate

database or a lab notebook. �is provenance information follows sequences as they are
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shared with her research group and colleagues. Also, Sue keeps two frames for each sequence

object: a “private” frame, shared only among her research group, and a “public” frame, which

is shared with her research group and outside colleagues. Provenance information is stored

in this public frame, but experimental results (e.g., locating a matching gene in humans)

are stored privately. A�er publication, Sue can appropriately sanitize results into the public

frame.

Scenario #3 (Roles) Linda is a professor consulting for two di�erent companies and must

ensure that one company does not have access to proprietary information of the other. �at

is, a colleague at the �rst company who is accessing relevant state from her should not be

able to obtain any context associated with work done for the second company. For instance,

say, a research paper used as documentation at both companies. To support such separation,

she uses two separate frames, one per role, for each shared object. Frame selection is made

automatic by setting up appropriate association rules (e.g., Linda is VPN’d to the �rst com-

pany, therefore only use that pertinent frame.) �e system’s strong enforcement of frame

boundaries prevents information leaks.

Scenario #4 (Frames as discretionary access controls) �e presence of a frame can signify

access to context about the user. Consider a location publishing service. Most users trust

their co-workers with their location only during business hours, but not otherwise [13]. �e

service publishes the user’s location as context to an “at work” frame during business hours,

otherwise to an “at home” frame. �e user discloses these frames depending on their privacy

preferences. For example, the “at work” frame is shared with co-workers, the “at home” frame

is shared with friends and family, and both frames are shared with the user’s spouse.

Scenario #5 (Small devices/Ubiquitous computing) A wealth of contextual information can

be automatically collected from embedded sensors [97] and stored to frames at the time of

their creation or modi�cation. For example, embedded sensors can be used to tag photos

with location information [73]. If people are present at the time the photo is taken and they

have any device that connotes personal presence, their presence can be recorded as part of

the frame. Users would be able to search for their media by where the media was created

and who was present. �is information would automatically �ow as the underlying media

is stored on the user’s PC or shared with others.

5.6 Discussion

�e notion of genres of disclosure, as illustrated by our examples, is based in the work of

Go�man [30], who explored the “fronts” people employ while playing varying social roles.
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Our notion of sharing as the means to imbue access seems to capture this concept. For exam-

ple, consider Alice’s escalation, bringing Eve into an existing coterie. One may mistakenly

believe this breaks trust, but most interpersonal sharing not only implies read access, but

redistribute access [95]. �ere is an implied social contract between parties who share data

and context preventing unauthorized redistribution [98]; the architecture merely provides

a useful abstraction to the common operation of branching and merging context.

Fundamentally, people disclose di�ering versions of personal information to di�erent

parties depending on di�ering, multivariate conditions. Access control lists (ACLs) are not

a su�cient solution as they are o�en cumbersome to employ [98], require a centralized

authority, su�er from granularity problems in selecting which particular subset of context

is enforced by which particular ACL, and are a weak metaphor for separating and merging

of contexts.

Instead, contextual frames form a user-visible concept encapsulating this multivariate

nature of personal disclosure. In addition to being consistent with risk models of disclo-

sure [40], contextual frames can be transparent to oblivious users and applications, but sup-

port context-aware tasks. To explore the degree to which frames capture this notion, we

conducted a pilot user evaluation (c.f. §8.1).
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CHAPTER 6

EMAIL SHARING PATTERNS

Societies have always been shaped

more by the nature of the media by

which men communicate than by

the content of the communication.

Marshall McLuhan (1911–1980)

To aid in architectural design decisions, an analysis of how individuals share data is nec-

essary. Unfortunately, studies of sharing behaviors are lacking. �ere are high-level studies

of sharing behavior [95, 98], but they do not provide quantitative data of object exchange or

sharing topologies. Email studies [7, 33] concentrate on delivery characteristics (e.g., mes-

sage sizes and interarrival times), not on message payloads. Similarly, studies of distributed

�le systems [5, 86], instant messaging [100], and �le sharing [36] also do not provide this

data.

�is dissertation makes use of sharing patterns to aid in design decisions for context

sharing and for use in evaluation. Particularly, the most compelling questions are:

• How do individuals share objects? Is there locality in their sharing preferences (i.e.,

do users usually share objects with those they have with before)?

• What types of objects are shared? Do these types support embedding of auxiliary

data? �is is eminently useful in a system for tracking the path of sharing.

• What is a typical sharing topology and at what rate are the objects shared? �is data

is necessary for evaluation.

We study email, as it has become a de facto �le-transfer mechanism: users o�en send

vacation photos to their friends and families via email; colleagues o�en make revisions to a

document in a collaborative manner using email as a version-control system. �e simplicity

of email makes it the preferred vehicle for transport. We expect the sharing patterns of email

extrapolate to other vehicles of transport and object sharing in general.
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Alice’s client Sending MTA Receiving MTA Disk

Bob’s client

via SMTP
via SMTP

via IMAP

Figure 6.1: Interactions between mail subsystems in a typical mail transaction.

�is chapter attempts to answer these raised questions by tracing the University of Michi-

gan EECS department’s mail server, examining about 2.85 million messages over 7 months.

�e focus is on these raised questions; a more complete analysis of this email tracing can be

found in Shah and Noble [82].

6.1 Collecting the Data

To understand how the data was collected, a cursory knowledge of email protocols is neces-

sary.

6.1.1 Basics of Mail Transfer

Figure 6.1 shows the interactions between mail components in a typical mail transaction

when Alice sends a message to Bob. Alice’s client contacts its Message Transfer Agent

(MTA), typically sendmail, which relays her message over the Simple Mail Transfer Protocol

(SMTP) [76] to the destination MTA, which stores it to disk. Bob’s client reads his mailbox

via the Internet Message Access Protocol (IMAP) [15] and presents the message to Bob.

SMTP is a plain-text, unauthenticated protocol that is used to send mail. A sample SMTP

session is shown in Figure 6.2 on the next page. �e protocol is rather self-evident. Multiple

recipients of a message can be speci�ed as multiple envelope to commands or can be separate

mail transactions. It is important to note that the message’s header is completely unrelated

to and unveri�ed against the envelope’s contents. In other words, the message header could

contain a di�erent sender and di�erent recipients than the actual envelope’s contents.

SMTP is closely related with the Multi-purpose Internet Mail Extensions (MIME) speci�-

cation [8]. Virtually all Internet email is transmitted in MIME format. Each MIME message

can contain one or several parts. �ese parts could specify alternate versions of the message’s

textual body (plain text or HTML, for example) or specify the inclusion of attachments. Each

part has an associated content type (e.g., “text/plain” for simple text). Further, since SMTP
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 nobody.com ESMTP [...]

HELO A

 nobody.comHellomail [...]

MAIL FROM: sender@mail.com Envelope From

 .. sender@mail.com... Sender ok

RCPT TO: recipient-a@nobody.com Envelope To

 .. recipient-a@nobody.com... Recipient ok

RCPT TO: recipient-b@nobody.com Envelope To

 .. recipient-b@nobody.com... Recipient ok

DATA

 Enter mail, end with "." on a line by itself

From: Nobody <sender@mail.com>

Message-Id: <.GA@mail.com>

Subject: hello

To: Recipient A <recipient-a@nobody.com>

Cc: Recipient B <recipient-b@nobody.com>

Date: Sun Apr  :: EDT 

Hello!

.

Message

 .. gJMqsMessage accepted for delivery

QUIT

 .. nobody.com closing connection

Figure 6.2: A sample SMTP session. �e italics type indicates server responses and the labeled con-

tents denote typical names for parts of the transaction.

is a 7-bit protocol, each MIME part speci�es an encoding rule for 8-bit binary content; the

most common of these is base64.

6.1.2 Mail instrumentation

To instrument mail, we capture messages received on our department’s mail server by ob-

serving SMTP tra�c. At the time, our departmental mail server supported about 300 users,

virtually all faculty and graduate students in the department.

We place a dedicated collection machine on the same Ethernet segment and sni� mes-

sages, as opposed to directly capturing the messages on the server, so not to increase system

load and disturb email delivery. To capture packets and reconstruct mail sessions, a tracer

daemon, built on libpcap, captures mail tra�c on port 25 (SMTP).

�e message is parsed as follows: the SMTP envelope MAIL FROM (also called envelope

from) and RCPT TO addresses (envelope recipient) are anonymized to maintain privacy; the
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message body is MIME-parsed; and the resulting MIME types, as well as the anonymized

from and to addresses and a timestamp, are stored in a database. �e anonymizing proce-

dure consists of taking the SHA-1 hash [67] of the data.

�e tracer uses the envelope from and envelope recipient instead of parsing the message

body’s from and to headers as these are the most accurate: they also capture blind carbon-

copies. Since mail is unauthenticated, we cannot discern senders, but for our purposes we

do not care.

Since the departmental mail server allows TLS/SSL connections, the tracer cannot sni�

those connections. Secure connections account for 12.9 of all deliveries. Furthermore,

many local machines are con�gured not to use the departmental SMTP server, but rather a

locally installed MTA. It is not practical to quantify how many machines do so.

6.2 Data Analysis

�e trace data collection ran for more than seven months from 27 November 2002 until

9 July 2003. In that time, the tracer instrumented 2.85 million messages totaling about

50.5 GB.

Furthermore, since messages, particularly attachments, are encoded, for simplicity we

use term size hereina�er to mean the encoded size: the actual bytes stored on disk and trans-

mitted over the wire. All attachments seen were base64-encoded. As base64 uses a simple

translation table, the 8-bit data size is approximately three-fourths of its encoded size.

To provide simple, analytical models for some properties of email, this work uses quasi-

Newton search [71], a method for minimizing mean square di�erences, to �nd parameters

�tting the empirical data. �ese are approximations of the empirical data, not necessarily

governing distributions.

6.2.1 Sharing Locality

Sharing locality is the phenomenon that users share most of their objects with the same

group of individuals. Figure 6.3 on the following page shows the rate of new sharers—those

individuals a given user has not shared with before—as a function of time. Almost imme-

diately, these individuals represent a modest amount of new data, usually around 20–30

of newly shared objects, and the distribution remains stable. �is means that a signi�cant

amount of sharing occurs among individuals a user already knows, indicating locality of

sharing.
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Figure 6.3: Evidence of sharing locality. �e plot shows the percentage of new object sharers as

a function of time, which indicates that there is sharing locality: most objects shared are to those

shared with before.

6.2.2 Content Types

Each message can be composed of several MIME components or parts. Most messages, 77,

consist of only the textual message body, 20 of messages contain only one attachment,

2 contain two attachments, and less than 1 contain three or more attachments. �is is

unsurprising as we expect most messages to be correspondence.

Figure 6.4 on the next page shows the frequency of content types seen of shared objects.

�e �gure is further delineated by whether these types support �elds for embedding data.

For readability, classi�able, but obscure �le types—those that accounted for less than 0.5

of attachments in terms of frequency—are omitted. Surprisingly, there are a sizable portion

of attachments, marked with a ? in the �gure, that are unclassi�able by their MIME type or

�le name. We generally believe these consist of executables exchanged between users and

mis-tagged by a user’s mailer.

�e data indicates that most shared objects, around 70, support embedding. Since the

trace is of an academic computer science department, many text objects shared are program

source; we expect real world sharing patterns to include more objects of an embeddable

nature.
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Figure 6.4: Distribution of objects shared delineated by their content type. �e �gure is further

subdivided into whether that type supports �elds for embedding data.

6.2.3 Sharing Characteristics

For reproducibility, this section describes the characteristics of the sharing trace.

Recipients Figure 6.5 shows the rank of the number of objects received per user. Notice that

most objects are received by a few users, following a Zipf distribution with θ = 0.540, b ≈

46.4 (r2 = 0.975).

Time-Varying Nature Figure 6.6 shows the amount of mail transfer over the tracing period.

Since mail tra�c was observed at an educational institution, most messages are sent during

the weekdays with the weekends experiencing a precipitous drop in tra�c (shown with the

original curve). �e dip in the trace during the months of December 2002 and January 2003

represents the decreased volume of mail processed during the winter holidays.

Figure 6.7 shows a typical day of sharing objects over email in terms of both objects

received and bytes received. Object sharing follows diurnal patterns, where most sharing

occurs during the workday, especially late in the evening.

Estimating a stationary distribution of object sharing interarrival times requires care. As

our dataset exhibits strong non-stationary trends—daily and weekly variations as depicted

in Figure 6.6—we need to estimate an interarrival distribution based on a segment in which
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message arrivals are well-modeled as stationary. We chose an 8-hour segment on Decem-

ber 1, 2002 for this purpose.

Figure 6.8 shows that object sharing interarrival times, in seconds, closely follow an ex-

ponential distribution with parameter λ = 0.064 (r2 = 0.910) in the body. Interarrival times

also show evidence of a Pareto power-law tail a�er 80 seconds (60th quantile) as shown in

Figure 6.9, which can can be estimated with α = 2.24 (r2 = 0.939). �at is, to correctly model

object exchange tra�c, a piece-wise model with a exponential body (λ = 0.064, r2 = 0.910)

censored a�er 80 seconds (60th quantile) with a Pareto tail (α = 2.24, r2 = 0.939) is adequate.

Figure 6.10 shows the number of messages received across time scales of six di�erent

orders of magnitude. �e abscissa represents time, in seconds, and the ordinate shows the

number of messages processed during the time scale. Starting in the lower-right with 1 sec-

ond, each subsequent plot’s time resolution increases by a factor of 8. �e most obvious

feature of these plots is that they appear bursty at all time scales. Further, there is no char-

acteristic size of a burst: at every timescale there are highly bursty periods separated by

smaller bursty periods. �is bursty nature manifests itself in transient congestion, requiring

care during modeling.

A notion of burstiness is characterized by self-similarity [14, 35, 53]: any section of the

data has the same statistical properties as any other with such a time series exhibiting bursts,
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extended periods greater than average, at a wide range of timescales. While Figure 6.10

provides pictorial evidence of the self-similar nature of message processing, a robust quan-

titatively measure is required. �e degree of self-similarity is de�ned via the Hurst exponent,

H. A data source is self-similar if 0.5 < H ≤ 1, with increasing H indicating a greater extent

of burstiness.

Graphical methods of determining the Hurst exponent—detrended �uctuation analysis

(d.f.a.) [74], a periodogram [14, 53, 89], and a variance-time plot [14, 35, 53, 89]—are shown

in Figure 6.11 for a subset of 8 hours of the trace. �ese techniques produce estimated Hurst

exponents of 0.653, 0.720, and 0.628, respectively. We thus estimate the Hurst exponent of

the message processing rate to be H ≈ 0.67, indicating that email tra�c is indeed self-similar.

A strictly exponential arrival time distribution implies Poisson process modeling of ob-

ject arrivals is adequate. Self-similarity, however, relies crucially on the heavy-tailed prop-

erty of interarrival times [53]. To correctly model email sharing tra�c, one can superimpose

heavy-tailed ON/OFF processes, where ON times correspond to the sharing of an object by

a client and the OFF times correspond to periods when that client is idle.

6.3 Summary

�is chapter presents a large-scale study of email sharing patterns. We collected data over

a 7 month period, instrumenting about 2.85 million messages. �is work supplies analyt-

ical distributions and possible explanations for several sharing parameters of interest: the

presence of sharing locality, the content types of data shared, and the characteristics of the

sharing trace.
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CHAPTER 7

SUPPORTING LIGATURE’S SYSTEM MODEL

Context and memory play powerful

roles in all the truly great meals in

one’s life.

Anthony Bourdain (1956–)

Ligature must:

1. Embrace users from di�erent administrative domains;

2. Be scalable and support user mobility;

3. Be agnostic to the underlying data store and method of object transport (i.e., objects

may be stored in heterogeneous data repositories scattered across di�erent disks, �le

systems, and machines);

4. Be lightweight enough to be usable on mobile devices, such as cell phones and PDAs,

which have modest levels of computing power, storage, and network connectivity, as

well in ubiquitous computing scenarios [97], where a multitude of small devices share

context on their surroundings.

�is chapter outlines Ligature’s architecture and describes a prototype system satisfying

these precepts.

7.1 Architecture

�is section outlines Ligature’s architecture, which consists of the di�erent components

shown in Figure 7.1. �e store component holds the context knowledge base and provides

query capabilities across it. �is knowledge base is synchronized to peers within the coterie

through the conch module. Each host eventually receives context from all its peers; the ar-

chitecture stitches this context together for applications and services to query. �e frames
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Figure 7.1: Ligature’s components. Lines represent communication �ows between various compo-

nents. �is work is not concerned with the user interface (UI) implementation.

module implements the primitives for manipulating contextual frames and the discovery

module ascertains a frame’s coterie. Each module is discussed in turn.

7.1.1 Contextual Store

�e store is represented as RDF [59], the lingua franca of context, where semantic markup

is stored as triples. An SQL-like language, called SPARQL [78], provides query capabilities

across this RDF data. Ligature augments the RDF triple into a quintuple with two new pieces

of data: the source, who is the user attesting the tuple, and the frame the tuple belongs to. If

needed, applications may query this additional state with special SPARQL predicates (e.g.,

to build contextual services where the tuple’s author is necessary). Each frame consists of a

set of these tuples, not a collection, as tuples are never duplicated.

7.1.2 Contextual Exchange

Given a frame and its coterie, as received from the discovery module, the conch module

exchanges tuples with each peer for that frame through periodic anti-entropy exchanges [32].

Each node has an identity, which is the hash of the public key of a generated pub-

lic/private key pair. A standard challenge-response protocol ensures nodes are communi-

cating with same peer in the future. In this scheme, identities are weak, but nodes may

publish pertinent user-speci�ed contact information (e.g., name, email address) as context.

Each frame is e�ectively a log ordered by version-id, which acts as a Lamport clock [50].

Operations are idempotent due to the set nature of frames. Ligature resolves write-write
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con�icts by assuming a well-known total ordering scheme. �ese con�icts are rare as most

applications only update tuples where the local user is the tuple’s publisher. For e�cient

querying, the system stores a rolling checkpoint of the log’s tail.

Frame initialization, where initial contextual state is transferred upon reception of a new

frame, involves transferring the frame’s log to a new peer. Each peer is at least responsible

for sending its own events, but high-powered altruistic nodes may transfer the entire log for

faster frame reception.

It is important to note the eventual consistency semantics of the architecture mean con-

textual exchange could occur using idle network bandwidth [94].

Further, there may be objects a user wishes to keep private, irrespective of whether they

are shared with friends. Ligature allows a user to specify a set of directories always to be

ignored.

7.1.3 Contextual Frames

A frame consists of a frame-id, its frame identi�er; its object-id, a pointer to the object it is

describing; and its context. �e frame-id is a globally-unique identi�er (GUID), of which

there are several well-established schemes to ensure uniqueness [52]. Possessing the frame-

id is the credential to inspect and mutate a frame’s context. �e secure hash [67] of the

frame-id is the credential limiting access to inspection only and is known as the immutable

frame-id. �e object-id is a cryptographically secure hash of the object’s contents.

�e new, fork, catalog and expire operations are non-distributed operations. �e cre-

ation of a new frame involves the frame receiving a fresh GUID and no context. �e fork

operation is a composite of existing primitives: the creation of a new frame and the copy-

ing of all the source frame’s context to it. �e catalog primitive returns the list of frame-ids

bound to an object. For the expire primitive, the system marks the frame as deleted, po-

sitioning it for garbage collection. Since the system cannot know the extent with which

a frame is shared (especially in the case of transfer by removable media), this context may

need to be reconciled later. Deleted frames only participate in outgoing contextual exchange

and are reclaimed when storage space demands it. Reclamation biases toward those frames

infrequently accessed and those with no attached children.

An attach operation combines one context set into another. It does this by inserting

a special piece of system-level context inside the destination frame indicating the source’s

immutable frame-id—necessary to prevent write access to the source frame—which is prop-

agated to members of the destination frame’s coterie. Peers may need to fetch context for

this source frame if it is not currently held. �e source frame is merged through timestamps
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vis-á-vis version-ids, recursing on any of the source frames’ incoming attaches. In the end,

the context of the destination frame is the union of itself and the transitive closure of its

source frames.

In their queries, application developers may need to speci�cally treat write-write ambi-

guities in attached frames. For example, in a service where users can rate their objects, an

application developer may erroneously assume a single rating tuple per user. However, the

linking of two frames with di�erent ratings may result in two distinct rating tuples by the

same user and a consequently ambiguous rating in the attached frame. In such a case, the

application developer would need to structure their query not assuming a single rating tu-

ple; for instance, by calculating the mean rating. �ese ambiguities can also o�en be solved

if applications deem their context immutable. For example, if a user forks a frame with a

note, modi�es the note in the descendant frame, then attaches the descendant back with its

parent, an ambiguity will arise: there will be two di�erent notes, both with the same note-id.

�e notes service could use application-de�ned resolvers to, say, display the note with the

latest modi�cation time, but a general solution is to force note immutability such that notes

form an append-only log.

A frame’s moniker is context within the frame itself under a special namespace; the ar-

chitecture’s normal context functions are used to manipulate it. �e default resolution order

is to search locally-assigned monikers �rst, followed by global ones.

7.1.4 Discovering Peers

�e discovery module builds a frame’s coterie: it determines with whom to share context

for the frame and how to �nd that peer. �is information is given to conch, which handles

context propagation.

�ere are several requirements we necessitate. First, the system should not interfere in

the way users share objects. As a corollary, Ligature should be agnostic to the underlying

storage substrate or vehicle of transport. Second, users are mobile and may o�en be discon-

nected; they must be able to work autonomously.

�e frame-id is the credential to access the frame’s context. Given the frame-ids encom-

passing an object’s frames, the system needs to locate any peers also holding those same

frames.

A centralized directory service could exist, arranging peer and object discovery, but

the commercial viability of such a centralized authority is uncertain. �is directory ser-

vice could be decentralized over several administrative domains as part of an organization’s

normal computing infrastructure, but it is unclear any would be inclined to do so. Instead,
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we focus on a fully decentralized or peer-to-peer solution, as it is the most interesting and

most applicable to the problem domain.

�is leads to several preconditions. We do not assume the existence of a PKI infrastruc-

ture. Also, to ensure fairness, any resources contributed to the system by a user should be

proportional to the number of objects shared. Structured PP networks (i.e., DHTs [88]) are

unsuitable for mapping frame-ids to coterie memberships. Besides allocation fairness, there

is no control over where data resides, meaning low resource devices may end up servicing

a large coterie. Further, the number of objects is only increasing [62], entailing commensu-

rately increasing DHT repair costs on joins and departures. At the other end of the spectrum,

unstructured overlays are also problematic, as �ooding the entire network looking for peers

holding the same frame-id will not scale.

Instead, recipients of the object contact a coordinator, presenting the frame-id. �e coor-

dinator publishes to the recipient any additional peers holding the object and peers therea�er

gossip [19] membership changes. �e coordinator is de�ned to be the node who created (or

forked) the object’s frame. Small devices may optionally delegate a more powerful machine

(e.g., the user’s desktop computer) to be the coordinator. �e identity of the coordinator is

passed along with the object’s frame-id.

In the event the coordinator is unavailable, the host �oods previously shared-with peers

searching for members of the frame’s coterie. Analysis of email sharing patterns (c.f. §6.2.1)

indicates there is sharing locality: users generally have a small clique of individuals with

whom they share the majority of their objects with. As peers become available through

this �ooding, they gossip membership changes as before. �e �ooding mechanism uses a

challenge-response protocol with secure hashesto locate peers without leaking credentials or

enabling re�ection attacks. In Ligature, hosts perform this protocol �rst with the immutable

frame-id and those hosts with read-only access are then queried for full credentials. It may

be feasible, in terms of bandwidth and successful peer location, to �ood further than directly

accessible neighbors, but our data on sharing locality is limited in scope. With this scheme,

the coordinator’s purpose is to merely perform introductions. We evaluate the feasibility of

this approach in our evaluation (§8.2).

Firewalls, network address translators (NATs), and dynamic IP assignment complicate

the ability for a pair of nodes in the world to communicate. For this reason, Ligature builds

an overlay such that each node has a static nodeid, of which there are several proposals on

how to do so [26]. �is nodeid is simply the host’s identity.

A failed or unwilling coordinator not performing introductions could, at worst, prevent

others from sharing context on frames they themselves have created. �ough, if prior shar-

ing relationships exist, these peers will eventually �nd themselves.
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Figure 7.2: Methods by which Ligature exchanges frame-ids.

Surreptitiously passing frame-ids and coordinator node-ids during sharing is problem-

atic, as any mechanism must support the diverse vehicles of transport, including transfer

via intermediaries (e.g., websites), and be backward compatible with users not using Liga-

ture. �e system cannot accept frame leaks, so any kind of frame-id inference procedure is

not applicable. To satisfy these constraints, Ligature uses a multitude of methods, which are

shown pictorially in Figure 7.2 and are as follows.

Ligature compacts the set of coordinator node-id and frame-id pairs belonging to an ob-

ject into a textual string applications view as opaque. As objects are shared, these pairs are

shared along with the object by way of the transport mechanism. For example, email and

web protocols use header extensions; the �le system uses resource forks. To support transfer

via intermediaries as well as sharing protocols that may not support these header extensions,

Ligature also embeds these pairs inside objects supporting such comment �elds. Analy-

sis of email sharing indicates 70.3 of attachments are embeddable �le types (c.f. §6.2.2).

Unclaimed objects—those that are non-embeddable objects and shared via nonsupporting

transport protocols—are handled through object registration, a one-time operation that

maps an object to its coterie, and manual reconciliation, an out-of-band operation sharing

the object-id with potential peers.

Object registration with a DHT involves mapping the secure hash of the object to a list

of frame coordinators and the number of frames created by that coordinator for that ob-

ject. Objects with a single coordinator and containing a single frame (SCSF) have only one

possible coterie for that object hash and represent a common case where a user themselves
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Filename 3 7i 3 3  3ii 7iii 3 3

Use part of the �lename for the frame-ids.

Envelope 3 3 7 7iv 7 3 3 3

Wrap the object in an envelope that includes its frame-ids.

Protocol Interposition 3 3 7v 3 7 3 3 7

Capture frame-ids by interposing on sharing tra�c (i.e., by parsing protocol tra�c).

Embed 7vi 3vii 3 3 3 3viii 7ix 3

Embed the frame-ids inside comment �elds/as watermarks within the �le.

Via Transport 3 3 7 3x 7 3 3 3

Use extensions to sharing protocols to send the frame-ids.

3 is considered good

iCertain applications are dependent on the exact naming of �les
(e.g., themake utility withMakefiles).

iiMust preserve the frame-id portion of the �lename, a
potentially long string.

iiiAlthough this could be masked by the OS to some extent (for
those running Ligature anyway), at some point the frame-id would
be visible to end-user applications.

ivEveryone must be running Ligature otherwise their system will
balk at the envelope.

vIncompatible with encrypted transports (e.g., TLS/SSL), which
is in wide-spread use in SMTP (electronic mail) and HTTP (web
browsing).

vi�ough, the class of �letypes that do not support embedded

comment �elds is small, around 30 of all shared objects
(c.f. §6.2.2).

vii�e comment �eld is sometimes used by applications (e.g., for
photo descriptions), though it is likely they can co-exist.

viiiSome users could be dismayed that parts of their �les are
storing “strange” data (e.g., comment �eld of MPs), although this is
a marginal concern.

ixChanges the �le itself, which could lead to strange e�ects with
certain applications (e.g., rsync). For example, syncing a �le changes
the destinations contents (the copy causes a fork of the source �le’s
frames and new frame-ids are stored).

xSharing protocols have header extensions that by default are
automatically ignored by applications that do not understand them.

Table 7.1: Matrix of strengths and weaknesses of various frame-id exchange approaches. Ligature uses a combination of transport exchange and object

embedding, along with techniques for handling any remaining unclaimed objects.
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creates an object they share. Upon reception of an object without a frame-id, the host checks

whether it satis�es this SCSF property by querying the DHT, joining its coterie if it does.

Finally, with manual reconciliation, the user selects with whom to fetch frame-ids for

an object based on previous sharing history. Her system interposes on that peer, inquiring

which frames, if any, should be exchanged. As a last recourse, users may exchange identi�ers

manually through out-of-band channels.

Ligature attempts the most thorough solution to the frame-id exchange problem without

resorting to manual exchange. A multitude of other options were considered, and the most

worthy, delineated along with their pitfalls, are shown in Table 7.1 on the preceding page.

Overloading the �lename with frame-id and coordinator pairs poses several intractable

problems, such as incompatibilities with existing applications that require exact �lenames

and requiring the frame-id portion of the �lename to remain intact. Importantly, it is aes-

thetically unpleasing for users, as these pairs, even if masked by the OS to some extent, will

eventually be visible to end-user applications—and always be visible to users not running

Ligature. �is option is, at best, a hack, and not general purpose. Wrapping the object in an

envelope that contains these pairs as a header is also not a viable solution as it is incompatible

with existing end-user applications and those systems not running Ligature. Interposing on

protocols to send frame-id pairs is a heavyweight solution and is ill-sorted to sharing over

encrypted transports. Ligature’s solution of extending transport mechanisms where applica-

ble and simultaneous object embedding capture most forms of direct and indirect sharing

while being lightweight and compatible with existing end-user applications, sharing trans-

ports, and systems not running Ligature.

7.2 Prototype

We have built a prototype, feature-complete Ligature implementation running on Windows.

�is prototype substantiates our design principles and is used in our evaluation. �e proto-

type runs as a Windows Service, which is a user-space daemon. Applications link to a client

library that communicates with the Ligature service over named pipes. Currently, a client

library exists for Python and C++, but practically any language could be supported.

A frame’s context and its frame identi�er with its corresponding path in the �lesystem is

stored in a database. An alternative is to store a frame’s context using resource forks in the

�le system, but this information needs to be always available for contextual exchange and

the corresponding objects may be stored on removable media or a network drive. Further, a

centralized checkpoint greatly improves query speed by minimizing disk seeks. �e proto-

type monitors �le system events via the ReadDirectoryChanges API to adhere to the frames
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Figure 7.3: A screen shot of Ligature’s “framespace.” Here, the dissertation document has two distinct

frames with moniker’s “committee” and “personal.”

calculus (§5.2.2). �e framespace (§5.3.4), particularly the frame view, is implemented as a

namespace extension to Windows Explorer and a sample screenshot is shown in Figure 7.3.

�e Ligature prototype uses a modi�ed version of the RDFLib library1 for its RDF store

and SPARQL query processor implementations. BerkeleyDB acts as the backend store for

all of the system’s data structures. �e current prototype directly connects to peers over SSL,

but could support routing messages over an overlay in the future.

Also, as a proof of concept, we have modi�ed the Mozilla �underbird2 email client to

support exchanging identi�ers. When sending email, the client uses Ligature’s getid func-

tion to retrieve the object’s identi�er and inserts a special MIME extension header [8] as

part of each attachment’s envelope. When the receiving user saves an attachment, the client

parses this header and stores the object’s identi�er with the system’s setid function.

7.3 Applications

Several applications, as outlined, have been constructed using this architecture. �e line

count of the context speci�cation and query portion for each service is shown in parenthesis.

Tags Users may assign free-form labels to objects and accrue up to one vote for any tag

assigned by another user. �ese histograms of tags are useful in search and to aid in �nding

semantically-related items. (≈ 20 lines)

1http://www.rdflib.net 2http://www.mozilla.org
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Notes Users may attach a note to an object, creating a conversation log. Notes may be

public or private. (≈ 25 lines)

Context-enhanced search �e synergistic version of We� exchanges and updates the rela-

tion graph (§2.1.4) across an object’s coterie, which may improve search results as the model

learns from many di�erent users. (≈ 50 lines)

Mark as deprecated A user is able to mark a document as deprecated; any other user open-

ing that document is presented with a deprecation warning. (≈ 15 lines)

To-dos To dos for tasks can be assigned to the objects they belong to. (≈ 20 lines)

Ratings Users are able to rate objects on a scale of 1 to 5 with the mean score across all peers

shown for that object. �is is particularly useful for media objects such as personal images

and videos. (≈ 15 lines)

Provenance Maps �is tool allows the user to explore a map of the provenance of their

data [63], as shown in Figure 7.4 on the following page. �e tool permits navigation of a

user’s repository by relationship: the user can see the source data for a report (e.g., in Fig-

ure 7.4, the data.xls spreadsheet for the technical report) or the descendant objects for any

source piece of data. (≈ 50 lines)

Internally, this pedigree information is the relation graph (§2.1.4) gleaned via the causal-

ity algorithm (§2.1.2) by a background task. �is provenance is stored as object-id references

and as objects are shared, this context is also shared: a user possessing both source and sink

of a document can see the relationships between them. �e provenance map can be shown

in a basic radial layout with �sheye distortion [27] or as a �attened hierarchical layout [28],

but more sophisticated layout algorithms, scaling to thousands and even tens of thousands

of nodes [64], could also be plugged in. �e user may also view the provenance trail as a

timeline, similar to the Lifestreams system [25].

Many scienti�c and business communities employ systems that manage work�ows [18,

56], which are graphs representing discrete computational components with edges represent-

ing paths along which data and results can �ow between these components. Besides results

and raw input data, these work�ows contain information about provenance, data quality,

attribution, audit trails, and other curated data. �ese work�ow systems could use Ligature

in a similar vain to this pedigree tool to automatically exchange necessary work�ows as a

byproduct of sharing.
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Figure 7.4: A screen shot of the provenance tool. Here, the spreadsheet (data.xls) is the source for

two technical reports and a memo.

7.4 Barriers to Adoption

An important pragmatic consideration for any new architecture is what barriers it is likely

to encounter in any attempt at large-scale deployment.

7.4.1 Technical Challenges

�ere are some technical challenges. �e biggest is to migrate existing sharing applications

to exchange frame-ids, which has already been discussed (c.f. §7.1.4). Encouraging signs are

that to support frame-id exchange via protocol extensions, there are only a few vehicles of

transport (i.e., email, instant messaging, and the world wide web) and a lack of so�ware di-

versity in each of these areas. Most of these sharing applications support easy extension via

plug-ins, which could be shipped with Ligature. In addition, most shared objects support

embedding (c.f. §6.2.2), and there is also a lack of �le type diversity [20]; frame-id embed-

ding must only support a few �le types to capture most shared objects. �ese reasons allow
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incremental deployment one host at a time without breaking interoperability with existing,

legacy systems.

Another important technical challenge is the user interface (UI). A UI for presenting and

manipulating frames as well as for applications to hook into for displaying their context is

necessary. �ere is a homogeneity of operating systems and �le manager interfaces, lessing

this engineering burden. Small mobile devices, such as smart phones and Internet tablets,

will be an engineering challenge, as they all lack common interfaces.

7.4.2 Economic Challenges

�ere are some economic concerns with wide-scale deployment of Ligature. On the posi-

tive side, Ligature does not require any additional infrastructure; it is therefore unlikely to

be thwarted by budgetary concerns of individuals and organizations. In addition, if Ligature

is widely deployed, market forces will tend to favor applications sharing their data as context

and sharing transports supporting frame-id exchange. �ere are also incentives for major

players to include Ligature as part of their commodity operating systems—to aid collabora-

tion among a user’s friends and family, a major focus of new so�ware—which will ensure

wide-deployment.

On the negative side, Ligature relies on network e�orts: users only gain utility from the

system if they share data with others also running Ligature, posing a barrier to entry. Lig-

ature’s fully decentralized architecture also poses threats to adoption, as any vendor would

undoubtedly like to keep control—or at least retain access—over a user’s context, which is

o�en leveraged for targeted advertising and other purposes. �is latter point may create se-

crecy and privacy issues from the users’ perspective, as they may not trust vendors providing

contextual services.

7.5 Summary

�is chapter presented a detailed description of Ligature’s architecture, including how con-

text is stored and exchanged, frames are supported, and peers are discovered. �e architec-

ture a�rms the goals presented at the beginning of the chapter and of this dissertation.

As well, this chapter described the implementation of Ligature, along with several use-

ful sample applications constructed atop this architecture. �ese applications validate the

utility in exchanging context and showcase several functional tools for the organization and

management of a user’s repository.

Lastly, this chapter outlined deployment issues Ligature may face.
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CHAPTER 8

EVALUATION OF LIGATURE

To know an object is to lead it

through a context which the world

provides.

William James (1842–1910)

�e salient goal of Ligature is to facilitate convenient and easy contextual exchange with

minimal system overhead while respecting boundaries on disclosure. �us, our evaluation

answers the following questions:

1. Can users compose appropriate frame relationships as needed?

2. Is Ligature’s peer discovery mechanism (c.f. §7.1.4) resilient to host unavailability?

3. Does Ligature inhibit foreground user work?

4. What is the application performance penalty of using Ligature as a backend storage mech-

anism?

8.1 User Evaluation

A longitudinal study, where users are repeatedly observed using Ligature over a long period

of time, is ideal, but burdensome: it requires a multi-year e�ort, and more onerously, a

participant population that shares objects amongst themselves. Rather, we conduct an in-lab,

scenario-based evaluation to determine if users can correctly understand and manipulate

frames.

�e study presents certain scenarios to the user requiring the arrangement of frames

and their corresponding relationships that they must then solve. To produce generalizable

results, some care is required with these scenarios, as rarely is preventing unintended disclo-

sure a user’s primary goal [99]. Instead, the scenarios are hidden under the guise of acting as
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Figure 8.1: �e sharing palette interface. �e uppermost frame lists the scenario’s description, the

middle pane permits the user to share objects and frames (and keeps a visually-persistent record of

sharing), while the bottom frame shows the object’s frames and allows the user to manipulate those

frames.
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Figure 8.2: �e attach frame dialog. �e user selects frames from the le� and right list boxes and the

direction of the attachment by changing the middle arrow (the choices are: le�-to-right, right-to-le�,

or both). Frames may be optionally joined once or forever. �e bottom text re�ects user choices and

describes the proposed frame attachment in plain English.

a �ctitious individual’s personal assistant, performing tasks with Ligature. Completing the

task is the primary goal; maintaining the boss’s privacy is a secondary one, mirroring real

life.

Ideally, a useful metric is to compare against other disclosure model approaches, notably

access control lists (ACLs), which would act as a control. However, it is unclear how ACL-

based solutions would support the separation and merging of contexts—the main use case

for frames—in any meaningful way. �us, any such comparison would be, at best, baroque.

�e UI mimics a “sharing palette”, a proven user interface for sharing �les [95] and is

shown in Figure 8.1 on the previous page. �e palette provides a visually persistent record

of what objects and frames have been shared to whom, permitting the study to focus on

frame mechanisms, not on any particular vehicle of object exchange. With the palette, con-

textual services are limited to notes and tags for simplicity’s sake, as most users are familiar

with those constructs. �e UI makes use of our prototype Ligature implementation as its

repository for context. Low-level frame operations, such as attach, are hidden behind wiz-

ards (as shown in Figure 8.2) to mask complexity and elucidate their operation. Undo and

redo operations are supported (except sharing is irreversible), though only one user ever

exercised this functionality. Additionally, as part of the interface, users may optionally view
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# Scenario

1 Please tag my vacation pictures as appropriate and share them
with my college friends.

2 Please send my vacation video to my work associates, but set
it up so that their comments are kept separate from everybody
else’s.E

as
y

3 For my reports, I only have to keep 3 years worth of information.
Get rid of all the old stu�.

4 On the technical reports, bring Alice into the consulting team
with Bill and I. I want everybody to share comments with each
other.

M
ed

iu
m

5 I’m not so sure about Section 3 in report TR-1; I think Alice
might be mistaken. Pass along the report to Brian asking him
to review this part of the report. Keep his feedback discreet, but
let him see all existing comments.

Table 8.1: Scenarios for the frames user study. �e table continues on the following page.

the frame attachment graph visually, although no user chose to do so. �e UI also contains

context-sensitive help.

�e sample population consisted of two distinct groups: 3 participants who self-

identi�ed themselves as computer experts and 8 novice users, who were mostly secretarial

and administrative sta� not a�liated with any of our departments. All had at least some

college education and used a computer daily. Before the study, participants were required to

watch a short tutorial video and were encouraged to spend as much time as needed on each

scenario.

�e scenarios were anecdotal, tiered into 3 di�culty groups (easy, medium, and hard)

and presented in increasing order of perceived di�culty. �e scenarios were not cumulative.

Careful consideration was made with evaluation on a small pilot study to ensure the scenar-

ios did not contain excessive domain-speci�c knowledge that may hamper a participant.

A�er completing each scenario, the system queried the participant to gauge, using 5-

point Likert ratings (i.e., on a scale of 1–5), whether they understood what was asked of

them in the scenario, their perceived di�culty of the scenario, and their con�dence that

they answered correctly. Likert ratings are treated as an ordinal level of measurement and

are hence summarized by the median and, as a measure of variance, the interquartile range

(IQR), which is the di�erence between the third and �rst quartiles or, alternatively, the mid-

dle 50 of the data. Also, as part of the study, we conduct concluding short, semi-structured

interviews.
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# Scenario

6 TechReport-2 supersedes TechReport-1, so I need you to move
all of TechReport-1’s notes and tags over, but still keep their data
separate.

M
ed

iu
m

7 I’d like the consultants to read Carol’s comments on the memos,
but Carol’s not authorized to see their’s. Set this up.

8 I’ve been assigned to edit a publication, which happens to have
blind reviews (one reviewer cannot see another’s review). I need
you to share the manuscript with each reviewer such that they
are able to add their separate comments.

H
ar

d

9 Give the completed set of reviews to Eve, allowing us to discuss
the paper further. �e completed set of reviews must stay hidden
from the reviewers.

Table 8.1 (continued): Scenarios for the frames user study.

Table 8.2 on the following page shows the outcome of the study with Table 8.1 listing

the corresponding scenarios. �e results indicate the system scales well with user ability:

whereas some systems are so complex that only expert users gain utility from them, it ap-

pears that novice users are able to leverage considerable functionality while expert users

can take full advantage. Expert users were almost invariably able to correctly compose the

correct frame relationships for each scenario. �eir errors were due to participants perfunc-

torily completing tasks: in the 6th scenario, a participant failed to select the attach-once

check box. Novice users were able to successfully complete most of the easy and intermedi-

ate di�culty scenarios. With the 5th scenario, some users were confused as to the nature of

a duplicate frame. In the 6th scenario, a few users did not realize that attach-once semantics

were needed. With the 8th and 9th scenarios, users seemed to have trouble understanding

the scenario’s requirements (5-point Likert ratings: µ̃=2.5, IQR=1.0; µ̃=2.0, IQR=1.0, respec-

tively), which contributed to the marginal results.

�ere is a strong correlation between understanding the scenario’s requirements and cor-

rectly answering it (ρ=0.88, p<0.01), as well as being con�dent in one’s answer and correctly

completing the scenario (ρ=0.81, p<0.01). �is may suggest that once users understand a

scenario, they are able to map the correct frame operations to satisfy it. Qualitatively, from

the interviews, we found that users understood that a frame represented a separation of

concerns, but were confused about frame attachment. Apropos, a more lucid interface, per-

haps presenting common attachment patterns or some kind of feedback mechanism—for

example, seeing connections through the eyes of another user—may help. �is improved in-
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# Description
Behaviors

Tested

Novice Users (N=8) Expert Users (N=3)
Accuracy Time (m:s) Di�culty Accuracy Time (m:s) Di�culty

1 ≈ Fig. 5.3a new 100 1:21 (0:13) 2.0 (1.2) 100 0:48 (0:26) 1.0 (0.0)
2 Share # of di�. frames new 100 1:18 (0:18) 2.0 (1.2) 100 0:45 (0:23) 1.0 (0.0)

E
as

y

3 Remove some frames expire 100 1:59 (0:24) 2.0 (1.0) 100 0:51 (0:25) 1.0 (1.0)

4 ≈ Fig. 5.3e symmetric† 100 2:10 (0:20) 2.5 (1.0) 100 1:00 (0:07) 1.0 (0.5)
5 ≈ Fig. 5.3d fork 75 2:38 (0:29) 3.0 (1.0) 100 1:20 (0:22) 2.0 (1.5)
6 Join context only once once† 75 1:59 (0:24) 3.0 (0.5) 67 1:13 (0:05) 2.0 (1.0)

M
ed

iu
m

7 Join context one-way attach 88 2:02 (0:20) 3.5 (1.0) 100 1:08 (0:11) 2.0 (1.0)

8 ≈ PC ex. Fig. 5.3b new 62 3:06 (0:36) 4.0 (1.0) 100 2:14 (1:02) 2.0 (1.0)

H
ar

d

9 ≈ PC ex. Fig. 5.3c attach 50 1:56 (0:38) 5.0 (1.0) 100 1:30 (0:11) 3.0 (1.0)

†�ese are attach idioms (c.f. Figure 5.1 on page 48).

Table 8.2: User evaluation results. �e scenarios are listed in Table 8.1 on page 83. Some are isomorphic (≈) to those already presented in this paper.

Accuracy is the percentage of users completing the scenario correctly. Time represents the mean time spent per scenario, in minutes and seconds,

with the standard deviation shown in parenthesis. Di�culty is the median of a reported 5-point Likert rating with the interquartile range shown in

parenthesis.
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terface may aid users, as the UI in this study was rated only marginally acceptable (5-point

Likert rating: µ̃=3.0, IQR=0.5).

8.2 Discovering Peers

Using a coordinator for coterie introductions is naturally sensitive to the coordinator’s avail-

ability. To examine the robustness of Ligature’s coterie formation in the face of coordinator

unavailability, we use a trace of email attachments sent through the EECS departmental mail

server at the University of Michigan for a period of 9 months and described in detail in Chap-

ter 6. Only messages sent are considered as the observational frame of reference is solely at

one server; therefore, only the recipient list and sharing frequencies of attachments local

users send are complete. In this trace, approximately 350 entities sent about 201,000 objects.

We assume every object sent forms a coterie with the sender, who acts as the coordinator,

and the message’s recipients. While other forms of sharing undoubtedly exist, we suspect

their sharing patterns mimic those found in the email trace.

To understand how peer discovery scales in the presence of coordinator failures, an avail-

ability model is applied to a simulation of Ligature’s peer discovery protocol for a replay of

the email trace. We are only concerned with coordinator failures as they impede coterie

formation: the unavailability of non-coordinator nodes is irrelevant, as those o�ine are un-

available to exchange context anyway.

We cannot apply work done to characterize the diurnal availability patterns of hosts

through segmentation into various uptime classes (e.g., always-on, work-week periodic,

etc.) [61] for two reasons. First, there lacks a clear mapping between a coordinator and

their particular uptime class. Second, there lacks a single parameter by which a coordina-

tor’s uptime may be tuned. �is is necessary as these studies observed corporate or academic

networks where a considerable number of hosts are always-on. Understanding failure me-

chanics with multiple, varying uptime classes is untractable. Instead, we use a hypothetical,

but reasoned availability model, which is as follows.

In the trace, the sender/coordinator must have been online at every message send

through the mail server. As a consequence, intuitively, a user’s uptime is proportional to the

frequency of email they send. �is lends itself naturally to a simplistic and easily-reasoned

availability model: a�er every message sent, the coordinator may experience downtime with

some probability p until its next send event. �at is, assuming a coordinator sends objects

with periodicity T , its expected downtime periodicity is T/p. From this model, we can ex-

tract, a posteriori, the mean fractional downtime of all coordinators in our simulation. We

use a 20 trimmed mean as this downtime distribution has signi�cant skew due to outliers.
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Figure 8.3: Ligature’s elasticity to coordinator failure. For varying mean coordinator fractional down-

times in the email trace (shown on a log scale): (a) link resolution time (90 quantile) and the per-

centage of unsatis�ed links; and (b) bandwidth consumed (90 quantile). �e bars represent 95

bootstrap con�dence intervals.
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An important caveat is that as a coordinator’s fractional downtime approaches unity, there

will be links that cannot be satis�ed; the coordinator may have such an infrequent object

exchange rate that it is unavailable for the entire simulation.

�e simulation results suggest Ligature’s peer discovery mechanism is resilient to coor-

dinator unavailability. Figure 8.3a on the previous page shows the 90 quantile of link reso-

lution time as well as the percentage of unsatis�ed links given the 20 trimmed mean coor-

dinator fractional downtime. Only as coordinators become virtually uniformly unavailable

does service degrade to an unusable level. Otherwise, in a highly unavailable environment,

most links can be resolved in at most a few days; in a moderately available environment, at

most a few hours. �e results further suggest, as shown in Figure 8.3b, bandwidth usage is

not a concern.

8.3 Performance Evaluation

�e Ligature service runs silently in the background exchanging context and it therefore

must not interfere with the user’s foreground work. �us, there are two salient performance

measures: the system utilization when exchanging context and the e�ciency of implicit

frame changes in the presence of object operations (c.f. §5.2.2).

8.3.1 Contextual Exchange

For the former, the main performance measure of the service is system utilization: the frac-

tion of total service time, including CPU and I/O times, over total elapsed time. �is mea-

sure must be modest enough as to be imperceivable to the user. Since we are unable to

ascertain how context is created and assigned without having the system deployed in the

�eld, we evaluate this key performance characteristic with a synthetic workload and our

prototype Ligature implementation.

Some simplifying assumptions are as follows. First, we assume each peer is identical in its

computing resources. Second, content creation at each of these peers is modeled as a Poisson

process with an expected tuple addition rate of 1/α arrivals per second per object shared. �is

implies an exponential waiting time distribution with an expected value of α seconds. Each

peer amortizes its updates over a window of 30 seconds, which means updates could be

deferred for at most 30 seconds. �is is the tunable parameter of freshness.

We use as our sharing topology the relationships that exist at the endpoint of the email

trace (c.f. Chapter 6). �e topology includes objects received from any recipient, but we

show results exclusively for local users as only their object exchange histories are complete.
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Figure 8.4: System utilization of hosts running Ligature. �e �gure shows host system utilization

in 99, 95, 90, and 75 quantiles of hosts, respectively, for varying context creation interarrival

times per shared object (α). �at is, at an interarrival time of 10 s, 99 of hosts in the trace exhibit

less than 3.5 utilization; 95 of hosts, less than 1.5. Only local users within the email trace are

included. �e bars represent 95 bootstrap con�dence intervals.

For each peer, we generate traces of requests and use several load generators to drive our

prototype implementation. For these experiments, the host under evaluation is a Pentium 4

2.26 GHz machine with a 7200 RPM disk and 512 MB of RAM. Based on data from the

manufacturer, the disk has an average seek time of 8.9 ms for reads and 10.9 ms for writes.

Context creation is mostly a human-centric activity, and as a result, will exhibit infre-

quent interarrival times on the order of tens of seconds, or more likely minutes. For example,

the rate at which users could possibly tag objects is limited by the time to locate the object,

the think time to conceive of an appropriate label, and the user’s typing ability. Most contex-

tual applications—including machine-generated context—fall into this class of long, human

scale interarrival times. For example, with the context-enhanced search service, the under-

lying data structure is almost exclusively updated as a consequence of user actions. Or, if

in some hypothetical application where mobile users are continually publishing their loca-

tion, most users are stationary [39]. Further, it is important to note that improvements in

machine performance occur at a much faster rate than individuals share objects.

Figure 8.4 shows system utilization times for local users within the email trace. For ex-

pected context creation rates, most nodes in the system could e�ectively amortize contextual
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Phase
Elapsed Time (s)

∆
Native Ligature

1 Unpack 5.67 (0.2) 5.97 (0.3) -5.3
2 Copy Tree 4.21 (0.1) 4.52 (0.1) -7.4
3 Compile 259.8 (3.3) 261.1 (3.9) —†

4 Unlink 0.16 (0.0) 0.38 (0.0) -138

† Within experimental error.

Table 8.3: Modi�ed Andrew benchmark results. �e benchmark uses an OpenSSL source tree with

≈1,875 objects. �e parenthesis represent standard deviations based on 5 trials each.

exchange costs, which are usually less than 2 utilization. Almost all nodes exhibit less than

5 utilization. Nodes sharing many objects will naturally need to be over-provisioned to

handle the additional load.

An important consideration is large coteries, especially in the presence of �ash crowds.

In these cases, pair-wise exchange among peers may prove to be unsatisfactory; a multi-cast

solution [46] may be preferred.

8.3.2 Implicit Frame Changes

To evaluate the performance of implicit frame changes (c.f. §5.2.2) during �le system events,

we use a modi�ed Andrew benchmark [41] with the OpenSSL 0.9.8i source tree, which con-

tains approximately 1,875 �le objects. �e benchmark has four phases important to our anal-

ysis: (1) unpacking the archive; (2) copying the source tree; (3) compiling and linking the

source; and (4) deleting the source tree. While not indicative of true user workloads, the

benchmark does stress the side e�ects of object operations due to the relatively large number

of objects in its working set. Under Ligature, the calculus demands: for phase (1), the cre-

ation of a new frame for each unpacked object; for phase (2), the forking of existing frames

to the copied objects; phase (3), the creation of a new frame for each newly compiled ob-

ject; and phase (4), removing frames with expire. �e results of these phases run on a cold

cache natively without Ligature and with the Ligature prototype implementation is shown

in Table 8.3.

For most phases, the performance penalty is less than 10. For the copy phase, the

assumption is that each object has a single frame with 16K of context. During the compile

phase, all context operations are amortized away (t8=−1.074, p<0.157). �e unlink phase

is particularly expensive due to communication costs to the daemon. We expect real user

workloads to perform better than our results would suggest, as they are unlikely to be laden

with as many tightly interspersed �le operations.
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Figure 8.5: �e application performance penalty with Ligature. Search times for queries from an

8-month trace of the author’s system with a specialized data store and with Ligature as the backend

store. �e bands represent 95 con�dence intervals based on 5 trials each. With Ligature, queries

take, on average, 0.25 seconds or 17.4 longer (95 conf. int.: 0.12–0.37 seconds, 8.67–26.16).

8.4 Case Study : Context-Enhanced Search

Storing context in Ligature’s generalized data store, as opposed to a specialized data structure,

comes with extra latency costs in accessing data. Particularly, with context-enhanced search,

the time to answer a query must be within reasonable bounds for users to �nd the system

palatable.

We�’s specialized data structure stores relations in a BerkeleyDB database as triples of the

form: parent, child, and weight. An index on child entries allows e�cient reverse lookups of

that child’s parents. We� under Ligature serializes each relation as two tuples: one holding

the child, another holding the link’s weight. For e�cient reverse lookups, the service also

serializes reverse-relations at each child object to its parent.

Figure 8.5 shows search result latencies for 19 queries issued by the author over an 8-

month tracing period. Each query is run for 5 trials each using either the specialized or

Ligature backends. With Ligature, queries take an average of 0.25 seconds or 17.4 longer

(95 conf. int.: 0.12–0.37 seconds, 8.67–26.16). A quarter second increase, on average,

in search time latency is unnoticeable to the user. Result sets using both backends were

randomly presented to seven users who attempted to judge which displayed faster. Over
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the course of 49 randomly selected queries (7 queries per user), 27 (55) were correctly

identi�ed while 22 were not, indicating users were mostly unable to discern any di�er-

ence (t42 = −0.705, p<0.484 given a binomial linear mixed model [93]).

8.5 Conclusion

�e principal impact of Ligature is to leverage user collaboration by stitching together into

a collective the context of individual users in a social neighborhood. In this manner, users

can enjoy cooperative bene�ts from their e�ort.

As this chapter proves, Ligature can do so with negligible performance overheads: peers

holding the same frame can be discovered relatively quickly, while contextual exchange costs

with those peers can be amortized away for most hosts. As well, the additional mechanisms

to support contextual frames have a minimal e�ect on �le system performance and the ap-

plication performance penalty of using Ligature as a backend is minimal.

Importantly, this chapter describes a small user study of contextual frames that was con-

ducted. Both novice and expert computer users were given several tasks of varying di�culty

to be completed using Ligature’s mechanisms. �e results of this study are encouraging, for

the mechanisms scale with task di�culty: novice users were able to complete the easy and

moderate tasks in almost all cases, while expert users were able to complete the di�cult tasks

as well.
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CHAPTER 9

CONCLUSIONS & FUTURE WORK

For me, context is the key—from

that comes the understanding of

everything.

Kenneth Noland (1924–)

Context is an important and emerging instrument to assist users in the organization,

search, and management of their data. �is dissertation has presented two important archi-

tectures that engage context to aid in this information management problem.

Part I focused on employing context. Chapter I introduced We�, a system that captures

context from the user to reorder and extend search results. Chapter 3 demonstrated that

users �nd the system bene�cial, as their search results are improved.

Part II dove into sharing this and other kinds of context. Chapter II described Ligature,

a system for sharing context. Chapter 5 introduced a new abstraction, the contextual frame,

for sharing disparate context and maintaining personal boundaries on disclosure. Com-

mon email sharing patterns, which guide Ligature’s architectural decisions, are presented in

Chapter 6. �e architecture and implementation of Ligature, as well as sample applications

built with the system, were described in Chapter 7. Chapter 8 showed that the performance

overhead of the system is negligible and that frames are palatable to users.

�is chapter o�ers conclusions about this research, revisits its main contributions, and

presents several items of future work.

9.1 Conclusion

At any given time, a user generates a wealth of contextual information, most of which is

lost entirely. Even if this contextual information was preserved, it is unclear what kinds of

context are the most useful.
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In the realm of personal desktop search, this dissertation demonstrates that relatively

straightforward provenance, acquired via strict causality, can be used to build a contextual

index that later reorders and extend search results from traditional static tools. �is work

contributes a prototype system, named We�, for capturing this context and a methodology

for studying these personal desktop search tools that evaluates the user-perceived di�erences

in search results.

Such a �eld study with non-expert users found that searches using We�’s causality algo-

rithm to build the relation graph were of higher quality, on average, than both static content-

only search and the current state-of-the-art in contextual indexing, temporal locality. �ese

results validate that automatically gathered context increases the e�ectiveness of �le index-

ing and search tools, despite the simplicity of the approach. �e mechanism requires mini-

mal space and time overheads, substantiating the usefulness of context.

Given that context is indeed a useful mechanism as indicated by We�, it may be bene-

�cial to share it across users in a cooperate manner. Naïvely storing context is problematic,

however. For instance, if context was in some global store, there would be issues in resource

allocation (i.e., who provides and services the infrastructure for this data?) and ownership.

Importantly, this solution neglects the trust boundaries that exist in the real world. �us,

any such solution must not burden users by making context a new entity to manage.

�is dissertation provides a context sharing system, named Ligature. Ligature leverages

acts of sharing to form coteries of individuals who share context on an object: the acting of

sharing the object imbues access rights to its context. While this basic model is adequate for

the common case, Ligature permits context to be encapsulated inside a novel new abstrac-

tion, the contextual frame, which can be disparately shared among users, and even split and

later merged. �is yields easy, deterministic conditions for contextual exchange and facili-

tates the genres of disclosure common in human activity [30]. �is work conducts a user

study of these frames, which presented various scenarios to both novice and expert users

to be completed using Ligature’s frame mechanisms. �e study found that novice users can

extract most of their functionality, while expert users can employ all their functionality.

Avoiding unnecessary reliance on central services or authorities is a basic principle ap-

plied throughout Ligature’s design. �is preserves the user’s autonomy to manage her own

context without requiring registration with some organization, and preserves her privacy by

avoiding an architectural requirement that a central service know a user’s objects or context.

Most importantly, it allows individuals without a common administrative domain of con-

trol to share context without any additional infrastructure. In addition, Ligature supports

mobile and disconnected users by employing an eventually-consistent model, a common

technique for human-scale events.
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Ligature’s use of a coordinator for coterie formation ensures allocation fairness. �e peer

discovery mechanism exploits sharing locality to �nd peers if the coordinator is down and

can do so relatively quickly, as our results indicate. As well, this research captured a real-

world sharing topology, and found that contextual exchange costs can be amortized away

for most hosts given the sharing patterns in the trace. Ligature’s frame operations have a

minimal e�ect on �le system performance and any application performance penalty is likely

negligible. �ese results suggest that Ligature can be widely-deployed without imposing

undue overhead.

We�’s contextual index can be synergistically shared among those the user has shared the

object with, likely further improving search results. Other applications of context sharing

include, but are not limited to, tags, notes, audit trails, or provenance records. �is kind of

�uid, ad-hoc and spontaneous collaboration is common in one’s personal life, in business,

and in scienti�c environments. As such, Ligature permits users to share context without

undue managerial burden.

9.2 Contributions

In review, the main contributions of this dissertation are:

1. �e identi�cation of causality as a useful mechanism to inform contextual indexing

tools and a description of a prototype system for capturing it.

2. A user study, including a methodology, for evaluating personal search systems that

evaluates user-perceived di�erences in search results. �e results demonstrate that

causality-based indexing provides higher quality search results than those based on

the, as of writing, current state of the art.

3. A system for distributing this and other context across a user’s social neighborhood,

which leverages acts of sharing to delineate access. �e system’s model supports the

ad-hoc collaborative sharing that naturally occurs, all with negligible performance

overheads.

4. A new abstraction, the contextual frame, that encapsulates context. It allows sepa-

ration and later combination of context and facilitates genres of disclosure. A user

evaluation of this abstraction suggests the mechanism scales with user ability.

9.3 Future Work

�ere are many avenues for important future work, both in employing context for personal

desktop �le search and in disseminating it to others.
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9.3.1 Context-Enhanced Personal File Search

Although e�ective, the causality indexing mechanism used by We� is coarse, for it can easily

fail to capture real relationships, or alternatively, capture extraneous ones. Adding temporal

bounds to causality-based creation of relation graphs may help reduce these false positives,

as might instrumenting the user interface. For example, using window switching [72] to

delineate units of work may ascertain extra relations and may lead to other kinds of relation-

ships (e.g., read-read, as opposed to the system’s current read-write). Indeed, there is work

being done in instrumenting the UI layer for these relationships [38]. Application-assistance

could also help, but it is likely developers would be loathe to do so.

Other repositories of context, such as a user’s email and web activity, could provide

additional—perhaps even sub-document—relationships. Hints from the environment and

locally-available devices, such as a user’s PDA or mobile phone, are another interesting av-

enue [21].

We�’s reordering and extension mechanism could be improved. Algorithms such as

Pagerank [10] or those that are Pagerank-like [101] may be more applicable with a causally-

based contextual index. As well, machine learning techniques may yield more accurate rel-

evance scores.

A user’s context will likely change over time. Since the relation graph does not store

links as a function of time, it is di�cult to perform any kind of hysteresis. �e issue of what

hysteresis methods are optimal for preventing dilution of relationships, stabilizing relation

graph growth, and handling major task and work habit switching will eventually need to be

addressed.

9.3.2 Context Sharing

�ere is considerable work in context sharing. As users begin to share more contextual data,

questions arise regarding inter-user context sharing. Consider sharing the relation graph

with Ligature. If Alice accesses data also used by Bob, how far should Alice’s actions be

used to assist Bob in organizing and searching the data? Can one obscure Alice’s actions

for privacy reasons and will any such obfuscation still be e�ective in search? �e preceding

supports the addition of a policy component to Ligature such that users and applications can

provide rich annotations concerning the boundaries under which context should be shared.

For example, the We� service may wish to indicate that a relation should be only exchanged

if the sender has shared both source and sink objects of the link with the recipient. Cur-

rently, this kind of policy is impossible with Ligature. A signi�cant challenge is in devising
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a language supporting easy expression of these kinds of semantic constraints all the while

retaining enough expressive power for common application use cases.

Each user plays a number of di�erent roles over the course of a day, each with di�erent

obligations, with roles possibly overlapping. For example, a user might be an instructor,

a researcher, a consultant, and a member of a family. In the context of each role, there is

a group of other people with whom they interact, and these groups govern context access.

Ligature provides a solution through the use of contextual frames, but this requires explicit

manual intervention; an ideal solution is to adaptively set up access rights automatically.

Since humans are habitual, it may be possible to construct a classi�er to demarcate a user’s

current role and select apropos frames in an automatic, unsupervised manner.

Ligature currently permits sharing of inherently semi-private data in which users delin-

eate their social neighborhood through acts of sharing. However, there are many cases in

which it is useful to form communities implicitly, such that a system is sharing inherently

semi-public data. For instance, fans at a football game may wish to share photos and their

associated context with other fans at the game. Forming these groups without excessively

compromising the user’s privacy is a di�cult challenge.

In a world in which context freely �ows with objects, there may be context “overload”

in that the user may have to wade through undesired context to reach his or her desired

contextual need. Appropriate context-aware �lters, especially useful on devices with small

�xed-size screens, are another interesting avenue of research.

As contextual information rises to become more pertinent, inquiries into its use, its ap-

plicability, and its dissemination will undoubtedly grow as well. �is dissertation establishes

how context improves the utility of personal �le search and how it can be shared with oth-

ers without imposing unreasonable burdens, facilitating an exploration of these kinds of

questions.
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