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CHAPTER I

Introduction

Perfectly rational behavior in game theory is characterized by accurate expecta-

tions of other players’ actions and choices that maximize individual utility. This is

not what we typically observe when real people play games. This dissertation con-

tains four essays investigating the aggregate behavior of agents who are boundedly

rational or who learn about which actions to take. Bounded rationality means that

agents make mistakes when trying to choose actions that maximize utility. Agents

who follow a learning rule do not accurately predict other players’ behavior and in

this respect also fall short of the standard of perfect rationality.

Theories of bounded rationality seek to explain divergences from utility maxi-

mization that may arise in complicated strategic environments or in one-shot games

before learning can occur. In Chapter II, we take up the quantal response model

of bounded rationality. In a quantal response equilibrium (McKelvey and Palfrey,

1995), mistakes are caused by noise in observed payoffs, and players react to ev-

erybody else’s noisy best responses with their own. The mistakes one player makes

thus affect the strategic context that another player faces. This framework allows

for error cascades in which small decision errors induce a large change in equilibrium

play.

1
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Theories of learning in games do not aim to replace standard equilibrium analysis,

but rather to complement it. Equilibrium can be thought of as a long-term outcome

of a learning process or an evolutionary dynamic. Learning models are concerned

with behavior during this period of equilibration. Population learning rules provide

a mechanism through which a rational Nash equilibrium may arise without assuming

that all players are perfectly rational and have common knowledge of each other’s

rational decision making rule. In a population learning rule, agents choose pure

strategies according to a given algorithm, and the resulting configuration of actions

determines a population mixed strategy. It is this population mixed strategy we

are interested in. A given learning rule may or may not lead to a steady state of

the population mixed strategy in a particular game. In fact, Hofbauer and Swinkels

(1996) and Hart and MasColell (2003) show that no reasonable dynamic converges

to Nash equilibrium in all games.

In Chapters III, IV, and V, we compare various deterministic learning models

in games that have multiple equilibria to see if differences in learning styles lead

to significant differences in outcomes. Different learning dynamics, even when they

produce the same sets of stable equilibria, may attain different equilibrium points in

that set. The basin of attraction of each equilibrium depends on how players learn. A

recurring device in our analysis is our finding that the overlap in the basins of attrac-

tion under different learning dynamics can be arbitrarily small. Chapter III develops

a necessary condition and sufficient conditions for there to be vanishing overlap in

the basins of attraction under two common learning rules – best response dynamics

and replicator dynamics – and then extends this result to broader classes of dynam-

ics. Chapter IV applies the best response dynamics and the replicator dynamics to a

class of generalized stag hunt games, finding that in this context, learning style can
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determine whether an efficient equilibrium is reached. In Chapter V, we consider

compositions of best response and replicator dynamics and show that outcomes can

be highly sensitive to the precise specification of the learning dynamic.

A central theme in Chapters II and V is analysis of heterogeneous populations.

In Chapter II, agents have heterogeneous quantal response functions – that is, they

have different probabilities of making errors. In Chapter V, the population admits

heterogeneous learning styles. In both cases, the presence of heterogeneity allows for

behavior that could not occur in homogeneous populations. These results remind us

to take seriously the fact that people err and learn at different rates and in different

ways.
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CHAPTER II

Quantal Response Equilibria with Heterogeneous Agents

2.1 Introduction

Quantal response equilibrium extends the Nash Equilibrium notion to allow bounded

rationality. Players can be seen as making errors while trying to choose optimal

strategies, or equivalently, as observing payoffs disturbed by idiosyncratic noise. The

result is that players may select any action with positive probability assigned by their

quantal response functions.

This chapter introduces a general model of quantal response equilibrium with

heterogeneous agents. We show that the aggregate behavior of a population of het-

erogeneous agents can be captured by a representative agent. But, the representative

agent may be very different than the actual agents in the population. This illustrates

the need to consider heterogeneity and offers insight for how to work around that

heterogeneity with representative-agent models. After presenting the representative-

agent picture, which allows for arbitrary distributions of payoff noise and applies for

all normal form games, we then consider logit responses in the context of a single

choice between two pure strategies that is part of a fixed game. We find that in a

heterogeneous population of agents, all having their own logit rationality parame-

ters, a mis-specified homogeneous logit parameter will always exhibit a downward

5
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bias making the population appear to be less rational.

We consider structural quantal response equilibria (QRE) [22, 11] in the context

of a population game. In a large population of agents, we should expect hetero-

geneity of behavior [19, 21]. A population of quantal responders should consist of

agents who may have different error rates, or different distributions of payoff noise.

In fact, McKelvey, et. al. [23] find experimental evidence for heterogeneous error

distributions in trying to fit logit QRE to data on two-by-two asymmetric games. 1

Prior research into quantal response equilibria with heterogeneous agents has con-

sidered a distribution of parameters which parametrize the distributions of payoff

noise [25], with particular interest in distributions of logit responders [4]. Here, we

model heterogeneous distributions of payoff noise with a functional defined over dis-

tribution functions. As we do not assume that distributions of payoff noise take any

particular functional forms, this approach allows for more distribution functions than

can be described with finitely many parameters.

Our interest is in the behavior of an entire population, and we seek a represen-

tative agent whose mixed strategy quantal response always matches the population

aggregate. We need representative-agent models because while we believe people re-

ally are heterogeneous, we cannot determine each person’s quantal response function

individually when we fit data. The representative agent is what we can estimate in

an experiment.

With weak assumptions on the agents’ distributions of payoff noise we prove

existence of a representative agent. However, the distribution of payoff disturbances

necessary to produce representative choices is not representative of the noise the

actual agents observe in their payoffs. We show that in games with enough pure

1Further motivation to consider heterogeneity in a population of quantal responders comes from recent findings
that models of heterogeneous learners often cannot be adequately approximated by representative-agent models with
common parameter values for all [27, 15, 12].
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strategies, a representative agent could not have payoff disturbances independent

and identically distributed across actions even if the actual agents did. On the other

hand, we find that if agents all use regular quantal response functions (as defined

by Goeree, et. al. [11]), then the representative agent’s quantal response must

also be regular. Different roles in asymmetric games will in general have different

representative agents.

Much of the QRE literature looks to the logit equilibrium in particular to explain

experimental data [5, 8, 10, 6, 1]. Because of the prominence of this logit response

specification, we consider a population of heterogeneous logit responders as a special

case. Our interest here is how a mis-specified homogeneous logit model misrepre-

sents the heterogeneous agents. Because the representative agent for the population

is not itself a logit responder, the homogeneous model cannot explain equilibrium

choice probabilities and payoffs in a choice between more than two actions. When

the population has just two pure strategies, we find that the homogeneous logit pa-

rameter is systematically biased below the average value of the heterogeneous logit

parameters. We describe the extent of this bias as it varies with the difference in the

two strategies’ equilibrium payoffs.

Nash proposed a population game interpretation of equilibrium in his unpublished

PhD dissertation [26]. Following his lead, we assume that there is a population of

agents for each role in a game. A generic n-player game involves n populations of

agents, but if multiple players have identical roles and we adopt the restriction that

players in identical roles should play identical population mixed strategies, then these

players may be selected from the same population. So, in a totally symmetric game,

we may have only a single population of agents. We assume the populations are

large, and we are interested in the fraction of a population playing a given strategy.
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An agent’s payoff is the average of his payoffs against all other combinations of agents

(or equivalently his expected payoff given random matching).

Population games provide a framework for the use of evolutionary learning dy-

namics. Learning rules that assume that players noisily best respond often converge

to QRE [7, 17, 20, 16, 2, 18]. This chapter focuses on the QRE itself and not on

any particular learning rule that might lead to it. Population games also describe

experimental settings well, as data is accumulated through the randomly matched

interactions of many subjects.

This chapter is organized as follows. Section 2.2 introduces the notation in the

context of a single population and provides definitions of a QRE and a representative

agent. Section 2.3 contains our general results describing a representative agent. In

Section 2.4, we extend our framework and our results to n-player asymmetric games.

Section 2.5 focuses on logit responders, and section 2.6 concludes. The Appendix

contains proofs omitted from the text.

2.2 A Single Population

To simplify the presentation, we begin with a single population of agents. The

context can be thought of as a symmetric game or alternatively a single player

decision subject to incomplete information. In Section 2.4, we show how to apply

these results to general n-player asymmetric games.

Let S = {s1, . . . , sJ} be the set of pure strategies available to the agents. The

collective play of all the agents defines the population mixed strategy x. Formally,

x ∈ 4J−1, the (J − 1)-dimensional simplex where xj ≥ 0 for all j and
∑

j xj = 1.

A structural QRE arises when agents’ utility functions are modified by noise

terms, privately observed stochastic payoff disturbances. Denote by πj the payoff
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from taking pure strategy sj. Of course, payoffs are a function of the strategies

used by all the players, πj = πj(x), but we omit the function’s argument for ease of

notation. We denote the vector of payoffs to each pure strategy by π = π1, . . . , πJ .

Formally, π : 4J−1 → <J . For each pure strategy sj, agent µ observes a payoff

disturbance εµj , making agent µ’s disturbed payoff πµj = πj + εµj . This is the function

agents maximize with their choice of strategy in a QRE.

The distribution of payoff disturbances is assumed to be admissible, meaning that:

(a1) the disturbances are independent across agents;

(a2) each agent has an absolutely continuous joint distribution of (εµ1 , . . . , ε
µ
J) that

is independent of the population mixed strategy x, i.e., all marginal densities

exist;

(a3) disturbances are unbiased in the sense that they all have mean zero.

Allowing only admissible distributions guarantees the existence of a QRE. Here, we

make the additional assumption that for each agent, disturbances are independent

and identically distributed (iid) across the set of actions. This assumption could

be relaxed, but some such restriction is necessary for the QRE notion to produce

falsifiable predictions [14].

When the setup for QRE does not explicitly involve populations of agents, it is

assumed that each player has a distribution of payoff disturbances. In the context

of a population game, this corresponds to each agent within the population having

an identical distribution of disturbances. That is, the convention is to assume ho-

mogeneous populations. Here, we specifically want to leave open the possibility that

agents in the same population have different distributions of payoff shocks. So, we

do not assume identical distributions of εµj for all µ.
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To model heterogeneity in the distributions of payoff disturbances, consider a

functional defined over such distributions. Let Pε(·) be a distribution function for

the payoff disturbance to a particular action. Each agent has a distinct Pε, which then

applies to εµj for all 1 ≤ j ≤ J , i.e., is the same for all actions in that agent’s strategy

space. Define a functional Fε[Pε] that associates to each distribution function Pε

a probability mass or density describing the fraction of the population with payoff

disturbances distributed by Pε. Technically, we make use of a second functional Iε[Pε]

that equals 1 to indicate a mass point on Pε and 0 to indicate that Fε[Pε] represents

a probability density. For this to make sense we require Iε[Pε] = 1 for only countably

many Pε and ∑
Pε:Iε[Pε]=1

Fε[Pε] +

∫
Pε:Iε[Pε]=0

Fε[Pε] dPε = 1.

The appropriate measure dPε depends on the particular form of the heterogeneity.

In this approach, the functional captures a distribution of distributions of payoff

shocks in the population. It thus provides a general way to think about heterogeneity

of quantal responses. The conventional assumption of a homogeneous population can

be recaptured, for example, by taking Fε[Pε] = 1 for a particular Pε and 0 everywhere

else.

The quantal response function for each agent returns the agent’s likelihood of

choosing each strategy given the agent’s undisturbed payoffs. Let Qµ
j (π) be the

probability that agent µ selects strategy sj given the payoffs to each strategy. For-

mally, for any vector π′ = (π′1, . . . , π
′
J) ∈ <J , define

Rµ
j (π′) = {(εµ1 , . . . , ε

µ
J) ∈ <J : π′j + εµj ≥ π′j′ + εµj′ for all j′ = 1, . . . , J}

to be the set of realizations of agent µ’s joint set of payoff disturbances that would

lead to choosing action sj. Then Qµ
j (π) = Prob

{
(εµ1 , . . . , ε

µ
J) ∈ Rµ

j (π)
}

.
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The quantal response functions for all the agents can be aggregated across the

population to give the population mixed strategy response to any given population

state. In a finite population of m agents, the population aggregate quantal response

is Qj = 1
m

∑m
µ=1 Q

µ
j for all j. More generally, the aggregate quantal response in an

infinite population is

(2.1) Qj =
∑

Pε:Iε[Pε]=1

Fε[Pε]Q
µ
j +

∫
Pε:Iε[Pε]=0

Fε[Pε]Q
µ
j dPε

where we abuse notation by letting µ = µ(Pε) be an agent with payoff disturbances

iid from Pε. This is just the expectation of agents’ quantal response functions with

respect to the probability mass / density functional Fε. It can be taken pointwise,

i.e., independently for every value of the payoff vector π.

We can now define a quantal response equilibrium and then formally describe a

representative agent for this heterogeneous population.

Definition II.1. A quantal response equilibrium (QRE) is defined by the fixed point

equation xj = Qj (π(x)) for all j.

Whereas a Nash Equilibrium is a state of play with everybody simultaneously

playing a best response, a QRE is a state with everybody simultaneously playing

according to their quantal response functions.

Definition II.2. A representative agent would have a quantal response function

Q̂(π) equal to the population aggregate quantal response function:

(2.2) Q̂ = (Q1, . . . , QJ).

For all games, the population as a whole behaves exactly as if it were homoge-

neously composed of representative agents.
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The property of having the population aggregate quantal response function is

the most transparent characterization of a representative agent, but other equivalent

characterizations are more useful. We now develop these alternative characteriza-

tions.

Strategy choices are determined by comparing the disturbed payoffs, so the most

relevant variables are the differences between payoff shocks, δµjj′ = εµj − ε
µ
j′ . These

δµjj′ are identically distributed across all j and j′ 6= j because the εµj are iid across

all j. By absolute continuity, the marginal densities exist, and they are even func-

tions because the δµjj′ are antisymmetric in the indices j and j′. There is obviously

dependence among these random variables across j and j′. We will consider the

(J − 1)-dimensional random vector δµj =
(
δµ1j, . . . , δ̂

µ
jj, . . . , δ

µ
Jj

)
for a particular j,

which then determines the value of δµj′ for all other j′. Note that admissibility of the

payoff disturbances implies δµj has zero mean because all the εµj have zero mean. Let

Pδµj : <J−1 → [0, 1] be the joint distribution function of δµj . Then

(2.3) Qµ
j (π) = Pδµj (πj − π1, πj − π2, . . . , πj − πJ),

naturally omitting πj − πj just as we did δµjj. Thus, an agent’s quantal response

function is determined by the joint distribution of differences between payoff shocks.

Heterogeneity in the distributions of payoff shocks leads to heterogeneity in the

distributions of the differences between payoff shocks. That is, the functional over

Pε induces a functional defined on the joint distributions for δµj . Let P (·) be a joint

distribution function of δµj for some µ and any j in 1, . . . , J . We construct the

functional F [P ] as follows. Let P be the set of Pε(·), distribution functions of εµj ,

which give rise to P (·). If there exists a Pε ∈ P such that Iε[Pε] = 1, then define
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I[P ] = 1 and

F [P ] =
∑

{Pε:Iε[Pε]=1,Pε∈P}

Fε[Pε].

Otherwise, define I[P ] = 0 and

F [P ] =

∫
Pε∈P

Fε[Pε] dPε.

Note that there are joint distribution functions that could not apply to any δµj because

they do not describe differences between iid random variables, and our definition

implies F = 0 for these functions.

In an abuse of notation, we will use
∫
dP as a shorthand for

∑
P :I[P ]=1

+

∫
P :I[P ]=0

dP.

This notation will be used even when there are mass points and is not meant to

suggest their exclusion. It merely reflects our desire not to worry about the particular

form the heterogeneity takes.2

Our definition of a representative agent can now be translated into a statement

about the representative joint distribution of differences between payoff shocks. It

means the representative agent would have δj distributed according to a joint distri-

bution function P̂ (·) such that

(2.4) P̂ =

∫
F [P ]P dP.

We can think of P̂ as the population’s expected joint distribution function for differ-

ences between payoff shocks, with respect to the induced probability mass / density

functional F . The representative agent’s quantal response function can in turn be
2The Lebesgue theory of integration allows a combination of a sum and an integral to be written simply as an

integral with respect to a suitable measure. That is, the functional integral approach we take here corresponds
to representing heterogeneity with a probability measure fε on the space of admissible distribution functions; fε
would have discrete mass points for the support of Iε and would be absolutely continuous where Fε represents a
density. Then, in place of

P
Pε:Iε[Pε]=1 Fε[Pε] ·G[Pε] +

R
Pε:Iε[Pε]=0 Fε[Pε] ·G[Pε] dPε, the standard notation for the

expectation of G would be
R
G[Pε] fε(dPε).
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found by using P̂ in equation (2.3). This provides a working definition of a repre-

sentative agent that is more useful than equation (2.2).

Given a functional that describes the heterogeneity of the population, we can

use characteristic functions to identify a representative agent. This approach is

effective because there is a bijection between distribution functions and characteristic

functions. Let θ : < → C be the characteristic function of a payoff disturbance εj

with distribution function Pε(·),

θ(t) = E(eitεj).

Note that θ is a complex-valued function of a single real variable and θ(−t) = θ̄(t). It

must be uniformly continuous, satisfy θ(0) = 1 and |θ(t)| ≤ 1, and the quadratic form

in u and v with θ(u−v) as its kernel must be non-negative definite. (These properties

can be used to define an arbitrary characteristic function.) Take φ : <J−1 → C to be

the characteristic function associated with the joint distribution P (·) of δj. We still

write φ(t), now assuming t = (t1, . . . , tJ−1) to be a vector in <J−1. We can express

φ in terms of θ,

φ(t) = E(eit·δj)

= E(eit1δ1j · · · eitJ−1δJj)

= E(eit1(ε1−εj) · · · eitJ−1(εJ−εj))

= E(eit1ε1) · · ·E(eitJ−1εJ ) · E(e−i(
PJ−1
l=1 tl)εj)

= θ(t1) · · · θ(tJ−1) · θ(−
J−1∑
l=1

tl).(2.5)

In addition to the properties just mentioned, we also know that if
∑J

l=1 rl = 0, then

φ(r1, . . . , r̂j, . . . , rJ) is independent of j, because by equation (2.5) it has the same

expansion in terms of θ for all j. If there are only two actions, J = 2, then φ is real
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and positive because P is symmetric (see equation (2.5), where φ(t) would be the

product of θ(t) and its complex conjugate). The functional Fε induces a distribution

over characteristic functions Ψε[θ] = Fε[Pε], with Υε[θ] = Iε[Pε]. Similarly, define

Ψ[φ] = F [P ] along with Υ[φ] = I[P ].

Let

(2.6) φ̂(t) =

∫
Ψ[φ]φ(t) dφ

be the expectation of characteristic functions for δµj in the population. This repre-

sentative characteristic function can be constructed by taking the integral pointwise,

i.e., independently for every value of t. Fixing the input point t, we know that the

functional integral
∫

Ψ[φ]φ(t) dφ always converges because |φ(t)| ≤ 1. (The abuse of

notation in this context is the same as for the functional over distribution functions.)

2.3 A Representative Agent

2.3.1 Existence of a Representative Agent

The first issue to address is whether a representative agent exists. Theorem II.3

tells us that there is only one pathological type of heterogeneity for which the popu-

lation does not have a representative agent. The joint distribution function P̂ (·) can

always be constructed given the functional F [P ] describing the heterogeneity in the

population, but there is a danger that it is not an admissible distribution function.

Specifically, it may fail to have finite mean. A particular consequence of the theorem

is the fact that a representative agent is sure to exist whenever only finitely many

different distribution functions are in use in the population. Alternatively, relaxing

the requirement that distributions of disturbances must have zero mean also ensures

the existence of a representative agent.

Theorem II.3. Define P̂ (·) as in equation (2.4). If P̂ (·) has finite mean, then
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a representative agent exists with δj distributed by P̂ (·) and having characteristic

function φ̂(t).

Proof. It is well known that the maps between distribution functions and character-

istic functions are linear. Apply the Levy continuity theorem to equation (2.6). This

requires φ̂(t) to be continuous at t = 0, which we establish with Lemma II.15 in the

Appendix. Lemma II.16 in the Appendix establishes that the mean of P̂ (·) is 0 if it

exists, and thus P̂ (·) is admissible when this is the case.

Corollary II.4. If F [P ] > 0 for only finitely many joint distribution functions P (·),

then a representative agent exists.

Proof. The only source for divergence of the mean of P̂ (·) is the limit that results

from F [P ] > 0 for infinitely many P . All the joint distribution functions in the

support of F have zero mean, so a finite linear combination of them also describes a

random vector with zero mean. Then Theorem II.3 applies.

Taking a closer look at an example P̂ (·) that has divergent mean and thus fails to

be an admissible joint distribution function offers insight into how such cases arise.

Example II.5. For simplicity, assume J = 2. The example works just as well with

more pure strategies, but the notation becomes cluttered. Partition the set of joint

distribution functions P (·) into Py such that P (·) ∈ Py implies P (ey) ≤ 1 − α for

some fixed positive α < 1
2
. This partition is not uniquely determined, but as long as

the Py are non-empty, it will do. Consider the functional F [P ] where

∫
Py
F [P ] dP =


e−y for y ≥ 0

0 for y < 0.
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Then the mean of P̂ (·) is divergent because∫ ∞
0

δ dP̂ (δ) =

∫ ∞
0

δ

∫ ∞
0

∫
Py
F [P ]P ′(δ) dP dy dδ

≥
∫ ∞

0

∫
Py
F [P ]

∫ ∞
ey

δ P ′(δ) dδ dP dy

≥
∫ ∞

0

∫
Py
F [P ]αey dP dy

=

∫ ∞
0

α dy.

Admissibility requires P̂ (·) to have zero mean, but when this fails, we shouldn’t

conclude that a representative quantal response function does not exist. Instead, we

can relax the requirements of admissibility to guarantee that a representative agent

always exists. The restriction to zero mean payoff disturbances is not necessary for

the existence of a QRE, as fixed point theorems can be applied without it. The desire

for unbiased disturbances appears to be aesthetic, and the possible inadmissibility of

representative agents is an artifact of the way it is implemented. Consider replacing

the zero mean assumption (a3) with the following alternative:

(a3’) the Cauchy principal value of the mean of each payoff disturbance is zero3, and

lim
γ→∞

γ Prob
{
|εµj | ≥ γ

}
= 0 for each εµj .

Assumption (a3’) holds whenever assumption (a3) is satisfied, so this is a weaker

condition to impose on the payoff disturbances. Even though the mean of εµj may

blow up under assumption (a3’), these disturbances are still unbiased, and their

likelihood still decays sufficiently quickly as they get large.

Definition II.6. We say payoff disturbances are weakly admissible if assumptions

(a1), (a2) and (a3’) hold.

3The Cauchy principal value of an improper integral
R∞
−∞ f(t) dt is defined as limT→∞

R T
−T f(t) dt.
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With just this slight relaxation of admissibility, we always get a representative

agent.

Corollary II.7. Allow weakly admissible payoff disturbances. A representative agent

exists with δj distributed by P̂ (·) and having characteristic function φ̂(t).

Proof. Lemma II.16 shows that P̂ (·) always satisfies the weak admissibility assump-

tion (a3’). In turn, there exists a joint distribution of (ε1, . . . , εJ) that satisfies (a3’)

and is consistent with δj being distributed by P̂ (·).

2.3.2 Payoff Disturbances for the Representative Agent

We have defined a representative agent with the property that the agent’s choice

of strategy is representative of the population as a whole. We now show that this

is not equivalent to having representative noise in the underlying payoffs. We say

P̂ε(·) is a representative distribution of payoff shocks if it is a (weakly) admissible

distribution function and

(2.7) P̂ε =

∫
Fε[Pε]Pε dPε.

By applying the Levy continuity theorem here too, we find that a representative

distribution of payoff shocks has characteristic function θ̂(t) =
∫

Ψε[θ] θ(t) dθ. With

this groundwork in place, we are ready for Theorem II.8, which says that a repre-

sentative quantal response function does not arise from a representative distribution

of payoff shocks.

Theorem II.8. A representative agent has a representative distribution of payoff

shocks if and only if the population is homogeneous.

Proof. Let Θ be the set of characteristic functions of εj that give rise to a given

φ(·). Using equation (2.5), Θ = {θ : φ(t) =
(∏J−1

l=1 θ(tl)
)
· θ(−

∑J−1
l=1 tl)}. From the
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relationships between the functionals, we have

Ψ[φ] =

∫
Θ

Ψε[θ] dθ if Υ[φ] = 0∑
{θ∈Θ:Υε[θ]=1}

Ψε[θ] if Υ[φ] = 1.

We can then express a representative agent’s characteristic function for δj as

φ̂(t) =

∫
Ψε[θ]

(
J−1∏
l=1

θ(tl)

)
θ(−

J−1∑
l=1

tl) dθ.

But

(2.8)∫
Ψε[θ]

(
J−1∏
l=1

θ(tl)

)
θ(−

J−1∑
l=1

tl) dθ 6=

(
J−1∏
l=1

∫
Ψε[θ] θ(tl) dθ

)
·
∫

Ψε[θ] θ(−
J−1∑
l=1

tl) dθ

unless for each tl, θ(tl) is the same for all θ in the support of Ψε. Since tl is an

arbitrary variable, this would mean there could only be one function in the support

of Ψε, i.e., no heterogeneity of distributions of payoff shocks in the population.

In light of the fact that a representative agent for a heterogeneous population

does not have a representative distribution of payoff shocks, the question arises as

to what distribution of payoff shocks could actually produce a representative agent.

According to the next result, if there are enough actions and there is heterogeneity

of the δjj′ , then the representative agent cannot arise from any distribution of payoff

shocks that is iid across the set of actions. Theorem II.9 says that if there are

just two actions, there is an iid distribution of payoff shocks (possibly many such

distributions) that generates the representative agent. But, if there are at least four

actions, assuming heterogeneity of the δjj′ , it is impossible for an iid distribution of

payoff shocks to generate the representative agent.4

4Examples indicate that when there are three actions, the representative agent usually cannot arise from iid
shocks, but we cannot rule out special cases of heterogeneity for which the representative agent is compatible with
iid disturbances.
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Theorem II.9. Given a representative agent, if J = 2, there exists a distribution

of payoff shocks iid across all actions and each with characteristic function ϑ̂(·) such

that

(2.9) φ̂(t) =

(
J−1∏
l=1

ϑ̂(tl)

)
· ϑ̂(−

J−1∑
l=1

tl).

But, when J ≥ 4, there is no ϑ̂(·) that satisfies equation (2.9) unless every Pε(·) in

the support of Fε gives the same distribution of the δjj′.

Proof. When J = 2, we must find a ϑ̂(·) such that φ̂(t1) = ϑ̂(t1) · ϑ̂(−t1). Recall

J = 2 implies that all φ(·) are real and positive, and hence so is φ̂. It suffices to take

ϑ̂(t1) = ϑ̂(−t1) =

√
φ̂(t1).

Now consider J ≥ 4. Given that individual agents do have payoff shocks that

are iid across all actions, any φ(·) in the population can be expressed in terms of

θ(·) with equation (2.5). Specifically, φ(a,−a, a, 0, · · · , 0) = (θ(a)θ(−a))2. Similarly,

φ(a, 0, · · · , 0) = θ(a)θ(−a). Thus,

φ(a,−a, a, 0, · · · , 0) = (φ(a, 0, · · · , 0))2 .

But ∫
Ψ[φ]φ(a,−a, a, 0, · · · , 0) dφ 6=

(∫
Ψ[φ]φ(a, 0, · · · , 0) dφ

)2

unless there is no variance of θ(a)θ(−a) in the population. Note that δjj′ has char-

acteristic function θ(t)θ(−t). Thus, if there are two distribution functions in the

support of Fε[Pε] that give different distributions of δjj′ , then for some a,

φ̂(a,−a, a, 0, · · · , 0) 6=
(
φ̂(a, 0, · · · , 0)

)2

.

This would mean φ̂(·) could not be expressed as
(∏J−1

l=1 ϑ̂(tl)
)
· ϑ̂(−

∑J−1
l=1 tl) for any

ϑ̂(·).
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Theorem II.9 sounds a cautionary note that even if we believe all agents have

noise in their payoffs that is iid across their actions, heterogeneity of the agents leads

the population as a whole to behave as if payoff disturbances were not iid across

actions.

We desired agents with payoff noise iid across actions because this assumption im-

poses restrictions on behavior that can be tested empirically. Although it turns out

the representative agent may not have payoff noise iid across actions, the represen-

tative agent notion still has empirical content because some properties are inherited

from the underlying agents.

2.3.3 Regularity of a Representative Agent

Goeree, et. al. [11] introduce four axioms which define a regular quantal response

function Qµ : <J →4J−1 without reference to payoff noise:

(A1) Interiority: Qµ
j (π) > 0 for all j = 1, . . . , J and for all π ∈ <J .

(A2) Continuity: Qµ
j (π) is a continuous and differentiable function for all π ∈ <J .

(A3) Responsiveness:
∂Qµj (π)

∂πj
> 0 for all j = 1, . . . , J and for all π ∈ <J .

(A4) Monotonicity: πj > πj′ implies Qµ
j (π) > Qµ

j′(π), for all j, j′ = 1, . . . , J .

They argue that all quantal response functions obey Continuity and weakly obey

Responsiveness. If the density of payoff disturbances has full support, then Interiority

and Responsiveness are strictly satisfied. When payoff disturbances are iid across

actions, then the quantal response function obeys Monotonicity as well.

We now show that any regularity property that holds for the underlying agents

in the population also holds for the representative agent.

Theorem II.10. If a regularity axiom {(A1), (A2), (A3), or (A4)} applies to Qµ
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for all µ (i.e., for µ = µ(P ) whenever P (·) is in the support of F ), then that axiom

applies to the representative agent’s quantal response function Q̂.

Proof. Continuity holds for all quantal response functions as a result of the admis-

sibility assumption (a2) that distributions of payoff noise must be absolutely con-

tinuous [11]. Interiority, Responsiveness, and Monotonicity each follow from equa-

tions (2.1) and (2.2), which define a representative agent. Essentially, we just use

the fact that an integral (or sum) must be positive if the integrand (summand) is

always positive. For Responsiveness, we pass the partial derivative inside the inte-

gral and sum in equation (2.1). For Monotonicity, we express Q̂j(π)− Q̂j′(π) using

equation (2.1) and then pair up terms to form a single sum and integral.

Theorem II.10 tells us that in our framework, the representative agent’s quantal

response function always satisfies Monotonicity. It is this Monotonicity property that

carries empirical content. In principle, subjects in an experiment could violate Mono-

tonicity and choose actions with lower payoffs more often than actions with higher

payoffs. This would be inconsistent with the predicted behavior of the representative

agent.

2.4 Asymmetric Games

All of these results, initially presented in the context of a single population, apply

to general asymmetric games. Consider a normal form game with n populations of

agents. The strategy sets may differ across players, so we let Si = {si1, . . . , siJi} be

the set of pure strategies available to agents in population i. Now x = x1 × · · · × xn

denotes the mixed strategy profile across all n populations in the game, with each

mixed strategy vector xi = (xi1, . . . , xiJi) ∈ 4Ji−1.

The vector πi = πi1, . . . , πiJi denotes the payoff to agents in population i from
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their available pure strategies. Now, πi : 4J1−1 × · · · × 4Jn−1 → <Ji . Agent µ

observes payoff disturbances εµij for each strategy. The variables δµijj′ = εµij − ε
µ
ij′ and

δµij =
(
δµi1j, . . . , δ̂

µ
ijj, . . . , δ

µ
iJij

)
are similarly defined for each population. The quantal

response functions Qµ
ij(πi) depend on the payoffs in population i, which in turn

depend on the entire n-population mixed strategy profile x. Thus, equation (2.3)

applies for each i. The functionals also have to be indexed for the population so that

F i
ε [Pε] describes the fraction of population i with payoff disturbances distributed by

Pε and each F i
ε induces a F i[P ], Ψi

ε[θ], and Ψi[φ]. Equation (2.1) now applies for each

i, making (Qi1, . . . , QiJi) the ith population aggregate quantal response. The fixed

point equation defining a quantal response equilibrium becomes xij = Qij (πi(x)) for

all i ∈ 1, . . . , n and all j ∈ 1, . . . , Ji.

Theorem II.3 now describes the existence of a representative agent for population

i with δij distributed by the joint distribution function P̂ i(·) and having character-

istic function φ̂i(t). For each i, these representative functions are given by equa-

tions (2.4) and (2.6), just as before. And Theorems II.8, II.9, and II.10 apply to the

representative agent from any given population.

However, while obtaining representative agents for each role in the game, we

caution that there is no reason to assume the existence of a single representative

agent the same for all players of an asymmetric game. Such an assumption would

deny heterogeneity across the different roles of the game. And given the fact that a

representative agent does not have a representative distribution of payoff shocks and

that different players may have different strategy sets, it’s not clear exactly what is

meant by a single representative agent for all players of an asymmetric game. The

problem is that we want to have a representative quantal response function Q̂ij(·)

that is independent of i, for each fixed j, but this does not make sense when the set
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of actions j depends on i.

Here, we say that there may be a single representative agent for all players if there

exist P̂ i such that Ji1 ≤ Ji2 implies that for all ($1, . . . , $Ji1
) and any j ≤ Ji1 ,

Q̂i1j($1, . . . , $Ji1
) = lim

$Ji1+1→−∞
· · · lim

$Ji2
→−∞

Q̂i2j($1, . . . , $Ji2
).

With this definition, we single out the representative agent from a population i

that maximizes Ji. We can think of this agent with δij distributed by P̂ i(·) as

representative of all players in all roles by assuming that when playing a role with too

few possible actions, the agent imagines there are additional actions with infinitely

negative payoffs. In the particular case that all players have the same number of

actions, Ji = J for all i, a single representative agent for all players would have

differences in payoff shocks jointly distributed by a P̂ that satisfies P̂ = P̂ i for all

i. The representative agent for each population would have to be the same. There

are plenty of QRE which are incompatible with identical representative agents for

all populations, as the following game illustrates.

Example II.11.

Asymmetric Matching Pennies

Left Right

Up 9, -1 -1, 1

Down -1, 1 1, -1

Goeree, et. al. [11] analyze the asymmetric matching pennies game shown above

and find the set of possible QRE is the rectangle 1
6
< p < 1

2
, 1

2
< q < 1, where

p is the probability the column player chooses left and q is the probability the row

player chooses up. However, given the restriction that representative row and column

players have the same quantal response function, a QRE must satisfy the additional
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Figure 2.1: On the horizontal axis is the probability the column player chooses left and on the
vertical axis is the probability the row player chooses up. The entire shaded area
represents the set of possible QRE in the given asymmetric matching pennies game
when row and column players may differ. The darkened area represents the subset of
these QRE consistent with the assumption that representative row and column players
have the same quantal response function.

constraint q < 3p if and only if q > 1− p. (See Figure 2.1.) This is because q < 3p

means that π2R−π2L < π1U−π1D, i.e., the cost of an error is higher for the row player,

and must lead to relatively fewer errors by the row player, q > 1− p. The converse

holds equivalently. Note also that if both row and column players use identical logit

responses, the set of possible QRE is reduced to a curve extending from the center of

the strategy space to the Nash Equilibrium (p = 1
6
, q = 1

2
) [22]. In summary, unlike

the existence of a representative agent for each population, we do not necessarily

have a single representative agent for all players.

2.5 Logit Responders

Most of the literature on QRE has assumed that the payoff disturbances are all

independently drawn from an extreme value distribution, which generates tractable
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logit response functions:

(2.10) xij(πi) =
eλπij∑Ji
l=1 e

λπil

where the parameter λ can be interpreted as the agents’ level of rationality. As λ goes

to infinity, agents best respond perfectly, producing a Nash Equilibrium. Conversely,

as λ tends to zero, agents play the uniform mixed strategy, choosing each action with

the same probability without regard to payoffs.

We now assume agents’ quantal response functions take this logit form, but we

preserve heterogeneity in the populations by allowing the agents to have their own

individual rationality parameters. Thus,

(2.11) Qµ
ij(πi) =

eλµπij∑Ji
l=1 e

λµπil
.

For the purposes of this section, it suffices to consider finite populations of agents,

so

(2.12) xij =
1

mi

mi∑
µ=1

Qµ
ij

for all i and j.

It would be straightforward to apply the results from Section 2.3 and identify

representative agents. In a truly heterogeneous population, i.e., with logit param-

eters not all degenerate, the representative agent will not be a logit responder. In

this section, we see what happens when a theorist tries to force a homogeneous logit

equilibrium model on a population that is actually heterogeneous. Because the homo-

geneous logit equilibrium is a mis-specified model of the populations we’re assuming,

the value of the single logit parameter will vary with the game being considered.

But, a single logit parameter value can explain any particular choice probabilities

between two actions if payoff monotonicity is preserved (i.e., if choice probabilities
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are increasing in the payoffs). For this reason, we restrict attention to a population

with two pure strategies taking part in a (possibly larger) fixed game.

We identify a downward bias in the single logit parameter determined by the

mis-specified homogeneous model as compared with the average of the true logit

parameters in use. Thus, the population seems to behave less rationally if the modeler

believes the agents are all alike when in fact they each have their own levels of

rationality. This bias is exacerbated as the magnitude of the difference in payoffs

between the two actions grows.

First, we present a formula relating the logit parameter of the homogeneous model

to the true logit parameters and the equilibrium payoffs in the heterogeneous model.

Let Ji = 2 in a particular population i. Fix equilibrium choice probabilities and

payoffs in accordance with equations (2.11) and (2.12), and denote them x∗i and π∗i

respectively in population i. Assume a game in which the equilibrium payoffs to

the two actions in population i are not equal, π∗i1 6= π∗i2. Denote by λ the logit

parameter of the homogeneous model describing behavior in population i. We can

use equation (2.10) to express λ in terms of the choice probabilities and payoffs in

population i. The ratio of the choice probabilities is
x∗i1
x∗i2

= eλ(π∗i1−π∗i2). Thus,

(2.13) λ =
1

π∗i1 − π∗i2
ln

(
x∗i1
x∗i2

)
.

Equation (2.13) could also be derived as the maximum likelihood estimate of the

homogeneous logit parameter given data on the equilibrium choice probabilities and

payoffs in population i. With sufficiently many observations of choice probabilities

and payoffs, these data should accurately reflect the equilibrium satisfying equa-

tions (2.11) and (2.12). These equations, (2.11) and (2.12), give us the actual ratio
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of choice probabilities in population i. We plug into equation (2.11) to get

Qµ
i1(π∗i ) =

eλµ∆π

eλµ∆π + 1

and

Qµ
i2(π∗i ) =

1

eλµ∆π + 1
,

where we let ∆π = π∗i1 − π∗i2 to simplify the notation. Then, by equation (2.12),

x∗i1
x∗i2

=

1
mi

∑mi
µ=1

eλµ∆π

eλµ∆π+1
1
mi

∑mi
µ=1

1
eλµ∆π+1

.

Finally, we obtain our desired formula:

(2.14) λ =
1

∆π
ln

(∑mi
µ=1

eλµ∆π

eλµ∆π+1∑mi
µ=1

1
eλµ∆π+1

)
.

Observe that λ depends both on the heterogeneous logit parameters {λµ} and the

equilibrium payoff difference ∆π. We sometimes refer to the function given by equa-

tion (2.14) as λ ({λµ},∆π).

Our next result helps us interpret this formula. Theorem II.12 says that this

homogeneous logit parameter is always less than the average of the heterogeneous

logit parameters actually used by the agents. Moreover, the size of this bias in

the homogeneous model depends on the equilibrium payoffs. When the magnitude

of the difference in payoffs between the two actions gets large, the homogeneous

logit parameter approaches the smallest of the heterogeneous logit parameters in

the population. In this limit, the population behaves like its single most irrational

agent. On the other hand, when the magnitude of the payoff difference gets small,

the homogeneous logit parameter approaches the average of the agents’ true logit

parameters.

Theorem II.12. Consider a quantal response equilibrium in accordance with equa-

tions (2.11) and (2.12) such that population i has two actions with different equilib-
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rium payoffs, i.e., Ji = 2, and ∆π 6= 0. Let λ̄ = 1
mi

∑mi
µ=1 λµ be the average of the

heterogeneous logit parameters used by the agents in population i, and let λ be the

homogeneous logit parameter that explains the population’s choice probabilities for

these particular payoffs. Then

(2.15) λ ≤ λ̄

with equality if and only if λ1 = λ2 = . . . = λmi.
5 Additionally,

(2.16) lim
∆π→±∞

λ = min{λµ}

and

(2.17) lim
∆π→0

λ = λ̄.

Proof. Equation (2.14) gives the exact value of λ. We twice apply Jensen’s Inequality

to pieces of this expression in order to derive (2.15).

Without loss of generality, assume action 1 has the higher equilibrium payoff

so that ∆π > 0. Then 1
eξ∆π+1

is a concave up function of ξ. Applying Jensen’s

Inequality to this function,

(2.18)
1

mi

mi∑
µ=1

1

eλµ∆π + 1
≥ 1

eλ̄∆π + 1

with equality if and only if λ1 = λ2 = . . . = λmi . Similarly, eξ∆π

eξ∆π+1
, being equivalent

to 1− 1
eξ∆π+1

, is a concave down function of ξ. So Jensen’s Inequality implies

(2.19)
1

mi

mi∑
µ=1

eλµ∆π

eλµ∆π + 1
≤ eλ̄∆π

eλ̄∆π + 1

5The convention of using the parameter λ to represent a player’s rationality is somewhat arbitrary in the sense
that a modeler could just as well have defined κ = eλ to be the rationality parameter. Proposition II.17 in the
Appendix establishes an inequality analogous to (2.15), showing downward bias for such an alternative rationality
parameter.
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with equality if and only if λ1 = λ2 = . . . = λmi . When we plug into equation (2.14),

the denominators on the right-hand sides of (2.18) and (2.19) cancel, giving us

λ ≤ 1

∆π
ln
(
eλ̄∆π

)
= λ̄.

Here again, equality holds exactly when λ1 = λ2 = . . . = λmi .

We prove the limits in (2.16) and (2.17) in the Appendix.

Theorem II.12 describes a downward bias in the determination of a homogeneous

logit parameter when agents are actually heterogeneous. The less rational agents

seem to leave a larger mark on the aggregate population behavior. This bias gets

worse when one action’s equilibrium payoff gets much larger than the other’s. Con-

versely, the bias disappears as the payoff difference tends to zero.

Our formula for λ, equation (2.14), also allows us to ask whether a determination

of the homogeneous logit parameter from data on a choice between two actions re-

stricts the set of possible logit parameters for members of the population. The next

result says it very well may. A large value of the homogeneous logit parameter im-

poses a minimum possible value on the set of heterogeneous parameters. Conversely,

a small homogeneous logit parameter precludes any individual agent from having too

large a value. For intermediate homogeneous logit parameters, however, we cannot

rule out any parameters for a single agent. Naturally, these bounds depend on the

population size and are much less restrictive for a large population.

Theorem II.13. Retain the context of Theorem II.12. If eλ |∆π| > 2mi − 1, then

min{λµ} ≥
1

|∆π|
ln

(
1

mi

(
eλ |∆π| − (mi − 1)

))
.
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If eλ |∆π| < mi+1
mi−1

, then

max{λµ} ≤
1

|∆π|
ln

(
(mi + 1)eλ |∆π| − (mi − 1)

mi + 1− (mi − 1)eλ |∆π|

)
.

Proof. See Appendix.

Homogeneous logit parameters are estimated in much of the experimental litera-

ture on two-by-two games, although often with data pooled across many populations

and many games. Theorem II.13 applies to a homogeneous logit parameter calcu-

lated for a single population in a particular game. If we believe that agents use logit

responses, but are heterogeneous in their levels of rationality, this theorem translates

a mis-specified homogeneous logit parameter into restrictions on the set of possible

logit parameters in a finite population.

To illustrate these results, we can compare a homogeneous logit model fit to data

in a two-by-two symmetric game to compatible heterogeneous logit models featuring

two types of responders – one with a high rationality parameter and the other with

a low one. To make the example as simple as possible, we assume exactly half the

agents are of each type (though with the data coming from an experiment on 214

subjects, we have no reason to actually believe there are just two types). We consider

Guyer and Rapoport’s “No Conflict” game, Game #6 in their series of experiments

[13]. The payoff matrix is:

No Conflict

A2 B2

A1 4, 4 2, 3

B1 3, 2 1, 1
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The players have a dominant strategy choosing action A. Guyer and Rapoport

observe action A played 90% of the time. Choosing to model this as a homogeneous

logit equilibrium, we have an equilibrium payoff difference ∆π = 1 (as the payoff to A

happens to always exceed the payoff to B by one), and thus λ = ln(9) in accordance

with equation 2.13.6

Plugging ∆π = 1 and λ = ln(9) into equation 2.14 produces an equation implicitly

relating λ1 and λ2. Figure 2.2 shows possible values of these heterogeneous logit

parameters. Pairs of λ1 and λ2 values are determined by fixed x-values in the graph.

Larger x-values correspond to greater dispersion in the heterogeneous logit parameter

values, but the scaling along this axis is arbitrary. We can see that the average of

λ1 and λ2 always exceeds ln(9), and the lower value is bounded below by ln(4) while

the higher value may be arbitrarily large. Guyer and Rapoport’s data thus puts a

bound on how irrational the low-type agents can be, and they only approach this

bound if the other agents are hyper-rational.

Because a homogeneous logit model is mis-specified in the presence of hetero-

geneity, estimates of a single rationality parameter do not translate across different

game environments. Theorems II.12 and II.13 imply the following result, which tells

us that an estimate of a homogeneous rationality parameter in a particular game

environment places no restriction on such an estimate in an alternative game envi-

ronment, even with a working assumption that agents’ rationality levels are fixed

across games. Theorem II.14 states that the set of heterogeneous logit parameters

that is consistent with a given logit equilibrium in any one game could in some other

game give rise to behavior consistent with any other homogeneous logit parameter.

6Goeree and Holt [9] estimate a homogeneous logit parameter from data pooled across 37 games, including this
one, from Guyer and Rapoport’s study. We obtain a different value of the homogeneous logit parameter because we
use data from just this one game.
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Figure 2.2: Possible values of a pair of logit parameters (determined at any fixed x-value) that
would be consistent with a homogeneous λ = ln(9), when ∆π = 1. These values fit
data from Guyer and Rapoport’s (1972) “No Conflict” game.

Theorem II.14. Consider normal form games for which population i has two ac-

tions, Ji = 2. For any logit equilibrium with population i having payoff difference

∆π∗ 6= 0 and rationality parameter λ∗ > 0 in such a game Γ, and any alterna-

tive value λ′ > 0, there exists a set of heterogeneous logit parameters {λ′µ} that are

consistent with the homogeneous logit model applied to population i in Γ,

(2.20) λ
(
{λ′µ},∆π∗

)
= λ∗,

and there exists a game Γ′ with a heterogeneous logit equilibrium in which population

i has payoff difference ∆π′ 6= 0, such that

(2.21) λ
(
{λ′µ},∆π′

)
= λ′.

Proof. See Appendix.
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Recall that λ ({λµ},∆π) gives the homogeneous logit parameter that produces

the same equilibrium choice probabilities as the heterogeneous logit parameters {λµ}

when the equilibrium payoff difference is ∆π. Thus, equation (2.20) means that any

estimate of a homogeneous rationality parameter in a given game environment can

be explained by some set of heterogeneous logit parameters, and equation (2.21)

means that these heterogeneous logit parameters could be consistent with any other

homogeneous parameter in an alternative game environment. We should not expect

mis-specified parameter estimates to accurately describe behavior across all games.

2.6 Discussion

We have proposed a model of heterogeneous populations playing quantal response

equilibria. The chapter contributes general results that apply to quantal response

equilibria without specification of their functional form as well as particular results

that are specific to the logit response model.

We have paid extra attention to the logit specification because it is so commonly

employed in practice. The representative agent for a population of heterogeneous

logit responders is not another logit responder. In the case of heterogeneous logit

responders choosing between two pure strategies, we have obtained a formula (equa-

tion 2.14) relating a mis-specified homogeneous logit parameter to the actual het-

erogeneous parameters in the population. Maximum likelihood estimation could be

used to fit a homogeneous logit parameter to the behavior of heterogeneous agents

choosing between any number of pure strategies, but a closed form solution is not

generally possible. Our formula provides insights in two directions. It tells us that

the homogeneous model is biased towards less rationality, as the homogeneous logit

parameter is always less than the average of the heterogeneous ones. It also allows us



35

to bound the possible values of the true logit parameters if we have a mis-specified

homogeneous model already in place.

These results are applicable to experimental work in which a homogeneous logit

model has been fit to data. One particular extension is to explicitly model the

existence of clueless players by giving some fraction of the agents a logit parameter

of zero. This would address the common problem of some subjects not understanding

the game they are playing [3].

Working with a general model that does not assume that quantal responses take

any particular functional forms, we have found that representative agents exist for

heterogeneous populations if we allow weakly admissible payoff disturbances. A rep-

resentative agent chooses strategies in the same proportions as the entire population,

but does not have payoff disturbances distributed in the same proportions as the pop-

ulation. In games with many pure strategies, representative behavior cannot arise

from any iid distribution of disturbances.

This impossibility of having a representative agent with disturbances iid across

actions stems from the fact that averaging probability distributions almost never

preserves independence. Thus, if we believe populations of agents are heterogeneous,

but desire representative-agent models, we must be willing to consider noise terms

that are jointly dependent across actions. Our findings support the use of regular

quantal response functions. Regular quantal response equilibrium does generate

falsifiable predictions and is consistent with the representative-agent framework.

2.7 Appendix

Lemma II.15. φ̂(t) is continuous at t = 0.

Proof. Recall that |φ(t)| ≤ 1 and φ(0) = 1 for all φ and thus for φ̂ as well. We will
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show for all h > 0, there exists k > 0 such that ‖t‖ < k implies Re
{
φ̂(t)

}
> 1− h.

Let K be a compact subset of characteristic functions φ such that
∫
KΨ[φ] dφ >

1 − h
4
. Because all the φ are continuous at t = 0, we can choose k[φ] > 0 such

that Re {φ(t)} > 1 − h
2

for all ‖t‖ < k[φ] and φ 7→ k[φ] is continuous. Then take

k = minφ∈K k[φ], and k > 0 because the minimum is taken over a compact space and

the extreme value theorem applies. We then obtain for all ‖t‖ < k,

Re
{
φ̂(t)

}
=

∫
φ∈K

Re {φ(t)}Ψ[φ] dφ+

∫
φ 6∈K

Re {φ(t)}Ψ[φ] dφ

>

(
1− h

2

)(
1− h

4

)
+ (−1)

(
h

4

)
= 1− h+

h2

8
> 1− h.

Lemma II.16. The Cauchy principal value of the mean of P̂ (·) is 0. Additionally,

if the random vector (δ̄1j, . . . ,
̂̄δjj, . . . , δ̄Jj) is distributed according to P̂ (·), then

lim
γ→∞

γ Prob
{
|δ̄j′j| ≥ γ

}
= 0 for all j′.

Proof. A property of characteristic functions is that
[

∂
∂tj′

φ(t)
]
t=0

exists if and only

if:

(i) PV 〈δj′j〉 exists and

(ii) limγ→∞ γ Prob {|δj′j| ≥ γ} = 0,

and when these conditions are satisfied,
[

∂
∂tj′

φ(t)
]
t=0

= iPV 〈δj′j〉 [28, 24]. So, it

suffices to show
[

∂
∂tj′

φ̂(t)
]
t=0

= 0 for all j′. Differentiability of φ̂(t) follows from

the differentiability of all φ in the support of Ψ, using an argument completely
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analogous to the proof of continuity of φ̂(t), Lemma II.15. Thus,
[

∂
∂tj′

φ̂(t)
]
t=0

=∫
Ψ[φ]

[
∂φ
∂tj′

]
t=0

dφ. For all φ in the support of Ψ, all j′,
[
∂φ
∂tj′

]
t=0

= 0 because

PV 〈δj′j〉 = 0 and limγ→∞ γ Prob {|δj′j| ≥ γ} = 0. Each δj′j must satisfy these two

conditions because the underlying εj and εj′ are required to obey them by assumption

(a3) or (a3’).

Proposition II.17. Retain the context of Theorem II.12. Let f : <+ → < be a

monotonically increasing function, and g : < → <+ be its inverse, g = f−1. Denote

κ = f(λ) and κµ = f(λµ) for all µ. Let κ̄ = 1
mi

∑mi
µ=1 κµ. If

(2.22)
g′′(ξ)

(g′(ξ))2 < ∆π

(
eg(ξ)∆π − 1

eg(ξ)∆π + 1

)
for all ξ ∈ [min{κµ},max{κµ}] ,

then κ ≤ κ̄ with equality if and only if κ1 = κ2 = . . . = κmi.
7

Proof. It is straightforward, albeit tedious, to take a second derivative of 1
eg(ξ)∆π+1

and obtain inequality (2.22) as the condition implying that this function is concave

up (assuming once again ∆π > 0 without loss of generality). By the logic used to

prove Theorem II.12, λ ≤ g(κ̄) with equality if and only if κ1 = κ2 = . . . = κmi .

Because f is monotonically increasing, we can apply it to both sides of this inequality

to obtain κ ≤ κ̄.

Completing the Proof of Theorem II.12.

To obtain

lim
∆π→±∞

λ = min{λµ},

we take the limit as ∆π goes to ∞. By symmetry, the result then holds when ∆π

goes to −∞ as well. First, we use algebra in equation (2.14) to come up with a new

7Note that the hypothesis is satisfied when f is an exponential function, i.e., for κ = eλ, because in this case
g(ξ) = ln(ξ) and g′′ is always negative whereas the right-hand side of inequality (2.22) is always positive.
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expression for λ:

λ =
1

∆π
ln

(∑mi
µ=1 e

λµ∆π
∏

ω 6=µ
(
eλω∆π + 1

)∑mi
µ=1

∏
ω 6=µ (eλω∆π + 1)

)
.

In the limit of ∆π going to ∞,

eλµ∆π
∏
ω 6=µ

(
eλω∆π + 1

)
→ eλµ∆π

∏
ω 6=µ

eλω∆π

=
∏
ω

eλω∆π

and
mi∑
µ=1

∏
ω 6=µ

(
eλω∆π + 1

)
→

∏
ω 6=arg min{λµ}

eλω∆π.

Thus,

lim
∆π→∞

λ = lim
∆π→∞

1

∆π
ln

( ∑mi
µ=1

∏
ω e

λω∆π∏
ω 6=arg min{λµ} e

λω∆π

)

= lim
∆π→∞

1

∆π
ln
(
mi e

min{λµ}∆π
)

= lim
∆π→∞

min{λµ}∆π + ln (mi)

∆π

= min{λµ}.

To obtain

lim
∆π→0

λ = λ̄,

we apply l’Hospital’s Rule to the expression for λ given in equation (2.14). We have

d

d∆π

[
ln

(∑mi
µ=1

eλµ∆π

eλµ∆π+1∑mi
µ=1

1
eλµ∆π+1

)]
=

(∑mi
µ=1

1
eλµ∆π+1∑mi

µ=1
eλµ∆π

eλµ∆π+1

) (∑mi
µ=1

1
eλµ∆π+1

)(∑mi
µ=1

λµ eλµ∆π

(eλµ∆π+1)
2

)
−
(∑mi

µ=1
eλµ∆π

eλµ∆π+1

)(∑mi
µ=1

−λµ eλµ∆π

(eλµ∆π+1)
2

)
(∑mi

µ=1
1

eλµ∆π+1

)2 .



39

So

d

d∆π

[
ln

(∑mi
µ=1

eλµ∆π

eλµ∆π+1∑mi
µ=1

1
eλµ∆π+1

)]
∆π=0

= (1)

(
mi
2

) (∑mi
µ=1

λµ
4

)
−
(
mi
2

) (∑mi
µ=1

−λµ
4

)
(
mi
2

)2

=

∑mi
µ=1 λµ

mi

= λ̄.

The denominator in (2.14) is ∆π, so its derivative is 1. Thus,

lim
∆π→0

λ = λ̄.

Proof of Theorem II.13.

Without loss of generality, assume ∆π > 0.

To obtain

min{λµ} ≥
1

∆π
ln

(
1

mi

(
eλ∆π − (mi − 1)

))
,

we make use of the following inequalities: eλµ∆π

eλµ∆π+1
≤ 1 and 1

eλµ∆π+1
≥ 0 for all

µ 6= arg min{λω}. Applying these inequalities to our formula for λ in equation (2.14),

we get

λ ≤ 1

∆π
ln

 emin{λµ}∆π

emin{λµ}∆π+1
+mi − 1

1
emin{λµ}∆π+1


=

1

∆π
ln
(
emin{λµ}∆π + (mi − 1)(emin{λµ}∆π + 1)

)
=

1

∆π
ln
(
mi e

min{λµ}∆π +mi − 1
)
.

So

eλ∆π ≤ mi e
min{λµ}∆π +mi − 1,

and thus,

1

∆π
ln

(
1

mi

(
eλ∆π − (mi − 1)

))
≤ min{λµ}.
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Note that this bound is meaningful only if eλ∆π > 2mi − 1.

To obtain

max{λµ} ≤
1

∆π
ln

(
(mi + 1)eλ∆π − (mi − 1)

mi + 1− (mi − 1)eλ∆π

)
,

we follow a similar approach using the fact that eλµ∆π

eλµ∆π+1
≥ 1

2
and 1

eλµ∆π+1
≤ 1

2
for all

µ 6= arg max{λω}. Putting these inequalities into equation (2.14) produces

λ ≥ 1

∆π
ln

 emax{λµ}∆π

emax{λµ}∆π+1
+ (mi − 1)1

2

1
emax{λµ}∆π+1

+ (mi − 1)1
2


=

1

∆π
ln

(
2emax{λµ}∆π + (mi − 1)(emax{λµ}∆π + 1)

2 + (mi − 1)(emax{λµ}∆π + 1)

)
=

1

∆π
ln

(
(mi + 1)emax{λµ}∆π +mi − 1

(mi − 1)emax{λµ}∆π +mi + 1

)
.

So

eλ∆π ≥ (mi + 1)emax{λµ}∆π +mi − 1

(mi − 1)emax{λµ}∆π +mi + 1
,

and thus,

(mi + 1)eλ∆π − (mi − 1) ≥ (mi + 1)emax{λµ}∆π − (mi − 1)eλ∆π emax{λµ}∆π,

and finally,

1

∆π
ln

(
(mi + 1)eλ∆π − (mi − 1)

mi + 1− (mi − 1)eλ∆π

)
≥ max{λµ}.

This bound is meaningful only if eλ∆π < mi+1
mi−1

.

Proof of Theorem II.14.

Choose mi ∈ N such that mi >
eλ
∗∆π∗+1

2
and mi >

eλ
∗∆π∗+1

eλ∗∆π∗−1
. This ensures that

neither of the bounds in Theorem II.13 apply. Thus, we can take λ′1 = 0 and

λ′mi > mi λ
′ and still be able to choose the remaining {λ′µ}, for µ = 2 . . .mi− 1, such

that equation (2.20) holds. That means these heterogeneous logit parameters will

be consistent with the homogeneous logit model with rationality parameter λ∗ and
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equilibrium payoff difference ∆π∗. We have specifically chosen λ′1 and λ′mi so that

λ′1 < λ′ < λ′. Thus, noting the limits we take in Theorem II.12, we establish that

λ
(
{λ′µ},∆π

)
is above λ′ when ∆π ≈ 0 and is below λ′ when ∆π is large. Because

λ
(
{λ′µ},∆π

)
is continuous in ∆π, there is some ∆π′ for which λ

(
{λ′µ},∆π′

)
=

λ′.
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CHAPTER III

Basins of Attraction and Equilibrium Selection Under
Different Learning Rules

3.1 Background

The existence of an equilibrium in a game is insufficient proof of its plausibility

as an outcome. We must also describe a process through which players can achieve

it. The distinction between the existence of an equilibrium and its attainability,

and the necessity of the latter, rests at the foundations of game theory. In Nash’s

1951 thesis, he proposed an adjustment dynamic built on a mass action model to

support the convergence to an equilibrium (Weibull, 1996). The Nash adjustment

dynamic relies on self interested behavior to move a population of players toward

equilibrium. Unfortunately, it fails to achieve equilibria for many games. For this

reason, game theorists building on Nash’s original work focused instead on fictitious

play, a learning rule in which players successively choose a pure strategy which is

optimal against the cumulated history of the opponent’s plays (Brown, 1951). More

recent research by economists, psychologists, and theoretical biologists has produced

a variety of adjustment dynamics, many of which fall into two broad categories: belief

based learning and reinforcement based learning.1 In the former, players take actions

based on their beliefs of the actions of others. In the latter, players mimic actions

1These categories also go by the terms epistemic learning and behavioral learning respectively (Walliser, 1998).

44
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that have been successful in the past (see Fudenberg and Levine, 1998; Camerer,

2003; Swinkels, 1993).

In this chapter, we focus on two learning dynamics /adjustment processes: contin-

uous time best response dynamics (Gilboa and Matsui, 1991) and replicator dynamics

(Taylor and Jonker, 1978) and explore the extent to which they can differ in their

basins of attraction for symmetric games with strict equilibria. For any two-by-two

symmetric game, these two learning rules produce identical basins of attraction. We

show that by adding a single action, we can produce a game in which these two

learning rules create basins of attraction that have arbitrarily small overlap. In

other words, best response dynamics lead to a different equilibrium than replicator

dynamics almost always. Within our class of three-by-three games, the equilibrium

found by the replicator dynamics is a uniformly evolutionarily stable strategy, but it

is almost never the initial best response. The condition that pure, uniformly evolu-

tionarily stable strategies satisfy this never an initial best response property proves

to be a necessary requirement for the two learning rules to share vanishing overlap

in their basins of attraction for strict equilibria. These results extend to classes of

dynamics that generalize the best response and replicator rules.

To show how these rules can produce such different outcomes, we must first de-

scribe how best response and replicator dynamics model a population of adapting

agents in the aggregate. In general, we assume players are randomly matched from

large population pools. Best response dynamics are a form of belief-based learning

– players’ action choices depend on their beliefs about the actions of other players.

In continuous time best response dynamics, a population of players moves toward a

best response to the current state of the opposing population. Fictitious play relies

on belief-based learning in discrete time. In each period, the rule assigns new beliefs
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based on the average play of the opponent. Actions are chosen rationally given those

beliefs. The best response dynamics can be thought of as the extension of fictitious

play to continuous time (Hofbauer and Sigmund, 2003).2

In contrast to best response dynamics, replicator dynamics are a form of reinforce-

ment learning – actions spread based on their past success (Erev and Roth, 1998).3

Replicator dynamics have ecological foundations: payoffs are analogous to fitness,

and fitter actions are more apt to survive and grow. Note that actions initially not

present in the population can never be tried with replicator dynamics.

In this chapter, we consider symmetric matrix games. The learning dynamics

thus operate in a single, large, well-mixed population. In this setting, the continuous

time best response dynamics and replicator dynamics can be derived as the expected

behavior of agents with stochastic protocols for switching their actions (Sandholm,

2009). In the best response dynamics, some infinitesimal proportion of the agents

are always switching their action to match the current best response. The resulting

flows are piecewise linear. In the replicator dynamics, agents copy better performing

members of the population (Schlag, 1998). Players do not rely on beliefs about

the actions of others. They need only know the payoffs of actions they encounter.

Learning by imitation at the agent level thus leads to reinforcement learning at the

population level.

Belief-based learning rules, such as best response, and reinforcement learning

rules, such as replicator dynamics can be combined in a single learning rule called

experience-weighted attraction (EWA) learning (Camerer and Ho, 1999). EWA can

be made to fit either model exactly or to create a hybrid model that balances beliefs

2The connection between fictitious play and best response dynamics requires the view that in fictitious play, a
new agent enters the population each round with an action that is fixed forever. The state variable must then take
on an interpretation as the opponent’s population mixed strategy.

3The aforementioned Nash learning rule, or what is now called the Brown - von Neumann - Nash (BNN) dynamics
also can be interpreted as a form of reinforcement learning (Brown and von Neumann, 1950; Skyrms, 1990).
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about future plays against past history of success. In experimental tests across a

variety of games, belief-based learning, reinforcement learning, and EWA learning all

predict behavior with reasonable accuracy. EWA outperforms the two pure models,

though this is partly due to the fact that it has more free parameters.

The extant theoretical and empirical literature suggests that often these distinct

learning rules make similar predictions about rates of change of actions and that

for many games, they select identical equilibria. We know, for example, that any

strict pure Nash Equilibrium will be dynamically stable under nearly all learning dy-

namics and that interior evolutionarily stable strategies are globally stable for both

replicator dynamics (Hofbauer et al., 1979) and best response dynamics (Hofbauer,

1995; Hofbauer, 2000). Hopkins (1999) shows that stability properties of equilibria

are robust across many learning dynamics, and, most relevant for our purposes, that

best response dynamics and replicator dynamics usually have the same asymptotic

properties. Best response dynamics and replicator dynamics are both myopic adjust-

ment dynamics – they both flow towards higher immediate payoffs (Swinkels, 1993).

Feltovich (2000) finds that belief-based learning and reinforcement learning generate

qualitatively similar patterns of behavior, as does Salmon (2001), whose analytic

survey concludes that only subtle differences exist across the various learning rules

in extant experiments. Thus, advocates of each learning rule can point to substantial

empirical support.

Our finding, that the choice of learning rule has an enormous effect on the choice

of equilibrium, points to the importance of determining how people actually learn.

And while the experimental work just mentioned has found this a difficult prospect,

our class of games offers an opportunity to distinguish between different types of

learning. Experiments on our games would have to find one, or possibly both, of the
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learning rules to be inconsistent with observed behavior.

Our results may at first seem to contradict the existing current literature. We

want to make clear that they do not. First, many experiments consider two-by-two

games. And as we review here, the two learning rules generate identical basins of

attraction for two-by-two symmetric matrix games. The learning rules differ only in

the time that they take to reach those equilibria. Second, our analysis focuses on

basins of attraction, i.e. we ask which equilibrium is reached given an initial point.

Most of the existing theorems consider stability, i.e. whether an equilibrium is stable

to perturbations. Proving that an equilibrium is stable does not imply anything

about the size of its basin of attraction. An equilibrium with a basin of attraction of

measure epsilon can be stable. Thus, results that strict equilibria are stable for both

replicator dynamics and best response dynamics do not imply that the two dynamics

generate similar basins of attraction.

Conditions on payoff matrices that imply that best response dynamics, replicator

dynamics, and Nash dynamics all produce similar stability properties need not place

much restriction on basins of attraction, unless the stability is global. Conditions for

global stability of each dynamic, for example if the mean payoff function is strictly

concave (Hofbauer and Sigmund, 2003), imply identical basins of attraction. How-

ever, such conditions also imply a unique stable equilibrium.4 One branch of the

learning literature does consider games in which stability depends on the learning

dynamic (Kojima, 2006) as well as games with distinct basins of attraction for dif-

ferent learning rules (Hauert et al., 2004). Those models rely on nonlinear payoff

structures. Here, we consider matrix games with linear payoffs.

Of course, in a symmetric rock-paper-scissors game or an asymmetric matching

4Similar logic applies to repelling equilibria: if the mean payoff function is strictly convex, then a possible interior
Nash Equilibrium must be repelling for each dynamic. Hofbauer and Sigmund’s theorem (2003) follows from earlier
work with each dynamic (Hofbauer and Sigmund, 1998; Hofbauer, 2000; Hopkins, 1999).
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pennies game, best response dynamics converges to the mixed equilibrium while

replicator dynamics cycles. In these games, the mixed equilibrium is attracting

under best response dynamics, but is only neutrally stable under replicator dynamics.

Rock-paper-scissors is a knife edge case, where a slight change in payoffs could make

the equilibrium stable under replicator dynamics, but matching pennies illustrates

the inability of replicator dynamics to attain a mixed equilibrium in any asymmetric

game. Our focus here is different. We analyze symmetric games with strict equilibria.

The equilibria are asymptotically stable under both dynamics. We identify divergent

behavior of the learning rules, not because one rule fails to attain an equilibrium,

but because the two rules select different equilibria.

To prove our results, we consider each possible initial distribution over actions

and then characterize how the various learning rules specify the path of future dis-

tributions. In the games we consider, these continuous flows attain equilibria. Thus,

the equilibrium selected can be thought of as a function of the initial population

distribution of actions and the learning rule.

Our result that the choice of learning rule can determine the equilibrium selected

can be interpreted through the lens of the equilibrium refinement literature (Harsanyi

and Selten, 1988; Govindan and Wilson, 2005; Samuelson, 1997; Basov, 2004). In

games with multiple strict Nash Equilibria, dynamical models with persistent ran-

domness select long run, stochastically stable equilibria, which generalize the notion

of risk dominance from two-by-two games (Foster and Young, 1990; Kandori et al.,

1993). The stochastically stable equilibrium in a 3-by-3 game can vary with the

learning dynamic (Ellison, 2000). Long run stochastic stability depends on the rela-

tive sizes of basins of attraction, given the underlying deterministic dynamic. Thus,

even though we deal with deterministic dynamics only, our result complements the
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literature on stochastic stability by further supporting the conclusion that long run

equilibria can be sensitive to how players learn. Our findings establish that the

importance of learning style in equilibrium selection does not strictly rely on the

presence of shocks that shift the population from one equilibrium to another.

The remainder of this chapter is organized as follows. In the next section, we define

the learning rules and show how they generate similar behavior in a simple three-

by-three coordination game. Then, we present our main results, which show that

belief-based learning and reinforcement learning can be very different. In Section 3.4,

we introduce generalizations of best response and replicator dynamics and extend our

results to these classes of dynamics. We conclude with a discussion of the relevance

of the attainability of equilibria.

3.2 The Learning Rules

In a population game, the state space for a given population X is the unit simplex

4. A point x ∈ 4 denotes the fraction of the population playing each action

and is thus called a population mixed strategy. A learning rule for population X

operates on the state space4 by specifying for any given payoff structure a dynamical

system ẋ = Vπ(x, t) such that 4 is forward invariant, i.e., trajectories stay within

the simplex. We interpret the learning dynamic as tracking the changes in the

proportions of agents choosing the various actions.

We first introduce our learning rules in the context of a two-player game with large

populations X and Y of randomly matched agents with n and m actions respectively.

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be the population mixed strategy vectors.

The component xi (or yi) is the fraction of population X (or Y) choosing action i.

We will refer to the fraction of population X (or Y) choosing an action other than i
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as x−i (or y−i). Denote by πµi the payoff a player in population µ gets from action

i. Of course, payoffs are a function of the opposing population mixed strategy, but

we omit the function’s argument for ease of notation, writing πXi in place of πXi (y).

Denote the vector of these payoffs by ~πµ = (πµ1 , . . . , π
µ
n).

The continuous time replicator dynamics can be written as

ẋi = xi(π
X
i − π̄X)

ẏi = yi(π
Y
i − π̄Y )

where π̄µ is the average payoff in population µ. Specifically, π̄X = x · ~πX and

π̄Y = x · ~πY .

Let BR(y) be the set of best replies to y (for a player in population X),

BR(y) = arg max
v∈4n−1

v · ~πX .

Similarly, the set of best replies to x is:

BR(x) = arg max
v∈4m−1

v · ~πY .

Continuous time best response dynamics can be written as

ẋ ∈ BR(y)− x ẏ ∈ BR(x)− y.

The discrete fictitious play learning rule can be written as

x(t+ 1) =
tx(t) + b(t)

t+ 1

where x(t) is the vector of frequencies each action has been played through period t

and b(t) is a best response to the opponent’s history at this point. Fictitious play

closely approximates continuous time best response dynamics. To avoid repetition,

we focus on the best response dynamics. Results for best response hold for fictitious

play as well.
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This chapter focuses on symmetric matrix games. In these games, both players

have the same set of available actions and payoffs are linear. We can define the learn-

ing rules in the context of a single, well-mixed population, suitable for a symmetric

game. The replicator dynamics are

ẋi = xi(πi − π̄).

The superscripts can be dropped because in the single population setting there is no

ambiguity in referring to the payoff to the average payoff π̄ or the payoff to action i,

πi. The best response dynamics are

ẋ ∈ BR(x)− x.

3.2.1 An Example

To show how to apply these learning rules, we begin with an example of a simple

three-by-three coordination game. In this game, the various learning rules generate

similar basins of attraction. We borrow this game from Haruvy and Stahl (1999;

2000) who used it to study learning dynamics and equilibrium selection in experi-

ments with human subjects. The payoff matrix for the Haruvy-Stahl game is written

as follows:


60 60 30

30 70 20

70 25 35

 .

The entry in row i and column j gives the payoff to a player who chooses action i and

whose opponent chooses action j. This game has two strict pure Nash Equilibria:

(0, 1, 0) and (0, 0, 1) as well as a mixed Nash Equilibrium at (0, 1
4
, 3

4
). It can be shown



53

A B C D

1 2

3

Figure 3.1: Best response regions. In region A, action 3 is the best response. In regions B and C,
action 1 is the best response, but in B π3 > π2, while in C the opposite is true. In
region D, action 2 is the best response.

for both best response dynamics and replicator dynamics that the two pure equilibria

are stable and that the mixed equilibrium is unstable.

Given that this game has three possible actions, we can write any distribution

of actions in the two dimensional simplex 42. To locate the basins of attraction of

each equilibrium, we must first identify those regions of the simplex42 in which each

action is a best response. This is accomplished by finding the lines where each pair

of actions performs equally well. Let πi be the payoff from action i. We find π1 = π2

when 4x2 + 2x3 = 3, π2 = π3 when 17x2 + 5x3 = 8, and π1 = π3 when 9x2 + x3 = 2.

These three lines determine the best response regions shown in Figure 3.1.

We can use Figure 3.1 to describe the equilibrium chosen under best response

dynamics. Regions A, B, and C all lie the basin of attraction of action 3, while region

D is in the basin of action 2. Note that the boundary of the basins of attraction

under best response dynamics is a straight line.
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1 2

3

Figure 3.2: Basins of attraction under replicator dynamics.

In Figure 3.2, we characterize the basins of attraction for replicator dynamics. The

boundary separating the basins of attraction here becomes a curve from the point

(1
4
, 3

4
, 0) to (0, 1

4
, 3

4
) entirely within region C of Figure 3.1. Notice that the basins

of attraction under best response dynamics and replicator dynamics differ. Best

response dynamics creates basins with straight edges. Replicator dynamics creates

basins with curved edges. This curvature arises because the second best action can

also grow in the population under replicator dynamics. As it grows in proportion,

it can become the best response. As a result, the population can slip from one best

response basin into another one. Even so, notice that the difference in the two basins

of attraction comprises a small sliver of the action space. We show this in Figure 3.3.

In games such as this, the two dynamics not only select the same equilibrium

almost all of the time, but also generate qualitatively similar behavior. If the initial

distribution of actions is close to (0, 1, 0), the dynamics flow to that equilibrium

point. If not, they flow to (0, 0, 1).
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1 2

3

Figure 3.3: The small difference between best response and replicator dynamics. The shaded area
flows to action 2 under replicator dynamics, to action 3 with best response dynamics.

In this game, the two learning rules create similar basins of attraction. Intuitively,

we might expect only these small differences for all games with three actions, given

the similarities of the learning rules. However, as we show in the next section, even

with three-by-three games, the sliver can become almost the entire simplex.

3.3 Results

We now turn to our main results. We first present the well known fact that best

response dynamics and replicator dynamics are identical for games with two possible

actions. We consider learning dynamics to be identical if the direction of their flows

is the same. This allows for differences in the speed of the flow. We then define

a class of games with three actions in which the two learning rules generate basins

of attraction with vanishing overlap. Within that class of games, an equilibrium

action is almost never the initial best response. We show that to be a necessary

condition for any symmetric game for which the two learning rules almost always
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lead to different strict equilibria.

Proposition III.1. For symmetric two-by-two matrix games, best response dynamics

and replicator dynamics produce identical dynamics (Fudenberg and Levine, 1998).

Proof. The best response dynamics reduces to

ẋi = xj

ẋj = −xj

when πi > πj, and to ẋ = 0 when they payoffs are equal. The replicator dynamics

reduces to

ẋ1 = (π1 − π2)x1x2

ẋ2 = (π2 − π1)x1x2.

In both dynamics, the action with the higher payoff increases until the two payoffs

become equal or the other action is completely eliminated.

Our first theorem says that there are three-by-three matrix games such that the

two learning dynamics lead to different outcomes, for nearly all initial conditions.

The claim cannot hold for all initial conditions because of the case where the initial

point is a Nash Equilibrium of the game.

Theorem III.2. For any ε, there is a three-by-three game such that the fraction

of the space of initial conditions from which best response dynamics and replicator

dynamics lead to the same outcome is less than ε.

We present a proof by construction. Consider the class of games with payoff

matrix
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(3.1)


1 −N −N−1

2−N3 2 2

0 0 0

 .

Lemma III.3. For any N > 1, both best response dynamics and replicator dynamics

have two stable fixed points at: x = (1, 0, 0) and x = (0, 1, 0).

Proof. Both configurations are strict Nash Equilibria because both actions are strict

best responses to themselves. Thus, a population in which all players take action

1 (resp. 2) would remain fixed. Strict Nash Equilibria are necessarily stable fixed

points of both best response and replicator dynamics. The game also has an interior

Nash Equilibrium which is unstable under either learning rule. These stable fixed

points have to be Nash Equilibria, and no other Nash Equilibria exist.

Note that (0, 0, 1) is not a Nash Equilibrium because action 2 is a best response.

While it is a fixed point with respect to replicator dynamics, it cannot be stable.

Given two stable rest points, the eventual choice of one or the other depends on

the initial distribution of play. The next result shows that for large N , best response

dynamics almost always converge to all players taking action 2. The accompanying

Figure 3.4 shows the flow diagram for the best response dynamics when N = 5.

Lemma III.4. For any ε, there exists M such that for all N ≥ M , the basin of

attraction of (0, 1, 0) given best response dynamics is at least 1 − ε of the action

space.

Proof. First we show any point with x1 >
1
N

and x2 >
1
N

is in the basin of attraction

of (0, 1, 0), assuming N > 2. For such a point, action 3 is initially a best response

because π3 = 0 whereas π1 = x1−Nx2− 1
N
x3 < 0 and π2 = 2−N3x1 < 0. Then, as
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we show, action 1 never becomes a best response. So, eventually, the dynamic flows

toward action 2.

Because actions which are not best responses have the same relative decay rate,

x1(t)

x1(0)
=
x2(t)

x2(0)

for t such that action 3 is still a best response. So x1(t)−Nx2(t) < 0 for all t because

it holds for t = 0. Action 3 dominates action 1. Action 3 is not a Nash Equilibrium,

so eventually another action must become the best response, and the only candidate

is action 2. Once x1 falls to 2
N3 , action 2 dominates forever.

Thus, by choosing N large enough, the basin of attraction of (0, 1, 0) can be made

as large as desired.

The next lemma shows that for large N , replicator dynamics leads to all players

taking action 1 for almost any initial condition. Figure 3.5 shows the replicator

dynamics flow pattern when N = 5.

Lemma III.5. For any ε, there exists M such that for all N ≥ M , the basin of

attraction of (1, 0, 0) given replicator dynamics is at least 1− ε of the action space.

Proof.

ẋ1 = x1

(
(x1 −Nx2 −

1

N
x3)(1− x1)− 2x2 +N3x1x2

)
.

If x1 >
1
N

, then x1 − 1
N
x3 > 0. For N > 2, x1 >

1
N

also implies −Nx2(1 − x1) −

2x2 +N3x1x2 > 0 because N3x1 > N2 > N(1− x1) + 2.

So, for N > 2, if x1 >
1
N

, then ẋ1 > 0. This means the replicator dynamics will

flow to action 1.

By choosing N large enough, the basin of attraction of (1, 0, 0) can be made as

large as desired.
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3

1 2

Figure 3.4: Phase diagram for the best response dynamics in the game used to prove Theorem III.2,
setting N = 5. Black (white) circles are stable (unstable) rest points. Most trajectories
initially move towards action 3, but from this corner then flow to action 2. Figure made
by the game dynamics simulation program Dynamo (Sandholm and Dokumaci, 2007).
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3

1 2

Figure 3.5: Phase diagram for the replicator dynamics in the game used to prove Theorem III.2,
setting N = 5. Most trajectories flow away from action 2 and then towards action 1.
Figure made by the Dynamo program (Sandholm and Dokumaci, 2007).
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Thus, we have proved Proposition III.6, that as N approaches infinity, best re-

sponse dynamics and replicator dynamics converge to different equilibria.

Proposition III.6. In the limit as N → ∞, the Lebesgue measure of the set of

initial starting points for which best response dynamics and replicator dynamics flow

to the same equilibrium tends to zero.

This completes the proof of Theorem III.2 above. Notice that in the class of games

used in the proof, neither of the equilibrium strategies is an initial best response

almost anywhere in the action space whenN grows large. We say that these strategies

satisfy the Never an Initial Best Response Property for such a sequence of games. To

formally define this property, we must introduce some notation.

Let m be the Lebesgue measure on the action space. Given a vector of parameter

values ~P , let G(~P ) be a class of games with payoffs that depend on those parameters.

Let BR−1(s) be the set of points x for which strategy s is a best response.

Definition III.7. Strategy s satisfies the Never an Initial Best Response Property

at
~̂
P if

lim
~P→ ~̂

P

m
(
BR−1(s)

)
= 0.

Our next result makes use of the Never an Initial Best Response Property in

establishing a necessary condition for there to be vanishing overlap in the basins

of attraction created by best response dynamics and replicator dynamics. Before

presenting this result, we need to lay down some more groundwork.

Recall that a strict equilibrium of a game is one in which each player’s strategy is

a strict best response to that equilibrium. We now extend the definition of a strict

equilibrium to the limit of a sequence of games. Note that only pure Nash Equilibria

can be strict.
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Definition III.8. An equilibrium s is strict in the limit as ~P → ~̂
P if for all i such

that si > 0,

(3.2) lim
~P→ ~̂

P

f(~P ) (πi(s)− πj(s)) > 0 for all j 6= i and some f(~P ) > 0.

Condition (3.2) is equivalent to the following condition: for all ~P 6= ~̂
P in some

neighborhood of
~̂
P ,

(πi(s)− πj(s)) > 0 for all j 6= i.

Strict equilibrium actions are also evolutionarily stable strategies (ESS), as we

can see from Maynard Smith’s original (1974) definition. An equilibrium s is an ESS

if for all s′ 6= s,

s · ~π(s) ≥ s′ · ~π(s),

with equality implying

s · ~π(s′) > s′ · ~π(s′).

We can think of an ESS as an equilibrium satisfying an evolutionary stability con-

dition that says that once it is fixed in the population, it will do better than any

invading strategy as long as this invader is rare. Thomas (1985) reformulates this

definition to allow for payoff functions that might be nonlinear.

Definition III.9. An equilibrium s is an ESS if for all s′ 6= s in some neighborhood

of s,

s · ~π(s′) > s′ · ~π(s′).

We would like to extend this definition of an ESS to the limit of a sequence of

games, but there are two ways to do this, depending on whether a different neigh-

borhood of s may be chosen for each game in the sequence or a single neighborhood
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of s is chosen for the entire sequence. We are interested in the latter concept, which

is a stronger condition, and we call it a uniformly evolutionarily stable strategy.

Definition III.10. An equilibrium s is a uniformly ESS in the limit as ~P → ~̂
P if

there is a punctured neighborhood U̇(s) of s (i.e., a neighborhood from which the

point s is removed) such that for all s′ ∈ U̇(s) and all ~P 6= ~̂
P in some neighborhood

of
~̂
P ,

s · ~π(s′) > s′ · ~π(s′).

Note that if equilibrium s is strict in the limit as ~P → ~̂
P , this implies that for all

~P 6= ~̂
P in some neighborhood of

~̂
P , the state s is an ESS, but it does not imply that

s is a uniformly ESS in this limit.

An example of a uniformly ESS can be found in the class of games used to prove

Theorem III.2, with payoff matrix given by (3.1). In the limit as N → ∞, the

equilibrium strategy (1, 0, 0) is a uniformly ESS, but the equilibrium strategy (0, 1, 0)

is not.

Our next results will make use of some additional notation. Given a learning rule

R and an equilibrium action a of the game G(~P ), let B(R, a, ~P ) denote the basin

of attraction of (xa = 1, x−a = 0). Let R denote the replicator dynamics and B the

best response dynamics.

In Theorem III.11 below and the associated Corollary III.12, we show that re-

quiring pure, uniformly ESS to satisfy the Never an Initial Best Response Property

is necessary if best response dynamics and replicator dynamics are to have basins

of attraction with vanishing overlap. In the examples put forth here, this necessary

condition entails the existence of either a parasitic action – an action that feeds off

other actions but cannot survive on its own – or a misleading action – an action that

looks good initially but eventually becomes less attractive as the population evolves.
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Theorem III.11. Suppose for some action s,

lim
~P→ ~̂

P

m
(
B(R, s, ~P ) ∩B(B, s, ~P )

)
= 0.

Then, if (xs = 1, x−s = 0) is a uniformly ESS, it satisfies the Never an Initial Best

Response Property at
~̂
P .5

Proof. We will denote the equilibrium point (xs = 1, x−s = 0) by s. Suppose that

s is a uniformly ESS such that m
(
BR−1(s)

)
remains strictly positive in the limit

~P → ~̂
P . We will identify a nonvanishing region inside the basins of attraction of s

for both replicator dynamics and best response dynamics.

Let U(s) be a neighborhood of s such that U̇(s) = U(s)\{s} satisfies the condition

for s to be a uniformly ESS. Let ν = supx/∈U(s) xs. Define the neighborhood W (s) ⊆

U(s) of all points satisfying xs > ν. We have constructed W (s) such that x ∈ Ẇ (s)

implies that ẋs > 0 under the replicator dynamics (because by the ESS condition,

action s has better than average payoff here) and in turn, ẋs > 0 implies that x

remains in W (s).

We now observe that BR−1(s) is a convex set because of the linearity of payoffs.

Additionally, since s is a pure Nash Equilibrium, s ∈ BR−1(s). Thus, BR−1(s) and

W (s) have positive intersection. By the fact that W (s) is independent of ~P and

our hypothesis that BR−1(s) is nonvanishing, we conclude that m
(
W (s) ∩ BR−1(s)

)
remains strictly positive in the limit ~P → ~̂

P . Note that by the ESS condition

and the linearity of payoffs, we can rule out the possibility that there are multiple

best responses anywhere in the interior of BR−1(s). For points x in the interior

of W (s) ∩ BR−1(s), best response dynamics flows to s because BR(x) = {s} and

replicator dynamics flows to s because x ∈ W (s).

5If we were to suppose that best response dynamics and replicator dynamics share vanishing overlap in their basins
of attraction for an interior equilibrium, we could immediately conclude that this equilibrium is not a uniformly ESS.
Interior ESS are, as already mentioned, globally asymptotically stable for both replicator and best response dynamics.
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Theorem III.11 leads directly to the following corollary.

Corollary III.12. Suppose

lim
~P→ ~̂

P

∑
s

m
(
B(R, s, ~P ) ∩B(B, s, ~P )

)
= 0.

Then every pure, uniformly ESS satisfies the Never an Initial Best Response Property

at
~̂
P .

Corollary III.12 provides a necessary condition for non-overlapping basins. We can

also derive several different sets of conditions that are sufficient to generate vanishing

overlap in the basins of attraction of strict equilibria with best response and replicator

dynamics. We present one such set of sufficient conditions for a symmetric three-by-

three game here. Observe that the conditions we present are satisfied by the class of

games used in the proof of Theorem III.2.

To describe these conditions, we introduce some new notation and some sim-

plifying assumptions. Let πij be the payoff to action i against action j, which by

definition depends on the parameters ~P . Since both dynamics are invariant under

the transformations πij → πij + c for all i and fixed j and πij → kπij for all i, j with

k > 0, we can set π3j = 0 for all j and |π11| ∈ {0, 1}. Also without loss of generality

we can renumber the three actions so that (x1 = 1, x−1 = 0) denotes the equilibrium

attained by replicator dynamics and (x2 = 1, x−2 = 0) the equilibrium attained by

best response dynamics. Because these equilibria are strict in the limit as ~P → ~̂
P ,

we have that for j ∈ {1, 2}, i 6= j, lim~P→ ~̂
P
fjji(~P )(πjj − πij) > 0 for some functions

fjji > 0. And, by our choice of which equilibrium is to be found by each dynamic,

we also have lim~P→ ~̂
P
f321(~P )(π23 − π13) > 0 for some function f321 > 0.

Theorem III.13.

lim
~P→ ~̂

P

2∑
i=1

m
(
B(R, i, ~P ) ∩B(B, i, ~P )

)
= 0
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if: i) π23 > 0; ii) π13 ≤ 0 and lim~P→ ~̂
P
π13 = 0;6 iii) lim~P→ ~̂

P
π12 = −∞; iv)

lim~P→ ~̂
P

π21

π12
=∞; v) lim~P→ ~̂

P

π21

π22
= −∞; and vi) lim~P→ ~̂

P

π21

π23
= −∞.

The proof relies on two lemmas, one for each learning dynamic.

Lemma III.14. As ~P approaches
~̂
P , the fraction of the action space inside B(B, 2, ~P )

approaches 1.

Proof. We first show that actions 1 and 2 satisfy the Never an Initial Best Response

Property at
~̂
P , that action 3 is initially a best response in all but an arbitrarily small

part of the action space when ~P nears
~̂
P . By the normalization condition, π3 = 0.

Therefore, it suffices to show π1 < 0 and π2 < 0.

1. π2 < 0. Assuming x1 > 0, π2 = x1

(
π21 + x2

x1
π22 + x3

x1
π23

)
. Condition (v)

implies π21 dominates x2

x1
π22. Condition (vi) implies π21 dominates x3

x1
π23. And π21 is

negative. So, for ~P near
~̂
P , π2 < 0.

2. π1 < 0. Assuming x2 > 0, π1 = x2

(
π12 + x1

x2
π11 + x3

x2
π13

)
. The normalization

conditions imply π11 = 1. Condition (iii) states that π12 approaches −∞ while

condition (ii) states that π13 ≤ 0. So, for ~P near
~̂
P , π1 < 0.

Thus, for any point in the interior of the action space, ~P can be chosen such that

action 3 is initially a best response.

Now we show that under best response dynamics, action 3 dominates action 1

along the path towards (0, 0, 1). Under best response dynamics, actions which are

not best responses have the same relative decay rates. So x1

x2
remains constant along

the path towards (0, 0, 1). So π1 remains negative along this path. By condition

(i), action 3 is not a best response to itself. Eventually action 2 becomes the best

response.

6Another set of sufficient conditions might allow π13 > 0, but would then require additional conditions to ensure
that the best response dynamics avoids selecting (1, 0, 0).
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As the dynamic then moves toward (0, 1, 0), π1 remains negative because the π12

term becomes even more significant relative to the others. Action 1 never becomes

the best response, so the best response dynamics lead to (0, 1, 0).

Lemma III.15. As ~P approaches
~̂
P , the fraction of the action space inside B(R, 1, ~P )

approaches 1.

Proof. Under the replicator dynamics,

ẋ1 = x1

(
π11x1(x2 + x3) + π12x2(x2 + x3) + π13x3(x2 + x3)− π21x1x2 − π22x

2
2 − π23x3x2

)
.

Consider initial points that satisfy x1 > −π13 and x2 > 0. Recalling that π11 = 1,

this gives

(3.3) π11x1(x2 + x3) + π13x3(x2 + x3) > 0.

By conditions (iv), (v), and (vi), |π21| grows faster than |π12|, π22, and π23 as ~P

nears
~̂
P . Consequently, the term with π21 dominates the other remaining terms in

the expansion of ẋ1. So, for ~P near
~̂
P ,

(3.4) π12x2(x2 + x3)− π21x1x2 − π22x
2
2 − π23x3x2 > 0.

Thus, initially ẋ1 > 0. Moreover, by choosing ~P such that π21 <
1

x1(0)
(π12−π22−π23),

we can be sure equation (3.4) holds as x1 increases. As x1 increases, it remains above

−π13, so equation (3.3) continues to hold as well. Thus, ẋ1 > 0 at all times.

It remains to show that the fraction of the action space satisfying x1 > −π13 and

x2 > 0 approaches 1 as ~P approaches
~̂
P . This follows from (ii), which states that

lim~P→ ~̂
P
π13 = 0. This implies that a point x need only satisfy x1 > 0 and x2 > 0 to

be in B(R, 1, ~P ) for some ~P near
~̂
P .
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We have thus described a set of six conditions which generate vanishing overlap in

basins of attraction with best response dynamics and replicator dynamics in a class

of games with only three actions.

Admittedly, none of the games within this class may be likely to arise in the

real world. However, if we widen our scope and allow for more strategies, we can

find games that map more tightly to real world phenomena and exhibit this same

behavior. Consider the following symmetric matrix game with four actions, selected

from a class of generalized stag hunt games that we explore further in Chapter IV

(Golman and Page, 2008):



2 2 2 2

1 N + 1 1 1

0 0 0 N2

0 0 −N2 0


.

In this game, the first action is a safe, self interested action like hunting hare.

The second action represents an attempt to cooperate, to hunt a stag, for example.

The third action is predatory toward the fourth action, which can be thought of as

a failed attempt at cooperation. This fourth action fails to protect itself from the

predator, fails to accrue benefits from coordination, and fails to guarantee itself a

positive payoff. Clearly, a rational player would not choose it, and it is not played

in equilibrium. Nevertheless, introducing predation into the stag hunt enhances the

strategic context. This game captures a choice between the security of self-reliance,

the productivity of cooperation, or the temptation of exploiting those agents who

haven’t yet learned what not to do. As we now show, when N goes to infinity, best

response dynamics flow to an equilibrium in which all players choose action 1, but
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replicator dynamics flow to an equilibrium in which all players choose action 2.

Proposition III.16. In the four-by-four game above, as N → ∞, the Lebesgue

measure of the set of initial starting points for which best response dynamics and

replicator dynamics flow to the same equilibrium tends to zero.

Once again, the proof relies on three lemmas, one to identify the stable equilibria

and two to describe the behavior of the learning rules.

Lemma III.17. Both best response dynamics and replicator dynamics have two sta-

ble fixed points: x = (1, 0, 0, 0) and x = (0, 1, 0, 0).

Proof. Here again, both configurations are strict Nash Equilibria because each of

action 1 and 2 is a strict best response to itself. The only other Nash Equilibrium,

x =
(
N−1
N
, 1
N
, 0, 0

)
, is clearly unstable given either dynamics. Note that action 4 is

strictly dominated, and if we apply iterated elimination of strictly dominated actions,

action 3 becomes strictly dominated once action 4 is eliminated.

The next lemma shows that for large N , best response dynamics leads to action

1 starting from almost any initial condition.

Lemma III.18. For any ε, there exists M such that for all N ≥ M , the basin of

attraction of (1, 0, 0, 0) given best response dynamics is at least 1 − ε of the action

space.

Proof. First we show any point with x4 >
2
N

is in the basin of attraction of (1, 0, 0, 0),

assuming N > 2. For such a point, action 3 is initially a best response because

π3 > 2N whereas π1 = 2, π2 < 1 + N , and π4 < 0. Then, as we show, action

1 becomes a best response before action 2. Once it becomes a best response, it

remains one forever, because its payoff is constant, while the payoffs to actions 2
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and 3 are decreasing. So, once action 1 becomes a best response, the dynamic flows

toward it thereafter.

Now we show that action 1 does become the best response before action 2. We

define

α(t) =
x1(t)

x1(0)
=
x2(t)

x2(0)
=
x4(t)

x4(0)

for t such that action 3 is still a best response. The latter equalities hold because

actions which are not best responses have the same relative decay rate. Note that

α(t) is a strictly decreasing function. Now

π1 = π3 when α =
2

N2 (x4(0))
.

But

π2 < π3 if α >
1

N (Nx4(0)− x2(0))
.

Action 1 eventually becomes the best response because

2

N2 (x4(0))
>

1

N (Nx4(0)− x2(0))
,

as long as Nx4(0) > 2x2(0). This condition holds if x4(0) > 2
N

.

Thus, by choosing N large enough, the basin of attraction of (1, 0, 0, 0) can be

made as big as desired.

Unlike best response dynamics, for large N , replicator dynamics leads to almost

all players taking action 2 for almost any initial condition.

Lemma III.19. For any ε, there exists M such that for all N ≥ M , the basin of

attraction of (0, 1, 0, 0) given replicator dynamics is at least 1− ε of the action space.

Proof. We now have ẋ2 = x2 ((1 +Nx2)(1− x2)− 2x1). So ẋ2 ≥ 0 if x2 ≥ 1
N

. By

choosing N large enough, the basin of attraction of (0, 1, 0, 0) can be made as big as

desired.
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This completes the proof of Proposition III.16. In this class of games, replicator

dynamics flows to the equilibrium with the higher payoff, whereas in the class of

games used in the proof of Theorem III.2, the best response dynamics flows to the

optimal equilibrium. Neither learning dynamic can find the optimal equilibrium in

all classes of games because a different set of normalization conditions can change

which equilibrium is optimal.

3.4 Broader Classes of Dynamics

We introduce two new classes of adjustment dynamics: one-sided payoff posi-

tive dynamics, which generalize the replicator dynamics, and threshold dynamics,

a generalization of the best response dynamics. We then extend our results from

the previous section to describe vanishing overlap in the basins of attraction of a

one-sided payoff positive dynamic and a threshold dynamic.

As the name suggests, our one-sided payoff positive dynamics are closely related to

the commonly known payoff positive dynamics (Weibull, 1995). Payoff positive dy-

namics assume that actions with above average payoffs have positive relative growth

rates and actions with below average payoffs have negative relative growth rates.7

The one-sided class of dynamics still captures the property that actions with above

average payoffs grow in the population, but does not address what happens to actions

with below average payoffs. Thus, the class of one-sided payoff positive dynamics in-

cludes all the payoff positive dynamics. They in turn contain the replicator dynamics,

which prescribe a relative growth rate proportional to the difference between action’s

payoff and population mean payoff. Neither class of dynamics specifies precise rates

of growth the way replicator does, making them both quite general.

Definition III.20. A one-sided payoff positive dynamic is one that satisfies the
7These dynamics are also termed sign-preserving (Nachbar, 1990).
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following condition:

(3.5) ẋi > 0 if πi > π̄ and xi > 0

as well as the requirements that Nash Equilibria are rest points and that if z is the

limit of an interior orbit for t→∞, then z is a Nash Equilibrium8.

These basic requirements are satisfied by most adjustment dynamics as part of a

folk theorem (see Cressman, 2003). The second requirement holds whenever relative

growth rates are Lipschitz continuous, for example. The other statements of the

folk theorem, namely that stable rest points are Nash Equilibria and that strict

equilibria are asymptotically stable, can be shown to hold from our definition of

one-sided payoff positive dynamics.

Lipschitz continuous one-sided payoff positive dynamics fit into the even broader

class of weakly payoff positive dynamics, which assume that some action with above

average payoff will have positive relative growth whenever there is such an action.

The distinction is that weak payoff positivity does not guarantee growth for all the

above average actions in the population.

In contrast to one-sided payoff positive dynamics, in which agents seek actions

with above average payoffs, we can conceive of a learning rule in which agents switch

actions when their payoffs are at or below the median. But, there is no need to hold

the 50th percentile payoff in such special regard as the threshold for switching. We

define threshold dynamics by the property that agents switch away from actions with

payoffs at or below the Kth percentile as long as there is something better to switch

to. We do not restrict ourselves to a particular threshold by setting a value for K.

Instead, we allow K to vary over time within a range that is bounded below by some
8Theorem III.25 would hold without these requirements, but with the possibility that the one-sided payoff positive

dynamics have measure zero basins of attraction for all strict equilibria. We want to focus on the case that the one-
sided payoff positive dynamic selects a different equilibria than the threshold dynamic.
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K̂ > 0. We sometimes omit writing the input t when dealing with a fixed instant in

time and use K to mean the function K(t). But K̂ is always a constant. We want

agents to be as averse as possible to actions whose payoffs fall below the threshold,

but recognizing that the speed of the dynamics can be adjusted by an overall scaling

factor, we only require that such an action has a relative rate of decline as quick as

any in the population.

Definition III.21. Consider any K(t) ≥ K̂ where K̂ > 0. A threshold dynamic is

one that satisfies the following condition:

If at time t

(3.6)
∑

µ:πµ<πi

xµ < K and for some l, πl > πi,

then when xi > 0,

(3.7)
ẋi
xi
≤ ẋj
xj

for all actions j such that xj > 0

and when xi = 0, ẋi = 0.

Note that if two actions both have payoffs below the Kth percentile, they must

have the same relative rate of decline. In addition, it is always the case that the

action with the worst payoff declines in the population. On the other hand, there is

no guarantee that the best response grows in the population unless other actions are

sufficiently rare.

Definition III.22. A threshold dynamic is properly scaled if the speed of the dy-

namic has a lower bound v(x) such that v(x) ≥ κd where d represents the distance

to the nearest equilibrium point and κ is some constant of proportionality.

As previously mentioned, the speed of a dynamic can be adjusted by an overall

scaling factor. Usually we do not care about speed at all because the scaling of the
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time parameter does not have physical significance. In this case, we must assume a

threshold dynamic is properly scaled in order to ensure that it does not slow to a

halt at an arbitrary point in the strategy space. In this chapter, we consider only

properly scaled threshold dynamics.

Let us briefly consider a few particular constant functions we might use for K(t) in

the threshold dynamics. If we do want the median payoff to be the threshold, we can

choose K(t) = .5 for all t. Then all actions with payoffs equal to or below the median

will have the same relative rate of decline, and actions with payoffs above the median

will do no worse. That is, an action with a higher payoff may still decline at the

same relative rate as the former or may grow very quickly; the threshold dynamics

allow for either. This example suggests that when K(t) is small, the dynamics allow

for quite a bit of freedom in the center of the strategy space.

Alternatively, we could set the threshold below which agents switch actions to be

the 100th percentile payoff at all times, K(t) = 1. Obviously, every action has a

payoff at or below the 100th percentile payoff, so inequality (3.7) applies to every

action present in the population that is not a best response. An agent already playing

a best response cannot find something better to switch to, and thus best responses

are not subject to this inequality. Every action that is subject to inequality (3.7) has

the same relative rate of decline, and if we set this rate to be −1, we then obtain the

best response dynamics. Thus, threshold dynamics are a generalization of the best

response dynamics.

We now show that requiring pure, uniformly ESS to satisfy the Never an Initial

Best Response Property is necessary if a one-sided payoff positive dynamic and a

threshold dynamic are to have basins with vanishing overlap, just as Theorem III.11

and Corollary III.12 showed it is for best response and replicator dynamics. Let
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OSPP denote any one-sided payoff positive dynamic and TD any threshold dynamic.

Theorem III.23. Suppose for some action s,

lim
~P→ ~̂

P

m
(
B(OSPP, s, ~P ) ∩B(TD, s, ~P )

)
= 0.

Then, if (xs = 1, x−s = 0) is a uniformly ESS, it satisfies the Never an Initial Best

Response Property at
~̂
P .

Proof. The proof here mirrors the one for Theorem III.11. We construct the neigh-

borhood W (s) in the same way, but with the additional condition that xs > 1− K̂.

We need only show that for x ∈ int
(
W (s) ∩ BR−1(s)

)
, both classes of dynamics flow

to s. Under one-sided payoff positive dynamics, ẋs > 0 for x ∈ W (s) because action

s has an above average payoff, and such a flow cannot leave W (s). Under thresh-

old dynamics, when x ∈ int
(
W (s) ∩ BR−1(s)

)
, inequality (3.7) applies to all actions

other than s because they have payoffs below the K̂th percentile. All other actions

must have the same negative growth rate, so ẋ = κ(s−x) for some positive constant

κ.

Corollary III.24. Suppose

lim
~P→ ~̂

P

∑
s

m
(
B(OSPP, s, ~P ) ∩B(TD, s, ~P )

)
= 0.

Then every pure, uniformly ESS satisfies the Never an Initial Best Response Property

at
~̂
P .

We also find that the same set of conditions used in Theorem III.13 is sufficient

for a one-sided payoff positive dynamic and a threshold dynamic to share vanishing

overlap in their basins. Recall that the setting for this theorem is a symmetric

three-by-three game with two strict equilibria.
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Without loss of generality we choose (x1 = 1, x−1 = 0) to be the equilibrium

attained by the one-sided payoff positive dynamic and (x2 = 1, x−2 = 0) the equilib-

rium attained by the threshold dynamic. Because these equilibria are strict in the

limit as ~P → ~̂
P , we have that for j ∈ {1, 2}, i 6= j, lim~P→ ~̂

P
fjji(~P )(πjj − πij) > 0 for

some functions fjji > 0. And, by our choice of which equilibrium is to be found by

each dynamic, we also have lim~P→ ~̂
P
f321(~P )(π23−π13) > 0 for some function f321 > 0.

Once again, we set π3j = 0 for all j and π11 = 1, but no longer are our dynamics

necessarily invariant under positive affine transformations of the payoffs. If the dy-

namics happen to retain this invariance, then this still amounts to a choice of payoff

normalization. However, in general, we are making an additional assumption about

payoffs here.

Theorem III.25.

lim
~P→ ~̂

P

2∑
i=1

m
(
B(OSPP, i, ~P ) ∩B(TD, i, ~P )

)
= 0

if: i) π23 > 0; ii) π13 ≤ 0 and lim~P→ ~̂
P
π13 = 0; iii) lim~P→ ~̂

P
π12 = −∞; iv)

lim~P→ ~̂
P

π21

π12
=∞; v) lim~P→ ~̂

P

π21

π22
= −∞; and vi) lim~P→ ~̂

P

π21

π23
= −∞.

Again, we break up the proof into two lemmas, one for each learning dynamic.

Lemma III.26. As ~P approaches
~̂
P , the fraction of the action space inside B(TD, 2, ~P )

approaches 1.

Proof. Consider the threshold dynamics with any value of K̂ and any threshold

function K(t) ≥ K̂. We show that if initially x2 > 0, then for ~P near
~̂
P , π1 < π3 at

all times. As π3 = 0 by the normalization condition, this amounts to showing π1 < 0

forever. We know π1 = π11x1 + π12x2 + π13x3. Recall that π11 = 1. Condition (ii)

states that π13 ≤ 0. So π1 < 0 as long as

(3.8) x1 + π12x2 < 0.
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Consider first the case that x2(0) ≥ K̂. Take ~P near enough
~̂
P that π12 < − 1

K̂
.

Condition (iii) makes this possible. As long as x2 ≥ K̂, equation (3.8) holds and we

still have π1 < 0.

In the case that x2(0) < K̂, condition (iii) allows us to take ~P near enough
~̂
P

that π12 < − 1
x2(0)

. This guarantees that π1 < 0 initially.

If ever x2 < K, then π1 is below the Kth percentile and ẋ1

x1
≤ ẋ2

x2
, so equation (3.8)

continues to hold. Still π1 < 0.

In fact, the only way to avoid x2 < K at some time would involve π2 > 0 pretty

quickly. But, if indeed x2 < K at some time, then the decline in x1 also would lead

to π2 > 0 eventually. So, one way or another, action 2 becomes the best response and

x1 has to decline. When x1 < K̂ ≤ K, the Kth percentile payoff is either 0 or π2,

and when additionally π2 > 0, then only x2 can grow. From then on, the dynamic

moves straight toward (0, 1, 0).

Lemma III.27. As ~P approaches
~̂
P , the fraction of the action space inside B(OSPP, 1, ~P )

approaches 1.

Proof. The proof of Lemma III.15, which applied replicator dynamics to this game,

carries over here, applying to all one-sided payoff positive dynamics with only trivial

changes. We no longer have an exact formula for ẋ1, but the argument that it is

always positive still applies because it was based on the fact that π1 > π̄ at all times

for almost all initial points. The definition of a one-sided payoff positive dynamic

requires that the limit of an interior orbit is a Nash Equilibrium, and the only one

that can be approached with ẋ1 > 0 is (1, 0, 0).

We have thus extended our finding of vanishing overlap in basins of attraction for

strict equilibria to entire classes of dynamics.
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3.5 Discussion

In this chapter, we have shown that it is possible to construct three-by-three

symmetric games in which two common learning rules – replicator dynamics, and

best response dynamics – have vanishing overlap in their basins of attraction. That

so few actions are required is surprising, making the game we have constructed

of significant pedagogical value. Our more general results describe necessary and

sufficient conditions for vanishing overlap. The necessary condition – that for any

game in which the learning rules attain distinct strict equilibria from almost any

starting point the initial best response cannot be a uniformly ESS - has an intuitive

explanation. The initial incentives must be misleading. They should point the

agents away from equilibria and in some other directions. In doing so, these initial

incentives allow for even small differences in the dynamics to take root and drive the

two learning rules to distinct equilibria.

We also derived a set of sufficient conditions for the basins of attraction of two

stable equilibria under best response learning and replicator dynamics to have almost

no overlap. Other sufficient conditions could also be constructed. What appears

invariant to the construction is that some payoffs must grow arbitrarily large.

Our focus on basins of attraction differentiates this chapter from previous studies

that consider stability. Nash was aware that the existence of an equilibrium is not

sufficient proof that it will arise. Nor is proof of its local stability. We also need

to show how to attain an equilibrium from an arbitrary initial point (Binmore and

Samuelson, 1999). And, as we have just shown, the dynamics of how people learn

can determine whether or not a particular equilibrium is attained. Richer models

of individual and firm behavior can also support diverse choices of equilibria (Allen,
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Strathern, and Baldwin, 2007). Here, we emphasized the minimal conditions neces-

sary for the learning rule to matter.

We also focused on the extreme case of no overlap. That said, our general findings

about the necessity of misleading actions and the nature of our sufficient conditions

should help us to identify games in which learning rules might matter. In partic-

ular, the idea that temporary best responses create opportunity for differences in

learning rules to accumulate would seem to have wide applicability. It provides log-

ical foundations for the intuition that learning rules matter more in more complex

environments.

In conclusion, we might add that games in which best response dynamics and

replicator dynamics make such different equilibrium predictions would seem to lend

themselves to experiments. These games would allow experimenters to distinguish

among learning rules more decisively than games in which the learning rules converge

to the same equilibrium.
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CHAPTER IV

Individual and Cultural Learning in Stag Hunt Games With
Multiple Actions

4.1 Introduction

Game theorists motivate the prediction of equilibrium outcomes with one of two

assumptions. Agents can be rational, in which case they choose strategies that form

an equilibrium. Or, alternatively, agents can learn. In this case, they eventually settle

into an equilibrium. When a game possesses multiple equilibria, the assumption of

rational agents requires the introduction of refinement criteria to select from among

the equilibria. With learning agents, the explicit model of behavior determines a

basin of attraction for each equilibrium.

Surprisingly, the type of learning rule generally does not matter for the stability

of equilibria – for most games, the set of stable equilibria are invariant for broad

classes of learning rules. However, stable equilibria can have small basins (Epstein,

2003) and basin size can vary depending on the learning rule. In fact, as we saw in

Chapter III, games with as few as three actions can have basins of attraction with

vanishing overlap for different learning rules (Golman and Page, 2008). 1 In sum,

how people learn might not affect the existence or stability of an equilibrium, but it

1Basins of attraction have also been the focus of a related literature that considers dynamical models with
persistent randomness and selects stochastically stable equilibria (Foster and Young, 1990; Kandori et al., 1993;
Young, 1993; Kandori and Rob, 1995). These models favor risk dominant solutions.
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can strongly influence which equilibrium gets chosen.

A natural practical question to ask is whether differences in learning rules can

lead to qualitatively different outcomes. In particular, does one type of learning

rule make cooperative behavior more likely to emerge in equilibrium than another?

To get at that question, in this chapter, we explore the extent to which the type

of learning rule influences equilibrium selection in a class of generalized stag hunt

games. We compare two canonical learning models: cultural learning and individual

belief-based learning. We find that the former more often settles into a cooperative

equilibrium. This does not imply that cultural learning is better for all games (see

Chapter III for a counterexample), but it does suggest that for games that involve

coordination on a cooperative action, cultural learning may be a preferred learning

rule.

The original stag hunt game traces back to 1773, when Rousseau proposed the

story of a stag hunt to represent a choice in which the benefits of cooperation conflict

with the security of acting alone. In the story, two individuals must each choose to

hunt a stag or to hunt a hare. Hunting stags can only be successful with cooperation,

while hunting a hare does not require the other player’s help. The catch is that the

stag offers both hunters a lot more meat than the hare. Thus, the stag hunt obliges

a choice between productivity and security. Skyrms (2001) argues that the stag

hunt captures the incentives present in choices whether to adopt or modify the social

contract.

Rousseau’s stag hunt has been modeled as a two-by-two game with two strict

pure Nash Equilibria: an efficient one in which both hunt stag and an inefficient

one in which both hunt hare. In playing a stag hunt, agents try to figure out which

equilibrium action to choose. Equilibrium selection arguments can be invoked in
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favor of either action. While hunting the stag is payoff dominant, hunting the hare

is risk dominant (Harsanyi and Selten, 1988).

The stag hunt game, along with the prisoner’s dilemma, is often invoked as a

framework with which to study collective action problems (Medina, 2007). In a

prisoner’s dilemma or a public goods game, incentives lead to everybody defecting.

In contrast, in a stag hung game, players have an incentive to cooperate provided

enough of the other players do so as well. Stag hunt differs from the prisoners’

dilemma in that achieving cooperation does not require higher order strategies such

as tit for tat (Axelrod, 1984), trigger mechanisms (Abreu et al., 1990), or norm based

strategies (Bendor and Swistak, 1977), all of which allow defectors to be punished

outside of the context of the original game. Higher order strategies that produce

cooperation in the prisoner’s dilemma, in effect, transform that game into a stag

hunt game, where the choice to defect corresponds to the inefficient, but safer action

(Skyrms, 2001). Therefore, many of the results of this chapter can be interpreted

through the lens of the repeated prisoner’s dilemma.

The choice between stag and hare simplifies a more complex reality in which agents

might choose between multiple stags and a hare. By that we mean a society or a

community would often have more than a single cooperative action to pursue. So,

here, we extend the canonical two-by-two stag hunt game to allow for more actions.

This increase in actions also provides sufficient space for learning rules to matter,

whereas in a two-by-two game, how agents learn has no effect. As in the canonical

stag hunt game, the models we consider include an insulated self interested action

that does not require agents to coordinate. It generates only a modest payoff, but it

is safe. We differ from the canonical model in that we allow for multiple potentially

cooperative actions.
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In our basic model, any cooperative action would be optimal if the population

coordinated on it. We then expand our model to consider the possibility that some

of these actions would be effective, e.g., successful if followed, but that others, termed

naive, would be undermined by a predatory action.2 Thus, we add predation (Conlisk,

2001) to the stag hunt. The predatory action can be seen as a form of defection. It

robs those agents who undertake naive actions. This framework captures situations

in which a community may have several potential “stag” actions of which some would

prove fruitful and others would not. To illustrate, a community may have several

mechanisms to share water, but some of these may prove exploitable by predatory

actions.

Within this class of models, we find that cultural learning more often locates

the efficient cooperative equilibria than does individual belief-based learning. To

be precise, we show that cultural learning dominates individual learning: given any

starting point for which individual learning results in cooperation, so does cultural

learning.

Within the expanded framework that includes naive and predatory strategies,

we highlight three additional results. First, contrary to intuition, we find that the

effect of the learning rule becomes amplified as the stakes increase. As the stakes

grow infinitely large, cultural learning converges to full cooperation, always locating

an effective action, while belief-based learning converges to a zero probability of

finding an effective action. Thus, ramping up incentives makes the type of learning

rule more, not less important. Second, we find that as the number of potentially

cooperative actions increases, so does the probability of finding the self interested

action. This coordination failure aligns with basic intuition that lots of options makes

2Though the naive actions are not played in equilibrium, such dominated strategies play a crucial role in equilib-
rium selection in coordination games (Ochs, 1995; Basov, 2004).
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coordinating on a single one more difficult. Third, and counter to intuition, given

cultural learning we find that changing one action from naive to effective can move

some initial points from the basin of attraction of a cooperative equilibrium into the

basin of attraction of the safe equilibrium.

4.2 Individual and Cultural Learning

Given the variety of potential learning rules, we feel it necessary to motivate our

decision to compare individual, belief-based learning to cultural evolutionary learning

(Camerer 2003, Fudenberg and Levine 1999). These two learning rules differ in how

they characterize behavior. Belief-based learning is prospective and individualistic;

cultural evolutionary learning is retrospective and social. By considering these two

extreme forms of learning we investigate the possibility that the type of learning rule

might matter for equilibrium selection.

We model individual learning using a simple best response learning rule (Gilboa

and Matsui, 1991; Hofbauer and Sigmund, 2003). Elaborated models of individual

learning, such as logit learning and quantal response learning, include noise terms and

individual errors. The extra degree of freedom introduced with this error term implies

that they can fit experimental data better than the simpler best response dynamic.

Nevertheless, we stick here with best response learning owing to its foundational

nature and analytic tractability.

Following convention, we use replicator dynamics (Taylor and Jonker, 1978) to

capture cultural learning in a population of players (Henrich and Boyd, 2002). Repli-

cator dynamics can be seen as capturing situations in which agents compare payoffs

with each other and copy better performing agents. 3 Cultural learning is less greedy

3Cultural learning can be performance-based if it depends on payoffs or conformist if it depends on popularity.
Here, we consider performance-based cultural learning.
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than best response dynamics. Agents don’t move only in the direction of the best

action but towards all actions that have above average payoffs.

For the sake of analytic tractability, we consider continuous time dynamics.4

These would arise in the limit of a large, well-mixed population. In this limit,

both dynamics can be derived as the expected behavior of agents with stochastic

protocols for switching their actions (Sandholm, 2009). A simple revision protocol in

which agents occasionally switch to the best response to the current population state

generates the best response dynamics. Imitative revision protocols, such as imitation

driven by dissatisfaction (Björnerstedt and Weibull, 1996) or pairwise proportional

imitation (Schlag, 1998), lead to the replicator dynamics.

The differences between belief-based learning rules and cultural evolutionary learn-

ing have been the subject of substantial theoretical, experimental, and empirical in-

vestigation. For the most part, the theoretical literature focuses on how the rules

operate and, in particular, on the stability of equilibria under the two types of rules.

That literature shows that in many games both rules produce the same stable equi-

libria (Hopkins, 1999; Hofbauer et al., 1979; Hofbauer, 2000). Counterexamples rely

on knife edge assumptions.

The experimental and empirical literatures attempt to flesh out which rule people

apply in practice. As the two rules differ in their informational and cognitive require-

ments, we should expect each rule to be better suited to some environments than

the other. Cultural learning requires knowledge of the success of others. Given that

information, a cultural learning rule doesn’t require much cognitive effort: agents

need only copy someone doing better than they are. Best response learning, on the

other hand, does not require any information about the success of others – other

4Showing that our main results hold with discrete dynamics as well is a straightforward, though somewhat
involved, exercise.



89

than the payoffs to the game – but it does require knowledge of the full distribution

of actions and calculation of the payoff from each possible action. Thus, we shouldn’t

expect to see best responses unless people understand the game fully.

In two-by-two games, we might therefore expect best response learning to better

predict behavior. In fact, that is the case. Cheung and Friedman (1998) find greater

support for belief-based learning than for replicator dynamics. However, looking

across experiments reveals that the performance of these and other learning rules is

often so similar as to be almost indistinguishable (Feltovich, 2000; Salmon, 2001).

What differences that do exist between the behavior predicted by these rules and

the data can often be explained by considering a hybrid model that includes both

belief-based and reinforcement learning (Camerer and Ho, 1999).5

Learning rules have also been studied in the field. The use of real world data has

both advantages and disadvantages. The stakes are often higher, and the situations

are real, not manufactured. However, real world studies often suffer from problems

of messier data, confounding factors, and higher dimensional action spaces. Given

those caveats, evidence from the real world generally tilts towards cultural learning.

Henrich (2001), in surveying evidence on the adoption of innovations, finds S-shaped

adoption curves to be prevalent. Cultural learning, which relies on imitation, pro-

duces S-shaped curves. Individual learning does not. A hybrid learning model would

also produce S-shaped adoption curves. Therefore, the empirical evidence should not

lead us to declare cultural learning the winner so much as it tells us that people do

take into account how others act.6

Our interests here tend less toward the empirical question of what people do and

more in the direction of the theoretical question of what would happen if people were

5Reinforcement learning can also give rise to the replicator dynamics (Börgers and Sarin, 1997).
6Prestige bias, the coupling of prestige to success, is further evidence that imitation is a part of how people learn

(Henrich and Gil-White, 2001).
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to follow one rule at the expense of the other. We find that cultural learning proves

far better able to locate an efficient equilibrium than does best response learning,

and this could imply that societies that have a more collective orientation might

be better equipped to coordinate their efforts and cooperate in the face of strategic

uncertainty.

We do not mean to imply that cultural learning is the only mechanism through

which a society can achieve efficient, coordinated cooperation. Many other mech-

anisms have been shown sufficient, including focal points (Schelling, 1960) and, in

the context of an evolutionary dynamic, cheap talk (Skyrms, 2004). Alternatively,

if groups or bands of people engage in battles with neighboring groups, then group

selection could produce altruistic strategies that ensure cooperation (Gintis et al.,

2003). Even though altruism may not be individually rational, groups with more

altruists may be stronger than groups of self interested actors and therefore more

likely to emerge victorious from conflict.

In what follows, we introduce our model of a stag hunt game with multiple coop-

erative actions, provide an example, and prove some general results. We then modify

our model to allow some of the cooperative actions to fail and be undermined by

a predatory action. We present the bulk of our results, analyzing this model. We

conclude with a discussion of the types of learning we consider.

4.3 The Basic Model

In our basic model, we assume a self interested action that offers agents a risk-free

return. We also assume n cooperative actions. Each offers the agent a reward that is

assuredly positive and increases with the number of others taking the same action.

In the canonical example, hunting rabbits would be a self interested action. It can
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be done alone just as well as with others. Hunting stags would be a cooperative

action, as would participating in a collective whale hunt. In these cases, hunting

cooperatively greatly increases the chances of a hearty meal, while hunting alone for

a stag or a whale gives the player a small (but nonzero) chance at finding something

to eat. (Perhaps while being faithful to the larger cause, the hunter can still bag a

small animal or fish on the side.) Taking a cooperative action has positive spillovers

in that it helps others who join in. Thus, taking a cooperative action becomes

the better choice (only) when a significant percentage of other agents also take this

action.

Formally, our game consists of n+1 actions, with the action set A = {1, · · · , n, S}.

We denote the set of cooperative actions C = {1, · · · , n}. We consider a single

unit-mass population of agents. The state space is therefore the n-dimensional unit

simplex 4n, with a point x ∈ 4n denoting the fraction of the population choosing

each action. The vector x = (x1, . . . , xn, xS) is the population mixed strategy.

Payoffs in a population game are a function of the population state x. We normal-

ize payoff magnitudes by attributing a cooperative action taken in isolation a payoff

of 1, assuming it’s the same for any cooperative action, and we let the parameter

β > 0 capture the relative benefit of coordinating on a cooperative action. Larger β

imply greater benefits from achieving cooperation. The cooperative actions vary in

their efficiency according to a family of parameters, θi for each i ∈ C. The maximum

reward, if everybody coordinates on effective action i, is an additional θiβ. Finally,

the insulated, self interested action S receives a payoff of c > 1 regardless of the

actions of the other agents. The payoffs can therefore be written as follows:

π(i,x) = 1 + θiβxi for i ∈ C

π(S,x) = c > 1.
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We make a technical assumption, (A1) θiβ + 1 > c for all i ∈ C, to create the

proper ordering over payoffs. This guarantees that successfully coordinating on a

cooperative action yields a higher payoff than taking the self interested action. Thus,

we have a strict pure Nash Equilibrium at every action in the game.

In what follows we compare two learning rules: best response dynamics and repli-

cator dynamics. In the continuous time best response dynamics, some infinitesimal

proportion of the agents are always switching their action to match the current best

response.

Best Response Dynamics (Individual Learning) ẋ ∈ BR(x) − x where BR(x) is

the set of best replies to x.

The second learning rule, replicator dynamics, describes agents who learn from

the success of others (Henrich and Boyd 2002).

Replicator Dynamics (Cultural Learning) ẋi = xi(πi − π̄) where πi is the payoff

to action i and π̄ is the average payoff.

4.3.1 An Example

To show how to apply these learning rules, we create a simple example with

n = 2, meaning there are three total actions, including the self interested one. We

take c = 3 and θ1β = θ2β = 5. This game has three pure strategy equilibria, one

for each action. Each equilibrium is strict and is therefore asymptotically stable for

both learning rules. Even in this simple game, we see that replicator dynamics has

larger basins for the cooperative actions.

Following convention, we can represent any distribution of actions as a point in the

two-dimensional simplex 42. To locate the basins of attraction under best response

dynamics, we identify the regions of the simplex 42 in which each action is a best
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1 2

S

Figure 4.1: Basins of attraction under best response dynamics

response. These regions are defined by the lines where each pair of actions earns the

same payoff. We find π1 = π2 when x1 = x2, π1 = πS when x1 = 2
5
, and π2 = πS

when x2 = 2
5
. Because the payoff to a cooperative action increases as the action

spreads, the equilibrium chosen under best response dynamics consists of the action

that is initially a best response. This is a feature of our basic model, but it will not

be true of our modified model. It means that the best response regions are the basins

of attraction of the pure equilibria under best response dynamics. They are shown

in Figure 4.1. The corresponding flow diagram for the best response dynamics is

shown in Figure 4.2.

Figure 4.3 contains the flow diagram for the replicator dynamics, and then, in

Figure 4.4, we characterize the basins of attraction for replicator dynamics. Here,

the boundary separating the basins of attraction includes curves, not only lines.

This curvature arises because under replicator dynamics a cooperative action can

grow in the population even if the self interested action is the best response. As



94

S

1 2

Figure 4.2: Phase diagram for the best response dynamics. Black (white) circles are stable (un-
stable) rest points. Figure made by the game dynamics simulation program Dynamo
(Sandholm and Dokumaci, 2007).
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S

1 2

Figure 4.3: Phase diagram for the replicator dynamics. Black (white) circles are stable (unstable)
rest points. Figure made by the game dynamics simulation program Dynamo (Sandholm
and Dokumaci, 2007).

it grows, the cooperative action can then become the best response. As a result,

the population can slip from the self interested action’s best response region into a

cooperative action’s best response region. Thus, cooperation is more likely to arise

under replicator dynamics.

4.3.2 General Results

We now show that the intuition developed in our example holds more generally.

That is, the replicator dynamics is more likely to lead to cooperation, while the best

response dynamics is more likely to lead to the worst outcome. In what follows, we

assume an initial distribution of actions with full support, bounded density, and no
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S

Figure 4.4: Basins of attraction under replicator dynamics

mass points on the boundary of the strategy space, and then apply two learning rules:

best response dynamics and replicator dynamics. We first show for both learning

rules that if a cooperative action ever has the best payoff, it remains best forever.

Lemma IV.1. For both best response dynamics and replicator dynamics, if for some

i ∈ C, πi > πj for all j 6= i ∈ A at some time, it remains so at all later times.

Proof. For best response dynamics, the result is straightforward. Only a best re-

sponse grows in the population. If a cooperative action is a best response, it becomes

more widespread, and consequently its payoff increases. Meanwhile, other actions

become less common, so the payoffs to the other cooperative actions decrease.

For replicator dynamics, suppose πi ≥ πj for all j ∈ A. For j ∈ C,

(4.1) π̇j = θjβẋj = θjβxj(πj − π̄) = (πj − 1)(πj − π̄).

So π̇i ≥ π̇j for all j ∈ C, and π̇i > 0. The payoff to the cooperative action which is

the best response increases faster than the payoff to other cooperative actions. The
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self interested action has a constant payoff, so it cannot become the best response.

Cooperative action i must remain a best response forever.

Our first theorem identifies the basins of attraction under best response dynamics.

In an abuse of notation, we refer to the equilibrium with everyone choosing cooper-

ative action i ∈ C, (xi = 1, x−i = 0) as cooperative equilibrium i ∈ C. Similarly, we

use the term self interested equilibrium to stand for the equilibrium with everyone

choosing self interested action, (xS = 1, x−S = 0). For clarity in our presentation,

we define some new parameters that help us compare the payoffs of a cooperative

action and the self interested action. Let Ti = c−1
θiβ

be the threshold frequency for

cooperative action i ∈ C to be better than the self interested action. That is, πi ≥ πS

if and only if xi ≥ Ti, with equality in one following from equality in the other.

Theorem IV.2. Given best response dynamics, a point x is in the basin of attraction

of the self interested equilibrium if and only if for all j ∈ C, xj < Tj.

A point x is in the basin of attraction of cooperative equilibrium i ∈ C if and only

if xi > Ti and xi >
θj
θi
xj for all j 6= i ∈ C.

Proof. The inequalities given in the theorem define the best response regions. Lemma IV.1

tells us that the best response regions of cooperative actions are contained in the

basins of attraction of cooperative equilibria. Similarly under best response dynam-

ics, if the self interested action is a best response, cooperative actions decline in the

population and cooperative payoffs decrease. The self interested action thus remains

a best response, and the dynamic leads to the self interested equilibrium.

The next theorem states that the basins of attraction of the cooperative equilibria

under best response dynamics are proper subsets of these basins under replicator

dynamics.
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Theorem IV.3. Assume n ≥ 2. The basin of attraction of any cooperative equilib-

rium i ∈ C under best response dynamics is a proper subset of the basin of attraction

of this equilibrium under replicator dynamics.

Proof. Lemma IV.1 and Theorem IV.2 together imply that the basin of attraction

of a cooperative equilibrium under best response dynamics is contained in the basin

under replicator dynamics because the former consists only of points for which the

cooperative action is the best response. It remains to show that the basin of attrac-

tion of any cooperative equilibrium i ∈ C under replicator dynamics includes some

points for which the self interested action is the best response. This is done in the

appendix.

Theorem IV.3 tells us that when there are multiple cooperative actions, replicator

dynamics is more likely to select one than best response dynamics. (When there is

just one cooperative action, the learning rules behave alike, as they do in all two-by-

two games. Chapter III describes this general result.) Seeing that cultural learning

outperforms belief-based learning in this environment, we next consider the question

of how much better it can be.

4.4 A Model with a Predatory Strategy

We now modify our model by introducing a predatory strategy and making some of

the cooperative strategies susceptible to it. This predatory strategy will temporarily

be a best response, but it is not an equilibrium. We maintain the n potentially

cooperative actions, but now we assume that only k of these cooperative actions are

effective. These actions have positive spillovers and are immune from predation. The

others we call naive because they are susceptible to attack from a predatory action.

In the context of the literal stag hunt, consider a scenario in which players have the
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option of domesticating animals and sharing the burden of looking after them. This

is a potentially cooperative action, but in the case that nobody can be trusted to

exercise costly vigilance while watching over somebody else’s animals, it is naive.

The animals may be stolen.

The predatory action can be thought of as a strong form of defecting. An agent

who takes the predatory action benefits at the expense of those attempting naive

actions. Neither the predatory action nor the self interested action aids the cooper-

ative efforts of other players, but unlike the predatory action, the self interested one

does not undermine the success of anybody who is trying to cooperate. An exam-

ple clarifies this distinction. Hunting rabbits instead of stags indirectly lowers the

payoffs to the stag hunters by denying them another participant. But, a player who

steals the aforementioned domesticated animals is taking a predatory action. This

directly harms those taking taking naive actions and creates no additional surplus.

This modified game consists of n+ 2 actions: a predatory action, a self interested

action, k effective actions, and n− k naive actions. We assume n > k ≥ 1 ensuring

that both the set of effective actions and the set of naive actions are nonempty.

The action set A = {1, · · · , n, P, S} with partition f : {1, · · · , n} → {E,N} where

E = {i|f(i) = E} denotes the effective actions and N = {i|f(i) = N} denotes the

naive actions.

Note that k = |E|. Effective actions i ∈ E have the same payoff as in the basic model

when all cooperative actions were effective. Naive actions i ∈ N differ in their payoff

structure. They each get a negative payoff per agent playing the predatory action.

The parameter γ measures the value that could be lost to or gained by predation.

If the population were to tend towards 100% predatory action, the payoff deducted
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from each naive action would be γ. The payoffs lost by naive actions are gained

by agents taking the predatory action. This predatory action P gets nothing from

everybody else, so its payoff scales with the prevalence of naive actions, approaching

γ as the population tends toward 100% naive actions. The payoffs from the various

actions can be written as follows:

π(i,x) = 1 + θiβxi for i ∈ E

π(i,x) = 1 + θiβxi − γxP for i ∈ N

π(P,x) = γ
∑
i∈N

xi

π(S,x) = c > 1.

Assumption A1 from the basic model still holds for all i ∈ E , but not necessarily

for i ∈ N . We now have (A1′) θiβ + 1 > c for all i ∈ E . We make two additional

technical assumptions, (A2) γ > c and (A3) γ > maxi∈N{θi}β c
c−1

. A2 guarantees

that in a population full of naive actions, the predatory action has a higher payoff

then the self interested action. A3 guarantees that a naive action is never best, i.e., a

predator can steal even more than the positive spillovers generated by a naive action.

4.5 Results

We now turn to our main results: how the equilibrium attained depends strongly

on the learning rule. We begin with an obvious theorem about the set of pure strategy

equilibria to this class of games.

Theorem IV.4. Given assumptions A1′ and A3 and c > 1, this game has k + 1

pure strategy equilibria: one in which all players take the self interested action and

k equilibria in which they all take the same effective action.

We maintain our abuse of notation in referring to one of these k effective equilibria
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as effective equilibrium i ∈ E . We now show that Lemma IV.1 still applies to the

effective cooperative actions under best response dynamics, and can be broadened

to include the self interested action as well. However, we will need to slightly modify

the lemma for the replicator dynamics. For the best response dynamics, we can say

that if an effective action or the self interested action ever has the best payoff, it

remains best forever. This is not the case for the predatory action. (By assumption

A3, a naive action is never best.)

Lemma IV.5. For best response dynamics, if for some i ∈ E ∪ {S}, πi > πj for all

j 6= i ∈ A at some time, it remains so at all later times.

Proof. Note that naive actions are dominated by a mixed strategy that plays the

self interested action with probability 1
c

and the predatory action with probability

c−1
c

. So, naive actions never have the highest payoff and are always decreasing. This

means the payoff to the predatory action is always decreasing. So, exempting the

naive actions, an effective action has the only increasing payoff when it is the strict

best response, and the self interested action has the only nondecreasing payoff when

it is the strict best response.

Our next result identifies a sufficient condition for replicator dynamics to yield

effective cooperation. We do not have a similar sufficient condition for fixation of

the self interested action. This lemma is similar to Lemma IV.1 in that it applies to

an effective action that at some time is better than the self interested action and has

the most positive spillovers, but we do not require it to be better than the predatory

action. Of particular importance is the fact that this condition is independent of the

predation parameter γ.

Lemma IV.6. Under the replicator dynamics, if for some i ∈ E,
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1. πi > πS and

2. xi >
θj
θi
xj for all j 6= i ∈ E ∪ N

at some time, then conditions 1 and 2 remain in effect at all later times and the

replicator dynamics leads to the equilibrium (xi = 1, x−i = 0).

Proof. A piece of the average payoff, xPπP +
∑

j∈N xjπj, partially cancels, leaving

only
∑

j∈N (1 + θjβxj)xj. Thus, the average payoff π̄ = xSπS+
∑

j∈E∪N (1 + θjβxj)xj.

Now, conditions 1 and 2 together imply that πi > πj for all j ∈ A \ {i, P}, and in

turn,

(4.2) πi − π̄ > 0.

Condition 2 alone implies that

(4.3) πi − π̄ > πj − π̄ for all j 6= i ∈ E ∪ N .

Inequality (4.3) gives action i the highest relative growth rate in E ∪ N , ensuring

that condition 2 continues to hold. Inequality (4.2) means that action i does indeed

have positive growth, maintaining condition 1 and leading to the equilibrium (xi =

1, x−i = 0).

We now derive the basins of attraction under best response dynamics. We will

make use of a new parameter r(x) that denotes the ratio of the predatory payoff

to the self interested payoff. (It depends on the prevalence of naive actions.) We

have r(x) = 1
c
γ
∑

j∈N xj. Also, recall that Ti = c−1
θiβ

, now for i ∈ E , is the threshold

frequency for effective action i to be better than the self interested action.

Theorem IV.7. Given best response dynamics, a point x is in the basin of attraction

of the self interested equilibrium if and only if for all j ∈ E,

(4.4) xj < Tj
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or

(4.5) xj < r(x)Tj.

A point x is in the basin of attraction of effective equilibrium i ∈ E if and only if

the following three conditions hold:

i) xi > Ti;

ii) xi > r(x)Ti; and

iii) xi >
θj
θi
xj for all j 6= i ∈ E. 7

Proof. See appendix.

Conditions (i) and (iii) in Theorem IV.7, namely that an effective action does

better than the self interested action and all other effective actions, prove to be

necessary but not on their own sufficient for best response dynamics to attain the

equilibrium featuring this effective cooperative action. On the other hand, inequal-

ity (4.4), which says that the self interested action initially does better than any

effective action, is sufficient (and not even necessary) for the best response dynamics

to lead to universal self interested action.

The next claim states that cultural learning more often achieves effective cooper-

ation. Whenever best response dynamics attains an effective equilibrium, replicator

dynamics attains it as well. The converse will not be true. Thus, cultural learning

is strictly preferred to individual learning.

Theorem IV.8. The basin of attraction of any effective equilibrium i ∈ E under best

response dynamics is contained in the basin of attraction of this equilibrium under

replicator dynamics.
7In the zero probability event that an equality holds exactly and neither set of conditions applies, the best response

dynamics finds a mixed equilibrium.
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Proof. Using Lemma IV.6 and Theorem IV.7, we show that the necessary conditions

for the best response dynamics to be in the basin of (xi = 1, x−i = 0) for some

i ∈ E are sufficient conditions for the replicator dynamics to be in the basin of

this equilibrium. Condition (i) in Theorem IV.7 is equivalent to condition 1 in

Lemma IV.6. Condition (ii) in the theorem along with assumption A3 implies that

xi > maxj∈N
{θj}
θi

∑
l∈N xl, by plugging the latter inequality into the former. This

easily gives us xi >
θj
θi
xj for all j ∈ N . Condition (iii) in Theorem IV.7 fills in for all

j 6= i ∈ E and thus satisfies condition 2 in Lemma IV.6.

Just like Theorem IV.3 for the basic model, Theorem IV.8 tells us that replicator

dynamics is more likely to produce effective cooperation than best response dynam-

ics when there is a predatory strategy. In fact, the possibility of predation makes

outcomes significantly more sensitive to the learning dynamic operating in the pop-

ulation. In Section 4.6.1 we will show how much of a deciding factor the learning

style can be, but as a preview of these results, we present Figures 4.5 and 4.6, which

show sample trajectories of the two learning dynamics for a game with just one effec-

tive action and one naive action. The images have a three-dimensional perspective

because the strategy space for a game with four actions is the three-dimensional sim-

plex 43. The parameter values (c = 2, γ = 100, β = 10, θE = θN = 18) are inspired

by our upcoming results. As we can see in Figure 4.5, the best response dynamics

often approach the predatory action at first, before flowing directly to the self inter-

ested action; although not shown, some points near the effective action would flow

to that equilibrium as well. In Figure 4.6, we see that the replicator dynamics often

curves towards the effective action as the naive action decays; again, some trajecto-

ries (not shown) in the neighborhood of the self interested action would reach that

8We denote the single effective action by E and the naive action by N .
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E
S

Figure 4.5: Sample trajectories for the best response dynamics in a game with just one effective
action and one naive action, setting c = 2, γ = 100, β = 10, θE = θN = 1. Figure made
by the game dynamics simulation program Dynamo (Sandholm and Dokumaci, 2007).

P

N

E
S

Figure 4.6: Sample trajectories for the replicator dynamics in a game with just one effective action
and one naive action, setting c = 2, γ = 100, β = 10, θE = θN = 1. Figure made by
the game dynamics simulation program Dynamo (Sandholm and Dokumaci, 2007).
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equilibrium, too.

At this point, we have precisely determined the basins of attraction under best

response dynamics, but we have only a partial characterization of basins under the

replicator dynamics. Because the replicator dynamics are nonlinear, we cannot solve

for the basins exactly. In Section 4.6, we will make a simplifying assumption that

allows us to proceed without an exact description of the replicator dynamics’ basins.

We would like to make analysis of the replicator dynamics more tractable without

losing generality from our results for the best response dynamics. To see how this

is possible, let us refer back to Theorem IV.7, which characterizes the best response

dynamics’ basins of attraction. Observe that Theorem IV.7 makes no reference to

the naive actions’ efficiency parameters. As long as the {θj}j∈N obey assumption A3,

they have no effect on the best response dynamics. These parameters do influence

the replicator dynamics, but it appears that the behavior of the replicator dynamics

is qualitatively similar for a range of possible values. We show in Figures 4.7 and 4.8

sample trajectories of the replicator dynamics while varying θN and retaining the

other parameter values used in Figure 4.6.

4.6 Comparative Statics

We now consider the case that naive actions fail to produce positive spillovers for

others taking the same action. In what follows, we assume θj = 0 for all j ∈ N .

This gives each of the naive actions the same payoff,

π(i,x) = 1− γxP for i ∈ N .

While we may still refer to naive actions as potentially cooperative, in this frame-

work they are not actually cooperative in the sense that they do not create positive

externalities. As we have indicated, results for the best response dynamics in this
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P
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Figure 4.7: Sample trajectories for the replicator dynamics, setting c = 2, γ = 100, β = 10, θE =
1, θN = 0. Figure made by the game dynamics simulation program Dynamo (Sandholm
and Dokumaci, 2007).

P

N

E
S

Figure 4.8: Sample trajectories for the replicator dynamics, setting c = 2, γ = 100, β = 10, θE =
1, θN = 2. Figure made by the game dynamics simulation program Dynamo (Sandholm
and Dokumaci, 2007).
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section would still hold for nonzero {θj}j∈N , but with our assumption analysis of the

replicator dynamics is more tractable.

4.6.1 Changing the Incentives to Coordinate and Predate

The next two results consider the effects of increasing the stakes by ramping up

both the incentives to coordinate on an effective action and the benefits of preda-

tion. The result in the first claim aligns with the intuition that increasing incentives

increases the probability of an efficient outcome. It states that as β, the benefit from

coordinating on an effective action, grows large, replicator dynamics almost always

achieves coordinated, effective cooperation. However, the cooperative action taken

may not be the most efficient one. Since the result follows from an application of

Lemma IV.6, it holds regardless of whether the incentives to predate are large as

well.

The second claim states that under best response dynamics, as the benefits to

predation grow, the basin of attraction of the self interested action expands to the

entire space. This holds even if β goes to infinity as well, so long as the benefits of

predation are sufficiently larger.

Together, these two results imply that as the stakes rise, we need not worry

about the initial distribution of strategies. As long as an effective action is played

occasionally, no matter how rarely, a population using replicator dynamics will learn

to coordinate effective cooperation. And as long as naive actions cannot be ruled

out entirely, if the incentive to predate rises faster than the incentive to cooperate,

then a population using best response dynamics will learn to take safe, self interested

action.

Theorem IV.9. As β → ∞, the basins of attraction of the equilibria featuring
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only effective actions (xS = 0,
∑

i∈E xi = 1) approach the entire strategy space under

replicator dynamics. This holds even if γ →∞ as well.

Proof. Let m = arg maxj(θjxj) be the set of effective actions with highest payoff.

By the logic that proved Lemma IV.1 and the fact that equation (4.1) still holds

for our modified model, this set of best effective actions remains constant over time.

If for i ∈ m, xi > Ti, then Lemma IV.6 applies in the case that |m| = 1 and a

straightforward extension of it applies when multiple effective actions tie for the

highest payoff. In short, the replicator dynamics flow to an equilibrium that satisfies

(
∑

i∈m xi = 1, xj = 0 : j 6∈ m). As β → ∞, every Ti → 0 and the set of points

satisfying xi > Ti for i ∈ m approaches the entire strategy space.

Theorem IV.10. Under best response dynamics the basin of attraction of the self

interested equilibrium monotonically increases in γ.

Proof. As γ increases, the condition xj < Tj
γ
c

∑
l∈N xl for all j ∈ E is satisfied for

more initial points. By Theorem IV.7, if this condition is met, the best response

dynamics flow to (xS = 1, x−S = 0).

Corollary IV.11. As γ → ∞, the basin of attraction of (xS = 1, x−S = 0) ap-

proaches the entire strategy space under best response dynamics. This conclusion

holds even if β →∞ as well, as long as γ
β
→∞.

Proof. Points with
∑

i∈N xi >
cθjβ

(c−1)γ
(and thus, r(x)Tj > 1) for all j ∈ E satisfy

inequality (4.5) and are in the basin of attraction of (xS = 1, x−S = 0) given best

response dynamics. So, as γ → ∞ faster than β, the basin of attraction of (xS =

1, x−S = 0) approaches the entire strategy space.

In the case where β and γ
β

approach infinity, Theorem IV.9 and Corollary IV.11

taken together show that best response dynamics and replicator dynamics predict en-
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tirely different outcomes. Replicator dynamics always achieves effective cooperation.

Best response dynamics never does.

4.6.2 Changing the Number of Effective Actions

Up to this point, we have taken the partitioning function f as exogenous and

examined the effects of varying payoff parameters on the basins of attraction. In

practice, some stag hunt games may have many effective actions, whereas others

may have only a few. To analyze the effect of relatively easy and hard coordination

problems, we now examine the effect of adding more potentially cooperative actions

to the game or changing how many of those actions are effective. The following

claim states that when the self interested action is sufficiently attractive and there

are many potentially cooperative actions, both learning dynamics likely find the

inefficient outcome, in which the agents all take the self interested action. Note that

the condition we place on the payoff to the self interested action is only sufficient

and could be weakened.

Theorem IV.12. Assume c > 3. As n → ∞, the fraction of the strategy space in

the basin of attraction of the self interested equilibrium grows to 1 under both best

response and replicator dynamics.

Proof. See appendix.

Now, we fix the payoff parameters and the number of potentially cooperative ac-

tions and compare basins of attraction across different partition functions. Given

partition fi, let B(fi) be the union of the basins of attraction of the equilibria fea-

turing only effective actions (xS = 0,
∑

j∈Ei xj = 1).

Definition IV.13. Partition f2 effectively contains f1 if E1 ⊂ E2 and for all j ∈ E1,

θj is the same for both partitions.
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If f2 effectively contains f1, then k2 > k1. That is, more of the n potentially

cooperative actions are effective with partition f2 than with f1. We might expect

that making more of the potentially cooperative actions effective would improve the

probability of locating such an equilibrium. And, indeed, the basins of attraction

of these good equilibria do grow under best response dynamics as more actions are

made effective, as the next claim states.

Theorem IV.14. If f2 effectively contains f1, then under best response dynamics,

any initial point that results in coordination on an effective action under partition f1

also does under partition f2, i.e., B(f1) ⊂ B(f2).

Proof. From Theorem IV.7 we know that under best response dynamics a point is

in B(fi) if and only if for some l ∈ Ei, (i) xl > Tl and (ii) xl > Tl
γ
c

∑
j∈Ni xj.

If these inequalities are satisfied for a given xl under partition f1, they must still

be satisfied for xl under f2 because (i) is unchanged and (ii) is weaker because

N2 ⊂ N1. Moreover, there are additional actions in E2 for which these inequalities

may be satisfied. So B(f1) ⊂ B(f2).

Surprisingly, a similar result does not hold for replicator dynamics. Increasing

the number of effective actions creates a crowding effect. It can raise the average

payoff in the population and therefore prevent any effective action from growing in

the population.

Theorem IV.15. If f2 effectively contains f1, then under replicator dynamics there

can exist initial points that lead to coordination on an effective action under partition

f1 that do not under partition f2, i.e., B(f1)\B(f2) need not be empty.

Proof. See appendix.
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In interpreting these last two claims, we must keep in mind our earlier result

that the basin of attraction for effective actions is always larger under replicator

dynamics. Thus, when we change one cooperative action from naive to effective, any

initial points that we move out of the basin of attraction of an effective action and into

the basin of attraction of the self interested action under replicator dynamics must

remain in the basin of attraction of the self interested action under best response

dynamics as well.

4.7 Discussion

In this chapter, we have shown that for a class of generalized stag hunt games,

cultural learning dominates individual learning: any initial condition for which in-

dividual, belief-based learning achieves effective cooperation necessarily leads to ef-

fective cooperation under replicator dynamics too. Moreover, we have shown that

as the stakes grow large, cultural learning, as captured by replicator dynamics, al-

most always achieves coordinated, effective cooperation. In contrast, individualistic,

belief-based learning captured by best response dynamics almost never does.

These dichotomous limiting results are clearly a product of our specification. Nev-

ertheless, the core intuition holds generally: cultural learning allows moderately

successful attempts at coordination to gain a foothold and potentially grow in the

population, while best response learning only rewards the best action, which rarely is

a nascent attempt at cooperation.9 It is the greediness of the best response dynamics

that distinguishes its behavior from the replicator dynamics. In general, we would

expect the greediness of a learning dynamic to be the key factor in determining out-

comes here, even more so than whether the underlying revision protocol is imitative

9Given that as a general rule, small changes in payoffs have correspondingly small effects on the basins of attraction,
we can expect that slight variations in the payoff structure of our model have only mild effects on our results.
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or direct.10

Our findings have several implications for institutional design. Most importantly,

they reveal the importance of learning rules for equilibrium selection. How agents

learn may not seem to be a choice variable, and yet, each learning style requires

information about the payoffs or actions of others. That information can be made

more or less available through institutional choices. Second, our results show that

ramping up incentives may not be sufficient to produce the desired equilibrium.

Finally, our finding that increasing the number of effective cooperative actions can

move some initial conditions into the basin of an inefficient equilibrium demonstrates

the costs of abundance. More effective actions can produce a crowding effect.

It would be surprising if learning rules did not differ across societies. Recent

work has found that behavior in a common experimental setting varies widely across

cultures and that some of that variation can be explained by features of those cultures

(Henrich et al., 2001). For example, cultures that engage in collective enterprises,

like whale hunting, appear more likely to share. These findings do not prove that

distinct cultures learn differently, but they are consistent with such an assumption.

Relatedly, a substantial body of survey and case study research shows that cul-

tures vary in their levels of individualism and collectivism (Inglehart, 1997). In

more collectivist societies, people may have richer social networks giving them bet-

ter knowledge of the actions of others and the payoffs of those actions. This suggests

a possible link between collectivism and cultural learning. Comparably, in individu-

alistic societies, people may be less informed about others and more concerned with

acting optimally. These characteristics would point to best response learning. Seeing

that, in our framework, cultural learning induces cooperation, which could reinforce

10Sandholm (2009) defines a direct revision protocol as one in which a revising agent’s choice of an alternative
action to consider is without regard to its popularity.
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underlying collectivist sentiment, it is conceivable that cooperation, collectivism, and

cultural learning form a positive feedback loop that could amplify initial differences

between societies.

While there is logic to the idea that more collectivist societies might have an

easier time mustering cooperation, levels of collectivism and individualism do not in-

dependently determine how societies learn. Recall from the introduction the different

informational and cognitive requirements of the two learning rules. Best response

learning requires greater cognitive effort than cultural learning. The members of a

collectivist society with strong attachment to rationality could indeed use best re-

sponse learning. And members of an individualistic society might turn to cultural

learning when a game becomes too complicated to think through. A surprising fea-

ture of our results is that additional cognitive effort could be counterproductive for

the society if it means belief-based learning prevails over cultural learning in contexts

such as ours.

Our results also have implications for the evolution of learning styles. Stag hunt

games are common, and societies that use cultural learning will have greater success

in them. Group selection, either cultural or genetic, could promote cultural learning

over belief-based learning. This hypothesis requires further study into the mechanism

through which societies adopt new learning styles (see Henrich and McElreath, 2003).

Overall, we advocate a modest application of our results. Rather than arguing over

which learning rule better describes human behavior or even which rule fits particular

cultures, social scientists might better explore how members of different societies

and cultures learn. Learning may well include transference of behaviors learned

in one context to other contexts (Bednar and Page 2007). We can then explore

whether those differences in learning processes can result in significant differences
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in outcomes. If they do, we can try to design the games created by economic and

political institutions so that they produce better outcomes.

We conclude by reiterating the observation that the type of learning rule in use

matters most when a model admits multiple equilibria. Except in those cases where

learning rules do not attain an equilibrium (Hofbauer and Swinkels, 1996), single

equilibrium models leave little room for how people learn, or for culture more gener-

ally, to have any effect. Thus, if we want to understand the implications of variation

in learning rules, we need to consider games with more than two strategies.

4.8 Appendix

Completing the Proof of Theorem IV.3.

We now identify points for which the self interested action is the best response,

but for which the replicator dynamics leads to the cooperative equilibrium (xi =

1, x−i = 0). Consider points of the form xi = c−1−ε
θiβ

, xl = c−1
2θlβ

for some other l ∈ C,

and xj <
θi
θj
xi for all j 6= i ∈ C. Assume ε is small. Such points have been chosen so

that πi = c− ε and πl = c+1
2

. The self interested action is the best response at this

point, but cooperative action i is very close and better than all other cooperative

actions. Plugging in for πi and parts of π̄, we have

ẋi = xi

(
(c− ε)(1− xi)− cxS −

∑
j 6=i∈C

πjxj

)

= xi

(
−ε(1− xi) +

∑
j 6=i∈C

(c− πj)xj

)
.

The second step here used the fact that
∑

j∈A xj = 1. Dropping some positive terms

from the right hand side, we get the inequality ẋi > xi ((c− πl)xl − ε). Plugging in

for πl and simplifying, we have

(4.6) ẋi > xi

(
c− 1

2
xl − ε

)
.
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As long as ε is small, the right hand side of inequality (4.6) is positive and xi increases

past c−1
θiβ

right away. This makes cooperative action i a best response, and then

Lemma IV.1 applies and we know the dynamics leads to the cooperative equilibrium

(xi = 1, x−i = 0).

Proof of Theorem IV.7.

First, we point out that if for some i ∈ E , xi > Ti and xi < r(x)Ti, then

xi <
1
θiβ

(
γ
∑

l∈N xl − 1
)
. (Actually, if equality holds in one but not both of the

conditions, we still obtain the desired inequality.) This fact follows just from rear-

ranging terms, using a fair bit of basic algebra. It means that if we are relying on

inequality (4.5) to establish that a point is in the basin of the self interested equilib-

rium (i.e., when inequality (4.4) fails and some effective action is initially better than

the self interested action), then inequality (4.5) ensures that the predatory action is

initially better than this effective action. Alternatively, if we are establishing that

a point is in the basin of attraction of an effective equilibrium, we can say that in

order for an effective action to be initially better than the self interested action and

the predatory action, condition (ii) must hold.

Now, assume best response dynamics. We will invoke Lemma IV.5, which tells

us that if either the self interested action or an effective action is initially a best

response or becomes one, it remains a best response forever, so the best response

dynamics flow towards the equilibrium featuring this action.

For effective action i to initially be the best response, conditions (i) and (iii) ob-

viously must hold and the need for condition (ii) is described in the proof’s first

paragraph. For the self interested action S to initially be the best response, inequal-

ity (4.4) is clearly necessary.

If neither the self interested action nor any of the effective actions are initially a
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best response, then the predatory action P must initially be the best response. In

this case, the equilibrium attained depends on which action next becomes the best

response. So, let us now consider points for which the predatory action P is the best

response. If for all j ∈ E , inequality (4.4) holds and xj < Tj, then the self interested

action S has a higher payoff than any of the effective actions. As the dynamic moves

toward P , the payoffs to the predatory and effective actions decrease, so eventually

S becomes the best response. Alternatively, suppose for some i ∈ E , condition (i)

holds and xi > Ti. Then we define α(t) =
xj(t)

xj(0)
for j 6= P and t such that action

P is still a best response. This definition is independent of j because actions which

are not best responses have the same relative decay rate. Note that α(t) is a strictly

decreasing function. Now either

(4.7) πS = πP when α =
c

γ
∑

l∈N xl(0)

or for some i ∈ E ,

(4.8) πi = πP when α =
1(

γ
∑

l∈N xl(0)− θiβxi(0)
) ,

whichever happens first. Equation (4.7) follows from πP = γ
∑

l∈N α(t)xl(0). Equa-

tion (4.8) depends on this as well as on πi = 1 + θiβα(t)xi(0) for i ∈ E . If inequal-

ity (4.5) applies, i.e., if for all j ∈ E , xj(0) < (c−1)γ
cθjβ

∑
l∈N xl(0), then rearranging

terms produces

c

γ
∑

l∈N xl(0)
>

1(
γ
∑

l∈N xl(0)− θjβxj(0)
) ,

and this means action S eventually becomes the best response. On the other hand,

if for some i ∈ E , xi(0) > (c−1)γ
cθiβ

∑
l∈N xl(0) and xi(0) >

θj
θi
xj(0) for all j 6= i ∈ E ,

conditions (ii) and (iii) respectively, then action i always has the highest payoff of all

the effective actions and becomes the best response before the self interested action

does.
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Proof of Theorem IV.12.

Let M{∗} denote the fraction of the strategy space satisfying {∗}. As n → ∞,

M{xj < Tj for all j ∈ E} approaches 1. By Theorem IV.7, all points satisfying this

condition are in the basin of attraction of (xS = 1, x−S = 0) with the best response

dynamics.

Assume replicator dynamics. A sufficient condition to be in this basin of attraction

is at some time t,

(4.9) cxS(t) > 1 + θjβxj(t) for all j ∈ E ,

as this ensures that πj < π̄ then and at all future times. An alternative condition is

that

(4.10) π̄ −
∑
i∈N

xi ≥ 2πj − 1 for all j ∈ E

at some time. Inequality (4.9) is self enforcing because it ensures that xS increases

while πj decreases for all j ∈ E . To see that inequality (4.10) is self enforcing is

slightly more involved. It too ensures that πj decreases for all j ∈ E , but now we

must take a time derivative of π̄ −
∑

i∈N xi and show that it is positive. We get

˙̄π −
∑
i∈N

ẋi =
∑
l∈A

ẋlπl + xlπ̇l −
∑
i∈N

ẋi

=
∑
l∈A

ẋl(πl − π̄) + xlπ̇l −
∑
i∈N

ẋi.

The last step here uses
∑

l∈A ẋl = 0. We can write ẋl(πl−π̄) as xl(πl−π̄)2. For l ∈ E ,

xlπ̇l = xl(πl − 1)(πl − π̄), and xl(πl − π̄)2 > xl(πl − 1)(π̄ − πl) by inequality (4.10)

itself. So

(4.11)
∑
l∈E

ẋl(πl − π̄) + xlπ̇l > 0.
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We can plug in the payoffs for the predatory and the naive actions and as a shortcut

use
∑

l∈{P}∪N xlπl =
∑

i∈N xi, taking the time derivative of both sides, to write

∑
l∈{P}∪N

ẋl(πl − π̄) + xlπ̇l =
∑

l∈{P}∪N

ẋl(−π̄) +
∑
i∈N

ẋi.

We find that
∑

l∈{P}∪N ẋl ≤ 0 as long as π̄ ≥ 1 because
∑

l∈N ẋl =
∑

l∈N xl (1− γxP − π̄)

and ẋP = xP
(∑

l∈N γxl − π̄
)

imply that

∑
l∈{P}∪N

ẋl =
∑
l∈N

xl(1− π̄) + xP (−π̄).

And we know π̄ ≥ 1 from inequality (4.10). So

(4.12)
∑

l∈{P}∪N

ẋl(πl − π̄) + xlπ̇l −
∑
i∈N

ẋi > 0.

Finally, xS(πS − π̄)2 is clearly positive and π̇S = 0, so

(4.13) ẋS(πS − π̄) + xSπ̇S > 0.

Thus, piecing together inequalities (4.11), (4.12) and (4.13), we get ˙̄π−
∑

i∈N ẋi > 0.

Let j be a best effective action. We can place an upper bound on the rate at

which action j spreads, ẋj = xj(1 + xjθjβ − π̄) < xj(1 + xjθjβ). This bound has the

form of a logistic differential equation. The solution is then bounded by the logistic

function,

(4.14) xj(t) ≤
xj(0)

(1 + θjβxj(0))e−t − θjβxj(0)
.

Because inequality (4.10) is sufficient for the replicator dynamics to flow to (xS =

1, x−S = 0), we consider an assumption that π̄ < 2πj−1+
∑

i∈N xi ≤ 2πj. This allows

us to place a lower bound on the rate at which action S spreads, ẋS = xS(c− π̄) >

xS(c− 2− 2θjβxj). Then, plugging in inequality (4.14) for xj(t) and integrating,

xS(t) ≥ xS(0)e(c−2)t(1 + θjβxj(0)(1− et))2.
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Applying this to our first sufficient condition, inequality (4.9), it is sufficient to show

cxS(0)e(c−2)t(1 + θjβxj(0)(1− et))2 > 1 +
θjβxj(0)

(1 + θjβxj(0))e−t − θjβxj(0)

or equivalently,

(4.15) cxS(0)e(c−2)t(1 + θjβxj(0)(1− et))3 > 1 + θjβxj(0).

This last step requires some algebra. The left hand side of (4.15) is maximized at

t = ln

(
1 + θjβxj(0)

θjβxj(0) c+1
c−2

)
.

Plugging in for t in (4.15), the sufficient condition becomes

cxS(0)

(
(1 + θjβxj(0))(c− 2)

θjβxj(0)(c+ 1)

)c−2(
1 + θjβxj(0)

(
1− (1 + θjβxj(0))(c− 2)

θjβxj(0)(c+ 1)

))3

> 1 + θjβxj(0).

As n → ∞, xj(0) becomes small, so we keep only terms of lowest order in xj(0).

This simplifies our sufficient condition to

cxS(0)

(
c− 2

θjβxj(0)(c+ 1)

)c−2(
3

c+ 1

)3

> 1.

It remains only to show that this condition is met almost everywhere when n is large.

Our sufficient condition holds if

(4.16) xj(0) ≤ 1

n
c

3(c−2)

and xS(0) >
1

c

(
θjβ(c+ 1)

c− 2

)c−2(
c+ 1

3

)3
1

n
c
3

.

Because these two inequalities are positively correlated, 11

M{Constraint (4.16)} ≥

M

{
xj(0) ≤ 1

n
c

3(c−2)

}
·M

{
xS(0) >

1

c

(
θjβ(c+ 1)

c− 2

)c−2(
c+ 1

3

)3
1

n
c
3

}
.

11Recall that M{∗} denotes the fraction of the strategy space satisfying {∗}.
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Consider the first of these inequalities. We have

M

{
xj(0) >

1

n
c

3(c−2)

}
≤ M

{
xi(0) >

1

n
c

3(c−2)

for some i ∈ E ∪ N
}

≤ n ·M
{
x1(0) >

1

n
c

3(c−2)

}
= n

(
1− 1

n
c

3(c−2)

)n+1

.

Here, and again in equation (4.17), we evaluate the fraction of the strategy space

satisfying a given inequality simply by integrating over the strategy space. Now,

c
3(c−2)

< 1 because we assumed c > 3, so

lim
n→∞

n

(
1− 1

n
c

3(c−2)

)n+1

= 0.

Thus,

lim
n→∞

M

{
xj(0) ≤ 1

n
c

3(c−2)

}
= 1.

Now consider the second inequality. We have

(4.17) M

{
xS(0) >

1

c

(
θjβ(c+ 1)

c− 2

)c−2(
c+ 1

3

)3
1

n
c
3

}

=

[
1− 1

c

(
θjβ(c+ 1)

c− 2

)c−2(
c+ 1

3

)3
1

n
c
3

]n+1

.

This approaches 1 as n→∞ because c
3
> 1. Thus,

lim
n→∞

M

{
cxS(0)

(
c− 2

θjβxj(0)(c+ 1)

)c−2(
3

c+ 1

)3

> 1

}
= 1.

The fraction of the strategy space satisfying a condition that puts it in the basin of

attraction of (xS = 1, x−S = 0) approaches 1.

Proof of Theorem IV.15.

We construct a specific counterexample for the case n = 3 that can be extended

to a more general case. Let E1 = {1}, E2 = {1, 2}, θ1 = 1, θ2 = 1 under partition f2
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(whereas, of course, θ2 = 0 under partition f1), and β > 2c. Then any point which

satisfies

x1 = x2 =
c− 1

β
− ε, xS =

c− βε
c

(
1 + 2ε− 2

c− 1

β

)
for small enough ε will be in B(f1) but not in B(f2).

Consider partition f1. Recall that ẋ1 = x1(π1− π̄). By construction π1 = (c−βε)

and still πS = c. Plugging in and simplifying, we get the average payoff

π̄ = (c− βε)
(

1− c− 1

β
+ ε

)
+
c− 1

β
− ε+ x3.

We combine terms and find that at our initial point, π1 − π̄ = β
(
c−1
β
− ε
)2

− x3.

Therefore, initially, ẋ1 = β
(
c−1
β
− ε
)3

−
(
c−1
β
− ε
)
x3. From the fact that

∑
j∈A xj =

1, we know our initial point satisfies x3 ≤ βε
c

(
1 + 2ε− 2 c−1

β

)
. This gives us a

minimum initial value for ẋ1,

(4.18) ẋ1 ≥ β

(
c− 1

β
− ε
)3

−
(
c− 1

β
− ε
)
βε

c

(
1 + 2ε− 2

c− 1

β

)
.

Observe that the right hand side of (4.18) has a positive leading order term with no

ε dependence. As ε is small, x1 soon grows larger than c−1
β

. By Lemma IV.6, the

point must be in B(f1).

Now consider partition f2. The average payoff is larger with this partition. In

fact, π1 = π2 = c − βε, and it turns out π̄ = c − βε + x3 at our initial point. This

means that initially π1 = π2 = π̄ − x3. We will now see that the state of

(4.19) π1 = π2 ≤ π̄ − x3

must persist forever because it is self enforcing. Note that x1 = x2 and π1 = π2 at all

times by the symmetry of their initial conditions. We can plug in π̄−x3 = cxS+2πixi

with i ∈ {1, 2} and then rewrite equation (4.19) as

(4.20) πi (1− 2xi) ≤ cxS.
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We now compare time derivatives of both sides of inequality (4.20) and show cẋS >

π̇i (1− 2xi) + πi (−2ẋi). In particular, π̇i < 0 because of inequality (4.19) itself, and

clearly 1 − 2xi > 0. It remains to show cẋS + 2πiẋi ≥ 0. We have c > πi > 0, so

it is sufficient to show ẋS + 2ẋi ≥ 0. And, recognizing that
∑

j∈A ẋj = 0, it is fine

to show ẋ3 + ẋP ≤ 0. In the proof of Theorem IV.12, we show this will be negative

as long as π̄ > 1. We know π̄ > cxS, and we know xS has been increasing because

c > π̄. (To check this last inequality, just examine the formula for the average payoff

and recall that we have already argued that c > πi in our persistent state.) Finally,

we obtain

cxS(0) = (c− βε)
(

1 + 2ε− 2
c− 1

β

)
= c− 2c

β
(c− 1) +O(ε) > 1,

using in the last step the facts that ε is small and 2c < β. Because the average

payoff always remains above the payoff to either of the effective actions, the effective

actions become rarer, and it follows that the initial point is not in B(f2).
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CHAPTER V

Why Learning Doesn’t Add Up: Equilibrium Selection and
Compositions of Learning Rules

5.1 Introduction

Models of individual learning in games often produce the same dynamical systems

as population-based evolutionary adjustment processes. For example, an appropriate

form of reinforcement learning leads to the replicator dynamics (Borgers and Sarin

1997), originally proposed by theoretical biologists to describe the growth of a haploid

population (Taylor and Jonker 1978). Similarly, the best response dynamics (Gilboa

and Matsui 1991) can arise as the continuous time limit of a belief-based learning rule

like fictitious play or in a population of myopic best responders. The models that

lead to the replicator dynamics and those that lead to the best response dynamics

make mutually incompatible assumptions about how strategies are updated, offering

no middle ground.

In this chapter, we adopt a population-based framework and propose three ways

to combine best response and replicator dynamics into tractable composite rules. We

find that a population is sensitive to the presence of more than one learning style,

as well as to how the learning rules are put together, in that composite learning

dynamics may have basins of attraction that share little overlap with each other or

with the homogeneous learning dynamics. We focus especially on a straightforward
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linear combination of best response and replicator learning rules, which we show

to select an equilibrium not attained by homogeneous use of either pure rule in

certain matrix games. We then show for specific classes of coordination games that

introducing even arbitrarily small weight on an alternative learning rule causes the

resulting linear combination of rules to locate a different equilibrium than the pre-

existing pure rule. A common feature of the classes of games we consider is the

existence of a temporary initial best response – an action that looks good at first,

but that cannot survive against itself. The temptation to try such an action instead

of an equilibrium action creates complex dynamics, which allow the effects of subtle

differences in learning styles to build up over time.

Categorization of individual learning rules as belief-based or reinforcement learn-

ing reflects an idealization that people follow all-or-nothing rules. It makes sense that

people consider both what has been successful in the past and what might be a good

response to the expected opponent’s play. The breakthrough of experience weighted

attraction (Camerer and Ho 1999), a learning model with strong experimental sup-

port, is to combine belief-based and reinforcement learning. The combination is not

simply a weighted average though. While experience weighted attraction does reduce

to these particular learning models as special cases, it is nonlinear in the parameters

that distinguish them. This allows experience weighted attraction to capture the

best parts of both models. It also means we have multiple free parameters and a

complicated formula that often hinders theoretical analysis. By adopting the popu-

lation learning framework in this chapter, we try to capture the spirit of experience

weighted attraction while retaining analytical tractability.

Learning in games, at the population level, can be modeled by dynamic adjust-

ment processes (Swinkels 1993, Fudenberg and Levine 1998). We might think of



129

best response dynamics as capturing a population of optimizers and replicator dy-

namics a population of imitators. In best response dynamics, players choose myopic

best responses, ignoring the possibility that the population mixed strategy may soon

change. A population of players slowly moves toward a best response to the current

state of the population. For a matrix game, the resulting flows are piecewise linear.

In replicator dynamics, players copy others’ strategies, so more successful actions

spread in the population. The dynamic is less greedy than best response dynamics:

the population doesn’t move straight to the best action but rather in a weighted

direction of all above average actions. Actions initially not present in the population

will never be tried with replicator dynamics. These population dynamics can be

derived from the revision protocols that describe how the individual agents learn.

There is reason to think that optimizers and imitators coexist in the same pop-

ulation (Conlisk, 1980). We might also think that each agent relies on a hybrid of

learning styles, as suggested by the success of experience weighted attraction. In this

chapter, we explore three different ways of combining revision protocols that lead to

best response and replicator dynamics respectively, from rules in which either learn-

ing protocol may be tried with some positive probability to a rule that incorporates

aspects of both.

We first consider a population in which agents sometimes use a revision protocol

that generates best response dynamics and other times use a protocol that generates

replicator dynamics. With this composition, all the agents use the same rule, and this

rule is a linear combination of the best response and replicator protocols. We then

consider a population in which some agents always use the best response protocol

and others always use the replicator protocol. This scenario has each agent use a

pure rule, but allows different agents to use different protocols. These two versions



130

allow us to compare different sources for the heterogeneity of learning styles in the

population. Lastly, we also consider a population in which all agents use a hybrid

revision protocol that is in between the ones that generate pure best response and

pure replicator dynamics. In all cases, an entirely new learning dynamic emerges.

We compare equilibrium selection following from the various compositions of

learning styles as well as from pure best response and replicator dynamics, and

we find they may be markedly different from each other in their long-run behavior.

For specific classes of coordination games, we show that introducing even a small

presence of a second revision protocol into a population changes which equilibrium

the population locates. Moreover, combining different types of learning rules in the

same population leads to still different behavior from allowing agents to use a hybrid

rule. These results underscore the importance of accurately determining exactly how

agents learn.

Our results build off of Chapter III and IV’s comparisons of basins of attraction

and equilibrium selection under the best response dynamics and replicator dynamics

(Golman and Page 2008a, Golman and Page 2008b). The contribution of this chapter

is to explore the behavior of compositions of these dynamics. We find that hetero-

geneity across learning styles may bring about new outcomes not foreseeable from

analysis of the homogeneous dynamics induced by the component learning styles.

Our treatment of equilibrium selection relies on analysis of the deterministic dy-

namical system. The learning rules define paths through the strategy space that

attain equilibria in the games we consider. The equilibrium that is selected is thus

a function of the initial population mixed strategy point and the learning dynamic.

Nevertheless, we obtain results that hold throughout the interior of the strategy space

by focusing on cases in which the basin of attraction of a particular equilibrium ap-
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proaches the entire space. Our approach does not assume random shocks that allow

the population to move from one equilibrium to another, as in the stochastic stability

literature (Foster and Young 1990, Young 1993, Kandori et al. 1993, Ellison 2000,

Binmore and Samuelson 1999). But, our findings complement that sort of ultralong

run analysis because an equilibrium whose basin of attraction approaches the entire

strategy space will be uniquely stochastically stable.

The rest of the chapter is organized as follows. The next section defines the

revision protocols and the learning dynamics derived from them. In Section 5.3,

we present our results comparing equilibrium selection of these rules. Section 5.4

concludes with a discussion of the importance of models that capture heterogeneity

of learning styles. The Appendix contains proofs.

5.2 The Learning Dynamics

We assume a symmetric game, with agents recurrently randomly matched from

a single population. The set of actions is finite, A = {1, . . . , n}. As we have done

in previous chapters, we let xi refer to the fraction of the society choosing action

i ∈ A. The population mixed strategy x = (x1, . . . , xn) is an element of 4n−1, the

(n − 1)-dimensional simplex where xi ≥ 0 for all i and
∑

i xi = 1. We denote by

πi the payoff to action i. As we have mentioned in previous chapters, payoffs are a

function of the population mixed strategy, πi : 4n−1 → <, but we omit the function’s

argument for ease of notation, writing πi in place of πi(x). We denote the vector of

these payoffs by ~π = (π1, . . . , πn). We let BR(x) be the set of best replies to x,

BR(x) = arg max
v∈4n−1

v · ~π.

Best response dynamics can be written as

(5.1) ẋ ∈ BR(x)− x.



132

The best response dynamics describe a population always moving toward a best

response to its current state. The replicator dynamics are

(5.2) ẋi = xi(πi − π̄)

where π̄ = x · ~π is the average payoff.

The best response dynamics and replicator dynamics are defined above in terms

of the behavior of the population as a whole in the limit as the number of agents are

large. But these dynamics can also arise by defining the behavior of the individual

agents. Sandholm (2009) envisions a population of agents equipped with Poisson

alarm clocks and allowed to switch strategies when their clocks ring. A revision

protocol determines the probability of switching to another action as a function of

the population state and the current payoffs. The expected motion of this stochastic

process defines the learning dynamic. The best response dynamics, for example,

emerges when each individual agent switches to the action with highest current

payoff when its alarm goes off.

On its face, the replicator dynamics describes a population in which agents can

survive and replicate proportionally to their current payoff. Thus, agents taking

actions with below average payoff die off, while agents taking actions with above

average payoff replicate. But the replicator dynamics can also emerge when individ-

ual agents follow the proportional imitation revision protocol (Schlag 1998). When

an agent’s alarm goes off, the agent picks an opponent at random and observes this

opponent’s action. (The selection of an opponent to observe is entirely independent

of the random matching of opponents to play against.1) The agent observes action

j with probability xj. The agent then switches to the opponent’s strategy only if

the opponent’s payoff is higher than his own, and even then only with probability
1See Boylan (1992) and Gilboa and Matsui (1992) for justification of random matching in a countably infinite

population and Alos-Ferrer (1999) for the case of a continuum of agents.
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proportional to the payoff difference. Thus, the probability of a switch from action

i to action j is

xj(πj − πi)
πmax − πmin

if πj > πi

and 0 otherwise.

It is worth noting that superficially different payoff matrices may generate the

same flows for these learning dynamics. Specifically, the paths of the best response

and replicator dynamics are invariant under positive affine transformations of the

payoff matrix. (Transformations of payoffs that do not affect the dynamics can still

determine which of multiple equilibria is payoff dominant. Thus, this traditional

equilibrium selection criterion is unrelated to the dynamical equilibrium selection

we presently consider.) Invariance of the best response dynamics is trivial – best

responses do not change when a constant is added to all payoffs or when a positive

constant is multiplied by all payoffs. Under replicator dynamics, the transformation

affects πi and π̄ the same way. If a constant is added to all the payoffs, πi − π̄

remains invariant. If the payoffs are all multiplied by α > 0, then ẋ becomes αẋ.

This affects the speed of the flow, but not the path the dynamic takes. Flows are

considered identical if their paths are the same, because to apply a learning dynamic

in a practical situation, the time parameter must be scaled to the physical time.

When trying to combine best response and replicator dynamics, the time pa-

rameter becomes relevant. The first step is to put both learning dynamics on the

same footing. The framework we adopt is a generalized imitation revision protocol.

When an alarm clock rings, the agent chooses at random an opponent to observe

and switches to the opponent’s strategy with probability q that depends on the op-

ponent’s payoff. If q(πj) =
πj−πmin

πmax−πmin
, the revision protocol generates the replicator

dynamics, with a continual rescaling of time. For this replicator protocol, the proba-
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bility of imitation increases linearly in the observed payoff. Alternatively, if q(πj) = 1

when πj = πmax and 0 otherwise, the revision protocol generates the best response

dynamics,2 with a continual rescaling of time and the danger that the dynamics

stop altogether if the best response is absent in the population. This danger can be

avoided by assuming that the initial population state is in the interior of the strategy

space, and consequently, that a best response is initially present in the population.

This best response protocol amounts to imitating only the best actions.

One natural way to combine best response and replicator dynamics is to suppose

that agents use the replicator protocol with probability p and the best response

protocol with probability 1−p. A linear combination of best response and replicator

dynamics emerges:

(5.3) ẋi = xi

[
p

πi − π̄
πmax − πmin

+ (1− p)

(
I(i)−

∑
j

I(j)xj

)]
where the best response indicator function I(i) = 1 if πi = πmax and 0 otherwise.

We can recover homogeneous use of a single learning protocol by setting p = 1 or

p = 0. With p = 1, equation (5.3) becomes

(5.4) ẋi = xi

(
πi − π̄

πmax − πmin

)
.

The factor 1
πmax−πmin

comes from the replicator revision protocol, where it is necessary

to ensure that we can interpret q as a probability, i.e., that q ≤ 1. With the appro-

priate rescaling of time, it would drop out of equation (5.4), producing the replicator

dynamics of equation (5.2). With p = 0, the linear combination dynamics (5.3)

reduces to

(5.5) ẋi = xi

(
I(i)−

∑
j

I(j)xj

)
.

2It might be fairer to say that this revision protocol generates a version of the best response dynamics, as it
can align only with a single element of the differential inclusion (equation (5.1)). This version of the best response
dynamics has the additional property that every Nash Equilibrium (even in mixed strategies) must be a steady state.
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When there is a unique best response – say action b – (which, for almost any pay-

off matrix, there is at almost every point in the simplex) equation (5.5) simplifies

to ẋ = xb (BR(x)− x). The additional factor of xb here, as compared with equa-

tion (5.1), arises from using an imitative revision protocol to generate the best re-

sponse dynamics and could be eliminated (in the interior of the strategy space) with

a rescaling of time.3

Another possibility, instead of assuming that each agent sometimes uses each pro-

tocol, is that there could be some agents who always use the best response protocol

and other agents who always use the replicator protocol. The theoretical analysis

is more complicated in this case, but by capturing heterogeneity of learning styles

across the population, the model appears more realistic. Consider a partition of the

population into subpopulations of best-responders and replicators, y and z respec-

tively. For all i, xi = yi + zi. Learning styles are fixed for all time, so
∑

i zi = ρ is

the fraction of agents using the replicator protocol, and
∑

i yi = 1− ρ is the fraction

using the best response protocol. We assume the two subpopulations are well-mixed,

both for the purposes of playing the game and for finding an agent to possibly imi-

tate. Thus, the dynamics of these two subpopulations are coupled together. For the

subpopulation learning with the replicator protocol, the following dynamics emerges:

żi =
∑
j

zjzi

(
πi − πmin

πmax − πmin

)
− zi

∑
j

zj

(
πj − πmin

πmax − πmin

)
+

∑
j

zjyi

(
πi − πmin

πmax − πmin

)
− zi

∑
j

yj

(
πj − πmin

πmax − πmin

)
.(5.6)

The first two terms of (5.6) represent learning from other members of this same

subpopulation while the last two terms represent learning through imitation of agents

who happen to be best-responders. Let π̄µ be the average payoff in subpopulation

3When there are multiple best responses, equation (5.5), adjusted for an overall factor of
P
j I(j)xj , is consistent

with (though not implied by) equation (5.1).
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µ, meaning that z · ~π = ρπ̄z and y · ~π = (1− ρ)π̄y. The dynamics (5.6) simplifies to

(5.7) żi = ρzi

(
πi − π̄z

πmax − πmin

)
+ ρyi

(
πi − πmin

πmax − πmin

)
− (1− ρ)zi

(
π̄y − πmin

πmax − πmin

)
.

For the subpopulation learning with the best response protocol, the dynamics are:

(5.8) ẏi = I(i)(1− ρ)(zi + yi)− yi
∑
j

I(j)(zj + yj).

We refer to the system defined by (5.7) and (5.8) as the two-subpopulation dynamics.4

An alternative generalization of the best response and replicator dynamics is

to consider q(πj) =
πj−πmin

πmax−πmin
if πj ≥ k(~π) and 0 otherwise. The function k(~π)

parametrizes an entire class of revision protocols. Choosing k = πmax corresponds

to the best response protocol, k = πmin to the replicator protocol, and k values in-

side this range to a hybridization of these protocols. The resulting hybrid learning

dynamics can be written as follows:

(5.9) ẋi =

 xi

(
πi−π̄

πmax−πmin
+
∑

j:πj<k(~π) xj
πj−πmin

πmax−πmin

)
if πi ≥ k(~π);

−xi
∑

j:πj≥k(~π) xj
πj−πmin

πmax−πmin
if πi < k(~π).

In a three-by-three game, this hybrid dynamics simplifies to time-scaled versions of

best response dynamics (5.5) if only one action has payoff at least k and replicator

dynamics (5.4) if two or all three actions have payoff at least k. New and interesting

behavior emerges in larger games.

5.3 Results

The first place to compare different learning rules is in the local stability of their

rest points. Best response dynamics and replicator dynamics usually have the same

asymptotic properties (Hopkins 1999). Strict pure Nash Equilibria, which we will

4We can recover homogeneous learning dynamics, as in equation (5.4) or (5.5), from the two-subpopulation
dynamics by setting ρ = 1 or ρ = 0 respectively.
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consider in this chapter, are asymptotically stable for both dynamics.5 Theorem V.1

is a straightforward result that says that stability shared by the underlying dynamics

extends to our compositions of these dynamics.

Theorem V.1. Suppose a pure Nash Equilibrium is asymptotically stable under

both best response and replicator dynamics. Then it is asymptotically stable un-

der the linear combination of these dynamics (5.3), the two-subpopulation dynam-

ics (5.7) and (5.8), and the hybrid dynamics (5.9).

Proof. Denote the equilibrium action a so that the equilibrium is xa = 1, x−a = 0.

Asymptotic stability under best response dynamics means that there is a neigh-

borhood V around the equilibrium in which action a is a best response. Let ν =

supx 6∈V xa. Define the neighborhood U ⊆ V of all points satisfying xa > ν. For

both the linear combination dynamics (5.3) and the hybrid dynamics (5.9), ẋa > 0

inside U (except right at the equilibrium, of course) because a is a best response.

The neighborhood U was defined so that such a trajectory cannot escape it. Thus,

both dynamics approach the pure Nash Equilibrium. Proving the asymptotic sta-

bility of the two-subpopulation dynamics is more involved, and this is done in the

appendix.

So, strict equilibria are asymptotically stable for the linear combination dynamics,

the two-subpopulation dynamics, and the hybrid dynamics. However, agreement of

local stability properties does not ensure similar long-run behavior. In games with

multiple equilibria, we must consider basins of attraction.

Best response dynamics and replicator dynamics often produce very similar basins

of attraction for their equilibria. However, Chapter III provides a class of three-by-

5See Hofbauer, et. al. (1979), Hofbauer (2000), Hofbauer and Sigmund (2003), and Hofbauer, et. al. (2009) for
additional stability results concerning the best response and replicator dynamics.
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three games in which these dynamics have arbitrarily different basins of attraction

(Golman and Page, 2008a). Games with such divergence between the behavior of the

replicator dynamics and the best response dynamics lend themselves to the analysis

of our composite dynamics. Intuition might lead one to believe that a combination

of best response and replicator dynamics would always share some overlap in basins

of attraction with each component rule, but this is not so. The linear combination

dynamics can be fundamentally different from its parts. Here, we identify conditions

under which best response dynamics and replicator dynamics and the linear combi-

nation of the two all have vanishing overlap in their basins of attraction at the same

time. That is, by combining a best response protocol and a replicator protocol, the

population can locate an equilibrium that neither rule could find on its own.

We begin by reviewing the notation. Let m be the Lebesgue measure on the

strategy space 4n−1. Given a vector of parameter values ~P , let G(~P ) be a class

of symmetric normal form games with payoffs that depend on those parameters.

That is, the payoff to action i against action j, πij, is a function of ~P . Then, the

expected payoff to action i given random matching with population mixed strategy

x ∈ 4n−1 is πi =
∑

j πij xj. Given a learning rule R and an equilibrium action a of

the game G(~P ), let B(R, a, ~P ) denote the basin of attraction of (xa = 1, x−a = 0).

Let R denote the replicator dynamics, B the best response dynamics, L(p) the

linear combination using the replicator protocol with probability p, S(ρ) the two-

subpopulation dynamics with ρ the fraction of the population using the replicator

protocol, and H(k) the hybrid dynamics with threshold value k(~π).
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Consider a class of symmetric games with five actions and the following payoffs:

π1 = αx5(5.10)

π2 = β − γx3 − κx4(5.11)

π3 = x3 + x4 − δx4(5.12)

π4 = 1− δ + εx4(5.13)

π5 = −λ(5.14)

where the seven parameters above depend on ~P and all are positive. Denote the set of

parameters Ξ = {α, β, γ, δ, ε, κ, λ}. If β > 1−δ, and β−γ < 1, and β−κ < 1−δ+ε,

then actions 2, 3, and 4 are all strict equilibrium actions.

The conditions on the payoff parameters in Theorem V.2 can get technical, but

they permit a simple interpretation of the game. We should think of it as a coordi-

nation game, but with a couple of extra options. Action 5 is just a bad choice. So

bad, in fact, that all other actions look good in comparison to it if an agent is using

the replicator learning protocol. While such strongly dominated strategies are often

ignored when modeling games, it’s hard to argue that incredibly stupid strategies

don’t exist, and there is both theoretical and experimental evidence that they can

affect equilibrium selection (Ochs 1995, Basov 2004). Action 1, on the other hand,

looks tempting because it can exploit action 5. It has the possibility of achieving a

much higher payoff than actions 3 and 4, and unlike action 2, its payoff is guaranteed

to be positive. In fact, action 1 is almost always the initial best response, but it’s

only a temporary best response because its payoff shrinks as agents learn to avoid

action 5. Action 2 is high risk, high reward; agents want to coordinate on it if and

only if they almost never see actions 3 or 4 played. Actions 3 and 4 are safer, with

moderate payoffs. Of the pair, action 3 would yield a slightly higher equilibrium
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payoff, whereas action 4 has the highest worst-case payoff.

In Theorem V.2, we identify conditions sufficient for the best response dynamics

to lead to everyone playing action 2, the replicator dynamics to everyone playing

action 3, and the linear combination dynamics to everyone taking action 4. This

means that the best response dynamics selects the action that is a best response to

the temporary best response; the replicator dynamics selects the action that remains

better than average as long as it spreads; and the linear combination dynamics selects

something else entirely.

Theorem V.2. Consider the class of games with payoffs given by equations (5.10)

through (5.14). Suppose the following limits hold as ~P → ~̂
P : i) λ

ι
→ ∞ for any

ι ∈ Ξ\{λ}; ii) α → ∞; iii) β → ∞; iv) γ
β
→ ∞; v) αβ

γ
→ ∞; vi) αβ

κ
→ ∞;

vii) α1−pβ
κ
→ 0; viii) δ → 0; ix) ε

δ
→ 0; and x) δ

ε

[
δ

1−δ

(
1
α

)1−p
C
]( 1−p

p
)λ

→ 0 for

any constant C. Then, for any R ∈ {B,R,L(p)},

lim
~P→ ~̂

P

4∑
i=2

m
(
B(R, i, ~P )

)
= m

(
44
)
,

i.e., the best response dynamics, the replicator dynamics, and the linear combination

dynamics almost everywhere flow to a strict equilibrium featuring action 2, 3, or 4.

Still,

lim
~P→ ~̂

P

4∑
i=2

m
(
B(B, i, ~P ) ∩B(R, i, ~P )

)
= 0

and moreover,

lim
~P→ ~̂

P

4∑
i=2

m
(
B(L(p), i, ~P ) ∩

(
B(B, i, ~P ) ∪B(R, i, ~P )

))
= 0,

i.e., all three dynamics share with each other vanishing overlap in their basins of

attraction.

Proof. See appendix.
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Not only can the linear combination dynamics differ from its component parts,

but this deviation in long-run behavior can even occur with almost all weight on

one piece of the linear combination. We now show that for a subset of the class

of three-by-three games considered in Chapter III (Golman and Page, 2008a), the

linear combination dynamics with any positive probability of using the replicator

protocol, p > 0, agrees with the pure replicator dynamics and shares vanishing

overlap in its basins of attraction with the pure best response dynamics. Thus,

the mere possibility of using the replicator protocol, however unlikely, is enough to

completely shift the long-term behavior of a population of agents using primarily the

best response protocol.

Consider a three-by-three game. We adopt the same normalization conditions as

in Chapter III (Golman and Page, 2008a). Using invariance under positive affine

transformations of the payoff matrix, we can set π3j = 0 for all j and |π11| ∈ {0, 1}.

Also without loss of generality we can renumber the three actions so that (x1 =

1, x−1 = 0) denotes the equilibrium attained by replicator dynamics and (x2 =

1, x−2 = 0) the equilibrium attained by best response dynamics. So, for j ∈ {1, 2},

i 6= j, lim~P→ ~̂
P
fjji(~P )(πjj − πij) > 0 for some functions fjji > 0. And we also have

lim~P→ ~̂
P
f321(~P )(π23 − π13) > 0 for some function f321 > 0.

Theorem V.3 identifies payoff conditions sufficient for the best response dynamics

to lead to everyone playing action 2 while the linear combination dynamics leads

to everyone taking action 1. Here again, the payoff conditions get technical, but

allow for some interpretation. The possibility that either equilibrium action may be

chosen makes the other equilibrium action unpalatable. Action 2 is subject to the

greater damage in this regard, but it is also the best response if everybody takes

action 3, the temporary initial best response. The best response dynamics start out
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heading straight for the corner featuring action 3, and eventually action 2 becomes

the best response and spreads. The linear combination dynamics, just a touch less

greedy, do not wipe out action 1 quickly enough while the temporary best response

is spreading, and when action 3 becomes unsustainable, it is action 1 that spreads.

Thus, we find that the linear combination dynamics and the best response dynamics

share vanishing overlap in their basins of attraction even if the linear combination

dynamics is weighted heavily towards the best response dynamics.

Theorem V.3. Consider an arbitrary three-by-three payoff matrix with the normal-

ization conditions described above. For any p > 0,

lim
~P→ ~̂

P

2∑
i=1

m
(
B(L(p), i, ~P ) ∩B(B, i, ~P )

)
= 0

if: i) π23 > 0; ii) π13 = 0; iii) lim~P→ ~̂
P
π12 = −∞; iv) lim~P→ ~̂

P

π21

(−π12)d
= −∞ for all

d; v) lim~P→ ~̂
P

π21

π22
= −∞; and vi) lim~P→ ~̂

P

π21

π23(−π12)d
= −∞ for all d.

Proof. See appendix.

Theorem V.3 identifies conditions under which a linear combination of best re-

sponse and replicator dynamics, even one in which the weight on replicator dynamics

is arbitrarily small, agrees with the pure replicator dynamics and disagrees with the

pure best response dynamics. Conversely, we now identify conditions under which

the linear combination with arbitrarily small weight on best response dynamics still

agrees with pure best response dynamics and disagrees with pure replicator dynam-

ics.

We consider a symmetric matrix game with four actions, selected from Chapter

IV’s class of multi-action stag hunt games in which best response dynamics and

replicator dynamics have vanishing overlap in their basins of attraction (Golman
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and Page 2008b). The payoff matrix is

(5.15)



c c c c

1 β + 1 1 1

0 0 0 γ

0 0 −γ 0


where β and γ both depend on ~P , and c is a constant greater than 1. The first action

is safe, like hunting a hare. The second action represents an attempt to cooperate,

such as hunting a stag. For this action to be successful, it requires coordination.

The third action is predatory toward the fourth action, which can be thought of as

a failed attempt at cooperation. The parameter γ can thus be interpreted as the

potential spoils of predation and β as the benefits of cooperation.

Chapter IV analyzes the best response dynamics and the replicator dynamics

for this game and finds that if lim~P→ ~̂
P
β = ∞ and lim~P→ ~̂

P

γ
β

= ∞, then for ~P

near
~̂
P , best response dynamics flows to an equilibrium in which all players choose

action 1 (safe action), but replicator dynamics flows to an equilibrium in which all

players choose action 2 (cooperation).6 In Theorem V.4 here, we find that the linear

combination dynamics flows to the equilibrium featuring action 1, given a stronger

payoff condition regarding how severely the benefits to predation overshadow the

benefits to cooperation. Just the smallest chance of best responding is enough to

bring about a coordination failure: the population turns away from cooperation while

predation – the temporary initial best response – spreads; then, when predation

becomes unsustainable, cooperation is no longer attractive. The result is that the

linear combination dynamics weighted almost entirely towards the replicator protocol

6The game we consider here has payoffs slightly changed from the games we considered in Chapter IV. This minor
change in payoffs does not affect our analysis. An earlier draft of Chapter IV proved the same result for a payoff
structure that does align with the game we now consider (Golman and Page, 2008b).
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still shares vanishing overlap in its basins of attraction with the pure replicator

dynamics.

Theorem V.4. Consider the payoff matrix given by (5.15). If lim~P→ ~̂
P
β = ∞ and

lim~P→ ~̂
P

γ
βd

=∞ for all d,7 then for any p < 1,

lim
~P→ ~̂

P

2∑
i=1

m
(
B(L(p), i, ~P ) ∩B(R, i, ~P )

)
= 0.

Proof. See appendix.

Theorem V.4 illustrates that introducing even the smallest possibility of best

responding into a population obeying the replicator dynamics can drastically change

long-term behavior, shifting the population from an equilibrium in which everybody

cooperates to one in which everybody takes the safe action in isolation.

With twice the variables, the two-subpopulation dynamics is much more compli-

cated than the linear combination dynamics, but for this game we can show they

behave alike. They select the same equilibrium as the best response dynamics does

because the replicator protocol tends to promote imitating any action other than

the fourth (the worst response against all profiles) while the best response protocol

is more directed and thus has more control of the population. Theorem V.5, which

says the two-subpopulation dynamics agrees with the linear combination dynamics

on almost all of the strategy space, is proved by showing the two-subpopulation

dynamics almost always selects the equilibrium (1, 0, 0, 0). This holds regardless of

the relative sizes of the subpopulations, just as according to Theorem V.4 the linear

combination dynamics finds this equilibrium no matter what probability weight is

placed on each protocol.
7If γ is only polynomially bigger than β, then it appears that there is a nonvanishing region near the equilibrium

featuring action 2 in which the linear combination dynamics with p > 0 (i.e., some positive weight on the replicator
protocol) finds this equilibrium, in agreement with the pure replicator dynamics.
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Theorem V.5. Consider the payoff matrix given by (5.15). Fix ρ < 1 and p < 1.

If lim~P→ ~̂
P
β =∞ and lim~P→ ~̂

P

γ
βd

=∞ for all d, then

lim
~P→ ~̂

P

m
(
B(S(ρ), 1, ~P ) ∩B(L(p), 1, ~P )

)
= m

(
43
)
.

Proof. See appendix.

Staying with this same game, we now show that the hybrid dynamics can disagree

with the linear combination dynamics and the two-subpopulation dynamics. We con-

sider various threshold value functions, including constant functions k(~π) = K and

convex combinations of maximum and minimum payoffs k(~π) = απmin +(1−α)πmax.

The hybrid dynamics almost always finds (0, 1, 0, 0) with these simple threshold value

functions, but for other functions, such as k(~π) = max{π1, π3}, the hybrid dynamics

would agree with the linear combination dynamics, the two-subpopulation dynamics,

and the best response dynamics.

Theorem V.6. Consider the payoff matrix given by (5.15). If lim~P→ ~̂
P
β = ∞ and

lim~P→ ~̂
P

γ
β

=∞, then when k(~π) = K or k(~π) = απmin + (1− α)πmax, α > 0,

lim
~P→ ~̂

P

2∑
i=1

m
(
B(H(k), i, ~P ) ∩B(B, i, ~P )

)
= 0.

Proof. See appendix.

Theorems V.4, V.5, and V.6 imply the following corollary:

Corollary V.7. Consider the payoff matrix given by (5.15). If lim~P→ ~̂
P
β = ∞

and lim~P→ ~̂
P

γ
βd

= ∞ for all d, then for any p < 1, any ρ < 1, and k(~π) = K or
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k(~π) = απmin + (1− α)πmax, α > 0,

lim
~P→ ~̂

P

2∑
i=1

m
(
B(L(p), i, ~P ) ∩B(H(k), i, ~P )

)
= 0

and

lim
~P→ ~̂

P

2∑
i=1

m
(
B(S(ρ), i, ~P ) ∩B(H(k), i, ~P )

)
= 0.

Theorem V.6 is telling us that in this stag hunt game, the hybrid dynamics with

a threshold value very close to the parameter which reduces it to the best response

dynamics can nonetheless share vanishing overlap in its basins of attraction with the

best response dynamics. Corollary V.7 then tells us that in this case, the hybrid

dynamics reaches a different equilibrium than the linear combination dynamics and

the two-subpopulation dynamics. Corollary V.7 thus makes it clear that the presence

of multiple learning rules in a population produces behavior that is entirely different

from that generated by merging these learning styles into a single hybrid rule. And

all three methods of combining learning rules within a population can lead to new

predictions for long-term behavior.

5.4 Discussion

In a large population of agents, we should expect heterogeneity of behavior (Hommes

2006, Kirman 2006).8 Camerer and Ho (1999) correctly recognized that individu-

als may combine diverse basic learning rules. One might infer that the dynamics

produced by a hybrid rule like theirs corresponds to the average dynamics of a het-

erogeneous population of agents who use one rule or the other. Here we see that

might not be the case.

8Heterogeneity can take many forms. Ely and Sandholm (2005) consider agents who all use a common learning
rule, but who have diverse preferences, i.e., heterogeneous payoff functions.
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We also see that for a specific class of coordination games, the outcome of a learn-

ing dynamic that is a convex combination of best response dynamics and replicator

dynamics is completely different than a convex combination of the outcomes pro-

duced by these individual rules. The simple assumption that the combination of two

learning dynamics behaves like one of its component pieces is wrong. The explana-

tion is that in games with many actions and multiple equilibria, the trajectory of

the combination dynamics can enter parts of the strategy space that would not be

approached by either of the component dynamics. Thus, the basins of attraction can

be entirely reshaped when agents use multiple learning rules.

These results demonstrate that heterogeneity of learning styles matters. The

presence of multiple learning styles in the same population, and the specifics of how

they all come into play, affects equilibrium selection. The fact that hybridizations of

diverse learning rules can produce aggregate behavior that differs from the behavior

produced by each individual learning rule as well as from the behavior of a population

of homogeneous agents using the “average” learning rule suggests that one-size-fits-

all estimations of learning rules and learning rates may be inaccurate.

Theorems V.3, V.4, and V.5 in this chapter focus on the extreme cases in which

rare changes in how agents learn drastically alter population behavior. In many

other classes of games, behavior may change more gradually with the makeup of

the population. In general, we should expect long term behavior to be sensitive

to different learning styles, so a complete analysis of a game requires an accurate

determination of how the players learn.
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5.5 Appendix

Completing the Proof of Theorem V.1.

To show asymptotic stability of the two-subpopulation dynamics, we proceed from

the constructs of the first part of the proof and consider a neighborhood around the

equilibrium smaller than U . Let ω = ν
2

+
√(

ν
2

)2
+ ρ(1− ν). Note that ω > ν and

ω > ρ for 0 < ρ < 1, and ω < 1 because ν < 1. Define W as the neighborhood

around the equilibrium satisfying xa > ω. We will show that trajectories starting in

W approach the equilibrium.

Because W ⊂ U , we know that a is a best response in this neighborhood, and

because of the asymptotic stability of the replicator dynamics, we know it is the

unique best response except possibly right at the equilibrium. Looking at (5.8), we

see that

ẏa = (1− ρ− ya)(za + ya)

≥ ya(1− ρ− ya)(5.16)

as long as a remains the best response. Solving this logistic differential inequality,

we get

(5.17) ya ≥
(1− ρ)ya(0)e(1−ρ)t

1− ρ− ya(0) + ya(0)e(1−ρ)t
.

The dynamics of the other subpopulation, (5.7), gives us

(5.18) ża ≥ ρya − (1− ρ)za.

Plugging in (5.17), this becomes

ża ≥
ρ(1− ρ)ya(0)e(1−ρ)t

1− ρ− ya(0) + ya(0)e(1−ρ)t
− (1− ρ)za.
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Multiplying through by e(1−ρ)t produces

d

dt

(
e(1−ρ)tza

)
≥ ρ(1− ρ)ya(0)e2(1−ρ)t

1− ρ− ya(0) + ya(0)e(1−ρ)t
,

which can be integrated to find

za ≥

za(0)e−(1−ρ)t+ρ
(
1− e−(1−ρ)t

)
− ρ(1− ρ− ya(0))

ya(0)
e−(1−ρ)t ln

(
1− ρ− ya(0) + ya(0)e(1−ρ)t

1− ρ

)
.

We can loosen this lower bound slightly to simplify it as

(5.19) za ≥ ρ− (ρ− za(0)) e−(1−ρ)t − ρ(1− ρ)(1− ρ− ya(0))

ya(0)
te−(1−ρ)t

Using these lower bounds on ya and za, we now argue that a remains the best

response forever. This justifies the use of these bounds for all t. The first order

condition for minimizing the right hand side of (5.19) over time is

t =
1

1− ρ

(
1− ya(0) (ρ− za(0))

ρ (1− ρ− ya(0))

)
as long as this is non-negative. In this case,

za ≥ ρ− ρ (1− ρ− ya(0))

ya(0)
e
ya(0)(ρ−za(0))
ρ(1−ρ−ya(0))

−1

and ya(0)(ρ−za(0))
ρ(1−ρ−ya(0))

≤ 1. Otherwise, the minimum is za(0) right at t = 0. It is easy to

see that ya ≥ ya(0) as well. When we have xa(t) ≥ xa(0), the trajectory never leaves

W and it’s obvious a is always the best response. When the first order condition on

za is binding, we have xa(t) ≥ ya(0) + ρ− ρ(1−ρ−ya(0))
ya(0)

. Because the initial point is in

W , ya(0) > ω − za(0) ≥ ω − ρ. So

(5.20) xa(t) > ω − ρ(1− ω)

ω − ρ
.

We chose ω to make the right hand side of (5.20) equal to ν. This means the

trajectory stays inside U , ensuring that a remains the best response.
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Having justified our lower bounds on za and ya for all time, it only remains

to observe that as t → ∞ these bounds (5.19) and (5.17) approach ρ and 1 − ρ

respectively.

Proof of Theorem V.2.

Take ~P close to
~̂
P . We first show that from almost any starting point in the

strategy space, the best response dynamics locates the equilibrium in which only

action 2 is played. Observe that if action 2 is ever the best response, its payoff

increases while the other payoffs do not, because xi decreases for i 6= 2. This implies

that if action 2 is the best response, it remains so forever.

Observe that π3 ≤ 1 and π4 ≤ 1 everywhere. Consider starting points that satisfy

x5(0) >
γ

αβ
(5.21)

x5(0) >
κ

αβ
(5.22)

x5(0) >
1

β
,(5.23)

conditions that are met almost everywhere as a result of (v), (vi), and (iii) respec-

tively. If action 2 is not initially the best response, it must be action 1, because

inequality (5.21) and condition (iv) imply that x5(0) > 1
α

and so π1 > 1. In this

case, all xi, i 6= 1, have the same relative decay rate. While xi ≥ min
{
β
γ
, β
κ

}
xi(0),

π1 ≥ αmin

{
β

γ
,
β

κ

}
x5(0)

> 1.

This last step follows from inequalities (5.21) and (5.22). If xi is to reach this lower

bound, at the same time

π2 ≥ β (1− x3(0)− x4(0))

> 1,
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the last step following from inequality (5.23). Thus, π2 grows above π3 and π4 before

π1 falls to that level. Eventually, action 2 must become the best response, and the

dynamics heads towards it thereafter.

We now show that the replicator dynamics leads to the equilibrium in which action

3 is always played. Under the replicator dynamics,

ẋ3 = x3

[
x3(1− x3) + (1− δ)x4(1− x3)− (1− δ)x4 − εx2

4 + (γx3 + κx4 − β)x2+

λx5 − αx5x1]

= x3

[
x3(x1 + x2 + x5) + δx3x4 − εx2

4 + (γx3 + κx4 − β)x2 + λx5 − αx5x1

]
and we claim this is positive. We need to restrict to starting points that satisfy

x3(0) >
ε

δ
(5.24)

x3(0) >
β

γ
,(5.25)

and conditions (ix) and (iv) ensure that these inequalities hold almost everywhere.

Inequality (5.24) implies that δx3x4 − εx2
4 > 0 and (5.25) that γx3 + κx4 − β > 0.

We have λx5 − αx5x1 > 0 from condition (i). Thus, ẋ3 > 0 under the replicator

dynamics.

Lastly, we show that the linear combination dynamics finds the equilibrium in

which everyone takes action 4. Condition (i) guarantees that π5 is always πmin. Due

to condition (vii), almost all initial points satisfy

(5.26) x4(0) >
α1−pβ

κ
.

Among other things, this means that π2 < 0 initially. Assuming additionally that

x5(0) > 1
α

, as condition (ii) allows us to do, π1 = πmax initially. While this remains
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the case, the linear combination dynamics yield

ẋ1 = x1

(
p
αx5 − π̄
λ+ αx5

+ (1− p)(1− x1)

)
(5.27)

ẋ3 = x3

(
p
x3 + (1− δ)x4 − π̄

λ+ αx5

− (1− p)x1

)
(5.28)

ẋ4 = x4

(
p

1− δ + εx4 − π̄
λ+ αx5

− (1− p)x1

)
(5.29)

ẋ5 = x5

(
p
−λ− π̄
λ+ αx5

− (1− p)x1

)
.(5.30)

While x5 >
1

λ−α and x4 >
β
κ
, π̄ < 0, and we have the following bounds:

ẋ1 > (1− p)x1(1− x1)(5.31)

ẋ3 > −(1− p)x1x3(5.32)

ẋ4 > −(1− p)x1x4(5.33)

ẋ5 > −x5.(5.34)

Also note that

−λ− π̄
λ+ αx5

<
−λ(1− x5) + (γx3 + κx4)x2 − αx5x1

λ+ αx5

<
(−λ− αx5)x1 + (−λ+ γx3 + κx4)x2

λ+ αx5

< −x1.

So we can bound the left hand side of equation (5.30),

(5.35) ẋ5 < −x1x5.
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So

x1(t) >
1

1 + 1−x1(0)
x1(0)

e−(1−p)t
(5.36)

x3(t) > x3(0)e−(1−p)
R t
0 x1(s)ds(5.37)

x4(t) > x4(0)e−(1−p)
R t
0 x1(s)ds(5.38)

x5(t) < x5(0)e−
R t
0 x1(s)ds(5.39)

x5(t) > x5(0)e−t.(5.40)

By condition (viii), almost all initial points satisfy x1(0) > δ
1−δ . Observe that

π4 > π3 + (1− δ)x1 − δx3. As long as the dynamics as described by equation (5.27)

apply, x1(t) ≥ x1(0), so π4(t) > π3(t).

While x5(t) > 1−δ
α

, inequality (5.39) implies e−
R t
0 x1(s)ds > 1−δ

αx5(0)
. So, using in-

equality (5.38), x4(t) > x4(0)
(

1−δ
αx5(0)

)1−p
. By condition (viii), 1 − δ > x5(0) almost

everywhere, and by inequality (5.26), this simplifies to x4(t) > β
κ
. So π2(t) < 0 as

long as x5(t) > 1−δ
α

.

Let tc = t : π1(t) = π4(t). Thus, x5(tc) >
1−δ
α

. This means π4(t) > π2(t) and

π4(t) > π3(t) for all t ≤ tc. The dynamics described by equations (5.31) through (5.35)

hold until tc, at which point π4 becomes πmax.

Because π4(t) > π3(t) for all t ≤ tc, we can also conclude that

(5.41)
x4(tc)

x4(0)
>
x3(tc)

x3(0)
.

We know that x5(tc) <
1
α

, too. Inequality (5.40) then implies e−tc < 1
αx5(0)

, and

using inequality (5.36), we come to

(5.42) x1(tc) >
1

1 + 1−x1(0)
x1(0)

(
1

αx5(0)

)1−p .
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After tc, while π4 remains πmax, the linear combination dynamics yield

ẋ1 = x1

(
p
π1 − π̄
λ+ π4

− (1− p)x4

)
ẋ3 = x3

(
p
π3 − π̄
λ+ π4

− (1− p)x4

)
ẋ4 = x4

(
p
π4 − π̄
λ+ π4

+ (1− p)(1− x4)

)
.

Let

f(t) = p
π3 − π̄
λ+ π4

− (1− p)x4,

so that ẋ3 = x3 f(t). For t ≥ tc,

(5.43) x3(t) = x3(tc)e
R t
tc
f(s)ds.

Because π3 ≤ 1 and π1 ≥ 0, we know that ẋ1 ≥ x1

(
f(t)− p 1

λ

)
. So

(5.44) x1(t) ≥ x1(tc)e
R t
tc
f(s)ds · e−

p
λ

(t−tc).

As π4 > π3, we know ẋ4 > x4 (f(t) + 1− p), and

(5.45) x4(t) ≥ x4(tc)e
R t
tc
f(s)ds · e(1−p)(t−tc).

Recall that π4 > π3 if (1−δ)x1 > δx3. Putting together equations (5.43) and (5.44),

this holds as long as (1−δ)x1(tc)e
− p
λ

(t−tc) > δ(1−x1(tc)). Plugging in inequality (5.42)

and arranging terms, we find that π4 > π3 if

(5.46) e−(t−tc) >

[
δ

1− δ
1− x1(0)

x1(0)

(
1

αx5(0)

)1−p
]λ
p

.

Note that we also obtain π4 > π3 if εx4 > δx3. Putting together equations (5.43),

(5.45) and (5.41), we find that this holds when εx4(0)e(1−p)(t−tc) > δx3(0). Arranging

terms, we obtain π4 > π3 when

(5.47) e−(t−tc) <

(
εx4(0)

δx3(0)

) 1
1−p

.
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By combining equations (5.46) and (5.47), we can be sure π4 > π3 for all t if

(5.48)

(
εx4(0)

δx3(0)

) 1
1−p

>

[
δ

1− δ
1− x1(0)

x1(0)

(
1

αx5(0)

)1−p
]λ
p

.

It follows from condition (x) that inequality (5.48) holds almost everywhere in the

strategy space.

While π4 = πmax, obviously x4 is increasing, and so π2 remains negative for all t

after tc. Thus, action 4 remains the best response forever, and the linear combination

dynamics locates the equilibrium in which only action 4 is played.

Proof of Theorem V.3.

The conditions in the theorem satisfy a more general set of conditions that Chapter

III shows to be sufficient for best response dynamics to find (0, 1, 0) from almost any

initial point in the strategy space (Golman and Page, 2008a). Here, we show that

the linear combination of dynamics finds (1, 0, 0) from almost any initial point.

For ~P near enough to
~̂
P , any initial point in the interior of the strategy space

satisfies x2 >
1
−π12

and x1 >
C(−π12)+π22+π23

−π21
, with C > 1. The first inequality follows

from condition (iii) and the second from conditions (iv), (v), and (vi). The first

inequality implies that initially π1 < 0. From the second, we have π21x1 +π22 +π23 <

C π12, so initially π2 < C π1. By our normalization condition, π3 = 0 always. Thus,

we have established that initially πmax = 0 and πmin = π2. While this remains the

case, the linear combination dynamics from equation (5.3) can be written as:

ẋ1 = x1

(
p
π1(1− x1)− π2x2

−π2

− (1− p)x3

)
= x1

(
p

(
1− π1

π2

)
(1− x1)− x3

)
(5.49)

ẋ2 = x2

(
p
−π1x1 + π2(1− x2)

−π2

− (1− p)x3

)
= x2

(
−p
(

1− π1

π2

)
x1 − x3

)
.(5.50)



156

These equations hold until π1 = 0 or π1 = π2, and we now show that π1 = 0 occurs

first, even before π1

π2
= 1

C
, for almost all initial points.

We can put a lower bound on the speed at which x2 decays, ẋ2 < −x2x3. Thus,

we have an upper bound on the fraction of the population taking action 2,

x2(t) < x2(0) e−
R t
0 x3(s)ds.

While π1

π2
< 1

C
, we can place an upper bound on the speed at which x1 decays,

ẋ1 > x1x3

(
p(1− 1

C
)− 1

)
. Thus,

x1(t) > x1(0)
(
e−

R t
0 x3(s)ds

)1−p(1− 1
C

)

.

Putting these equations together, note that

x1(t)

x2(t)
>
x1(0)

x2(0)

(
e−

R t
0 x3(s)ds

)−p(1− 1
C

)

.

Using the normalization condition π11 = 1 as well as condition (ii), we find that

π1 ≥ 0 if x1

x2
≥ −π12, and if differential equations (5.49) and (5.50) were to hold

indefinitely, that would happen when

x1(0)

x2(0)

(
e−

R t
0 x3(s)ds

)−p(1− 1
C

)

≥ −π12.

Rearranging terms, we find that π1 ≥ 0 when

e−
R t
0 x3(s)ds ≤

(
x2(0)

x1(0)
(−π12)

) 1

−p(1− 1
C

)

.

Thus, π1 would hit 0 while

x1(t) > x1(0)

(
x2(0)

x1(0)
(−π12)

) 1−p(1− 1
C

)

−p(1− 1
C

)

.

This simplifies to

x1(t) > x1(0)

(
x2(0)

x1(0)
(−π12)

)1− 1

p(1− 1
C

)

.
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On the other hand, π1

π2
< 1

C
as long as C π12 > π21x1 + π22x2 + π23 or equivalently

x1 >
C π12−π23

π21+π22
x2
x1

. Recognizing that x2(t)
x1(t)

< x2(0)
x1(0)

, we find that this holds if x1(t) >

C(−π12)+π23

−π21−π22
x2(0)
x1(0)

. We can be sure π1 hits 0 before π1

π2
= 1

C
if

(5.51) x1(0)

(
x2(0)

x1(0)
(−π12)

)1− 1

p(1− 1
C

)

>
C(−π12) + π23

−π21 − π22
x2(0)
x1(0)

.

For ~P near enough to
~̂
P , inequality (5.51) will hold for any interior initial point,

because it holds whenever the following three inequalities apply: x2(0)
x1(0)

< −π21

2π22
; x2(0)
x1(0)

<

−π12; and x1(0) > 2(C(−π12)+π23) (−π12)d

−π21
where d = 2

(
1

p(1− 1
C

)
− 1
)

. The first follows

from condition (v), the second from condition (iii), and the last from conditions (iv)

and (vi).

When π1 exceeds 0, π1 > π3 > π2, and it remains to show that this ordering

remains thereafter. The ordering implies that ẋ1 > 0 and ẋ2 < 0, which in turn

implies that π1 is increasing. If π2 were to approach π3, then ẋ3 would become

negative, and in turn π2 would decrease. Thus, once π1 exceeds 0, x1 is forever

increasing.

Proof of Theorem V.4.

We must show that the linear combination of dynamics finds (1, 0, 0, 0) from al-

most any initial point.

For ~P near enough to
~̂
P , any initial point in the interior of the strategy space

satisfies the following six inequalities:

(5.52) γx4(0) > β + 1

(5.53) (1− p)x3(0)− p β + 1

γx3(0)
> 0

(5.54) x4(0) >

(
2β

c− 1

)d
c

γ
where d =

1

(1− p)x3(0)− p β+1
γx3(0)
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(5.55)
x3(0)

(
γx4(0)
c

)1−p

1− x3(0) + x3(0)
(
γx4(0)
c

)1−p >
c+ 1

2c

(5.56)
p(β + 1)

γ c+1
2c

< (1− p)x1(0)

(
x3(0)

(
c

γx4(0)

)1−p
)1+p

and

(5.57) x3(0) >
β

(1− p)γ
.

Inequality (5.52) implies that initially π3 > π2, and together with β > c, initially

π3 > π1 as well. It is clear from the payoff matrix that π4 = πmin for all points in the

strategy space. While π3 > πj > π4 for j ∈ {1, 2},

ẋi = xi

(
p
πi − π̄
π3 − π4

+ (1− p)(δi3 − x3)

)
.

This leads to the following inequalities:

ẋ1 ≥ x1

(
−pβ(x2(0))2

γx3(0)
− (1− p)

)
ẋ2 ≤ x2

(
p
β + 1

γx3(0)
− (1− p)x3(0)

)
ẋ3 ≥ (1− p)x3(1− x3)

ẋ4 ≤ x4

(
p
−γx3

γ(x4 + x3)
− (1− p)x3

)
≤ −x4x3

ẋ4 ≥ −x4.

So,

x1(t) ≥ x1(0)
(
e−t
)(1−p)+pβ(x2(0))2

γx3(0)(5.58)

x2(t) ≤ x2(0)
(
e−t
)(1−p)x3(0)−p β+1

γx3(0)(5.59)

x3(t) ≥ x3(0)et(1−p)

1− x3(0) + x3(0)et(1−p)
(5.60)

x4(t) ≤ x4(0)e−
R t
0 x3(s)ds(5.61)

x4(t) ≥ x4(0)e−t.(5.62)
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Let tc = t : x4(t) = c
γ
. Plugging into inequality (5.62), c

γ
≥ x4(0)e−tc , so e−tc ≤ c

γx4(0)
.

And plugging that in inequality (5.59), we find that

(5.63) x2(tc) ≤
(

c

γx4(0)

)(1−p)x3(0)−p β+1
γx3(0)

.

Note that inequality (5.63) requires a positive exponent on the right hand side, and

that is exactly what we obtained with inequality (5.53). Inequality (5.63) can be

simplified to x2(tc) <
c−1
2β

by using inequality (5.54). We now have

(5.64) βx2(tc) + 1 <
c+ 1

2
,

and recalling that c > 1, we see that this is less than c. At tc, π3 = π1 by definition,

but π2 < π1 by inequality (5.64). Thus, immediately after tc, π1 = πmax, and it

remains to show this is so at all future times as well.

Before we move on to t > tc, it is necessary to establish a few more inequalities

at tc. From inequality (5.60), we have

x3(tc) ≥
x3(0)

(
γx4(0)
c

)1−p

1− x3(0) + x3(0)
(
γx4(0)
c

)1−p .

By inequality (5.55), this becomes

(5.65) x3(tc) >
c+ 1

2c
.

From inequality (5.61), we have

(5.66) e−
R tc
0 x3(s)ds ≥ c

γx4(0)
.

We can integrate inequality (5.60) to get∫ tc

0

x3(s)ds ≥
∫ tc

0

x3(0)es(1−p)

1− x3(0) + x3(0)es(1−p)
ds

=
1

1− p
ln
(
1− x3(0) + x3(0)etc(1−p)

)
.
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Plugging this into inequality (5.66), we have
(
1− x3(0) + x3(0)etc(1−p)

) 1
1−p ≤ γx4(0)

c
.

So

e−tc ≥

 x3(0)(
γx4(0)
c

)1−p
− (1− x3(0))


1

1−p

≥

(
x3(0)

(
c

γx4(0)

)1−p
) 1

1−p

.

Plugging this into inequality (5.58), we get

x1(tc) ≥ x1(0)

(
x3(0)

(
c

γx4(0)

)1−p
)1+

pβ(x2(0))2

(1−p)γx3(0)

.

Applying inequality (5.57) to the exponent, we finally obtain

(5.67) x1(tc) ≥ x1(0)

(
x3(0)

(
c

γx4(0)

)1−p
)1+p

.

For t > tc, we have the following differential equations:

ẋi = xi

(
p
πi − π̄
c+ γx3

+ (1− p)(δi1 − x1)

)
.

These equations hold while π1 = πmax, and we will show that for t > tc, that is

always the case. In particular, we have

(5.68) ẋ2 ≤ x2

(
p
β + 1

γx3

− (1− p)x1

)
.

Applying inequalities (5.65) and (5.67), note that

p
β + 1

γx3(tc)
− (1− p)x1(tc) ≤

p(β + 1)

γ c+1
2c

− (1− p)x1(0)

(
x3(0)

(
c

γx4(0)

)1−p
)1+p

,

and by inequality (5.56), this is negative. So, the right hand side of equation (5.68)

is negative at tc. This means x2 is decreasing immediately after tc. And while x2

is decreasing, (x1 + x3) must be increasing. Let t∗ = t : x1(t) = x3(tc) and t > tc.

For all t between tc and t∗, x1(t)x3(t) > x1(tc)x3(tc) because (x1 + x3) has been

increasing. Therefore, the right hand side of equation (5.68) must remain negative
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until t∗. And thus, x2(t∗) < x2(tc). Observe that βx2(tc) + 1 < cx3(tc) by combining

inequalities (5.64) and (5.65). This means that

(5.69) βx2(t∗) + 1 < cx1(t∗).

So at t∗, π2 < π̄ and consequently ẋ2 < 0. As t moves past t∗, x1 increases and x2

decreases, and that only reinforces inequality (5.69). So, this state of affairs persists

forever. The combination dynamics approaches (1, 0, 0, 0).

Proof of Theorem V.5.

We will show that starting at any point in the interior of the strategy space,

the two-subpopulation dynamics eventually approaches x = (1, 0, 0, 0) for ~P close

enough to
~̂
P .

Many times throughout the proof, we rely on inequalities that hold for such ~P

from the hypotheses of the theorem. To begin, we take x4(0) > β+1
γ

, a condition

we will later refine. As it is, this ensures that action 3 is initially the best response.

While this is so, we have: ẏ4 ≥ −y4; ż4 ≥ −z4; and ẏ2 ≤ −y2 y3(0), making use of the

fact that y3 ≥ y3(0). Solving these differential inequalities, we have y4 ≥ y4(0)e−t

and z4 ≥ z4(0)e−t, which can be summarized as

(5.70) x4 ≥ x4(0)e−t,

as well as

(5.71) y2 ≤ y2(0)e−y3(0)t.

Additionally, take

β(β + 1)

γ
<

(y3(0))2

y3(0) + y4(0) + z4(0)

(1− ρ)

ρ

(c− 1)

2
,
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or equivalently,

ρ(β + 1)

γy3(0)
<
c− 1

2β
(1− ρ)

y3(0)

y3(0) + y4(0) + z4(0)
.

With the notation

(5.72) ε =
c− 1

2β
(1− ρ)

y3(0)

y3(0) + y4(0) + z4(0)
,

we have ρπ2

π3−π4
< ε. Notice that

−π4

π3 − π4

=
γ(x3)

γ(x3 + x4)

≥ y3(0)

y3(0) + y4(0) + z4(0)
.

Also notice that −ρπ̄z − (1 − ρ)π̄y = −π̄ < 0. Putting this all together, we have

ż2 < ε + ρy2 − (1 − ρ)z2
y3(0)

y3(0)+y4(0)+z4(0)
. Plugging in (5.71) and multiplying through

by e
(1−ρ)

y3(0)
y3(0)+y4(0)+z4(0)

t
produces

(5.73)
d

dt

(
z2 e

(1−ρ)
y3(0)

y3(0)+y4(0)+z4(0)
t

)
< e

(1−ρ)
y3(0)

y3(0)+y4(0)+z4(0)
t (
ε+ ρ y2(0) e−y3(0)t

)
.

To integrate, we must consider separately the cases: i) 1− ρ 6= y3(0) + y4(0) + z4(0)

and ii) they are equal. In case (i), we obtain

(5.74) z2 <

z2(0)e
− (1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

t
+

ε

(
1− e−

(1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

t

)
(

(1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

) +

ρy2(0)

(
e−y3(0) t − e−

(1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

t

)
(

(1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

− y3(0)
) .

Let M = min
{

1, 1−ρ
y3(0)+y4(0)+z4(0)

}
and take

ln

(
γx4(0)

β + 1

)
>

1∣∣∣ (1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

− y3(0)
∣∣∣

to find a weaker upper bound in which the last term of (5.74) is replaced by

(5.75) ln

(
γx4(0)

β + 1

)
ρy2(0)e−y3(0)Mt.
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In case (ii), the first two terms of (5.74) are unchanged, but the last term is replaced

by

(5.76) ρy2(0)te−y3(0) t

because of cancellation of exponential pieces in (5.73).

The bounds on our dynamical variables that we have established so far only hold

until a new action becomes a best response. We now show that it is action 1 that

becomes the best response when the payoff to action 3 drops sufficiently. Specifically,

by the time π3 falls to the maximum possible payoff to action 2, the actual payoff

π2 has sunk irretrievably below π1. We have γx4 > β + 1 when x4(0)e−t > β+1
γ

,

according to inequality (5.70). So action 3 is surely still the best response while

t ≤ ln
(
γx4(0)
β+1

)
. We will show β(y2 + z2) + 1 < c for t ≥ ln

(
γx4(0)
β+1

)
until the time

that π3 = c. We take

1

y3(0)
< ln

(
γx4(0)

β + 1

)
to ensure that our upper bound on z2 in both cases is a decreasing function for

t ≥ ln
(
γx4(0)
β+1

)
. For such t, no matter which case applies, we have

(5.77)

z2 <
ε(

(1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

) +

z2(0)− ε(
(1−ρ)y3(0)

y3(0)+y4(0)+z4(0)

)
(γx4(0)

β + 1

) −(1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

+ ρy2(0) ln

(
γx4(0)

β + 1

)(
γx4(0)

β + 1

)−y3(0)M

.

The first two terms of (5.77) correspond to the first two terms in (5.74), rearranged

and with ln
(
γx4(0)
β+1

)
plugged in for t. The final term of (5.77) is an upper bound on

both (5.75) and (5.76). From (5.71), we also have

(5.78) y2 ≤ y2(0)

(
γx4(0)

β + 1

)−y3(0)



164

for t ≥ ln
(
γx4(0)
β+1

)
. Putting together inequalities (5.77) and (5.78), and multiplying

through by β, we have an upper bound on β (y2 + z2) for applicable t. Yet, all but

one of the terms in this upper bound can be made arbitrarily small because they

contain a factor of γ raised to a negative exponent. The remaining term is the first

term of (5.77) multiplied by β, which means

β (y2 + z2) <
βε(

(1−ρ)y3(0)
y3(0)+y4(0)+z4(0)

) + small terms.

Recalling our definition of ε, from equation (5.72), we have

β (y2 + z2) <
c− 1

2
+ small terms,

and thus β(y2 + z2) + 1 < c.

Moving forward, we will have use for an upper bound on y2 at the time that

action 1 becomes the best response. Refer to this time as t = tc. It is defined by

π3 = π1 or in other words γx4 = c at t = tc. By inequality (5.70), c ≥ γx4(0)e−tc .

So tc ≥ ln
(
γx4(0)
c

)
. Plugging this into inequality (5.71) produces

(5.79) y2(tc) ≤ y2(0)

(
γx4(0)

c

)−y3(0)

.

Now let us consider the dynamics after action 1 becomes the best response. We

aim to show that action 1 remains the best response at all later times. Both y4 and

z4 continue to decrease because action 4 remains the worst response, so γx4 < c for

t > tc. This means action 3 can never be revived as the best response. Additionally,

y2 < y2(tc) for t > tc because only the best response can grow in the subpopulation

of best responders. We need an upper bound on z2 for t > tc. Looking at (5.7) and

recognizing that ρπ̄z + (1− ρ)π̄y = π̄ > cx1, we get

ż2 < z2

(
ρπ2 − cx1

c+ γx3

)
+ ρy2

(
π2 + γx3

c+ γx3

)
− (1− ρ)z2

(
γx3

c+ γx3

)
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while action 1 is the best response. Since this means π2 < c, we can make it

ż2 < z2

(
c(ρ− x1)

c+ γx3

)
+ ρy2 − (1− ρ)z2

(
1− c

c+ γx3

)
.

Grouping terms together,

ż2 < z2

(
c(1− x1)

c+ γx3

− (1− ρ)

)
+ ρy2.

We use 1−x1 = z2 + y2 +x3 +x4 and the previously mentioned bounds γx4 < c and

y2 < y2(tc) to write

1− x1

c+ γx3

<
z2 + y2(tc)

c+ γx3

+
1

γ
.

For simplicity, we weaken this bound by dropping the γx3 from the denominator of

the first term. This leaves us with

ż2 < z2

(
c

(
z2 + y2(tc)

c
+

1

γ

)
− (1− ρ)

)
+ ρy2(tc)

= (z2)2 + z2

(
y2(tc) +

c

γ
− (1− ρ)

)
+ ρy2(tc).

Completing the square, we get

ż2 <

(
z2 −

1

2

(
1− ρ− y2(tc)−

c

γ

))2

− 1

4

(
1− ρ− y2(tc)−

c

γ

)2

+ ρy2(tc).

So

ż2 < 0 if

(
z2 −

1

2

(
1− ρ− y2(tc)−

c

γ

))2

<
1

4

(
1− ρ− y2(tc)−

c

γ

)2

− ρy2(tc).

We can be sure the right hand side here is positive because by inequality (5.79),

y2(tc) can be made as small as necessary. Then ż2 < 0 if

(5.80) z2 <
1

2

(
1− ρ− y2(tc)−

c

γ

)
+

√
1

4

(
1− ρ− y2(tc)−

c

γ

)2

− ρy2(tc)

and

z2 >
1

2

(
1− ρ− y2(tc)−

c

γ

)
−

√
1

4

(
1− ρ− y2(tc)−

c

γ

)2

− ρy2(tc).
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Recall that we have already shown that y2 + z2 <
c−1
β

for ln
(
γx4(0)
β+1

)
≤ t ≤ tc. This

means inequality (5.80) holds right at t = tc, and by its own power, it holds thereafter

as well. Thus, for t ≥ tc,

z2 ≤ max

z2(tc),
1

2

(
1− ρ− y2(tc)−

c

γ

)
−

√
1

4

(
1− ρ− y2(tc)−

c

γ

)2

− ρy2(tc)

 .

Our upper bounds on y2 and z2 for t ≥ tc give us an upper bound on π2 for this time,

and having already shown that β (y2(tc) + z2(tc)) + 1 < c, we now seek to establish

that

β

y2(tc) +
1

2

(
1− ρ− y2(tc)−

c

γ

)
−

√
1

4

(
1− ρ− y2(tc)−

c

γ

)2

− ρy2(tc)

+1 < c.

With some algebra, this is equivalent to

y2(tc) +
1

2

(
1− ρ− y2(tc)−

c

γ

)
− c− 1

β
<

√
1

4

(
1− ρ− y2(tc)−

c

γ

)2

− ρy2(tc)

or(
y2(tc)−

c− 1

β
+

1

2

(
1− ρ− y2(tc)−

c

γ

))2

<
1

4

(
1− ρ− y2(tc)−

c

γ

)2

− ρy2(tc)

or then (
y2(tc)−

c− 1

β

)(
−c− 1

β
+ 1− ρ− c

γ

)
< −ρy2(tc).

Finally, recognizing that y2(tc)− c−1
β
< 0, we can rewrite our desired inequality as

(5.81) 1− ρ− c

γ
− c− 1

β
>

ρy2(tc)
c−1
β
− y2(tc)

.

But, using inequality (5.79), we see that

ρy2(tc)
c−1
β
− y2(tc)

≤
ρy2(0)

(
γx4(0)
c

)−y3(0)

c−1
β
− y2(0)

(
γx4(0)
c

)−y3(0)
,

and this can be made as small as necessary. So inequality (5.81) does indeed hold,

and π2 < c for t ≥ tc. Action 1 remains the best response for all t > tc.
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Because action 1 is the best response, we can use inequalities (5.17) and (5.19)

from the proof of Theorem V.1, translated to an initial time of tc instead of 0, to

obtain for t > tc,

y1 ≥
(1− ρ)y1(tc)e

(1−ρ)(t−tc)

1− ρ− y1(tc) + y1(tc)e(1−ρ)(t−tc)

and

z1 ≥ ρ− (ρ− z1(tc)) e
−(1−ρ)(t−tc) − ρ(1− ρ)(1− ρ− y1(tc))

y1(tc)
(t− tc)e−(1−ρ)(t−tc).

Thus, as t→∞, z1 and y1 approach ρ and 1− ρ respectively.

Proof of Theorem V.6.

Since it has been shown in Chapter IV that the best response dynamics finds

(1, 0, 0, 0) in this game (Golman and Page 2008b), it suffices to show that the hybrid

dynamics finds (0, 1, 0, 0) from almost any initial point.

Consider first k(~π) = K. Anywhere in the interior of the strategy space we can

obtain βx2(0) + 1 > K and βx2(0) + 1 > c by taking ~P close enough to
~̂
P . While

π2 > K , the hybrid dynamics of equation (5.9) give us

(5.82) ẋ2 = x2

 π2 − π̄
πmax − πmin

+
∑

j:πj<K

xj
πj − πmin

πmax − πmin

 .

While π2 > c, π2 − π̄ > 0, and the remaining terms in equation (5.82) are always

positive, so ẋ2 > 0. As x2 increases, π2 increases, so this holds forever.

Now assume k(~π) = απmin + (1 − α)πmax with α > 0. Consider initial points

with x4(0) > β+1
γ
> c

γ
and x2(0) > c−1

αβ
, conditions that can be satisfied anywhere in

the interior of the strategy space by taking ~P close enough to
~̂
P . These conditions

imply that initially π3 > π2 > π1 > π4. And initially k(~π) = −αγx3 + (1 − α)γx4.

If initially π2 ≥ k, then equation (5.82) applies, and ẋ2 > 0. As x2 increases, π2

increases. Meanwhile, x3 increases because π3 = πmax and x4 decreases because
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π4 = πmin, so k decreases. Thus, π2 remains bigger than k until it becomes πmax.

And once action 2 becomes best, it’s clear that x2 will continue to grow forever.

Now consider the case that initially π2 < k. The hybrid dynamics, equation (5.9),

then reduce to ẋi = −x3xi for i 6= 3 and ẋ3 = x3(1 − x3) while πi < k. This is a

time-scaled version of the best response dynamics, and all xi have the same relative

decay rate. Let the decreasing function λ(t) = xi(t)
xi(0)

while these dynamics apply.

Then π2 = k when

βx2(0)λ(t) + 1 = γ [(1− α)x4(0)λ(t)− α (1− λ(t) (1− x3(0)))] .

This occurs when

λ =
α + 1

γ

(1− α)x4(0) + α(1− x3(0))− βx2(0)
γ

.

All we needed was λ > α, because then x2(t) > c−1
β

. Thus, when π2 = k, π2 > π1,

and this validates our use of these dynamics until this point. The argument in the

previous paragraph, for the case when π2 ≥ k, now applies. From here on, x2 will

always grow.
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CHAPTER VI

Conclusion

Analysis of the aggregate behavior of individual agents is central to many areas of

social science as well as theoretical biology. In economics, for example, a population’s

demand curve is the pointwise sum of each consumer’s willingness to buy at a given

price. In political science, a variety of voting rules aggregate information in different

ways to determine a collective choice. In evolutionary biology, the varying fitness of

individual animals determines how the species as a whole reacts to selective pressures.

In all of these instances, our interest is in macroscopic behavior, but our theories

at the population level must be consistent with our models of individual agents’

behavior.

This dissertation examines behavior in population games. The idea of a popula-

tion game is that players don’t know exactly who their opponents are in a strate-

gic situation; instead, they face a pool of potential opponents and react to the

population-wide profile of behavior called the population mixed strategy. We de-

rive predictions for population mixed strategies by analyzing the rules individual

agents use to choose actions. While the individual agents themselves are not per-

fectly rational as traditionally assumed in economic theory, a population may end up

coordinating on a single preferred outcome or may allow a diversity of suboptimal

171
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behaviors to persist.

Our analysis relies on a variety of mathematical tools. In modeling heterogeneous

quantal responders, we introduce a probability density functional. The proofs of our

main results in this chapter make use of characteristic functions for random variables

and Jensen’s Inequality. In other chapters, we model population learning rules as

nonlinear dynamical systems. We are able to characterize basins of attraction by

introducing and solving differential inequalities. Our finding of vanishing overlap in

basins of attraction under different learning dynamics can be understood as simulta-

neous bifurcations in the two dynamical systems, involving the basin of attraction of

different sets of equilibria shrinking away, and in the limit, producing distinct global

attractors.

Chapter II in this dissertation contributes a theoretical result characterizing the

representative agent for a population of heterogeneous quantal responders and a

more applied result describing bias in single-agent logit response models. Almost

all applications fitting quantal response equilibrium to data have assumed iid payoff

disturbances; our theoretical result is that the representative agent for a population

of heterogeneous quantal responders often will not have an iid distribution of payoff

disturbances. This suggests we should allow noise terms that are jointly dependent

across actions. Our finding of downward bias in a mis-specified homogeneous logit

parameter means that this frequently used single-agent model underestimates the

average level of rationality in a heterogeneous player pool.

Chapter III shows how equilibrium selection depends on how agents learn. The

finding that basins of attraction under different learning rules can share vanishing

overlap lays the foundation for the analysis in subsequent chapters. In Chapter III,

we focus on characterizing when this can occur. A necessary condition, worth high-



173

lighting for its simplicity, is that with probability one the initial best response cannot

be a pure, uniformly evolutionarily stable strategy for the sequence of games. The

existence of a parasitic or misleading action that serves as a temporary best response

allows subtle differences in learning rules to accumulate.

Chapter IV focuses on a class of generalized stag hunt games, which provide a

window into the evolution of cooperation. In these games, agents can choose from

among multiple potentially cooperative actions or can take a secure, self interested

action. We assume that a proportion of the cooperative actions prove effective,

while others can be undermined by a predatory action. We find that the replicator

dynamics, which relies on cultural learning, leads to an efficient cooperative outcome,

whereas the individualistic best response dynamics does not. We caution, however,

that this does not imply that cultural learning outperforms individualistic belief-

based learning in all games. On the contrary, simple transformations of payoffs that

do not affect the paths of the learning dynamics, such as adding a constant to all

entries in a single column of the payoff matrix (in a symmetric game), can determine

which of multiple equilibria is payoff dominant, i.e., most efficient for everybody

involved. The strategic context a given player faces is invariant to a uniform change in

how one of his actions affects other players’ payoffs. Such a change thus cannot affect

the learning dynamics, even while it can determine the efficiency of an equilibrium.

Chapter V can be viewed as a sensitivity analysis of equilibrium selection in

relation to the specification of the learning rule. Indeed, we find that small changes

in the way agents learn can produce drastic changes in outcomes. We also establish

that convex combinations of different dynamics can select different equilibria than

either of the two dynamics select alone.

The general lesson here is that predictions for outcomes in games require a com-
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plete and precise understanding of how players learn and err, and for such a model

to be true to life, it must capture the heterogeneity of different actors.


