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Abstract 
 
 

The spatial expanse and the dynamic and information intensive nature of typical 

engineering projects, in particular construction projects, require mobile users (engineers, 

managers, inspectors etc.) to have rapid and real-time access to a wealth of project 

information. However, during the course of their normal activities, field personnel 

typically spend a significant amount of time in manually accessing relevant information, 

thereby amounting to lost productivity and increased costs.  

 

In an effort to remedy this situation, this dissertation takes the first steps and presents 

research that investigated methods for high-precision identification and automated 

retrieval of contextual information in mobile construction engineering applications. The 

primary contribution of the presented work is the design and implementation of a 

dynamic user-viewpoint tracking scheme in which mobile users’ spatial context is 

defined not only by their position but also by their Three Degree-of-Freedom (3DOF) 

head orientation (i.e. line of sight). This allows the identification of objects and artifacts 

visible in a mobile user’s field of view with much higher accuracy than was possible by 

tracking position alone.  

 

Within this scheme, location-aware computing and head orientation sensing technologies 

were integrated. For outdoor applications, the Global Positioning System (GPS) and a 



 xx

magnetic orientation tracker were used to track a user’s dynamic viewpoint. For indoor 

applications, this research explored the applicability of wireless technologies, namely 

Wireless Local Area Networks (WLAN), Ultra-Wide Band (UWB), and Indoor GPS for 

dynamic user position tracking in situations where GPS is unavailable. The same 

orientation device was used indoors. Additionally, this research evaluated the capability 

of interoperable product models and project databases, such as the Computer Integrated 

Manufacturing for steel structures (CIMsteel) Integration Standards (CIS/2) product 

model and Microsoft Access databases for automated context-aware information access 

and retrieval. 

 

The developed methods and the components of the proposed context-sensing information 

retrieval methodology have been validated through several experiments conducted at the 

University of Michigan, the National Institute of Standards and Technology (NIST), and 

the Disaster City urban search and rescue testbed in Texas. 

 

 

 

 

 
 
 



1 
  

Chapter 1 

 

Introduction 

 

 

1.1.  Background 

 

Due to its nature, the construction industry requires its personnel to be mobile, to 

communicate efficiently, and to exchange large volumes of information. Evolving 

technologies such as location-aware computing and building information models offer 

significant potential of improving important decision-making tasks on construction sites 

by providing support for tedious and time-consuming tasks associated with timely and 

accurate access to project information.  

 

For example, rapid and convenient access to contextual project information, through 

continuous tracking of engineers, managers, and inspectors’ spatial characteristics, can 

lead to significant cost and time savings due to the accuracy and immediacy with which 

relevant project information can be made available to field personnel (Aziz et al. 2005). 
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The primary research question that this dissertation addressed was how to design and 

implement a context-aware methodology capable of rapidly identifying and retrieving 

contextual information, and providing it to mobile users in challenging engineering 

environments such as those found on construction sites. 

 

The designed algorithms were implemented in a prototype application, and track mobile 

users in dynamic environments using ubiquitous positioning and orientation tracking 

hardware devices, identify specific entities visible to users at a particular time, and 

automatically retrieve and help users visualize contextual information.  

 

1.2.  Problem Statement  

 

During several phases in the life cycle of a constructed facility, from construction to 

inspection to maintenance, the incapacity of engineers and inspectors to quickly and 

precisely gain access to relevant information required to make critical decisions in real-

time has considerable consequences. Time is valuable, and constructors and inspectors 

typically work with stacks of paperwork and unwieldy drawings on harsh and dynamic 

jobsites, and spend a significant amount of effort in identifying, accessing, and retrieving 

the information necessary for important decision making tasks. This repetitive, mundane, 

and seemingly innocuous activity consumes a significant amount of time, and thus money 

(Cox et al. 2002, Bowden et al. 2004 and Skattor et al. 2007).   

 

For example, an inspector must study several detailed drawings to find the size, shape, 
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and location of a particular set of steel braces to verify their correct installation on site 

(Figure 1.1). This non-value adding activity can, for instance, be eliminated if the 

inspector can identify and retrieve the specific information in context (i.e. structural 

details of the pertinent steel braces) automatically, while being continuously tracked on 

the site (Figure 1.2) (Han et al. 2007). The on-site automatic context-aware information 

retrieval process can also be helpful in rapidly notifying the inspector of any significant 

deviations such as activities behind schedule or materials not meeting the specifications. 

 

  

Figure 1.1 – Manual Information Search from Structural Drawings  

 

Figure 1.2 – Automated Context-Aware Information Retrieval of Structural Details  

 

Another example can be considered in pipe/valve system inspection and maintenance. 

Currently, inspectors must perform inspection from a checklist, and then contractors must 
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conduct pressurized tests and submit charts and technical reports. Finally, inspectors have 

to verify and record test results and file reports later in the office (Figure 1.3). 

 

 

Figure 1.3 – Current Pipe and Fire Hydrant Inspection Practice  

 

This tedious inspection process can, for instance, be eliminated if an integrated context-

based flow and archival of information is created among all entities involved in 

inspection and maintenance in order to rapidly access needed data in real-time. 

 

There are thus clear motivating reasons to investigate a new context-aware methodology 

that can allow rapid and accurate identification, and retrieval of contextual project 

information to support decision makers in field construction, inspection, and maintenance 

tasks.  

 

For the last several years, many research efforts have focused on enabling and advancing 

information technology such as location-aware computing, by providing a mechanism to 

deliver pertinent information in order to enhance collaboration and work efficiency. 

Relevant information can be delivered to any decision maker in real-time by monitoring 
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the physical and environmental context, and then reconciling the identified context 

parameters with the available pool of digital information. Such context-aware computing 

is defined by Burrell et al. (2001) as the use of environmental characteristics such as a 

user’s location, time, identity, profile, and activity to provide information that is relevant 

to the current context. Context-aware computing can thus potentially enable mobile users 

to leverage knowledge about various context parameters such as their identity, current 

task, and location to ensure that they get highly specific information pertinent to the 

decisions at hand (Schilit et al. 1994). 

 

The relevance of context-awareness for mobile users has been demonstrated in a large 

number of applications that have been summarized in Aziz et al. (2006). Prior 

applications of context-aware computing have included fieldwork (Kortuem et al. 1999, 

Pascoe et al. 1998), museums (Fleck et al. 2002, Lassila et al. 2003), route planning 

(Marmasse et al. 2002), libraries (Aittola et al. 2003) and tourism (Laukkanen et al. 

2002). Examples of other projects that have specifically focused on location based 

information delivery have included the GUIDE project (Davies et al. 1999), the Mobile 

Shadow Project (MSP) (Fischmeister et al. 2002), and the Ambience project (Ambience 

2004). Previous work on context-aware computing also involved the development of 

mechanisms for information support on construction sites (Halfawy et al. 2001, Cox et al. 

2002, Singhvi et al. 2003, Bowden et al. 2004, May et al. 2005, Aziz et al. 2005, 2006 

and Skattor 2007).  

 

The ability to automatically access and retrieve accurate information that is of decision 



6 
  

making context at an arbitrary time and location can significantly increase the 

productivity of constructors, engineers and inspectors. However, existing context-aware 

information delivery applications are based on the interpretation of a user’s spatial 

context using position (location) alone. Another major element of the user’s spatial 

context, the three-dimensional orientation of the line-of-sight, is ignored in the 

computation.  

 

For example, tracking only an engineer’s position on a construction site might help 

determine which floor of a building a mobile user is located on or even which room the 

user is currently in (Aziz et al. 2005, May et al. 2005). However, this information is not 

sufficient to conclude which part or section of the room, or what particular component or 

object in that room the engineer is currently interested in. Therefore, the position as well 

as the orientation must be considered in the computation to fully interpret a user’s spatial 

context and facilitate the information delivery process. 

 

1.3.  Research Objectives and Challenges 

 

In order to address the limitations in the existing state of knowledge, the overall objective 

of this research was to study the requirements, design, implement, validate, and 

demonstrate a new spatial context-aware information technology that is capable of 

providing engineers with accurate prioritized contextual information in real-time for 

critical decision-making. In order to effectively achieve the identified objective, the 

research addressed several problems and challenges, and pursued the following tasks: 
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• Studied the decision-making process of engineers and inspectors in specific 

scenarios to understand the nature of the decisions that are made and the type and 

source of information on which those decisions are based at those times. This 

helped define the requirements of an automated, location-based contextual 

information access and retrieval methodology. 

• Studied the details of involved parameters in tracking a mobile user’s spatial 

context in outdoor and indoor environments. The fully-qualified spatial context of 

an engineer or inspector can be continually interpreted by tracking not one, but 

two basic context parameters: 1) the position where the engineer is located; and 2) 

the direction in which s/he is looking.  

• Presented a context-sensing information retrieval methodology capable of 

accurately and continuously tracking a user’s position and orientation at an 

arbitrary outdoor and/or indoor location, sending this tracking data to the 3D 

visualization application at each animation frame, reconciling the user’s tracked 

spatial context with available information; and interactively presenting retrieved 

information to the user.  

• Devised methods capable of communicating with position tracking systems and 

head tracking devices (i.e. magnetic trackers) in real-time to accurately determine 

the user’s location and head orientation in indoor and outdoor environments. 

• Designed an algorithm to accurately define, based on tracked position and head 

orientation, the mobile user’s line-of-sight and compute the region of space that is 

in the field of view at that time.  
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• Designed a method to overlap the visible region of space with the coordinate 

system of CAD (and other digital data representing the user’s surroundings), and 

precisely identify objects of contextual interest (i.e. visible to users) at a given 

time and tracked location. 

• Created a 3D scene graph based application to visualize a user’s head and body 

movements (i.e. navigation behavior) in an indoor or outdoor environment, and 

evaluated the reliability of the tracking data in graphically updating the specific 

components visible to the user.  

• Designed algorithms to query project databases and retrieve information expected 

to be of relevance to a user at a particular tracked time and location. 

• Implemented methods to display retrieved information to mobile users using 

mobile visualization tools and interaction techniques.  

• Validated the designed tracking and retrieval algorithms of the developed context-

aware information retrieval framework in several experiments including both 

outdoor and indoor tests of engineering operations in environments representing 

conditions such as those found on construction sites. 

 

1.4.  Research Contributions 

 

During several phases in the life cycle of a constructed facility and for all types of project 

information ranging from plans and shop drawings to specifications, schedules, 

installation guides, and change orders, rapid and convenient access to contextual data is 

critical. Accurate and effective on-site information retrieval facilitated by the proposed 
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methodology offers significant potential for higher productivity and faster service in field 

construction, inspection, and maintenance tasks.  

 

The main contributions of this research therefore primarily lie in: 1) Designing and 

implementing a dynamic user line-of-sight tracking scheme in which mobile users’ 

spatial context is defined not only by their position (i.e. location), but also by their three-

dimensional head orientation (i.e. line-of-sight), 2) Designing algorithms to identify 

objects and artifacts visible in a mobile user’s field of view with much higher accuracy 

than was possible by tracking position alone, and prioritize relevant identified 

information, and 3) Implementing methods to provide continuous, context-based 

contextual information on specific identified components, and interactively visualize 

retrieved information on mobile devices in arbitrary indoor/outdoor environments. 

 

1.5.  Dissertation Outline 

 

This dissertation presents the developed context-aware methodology, the design of 

ubiquitous tracking algorithms, and the use of interoperable product models and project 

databases, and interactive visualization tools together with their practical implementation 

inside a mobile context-sensing visualization scheme.  

 

Each chapter of the dissertation serves as a stand-alone document that describes the major 

challenges encountered, different choices investigated, details of individual scientific 

questions answered, and algorithms and methods designed and implemented in 
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addressing a specific research issue to achieve a particular research objective. Additional 

implementation details to supplement the information presented in the chapters are 

provided in several appendices.  

 

In Chapter 2, a detailed literature review on several research efforts conducted in the field 

of context-aware computing is presented. Additionally, the overall methodology, a 

context-sensing information retrieval framework with its different mechanisms, is 

introduced and described. Chapter 3 and Chapter 4 explore several position and 

orientation tracking systems and project databases for possible implementation within the 

framework. Chapter 5 describes the details of the adopted tracking technologies 

investigated in this research to provide real time access to a user’s positional and head 

orientation data and their integration into a 3D visualization tracking application. In 

Chapter 6, methods to precisely interpret mobile users’ spatial context and identify 

contextual relevant objects using computer graphics are presented. In Chapter 7, methods 

to access and retrieve contextual information from product models and standard project 

databases as well as different interactive visualization tools and classes of display devices 

to present retrieved information to mobile users are presented. Finally, Chapter 8 

documents results from several validation experiments that have been conducted to 

evaluate the functionality and reliability of the individual components of the developed 

context-sensing information retrieval methodology. 

 

Each chapter of this dissertation has been compiled and written so that it is easily 

understandable by a wide audience ranging from individuals with prior experience in 
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wireless positioning technologies, data retrieval, and computer graphics, to those with 

only basic knowledge about construction and other engineering operations and projects. 

Each chapter concludes with an extensive list of references (books, papers, and internet 

URLs) that direct the reader to further resources related to the main topic of the chapter. 
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Chapter 2 

 

Context-Aware Information Retrieval 
Methodology: Technical Overview 

 

 

2.1. Introduction 

 

In an information-intensive industry such as construction, rapid and convenient access to 

project information is crucial in helping engineers, inspectors, and maintenance personnel 

make critical, real-time decisions. Field personnel typically spend a significant amount of 

time in manually accessing the information they need for important decision making 

tasks. Such lost time amounts to lost productivity and thus money (Aziz et al. 2005).  

 

This chapter introduces the state of the art, and describes prior work in context-aware 

computing technologies. It then presents a technical overview on the proposed context-

aware information retrieval framework that enables real-time tracking of mobile users’
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fully-qualified spatial context, identification of objects in users’ field of view, and 

automated retrieval and visualization of contextual information in dynamic outdoor and 

indoor environments such as those found on construction sites. 

 

2.2. Literature Review 

 

Recently, several approaches providing support for context-aware applications have been 

proposed. Context-awareness (Dey 2001) is interesting in mobile scenarios where the 

context of the application is highly dynamic, and allows the application to deal with the 

constraints of mobile devices in terms of network connections and mobile users’ 

characteristics. 

 

Prior applications of context-aware computing have included fieldwork (Kortuem et al. 

1999) where a wearable groupware system was designed to enhance the communication 

and cooperation of highly mobile network technicians in the field with the capabilities for 

real time audio conferencing, transmission of video images back to the office, and 

context sensitive access to a shared notebook.  In other fieldwork applications (Pascoe et 

al. 1998), personal computing aids (i.e. hand-held computing devices and stick-e note 

technology) were developed to help mobile field workers in their tasks.   
 

Context-aware computing has also been applied in museums such as the Exploratorium, 

an interactive science museum in San Francisco (Fleck et al. 2002). For instance, 

computing tools (i.e. electronic guidebook and “rememberer” tool) were implemented 
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and tested to allow users to bookmark exhibits and take pictures of their experiences at 

the exhibits. Other museum computing applications enabled the utilization by other 

agents of ubiquitous computing devices, together with semantic web-based techniques, 

without human guidance or intervention (Lassila et al. 2003). A similar concept has also 

been applied for tourism (Laukkanen et al. 2002).  

 

Other applications have involved the design of location-aware mobile services for use in 

libraries, namely SmartLibrary software-based solution (Aittola et al. 2003). This service 

helped users in searching for books in the main library of the University of Oulu by 

providing a map-based guidance to books and collections on a PDA.  

 

Another application (Dey at al. 1999) included the design and implementation of a 

context-aware architectural solution (Conference Assistant) to assist conference 

attendees. In this solution, context came from many, distributed machines, so-called 

widgets read sensors. When the user is attending the conference, the application first uses 

information about what is being presented at the conference and the user’s personal 

interests to determine what presentations might be of particular interest. The application 

uses the conference attendee’s location, the activity (presentation of a Web page or slide) 

in that location and the presentation details to determine what information to present. 

After the conference, the retrieval application uses the conference context to retrieve 

information about the conference (i.e. time when presentations started and stopped, 

names of the presenters and the presentations, etc.).  
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Additional case studies involved building an intelligent information system (HARVEST) 

to aid users in their investigative tasks, such as detecting fraud (Wen et al. 2007). This 

system offered two unique features that assisted users in their information seeking. First, 

it worked with users cooperatively to help build a rich investigative context over the 

course of an investigation. Second, it adaptively selected and evaluated information based 

on the evolving investigative context. In addition, it externalized the investigative 

context, which allowed users to track their information needs and directly update such 

needs if desired.  

 

Other prior applications included designing an infrastructure for context-aware 

information retrieval to enhance situation awareness in military applications (Bahrami et 

al. 2007). For military operators, the awareness of the temporal unfolding of events in a 

situation, together with their understanding of the implications of those events for both 

ongoing activities and future plans, is clearly a critical element in the effectiveness and 

adaptability of a military force. This infrastructure provided each user with a customized, 

mission-oriented system that gives access to the right information from heterogeneous 

sources in the context of a particular task, plan and/or mission.  

 

The BMW ConnectedDrive project (Bachmann et al. 2000) is another context-aware 

application. It combined contextual information of an automotive framework according 

to the three autonomous fields, the vehicle environment, its current driving state 

parameters, and driver information, interpreted as the vertices of a so-called contextual 

triangle. In this framework, environment information is acquired by sensors analyzing the 
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traffic in the front, the side and the back of the car, including technologies like radar or 

lidar. The vehicle context describes the state of the car, such as its velocity and 

acceleration, as well as system status information. The role and the influence of the driver 

on the situation, implies detailed information on his/her point of gaze and interactions 

with the vehicle.  

 

In the ConnectedDrive system, the driver information is one missing aspect of the 

contextual triangle. Therefore a new project has been recently created, the BMW SURF 

project (Hoch et al. 2007). The central idea of this project has been to build a car, which 

is able to cover all parts of the context triangle and bring these information sources 

together to create exemplary intelligent vehicle behavior. 

 

Additional related studies have included GeoNotes (Espinoza et al. 2001), and 

CampusSpace (Ferscha et al. 2001). GeoNotes is a system for abstracting location 

information for location-aware applications. The system architecture was constructed to 

support shared information for mobile devices, in particular to leave notes at specific 

places for other users to be read. A user creates notes and sticks it to certain places, where 

other users can read them. GeoNotes considered context in a very limited way, and 

focused on location context only. CampusSpace is a multi-user team awareness 

framework developed to gather the geographical position using WLAN access points. 

The idea was based on using signal strength and signal quality to determine spatial 

proximity either to an access point or another device also equipped with WLAN. 
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Other examples of projects that have specifically focused on context- based information 

delivery have included the GUIDE project (Davies et al. 1999) and the Mobile Shadow 

Project (MSP) (Fischmeister et al. 2002). In the GUIDE project, a context-sensitive 

tourist guide was developed for visitors to the city of Lancaster. Visitors were equipped 

with portable GUIDE units which provided interactive services and dynamically tailored 

Web based information using a city-wide wireless network infrastructure. In the MSP 

project, the authors used agents to map the physical context to the virtual context. In 

another project named Ambience (Ambience 2004), a different approach was used 

wherein the focus was on creating a digital environment that is aware of users’ presence, 

context, and sensitivity, and responds accordingly. 

 

Previous work has involved the use of different wireless technologies on construction 

sites. For instance, Aziz et al. (2006) developed a prototype application for context-aware 

information delivery that takes advantage of Appear Networks. Appear makes use of 

wireless local area networking (WLAN) and employs a layer of context-aware 

intelligence to proactively provide mobile workers with the relevant tools and mission-

critical information they need to work faster and more effectively. Skibniewski and Jang 

(2006) explored the use of ZigBee networks to be used in civil infrastructure systems. A 

prototype application was developed for object tracking and monitoring on construction 

sites to provide an insight into industrial practices in sensor and network-based 

ubiquitous computing. Teizer et al. (2008) also showed how the Ultra-Wide Band (UWB) 

wireless sensing technology is capable of determining three-dimensional resource 

location information in object cluttered construction environments.  
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Each of the abovementioned research efforts, however, determined the position of a 

mobile user or physical asset with relatively low accuracy. The uncertainty of the tracked 

position was not low enough to accurately identify the spatial context with fine 

granularity. Additionally, all prior work described above focused on developing tracking 

applications where the spatial context is defined solely by the location (position) of the 

user or physical asset. Another major attribute, the three-dimensional orientation, is 

ignored in the computations. This leads to an imprecise and incomplete interpretation of a 

user’s spatial context.  A user's 3D head orientation fully describes the user's line of sight 

(i.e. the direction in which the user is looking) and therefore can interpret a user's spatial 

context with much greater precision than is possible with position alone.  

 

For these reasons, prior context-aware information retrieval applications do not consider 

identification of specific objects visible to a mobile user within the realm of a room or 

section of a building. Instead, they detect and identify other generic information, for 

example the overall location of the user in the building. As such, none of the prior work 

described above proposes any methods to automatically retrieve and visualize contextual 

information on identified visible components in a studied area.  

 

2.3. Technical Approach  

 

This dissertation introduces a dynamic user context-sensing framework that accurately 

tracks a mobile field user’s fully-qualified spatial context, and automatically retrieves 

prioritized project information of interest to that user, based on the sensed context.  
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Figure 2.1 summarizes the mechanics of the proposed framework. 

 

 

Figure 2.1 – Overview of Location-Aware Information Retrieval Framework 

 

The developed framework consists of the following key components (Figure 2.2) : 1) 

methods to accurately and continuously track a mobile user’s spatial parameters (i.e. 

position and orientation) in arbitrary environments; 2) algorithms to interpret a user’s 

fully-qualified spatial context based on the tracked spatial parameters; 3) algorithms to 

reconcile a user’s interpreted spatial context with the available pool of project 

information; and 4) methods to retrieve and interactively present the prioritized project 

information to the user.  
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Figure 2.2 –Key Components of Location-Aware Information Retrieval Methodology 

 

All four components are briefly presented in the following subsections and then 

individually described in detail in Chapters 5 through 7 and Appendices A through C. 

 

2.3.1. Tracking a User’s Spatial Parameters 

 

The first framework component involves accurately tracking a user’s 3D position and 

orientation in any indoor and/or outdoor environment. The designed tracking scheme 

encompasses outdoor positioning technologies and indoor wireless tracking technologies, 

as well as 3DOF magnetic orientation tracking devices.  

 

For outdoor environments, a georeferencing based algorithm previously developed using 

the Global Positioning System (GPS) and magnetic orientation tracking devices 
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(Behzadan and Kamat 2005, 2006, and 2007) is used to continuously track a user’s 

dynamic viewpoint. GPS is an attractive option because it does not rely on any pre-

installed sensor infrastructure and instead depends on direct satellite communication. 

However, GPS is unsuitable in situations where the user has a possibility of being indoors 

because the receivers need a clear line-of-sight to the satellites in order to track position. 

Therefore, for indoor environments, several wireless technologies such as Wireless Local 

Area Networks (WLAN) (Ekahau 2004), Ultra-Wide Band (UWB) (Multispectral 

Solutions 2008), and Indoor GPS (iGPS) (Arc Second 2004) have been investigated and 

integrated within the designed framework, together with the same set of orientation 

devices used in outdoor applications. 

 

2.3.2. User Spatial Context Interpretation 

 

By knowing the user’s position and orientation that is tracked by the first framework 

component (tracking module), the user’s line-of-sight can be accurately defined and the 

region of space that is in the field of view at that time can be computed. The region of 

real space visible to a mobile computing user can be conceptually thought of to be similar 

to an avatar’s viewpoint in a computer graphics application or virtual reality world. In a 

computer graphics world (e.g. visual simulation), the region of visible virtual space is 

called the viewing frustum or view frustum, and is typically shaped as a frustum of a 

rectangular pyramid (Woo et al. 1997). This is graphically shown in Figure 2.3. 
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Based on the concept of the viewing frustum, the author mathematically derived the 

formulation for the region of space visible to a mobile computing user. Additional details 

of this computation are provided in Chapter 6 and Appendix B. 

 

 

Figure 2.3 – Mobile User’s Viewing Frustum 

 

In order to interpret which objects in the user’s surrounding environment are currently in 

context, the computed view frustum is represented as a geometric model (i.e. CAD 

object) on the computer. Then the coordinate system used to track the user’s navigation is 

reconciled with the coordinate system used to model the user’s surroundings in CAD. A 

CAD design typically uses a local coordinate system without reference to any particular 

geo-referenced global coordinate system.  

 

The viewing frustum model is then tested for geometric interference with CAD 

representations of objects in the user’s surroundings. The goal of intersection detection in 

computer graphics is to report any contacts between geometric objects when they occur 
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(Lin and Gottschalk 1998). In this context, the interference detection enables the 

determination of whether a corresponding real object is indeed in the user’s view at that 

particular time.  

 

2.3.3.   Relevant Contextual Objects Identification 

 

Using the method described above, several objects can be detected in the user’s view 

frustum at any given time. However, the user might be specifically interested in only one 

or few of the identified visible objects at that time. Such precision in interpreting which 

specific visible object(s) the user is interested in is achieved by adopting another 

geometric interference analysis technique known as raycasting (Foley 1990). Further 

details on the third component of the proposed framework and the raycasting technique in 

particular are presented in Chapter 6 and Appendix B. 

 

2.3.4.   Contextual Information Retrieval and Visualization  

 

Once the specific objects of interest are identified using the algorithms described above, 

the captured spatial contextual information can be mapped to available data and services 

(Anumba et al. 2003). In this research, project databases and interoperable product 

models were used to store, access, and retrieve project information (textual and 

graphical). For example, the utility of the interoperable CIMsteel Integration Standards 

(CIS/2) product model was investigated and used. CIS/2 is a logical product model for 

structural steel building information (Lipman and Reed 2003). CIS/2 has been 
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implemented by many steel design, analysis, engineering, fabrication, and construction 

software packages to create a seamless and integrated flow and archival of information 

among all entities involved in the design and construction of steel framed structures.  

 

For these reasons, the CIS/2 standard model presents a suitable data structure to represent 

cross-referenced building data for the evaluation of the developed automated information 

retrieval technique. In addition to CIS/2 product models, other project repositories such 

as MS Access databases were also  deployed on mobile computers as detailed in the 

validation chapter (Chapter 8). Additional details on other investigated databases and 

information retrieval algorithms are provided in Chapter 4, Chapter 7, and Appendix C.  

 

In order to interactively display information retrieved using the described methodology to 

the mobile user, a new class of display and interaction devices are needed. It is important 

that any information support provided to the user must not come at a safety and 

efficiency cost. For instance, any display technologies used must unobtrusively present 

information in a site engineer’s or inspector’s view without distracting the user from the 

core task at hand. Several types of mobile computing devices have been investigated and 

used in this research. Examples are presented in Chapter 7 of the dissertation. 

 

2.4. Summary and Conclusions 

 

This chapter presented first an overview of the state of the art and available context-

aware computing technologies together with their limitations. It then described the 
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overall architecture of a spatial context-aware methodology for automatically tracking, 

identifying and retrieving, contextual project information to support decision makers such 

as engineers, inspectors, and maintenance crews on construction project sites.  

 

Detailed information on the different components of the proposed methodology is 

provided in Chapter 5 through 7 and Appendices A through C. The author has described 

methods to calculate the region of space visible to a mobile user based on the tracked 

location and head orientation, prioritize the context of visible objects in the user’s view 

using a raycasting and intersection approach, and retrieve and visualize the prioritized 

contextual information. Then to demonstrate the ability of the proposed methodology, 

several validation tests have been conducted in outdoor and indoor environments 

(Chapter 8).  

 

It is important to note that the proposed methodology is presented as a feasibility study 

and is independent of any specific technology. With the advance of time, better and more 

accurate tools can be used and integrated.  
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Chapter 3 

 

Evaluation of Tracking Systems for 
Integration in Context-Aware Construction 

Applications  
 

 

3.1. Introduction 

 

During the course of their normal activities, constructors, engineers, inspectors, and 

maintenance crews typically work with stacks of paperwork and drawings on dynamic 

jobsites, and spend a significant amount of time in accessing and retrieving relevant 

information (Skattor 2007).  

 

Tracking field personnel's movement and head orientation is essential for rapidly and 

conveniently providing mobile and information-based application services on 

construction sites. In addition to position and head orientation tracking, monitoring eye 

motion or gaze tracking also offer several possibilities to refine a user's spatial context. 
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However, due to the relatively nascent stages of development they are in, these latter 

technologies were not considered in the implementation phase of this research.  

 

This chapter reviews the latest advances in position, head, and gaze tracking technologies 

and examines their applicability in context-aware construction applications. Several 

tracking systems were found to offer a practical solution for use in the proposed 

methodology (Chapter 2).  

 

3.2. Position and Head Orientation Tracking Systems 

 

In early years, the human-computer interface was dominated by the prevalence of so-

called standard peripheral input devices such as keyboards, mice, trackballs, light pens 

and two/three-axis joysticks in addition to some other forms of input system, such as the 

graphics tablet, touch screen or, in some cases, speech recognition (Stone 1996).  

 

However, a recent surge of interest in using computers for real-time applications which 

require using input devices in six degrees of freedom (DOF), namely the Cartesian 

translation in x, y and z, and Euler orientation in roll, pitch and yaw, has manifested the 

inadequacies of using traditional computer peripherals (Hongu et al. 2003). Examples of 

applications requiring accurate six-DOF input include robotics (Cleary and Brooks 1993), 

computer-aided design (CAD) (Barbič and James 2007), biomechanic analysis for the 

instrumentation of the human body (Aranov et al. 2004), military applications, such as in-

cockpit head tracking (Lu et al. 2002), digital antique cataloguing, and archaeological site 
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surveys, for the rapid production of digital records of everything from temporarily 

uncovered sites to preserved bodies.  

 

In the field of construction specifically, all prior applications have been based on 

exclusively using location-aware tracking systems which only provide the position of 

mobile users (Aziz et al. 2005). The three dimensional head orientation has been ignored 

in the computations. In order to automatically provide constructors, engineers, inspectors, 

and other field users with accurate prioritized contextual information for critical decision-

making, six-DOF tracking details obtained from both position and head orientation 

tracking systems are needed. 

 

The overall objective of the research described in this section was to take the first steps in 

investigating and evaluating different commercially available position and head 

orientation tracking systems for possible integration in the newly proposed spatial 

context-aware information delivery methodology (Chapter 2).  

 

3.2.1.   Position Tracking Systems 

 

Mobile computing has evolved over the last several years and has aimed at providing 

mobile users ubiquitous access to the right information at the right time. The position (i.e. 

location) of users is an important component of mobile computing that can assist users 

with their desired goals, and make the workplace more intelligent. One of the most 

popular research areas in pervasive computing is the development of location-aware 
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systems. Location-aware techniques, also called positioning technologies are systems in 

which computing devices provide the users with specific information depending on their 

location, and enable the design of applications that have the capability to identify a user’s 

location and modify their settings, interfaces, and functionality accordingly (Pateli et al. 

2002).  

 

In this research, different location-aware technologies have been evaluated to check their 

applicability in context-aware applications. For instance, the concept of context-aware 

information delivery (Aziz et al. 2005), on which this whole research is based, 

encompasses the creation of a user centered mobile dynamic indoor and outdoor work 

environment, which has the ability to deliver relevant information to on-site mobile users 

by intelligent interpretation of their spatial characteristics so that they can take more 

informed decisions (Schilit et al. 1994).  

 

Global Positioning System (GPS), being a satellite-based navigation system, works very 

well outdoors but lacks support indoors and in congested areas (El-Rabbany 2002). In 

addition, unlike outdoor areas, the indoor environment imposes different challenges on 

location discovery due to the dense multipath effect and building material dependent 

propagation effect (Xiang et al. 2004).  

 

In contrast to the outdoor positioning technologies that are capable of identifying the 

location of an object or person in open areas, indoor positioning technologies typically set 

the constraint of a limited coverage range, such as a building or other confined spatial 
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area. These technologies are therefore not dependent on any external network. They are 

dependent on a set of technologies used for transmitting wireless data in closed 

environments. 

 

The first indoor positioning systems that were developed used infrared sensors (Tseng et 

al. 2001). Infrared (IR) systems (Aitenbichler and Muhlhauser 2003), are known for their 

capability of not being able to penetrate walls or other opaque materials. A computing 

device with an infrared receiver uses these signals to determine its current position. 

Location of tagged devices determines where receivers should be placed. These devices 

emit IR light, and if the tagged device is in the same room as a receiver, its position is 

known. However, for these systems to be effectively used there must be receivers, 

connected using special wiring, in every room where an asset might be located, which is 

time-consuming and expensive.  

 

Second, IR-based systems fail to function if the IR signal gets blocked. IR-based location 

systems are subject to restrictions, such as line of- sight limitations or poor performance 

with fluorescent lighting or in direct sunlight. Therefore, as intervening objects can easily 

block infrared signals, IR systems were not employed in this research. 

 

A closest competitive technology to IR systems is Bluetooth (Kodde 2005). Unlike 

infrared, the line of sight it provides can penetrate through walls or obstacles. Bluetooth, 

providing ranges of up to 100 meters, is also low power and low processing with an 

overhead protocol, which makes it ideal for integration into small battery powered 
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devices. However, Bluetooth positioning technology poses some downsides and 

problems such as the data rate and security. It only offers data rates of 1 MBps, which 

provides low rates for data transfer. For this very reason, IR systems are considered by 

many to be the complimentary technology to that of Bluetooth. The greater range and 

radio frequency (RF) of Bluetooth make it much more open to interception and attack. 

On the other hand, Bluetooth still remains the best for short range wireless technology 

but it lacks efficiency in data transfer and for long range applications, and therefore was 

not suitable in this research. Radio-based positioning has emerged as a more attractive 

alternative. 

 

A radio-based technology used for identifying and tracking objects within a few square-

meters is Radio Frequency Identification (RFID). An RFID (Ayre 2004) system 

integrates an antenna with electronic circuitry to form a transponder that, when polled by 

a remote interrogator, will echo back an identification number. There are two types of 

RFID systems: active and passive. In a passive RFID system an antenna transmits a radio 

signal to the RFID tag, which then disturbs the signal in an identified expected way and 

returns the modified signal to the radiating antenna. The biggest advantages of passive 

RFID systems are the low cost and long useful life of tags. The biggest disadvantage is 

that their read distance is very limited; tag can be read at very short distances. On the 

other hand, active RFID tags have batteries and transmit data either at a regular rate or 

when activated by other transmitters. They have the advantage of being able to transmit 

longer distances with smaller antennae, but aren’t true location solutions since the 

distances are still typically only 2-3 meters (Aksoy et al. 2004). 
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Other researchers such as Skibniewski and Jang (2006) explored the use of ZigBee 

wireless networks for use in civil infrastructure systems. A prototype application was 

developed for object tracking and monitoring on construction sites in order to provide 

insights on industrial practices in sensor and network-based ubiquitous computing. The 

Zigbee protocol is less complex than Bluetooth, has superior power management (2 AA 

batteries can have ZigBee module last over years), supports many more nodes per 

network, has lower latency, lets devices join the network more quickly, and wakes up in 

milliseconds instead of seconds.  

 

Tiny ZigBee sensors can be used to replace RFID tags, which transmit data.  However, 

the ZigBee protocol is designed to operate over a radio defined by the IEEE 802.15.4 

standard for the physical and data link protocol layers. As such, ZigBee also inherits the 

disadvantages of this 802.15.4 standard, which is a 2.4 GHz direct sequence spread 

spectrum radio. While a good general purpose radio standard, 802.15.4 is not particularly 

well suited to applications with significant distances between nodes, operation within 

buildings or other high blockage environments, or operation in high interference 

environments. There are proprietary implementations that implement the ZigBee 

networking protocol over another type of radio, but these variations are entirely 

proprietary and discount all of the advantages. 

 

In the last few years, WLAN radio-signal-based positioning systems, supported by 

underlying Radio Frequency (RF) and Infra Red (IR) transmission technologies has seen 

enormous expansion and is expected to continue this trend due to the fact that it is an 
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economical solution providing convenient connectivity and high speed links, and can be 

implemented with relative ease in software (Hightower and Borriello 2001).   

 

The distance over which RF and Infra Red IR waves can communicate depends on 

product design (including transmitted power and receiver design) and the propagation 

path, in particular in indoor environments. IR, blocked by solid objects, such as walls, 

metal, and even people, constitutes a main limitation. For this reason, most WLAN 

systems use RF, because radio waves can penetrate many indoor walls and surfaces.  

 

RF-based WLAN covers a large area and is not restricted by line of sight issues. The 

range of a typical WLAN node is about 100 m (Wang and Liu 2005). A WLAN system 

can support a large number of nodes and vast physical areas by adding access points to 

extend coverage. This means using access points to cover an area in such a way that their 

coverages overlap each other. This can allow users to navigate around and move from the 

coverage area of one access point to another without even knowing they have, and at the 

same time seamlessly maintain the connection between their node and available access 

point(s). In some situations, interactions with typical building objects can affect the 

propagation of energy, and thus the range and coverage of the system, 

 

However, WLAN is considered as appealing because it allows enhanced connectivity, 

extended coverage, and is particularly useful when mobile access to data is necessary. 

Additionally, user flexibility and portability can easily be reconfigured while requiring no 

cable infrastructure (CISCO 2002). For the above reasons, WLAN was investigated and 
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implemented in the presented research (Chapter 5). A proper WLAN architecture 

framework provides a structure to develop, maintain, and implement an acceptable 

operation environment, and can support implementation of automated testbed 

experiments conducted to continuously track mobile users. 

 

UWB, on the other hand, is a lower power solution that benefits from causing minimal 

interference to other systems and UWB networks operating in the same frequency bands, 

and even supports multiple independent networks. UWB systems have therefore an 

inherent immunity to detection and interception. Additionally, the low frequencies 

included in the broad range of UWB frequency spectrum have long wavelength, which 

allows UWB signals to penetrate a variety of materials. For instance, Teizer et al. (2008) 

demonstrated how the UWB wireless sensing technology is capable of determining three-

dimensional resource location information in object cluttered construction environments. 

For the aforementioned advantages, the proposed research tested and implemented the 

UWB technology (Chapter 5) for possible integration within the overall framework.  

 

The last indoor tracking technology that has been investigated for possible use in the 

proposed context-aware framework is Indoor GPS. This system focuses on exploiting the 

advantages of GPS for developing a location-sensing system for indoor environments. As 

mentioned earlier, the GPS signal does not typically work indoors because the signal 

strength is too low to penetrate a building (Chen and Kotz, 2000). Nevertheless, Indoor 

GPS solutions can be applicable to wide space areas where no significant barriers exist. A 

GPS-like navigation signal is generated by a number of transmitters. This signal is 
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transferred through a wireless network connection providing mobility to the operator 

(Kang and Tesar 2004). Additionally, Indoor GPS is a rugged technology offering 

superior operating ranges, with accuracies in the range of few centimeters (Barrientos 

2005). Another key advantage of indoor GPS is the 360-degree coverage.  

 

In a subsequent chapter (Chapter 5), the technical characteristics of the WLAN, UWB, 

and Indoor GPS indoor wireless technologies introduced above are explained. 

Additionally, the extent to which each technology can be used to accurately calculate the 

positional context of a user in congested dynamic environments such as those found on 

construction sites is highlighted.  

 

3.2.2.   Head Orientation Tracking Systems 

 

As mentioned in previous chapters, interpretation of a user’s spatial context using 

position alone results in an incomplete and imprecise interpretation of spatial context. In 

order to interpret the fully qualified context, the position as well as three-dimensional 

orientation must be considered in the computation. Therefore, available head orientation 

trackers need to be investigated for possible use in the framework together with position 

tracking systems. 

 

In the past, there have been a variety of mechanical, ultrasonic, optical, gravimetric and 

magnetic head-trackers available (Ferrin 1991). Mechanical trackers are capable of very 
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good accuracy, resolution, and interference immunity, but they have extremely limited 

range and tend to encumber the user.  

 

Ultrasonic time-of-flight trackers can have relatively large range at low cost, but the need 

to wait for echoes to fade out before initiating a new measurement can cause low update 

rates, particularly when tracking large volumes (Foxlin et al. 1998).  

 

Optical head-trackers have been built using cameras or other position-sensitive optical 

devices to track beacons, and using laser range measurement techniques. This method, 

however, tends to provide reasonable range, accuracy and resolution, but suffers from 

line-of-sight restrictions, reflections and very high cost (Welch et al. 2001).  

 

Gravimetric trackers (typically using a fluid-filled inclinometer and a compass) are 

usually provided as a built-in component of very low-cost consumer Head Mounted 

Displays (HMDs). These systems are sensitive to magnetic interference, and suffer from 

a high level of false orientation readings caused by linear accelerations (Foxlin et al. 

1998). 

 

The most common technology today is magnetic tracking, which is convenient because it 

does not have the line-of-sight problems of optical and ultrasonic systems. The biggest 

problems with magnetic systems are distortions caused by metal objects (Nixon et al. 

1998), and a very rapid decrease in accuracy and resolution with distance (Livingston and 

State 2001). Magnetic trackers are subject to large amounts of error and jitter. Despite 
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their lack of accuracy, magnetic trackers are popular because they are robust and place 

minimal constraints on user motion. Electromagnetic fields can travel through minor 

obstructions like human beings with no problem. Magnetic trackers are on the lower end 

of the spectrum, and can be much cheaper than any other solutions. A key portion is that 

the processing is not complex compared to other solutions, so the computational 

equipment demands are slight. In this case, accuracy is considered as reasonable, and 

effective for the price (Baratoff and Blanksteen 2001).  

 

Inertial orientation trackers were also investigated in this research (Foxlin et al. 1998). 

They are truly sourceless, and are unaffected by almost any environmental interference. 

The transmitting of body tracking data via wireless means would also eliminate tethers. 

Additionally, the use of advanced micro-machined inertial sensors and application 

specific integration circuits would minimize the encumbrance of the user. Therefore, they 

can be used in large workspaces because they do not need transmitting source to perform 

tracking and there is no hardware or cabling between computer and tracker. The user 

would be free to move around in the real world with no restrictions. Inertial orientation 

trackers are also known for their low latency. They use accelerometers and gyroscopes to 

instantaneously derive orientation changes either by performing integration directly on 

the accelerometer angular rate or double integration on the gyroscopic information. 

Although comparatively cheap, fast and accurate, inertial trackers suffer from drift error 

accumulation (3-10 degrees per min) following rapid motion or long tracking periods 

(Baratoff and Blanksteen 2001). Moreover, the effect of gravity on accelerometers and 

gyroscopes induces an erroneous downward acceleration force on the tracking device. 
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It was thus decided to use a magnetic orientation tracker, specifically the TCM5 magnetic 

orientation tracker (PNI 2005). This tracker includes a built-in compass thereby avoiding 

manual calibration and error accumulation (Behzadan and Kamat 2005). The TCM5 

orientation tracker employs solid-state magnetic field sensors which measure compass 

heading through a full 360 degrees of rotation. The tracking device is placed at the 

highest point inside the user’s helmet, directly above the top of their head, and parallel to 

their forward line of sight.  

 

3.3. Eye Motion Tracking Systems 

3.3.1.   Human Visual Perception 

   

From the beginning of time humans have tried to explain the complex process of vision. 

Recorded studies of human vision date back at least to the time of Aristotle (Szaflarski 

2007). In this section, initial steps in the process of human vision are presented before 

information about eye motion tracking systems is provided in the next subsection.  

 

Vision is a complicated process that requires numerous components of the human eye 

and brain to work together (Szaflarski 2007). The eyes gather impressions, but the brain 

interprets them. Each eye is moved by the coordinated use of six small, strong muscles, 

called the extraocular muscles, which are controlled by specific areas in the brain. The 

brain is always trying to make sense out of what it sees. If the eyes see something that the 

brain can’t figure out, the mind “corrects” the picture automatically (Ge et al. 2006).  
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The main structures of the eye are the iris, lens, pupil, cornea, retina, vitreous humor, and 

optic nerve (Figure 3.1).   

 

 

Figure 3.1 – Eye Anatomy 

 

The normal eye thickens the lens to see near objects and flattens the lens to see distant 

ones (Rempel et al. 2007). The initial step of this fascinating and powerful sense is 

carried out in the retina of the eye. The retina is the sight center of the eye, where the 

most important part of seeing takes place (Nippon et al. 2007). It is a light-sensitive layer 

at the back of the eye that covers about 65 percent of its interior surface.  

 

However, the picture formed on the retina has no meaning until it is sent by tiny electric 

discharges to the brain (Laeng et al. 2007). Specifically, the photoreceptor neurons 

(called photoreceptors) in the retina collect the light and send signals to a network of 
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neurons that then generate electrical impulses that go to the brain by the optic nerve 

(Figure 3.1). The brain then processes those impulses and gives information about what is 

seen. Therefore, the actual perception of a scene is constructed by the eye-brain system in 

a continuous analysis of the time-varying retinal image.   

 

In the middle of the retina, is a small dimple called the fovea or fovea centralis (Figure 

3.2).  

 

 

Figure 3.2 – Fovea Centralis of the Eye 

 

The fovea provides the highest resolution and sharpest vision. Sharp images can only be 

seen with the very small fovea, which covers only 1 degree of the entire field of view. 

Therefore, the user permanently scans the environment by moving different parts onto the 

fovea through eye movements. The eyeball is continuously moving, so that light from the 

object of primary interest falls on this region before it is generated into electrical 

impulses and sent to the brain. These random movements can be measured with eye 
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motion tracking devices. In the next subsection, eye motion or gaze tracking devices are 

explained together with associated limitations. 

 

3.3.2.   Existing Gaze Tracking Systems and Limitations 

 

Eye tracking consists of automatically following the eye movement and computing the 

gaze direction. Eye movements are necessary for scanning different regions of the visual 

field without having to turn the entire head and for focusing on objects at different 

distances (Cadik 2004). A variety of old eye-gaze (eye motion) tracking techniques have 

been reported in Yang and Sheena (1975).  

 

According to the very complete analysis made by Yang et al. (2002), research in this field 

really started in the beginning of the 90s. A short list includes Electra-Oculography 

(EOG) (Kaufman et al. 1993) and Limbus, Pupil and Eyelid Tracking (Myers et al. 1991, 

Ebisawa 1998, Hutchinson et al. 1998, Colombo et al. 1995, Collet et al. 1997, Hu and 

Qiu 1994, and Stiefelhagen 1994). It includes as well Contact Lens Method, Corneal and 

Pupil Reflection Relationship (Hutchinson et al. 1998, Ebisawa 1998, and Hu and Qiu 

1994), Purkinje Image Tracking, Artificial Neural Networks (Baluja and Pomerlo 1994) 

and Head Movement Measurement (Ballard and Stockman 1992, Horpresert et al. 1996, 

Stiefelhagen 1994, and Gee and Cipolla 1994).  

 

Since then, the eye motion tracking technology became more accurate and less 

cumbersome. In parallel, the understanding and the modeling of the gaze behavior 
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improved, together with an extension to wide application domains such as psychiatry, 

cognitive science, behavioral analysis, medicine and human computer interaction (HCI) 

(Ciger et al. 2004). 

 

Although EOG can potentially provide the gaze direction (Kaufman et al. 1993 and 

Krapichler at al. 1998), computer vision systems, especially with infrared illumination, 

have much better results. Latest developments achieved acceptable precision and stability 

by using purely mathematical (Li et al. 2004 and Kaur et al. 2003) or connectionist (Zhu 

and Ji 2004) approaches. These recent improvements allowed the whole setup to be more 

flexible and adapted for desktop, large projection screen, or Head Mounted Display (Lin 

2002). 

 

However, existing gaze tracking technologies or techniques have some limitations (Ciger 

et al. 2004). First, voluntary and precise control of the gaze, using eye motion tracking 

technologies, is tiring and a passive use of gaze is preferable to the active control 

(Krapicher et al. 1998). Second, these techniques cause what is called perpetual motion. 

While voluntary eye saccades (1 to 40 degrees of the visual angle) correspond to the 

visual search, micro-saccades (< 1 degree) still occur when the eye is focusing on a 

target. Despite the fact that the vision is suspended during saccades or eye blink, only few 

systems are able to really distinguish the fixation phases (Sibert and Jacob 2000).  

 

Third, what the user is looking at is not necessarily what s/he wants to interact with. 

Although some studies tried to integrate statistical analysis to better recognize the user's 
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focus of attention (Salvucci and Anderson 2000), tracking exclusively eye movement is 

not natural and therefore head movements need to be tracked as well. However, coupling 

gaze tracking devices and techniques with head orientation tracking devices (Section 

3.2.2) does not solve the problem because large head movements are still impossible, and 

many systems place the respective device on the head.   

 

For all the aforementioned drawbacks of eye motion tracking technologies, using gaze in 

addition to head orientation for interaction in dynamic environments, such as construction 

sites, was not covered within the scope of this research. 

 

3.4. Summary and Conclusions 

 

The author has   studied several positioning technologies and head orientation tracking 

devices to track mobile users’ fully-qualified spatial context in outdoor and indoor 

congested environments such as those found on construction sites. Additionally, the 

feasibility of using eye motion tracking systems was evaluated. However, for all the 

drawbacks described above, the integration of such technologies in the proposed 

framework was not considered.  

 

The research presented in this chapter introduced different positioning technologies 

(GPS, IR, Bluetooth, RFID, ZigBee, WLAN, UWB, and Indoor GPS) and many head 

orientation tracking techniques (mechanical, ultrasonic, optical, and gravimetric, inertial 
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and magnetic head-trackers) that can be used for tracking mobile users on construction 

sites.  

 

Based on this study, it was found that WLAN, UWB, and Indoor GPS as position 

tracking systems and magnetic trackers as head orientation tracking systems offer the 

most promise for accurately computing mobile users’ spatial parameters.  

 

In Chapter 5, technical features and detailed information on these studied technologies, 

and their applicability in a context-aware information delivery framework are evaluated 

and compared.  



51 
  

3.5. References 

 

Aitenbichler, E., and M. Muhlhauser. (2003). “An IR Local Positioning System for Smart 
Items and Devices”, In Proceedings of the 23rd International Conference on Distributed 
Computing Systems Workshops (ICDCSW'03), .334-339. 
 
Aksoy Y., Chan I., Guidry K., Jones J., and Wood C. (2004). “Materials and Asset 
Tracking using RFID: A Preparatory Field Pilot Study”, FIATECH Smart Chips Project 
Report- available at: http://www.fiatech.org (Accessed June 15, 2006).  
 
Aranov, V. Y., Sholukha, V. A., Van Sint Jan, S. (2004). “Biomechanical Analysis and 
Visualization Tool of Human Morphological and Motion Data”, In Proceedings of the 
International Conference on Computer Graphics and Vision (Graphicon), Moscow, 
Russia- available at: http://www.graphicon.ru/ (Accessed March 15,2009). 

 
Ayre, L. 2004. RFID and Libraries [online]-available at: 
http://galecia.com/included/docs/position_rfid_permission.pdf (Accessed: May 18, 
2006). 
 
Aziz, Z., Anumba, C.J., Ruikar, D., Carrillo., P.M., and Bouchlaghem.,D.N. (2005). 
“Context-aware information delivery for on-Site construction operations”, Proceedings of 
the 22nd CIB-W78 Conference on Information Technology in Construction, Institute for 
Construction Informatics, Technische Universitat Dresden, Germany, CBI Publication 
No:304, 321-327. 
 
Ballard, P., and Stockman, G.C. (1992). “Computer Operation via Face Orientation, 
Pattern Recognition”, In Proceedings of the 11th Computer Vision and Applications 
Conference. 
 
Baluja, S., and Pomerlau,D. (1994). “Non- Intrusive Gaze Tracking Using Artificial 
Neural Networks”, CMU Technical Report, CMU-CS-94-102, School of Computer 
Science, Carnegie Mellon University. 
 
Baratoff, G., and Blanksteen, S. (2001). “Tracking Devices”- available at: 
http://www.hitl.washington.edu/scivw/EVE/I.D.1.b.TrackingDevices.html(Accessed 
February 25, 2006). 
 
Barbič, J.; and James, D.L.(2007): “Time-Critical Distributed Contact for 6-DoF Haptic 
Rendering of Adaptively Sampled Reduced Deformable Models”, In Proceedings of the 
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SESSION: 
Real-time simulation, 171-180.  
 
Ciger, J., Herbelin, B., and Thalmann, D. (2004). “Evaluation of Gaze Tracking 
Technology for Social Interaction in Virtual Environments”, 2nd Workshop on 



52 
  

Modelling and Motion Capture Techniques for Virtual Environments, CAPTECH04, 9-
11.  
 
Cleary, K., and Brooks, T. (1993). “Kinematic Analysis of a Novel 6-DOF Parallel 
Manipulator”, In Proceedings of the IEEE International Conference on Robotcs and 
Automation, Atlanta, GA, 708-713. 
 
Collet, C., Finkel, A., and Gherbi, R. (1997). “CapRe: A Gaze Tracking System in Man- 
Machine Interaction”, In Proceedings of the IEEE International Conference on Intelligent 
Engineering Systems. 
 
Colombo, C., Andronico, S., and Dario, P. (1995). “Prototype of a Vision-Based Gaze-
Driven Man-Machine Interface”, In Proceedings of the IEEE/RSJ International 
Conference on Intelligent Robots and Systems. 
 
Ebisawa, Y. (1998). “Improved Video-Based Eye- Gaze Detection Method”, In 
Proceedings of the IEEE IMTC, Hamamatsu. 
 
El-Rabbany, A. (2002). Introduction to GPS: The Global Positioning System, Artech 
House Inc., Norwood, MA. 
 
Ge, S., Saito, T., Wu, J.L., and Iramine, K. (2006). “A Study on Some Optical Illusions 
Based Upon the Theory of Inducing Field”, Neuroscience J. 1, 4205-4208.  
 
Gee, A.H., and Cipolla, R. (1994). “Determining the Gaze of Faces in Images”, Technical 
Report, CUED/FINFENG/ TR 174, Department of Engineering, University of 
Cambridge. 
 
Ferrin, F. (1991). “Survey of helmet tracking technologies”, In Proceedings of SPIE, 
1456, 86-94.  
 
Horpresert, T., and Yacoub, Y., and Davis,L.S. (1996).“Computing 3-D Head Orientation 
from a Monocular Image Sequence”, In Proceedings of the Second International 
Conference on Automatic Face and Gesture Recognition. 
 
Hu, B., and Qiu, M. (1994). “A New Method for Human-Computer Interaction by using 
Eye Gaze”, In Proceedings of the IEEE International Conference on Systems, Man and 
Cybernetics. 
 
Hutchinson, T.E., White, K.P., Martin, W.N., Reichert, K.C., and Frey, L.A. (1998). 
“Human Computer Interaction Using Eye Gaze Input”, In Proceedings of the IEEE Trans. 
on Systems, Man, and Cybernetics, 19(6), 1527-1534. 
 
Kaufman,A.E., Bandopadhay, A., Shaviv, B.D. (1993). “An Eye Tracking Computer 
User Interface”, Proceedings of the Research Frontier in Virtual Reality Workshop, IEEE 
Computer Society Press, 78-84. 



53 
  

Kaur,M., Tremaine,M.,  Huang, N., Wilder, J., Gacovski, Z., Flippo,F., and Sekhar, C.M. 
(2003). “Where is .it? Event synchronization in gaze-speech input systems”. In 
Proceedings of the 5th International Conference on Multimodal Interfaces (ICMI). 
 
Krapichler, C., Haubner, M., Engelbrecht, R., and Englmeier, K.(1998).“VR interaction 
techniques for medical imaging applications”, Computer Methods and Programs in 
Biomedicine, 56(1), 65-74. 
 
Laeng, B.K., Waterloo, S.H., Johnson, S. J., Bakke, T., Lag, S. S., Simonsen, and 
Hogsaet, J. (2007). “The Eyes Remember It: Oculography and Pupillometry During 
Recollection in Three Amnesic Patients”, J. Cog. Neuroscience, 19, 1888-1904. 
 
Lin, C. (2002). “An eye behavior measuring device for VR system”. Optics and Lasers in 
Engineering, 38(6), 333-359. 
 
Lin, C., Huan, C., Chan, C., Yeh, M., and Chiu, C. (2004). “Design of a computer game 
using an eye-tracking device for eye's activity rehabilitation”, Optics and Lasers in 
Engineering, 42(1), 91-108. 
 
Sibert, L.E., and Jacob, R.J.K. (2000). “Evaluation of eye gaze interaction”. In CHI 2000 
Conference on Human Factors in Computing Systems. 
 
Lu, G.; Jiang, C.; and Geng, Y. (2002). “Adaptive Fuzzy Control of High Accuracy 
Airborne Optical-Electronic Tracking System”, Journal of Acta Armamentarii, 23(4), 
Zahongguo Binggong Xuehui Publishers, 533-535.  
 
Nippon, Gananka, G., and  Zasshi, G. (2007). “Physiology and Pathology of Visual 
Information Processing”, Neuroscience J., 111, 160-191.  
 
Nixon, M.A., McCallum, B.C., Fright, W.R., and Price, N. B. (1998). “The Effects of 
Metals and Interfering Fields on Electromagnetic Trackers”, Presence Journal, 7(2), 204-
218. 

 
Myers, G.A., Sherman, K.R., and Stark, L. (1991). “Eye Monitor”, IEEE Computer 
Magazine, 14-21. 
 
Pateli, A., Giaglis, G.M., Fouskas, K., Kourouthanassis, P. and Tsamakos, A. (2002). 
“On the Potential Use of Mobile Positioning Technologies in Indoor Environments”, In 
the Proceedings of 15th Bled Electronic Commerce Conference -e-Reality: Constructing 
the e-Economy, Bled, Slovenia,  
 
Rempel, D., Willms, K.,  Anshel, J., Jaschinski, W., and  Sheedy, J. (2007).”The Effects 
of Visual Display Distance on Eye Accommodation, Head Posture, and Vision and Neck 
Symptoms”, J. Neuroscience, 49, 830-838. 
 



54 
  

Salvucci. D. D., and Anderson, J. R. (2000). “Intelligent gaze-added interfaces”. In CHI 
2000 Conference on Human Factors in Computing Systems. 
 
Schilit, B.N., Adams, N., and Want R. (1994). “Context-aware computing applications”, 
Workshop on Mobile Computing Systems and Applications (WMCSA), Santa Cruz, CA, 
85–90. 
 
Stiefelhagen, R. (1996). “Gaze Tracking for Multimodal Human-Computer Interaction”, 
Diplomarbeit, Universitiit Karlsruhe. 
 
Szaflarski, D. M. (2007). “How We See: The First Steps of Human Vision”, Sch. 
Neuroscience J. 11, 67-86. 
 
Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K., and Colluci, D. (2001). 
“High-Performance Wide-Area Optical Tracking: The HiBall Tracking System, 
Presence: Teleoperators and Virtual Environments, 10(1), MIT Press. 
 
Xiang, Z., Song, S., Chen, J., Wang, H., Huang, J., and Gao, X. (2004). “A Wireless 
LAN‐Based Indoor Positioning Technology”, IBM Journal of Research and 
Development, 48 (5/6), 617‐626. 
 
Young, L.R., and Sheena, D. (1975). “Survey of Eye Movement Recording Methods”, 
Behavior Research Methods and Instrumentation, 7(5), 397-429. 

 
Zhu, Z., and Ji, Q. (2004). “Eye and Gaze Tracking for Interactive Graphic Display”, 
Machine Vision and Applications, 15(3), 139-148. 
 



55 
  

Chapter 4 

 

Evaluation of Standard Product Models and 
Project Databases for Information Access 
and Retrieval in Construction Applications  

 

 

4.1. Introduction 

 

The construction industry is inevitably characterized as one which generates vast 

amounts of graphical and textual data. Effectively managing such an enormous volume of 

information to ensure its accuracy and availability in a timely manner is crucial to the 

successful completion of any project (Boddy et al. 2007). Inaccuracies in information 

access and retrieval can invariably lead to project delays, uneconomical decisions, 

accidents, or even the complete failure of a project. Therefore, the efficient and timely 

communication of relevant data, and an improved and integrated flow of information are 

critical concerns to all members of the construction industry, in particular the project 

participants involved in the facility construction. 
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For a typical construction information retrieval situation, an inspector for example, would 

want to find all available information about one construction activity, i.e. a building wall. 

The inspector would perhaps find the drawings in a Computer-Aided Design (CAD) file, 

the specifications in a text document, the cost estimates in a spreadsheet, the schedule in 

a particular application format, the contracts in a text document, and price quotes in 

different websites or other sources. In this case, the major task would be how to index, 

integrate and retrieve information from these different unorganized data sources.  

 

Recent years have seen the emergence and development of a plethora of visual software 

modeling tools and modeling standards and methods (Fahdah 2008). For instance, 

standard product models and project information systems, by representing the whole 

building information in one coherent virtual model, can facilitate the exchanging, sharing 

and delivery of pertinent construction information, as well as enhance work efficiency 

and collaborative processes (Halfawy et al. 2001, Aziz et al. 2005).  

 

In this chapter, the author capitalizes on these existing methodologies and evaluates the 

applicability of several interoperable product models and database management systems 

for automated context-aware information access and retrieval in construction 

applications.   
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4.2. Background 

 

During the early 1980s, Information Technology (IT) was almost exclusively used to 

support activities which could be categorized as creation of new information. The use of 

CAD started to proliferate, but still the emphasis was on support for the creation and the 

viewing of data (Bjork 1999). The support for information retrieval and making 

information available in the construction industry came in the form of very expensive 

plotters enabling the plotting of drawings which emulated manually produced drawings. 

Construction managers, inspectors and other site personnel were mainly occupied with 

information retrieval and communication with co-workers. In the early years, there was 

relatively little IT support for retrieval and communication tasks, especially in 

construction (Aziz et al. 2005).  

 

There has therefore been a need for an effective communications infrastructure that 

facilitates seamless inter-working between the disparate professionals involved in 

construction projects (Amor and Anumba 1999). Such an infrastructure needs to be based 

on interoperable information and communications technologies, and should facilitate 

information interchange between members of the project team and across stages in the 

project lifecycle from construction to inspection to maintenance. It has been suggested 

that the central kernel of this communications infrastructure should be inhabited by a 

shared construction project model (Anumba et al. 1997) in the form of integrated product 

models and project databases (Kiviniemi 2005a, b).  
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There are several views within the construction industry and the research community on 

what constitutes an integrated project database. Some see it simply as an amorphous 

collection of all the information relating to a project, irrespective of the medium of 

storage (paper drawings and specifications, CAD files, etc.) or the method of 

dissemination of the project information (Fisher et al. 1997). Others see it in terms of a 

single database which holds all the information on a project and which is accessible to all 

members of the project team (Niemioja 2005). Some others view the integrated project 

database as an integration of product models, which hold information relating to the 

building product, and process models, which hold information regarding the construction 

and business processes required to translate the product information into a physical 

product - the constructed facility (Kiviniemi 2005a, Amor and Anumba 1999, and Bjork 

and Penttila 1989).  

 

The next sections present common integrated product models and project databases that 

were investigated in this research and viewed as computer-interpretable models of 

buildings enabling efficient information sharing between different project parties across 

the life-cycle of a constructed facility. 

 

4.3. Building Information Models 

 

Building Information Models (BIMs) have become an active research area in Computer 

Integrated Construction over the last ten to twenty years. From an industrial perspective, 

the rise of the trend towards BIMs and model based engineering is due to the inadequate 
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interoperability in the industry. Gallaher et al. (2004) indicated that US$15.8B is lost 

annually in the U.S Capital Facilities Industry due to the lack of interoperability. Today, 

BIMs are seen as the main facilitators of integration, interoperability, collaboration and 

process automation. A BIM is a digital information structure of the objects that make up a 

building, captured in the form, behavior and relations of the parts and structural 

components within this building. BIMs can have several pieces of information including 

CAD drawings, project specifications and schedule, bill of materials, change orders, and 

other information pertaining to any construction entity of the building (Chin et al. 2008, 

Tse et al. 2006)(Figure 4.1). It serves then as a shared knowledge resource for 

information about a building, forming a reliable basis for decisions during its whole 

lifecycle, i.e. from inception onwards (NBIMS 2006).  

 

 

Figure 4.1 – A Sample Product Model 
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In the design process, for instance, the production of separate drawings is replaced by the 

construction of a virtual building. A drawing in the traditional sense is merely a view to 

the model at a chosen moment, as the whole building and its environment are included in 

one single product model. Everything is modeled using three-dimensional building 

components. The model is then maintained and revised throughout the project from start 

to hand-over. Additionally, the use of one virtual building facilitates and automates the 

data transfer between different applications used in construction, inspection and 

maintenance processes (Hakkinen 2007). 

 

Recently, there has been an upsurge in the commercial interest for building product 

modeling, through an initiative by several large end users of commercial CAD systems to 

start to define the object classes needed in building product modeling (Howard and Bjork 

2007). The research concerning such models was envisaged as early as the late 1970s 

(Eastman 1979) but started to gain more momentum around 1985, when the ISO STEP 

(ISO 10303:1992) standardization project started. STEP stands for Standard for the 

Exchange of Product Data (Step Tools, Inc. Website 2008) and tries to solve the 

engineering data exchange and sharing needs of all branches of industry (Owen 1993). 

Early attempts at building standardization within STEP included the global AEC 

reference model (Gielingh 1988) and the building systems model (Turner 1990). In the 

mid 1990s the product modeling standardization for the building domain was taken over 

by an industry consortium called the International Alliance for Interoperability (IAI), 

buildingSMART.  
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The first version of IAI/buildingSMART industry foundation classes (IFC) was released 

in 1997. IFC is an international specification for product data exchange and sharing for 

Architecture, Engineering, Construction and facilities management (AEC/FM). IFC 

enables interoperability between the computer applications for AEC/FM (IAI 2003). A 

subset of IFC is approved as ISO/PAS 16739.  

 

Over the last decade, IFC has matured as a standard BIM in supporting and facilitating 

interoperability across the various phases of the construction life cycle. IFC, showed 

good prospect for meeting industry requirements and was adopted by many construction 

professionals (Wix et al. 2007).  IFCs are data elements that represent parts of a facility 

and contain relevant information about those parts. IFCs are used by applications such as 

CAD tools to assemble computer readable facility models that contains all information of 

the parts and their relationships (Figure 4.2).  

 

 

Figure 4.2 – IFC Product Model Viewed in Different CAD Tools 

 

Previous research efforts focused on examining the applicability of the IFC and 

presenting an architecture for achieving the requirements for IFC-based construction 

product libraries (Owolabi et al. 2003). Work by Owolabi et al. (2003) also presented the 
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implementation of the architecture and envisioned it as a multi-tiered, service-based, 

message-oriented, client-server application, which is  a hybrid solution combining the 

elements of Web services and multi-tier applications. Other researchers such as Halfawy 

et al. (2002) proposed and employed various aspects of the aforementioned architecture 

for IFC related implementations. They recommended IFC-based messaging for systems 

interoperability and efficient data exchange.  

 

Froese (2003) highlighted the need for information and data exchange through IFC-based 

systems. His work showed the integration of model-based integrated systems together 

with web-based technologies such as document management, workflow management and 

e-commerce applications. Some of the general characteristics of integrated systems are 

that they cluster many functional views around an overall task of building, maintaining, 

and interacting with an integrated project database. They adopt a model-based approach: 

all information is structured around an object-oriented data model of the project. 

Generally, the product model (the physical components of the built facility) plays a 

central role, but this is interlinked with many other types of project information. Finally, 

most of the information contained within the system can be exchanged with other 

systems. 

 

In 1999, another standard, called aecXML was established within IAI. aecXML is 

intended to be used to facilitate information exchange of AEC data on the Internet. The 

whole concept, initially developed by Bentley, was introduced on August 13, 1999 (The 

XML Cover Pages Website 2008). aecXML’s further development is being directed by 
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the aecXML Working Group, an independent coalition of interested parties (The 

aecXML Working Group 1999)  

 

It is a framework for using the eXtensible Markup Language (XML) standard for 

electronic communications in the architectural, engineering and construction industries. It 

includes an XML schema to describe information specific to the information exchanges 

between participants involved in designing, constructing and operating buildings, plants, 

infrastructure and facilities. The various software applications used by these participants 

can transfer messages formatted according to the aecXML schema to coordinate and 

synchronize related project information. In addition, a standard aecXML specification 

can also facilitate e-commerce between suppliers and purchasers of equipment, materials, 

supplies, parts and services based on that same technical information (aecXML white 

paper 1999). 

 

The aecXML system is designed for all the non-graphic data involved in the construction 

industries. Much of the data within the scope of the aecXML system is currently stored as 

arbitrarily formatted text authored in word processors, or as spreadsheets or databases. 

The aecXML system provides a set of keywords and named data attributes, so that all 

users will employ the same naming logic and grouping, and software will be able to make 

use of the data without it needing to be interpreted by humans and manually re-entered in 

each program’s required form.  Therefore, aecXML uses IFC to create a vendor-neutral 

means to access data generated by building information modeling (Cheng et al. 2002). 
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IFC and aecXML, however, are not the only open standards for interoperability in the 

building industry. This is primarily because IFC, in particular, is not yet complete in its 

representation of all the disciplines. It serves the needs of most architectural, general 

contracting, and some facilities management tasks, but still lacks a sufficiently complete 

representation of structural engineering to be effectively used by structural engineers or 

inspectors. Another open standard has emerged that caters to at least one significant 

segment of the structural engineering field, that of steel construction. This is the CIMsteel 

Integration Standards (CIS/2) standard. Since 2003, CIS/2 has been firmly established as 

the de facto interoperability standard for structural steel (Crowley and Watson 2000, 

Eastman et al. 2005). 

 

The CIMsteel Integration Standards Release 2 (CIS/2) is a logical product data model for 

structural steel building information (Lipman and Reed 2003). It is the result of the pan- 

European Eureka EU130 CIMsteel Project and has been endorsed by the American 

Institute of Steel Construction (AISC) as the technical basis for their Electronic Data 

Interchange initiative (Kamat and Lipman 2006). The objective was to decrease steel 

construction timelines, eliminate duplication of effort, and enable software applications to 

exchange data electronically.  

 

CIS/2 deals with information about the steel structure throughout its analysis, design, 

detailing, and fabrication life cycle (Figure 4.3).  CIS/2 structures can thus be represented 

as analysis, design, or manufacturing models (Kamat and Lipman 2006). Information on 

any of these models can coexist in the same CIS/2 file. An analysis model of a steel 
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structure consists of nodes and elements and supports several static and dynamic analysis 

methods. A design model represents a steel structure as a design assembly to allow 

member and connection design. A design assembly can be partitioned into other simpler 

design assemblies and eventually into design parts and design joint systems. The design 

parts and joint systems respectively form the conceptual representations of a basic piece 

of steel and a basic joint system. A manufacturing model in CIS/2 represents a steel 

structure as manufacturing assemblies for the purpose of detailing, production planning, 

and manufacturing. 

 

As such, CIS/2 has been implemented by many specific software packages to create a 

seamless and integrated flow and archival of information among all entities involved in 

all life cycle stages of steel framed structures (Reed 2002). Any software application can 

seamlessly have CIS/2 import and/or export capabilities. 

 

 

Figure 4.3 – Data Exchange Scenario with CIS/2   

[Images courtesy of Mr. Robert Lipman, NIST] 
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The geometry of the structure is only one property of the product data model. Other 

attributes of the structure include how parts are combined into assemblies and structures, 

analysis loads and reactions, material types, connection details, associations between 

members and drawings, and modification history. Therefore, the CIS/2 standard provides 

data structures for multiple levels of detail ranging from frames and assemblies to nuts 

and bolts (Figure 4.4).  

 

      

 Figure 4.4 – CIS/2 Product Model of a Building Structural Frame (Left) and CIS/2 
Product of Connection Details with Bolts (right) 

[Images courtesy of Mr. Robert Lipman, NIST] 
 

The product data model is defined by a schema, STEP as well, that details how all the 

information in the CIS/2 standard is represented and how each entity relates to each 

other. It also defines rules for using various entities and the information those entities 

contain. 

 

The CIS/2 standard has been demonstrated to be a very effective communication tool and 

was successfully deployed on a mobile computing platform at the National Institute of 

Standards and Technology (NIST) (Saidi et al. 2005). For these reasons, in this research, 
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the utility of the interoperable CIS/2 product model was investigated and is presented as a 

suitable data structure to represent cross-referenced building data for the evaluation of the 

designed automated information retrieval technique (Chapter 7). 

 

4.4. Database Management Systems 

 

Despite the recent upsurge of BIM tools, contractors, engineers, managers, etc. still use 

standard databases management systems (DBMS) while they transition to BIM. A 

database is a well organized collection of information. A DBMS gives the software tools 

needed to manage data in a flexible manner. It includes various features which help to 

add, modify or delete information or data from the database (Date 2003). One of the most 

important features of a DBMS is asking questions or queries about the information stored 

in the database and generating reports or forms analyzing selected content. Information 

stored in databases must be organized into related record types through a process known 

as database design. The DBMS that is chosen must be able to manage different 

relationships, which is where database models come into play. The schema of each 

database is defined according to a specific model. The four most common types of 

organizations are the hierarchical model, network model, relational model and object 

model (Ullman and Widom 1997). 

 

A hierarchical data model (Kamfonas 1992) is a data model in which the data is 

organized into a tree-like structure (Figure 4.5). The structure allows repeating 
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information using parent/child relationships: each parent can have many children but 

each child only has one parent.  

 

 

Figure 4.5 – Hierarchical Database Model 

 

In hierarchical databases, attributes of specific records are listed under an entity type and 

entity types are connected to each other through one-to-many relationships, also known 

as 1:N mapping. Originally, hierarchical relationships were most commonly used in 

mainframe systems, but with the advent of increasingly complex relationship systems, 

they have now become too restrictive and are thus rarely used in modern databases. 

Hierarchical DBMSs were popular from the late 1960s, with the introduction of IBM's 

Information Management System (IMS) DBMS, through the 1970s (Andany et al. 1991). 

 

If any of the one-to-many relationships are compromised, for example a child node 

having more than one parent node, the database structure switches from the hierarchical 
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to a network model (Figure 4.6). In the 1970s, the Conference on Data Systems 

Languages (CODASYL) formally defined the network model (Bachman 1973). 

 

 

Figure 4.6 – Network Database Model 

 

In the network model of a database it is possible for a record to have multiple parents, 

making the system more flexible compared to the strict single-parent model of the 

hierarchical database (Figure 4.5). The model is made to accommodate many to many 

relationships, which allows for a more realistic representation of the relationships 

between entities. Even though the network database model gained popularity and was 

widely implemented, it is now rarely used because of the availability of more competitive 

models that possess the higher flexibility and productivity demanded in today’s ever 

advancing period. Therefore, this model was eventually displaced by the relational 

model, which offered a higher-level, more declarative interface.  
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Working under the assumption that file systems (which often use the hierarchical or 

network models) are not considered databases, the relational database model is the most 

commonly used system today.  

 

The relational model was invented by E.F. Codd (Codd 1970) as a general model of data, 

and subsequently maintained and developed by Chris Date and Hugh Darwen among 

others (Date and Darwen 2000). In a relational model, the design of the records is 

organized around a set of tables. Each table is broken down into additional components 

(Figure 4.7) such as a row in a table. Each row is referred to as a record. Each column in 

a table is a category of information referred to as a field. One item of data is called a data 

value.  

 

Figure 4.7 – Sample Database Table for a Building 

 

A key piece to the relational database concept is the field in which the data value 

uniquely identifies the record, i.e. ID in Figure 4.7, and therefore all respective data 

values remain unique to each record. This field is referred to as the primary key. In 
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Figure 4.8, Object ID in Object Table, Activity ID in Activity Table, Schedule ID in 

Schedule Table, and Estimation ID in CostEstimation Table are primary keys. Those keys 

are used for mapping or cross-referencing the tables to each other. A table that contains 

the parent or primary information (i.e. Schedule Table) can be linked to the appropriate 

row(s) in a table that contains child information (i.e. Info Type Table) based on a 

common indexed field of the two tables (Schedule ID), called primary key in the parent 

table and foreign key in the child table. This way, keys represent the data in the tables 

and their relationships. 

 

 

Figure 4.8 – Relational Database Model 

 

There are three main types of relationships, One-to-One, One-to-Many, and Many-to-

Many relationship. A one-to-one relationship exists when the primary record will have 

only one related record. Another determining factor is both fields using the relationship 
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are primary key fields: If the related data value in both tables must be unique then there 

can only be one matching record, thus a one-to-one relationship.  

 

A one-to-many relationship is the most common type of relationship. A one-to-many 

relationship exists when the primary record can have many related records. A one-to-

many relationship can be defined either using an embedded foreign key column, or using 

a join table. An embedded foreign key is a column defined in the table on the many side 

of the relationship that holds a key to the table in the one side of the relationship. A join 

table is a table whose sole purpose is to store mapping values between the key and 

foreign key of the two tables involved in the relationship.  

 

A many-to-many relationship refers to a relationship between two tables in which the 

first one  may contain a parent row for which there are many children in the second one 

and vice versa. Because most DBMSs only support one-to-many relationships, it is 

necessary to implement such relationships physically via a third junction table, with two 

one-to-many relationship. In this case the logical primary key for the junction table is 

formed from the two foreign keys (i.e. copies of the primary keys of both tables). 

 

In The Third Manifesto (first published in 1995), Date and Darwen show how the 

relational model can work together with the object model and accommodate certain 

desired object-oriented (OO) features, leading to what is called the object-relational 

database (ORD) (Stonebraker et al. 1999).  An ORD is similar to a relational database, 

but with an object-oriented behavior: objects, classes and inheritance are directly 



73 
  

supported in database schemas and in the query language (Booch 1994). ORDs allow the 

user to embed new classes of data objects into the relational data model abstraction. It 

supports extension of the data model with custom data-types and methods. Therefore, by 

synthesizing both models, the ORD takes advantage of both the performance and 

robustness of the relational model semantics and flexibility of the object model.  

 

Relation is still the fundamental abstraction, with integration of OO features (Ullman and 

Widom 2002).  All records in a table are structurally identical in that they all consist of a 

fixed number of values of specific data types stored in columns or fields that are named 

as part of the table’s definition. The most important distinction between relational 

database tables and object-relational database tables is the way that ORD columns are not 

limited to a standardized set of data types. In addition to defining the structure of a table, 

integrity constraints can be included in its definition.  

 

The leading DBMSs are based on the relational model. A relational database 

management system (RDBMS) is a program that allows creating, updating, and 

administering a relational database. Most commercial RDBMSs use the Structured Query 

Language (SQL) to access the database. In this section, Oracle, Microsoft's SQL Server 

and Microsoft Access RDBMSs have been evaluated for possible implementation of 

relational principles in the design of the database needed to fulfill the information access 

and retrieval component requirements of the proposed methodology (Chapter 2). 

Additionally, in order to ensure flexibility in the database design, relational principles 
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were then coupled with OO features, using an OO programming language, to achieve an 

ORD (Chapter 7). 

 

Oracle (Loney 2004) is a multi-user database management system. It is a software 

package specializing in managing a single, shared set of information among many 

concurrent users. Oracle is one of many database servers that can be plugged into a 

client/server equation. Oracle works to efficiently manage its resource, a database of 

information, among the multiple clients requesting and sending data in the network. 

Oracle has many important features that make it an efficient database server choice for 

client/server computing. Oracle supports all major operating systems for both clients and 

servers. In the latest version, innovative features such as self-tuning database 

components, sophisticated partitioning schemes and data compression have maintained 

Oracle’s reputation for performance, scalability and optimal use of hardware resources 

for industry applications. With Data Guard, Real Application Clusters (RAC) and Oracle 

Advanced Security (ASO), Oracle has shown itself to be a leader in database availability 

and security as well. 

 

On the other hand, Microsoft SQL Server (Agrawal et al. 2004) is a relational model 

database server produced by Microsoft. It provides an environment used to generate 

databases that can be accessed from workstations, the web, or other media such as a 

personal digital assistant (PDA). In the nine years since release of Microsoft's previous 

SQL Server product (SQL Server 2000), advancements have been made in performance, 

the client IDE tools, and several complementary systems packaged all together. SQL 
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Server supports different data types, including primary types. SQL Server also makes 

server statistics available as virtual tables and views (called Dynamic Management 

Views or DMVs). A database can also contain other objects including views, stored 

procedures, indexes and constraints, in addition to tables, along with a transaction log. 

Additionally, an SQL Server database can contain a maximum of 231 objects, and can 

span multiple OS-level files with a maximum file size of 220 TB.  The main mode of 

retrieving data from an SQL Server database is querying for it. The query declaratively 

specifies what is to be retrieved. It is processed by the query processor, which figures out 

the sequence of steps that will be necessary to retrieve the requested data. The sequence 

of actions necessary to execute a query is called a query plan. There might be multiple 

ways to process the same query. SQL Server possesses the ability to choose the plan that 

is supposed to yield the results in the shortest possible time.  

 

Microsoft Access (Allison and Berkowitz 2005), in particular, provides users with simple 

and highly flexible DBMS solutions in the online database market today, mainly in terms 

of compatibility and sharing. Additionally, MS Access, installed as part of the Microsoft 

Office suite, is considered cheaper compared to other databases such as Microsoft SQL 

server and Oracle which are quite expensive (i.e. Oracle 25-user pricing is around 

$87,000 and Microsoft SQL server 25-user pricing is around $ 45,000) (New York Times 

Company 2008).To add further, Access allows relatively quick and fast development 

because of very good GUI design tools, and high level integration of GUI design and data 

objects.  
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When it comes to security, MS Access is limited to security in terms of 

username/password on the database. If the database design needs to be secured to prevent 

changes, Access databases can be locked or protected by converting the database to an 

.MDE file. It is also subject to Windows Server security on the file itself as well as the 

folder it resides in (Wikipedia 2008). MS Access uses standards that enable applications 

to work in large and harsh environments (DatabaseDev Website 2008). Therefore, it 

constitutes a good and cheap means for storing large volumes of information which needs 

to be held for a long time and retrieved flexibly using varying criteria and sometimes in 

formal reports. It allows the user to store, retrieve, sort, analyze and print information 

stored in the database. It also allows defining input screens, and adding cross-referencing 

to make sure that data is internally consistent. Additionally, MS Access is feasible if 

multiple users, and especially non-technical users, will use the system, and will need to 

update the contents of the data store at one time.  

 

For the above reasons and for the purpose of this research, MS Access DBMS was 

adopted as the software tool to create and design project databases (Chapter 7). 

 

4.5. Summary and Conclusions 

 

The author has studied several types of building information models and project 

information systems for access and retrieval of contextual information on identified 

objects in users’ field of view. 
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The research presented in this chapter introduced three building information models (IFC, 

aecXML, and CIS/2) and three database management systems (Oracle, Microsoft SQL 

Server, and Microsoft Access) that can be used for information support on construction 

sites. Based on this study, it was found that CIS/2 as a product model and MS Access as a 

database management system can be presented as suitable project repositories to 

represent cross-referenced building data for the evaluation of the designed automated 

information retrieval component of the proposed methodology . 

 

In Chapter 7, technical features and detailed information on these studied technologies, 

and their applicability in a context-aware information delivery framework are evaluated.  
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Chapter 5 

 

User Tracking in Outdoor and Indoor 
Construction Environments  

 

 

5.1. Introduction   
 

In recent years, the need for localization and tracking have been rapidly expanding in 

many fields (Kuusniemi and Lachapelle 2004), and currently offers significant potential 

of improving manual processes and supporting important decision-making tasks in the 

construction field (Kirisci et al. 2004) by allowing rapid access to a wealth of project 

information.  

 

Considering the dynamic nature of typical construction projects, mobile users (e.g. 

construction engineers, inspectors, etc.) need to be constantly tracked outdoors as well as 

indoors. By capitalizing on the ability to accurately track mobile users in any indoor 

and/or outdoor environment, the presented research has designed and implemented a 
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dynamic spatial context-sensing framework that can allow the identification of 

construction entities and artifacts visible in a user’s field of view at any given time and 

location, as well as contextual information retrieval (Chapter 2).  A context-aware data 

delivery and information retrieval framework retrieves and displays graphical and textual 

data to the users based on their latest position, line of sight and the level of detail they 

request. As a result, tracking a user’s fully-qualified spatial context is a crucial task in 

almost all applications designed to retrieve and deliver context aware information with 

high-precision on a continuous basis, such as construction applications.  

 

However, as noted in previous chapters, in order to interpret a site engineer’s or an 

inspector’s fully-qualified spatial context, another parameter in addition to the position is 

required. This parameter is the user’s three-dimensional head orientation, which is the 

direction in which the user is looking. It is defined by three angles named yaw, pitch, and 

roll that can be described using the same notation typically used to define the orientation 

of an aircraft in flight (Figure 5.1).  

 

 

Figure 5.1– Yaw, Pitch, and Roll Angles 
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As shown in Figure 5.1, the yaw represents the rotation in the horizontal plane, pitch is 

the rotation in the vertical plane parallel to the forward direction, and roll is the rotation 

in the vertical plane perpendicular to the forward direction. 

 

In this chapter, the framework’s first component, ubiquitous user tracking scheme, is 

presented. This scheme encompasses positioning as well as orientation tracking devices 

for tracking a user’s spatial context parameters in outdoor and indoor environments. 

 

For outdoor applications, positioning techniques have been investigated and validated in 

recent work reported in Behzadan and Kamat (2007). The outdoor positioning 

technologies were integrated within an outdoor AR platform (UM-AR-GPS-ROVER). 

The hardware configuration consists of a georeferencing based algorithm developed 

using the Global Positioning System (GPS) and magnetic orientation tracking devices to 

track a user’s dynamic viewpoint (Figure 5.2).  

 

 

Figure 5.2 – Outdoor Hardware Prototype 
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As mentioned in Chapter 3, the orientation tracker, a TCM5 magnetic device, includes a 

built-in compass, and employs solid-state magnetic field sensors which measure compass 

heading through a full 360 degrees of rotation. The tracker employs proprietary hard and 

soft iron correction algorithms to calibrate out magnetic anomalies for repeatable, high-

resolution measurement in challenging environments (PNI 2008). The tracking device 

was placed at the highest point inside the user’s helmet, directly above the top of the 

head, and parallel to the forward line of sight (Figure 5.2).  

 

The GPS measures the user’s position as longitude (x), latitude (y), and altitude (z). The 

magnetic tracker, on the other hand, measures the orientation of the user’s head (and thus 

line of sight) in the form of yaw (α), pitch (β), and roll (γ) angles. These six 

measurements fully define the user’s outdoor location and line of sight at any given time. 

 

However, GPS technology is not suitable for indoor applications because it becomes 

ineffective when there is no continuous straight signal path between the satellites and a 

receiver. Therefore, other feasible techniques of user position and orientation tracking in 

indoor enclosed environments had to be investigated. The author thereby explored the 

applicability of wireless technologies, namely Wireless Local Area Networks (WLAN), 

Ultra-Wide Band (UWB), and Indoor GPS for dynamic user position tracking in 

situations where GPS is unavailable.  By tagging users with appropriate receivers/tags 

and deploying a number of nodes (access points, receivers, transmitters, etc.) at fixed 

positions indoors, the location of tagged users can conceptually be determined and 

continuously tracked. 
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The objective of this chapter is to describe three key wireless technologies applicable for 

indoor positioning, portray and compare the technical characteristics of these 

technologies, and highlight the extent to which each technology can be used to accurately 

calculate the positional context of a user in congested dynamic environments such as 

those found on construction sites.  

 

While these technologies are capable of streamlining tracking, data access and retrieval 

processes, their performances differ from the manufacturers’ specifications when utilized 

on construction sites due to issues, such as interference, data reading range, data 

accuracy, interoperability of hardware and software, and memory limitations (Kiziltas et 

al. 2008). In addition, although these technologies can save time and effort, they can also 

add new tasks that need to be performed prior to, during, or after the utilization of a 

technology in the field. Hence, a thorough understanding of both the technological 

capabilities and process implications of these technologies is needed to be able to utilize 

them effectively during construction, inspection and maintenance of facilities.  

 

5.2. Technical Overview on Indoor User Position 
Tracking Technologies  
 

5.2.1.   WLAN-based User Position Tracking  

 

A WLAN is a flexible data communication system implemented as an extension to or as 

an alternative for a wired LAN within a building or an area. The technology mainly 
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consists of a set of access points communicating wirelessly, using electromagnetic waves, 

to any WLAN-enabled device (Figure 5.3).  

 

 

Figure 5.3 – WLAN Technology 

 

One set of conducted experiments (Chapter 8) to obtain location information in this study 

was based on a WLAN based position system called Ekahau manufactured by the Finnish 

company Ekahau Inc. (Ekahau Website 2007). The underlying approach used for 

determining users’ position in the Ekahau tracking system is the fingerprinting technique 

(Figure 5.4).  
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Figure 5.4 – Fingerprinting Approach 

 
As shown in Figure 5.4, location fingerprinting consists of two phases: ‘training’ and 

‘positioning’ (Li et al. 2006). The objective of the training phase is to build a fingerprint 

database. In order to generate the database, reference sample points (RPs) must first be 

carefully selected. Locating a mobile user (MU) at one RP location, the Received Signal 

Strengths (RSS) of all the access points (AP) are measured. From such measurements the 

characteristic feature of that RP (its RSS) is determined, and is then recorded in the 

database. This process is repeated at another RP, and so forth until all RPs are visited. In 

the positioning phase, the MU measures the RSS at a place where it requires its position. 

The measurements are compared with the database using an appropriate search/matching 

algorithm. The outcome is the likeliest location of the MU.  

 

In the process of determining mobile users’ location using the aforementioned 

fingerprinting technique, the Ekahau tracking system relies heavily upon many 
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components, namely the Ekahau Client, the Ekahau Positioning Engine (EPE), the 

Ekahau Manager, and the Ekahau Application Suite (EAS) (Figure 5.5).  

 

 

Figure 5.5 – Ekahau Tracking System Components 

 

The Ekahau Client is a free downloadable piece of software that is responsible for 

sending the recorded Received Signal Strength (RSS) WLAN signals to the EPE. These 

signals play a major part in determining users’ position and are also used by the Ekahau 

Manager application to do SiteCalibration. 

 

The Ekahau Manager is mainly responsible for the patented process called 

SiteCalibration (Figure 5.6).  
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Figure 5.6 – Ekahau Deployment and Calibration 

 

First, it creates a model of the desired area in the form of an accurate floor map image 

(can be in JPG, PNG or BMP format). Then, tracking rails are drawn on top of the map 

to symbolize mobile users’ walking paths. In order to turn this final version of the map 

into a positioning model, Ekahau Manager requires explicit calibration according to the 

training phase of the fingerprinting technique (sample points are recorded at many RPs in 

the walking paths). The floor map used by the Ekahau Manager can be seen as an implicit 

location model when calibrated as a positioning model. The map does not show 

hierarchical or containment relationships between objects in a building, but is used to 

create a coordinate system of each floor area.  
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The Ekahau Manager can also perform various analyses of the WLAN signals it receives 

and process them to provide instant live tracking of a connected device.  

 

The EPE, being the centerpiece of the Ekahau Tracking System, is responsible for 

keeping track of all the devices, and updating their position based on the information it 

continuously receives from them. The EPE is a 2.5 dimensional positioning solution. It 

cannot give a complete 3D coordinate of the estimated position. What it can compute is 

mainly the 2D coordinates (x, y) and the floor the device is on. 

 

The EAS is a set of helpful tools, examples, and easy programming interface for third-

party applications to quickly utilize EPE location information.  

 

Based on all the aforementioned system components, the Ekahau tracking process 

operates as follows:  

First, a model of the desired space is created using Ekahau Manager. Then, areas/rooms 

are scanned and Radio Frequency (RF) parameter measurements obtained at different 

RPs using Ekahau Client (power loss, multipath phase, etc.) are recorded. The 

measurements with their location are then saved to a database/EPE (i.e. Received Signal 

Strengths, RSS indicate power loss, and this loss is translated into location).  

 

Having the positioning model created and calibrated, the second phase of the 

fingerprinting approach, positioning comes into play. When a WLAN-enabled mobile 

device/user moves in the area, its RF parameter measurements are reported to the EPE. 
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The device/user location is estimated by matching the RF parameters against the location 

fingerprints in the database. The software uses patented algorithms and scene analysis on 

the signals to compute a location estimate. The whole process results in a positioning 

estimate that can be as accurate as 1 to 2 meters under optimal conditions (LaMarca et al. 

2005).  

 

5.2.2.   UWB-based User Position Tracking  

 

The second tracking system studied in this research is the Sapphire DART Ultra-Wide 

Band (UWB) Digital Active Real Time Tracking system (Multispectral Solutions Website 

2007). It is designed for the tracking of personnel and/or equipment. A system is defined 

as one processing hub, four or more receivers, one or more reference tags, and multiple 

tags for individual assets (Figure 5.7). 

 

 

Figure 5.7 – Sapphire UWB Tracking System 
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The system uses short pulse or UWB technology to determine the precise location of 

UWB radio frequency identification (RFID) tags and operates as follows:  

Each tag repeatedly sends out a packet burst consisting of a short train of UWB pulses, 

each pulse having an instantaneous bandwidth of over 1 GHz. Since individual tags are 

not synchronous, and the packet bursts are of extremely short duration, the probability of 

tag packet collision is very small allowing for the simultaneous processing of hundreds to 

thousands of tags in a local area.  

 

These transmitted UWB pulse trains are received by one or more Sapphire DART UWB 

receivers which are typically located around the periphery of the area of coverage at 

known locations. Reception by three or more receivers permits accurate 2D localization, 

while reception by four or more receivers allows for precise 3D localization. Each 

receiver uses a highly sensitive, very high speed, short pulse detector to measure the 

precise time at which a tag packet arrives at its antenna. The extremely wide bandwidth 

of the UWB pulses permits the receivers to measure these times-of-arrival to sub 

nanosecond precision.  

 

In order to determine the actual tag position from these measurements, the Sapphire 

DART Hub/Processor, using calibration data from the Sapphire DART UWB reference 

tag, determines the differential times-of-arrival (DTOA) between receiver pairs from 

these individual receiver measurements and implements an optimization algorithm to 

determine the location using a multilateration or hyperbolic positioning technique (Figure 

5.8). In general, N receivers provide N-1 halves of two-sheeted hyperboloids which are 
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approximated by hyperbolas. In this case, given four receivers, the tag is located along 

three DTOA hyperbolas (i.e. DTOA1-2, DTOA1-3, and DTOA1-4) at their intersections. 

Since the speed of light is approximately 0.98 feet per nanosecond, these DTOA are 

readily converted into the appropriate measurement distances (Multispectral Solutions 

Website 2007) and the tag location is determined. 

 

 

Figure 5.8 – Multilateration Approach 

 

The outputs resulting from a UWB tracking system application are provided from the hub 

to the client machine in the following format: 

<Data Header>, <tag #>, <X>, <Y>, <Z>, <battery>, <timestamp>, <unit><LF> 
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“Data Header” represents the tag dimensional information. There are many expected 

values for the data header but the one of interest in this research is R which reflects the 

3D calculation for x, y, and z.  “tag #” is the tag ID. “X, Y, Z” are the calculated tag 

coordinates in feet or meters with respect to a user supplied origin. “Battery” is the tag’s 

low battery indicator (range value from 0-15, where 15 represents a fully charged 

battery). “Timestamp” represents the hub system time. “Unit” is a Virtual Group ID. The 

tag location data is computed from the time of flight measurements of the receivers 

within the virtual group. “LF” is a Line Feed character (with ASCII code = 0x0A), to 

terminate a location data string.  Among all the output information, the “Data Header”, 

“tag#” and “X, Y, Z” are of primary importance for the purpose of this research. 

 

5.2.3.   Indoor GPS-based User Position Tracking  

 

Indoor GPS (Metris Website 2007) is the third tracking system studied in this research. 

The system is mainly defined by transmitters and receivers (Figure 5.9).  

 

          

Figure 5.9 – Indoor GPS Transmitter (left) and Receiver (right) 
[Images courtesy of Dr. Kamel Saidi, NIST] 
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A battery operated transmitter uses laser and infrared light to transmit one-way position 

information and elevation to the receiver. With the addition of a second transmitter of 

known location and orientation, users can calculate the position of the receiver in the base 

coordinate system. By adding two more transmitters, the system can have four laser 

transmitters having its accuracy maximized. The GPS-like navigation signal is transferred 

through a wireless network connection providing mobility to the operator (Kang and 

Tesar 2004). As in satellite-based GPS, this one-way signal path is created from 

transmitters to the receiver, allowing an unlimited number of receivers to continuously 

and independently calculate positions whenever two or more transmitters are in view 

(Figure 5.10).  

 

 
Figure 5.10 – Indoor GPS Tracking System 

 

A receiver in the measurement volume, having photodiodes inside its module, detects and 

processes the laser and infrared light signals from each visible transmitter. The 3D 

position of the optical receiver is then calculated by the process of triangulation (Figure 
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5.11). Triangulation (Lähteenmäki et al. 2001) is used, if the angles to known locations 

are given. The two angles (α and β) are used to determine the line-of-sights to each of the 

known locations. These lines are unique in the two-dimensional space and intersect in the 

desired position.  

 

Therefore, given the angular information from at least two transmitters, and provided 

with the position and orientation of each transmitter, a unique 3D position within the 

measurement volume can be calculated. The indoor GPS eliminates the recurring 

problem of accidentally interrupting a laser beam during measurement that requires the 

operator to begin the measurement again. 

 

 

Figure 5.11 – Triangulation Approach 

 



99 
  

Additional details on setting up and using the WLAN-based Ekahau system, UWB and 

Indoor GPS with all their different components are presented in Appendix A. The reader 

is recommended to refer to this appendix for additional details on each technology. 

 

5.3. Mechanisms of a User Viewpoint Tracking 
Application  

 

In this research, the objective of the first component of the proposed methodology was to 

track both the mobile user’s position and head orientation in real-time. However, 

positioning information is obtained from one source, i.e. the three different indoor 

positioning technologies described above, and orientation information is obtained from 

another source, i.e. a software process communicating with a magnetic orientation tracker 

(Behzadan and Kamat 2006).  Therefore, there was a need to extract location information 

and then combine it with the orientation information within the same application. 

  

5.3.1.   WLAN-based Position and Head Orientation Tracking 
Application 

 

In this subsection, positioning information (X, Y, floor level) is obtained from the Ekahau 

tracking system (Ekahau Website 2007) and orientation information (roll, yaw, and pitch) 

from the magnetic orientation tracker (Behzadan and Kamat 2006).  

 

In order to extract location information, part of the Ekahau solution, the EAS (Figure 5.5) 

containing different examples and client applications, is used. It is constantly fed by the 
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Ekahau Positioning Server with position data. One of the ways to serve location 

information to the EAS is to use a Java Software Development Kit (Java SDK) (Ekahau  

Website 2007). The Ekahau Java SDK utilizes TCP sockets to connect to the Positioning 

Engine and provides quick and effective way for accessing location information, either 

from a local or remote computer. Using the SDK (Figure 5.12) requires a working 

knowledge of the Java programming language and Java 2 Platform 1.4.2.  

 

 

Figure 5.12– Using the Ekahau SDK Environment 
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The TrackedDevice class is the key class for Ekahau Java SDK’s functionality. The 

Positioning Engine’s TrackedDevice objects represent wireless devices, so one object 

needs to be created for each physical device which is to be tracked. After recording a 

Positioning Model and saving it in the Positioning Engine with Ekahau Manager, 

TrackedDevice objects are used to return the coordinates, timestamp, status, speed, map, 

and any “logical area” information. The client receives the information via two main 

kinds of Listener classes. The Listener interfaces are LocationEstimateListener used to 

obtain automatic location updates, and StatusListener used to get information about the 

device’s state, whether it has been detected or not. Figure 5.13 presents pseudo code 

reflecting one of the Ekahau ready examples or client applications 

(SimpleTrackExample.java) using the JAVA SDK to obtain the 2D coordinates of a 

device/user (x, y coordinates). 

 

Figure 5.13 – Pseudo Code of the Client Application SimpleTrack.java using JAVA SDK 

• Connect to Positioning Engine on port 8548 using connect()  

• Create a TrackedDevice instance using a Device Object  

1. Create a Device Instance 

2. Retrieve a Device Object using FindDevice method of the PositioningEngineClass 

3. Create a TrackedDevice Object 

• Add a LocationEstimateListener for a TrackedDevice object 

1. LocationEstimateListener receives LocationEstimate objects 

2. LocationEstimate contains location : getLatestLocation() 

3. Use addLocationEstimateListener method and receive automatic location updates 

 Add a status Listener for a TrackedDevice object  

1. Use addStatusListener method to get the Tracked Device’s State 

• Start tracking by calling the setTracking(true) method 

• Get all location values 

• Stop Tracking by calling the setTracking(false) method 

• Disconnect from Positioning Engine using disconnect() 
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Knowing that positioning information (x, y, floor level) is directly accessible using JAVA 

SDK (Ekahau Website 2007), the next step is to combine it  with the orientation 

information (roll, yaw, and pitch) in a single application as reflected in the  pseudo code 

shown in Figure 5.14 and in Figure 5.15.  

 

 

Figure 5.14 – Pseudo Code for Creating a Pipe between Two Tracking Applications 
 

 

Figure 5.15 – Creating a Pipe between Ekahau-based Position and Head Orientation 
Tracking Applications 

• Initialize C++ tracker application to start obtaining head orientation values (roll, pitch and yaw) 

• Get positioning values 

1. Open pipe to invoke Ekahau JAVA SDK and Return pointer to a stream using popen ()  

2. Read output (x, y, Floor level) of the invoked program using the reading access 

character string mode “r” 

• Output all positioning and head orientation values (x, y, Floor level and  roll, pitch, yaw)  

• Close pipe using _pclose()  
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This was achieved by creating a “pipe” between the JAVA application communicating 

with Ekahau and the C++ application communicating with the magnetic orientation 

tracker. 

 

5.3.2.   UWB-based Position and Head Orientation Tracking 
Application 

 

Similar to the WLAN-based tracking application, location information (X,Y,Z) was 

extracted from one positioning technology, UWB (Multispectral Solutions Website 2007) 

and then combined with the orientation information (roll, yaw, and pitch) received from 

the tracker within the same application.  

 

TCP sockets were used to connect directly to the Hub and provide a quick and effective 

way for accessing location information from a local computer/laptop. This was achieved 

by opening a socket connection given the IP address of the hub and the port number, 

reading values (Figure 5.16a.) according to the Sapphire output format defined in Section 

3.3.2 and then performing a string manipulation on the values extracted to obtain the x, y, 

and z coordinates (Figure 5.16b.). Only values corresponding to a tag header R were 

extracted (n1, n2, and n3). 
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Open socket connection “s” to Sapphire HUB (IP address and port number) 

o Receive each position output string l  from s 

o If  ( l contains tag header R meaning 3D readings X,Y,Z) 

 Do a string manipulation and extract array s[i],  a set of 3 position coordinates 

from each string l 

 Convert  the array of position strings s to array of position integers f and Assign 

n1, n2, n3 to each of the position integer values f 

for( i=0          i=3) 

 string s[i]            f[i] 

            n1=f [1], n2=f [2] & n3= f [3] 

Figure 5.16 – a) Output Results from Sapphire HUB (top), b) Pseudo Code to Extract UWB 
Position Coordinates (bottom) 
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The positioning values were then used together with orientation values received from the 

magnetic tracker and both were integrated in one application to retrieve tracking 

information (Figure 5.17).  

 

 

Figure 5.17 – Retrieving Positioning and Orientation Information from UWB Sapphire 
HUB and Tracker 

 

5.3.3.   Indoor GPS-based Position and Head Orientation 
Tracking Application 

 

Similar to the previous tracking applications, the user’s position and orientation were 

continuously obtained from two different sources, in this case the Indoor GPS and 

magnetic tracker. 
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TCP sockets were used to connect directly to the Indoor GPS system application and 

provide a quick and effective way for accessing location information from a local 

computer/laptop. This was achieved by opening a socket connection given the IP address 

and the port number, reading values in byte string format, performing a byte 

manipulation on those values and extracting the x, y, and z coordinates (Figure 5.18).  

 

Open socket connection “Sock” to Indoor GPS system application (IP address and port number) 

o Receive output from Sock: 

 Read into the given buffer (up to buffer length) bytes data from Sock 

o Do a byte manipulation and copy bytes from object pointed to by buffer to object pointed 

to by s[i], a pointer of position double values  

o  Assign n1, n2, n3 to each of the position values *s : 

 n1=*s[0], n2=*s [1] & n3= *s [2] 

 

Figure 5.18 –Pseudo Code to Extract Indoor GPS Position Coordinates 

 

The positioning values were then used together with orientation values received from the 

magnetic tracker and both were integrated in one application to retrieve tracking 

information (Figure 5.19).  
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Figure 5.19 – Retrieving Positioning and Orientation Information from Indoor GPS and 
Tracker 

 

5.4. Tracking Systems Comparative Summary 

 

The discussion in the previous sections highlighted the potential applicability of 

positioning technologies, mainly WLAN, UWB and Indoor GPS, for positioning in 

indoor environments.  

 

In order to demonstrate their feasibility for position tracking and compare their technical 

characteristics, experiments were conducted in several indoor environments. These 

experiments are described in detail in Chapter 8.  
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While these technologies share some common traits, they also have some significant 

differences based on an analysis of their technological aspects (e.g. line of sight 

requirement), as well as implementation details (calibration, equipment deployment, cost, 

etc.). The major differences are summarized in Table 5.1.  

 

Table 5.1 – Comparative Summary of Indoor Positioning Technologies 

 

 

For instance, WLAN-based tracking systems such as Ekahau are economical and 

equipment deployment mainly consists of placing access points in the tracked area. 

However, the area needs to be calibrated first (several sample points are required at 

different locations) which is an arduous and often challenging task, in particular in 

dynamic construction environments. Although the range of a typical 802.11 b WLAN 

node is 100 m (Wang and Liu 2005), the technology does not provide the desired 

accuracy (1.5 to 2m) needed to locate mobile users and identify their spatial context with 

high-precision.  
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On the other hand, UWB and Indoor GPS require significant time and effort to deploy all 

required stations around the coverage areas (Appendix A), in particular on dynamic 

construction sites. Additionally, both technologies are relatively expensive. For instance, 

a full UWB system with 4 receivers (any antenna type), one processing hub, four cables 

(150') and eleven tags cost about $15,000.  Individual receivers (any antenna type) are 

$2,195 each.  The hub costs around $5,195 and individual 1Hz tags are $40 each, and 

higher power tags range from $120 to $125 each.  An Indoor GPS system with four 

transmitters and 1 receiver costs up to $ 45,000 (transmitters cost $ 10,000 each). While 

the Indoor GPS technology range (60m) is better than that of UWB (10 m), it depends on 

a clear line of sight and some calibration points are needed unlike UWB. However, both 

technologies offer centimeter level positioning accuracy with Indoor GPS positioning 

offering significantly higher precision.  

 

5.5. Summary and Conclusions 

 

The author has studied several tracking technologies, and designed methods and 

algorithms to track mobile users in congested environments such as those found on 

construction sites. The research described in this chapter presented the GPS technology 

and compared three different wireless technologies (WLAN, UWB, and Indoor GPS) that 

can be used for tracking mobile users’ position on outdoor and indoor construction sites. 

As for tracking users’ head orientation, a magnetic tracker was adopted for both outdoor 

and indoor use.  
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The decision on using one indoor positioning technology over another should be based on 

important technical criteria (e.g. calibration, line of sight, etc.) in addition to other logistic 

issues such as availability, the prevailing legal situation (e.g. permitted bandwidth), and 

the associated implementation costs. However, based on the circumstances expected to be 

encountered in the intended deployment environment (i.e. indoor construction sites), the 

Indoor GPS positioning technology, coupled with the magnetic orientation tracker, was 

found to offer the most promise for indoor user tracking due to the low level of 

uncertainty in the reported user position (1 to 2 cm) compared to that of WLAN (1.5 to 2 

m) and UWB (10 to 50 cm). 
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Chapter 6 

 

High-Precision User Spatial Context 
Interpretation 

 

 

6.1. Introduction 

 

This chapter describes the second and third components of the developed framework 

(Chapter 2), which consist of demonstrating how a mobile user’s spatial context can be 

interpreted with a level of precision that is sufficiently high to identify on-site contextual 

objects in location-aware engineering applications. Interpreting a user’s spatial context 

requires 1) defining the region of space visible to a user based on the user’s position and 

orientation that is tracked by the first framework component (Chapter 5) (Section 6.3.1), 

and aligning the computed volume of space with CAD objects to test for collision 

detection and determination of all visible objects at a particular time (Section 6.3.2), and 

2) prioritizing the context by identifying specific relevant objects using high precision 

geometric intersection techniques (Section 6.3.3). 
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In order to implement the research described in this chapter, a computer graphics toolkit 

based on the concept of the Scene Graph, namely OpenSceneGraph (OSG) within Visual 

C++ .NET, was adopted (OpenSceneGraph Website 2005) for both region of virtual 

space computation and geometric interference analysis techniques.  

 

The developed methods have been validated by conducting several outdoor and indoor 

experiments, where a user was accurately tracked followed by the interpretation of site 

object(s) in the user’s view (Chapter 8).  

 

6.2. Human Vision and Computer Graphics  

 

The eventual consumer of all 3D computer graphics applications is the human visual 

system (Montalvo 1979). The very reason for the rise in the use of graphics in the first 

place is deeply embedded in the way humans perceive visual information. Therefore, the 

first question that poses itself is: Why should computer graphics concern itself with 

human vision? What is it about visual perception that allows this seemingly instantaneous 

communication from computers to humans? The answer is to be found in the way the 

visual system is structured (Chapter 3, Section 3.3.3) and in what it was designed to 

perceive.  
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6.2.1.   Computer Graphics Based Frustum Technique 

 

In the real world, when human beings look at the world around them, objects too far to 

the left or right or too far above or below them are not visible (O'Rourke 2003). They are 

outside the range of their peripheral vision, or field of view. The human field of view (for 

each eye) is often approximated by a cone-shaped area, called a cone of vision (Figure 

6.1).  

 

 

Figure 6.1 – Cone of Vision 

 

Objects that lie within the cone of vision (such as the cylinder in Figure 6.1) are visible, 

whereas objects that lie outside the cone of vision (such as the cube) are not visible. 

 

On the other hand, in computer graphics, the cone of vision becomes a pyramid of vision 

in order to conform to the rectangular shape of computer monitor screens (O'Rourke 

2003). This pyramid of vision is called the viewing frustum or view frustum, and is 

typically shaped as a frustum of a rectangular pyramid (Woo et al. 1997) (Figure 6.2).   
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Figure 6.2 – Computer Graphics Pyramid of Vision 

 

One of the factors that determine the shape of this pyramid is the angle usually referred to 

in computer graphics as the field-of-view angle or simply the field of view (FOV) 

measured in degrees and spanning from one corner of the viewport to the other (Figure 

6.3). 

 

 

Figure 6.3 – Field-of-View Angles 
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Since the viewport is a rectangle and not a circle as is the case of the cone of vision, the 

FOV value is, in fact, split in two different values across the horizontal and vertical 

directions. As depicted in Figure 6.3, the horizontal field of view (HFOV) is the angular 

extent of the user’s visible space when observed in plan view and the vertical field of 

view (VFOV) is similarly the angular extent of visible space in side view.  Typical FOV 

values are defaulted to 45, but can be decremented or incremented at any interval up to 

120 degrees. But the human eye really sees a larger field of view, close to 180 degrees.  

 

When any scene is viewed, either through a photographic camera or with eyes, some 

objects appear in focus and some appear out of focus. Computer graphics tools reproduce 

this effect through a parameter called depth of field, which is given by two numbers: the 

nearest and the farthest distances at which objects will be rendered and seen (Figure 6.4).  

 

 

Figure 6.4 – Near and Far Plane Distances of Viewing Frustum 
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In the above picture, the planes that cut the frustum perpendicular to the viewing 

direction at the near and far distances are called the near plane and the far plane 

respectively or what are often called the near and far clipping planes. The idea of clipping 

is that there is a rectangular window that defines the portion of a scene or model that is 

visible, much as a window in a wall defines what portion of the outside world can be seen 

(McConnell 2005). Therefore, objects closer to the user than the near plane or beyond the 

far plane are assumed to be out of sight and context. Typically in computer graphics, the 

near plane is chosen close to the user’s viewpoint and the far plane is placed infinitely far 

away so all objects within the frustum are considered to be of interest regardless of their 

distance from the user. However, for the purpose of this research, near and far distances 

are dependent on the user’s choice, and how near and far the user expects the most 

extreme case objects to be. Therefore, the choice is purely empirical and made based on 

the knowledge of what really is needed to be contextual and of interest. 

 

6.2.2.   Computer Graphics Based Intersection Techniques 

6.2.2.1.   General Collision Detection Techniques 

 

The goal of collision detection is to report any contacts (or containments) between 

geometric objects when they occur (Lin and Gottschalk 1998). The geometric models 

may be polygonal objects, splines, or algebraic surfaces.  
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The collision detection problem has been encountered in computer-aided design and 

machining (CAD/CAM), robotics and automation, manufacturing, and most importantly 

computer graphics, animation and computer simulated environments. Many of the tasks 

performed in the latter domain involve contact analysis and spatial reasoning among 

static or moving objects. For instance, a virtual environment (i.e. walkthrough) creates a 

computer-generated world, filled with virtual objects. Such an environment should give 

the user a feeling of presence, which includes making the images of both the user and the 

surrounding objects feel solid. For example, the objects should not pass through each 

other, and things should move and behave as expected (Kamat 2003).  

 

Such actions require accurate collision detection, if they are to achieve any degree of 

realism. Other applications for collision detection in computer graphics are based on the 

view frustum clipping and culling methods used when setting camera views for a 3D 

scene and optimizing rendering processes (Assarsson and StenstrÄom 2001). Clipping 

determines whether virtual objects (or polygons) are within the frustum at all (Section 

6.2.1). Culling involves cutting out virtual objects lying outside the viewing frustum, and 

not displaying and rendering them.  

 

It was found in this research that the collision detection concept lying behind these latter 

methods, can be adopted in the proposed methodology (Chapter 2) as a first step to 

disregard objects not colliding with the frustum and instead detect visible objects for the 

purpose of extracting contextual information . 
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In order to achieve this objective, a number of bounding volumes have been used for 

collision detection between geometric models, in particular general polygonal models 

(Lin and Gottschalk 1998). A bounding volume is an approximation of complex objects 

by simplified geometries for faster processing and more efficient geometrical operations. 

Typical examples of bounding volumes include axis-aligned boxes and spheres and they 

are chosen for their fast overlap tests. Other structures include cone trees, k-d trees and 

octrees (Samet 1989), sphere trees (Hubbard 1993, Quilan 1994), trees based on S-

bounds (Cameron 1991) etc. More recent work has focused on tighter-fitting bounding 

volumes (Tropp et al. 2006).  

 

Cohen et al. (1995) have presented algorithms and a system, I-COLLIDE, based on 

spatial and temporal coherence, for large environments composed of multiple moving 

objects. The number of object pair interactions is reduced to only the pairs within close 

proximity by sorting axis-aligned bounding boxes (AABBs) surrounding the objects. 

Gottschalk et al. (1996) have presented a fast algorithm and a system, called RAPID, for 

interference detection based on oriented bounding boxes (OBB), which approximate 

geometry better than do AABBs. Hudson et al. (1997) have presented another system, 

called V-COLLIDE. It is a collision detection library for large dynamic environments and 

unites the n-body processing algorithm of I-COLLIDE and the pair processing algorithm 

of RAPID. It is designed to operate on large numbers of static or moving polygonal 

objects to allow dynamic addition or deletion of objects between time steps. 
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In Section 6.3.2, all the steps involved in identifying objects in a mobile user’s field of 

view using the pair processing algorithm of RAPID are presented. 

 

6.2.2.2.   Raycasting Technique 

 

Raycasting is the use of ray-surface intersection tests to solve a variety of problems in 

computer graphics (Foley 1995).  

 

The first raycasting algorithm was presented by Arthur Appel in 1968 for scene rendering 

purposes (Macey 1999).  In this case, an image is thought of as a screen-door with each 

square in the screen being a pixel (Figure 6.5). The idea behind the algorithm is to shoot 

rays from the eye, one per pixel, and find the closest object blocking the path of that ray. 

This is then the object the eye normally sees through that pixel (Objects A, B, and C in 

Figure 6.5). 

 

 
Figure 6.5 – First Raycasting Technique 
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Based on the above concept, raycasting can also refer to a technique for hidden surface 

removal (Adams et al. 2005). 

 

Object shading effect is another computer graphics concept where raycasting process 

lends itself conveniently (Permadi 2009). For instance, when an object is farther away 

from the viewer, the object should appear less bright.  In this case, a ray can be cast from 

the viewer and the distance to the object to be rendered is obtained. Using a color 

matching algorithm and mapping the result into an intensity-distance table (object 

intensity gets smaller with distance), the object will be correctly shaded and rendered. 

Similar computer graphics concepts, making use of the raycasting technique, include 

Level-of-Detail (LOD) effects changing with distance to viewer.  

 

Another typical need of raycasting involves obtaining the current Height Above Terrain 

(HAT) information in a flight simulator or a driving simulator (Drugge 2005)(Figure 6.6). 

 

 

Figure 6.6 – Flight Simulator Raycasting Scenario 
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This height information is determined by firing a vertical line segment from the aircraft 

or vehicle towards the terrain/ground and calculating the distance between the aircraft or 

vehicle and the intersection point on the ground (Kamat 2003). 

 

This same concept applies for finding the correct height (z) value on a terrain model to 

place trees or other static objects on a terrain. The height information is determined by 

firing a vertical line segment at a location (x,y) through the terrain and then determining 

the intersection point on the ground ( Figure 6.7). This intersection data is used to 

position the tree or other static object.  

 

 

Figure 6.7 – Tree Location Raycasting Scenario 

 

Based on the abovementioned cases, the concept of raycasting in this chapter, mainly 

involves casting imaginary/virtual lines originating at the user’s viewpoint and heading 

inside the viewing volume to test for intersection with geometric representations of 
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visible objects, i.e. nearest objects blocking the path of rays along or closer to the line of 

sight ( Section 6.3.3). 

 

6.3. Accurate Contextual Object Identification 

6.3.1.   Computing Region of Space Visible to User 

 

By knowing the user’s position and orientation that is tracked by the first framework 

component (tracking module) (Chapter 5), the user’s line-of-sight can be defined and the 

region of space that is in the field of view at that time can be computed. In this section, 

based on the concept of the viewing frustum explained in Section 6.2, the author 

mathematically derived the formulation for the region of space visible to a mobile 

computing user at any time.  

 

First, the notion of coordinate systems is introduced. In all the 3D graphics applications 

carried out in this research, a 3D Cartesian world coordinate system similar to the one 

adopted in OSG was used (Figure 6.8).  

 

In addition to the x and y-axis known in 2D graphics, there is the z-axis which extends 

vertically up from the mobile user into positive space and down from the user into 

negative space. As shown in Figure 6.8 and similar to any graphical CAD object, the 

mobile user CAD model has, beside the world coordinate system, a local coordinate 

system (Figure 6.9) as well.  
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Figure 6.8 – World and Local/User Coordinate Systems 

 

 

Figure 6.9 – 3D Cartesian Local or User Coordinate System 
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The local coordinates are usually used for rotating the object/user, and the world 

coordinates are used for positioning the user or any other CAD object in the world or in a 

3D level graphical scene. It is crucial to understand that when the user is moving, what 

occurs is not the actual movement of the user in space, moving from one point to another. 

In fact, the respective local coordinate systems are being modified by applying 

transformations on them and moving them either positively or negatively along any one 

or more of the three axes of the world coordinate system (X, Y, or Z). Therefore, all 

movement in 3D is based on these geometrical transformations. There are rules to these 

transformations, specifically the order in which transformations should be performed.  

 

Based on the previous explanation, the region of space visible to a mobile computing user 

is graphically shown in Figure 6.10. The user’s line of sight or viewing direction is 

aligned with the x-axis, left and right user’s movements along the y-axis, and upward and 

downward movements along the z-axis. The user’s viewpoint is at the world position (x, 

y, z), the distances from the viewpoint to the near plane (P1-P2-P3-P4) and far plane (P5-

P6-P7-P8) are n and f respectively, and the field of view angles in both directions are 

HFOV and VFOV respectively. If both angles are equal, then the width and height of 

each of the near and far planes become equal. 
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Figure 6.10 – Region of Space Visible to a Mobile Computing User 

 

The frustum computation procedure was divided into two main steps: 

A first step included computing the coordinates of the pyramid’s corner vertices (P1-P8) 

based on just the user’s position, n, f, HFOV and VFOV. Figure 6.11 illustrates the 

(x,y,z) coordinates of points P1-P4 computed based on the geometric relationships 

between the user’s line of sight and the visible space in plan and side views (Figure 6.12). 
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Figure 6.11 – Geometric Relationship between Line of Sight and Visible Space for a) yaw 
(α) and b) pitch (β) Rotations 



130 
  

 

Figure 6.12 – Coordinates of Frustum’s Near Plane Vertices 

 

The other coordinates of the four corner vertices on the far plane are computed in a 

similar way with clipping distance f instead of n (Figure 6.13). 

 

 

Figure 6.13 – Coordinates of Frustum’s Far Plane Vertices 

 

The second step involved adjusting the previously computed coordinates by taking into 

account the user’s head orientation movements at any instant in time. As mentioned in 

Chapter 5, those movements are defined by three rotation angles, yaw, pitch and roll, 
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symbolically represented by α, β, and γ respectively as shown in Figure 6.14. Yaw is the 

rotation around the vertical axis (left or right movement), pitch is the rotation around the 

side-side axis (up or down motion), and roll is the rotation around the front-to-back axis.   

 

 

Figure 6.14 – Roll, Pitch and Yaw Angles 

 

Therefore, in order to rectify the coordinates and apply orientation transformations, three 

basic rotation matrices in three dimensions are needed (Figure 6.15). These matrices 

represent counterclockwise rotations of an object/user relative to fixed coordinate axes, 

by angles of α, β, and γ around the z, y, and x axes respectively (Rz, Ry,, Rx). The direction 

of the rotation is always determined by the right-hand rule: Rx rotates the z-axis towards 

the y-axis, Ry rotates the x-axis towards the z-axis, and Rz rotates the x-axis towards the y-

axis (Woo et al. 1997).  
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Figure 6.15 – Basic 3D Rotation Matrices 

 

Figure 6.16 a and b depict each of the geometric relationship between the line of sight 

and the visible space for yaw (α) and pitch (β) rotations and Figure 6.16 c represents 

graphically the geometric transformation for roll (γ) rotation. 

 

 

Figure 6.16 –Geometric Transformation for a) yaw (α), b) pitch (β), and c) roll rotations (γ) 
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The mobile user can perform rotations around all three axes leading to a matrix 

multiplication of the three individual rotation matrices as follows (Figure 6.17): 

 

 

Figure 6.17 – Matrix Multiplication of the Three Rotation Matrices 

 

An important question that arose was: What if the mobile user is at a location (x,y,z) 

different than global (0,0,0) position, which is always the case, and is moving his head 

and changing his viewing angle to identify contextual objects?  The outcome is that the 

user is rotating around an imaginary origin, located at (0, 0, 0), as if it is a planet rotating 

around the sun and not around its center. Therefore, rotation transformations are 

performed around the center of the given world coordinate system. This was virtually 

achieved by translating the user (or frustum) from his current location to (0,0,0) by 

applying (-x,-y,-z), rotating its local coordinate system around the different axes (Mr as 
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shown in Figure 6.17) and then translating back to his location by applying (+x,+y,+z) 

(Figure 6.18). The user still resides at (0, 0, 0) on its local coordinate system.  

 

 

Figure 6.18 – Rotation and Translation Transformations 

 

Based on the aforementioned trigonometric computations, interpreting the region of 

space visible to the user at a given time involves computing the coordinates (xn, yn, zn) of 

each of the frustum’s corner vertices (i.e. P1 through P8) as a function of the tracked 

spatial context parameters, i.e. the user’s position (x, y, z) and the three-dimensional 

orientation of the line of sight (α, β, and γ) as well as near and far distances (n and f)  and 

field of view angles (HFOV and VFOV).  

 

Figure 6.19 presents the equations derived to calculate the coordinates (xP1, yP1, zP1) of 

vertex P1. Similar equations can be derived for the other vertices. Thus, by computing the 

coordinates of all eight frustum vertices (P1-P8), it is possible to accurately calculate the 

region of space that is in the user’s context at a particular time. 
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Figure 6.19 – Vertex Coordinates of View Frustum 

 

The last step involved graphically drawing the pyramid within a scene graph application, 

OSG specifically, based on the computed coordinates of the frustum’s vertices. The 

frustum consists of a pyramid tip (mobile user’s location), base, top, and rectangular and 

triangular faces (Figure 6.20). For example, the pyramid base is illustrated by the four 

points (P5-P8), the top triangular face is represented by the three points (P1, P2, and 

Puser), etc. In drawing the different parts of the pyramid, vertices are specified in a 

counterclockwise order. Then the whole drawn frustum is added to the scene so that all 

position and orientation transforms can be applied to it.  
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Figure 6.20 – Viewing 

Frustum Graphical Components 

 

6.3.2.   Identifying Objects Contained in User’s Visible Space 

 

In order to interpret which objects in the user’s surrounding environment are currently in 

context (i.e. visible), the computed view frustum was represented as a geometric model 

(i.e. CAD object) on the computer (Section 6.3). This model was then tested for 

geometric interference with CAD representations of objects in the user’s surroundings 

using general collision detection techniques (6.2.2.1). This was  done after reconciling 

(i.e. overlapping) the coordinate system used to track the user’s navigation with the 

coordinate system used to model the user’s surroundings in CAD. In this particular case, 

if the graphical representation of any object in the user’s surroundings intersects with the 

geometric representation of the user’s view frustum, then it can be concluded with 
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certainty that the corresponding real object(s) is indeed in the user’s view at that 

particular time (Figure 6.21). 

 

 

Figure 6.21 – Geometric Interference Test 

 

One of the common collision detection techniques is V-Collide (Hudson et al.1997). It is 

a robust and accurate polygon interference detection library for pairs of unstructured 

polygonal models. V-Collide uses a three-stage collision detection architecture:  

• An axis aligned bounding box test, called N-body or prune test, eliminates pairs 

of scene objects that cannot possibly collide and finds possibly colliding pairs of 

objects,  

• An oriented bounding box test finds possibly colliding pairs of objects, and  

• An exact and accurate test determines whether or not a pair of object triangles 

overlaps.  
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For the purpose of the proposed methodology, the first algorithm is not taken into 

account and therefore, it was decided to consider RAPID collision detection system 

(Gottschalk et al. 1996) which only covers the second and third stages of V-Collide.  

 

In this case, and as mentioned in Section 6.2.2.1, the two-stage technique constructs 

imaginary bounding volumes called OBBs around each scene building object, which 

approximate geometry better than do AABBs (Figure 6.22).   

 

 

Figure 6.22 – Bounding Volume Representations 
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Unlike AABBs that are always aligned with the coordinate axes, OBBs can be oriented in 

any direction such that the resulting volume encloses the bounded object as tightly as 

possible. Since OBBs are constructed taking an object’s orientation into account, the size 

and amount of free space inside the enclosing bounding box always remain constant. As a 

result, OBBs describe tight fitting bounding volumes for all enclosed object orientations. 

Figure 6.23 shows the OBBs of the building front façade structural objects. 

 

 

Figure 6.23 – OBBs of Building Objects 

 

Each frustum-building object pair is then subjected to narrow-phase geometric tests to 

determine all existing contacts. More specifically, overlap tests are performed each time a 

check is desired between the moving viewing frustum and OBBs of static visible building 
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objects. If the viewing frustum does not intersect the respective bounding volume, it 

cannot intersect the object contained in the volume. Otherwise, if intersection is detected, 

the overlap tests are then followed by exact and accurate geometric primitive intersection 

tests (i.e. intersection between pair of triangles) to confirm collisions and determine exact 

point of contact. These intersection tests produce a list of objects that are identified and 

displayed. 

 

Figure 6.24 depicts all the intersections between the viewing frustum and building 

objects. In this case, seven objects were identified as visible and contextual (Figure 6.25), 

i.e. B3, B4, B9, B10, C9, C10, and C11.  

 

 

Figure 6.24 – Interference Detection Using RAPID Technique 
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Figure 6.25 – Visible Objects Identification 

 

The complexity of the required computation is directly proportional to the 3D graphical 

building model (i.e. number and types of objects contained). However, it is the mobile 

user’s choice to define his viewing volume and limit the number of visible objects. As for 

the object types, the model might often contain complex shapes. In order to obtain 

bounding volumes of complex objects, a common way is to break the objects/scene down 

using a scene graph or more specifically bounding volume hierarchies (BVH) like e.g. 

OBB trees (Gottschalk et al.1996). The basic idea behind this is to organize a scene in a 

tree-like structure where the root comprises the whole scene and each leaf contains a 

smaller subpart. 
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The general collision detection test can prove very useful when a mobile user is 

inspecting a part of a building that is yet to be constructed. In this case, the 

aforementioned two-stage technique virtually computes the intersections thereby 

allowing contextual information retrieval about all entities yet to be built.    

  

6.3.3.   Increasing Precision in Identifying Contextual Objects 

 

Using the method described in Section 6.3.2, several objects can be detected in the user’s 

view frustum at any given time. However, the user might be specifically interested in 

only one or few of the identified visible objects at that time. Such precision in 

interpreting which specific visible object(s) the user is interested in can be achieved by 

adopting another geometric interference analysis technique, namely raycasting (Section 

6.2.2.2). As mentioned earlier, the objective is to graphically test for intersection between 

the rays cast and geometric representations of the visible objects, and then prioritize the 

identified contextual objects. These methods were implemented by using OSG, mainly 

the functions provided by the osgUtil intersection modules (OpenSceneGraph Website 

2005).  Below is a brief description of the basic classes and methods used: 

osg::LineSegment provides a means to define the rays. Line segments consist of two 

osg::Vec3 instances - one to define a start point and one to define the end point. When 

invoked, intersection detection is performed along this ray. osgUtil::Hit provides access 

to the basic values associated with a intersection detection test. A hit contains the 

information available when a ray intersects geometry in the scene. 
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osgUtil::IntersectVisitor::HitList is deemed useful when a segment (or multiple 

segments)  intersect any number of geometry instances within a scene (or with the same 

geometry multiple times.). In this case, for each segment that intersection detection is 

performed, a list is created. This list contains the Hit instances associated with each 

intersection detected. If no intersections are detected, the list remains empty.  

 

The base of raycasting intersection testing method is osgUtil::IntersectVisitor. 

IntersectVisitor provides the ability to handle collision detection between objects within a 

scene graph and is an essential part of most visual simulations (Tomlinson 2007). It is 

created and applied to initiate intersection detection tests between a ray and geometry 

instances in a scene. A list of line segments to use for intersection detection is 

maintained. For each of these segments, a list of hits (osgUtil::IntersectVisitor::HitList 

instance) is created.  

 

Using the above classes, the raycasting technique adopted in this research comprised 

primarily of the following steps: 

First, the ray or rays are created as a LineSegment with start and stop coordinates. Then, 

those LineSegment(s) are added to a created IntersectVisitor. The next steps involve 

starting a traversal with the IntersectVisitor at a start node (e.g. the root), mentioning a 

Hit with objects or bounding spheres of objects in view (identified in Section 6.3.2) , 

using a hit list to retrieve the resulting hits from the test, and finally getting hold of the 

nodes (and coordinates) for the identified hits. 
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Given that the user can only focus on a very small area at any point in time using the 

eye’s fovea (Section 3.3.1), the aforementioned raycasting intersection testing procedure 

was first used to cast one ray along the line of sight (LOS), LOS ray (Figure 6.26). The 

goal was to optimize the interference test by having the search process terminate on the 

first positive intersection(s) of the line of sight with one or more objects out of those 

identified in Section 6.3.2. In this case, the LOS ray was created as a Line Segment 

defined by two 3D vectors, begin and end positions. The begin position is set as the 

user’s viewpoint (tracked x,y,z in Chapter 5) and the end position set as the center point 

of the user’s view frustum far plane. This center point is computed using the coordinates 

of the four corners vertices (P5-P8) obtained in Section 6.3.1 (Figure 6.26).  

 

 

Figure 6.26 – LOS Raycasting Test 
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If intersection is detected, the LOS ray color switches to red (Figure 6.27) and the hit 

node/object is identified, C10 in this case (as depicted from Figure 6.25). 

 

 

Figure 6.27 – Prioritizing Objects of Interest with LOS Raycasting 

 

In some situations, rays cast along the line of sight detect more than one node/object 

along the same segment line (Figure 6.28). In this case, hits are sorted by depth with the 

first one being the foremost, and thereby intersecting and identifying the closest relevant 

object. 
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Figure 6.28 – LOS Intersection with Several Aligned Objects 

 

In other situations when the LOS ray does not detect any object, the  area of interest is 

then approximated with a set of rays cast away from the line of sight by an angle (i.e. 10 

degrees) smaller than half the field of view angles used in the first collision detection step 

(Section 6.3.2). This process is presented in Figure 6.29, which depicts a user (i.e. 

inspector) looking at several objects such as columns, beams, etc. and each intersecting a 

different object. 
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Figure 6.29 – Prioritizing Objects of Interest with Rays Cast away from the Line of Sight 

 

If a construction scene is complicated with different and complex geometrical shapes of 

objects, then the Intersector traverses its target scene graph and tests nodes bounding 

spheres against the Line segments. If an intersection hit is encountered with the bounding 

sphere, the test can then become more fine-grained and each child node can be tested for 

an intersection until the leaf geometry node is reached, then data on the collisions 

detected can be stored such as pointers to node, position of intersection, etc.  

 

Additional details on how to create and load the viewing frustum in a graphical scene, 

test it for intersection with CAD objects, and prioritize the identified visible objects using 

geometric interference analysis techniques are covered in Appendix B. 
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6.4. Summary and Conclusions 

 

In this chapter, the author has described methods to interpret, with high-precision, the 

user’s fully qualified spatial context. The chapter first presented an overview of computer 

graphics coordinate systems. Then it described, based on the mobile user’s tracked 

location and head orientation, all the different geometrical computations to define the 

visible volume of space at a particular time. The region of space was conceptually 

thought of to be similar to an avatar’s viewing volume in a computer graphics application 

or virtual reality world, often called the viewing frustum. Finally, the chapter introduced 

different collision detection techniques to test for interference between both frustum and 

CAD objects, and accurately determine all contextual relevant elements.   

 

In order to illustrate the developed methods in this chapter, several validation tests have 

been conducted in outdoor and indoor environments (Chapter 8). 
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Chapter 7 

 

Contextual Information Retrieval and 
Visualization 

 

 

7.1. Introduction 

 

This chapter describes  the fourth component of the developed framework, contextual 

information retrieval and visualization. Having identified contextual objects with high-

precision (Chapter 6), specific information of interest can then be retrieved and 

interactively presented to a mobile user. 

 

The information-intensive nature of construction projects requires the site personnel to 

have on-demand access to construction project data such as plans, drawings, schedules, 

specifications, etc. The flow of information, among parties involved in the project, is 

important to avoid problems and delays, and to save time on construction projects. The 

unprepared and dynamic nature of a construction site, and the on-site work difficulties, 

also necessitate the use of intelligent ways to support on-site construction personnel. 
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Standard product models and databases have been facilitating the exchanging, sharing 

and delivery of pertinent construction information, as well as enhancing work efficiency 

and collaborative processes (Halfawy et al. 2001, Aziz et al. 2005).  

 

This chapter evaluates the capability of the CIMsteel Integration Standards (CIS/2) 

product model (Lipman and Reed 2003), and project information systems such as 

Microsoft Access databases (Allison and Berkowitz 2005) for improving traditional, and 

manual information retrieval processes and automatically retrieving contextual 

information and presenting it to construction site personnel. 

 

7.2. Information Retrieval Process from MS Access 
Project Databases  

 

In this section, a MS Access project database was designed as an option for 

demonstrating information retrieval capabilities developed in this research for use in 

AEC applications. The goal is to enable efficient information sharing between different 

project parties across the life-cycle of a constructed building facility.  

 

To achieve this objective, a building was completely described in one coherent model, 

from which users can extract all the information they need, and to which they can add 

information they contribute (Figure 7.1).  
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Figure 7.1 – A Sample Database Building Model 

 

In this case, where lots of data need to be presented to the user, it was found in this 

research that it is preferable to separate data and user interface concerns, so that changes 

to the user interface do not impact the data handling, and that the data can be reorganized 

without changing the user interface. Therefore, the Model-View-Controller (MVC) 

architectural pattern (Holub 1999) was adopted to solve this problem and decouple data 

access and business logic from data presentation and user interaction, by introducing an 

intermediate component: the controller. MVC consists thereby of three different parts: 

Model, View and Controller (Figure 7.2). 
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Figure 7.2 – The Model-View-Controller Architecture. 
 

• The model is the part of the component that encapsulates the application's data 

structures, i.e. MS Access database tables. It often provides routines to manage 

and manipulate this data in a meaningful way in addition to routines that retrieve 

the data from the model. In general, the underlying data access technique should 

be encapsulated in the model. In this way, if, for example, the application is to be 

moved from one system to another system covering a different construction 

project, the model is the only element that needs to be changed, not the view or 

the controller.  
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• The view is the part of the component that is used to render the data from the 

model in a manner that is suitable for user interaction. The view pulls data from 

the model (which is passed to it from the controller) and feeds the data into a 

template which is populated and presented to the user. The view does not cause 

the data to be modified; it only displays data retrieved from the model.  

• The controller is responsible for responding to user actions. It determines what 

request is being made by the user and responds appropriately by triggering the 

model to manipulate the data and passing the model into the view.  

 

As such, MVC’s control flow (Figure 7.2) starts when the user interacts with the user 

interface in some way (user gestures, i.e. mouse event). Then, the controller handles the 

input event from the user interface, often via a registered handler or callback. The 

controller notifies the model of the user action, possibly resulting in a change in the 

model's state. A view uses the model indirectly to generate an appropriate user interface. 

The view gets its own data from the model. The model and controller have no direct 

knowledge of the view. The user interface waits for further user interactions, which 

restarts the cycle. Therefore, successful use of the MVC pattern isolates business logic 

(controller) from user interface considerations, resulting in an application where it is 

easier to modify either the visual appearance of the application or the underlying business 

rules without affecting the other. 

 

The next subsections cover the three different MVC components as used in this research 

to meet the information retrieval requirements of the proposed methodology. 
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7.2.1.   MVC Model Component : Database Structure 

 

As mentioned in Chapter 4, an object-relational database structure using 

MS Access was adopted. Using the C# programming language, the 

database model was structured to contain classes and methods to access and retrieve 

different types of information about specific building objects residing in the database 

tables. Following this approach, tables were created and each class in the model was set 

to map its own table in the database (). Each class contains object properties to define 

each field inside its mapped database table. For example, considering an instance of class 

Object, the statement Object.ObjectID allows to get the value of the property ObjectID 

which is stored into the ObjectID field of the mapped database table. 

 

As depicted in Figure 7.3, the main database tables  are 1) Item houses the different 

building objects or structural entities and their attributes like material, type, dimensions, 

etc., 2) Activity takes into account the multilayered nature of a construction Item and 

covers several Item construction activities (i.e. concrete pouring, reinforcement, finishing, 

curing, etc.), 3) ImgFiles, ItemCadModels, Schedules, Specs, CostEstimation and Orders 

each reflects a different type of information, and most importantly 4) 

ItemtoActivityMapping maps all information to item-activity pairs. This latter table stores 

instances of the other classes in the form of a join table containing several foreign keys. 

Those keys define the one-to-many (or many-to-one) relationships to other tables (Figure 

7.4).  

  

Figure 7.3 
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Figure 7.3 – MS Access Database Structure  
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 Figure 7.4 – Join Table and Relationship Keys 

 

As mentioned in Chapter 4, a foreign key is a column defined in the table on the “many” 

side of the relationship (i.e. join table) that holds a key to the table in the “one” side of 

the relationship (i.e. each of the other tables). In Figure 7.4, ItemToActivityID is the join 

table primary key referencing a set of information for an item-activity pair. For example, 

for a certain ItemToActivityID, which refers to concrete pouring (i.e. 

Activity.ActivityID=1) of building item C1 (i.e. Item.ItemID=10), information on 

schedule, specifications, cost estimation, change orders, etc. can be automatically 

retrieved by using the foreign keys (ScheduleID, SpecsID, etc.), referring to respective 

tables and extracting all the properties values (Refer to the classes DBController and 

ReflectionController in Section 7.2.2).  Additional details on the different database tables 

and mapped classes are provided in Appendix C.  
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7.2.2.   MVC Controller Component of the Information Retrieval 

Process 

 

The controller manages the communication of data and the rules used to manipulate the 

data to and from the model, in this case the Access database (Section 7.2.1). This was 

achieved by creating the following classes: 

• AppController: It is the main class running the application and it contains 2 main 

functions: 1) generateObjectsInfo takes a vector of strings as a parameter, i.e. 

names of detected contextual building objects (Chapter 6), and 2) Run which is 

called to display the user interface ( Section 7.2.3) . 

• ReflectionController: This class was created to implement dynamic mapping 

functionality by taking advantage of the reflection-oriented programming which is 

a functional extension to the object-oriented programming paradigm (Sullivan 

2001). The emphasis of the reflection-oriented paradigm is dynamic program 

modification, which is determined and executed at runtime. For instance, data or 

class objects can be created based on the underlying database using many code 

generation tools. However, it is time-consuming to manually and explicitly set all 

properties as well as get property values for several objects of different classes. 

Reflection can avoid code redundancy and save time by dynamically extracting 

objects (classes) from the tables that are returned from the database. Using this 

method, there is no need to use a code generator to generate the code but rather to 

loop through the columns in a table and dynamically match the column names to 

the property names of the object. In this case, since reflection works at runtime, a 
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convention was initially adopted where the name of a class object was set to have 

the same name of the mapped database table and the properties of the object are 

nothing but the columns in that same table (Section 7.2.1). For example, instead 

of having to manually define all Activity object properties (i.e Activity.ActivityID, 

Activity.ActivityName, etc.), another fast and dynamic way using reflection is to 

loop over query results (check DBController class below), get the object property 

name and value then pass them to the SetProperty() function after calling it. This 

whole reflection process happens in DBController after each SQL query 

statement and applies to all class objects as follows: 

DataTable dt = ConvertDataReaderToDataSet(dataReader); 

Type tp = typeof(Item); 
refController = new ReflectionController(tp); 
 
foreach (DataRow row in dt.Rows)  
{ 
   foreach (DataColumn col in dt.Columns) 
 { 
  string field = col.ToString(); 
       string val = row[col].ToString(); 
     
 refController.SetProperty(tp.GetProperty(field),val);  
      
 } 
} 

 

• DBController: This class is responsible for interacting with the MS Access 

database and retrieving requested information. This was first achieved by using a 

Microsoft Application Programming Interface (API) called OLE DB (Object 

Linking and Embedding, Database) (MSDN Website 2009)  and defining the 

connection string to display the data source name then connecting to the database 

as follows:  
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       public DBController() 
  { 
   try 
   { 

connection = new OleDbConnection (@"Provider=   
Microsoft.Jet.OLEDB.4.0; 
Data Source=.\\db\\InfoRetrievalDB.mdb;Persist     
Security Info=False"); 

   
   connection.Open(); 
   AppData.dbController = this; 
   } 
   catch(Exception ex) 
   {MessageBox.Show(ex.Message.ToString());} 
  } 

 

After connecting to the database, a second step comprised retrieving stored 

information using methods called queries. Queries provide the capability to 

manipulate and combine data from multiple tables and place specific conditions 

on the data retrieved.  Most users rely on queries because they only need a certain 

group of records or fields at any one time, i.e. records that adhere to a specific set 

of criteria are retrieved. For example, a query can be developed to retrieve general 

design information about specific items identified to be in the user’s field of view. 

The query was built and executed by attributing the ItemName in the SQL 

SELECT statement to the identified contextual building entity string variable 

itemName as follows:  

 
command = new OleDbCommand(); 

 command.Connection = connection; 
      command.CommandText = "SELECT * FROM Item WHERE ItemName=?"; 
      parameter = new OleDbParameter("ItemName",itemName); 
  

 
A record set was then created as an instance of the OleDbDataReader class, item 

properties obtained using reflection, all handles closed, and then data retrieved: 
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private OleDbDataReader dataReader; 
command.Parameters.Add(parameter); 
dataReader= command.ExecuteReader(); 
DataTable dt = ConvertDataReaderToDataSet(dataReader); 

Type tp = typeof(Item); 
refController = new ReflectionController(tp); 
 
foreach (DataRow row in dt.Rows)  
{ 
   foreach (DataColumn col in dt.Columns) 
 { 
  string field = col.ToString(); 
       string val = row[col].ToString(); 
     
 refController.SetProperty(tp.GetProperty(field),val);  
      
 } 
} 

dataReader.Close(); 
Item item = (Item)refController.getObj(); 

 

• FileController: This class is responsible for anything related to the input/output 

(I/O) library, in particular handling files. This includes reading, streaming and 

displaying to the user files such as CAD drawings, images, Primavera and Word 

files, and Excel spreadsheets. 

 

7.2.3.   MVC View Component: User Interface 

 

As mentioned earlier, there is always more to an information system than a database. 

Other programs are responsible for communication and for managing user interfaces. In 

this case, it is the MVC View component using a variety of classes to display information 

on the Windows form and make it visible to the user. Figure 7.5 reflects the application 

interface visualization process from a point of view of an observer, i.e. mobile user. 
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Figure 7.5 – Retrieval Application from a User Point of View  

 

Therefore, the View component consists of several classes implementing the non-DBMS 

parts of the final system. Those are control classes that use indirectly the database model 

by sending function calls to the controller in order to generate and manipulate the final 

Windows form. As depicted in Figure 7.6, each of the group boxes (Object Detected, 

Activities, User Info, General Info, Schedule Info, etc.) constitutes a control class. Details 

on the controls classes are provided in Appendix C. 

 



164 
  

 

Figure 7.6 – User Interface Information Retrieval Application (1) 

 

The information is displayed on the user interface in the following order: 

First, detected contextual building objects (Chapter 6) are automatically presented in a 

drop-down menu. The user chooses one object (i.e. C1) and proceeds to choose one 

activity (i.e. painting) for which s/he is interested in getting information about at this 

particular time. Following this, a list of different information types (schedule information, 

cost estimation information, etc.) is ranked or sorted according to the user’s function, in 

this case an inspector. Then the user has the choice to pick one or more types of 

information and have them displayed. In Figure 7.7, the user opted to only have the 

drawings, schedule, and cost estimation information retrieved and displayed as links to 

CAD drawings, primavera files or Excel spreadsheets.  
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Figure 7.7 – User Interface Information Retrieval Application (2) 

 

Depending on the nature of a project and information involved in it, and given that an 

MVC approach was adopted, the whole retrieval concept presented in this section can be 

easily extended to a more advanced database system such as Microsoft SQL. 

 

7.3. Contextual Information Retrieval from CIS/2 

Product Models 

 

In this section, the utility of the interoperable CIS/2 product model (Lipman and Reed 

2003) is presented as a suitable data structure to represent cross-referenced building data 
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for the evaluation of the designed and proposed automated information retrieval 

technique. 

 

As a mobile user is moving on the jobsite, relevant information on visible and identified 

entities at a particular instant in time can be retrieved from the underlying product model. 

Therefore, the primary contribution of the research presented in this section lies in 

gathering as-built information from the ambient environment and then cross-referencing 

recognized construction entities with an existing CIS/2 building product model (Figure 

7.8) for automated information support on construction sites.   

 

 

Figure 7.8 – CIS/2 Product Model of a Building Structural Frame  
[Image courtesy of Mr. Robert Lipman, NIST] 

 

As mentioned in Chapter 4, CIS/2 deals with information about the steel structure 

throughout its analysis, design, detailing, and fabrication life cycle (Reed 2002). The 
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geometry of the structure is only one property of the product data model. Other attributes 

of the structure include how parts are combined into assemblies and structures, analysis 

loads and reactions, material types, connection details, associations between members 

and drawings, and modification history. Figure 7.9 shows a sample of a CIS/2 file 

illustrating how steel parts are combined into assemblies and structures. 

 

 

Figure 7.9 – CIS/2 File Structure Example 

 

The file is represented in the Standard for the Exchange of Product model data (STEP) 

format (ISO 10303:1992, STEP Website 2008). Each CIS/2 entity instance is assigned a 

number indicated by a pound (#) sign. The name of the CIS/2 entity then appears in upper 

case letters. Every entity has a number of fields that contain text strings, numeric values, 
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Boolean values, references to other entities, or null values indicated by a dollar sign. For 

instance, the #43 CIS/2 entity, together with all its sub-entities, encompasses information 

about the steel part location within the assembly. The #33 instance refers to information 

about the steel part properties, such as cross-section, length, and material, and the #20 

instance points to the location of the assembly within the structure. 

 

One major step in using CIS/2 in the retrieval process consisted of using the NIST CIS/2 

to Virtual Reality Modeling Language (VRML) translator (Lipman 2002) to convert 

CIS/2 files to their corresponding VRML (Virtual Reality Modeling Language) 

representation. The intermediate conversion of CIS/2 files to VRML was adopted for the 

following reasons (Kamat and Lipman 2006). First, the VRML translator provides a 

visual interface to the underlying CIS/2 data thereby providing a means to visualize the 

represented steel structure in a 3D virtual world. Second, implementing a VRML file 

parser that can traverse the described scene graph to extract member information is 

relatively straightforward compared to the implementation of a full-fledged CIS/2 file 

parser. Thus, the parsing and interpretation of CIS/2 information contained in a converted 

VRML file, yield information for each steel member contained in the represented 

structural steel frame, including but not limited to the name and the geometry of each 

member.   

 

Any CIS/2 file can provide data structures for multiple levels of detail ranging from 

frames and assemblies to nuts and bolts. Therefore, prior to translating the CIS/2 file to a 

VRML file, the user can specify what type of information is of interest to him in order to 
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expedite the translation process and only get the needed information. Figures 7.10 and 

7.11 are snapshots of the CIS/2-VRML translator showing its different information level 

options.   

 

  

Figure 7.10 – CIS/2-VRML Translator Snapshot (1)  
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Figure 7.11 – CIS/2-VRML Translator Snapshot (2)  

 

After getting the desired translated VRML file, the next step included using a VRML 

reader-writer or loader application (Fisher 2005) that automatically parses all of the 

VRML nodes (together with the attached information), and then translates back to OSG 

nodes. This is mainly taken care of in the VRML loader by creating several callback 

actions (i.e. cbAction) for the VRML nodes as follows: 
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SoCallbackAction cbAction; 
cbAction.addPreCallback(SoGroup::getClassTypeId(), preSeparator, this); 
cbAction.addPostCallback(SoGroup::getClassTypeId(), postSeparator, 
this); 
cbAction.addPreCallback(SoVRMLTransform::getClassTypeId(),preTransform, 
this); 
cbAction.addPostCallback(SoVRMLTransform::getClassTypeId(), 
postTransform, this); 
cbAction.addPreCallback(SoVRMLShape::getClassTypeId(), preShape, this); 
cbAction.addPostCallback(SoVRMLShape::getClassTypeId(), postShape, 
this); 
cbAction.addPreCallback(SoVRMLPositionInterpolator::getClassTypeId(), 
prePositionInterpolate, this); 
cbAction.addPostCallback(SoVRMLPositionInterpolator::getClassTypeId(), 
postPositionInterpolate, this); 
cbAction.addPreCallback(SoVRMLOrientationInterpolator::getClassTypeId()
, preOrientationInterpolate, this); 
cbAction.addPostCallback(SoVRMLOrientationInterpolator::getClassTypeId(
), postOrientationInterpolate, this); 
cbAction.addPreCallback(SoTexture2::getClassTypeId(), preTexture, 
this); 
cbAction.addPreCallback(SoLight::getClassTypeId(), preLight, this); 
cbAction.addTriangleCallback(SoVRMLGeometry::getClassTypeId(), 
addTriangleCB, this); 
cbAction.addLineSegmentCallback(SoVRMLGeometry::getClassTypeId(), 
addLineSegmentCB, this); 
cbAction.addPointCallback(SoVRMLGeometry::getClassTypeId(), addPointCB, 
this); 
 

Once the conversion is performed, OSG nodes (building objects) are tested for 

interference using intersection techniques (Chapter 6), and then information attached to 

the nodes is automatically retrieved for each of the detected contextual steel objects. 

 

7.4. Contextual Information Visualization 

 

In all described case studies, retrieved contextual information was visualized and 

interactively presented to the user through mobile wearable displays, devices and tools, 

some of which are part of the mobile visualization platform developed by Behzadan and 

Kamat (2007). Figure 7.12 presents the hardware setup used in the design of this 

prototype. 
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Figure 7.12 – Hardware Components of UM-AR-GPS-ROVER 

[Behzadan and Kamat, 2007] 
 

The components and interactive devices that were used for visualization purposes, are 

primarily a Head Mounted Display (HMD), in particular i-Glasses SVGA Pro video see-

through HMD, a laptop computer, a keyboard and a touchpad (Figure 7.12). The main 

computing task is performed by the laptop computer secured inside the backpack and the 

rendered graphical scene is displayed to the user through the HMD (Figure 7.13) installed 

in front of the hard hat.  

 

During regular site operation, it may often be necessary for the user to change computer 

or component settings, or to select a new mode of operation after one task is complete. 

Therefore, it is desirable to allow the user to do this without having to temporarily halt 

operation and remove the backpack to physically access the laptop. This was achieved by 

selecting components such as a touchpad and a miniature keyboard to accommodate user 
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input and provide full interactivity with the laptop, even though the user is not physically 

accessing the laptop (Behzadan and Kamat 2007).  

 

 

Figure 7.13 – i-Glasses SVGA Pro video see-through Head Mounted Display (HMD) 

 

The above prototype was also used to take advantage of its AR features in presenting 

retrieved information to mobile users on construction sites. AR is the superimposition of 

computer-generated graphics over the user’s view of the real world. Subsets of the 

retrieved information can be interactively augmented onto the user’s view to provide 

automated real-time information support and assist in decision-making tasks.  

 

Besides using the aforementioned hardware prototype, in particular its HMD component, 

to interactively present retrieved information, a hands-free laptop holder was adopted in 

many of the experiments conducted (Figure 7.14) so that information is directly displayed 

on the laptop screen instead of the HMD. 
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Figure 7.14 – Hands-Free Laptop Holder 

 

This laptop holder gives the ability to use the laptop with both hands free, to type and 

change settings while walking or standing. It can work with a laptop, notebook, or tablet 

computer of any size, and can be adjustable to fit a person of any height. It is quick and 

easy to put on and take off and ergonomically designed for comfort. It is truly mobile and 

portable, and there is no need for a laptop cart or stand. Most importantly, taking notes 

with a full size keyboard while having the ability to move around can be of great value to 

almost any mobile user.  

 

Other lightweight head-mounted displays have been explored for their suitability and 

possible future integration within the proposed framework. Examples include wearable 

displays manufactured by LitEye (2007) and Inition (2006). Several models of displays 

are especially designed for rugged applications in harsh environments such as 

construction (Figure 7.15), and can be used with lightweight wearable computers. 
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Figure 7.15 – Lightweight Displays for Engineering Applications  

 

7.5. Summary and Conclusions 

 

The objective of this step of the research work was to develop methods for directly 

comparing relevant designed data in product models and project databases with the 

construction entities positively identified to be in a user’s field of view at a given time 

instant, and then retrieving and visualizing contextual information. The author has 

devised retrieval methods using two types of project information systems, namely CIS/2 

product models and MS Access databases.  

 

In order to demonstrate the applicability of the adopted project databases and product 

models in a context-aware information delivery framework, experiments were conducted 

at NIST indoors, in the maze at the NIKE site, outdoors at the steel structure on the main 

campus, and at the University of Michigan indoors, in the Structural Engineering 

Laboratory (Chapter 8). The results of the experiments reflected how retrieving 
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contextual information from project databases in real-time can save time and improve 

work productivity in dynamic environments such as those found on construction sites. 

 

Additional details on all retrieval algorithms are presented in Appendix C. The reader is 

recommended to refer to this Appendix to gain a better understanding of all the designed 

methods. 
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Chapter 8 
 

Validation of Location-Aware Information 
Retrieval Methodology 

 

 

8.1. Introduction 
 

The information presented in this chapter presents the validation exercises for the 

research contributions described in individual chapters of this dissertation that each focus 

on a specific aspect of the research. In particular, the designed methodology and the 

implemented software and hardware framework were critically evaluated using the 

following criteria: 

• Accuracy in 3D spatial user tracking in outdoor and indoor environments 

• Precision in visible components identification and detection 

• Reliability in contextual information retrieval and visualization 

 

In addition to validating each individual aspect of the research during its progress, the 

overall ability of the location-aware information retrieval framework to ubiquitously 

track and provide mobile users with relevant contextual information was validated. 
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8.2. Validation of Accuracy in 3D Spatial User Tracking 
and Precision in Contextual Objects Identification  

 

In order to validate the ability of the proposed location-aware methodology to track 

mobile users based on their latest position and head orientation data and precisely 

identify contextual objects, several experiments were conducted at the University of 

Michigan, the National Institute of Standards and Technology (NIST), and Disaster City 

at Texas A&M University. In all experiments, the user was allowed to navigate in 

different outdoor and indoor environments, and freely change the head orientation.   

 

The objective of this part of the validation exercise was to ascertain that the tracking 

devices are fully capable of obtaining the user’s real time position and head orientation, 

and that the application is robust enough to update the contents of the user’s viewing 

frustum based on these values and then detect and identify visible objects in real-time.  

 

As discussed in Chapter 5, the tracking methods developed in this research, have been 

implemented in many outdoor and indoor environments using positioning technologies, 

namely the Global Positioning System (GPS), Wireless Local Area Networks (WLAN), 

Ultra-Wide Band (UWB) and Indoor GPS, and head orientation tracking devices. 

Continuous communication with the tracking technologies to obtain real-time spatial data 

of the user was very critical since the viewing frustum or more specifically the pyramid 

coordinates had to be constantly and virtually updated during the course of the user’s 

navigation in the specified coverage area. All conducted indoor and outdoor tracking 

experiments are described in the next subsections. 
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8.2.1.   GPS-Based Outdoor Experiment  
 

The first validation experiment was conducted outside the G. G. Brown (GGB) laboratory 

building at the University of Michigan. This building houses several engineering 

departments including Civil, Mechanical, and Chemical engineering. Figure 8.1 shows 

the aerial view of this outdoor experiment.  

 

 

Figure 8.1 – Aerial View of the GGB Outdoor Experiment 

 

The objective of this experiment was to simulate an inspector surveying the building, and 

evaluate whether the different sections of the building can be automatically identified 

based on the user’s spatial context. During the experiment, the user’s position and 

orientation were continuously obtained from the developed mobile computing backpack’s 

GPS and magnetic tracker respectively (Behzadan and Kamat 2007). Selected snapshots 
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of both third- person virtual and real views taken during the conducted experiment are 

shown in Figure 8.2. 

 

 

Figure 8.2 - Snapshots of Simulated Building Inspection  

 

The near and far plane distances were assumed to be 1 and 100 m respectively, and both 

the HFOV and VFOV angles were chosen to be 45 degrees (typical values for computer 

graphics applications). Based on this information, the eight coordinates of the truncated 

pyramid (i.e. viewing frustum) were computed. The frustum was then aligned with a 3D 

VRML model of the GGB building and geometric interference tests were performed. 

Each time the user moved on the site, the intersection between the current frustum and 

sections of the building was computed and reported. It was observed that as the user was 
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moving around the building, the computer was correctly interpreting which building 

segment was in the view at each time instant.  

 

8.2.2.   WLAN-Based Indoor Experiments 
 

Another set of validation experiments was conducted using a WLAN based positioning 

system called Ekahau manufactured by the Finnish company Ekahau Inc. (Ekahau 

Website 2007).  

 

A first experiment was conducted at the Construction Engineering Laboratory located in 

the GGB building at the University of Michigan (Figure 8.3).  

 

 

Figure 8.3 – GGB Construction Engineering Laboratory (University of Michigan) 

 

Full wireless coverage is provided from university access points deployed in many 

locations in the College of Engineering (CoE) buildings across campus. In this case, 
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signals were detected from three access points deployed in the laboratory at different 

corners (Figures 8.4).  

 

 

Figure 8.4 – Plan View of the Testing inside the Construction Engineering Laboratory 
(Room 1340 GGB Building) 

 

Walking paths or tracking rails were then drawn on top of the laboratory floor map and 

calibration was performed by taking many sample points at different reference locations 

on the tracking rails (Figure 8.5). 
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Figure 8.5 – Ekahau Calibration and Testing inside the Construction Engineering 
Laboratory (University of Michigan) 

 

The objective was to track a mobile user’s position and head orientation in real-time as 

s/he walked inside the laboratory. Based on Chapter 5, this was achieved by combining 

the positioning information (X, Y, floor level) obtained from Ekahau (Ekahau Website 

2007) and orientation information (roll, yaw, and pitch) obtained from the orientation in 

one tracking application .  

 

The second step in the experiment encompassed interpreting the volume of space visible 

to the tracked mobile user. The near and far plane distances were assumed to be 0.5 and 2 

m respectively, and both the HFOV and VFOV angles were chosen to be 45 degrees. 

Based on this information, the eight coordinates of the viewing frustum were computed. 

Each time the user moved on the site, the geometric interference between the current 
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frustum and VRML models of objects or other users was computed, and then specific 

relevant objects were identified using raycasting (Chapter 6).  

 

In order to visualize how the mobile user (the author in this experiment) is being 

continuously tracked in the laboratory using the tracked user’s position and head 

orientation, a 3D environment with sufficient underlying computer graphics support to 

allow the manipulation of entities in a 3D scene was needed. As mentioned in Chapter 6, 

a computer graphics toolkit namely OpenSceneGraph (OSG) within Visual C++ .NET, 

was adopted (OpenSceneGraph Website 2005) (Appendix B).  

 

Selected snapshots of virtual views taken during the experiments, conducted on the first 

floor of GGB Building (Construction Engineering Laboratory) are shown in Figures 8.6 

and 8.7.  

 

 

Figure 8.6 – Virtual Representation for Indoor Tracking of a Mobile User Using WLAN 
(Construction Laboratory, GGB, University of Michigan) 
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Figure 8.7 – Virtual Representation for a Geometric Interference Test in the Construction 
Laboratory 

 

A similar experiment using Ekahau was conducted on the second floor of GGB building, 

namely the Civil Engineering Department (Figure 8.8).  

 

 

Figure 8.8 – Virtual Representation for Indoor Tracking of a Mobile User Using WLAN 
(Second Floor of GGB Building, University of Michigan) 
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Another indoor experiment was performed at Disaster City (Figure 8.9) as part of the 

response robot evaluation exercises for Urban Search-and-Rescue (US&R) conducted by 

the National NIST team, of which the author was a member. Disaster City is one of the 

most comprehensive emergency responses training facility available today. It is a 52-acre 

training facility designed to deliver the full array of skills and techniques needed by urban 

search and rescue professionals. As part of the Texas Engineering Extension Service 

(TEEX) at Texas A&M University, the facility features full-size collapsible structures 

that replicate community infrastructure, including a strip mall, office building, industrial 

complex, assembly hall/theater, single family dwelling, train derailment and three rubble 

piles (TEEX Website 2007).  

 

 

Figure 8.9 – Aerial View of the Maze at Disaster City 
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These response robot evaluation exercises for US&R teams introduce emerging robotic 

capabilities to emergency responders within their own training facilities, while educating 

robot developers about the necessary performance requirements and operational 

constraints to be effective. Several of those exercises were specifically performed at the 

“maze” in the assembly hall/theater (Figure 8.9).  

 
Similar to the earlier experiments, three access points were placed in the hall according to 

the layout on Figure 8.10. Then, as the user/robot was navigating in the maze, the Ekahau 

Engine updated the user’s location, and the x, y, and z coordinates were continually 

displayed as shown in the lower-right corner of Figure 8.11. 

 

 

Figure 8.10 – Access Points Deployment around the Maze (Disaster City) 
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Figure 8.11 – Ekahau Positioning at the Maze (Disaster City) 

 
An experiment similar to the one conducted at Disaster City was performed at NIST  

specifically in the “maze” at the former NIKE missile base barracks building adjacent to 

the main campus (Figure 8.12). The testbed used was the same; three access points were 

used and the user navigated around the “maze” and collected position information. 

 

 

Figure 8.12– Maze at Nike Site (NIST) 
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The results of this set of WLAN experiments indicated that the Ekahau tracking system 

overall achieved a positioning accuracy of approximately 1.5-2m. 

 

8.2.3.   UWB-Based Indoor Experiments 
 

Another set of experiments was performed using the UWB tracking system 

(Multispectral Solutions Website 2007). One of the validation experiments was 

conducted in the same “maze” at NIST.  

 

Figure 8.13 is a plan view of the test setup (i.e. six receivers were deployed around the 

maze). The positioning values were used together (Chapter 5) with orientation values 

received from the magnetic tracker and both were integrated in the graphical OSG 

application to visualize (in 3D) how the user was moving in real-time around the maze 

and trying to identify objects in his field of view, in this case two columns located within 

the maze (Figure 8.14). 

 

 

Figure 8.13 – Plan View of the UWB Receivers Setup inside the Maze (NIST) 
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Figure 8.14 – 3D Snapshot Views of a UWB Tracked User inside the Maze 

 

As noted previously, many of the indoor experiments were performed at Disaster City as 

part of the response robot evaluation exercises for US&R to introduce emerging robotic 

capabilities to emergency responders within their own training facilities. Besides the 

WLAN-based experiment conducted in the assembly hall where the maze is located, 

another experiment was also conducted in the same hall at Disaster City, but using the 

UWB DART system instead of the Ekahau tracking system. Six receivers were deployed 

in the hall as shown in Figure 8.15. Tags were placed on top of robots in order to track 

robots’ 3D location. Figure 8.16 illustrates one of the Response Robot Evaluation 

Exercises conducted by an emergency responder at the maze. Figure 8.17 is a 3D 

representation of the robot navigation path as it was moving in real-time in the maze from 

Point A to Point B.  
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Figure – 8.15 - UWB Tracking System at the Maze (Disaster City) 

 

Figure 8.16 – Screen View of a Response Robot Evaluation Exercise (NIST) 
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Figure 8.17 – 3D Snapshots of a UWB Tracked Robot at Different Locations in the Maze  

 

The results of the described experiments using UWB based positioning at Disaster City 

and NIST indicated that the UWB Tracking system overall achieved an accuracy that 

fluctuated between 10 to 50 cm. 

 

8.2.4.   Indoor GPS-Based Indoor Experiment 
 

Another experiment was conducted at NIST, inside the “maze” using the Indoor GPS 

(Kang and Tesar 2004, Metris Website 2007). Similarly, the goal of this experiment was 

to simulate a mobile user such as a construction engineer or inspector navigating around 

and surveying the building, and determine the extent to which the user’s spatial context 
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can be accurately and continuously tracked in order to precisely identify objects in the 

field of view.  

 

In this case, four transmitters were deployed inside and around the area of the maze as 

shown in Figure 8.18, and one receiver and the orientation tracker were mounted on the 

mobile user who was navigating inside the maze.  

 

 

Figure 8.18 –Deployment of Laser Transmitters around the Maze 

 

The user’s position and orientation were continuously obtained from the Indoor GPS and 

magnetic tracker, and similar to the UWB-based experiment, the tracked values were 

used in the 3D OSG application to visualize the path of the user inside the maze.  

 

Given that the maze covers an area of 13x8 m, the near and far plane distances were 

considered to be 1m and 3m respectively, and both the HFOV and VFOV were chosen to 

be 45 degrees. 
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Similar to the experiments in Figure 8.14, the eight coordinates of the truncated pyramid 

were computed using the developed method. Geometric interference tests were then 

performed and detection reported. 

 

The results of the experiments indicated that the Indoor GPS tracking system consistently 

achieved a positioning uncertainty that fluctuated between 1 and 2 cm. 

 

In all the previous experiments using the three different technologies, the obtained results 

demonstrated that tracking a mobile user’s three-dimensional orientation in addition to 

the position is an effective way of increasing precision in the interpretation of the user’s 

fully qualified spatial context.  
 

8.3. Validation of Reliability in Contextual Information 
Retrieval and Visualization 

 

As discussed in Chapter 7, information retrieval in the context of this research is defined 

as the ability of the proposed methodology to extract in real-time, information from 

product models and databases about contextual objects identified to be in user’s field of 

view at a specific instant. In order to validate this aspect of the developed context-aware 

framework, an outdoor structural steel inspection operation and an indoor operation were 

simulated on NIST’s main campus and in the “maze” respectively. 
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8.3.1.   Structural Steel Inspection Operation 
 

A test was conducted at NIST, specifically at the steel structure on the main campus 

(Figure 8.19). The goal of this experiment was to evaluate whether contextual 

information identified based on the user’s spatial context can be retrieved from a CIS/2 

product model as was described in Chapter 7.   

 

 

Figure 8.19 – Steel Structure on NIST Main Campus 

 

In this case, four Ultra Wide Band (UWB) receivers and one reference tag (Figure 8.20) 

were deployed around the area of the steel structure as shown in Figure 8.21, and one 

UWB tag and the orientation tracker were mounted on the mobile user who was 

navigating around the steel structure. As described in previous experiments, the user’s 

position and orientation were continuously obtained from the UWB system and magnetic 

tracker.  
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Figure 8.20 – UWB Receiver and Reference Tag Setup at the Steel Structure (NIST) 

 

 

Figure 8.21– Deployment of UWB Receivers around the Steel Structure (NIST) 
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As the user moved on the site, geometric intersection tests between the computed frustum 

and virtual steel members were conducted and reported. Having identified specific steel 

members in the user’s field of view, contextual information was then automatically 

retrieved from the converted CIS/2 model (Figure 8.22). 

 

 

Figure 8.22 – Snapshot of Contextual Information Retrieval and Visualization of Identified 
Steel Elements 

 
 

8.3.2.   Maze Inspection Operation  
 

A validation experiment was conducted at NIST, in the “maze” at the former NIKE 

missile base barracks building adjacent to the main campus. The main goal of this 

experiment was to evaluate whether contextual information on different objects in the 

maze (Figure 8.23) can be retrieved from project databases and presented to users based 

on their identified spatial context.  
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Figure 8.23 – Columns Location in the Maze (Nike Site, NIST) 

 
The experiment simulated a mobile user moving in the maze, and inspecting its different 

parts. Having detected the interference between the current frustum (obtained based on 

tracked position and orientation data) and visible columns (Figure 8.24), contextual 

information was then automatically retrieved from the project database (Figure 8.25).  In 

this case, the database is a MS Access database (Chapter 7) including all the details 

pertaining to the structural elements located inside the maze. 
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Figure 8.24 – Snapshots of Objects Interference Detection  
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Figure 8.25 – Snapshot of Contextual Information Retrieval  

 

8.4. Validation of Ability of the Framework to Track and 
Retrieve Contextual Project Information : Civil 
Engineering Laboratory Inspection Operation 

 

In order to validate the overall ability of the proposed framework, an experiment, using 

Ekahau positioning system and magnetic orientation trackers, was conducted in the 

Structural Engineering Laboratory on the first floor of the GGB building at the University 

of Michigan (Figure 8.26). The WLAN indoor positioning testbed has an area of 40 ft by 

25 ft and contains various structural elements including concrete walls and columns, steel 

columns and beams (Figure 8.27). 
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Figure 8.26 – Floor Plan of CEE Structural Engineering Laboratory 

 

 

Figure 8.27 – Ekahau Testbed within the Laboratory 
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As mentioned in Chapter 5, area calibration and data collection follow the training phase 

of the fingerprinting approach. The signal strength measuring device (laptop or any other 

WLAN-enabled device) is set at a predetermined reference point (RP) position and data 

is collected from each access point in the area and saved to the database. The user then 

advances to the next RP and collects signal data again. In this experiment, several RPs 

were chosen. The dots shown in Figure 8.28 are different RPs located on tracking rails 

(Chapter 5). A fingerprint database (Ekahau Engine), comprising of all RPs was 

generated. Within the database, a fingerprint consists of measurements representing the 

received signal strengths obtained from each access point at that RP.  As stated earlier in 

this chapter, university access points deployed in the different buildings across campus, 

as part of a wireless network, were used. 

 

 

Figure 8.28 – Ekahau Calibration Reference Points 

 

Having created the fingerprint database, signal strength data was collected at each mobile 

user’s location while inspecting the different structural objects of the laboratory. The 
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method of data collection is similar to that of the RPs during the training phase. Data 

collected was then compared against the saved fingerprints and the user’s position was 

determined. Based on this tracked position and orientation (obtained from a magnetic 

orientation tracker), as well as near and far plane distances (0.5 and 3 m respectively) and 

both the HFOV and VFOV angles (20 degrees), the eight coordinates of the truncated 

pyramid or viewing frustum were computed (Chapter 6). The frustum was then aligned 

with a 3D VRML model of objects in the laboratory, for example the concrete wall 

shown in Figure 8.29. In this case, the user was looking at a wall and then “locked” his 

context by pressing a key to temporarily stop the processing of tracking information. This 

“frozen spatial context” state allowed the user to move his head freely and look at the 

computer screen without having his interpreted context change continually.  

 

 

Figure 8.29 – Snapshot of Simulated Structural Engineering Laboratory Inspection  
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Within the determined and frozen context above, the next step included performing 

interference detection tests (Chapter 6). First, the intersection between the current 

frustum and objects was computed using general collision detection techniques, and then 

the raycasting technique was used to increase precision in object identification. For 

instance, a virtual ray was cast along the line of sight first (Figure 8.30 and Figure 8.31) 

to check for intersection and when it was reported, contextual information  was retrieved 

(Figure 8.32). 

 

 

Figure 8.30 – Snapshot of Third Person View Interference Detection (Scenario 1) 
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Figure 8.31 – Snapshots of Interference Detection (First Person Virtual and Real Views)  

 

 

Figure 8.32 – Snapshot of Contextual Information Retrieval 
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As mentioned in Chapter 7, specific information on identified object(s) for a specific 

activity can be prioritized based on the user’s function, and then retrieved. In the above 

retrieval user interface (Figure 8.32), the user, in this case an inspector opted to retrieve 

different types of information, i.e. construction schedule, building images, CAD 

drawings, etc. for the reinforcement placement and tying activity of the detected wall W1. 

Building images are automatically displayed on the form (Figure 8.32). Other type of 

information such as CAD drawings and cost estimation appear after the user clicks on the 

respective links (Figure 8.33 and Figure 8.34).  

 

 

Figure 8.33 – Snapshot of Contextual Information Retrieval (CAD Drawing) 
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Figure 8.34 – Snapshot of Contextual Information Retrieval (Cost Estimation File) 

 

Once information had been retrieved at this specific location, the mobile user pressed 

another key to unlock the context and resume the processing of tracking information. 

Figure 8.35 shows another location of the mobile user. Similar to all the previous steps, 

the context was locked, the viewing frustum was computed and then interference 

detection tests were performed.  

 

In this case, two objects were identified along the line of sight, wall W1 and column C2. 

The user can then choose which object to retrieve information for from the drop-down 

menu named Objects Detected (Figure 8.32). However, C2, for example, at the time of 

inspection, might not have been built. Therefore the inspector can either decide to 



210 
  

retrieve information about the other detected object (wall W1) or check the schedule 

information for C2 and conclude whether there is any time delay. 

 

 

Figure 8.35 – Snapshot of Third Person View of Interference Detection (Scenario 2) 

 

The user was continuously navigating in the CEE laboratory and inspecting the different 

structural elements according to the aforementioned inspection process. Figure 8.36 is a 

3D representation, from a third and first person views, of the mobile user at different 

locations in the laboratory.  
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Figure 8.36 – 3D Snapshots of a Tracked User at Different Locations in the CEE 
Laboratory (Third and First Person Views) 
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8.5. Summary and Conclusions 
 

Tracking mobile users accurately in harsh and dynamic indoor and outdoor environments 

such as those found on construction sites, precisely identifying visible project 

components, and retrieving contextual project information in real-time can help decision 

makers gain better insight and knowledge of operations and tasks while saving time and 

effort, and improving productivity.  

 

In this chapter, the validation experiments were mainly grouped into two main categories 

including 1) accurate 3D user tracking and precise object identification, and 2) reliability 

of the context-aware framework to retrieve and visualize contextual information. 

Additionally, the overall ability of the context-aware information retrieval framework to 

continuously track users, identify objects in their field of view, and retrieve and visualize 

contextual information in real-time was  validated through the set of experiments 

conducted at the University of Michigan. 

 

However, it is important to note that factors such as accuracy, sensitivity, and 

practicability of each of the different framework components, in particular the contextual 

objects identification task (Chapter 6), were not part of this feasibility study, and need to 

be researched in the future. 
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Chapter 9 

 

Summary and Conclusions  

 

 

9.1. Summary of the Proposed Methodology 

 

This dissertation documented the research that led to the design and implementation of a 

location-aware information retrieval methodology to improve important decision-making 

tasks on construction sites and other engineering applications by providing support for 

tedious and time-consuming activities associated with timely and accurate access to 

project information. 

 

In an information-intensive industry such as construction, rapid and convenient access to 

project information is crucial in helping engineers, inspectors, and maintenance personnel 

make critical, real-time decisions. Field personnel typically spend a significant amount of 

time in manually accessing the information they need for important decision making
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tasks. Such lost time amounts to lost productivity and thus money. Conceptually, relevant 

information can be delivered to any decision maker in real-time by monitoring their 

physical and environmental context, and then reconciling the identified context 

parameters with the available pool of digital information.  

 

As noted in Chapter 1, 2 3, and 4, previous studies have focused on enabling and 

advancing information technology by providing a mechanism to deliver pertinent 

information in order to enhance construction collaboration and work efficiency. All prior 

context-aware information delivery research and applications, however, have focused on 

developing tracking applications where the spatial context was defined solely by the 

location (position) of the user. Another major attribute, the 3D head orientation, was 

ignored in the computations. A user's three-dimensional head orientation fully describes 

the user's line of sight (i.e. the direction in which the user is looking) and therefore can 

define a user's spatial context with much greater precision than is possible with position 

alone.  

 

For these reasons, prior context-aware information retrieval applications do not consider 

identification of specific objects visible to a mobile user within the realm of a room or 

section of a building. Instead, they detect and identify other generic information, for 

example the overall location of the user in the building (e.g. floor). Additionally, prior 

research does not incorporate algorithms and methods to automatically retrieve and 

visualize contextual information on identified visible components in the studied area.  
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In this dissertation, the above limitations were successfully addressed. The design and 

development of ubiquitous position and orientation tracking methods, computer graphics 

based techniques, data retrieval and visualization tools together with their practical 

implementation and integration inside a 3D mobile tracking and visualization tool were 

addressed. The results of the research have been validated by tracking mobile users in 

many outdoor and indoor environments and retrieving and presenting contextual 

information in real-time.  

 

As mentioned earlier, the proposed methodology is independent of any specific 

technology. With the advance of time, better and more accurate tools can be used and 

integrated.  

 

9.2.  Contributions 

 

The main contribution of this research to the body of knowledge lies in designing, 

implementing, and demonstrating the ability of accurately and ubiquitously tracking 

mobile users’ fully qualified spatial context, and precisely retrieving, delivering and 

presenting information in real-time in order to assist decision making tasks in dynamic 

environments such as those found on construction sites. This was achieved by developing 

a dynamic user-viewpoint tracking scheme in which mobile users’ fully-qualified spatial 

context is defined. Additionally, methods were developed to identify objects and artifacts 

visible in a mobile user’s field of view with much higher accuracy than was possible by 

tracking position alone. Methods were also implemented to provide continuous, location-
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based contextual information on specific identified components and interactively 

visualize retrieved information in an arbitrary indoor/outdoor environment.  

 

Therefore, this dissertation described the details of individual scientific questions 

addressed, and several methods studied, developed, and implemented in contributing to 

different research objectives. The following list describes the individual research 

challenges summarized in Chapter 2 and addressed in the following chapters: 

• Accurate position and orientation tracking in outdoor and indoor environments 

(Chapter 5): Evaluating, designing and implementing methods to accurately track 

mobile users in congested and dynamic environments using the Global 

Positioning System (GPS), Wireless Local Area Networks (WLAN), Ultra-Wide 

Band (UWB), and Indoor GPS positioning devices as well as Three Degree-of-

Freedom (3DOF) orientation tracking devices (Chapter 3). 

• Continuous computation of region of space visible to mobile users (Chapter 6): 

Developing and implementing methods to compute a mobile user’s viewing 

frustum based primarily on the tracked spatial parameters.  

• High-precision identification of contextual objects (Chapter 6): Devising methods 

to precisely interpret a mobile user’s fully-qualified spatial context and identify 

visible objects using geometric interference analysis techniques.  

• Contextual information retrieval and visualization (Chapter 7): Designing 

methods to retrieve prioritized project information from project databases and 

product models (Chapter 4) and interactively present it to the user. 
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In Chapter 2, initial steps toward a ubiquitous location-aware information retrieval 

methodology designed for information support in construction and other engineering 

applications were introduced. The primary contribution of the research presented in this 

chapter is to describe several existing context-aware applications and then go on 

describing the overall proposed location-aware information retrieval framework that 

enables real-time tracking of mobile users’ full-qualified spatial context, identification 

of objects in users’ field of view, and automated retrieval and visualization of 

contextual information in dynamic outdoor and indoor environments such as those 

found on construction sites.    

 

In Chapter 3, different positioning and orientation tracking technologies to continuously 

track mobile users in outdoor and indoor environments were evaluated. For outdoor 

environments, GPS was used to continuously track a user’s position. However, GPS is 

unsuitable in situations where the user has a possibility of being indoors because the 

receivers need a clear line-of-sight to the satellites in order to track position. Therefore, 

the primary contribution of the research presented in this chapter is to evaluate, 

together with orientation sensing tools, the different wireless positioning technologies 

in order to achieve accurate user tracking for information support in construction and 

other engineering applications. Eye motion tracking technologies were introduced as 

well but currently deemed not effective for the purpose of the proposed methodology. 

 

In Chapter 4, standard product models, project databases and visualization tools to 

retrieve, deliver, and interactively present information to mobile users in engineering 
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applications were described. Evolving technologies such as interoperable product models, 

project databases and interactive display devices and tools offer significant potential of 

improving traditional, time-consuming, manual information retrieval processes, and 

supporting important decision-making tasks in the field. Therefore, the primary 

contribution of the research presented in this chapter is to evaluate the different project 

databases, product models and visualization tools in order to rapidly and conveniently 

provide mobile users with context-aware information to support on-site decision-

making tasks. 

 

In Chapter 5, the details of tracking algorithms necessary to track position and 3D 

orientation (i.e. yaw, pitch, and roll) of the user’s viewpoint in indoor environments were 

discussed. The overall tracking scheme designed encompasses both outdoor positioning 

technologies and indoor wireless tracking techniques. For outdoor environments, a 

georeferencing based algorithm previously developed using GPS and magnetic 

orientation tracking devices was used to continuously track a user’s dynamic viewpoint 

.However, GPS is unsuitable in situations where the user has a possibility of being 

indoors (Chapter 3) because the receivers need a clear line-of-sight to the satellites in 

order to track position.. Therefore, in this chapter, tracking algorithms based on different 

wireless positioning technologies, namely WLAN-based Ekahau, UWB and Indoor GPS 

systems as well as magnetic orientation tools, were designed and implemented for 

adoption in indoor location-aware information delivery applications. The results of 

experiments conducted (Chapter 8) highlighted that based on the circumstances expected 

to be encountered in the intended deployment environment (i.e. indoor construction 
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sites), the Indoor GPS positioning technology was found to offer the most promise of 

accurately tracking mobile users’ position due to the low level of uncertainty in the 

reported user position (1 to 2 cm) compared to that of WLAN (1.5 to 2 m) and UWB (9 

to 50 cm). The primary contribution of the research presented in this chapter is to 

present the different algorithms designed and implemented to track mobile users in 

construction and other engineering applications. 

 

In Chapter 6, methods were developed to calculate the region of space visible to a 

mobile user based on the tracked location and head orientation (Chapter 5) and then 

prioritize the context of visible objects in the user’s view using geometric interference 

analysis techniques such as a raycasting approach. The primary contribution of the 

research presented in this chapter is thereby to describe, using computer graphics 

techniques, the methods designed to interpret the mobile user’s spatial context and 

accurately identify relevant visible objects .  

 

In Chapter 7, two types of project information systems, namely CIS/2 product models 

and MS Access databases were implemented to retrieve contextual information about 

identified objects in users’ field of view. Related experiments (Chapter 8) were 

conducted at the National Institute of Standards and Technology (NIST) indoors, in the 

maze at NIKE site, outdoors at the steel structure on the main campus, and in the 

Structural Engineering Laboratory on the first floor of the GGB building at the University 

of Michigan. Results highlighted the potential of the aforementioned information 

repositories in saving time and improving work productivity on construction sites in 
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particular. The primary contribution of the research presented in this chapter is to 

describe using specific project databases and product models, the different methods 

designed to rapidly and conveniently provide mobile users with context-aware 

information to support on-site decision-making tasks. 

 

In Chapter 8, validation exercises evaluating each of the individual research components 

described in Chapters 5-7 of this dissertation were presented. In addition to validating 

each individual aspect of the research during its progress, the overall ability of the 

location-aware information retrieval methodology to ubiquitously provide mobile users 

with relevant contextual information was validated by conducting an indoor experiment 

in the Structural Engineering Laboratory at the University of Michigan. The designed 

methodology and the implemented software and hardware framework were critically 

evaluated from the point of view of accuracy in 3D spatial user tracking in congested 

environments, precision in visible components identification and detection, and ability of 

the framework to retrieve and visualize contextual project information. 

 

9.3.  Future work 

 

In this research, the author has developed a spatial context-aware methodology that 

focuses on automatically identifying and retrieving contextual project information for on-

site decision-making in field applications such as construction As described in earlier 

chapters, GPS based positioning can accurately locate a user outdoors, provided a clear 

view of the sky is available whereas wireless based positioning can locate a user indoors, 
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provided a network of wireless base stations (access points, receivers, transmitters, etc.) 

already installed at fixed locations. Since the orientation tracker used in this research is 

magnetic-based, it can work both outdoors as well as indoors. 

 

However, both positioning options are not feasible on their own because construction 

engineers and other field personnel typically operate in a mixed outdoor and indoor 

environment, i.e. no assumptions can be made about when they will be outdoors or 

indoors. Therefore, all components of this proposed framework must be self-contained 

and not rely on pre-installed networks of sensors, especially inside the same buildings 

that an engineer might be entering into.  

 

In order to address the current drawbacks, a context-sensing framework that will 

accurately track a mobile user’s 3D spatial context in an arbitrary indoor/outdoor 

environment, using a novel combination of GPS and wireless positioning technologies, 

will be developed. A network of base stations will be rapidly deployed at outdoor 

locations having a clear view of the sky to allow for GPS connectivity. Each such base 

station will be mounted with a long-range WLAN router to create an ad-hoc wireless 

local network. The exact global position of each router is automatically known from the 

GPS signals. Mobile users in the vicinity will be positioned relative to the WLAN routers 

mounted on the base stations. The users’ global positions can then be computed by 

reconciling their local positions relative to the routers with the global GPS positions of 

the routers themselves. This scheme will thus provide uninterrupted global position 

tracking for any user regardless of their indoor or outdoor location. In addition, this 
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methodology has other distinct advantages; it is rapidly deployable and reconfigurable. 

The GPS-tracked WLAN base stations can be set up or moved at any given time to 

service users in different local areas.  

 

Another possible positioning application that can be used is part of an ongoing project at 

the University of Michigan. It is based on the combination of GPS and Personal Dead 

Reckoning (PDR) systems. The concept behind it is that the position of the mobile user is 

given by the GPS whenever available. When the GPS is unavailable, the position will be 

given by the PDR. Then the position will be switched back to the GPS position when 

GPS is reconnected. 

 

The PDR used is the Personal Odometry System (POS) developed by Professor 

Borenstein and his research group at the University of Michigan. It transmits the location 

of a mobile user relative to a known starting position. It works by using an Inertial 

Measuring Unit (IMU) mounted to the user's boot (Figure 9.1) and connected to a 

portable laptop computer.  

 

 

Figure 9.1 – Inertial Measuring Unit (IMU) mounted to the user's boot  
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PDR algorithms correct the drift of the accelerometers in the IMU with every step, 

thereby preventing the accumulation of errors. Most importantly, this PDR system 

requires no sensors that must be preinstalled in the work environment as is the case of the 

developed framework in this research.  

 

Another future research plan includes integrating Augmented Reality (AR) within the 

current framework. AR is a technique in which computer generated data (i.e. graphics, 

text, diagrams, etc.) are embedded into the views of the real environment (Figure 9.2).  

 

 

Figure 9.2 – Augmented Reality View  

 

Automated retrieval of information within an AR environment can serve as an alerting 

mechanism that can compare the as-built and as-designed information and notify the site 
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personnel of any significant deviations, like activities behind schedule and materials not 

meeting the specifications. The as-built automated retrieved information could also assist 

further by applications that can real-time suggest reconfigurations of priorities to the user 

if such deviations are detected. 

 

Many application areas can benefit from the suggested hybrid position tracking 

framework together with magnetic orientation sensing tools and have the contextual 

information automatically retrieved and visualized within AR environments.   

 

As was described in Chapter 1 and 2, steel inspection is one application area where 

inspectors, based on their tracked spatial parameters, can automatically retrieve detailed 

drawings contained in the product models or project databases to check and verify 

whether steel members are correctly installed at the site. However, in the previous 

inspection operation, the inspector was only moving outdoors. By using the ubiquitous 

context-sensing framework to track the inspector and comparing the as-built and 

contextual as-designed information within an AR environment, site personnel, whether 

moving outdoor or indoors, can be easily notified of any significant deviations. The 

above shows clearly that information retrieval within an AR context is very useful in 

progress monitoring and productivity measuring and can save valuable inspection time. 

By doing so, more frequent inspections are being promoted and the amount of time spent 

to detect problems in the construction site such as lack of materials, construction 

mistakes, etc., lessens which increases response time. 
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Another application area includes a building inspection scenario in the aftermath of a 

disaster (e.g. earthquake) (Figure 9.3). An inspector surveys a building for signs of 

visible damage. In this example, the inspector’s position and line-of-sight are tracked 

using GPS and magnetic orientation trackers. The inspector, however, surveying a 

damaged building cannot afford to lose GPS connectivity simply because other structures 

block the view of the satellites at certain locations around the building. In this case when 

GPS becomes unavailable, the position will be given by the PDR for example.  

 

 

Figure 9.3 – Building Damage Inspection  

 

During the survey, based on the interpreted spatial context, relevant information about the 

building’s structural frame, construction details, and other information can be retrieved 
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are presented. For example, as depicted in the lower left picture in Figure 9.3, using AR, 

the building’s hidden structural frame can be superimposed on its façade to allow the 

study of critical connection locations that need detailed inspection. As the inspector 

approaches these connections, structural details on those connections can be 

automatically retrieved and displayed based on the interpreted and refined spatial context. 

 

A third possible inspection application is bridge inspection (Figure 9.4).  

 

 

Figure 9.4 – Bridge Inspection  
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Bridge inspectors regularly revisit the same bridges (on a yearly basis) for damage 

history documentation. Given the nature of their work and the frequency of their visits, 

automatic retrieval of relevant contextual information residing in the database from past 

years and its interaction within an AR context can be found very valuable in terms of 

assessing the damage. The latter includes, detecting the differences between the current 

real information obtained based on the inspector location on the site and past information 

pertaining to the same part of bridge but contained in the product model of the structure. 

This procedure will contribute in avoiding the tedious manual task that bridge inspectors 

have to perform each year as well as reduce the time needed to do so.  

 

This application is part of the ongoing NIST Technology Innovation Program (TIP) 

projects recently announced to develop advanced sensing technologies that would enable 

timely and detailed monitoring and inspection of the structural health of bridges as well 

as roadways and water systems. 

 

The ubiquitous tracking and information retrieval algorithms and methods can be readily 

applied to other engineering domains such as inventory control and emergency response. 

Inventory control is another possible application area (Figure 9.5) taking advantage of the 

hybrid GPS-PDR tracking framework as well as AR.  
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Figure 9.5 – Inventory Control Scenario 

 

In this case, by switching to PDR indoors, people on construction sites can get a complete 

inventory as well as the location of assets which will result in cost savings. Moreover, 

individuals will waste much less time looking for lost things, and each other in crowded 

places. In the process of performing this task, the user's performance in terms of speed, 

accuracy, and reliability may be enhanced through the use of timely and appropriate 

additional information. However, interrupting the process to refer to printed manuals or 

plans can be distracting and confusing. Having all manuals, documents and plans in a 

database, say a product model, and being able to retrieve real-time this information and 

interacting with it in an AR environment is deemed to enhance the performance of the 

user on this indoor task. 
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In the emergency response scenario, a firefighter simply cannot rely on wireless base 

stations (routers, receivers, etc.) already installed inside a building because those stations 

themselves might have get destroyed in the disaster being responded to. Therefore, an 

alternative solution includes using GPS-tracked WLAN base stations set up in the 

vicinity of the experimental building (Figure 9.6). 

 

 

Figure 9.6 – Hybrid GPS and WLAN-Based Global Position Tracking in Emergency 
Response 

 

The firefighter(s) entering the building will wear lightweight helmet-mounted displays 

connected to wearable computers that will communicate wirelessly to the established 

base WLAN base stations. The helmets will also be fitted with magnetic orientation 

trackers to track the orientation of the line of sight. Based on the tracked spatial context, 

the computer will superimpose onto the firefighter view of the real environment the 
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contextual navigation and building information such as floor plans, exit locations, 

location of critical assets as well as providing the firefighter’s current position and 

orientation in the building (Figure 9.7). This will be achieved by representing the 

firefighter as an avatar using a world-in-miniature paradigm. 

 

 

Figure 9.7 – Navigation Guidance in First Response 

 

Another solution to help firefighters in the effective planning of response and rescue 

strategies lies on using the GPS-PDR combination.  

 

As noted in Chapter 3, eye motion tracking systems (Figure 9.8) were not considered 

within the scope of this research for certain issues. However, future research plans can 



232 
  

include designing and implementing methods to identify objects by taking into account 

not only the user’s head orientation but also the user’s eye movement. 

 

 

Figure 9.8 – Eye Motion Tracking Tool 

 

This is commonly accomplished through computer vision techniques imaging pupil and 

corneal reflection of infra-red light (Figure 9.9). 

 

 

Figure 9.9 – IR-Based Eye Motion Tracking System
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Appendices 
 

 

The following Appendices are provided to supplement the discussion of topics introduced 

in previous Chapters. Appendix A presents a guide to use WLAN-based Ekahau, UWB, 

and Indoor GPS positioning technologies. Appendix B describes all the main computer 

graphics concepts and techniques adopted in this research to define the viewing frustum, 

and identify and prioritize contextual objects. Appendix C explains in detail all the steps 

involved in accessing and retrieving information from project databases, using MS 

Access as an example information repository. 

 

The flowchart, shown below, describes the whole process of tracking mobile users in 

real-time, and identifying and retrieving contextual information. The components of the 

flowchart fall into three categories, each corresponding to a different appendix.  
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Appendix A 
 

Guide to Use WLAN-Based Ekahau, UWB, 
and Indoor GPS Technologies 

 

 
In this Appendix, the detailed steps to setup and use wireless positioning technologies to 

extract position information are documented. As described in Chapters 5, three location-

tracking wireless technologies, namely, WLAN, UWB and Indoor GPS were adopted.  

 

The presented information is expected to serve as a guide to help readers gain a better 

understanding of the whole position tracking process using the aforementioned 

technologies.  

 

WLAN-based Ekahau System Guidelines 
 

Ekahau RTLS (Real-Time Location System) is a continuous monitoring platform that 

allows system users to know where their wireless assets/devices are currently located. 
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The platform is software based; with the central Positioning Engine running off Windows 

or Linux servers, and software clients available for the tracking of laptops and/or 

handheld devices (2000/XP/2003, Pocket PC, Windows Mobile, Symbol). The platform 

operates on standard Wi-Fi networks without requiring proprietary antennas or other 

hardware such as base stations. It does not need to know the location of the base stations 

and it works with 802.11a, b, g, and now n gear. As described in Chapter 5, individual 

components of the platform include the central Ekahau Positioning Engine (EPE), which 

utilizes strength of signal indicators from user-selected contributing access points in the 

Wi-Fi network in order to determine an object's or user’s location, and the Ekahau 

Manager, for creating the positioning model and updating it and saving it to the engine. 

Other components include optional and specific applications that can leverage the 

platform's capabilities to provide location-based services. Finally, a Java-based SDK and 

socket-based API are provided, allowing developers to integrate positioning capabilities 

within remote location applications. In this research work, the Java-based SDK was used 

to extract positioning information. 

E 
 
Before any experiment can be carried out, there are some guidelines that must be 

explained so that readers have a better understanding of how the actual testing (Chapter 

8) was done. In the subsequent sections, the Ekahau technology used and the setup of its 

components together with the test routines are explained. 

 
To setup the Ekahau tracking system, the user has to: 
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• Install the Positioning Engine, Ekahau Manager and Ekahau Client on a laptop PC 

with at least Windows®2000, Windows® XP Professional, 1 GHz processor, 1 

GB RAM, and 200 MB HD space 

1. Double-click Install_Engine_win32.exe.  

2. Follow the on-screen instructions and select the components you wish to install 

on the target computer (typically Full Install). 

• Install the Ekahau Manager and Ekahau Client on a laptop PC with at least 

Windows®2000, Windows® XP Professional, 1 GHz processor, 1 GB RAM, and 

200 MB HD space 

1. To locate a wireless PC, the Ekahau Client service has to be installed on the 

device while the Client is running. (The PC should be typically equipped with a 

Wi-Fi adapter) 

2. In case of Windows® 2000, Windows® XP Professional, or Windows® 2003 

Server computer, the Positioning Engine installer is used as described above, 

but only Ekahau Client and the included Wi-Fi drivers are installed. 

• Get at least 3 Wi-Fi Access Points (any 802.11a/b/g model) 

• Get a map or floor plan of the area (in PNG, JPG, or BMP format) 

 
As was described in chapter 5, Ekahau Client allows Ekahau Manager to retrieve signal 

data for the Calibration process (typically from a Wi-Fi adapter installed on a local 

computer), and allows the Positioning Engine to retrieve signal data from client devices 

for positioning.  
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This is why Ekahau Client must be installed and running on the Ekahau Manager laptop 

and on each client device that is to be tracked. The Windows® 2000, Windows® XP 

Professional, and Windows®2003 Server version of Ekahau Client provides Ekahau 

Client Controller / Properties dialog that can be used for: 

• Viewing the Client status 

NOTE: Red Client icon ( ) on system tray means the Client service is not 

running. A yellow exclamation mark ( ) means an error. Click the icon to 

view error status. 

 
• Starting and stopping the Ekahau Client service 

• Configuring the allowed or restricted Positioning Engines 

• Enabling or disabling the writing of an Ekahau Client log file 

 

To access Ekahau Client Properties dialog, the user must click the Ekahau icon ( ) in 

Windows system tray (Figure A.1). If the icon is not displayed, the user must start the 

Client Controller by selecting: 

Start > Programs > Ekahau > Client >Ekahau Client Controller. 
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Figure A.1 - Ekahau Client Properties Dialog’s Status Tab 

 

Ekahau Client users can select the Positioning Engines that are allowed or disallowed to 

locate them. When using the default Positioning Engine settings (set automatically during 

the installation), all available Positioning Engines typically appear in the Recently 

Discovered Positioning Engines listbox (Figure A.2). The user can then uncheck the 

Accept checkbox to block positioning requests from that specific Positioning Engine. On 

the other hand, to allow requests from known Positioning Engines only, the user can 

uncheck the Accept by default checkbox. Positioning Engine settings can be saved by 

clicking the Add…button, selecting the name of the Positioning Engine from the drop-

down listbox, and modifying the settings as appropriate. 
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If Positioning Engine communication settings were manually modified then the user may 

need to manually configure the Positioning Engine by clicking the Add… button, 

selecting <custom settings> from the drop-down listbox, and filling in or modifying the 

Positioning Engine details. 

 

 

Figure A.2 - Ekahau Client Properties Dialog Displaying Positioning Engines Tab 

 
After having installed the Ekahau Client and setting the necessary properties, the user 

needs to create a positioning model using Ekahau Manager by following the steps below: 

• Double-clicking the Ekahau Manager shortcut. 

• Providing the IP address and password of the Positioning Engine: If the 

Positioning Engine is installed on the same computer, default IP address and 

password are used by clicking OK. Otherwise, the correct name or IP address of 

the computer that runs the Positioning Engine are provided then OK clicked 
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(empty value is used for password unless Positioning Engine was configured to 

use special password) (Figure A.3). 

 

 

Figure A.3 - Positioning Engine Login in Ekahau Manager Startup 

 

•  Creating a new Positioning Model or opening an existing Positioning Model 

(Figure A.4) either from a file or the Positioning Engine database (i.e. New 

Positioning Model). When opening a saved Positioning Model from the 

Positioning Engine, the user has to make sure that the Positioning Engine is 

running. 
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Figure A.4 - Ekahau Manager Startup Options 

 
• Selecting View > Signal Strengths and checking the blue bars indicating signal 

strength (RSSI) values from active Access Points. (Figure A.5). 

 

 

Figure A.5 - Signal Strengths from Access Points 
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• Loading and configuring a map of the coverage area: a map image for creating the 

Positioning Model is needed (supported map formats are PNG, JPG, and BMP). 

To import a map, New Map… from the File menu is selected. Alternatively, the 

user can right-click the Maps folder in the left window, select New Map… from 

the context menu and get a suitable map image (Figure A.6). 

 

 

Figure A.6 - Map Properties Box 

 

•  Defining the correct map scale for each map image to ensure that Ekahau 

Positioning Engine functions accurately: If the user knows how many map pixels 

equal the map’s selected distance unit (meter/foot) then the value in the Map 

Scale field can be typed. Otherwise, the user must click the blinking Measure tool 

and click a point on the map – for example the corner of a wall or another 
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measurable object. Then the user must click another point on the map, at least 3 

meters (10 feet) apart from the starting point, walk to the marked location on site, 

measure the real-world distance between the two points with a measuring tape, 

and type it in the lower text field to set the map scale. Figure A.6 illustrates what 

the user sees when trying to open the map with the map scale included. 

 
Next steps include performing a site survey/site calibration using Ekahau Manager. In 

this case, the user must: 

• Display signal strength information in the bottom view by selecting View > 

Signal Strengths. 

• Take the laptop and walk around the area while observing the number of 

detected signals and their signal strengths (RSSI) in Ekahau Manager. If 

necessary, the user has to move existing or add “dummy” Access Points to 

have at least 3, preferably 4 or more access point signals (blue bars) available 

in each location. 

• Open a map and draw Tracking Rails using the Rail tool ( ) once signal is 

detected from at least 3 access points (Figure A.7). 

 

Figure A.7 - Drawing Tracking Rails 



 245

• Take the laptop and walk again around the area, stopping on the nearest 

tracking rail every 5-10m (15-30 ft),  moving the mouse pointer to the current 

location on the rail with calibration tool ( ) selected and clicking the map 

to record sample point (SP). It is important to note that the user does not have 

to  move away from the current location until the record dialog disappears (in 

10–20 s) and while remaining in the current location, the user has to turn 

around slowly a full 360° to record the signals from all directions without 

body affecting the readings. This associated received access point signals with 

the user’s physical location on the map. Next, another sample is taken after 

waiting 2 seconds for the positioning software to update itself. This procedure 

is repeated for each sample point. When all the samples are taken, the 

sampling positioning model can then be saved not only to the Manager 

application but also to the Positioning Engine (select File > Save to 

Positioning Engine). 

 

One important step in the whole process of creating the positioning model using Ekahau 

Manager is to draw and edit logical areas. Logical areas are user-drawn areas (polygons) 

that can have a name and other location-based properties. Logical areas are used to 

determine whether a client device is within a given area. This is achieved by: 

• Activating the Logical Area tool by clicking the icon ( ). 

• Clicking the map, moving the mouse, and clicking again until the desired area 

is drawn.  
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• Right-clicking the area in Browser View to name the area or to define custom 

properties for the area. The most probable Logical Area is displayed for each 

client device in the Devices Tab when the Tracking checkbox is selected for 

the device. 

 
EPE offers a way for serving location/positioning information to local or remote 

applications using Ekahau Java SDK. The Ekahau SDK (Software Development Kit) 

Java package com.ekahau.sdk utilizes TCP sockets to connect to the Positioning Engine 

and provides quick and effective way for accessing location information, either from a 

local or remote computer. All what is  needed is to import the Ekahau SDK package into 

the Java application and follow the provided examples. Using the SDK requires a 

working knowledge of the Java programming language and Java 2 Platform 1.4.2. The 

Positioning Engine’s TrackedDevice objects represent wireless devices, so one object 

needs to be created for each physical device which is to be tracked. After recording a 

positioning model and saving it in the positioning engine with Ekahau Manager, 

TrackedDevice objects are used to return the coordinates, timestamp, status, speed, map, 

and any “logical area” information.  

 

In order to use the SDK through an available java example, the user is first recommended 

to follow the steps below: 

• Creating a J2SE 1.4.2 development environment.  

• Adding sdk.jar in the classpath. The required classes are located in the lib 

directory, and the sdk.jar contains a manifest file which causes all the other 

required .jar files to be also added. 
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• Adding the conf directory into the classpath as it contains the configuration files 

required for running the Java example.  

 

Following the aforementioned steps, Java applications can then be compiled with Ekahau 

SDK. In this case, the user has to: 

• Open SimpleTrackExample.java from the src\examples folder under the sdk 

folder. 

• Compile the sample program (using cmd window, javac 

SimpleTrackExample.java can be typed) 

• Run the program; if the test application is running  locally (Positioning Engine is 

installed and running on the same computer), then the following command can be 

used:  

java examples.SimpleTrackExample 

 
SimpleTrack Code Example: 
Import com.ekahau.sdk.*; 
import java.util.*; 
import java.io.*; 
/** 
* Tracks a device until the user interrupts the action. 
* The device IP is given using a command line parameter. 
*/ 
public class SimpleTrackExample 
{ 
/** 
* @param args give the IP address as a command line parameter 
*/ 
 
 
public static void main(String[] args) throws EngineException, 
IOException { 
String ipAddress = args.length > 0 ? args[0] : "127.0.0.1";// 
local 
//Connect to Positioning Engine 
PositioningEngine.connect(); 
// Find the given device: 
Device[] devices = PositioningEngine.findDevice( 
"NETWORK.IP-ADDRESS ", ipAddress); 
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if (devices.length == 0) { 
System.err.println("Device with IP address " + ipAddress 
+ " not found."); 
} else { 
TrackedDevice device = new TrackedDevice(devices[0]); 
// Create a simple handler for locations for one time usage: 
LocationEstimateListener estimateListener = new 
LocationEstimateListener() { 
public void handleLocationEstimate(LocationEstimate 
locationEstimate, 
TrackedDevice device) { 
// Change getLatestLocation to getAccurateLocation if 
// you want a bit more accurate but a few 12 seconds delayed 
// location. 
Location loc = locationEstimate.getLatestLocation(); 
System.out.println("Location for the device is X:" 
+ loc.getX() + 
" Y:" + loc.getY()); 
} 
}; 
StatusListener statusListener = new StatusListener() { 
public void handleStatus(Status status, TrackedDevice 
device) { 
System.err.println("Device status: " + status); 
} 
}; 
// Add listeners and start tracking 
device.addLocationEstimateListener(estimateListener); 
device.addStatusListener(statusListener); 
device.setTracking(true); 
// Wait until the user inputs something 
BufferedReader in = new BufferedReader(new 
InputStreamReader(System.in)); 
in.readLine(); 
// Stop tracking and disconnect from the Positioning Engine: 
device.setTracking(false); 
PositioningEngine.disconnect(); 
} 
} 

      } 
Compiling and running the above program leads to the following output (Figure A.8). 
 

 

Figure A.8 - Ekahau Java SDK Output 
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In order to access positioning information through the JAVA SDK from a C++ 

application, a “pipe” needs to be created between the two different programming 

languages as shown below: 

 

     if (!(in = _popen("java examples.SimpleTrackExample ", "r")))  
     { exit(1); } //open the pipe 

 
     if (fgets(buff, sizeof(buff), in) != NULL) { Position();} 
    //close the pipe  
     _pclose(in); 

 

Based on the code above, the pipe is created using the _popen function. The 

_popen() function executes the command specified by the string command. It creates a 

pipe between the calling program and the executed command, and returns a pointer to a 

stream that can be used to either read from or write to the pipe. In this case, a pipe is 

being opened and positioning values are read from the JAVA SDK application through 

the pipe.  The character string mode which specifies the type of access requested is "r". 

It allows the calling process to read the spawned command's standard output via the 

returned stream. A stream opened by _popen() should be closed by _pclose().   

 

UWB-based System Guidelines   

 

Ultra-wideband (UWB) is a radio technology that can be used at very low energy levels 

for short-range high-bandwidth communications by using a large portion of the radio 

spectrum. As was mentioned in previous chapters, the Sapphire DART Ultra Wideband 

Digital Active Real Time Tracking system is designed for the tracking of personnel and/or 
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equipment. A system is defined as one (1) processing hub, four (4) or more receivers, one 

(1) or more reference tags, and multiple tags for individual assets/users. Sapphire DART 

uses short UWB pulse to determine the precise location of a UWB radio frequency 

identification tag  
 

The Sapphire DART system is a precision tracking system and requires a degree of 

precision in installation. Specifically, the receiver and reference tag locations are critical 

to insure optimum performance. The accuracy of these positions will directly influence 

the accuracy of the results.  

 

The H651 Processing hub must be placed within 1000 feet of the first receiver in the 

receiver chain. The Hub must also be placed in a location where either LAN or computer 

connection is available. A minimum of three receivers are needed to identify the x-y 

positions of one or more users/objects/assets.  The ideal installation is a rectangular box 

with receivers in each of the four corners, installed as high as possible with the antenna of 

each receiver pointing towards the center of the box. After having placed the hub and 

located the receivers, the reference tag needs to be positioned in the area to be monitored 

in a position that is easily seen by each of the receivers. The optimal location for the 

reference tag is in the center of the box formed by the receivers. Each of the receivers 

must have a direct line of sight with the reference tag. The reference tag must be a 

position where it cannot easily be moved or obstructed during operation.  

 

Next, cables need to be placed to connect receivers. Cable lengths, which limit the 

distance between the receivers, should not exceed 300 feet between each receiver. Cable 
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end breakage during installation is a common trouble-shooting problem. Cables must be 

shielded CAT 5E, 26AWG (or higher gauge) is recommended for best results. Receivers 

can be connected directly to a hub port connection or connected in a daisy chain to other 

receivers (Figure A.9). For all the experiments conducted using the UWB technology, the 

daisy chain configuration was adopted. Each receiver receives 48VDC from the previous 

receiver (or from the hub if it is the first receiver in the line) and passes the 48VDC on 

the next receiver in line via the CAT 5E cable.  

 

  

Figure A.9 – Daisy Chain Configuration 

 

In setting up the receivers and connecting them in a daisy chain, major cautions and steps 

need to be taken into account: 

• The hub port connector switch on the front panel hub should be in the OFF 

position prior to connecting cables to connector in order to avoid electrical 

damage to the hub and receiver. 

• The first cable end (Ethernet connector) should be plugged into one of the hub 

connector ports and the other end to the “IN” connector of the first receiver in the 
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chain. Then the second cable is plugged, on one end, to the “OUT” connector of 

the first receiver and on the other end to the “IN” connector of the second 

receiver and so on so forth.  

• After all receivers are connected through cables, the hub port connector should be 

switched on the front of the processing hub to the ON position.  

 

Configuring and retrieving data requires a computer connection to the processing hub. 

The connection from the mobile computer to the hub is done through a wireless network 

with default IP settings for the hub (IP address: 192.168.1.202, Subnet mask: 

255.255.255.0, and Default gateway address 192.168.1.1). Now that the computer is 

connected to the hub; the Sapphire DART can be configured for tracking one or more 

tags. To achieve this, first, the hub network parameters are configured through the 

configuration menu (A.10) by opening a web browser (e.g. Internet Explorer 6.0 or 

Netscape 7.1) to http://192.168.1.202.  

 

  

 Figure A.10 – Sapphire Hub Configuration and Management Main Menu 
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Then, a user-defined coordinate system is established, receiver and reference tag 

positions configured, and boundary parameters configured. For tag localization, the 

positions of the receivers and reference tag must be established for the system to operate 

properly.  

 

The user must define an origin and measure the x, y, and z positions of each receiver and 

reference (in feet or meters) with respect to that origin. Therefore, from the Hub 

Configuration and Management main menu, select Configure; next select the Hub Setup 

tab within the Configure menu (Figure A.11) then enable and enter location data (x, y, 

and z) for each active receiver and finally save the receiver positions to the hub. 

 

 

Figure A.11 - Sapphire Hub Setup Menu  
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A Sapphire DART system requires the use of one or more reference tags. These are 

necessary in order to establish a common time base among the receivers. For a reference 

tag to be useful, it is necessary for it to be in a location that is unobstructed from at least 

two receivers. Preferably, a position is chosen such that many receivers have such an 

unobstructed path. Many reference tags may be used, but it is generally a good idea to use 

as few as necessary. However, it is necessary that each receiver must be associated with 

at least one reference tag, and that each reference tag has more than one receiver 

associated with it. From the Hub Configuration and Management main menu, select 

Configure; next select the Hub Setup tab within the Configure menu (Figure A.10), 

enable, enter location data (x, y, and z) for each reference tag, and Save to the Hub on the 

Hub Setup menu.  

 

After setting up the UWB equipment, a last step includes opening a socket connection to 

the Hub and retrieving x, y, and z coordinates. As mentioned in Chapter 5, the outputs 

resulting from a UWB tracking system application are provided from the hub to the client 

machine in the following format: 

<Data Header>, <tag #>, <X>, <Y>, <Z>, <battery>, <timestamp>, <unit><LF> 

For instance, as shown in the code below, only output information corresponding to “R” 

data header value and tag # "000022DD" is retrieved. Then, given that the user is 

interested in just obtaining <X>, <Y>, <Z> values, a string manipulation is performed on 

the incoming information output string and a string-float conversion method is used to 

obtain the final coordinates: 
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 SocketClient s("192.168.16.3", 5117);    
      string l = s.ReceiveLine(); 
 float n1,n2,n3; 
 if (l.find_first_of ("R")==0&& l.find("000022DD")==2) 
  { 
   l.erase (0,11); 
   l.erase (15,16); 
         
   a[0]= l.substr(0,5); 
   a[1]= l.substr(6,4); 
   a[2]= l.substr (11,4); 
   for ( int i =0 ; i <3 ; i++) 
   f[i]= atof (a[i].c_str()); 

          
 n1=f[0]; 

   n2=f[1]; 
   n3=f[2]; 

                     } 
 

Indoor GPS-based System Guidelines 
 

As described in previous chapters, Indoor GPS is mainly a combination of laser 

transmitters, receivers, and computing systems designed to create and distribute high 

accuracy spatial information throughout a work area. Like GPS, positioning information 

is available in real time and there is no limit to the number of receivers allowed in the 

workspace-all working independently, yet simultaneously. Unlike GPS, this real time 

data can achieve sub-millimeter level accuracy.  

 

The first step toward successful use of the Indoor GPS system is to evaluate the 

measurement requirements and select a general transmitter arrangement appropriate to 

the user’s needs. There are two general geometric arrangements used with the system, 

Box and C-shape configurations (Figure A.12). When deciding which geometric 

arrangements to use, some factors to consider include: 
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• Overall area of measurement space 

• Overall height of measurement space 

• Potential line-of-sight obstructions between the transmitter and the sensor. 

• Good convergence angles for position measurement 

 

The best arrangements will provide line-of-sight to at least three transmitters with good 

convergence angle separation for each measurement. For all the experiments conducted 

using Indoor GPS (Chapter 8), the Box Configuration was used (Figure A.12b). 

 

 

 

Figure A.12 – a) C-Shape Transmitter Configuration (Top), b) Box-Shape 
Transmitter Configuration (Bottom)  
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Each transmitter is placed on a tripod on a stable surface in the geometric arrangement 

chosen (Figure A.13).  

 

 

Figure A.13 – Transmitter Mounted on a Tripod 

 

It is not required to get the transmitters in the exact position and orientation, but 

following the general sequence and orientation will typically yield better overall 

measurement accuracy. When orienting the transmitters, the indicator lights on the 

Metrology-Grade transmitters are typically pointed “into” the work area. Although not 

required, this orientation guarantees that all transmitters will cover the area.  

 

In order for the receiver to properly convert the timing intervals detected from the 

transmitters to position, the location (x,y,z) and orientation (Rx,Ry,Rz) of all the 
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transmitters in the work volume must be known. The six degrees of freedom DOF for 

each transmitter are precisely determined during the setup process. This is a critically 

important process because the quality of all position measurements performed with the 

system is primarily determined by the quality of the setup. Fortunately, Indoor GPS 

makes this process simple. The position and orientation of the transmitters determine how 

the system interprets the measured angles between the receivers and transmitters –used to 

calculate the receiver position using triangulation algorithms – after the setup is 

completed. The system will not be able to properly report the position of a receiver unless 

the positions and orientations of at least two visible transmitters are determined prior to 

the calculation. In theory, the angles could be collected-then a setup performed- so that 

positions could be determined in a post process. However the Indoor GPS system 

currently requires a setup prior to collecting data.  

 

This setup procedure requires taking multiple samples or observations in the work 

volume, recording a given number of rays from each transmitter, and then calculating the 

“best fit” location and orientation of each transmitter (based on all observations) in the 

work area using a mathematical algorithm termed bundle adjustment. An “observation 

point” is defined as a stationary location where the system will sample the angles 

between a detector and the transmitters. The ideal number and location of observation 

points depends on the geometry (relative position and orientation of transmitters) of the 

transmitter setup and on the line-of-sight restrictions of the site (e.g. it may be impossible 

to see all transmitters from every observation).The most general rule in getting a good 

setup is to use observations that provide the most angular spread in the work area for each 
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transmitter. A typical layout for observation points consists of a minimum of eight points 

as shown in Figure A.14. Additionally, the receiver does not need to be placed in exact 

known locations during each setup observation and does not need to see all transmitters 

from every observation location.  

 

Measuring angles alone is not sufficient to complete the setup process. A scale of the 

measurement volume needs to be established by taking observations of a known length or 

scale bars (Figure A.14). The system needs a minimum of one scale bar but more scale 

bars generally improve the result of the setup bundling routine.  

 

 

Figure A.14 – Box Geometry Observations and Scale Bar 
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Once all the observations are taken, the setup calculation routine is performed and the 

relative position and orientation of all transmitters is calculated. The scale bar is used to 

set the coordinate frame scale. The results of the setup process are then stored in the 

Indoor GPS Workspace file. In all the above processes, the Indoor GPS system requires a 

wireless network to allow communication between all of the receivers and the Data 

Viewer application of the Indoor GPS Workspace environment installed on the mobile 

computer. 

 

Following the setup process, tracking information is extracted by first creating a listening 

socket descriptor on the IGPS address and port and then performing a byte manipulation 

on the incoming bytes data to get position values: 

 

TCPSocket Sock("10.0.0.3", 10000);  
      
 char  buffer[sizeof(double)*9]= {0}; 
 int bytes=0; 
 int total_bytes=0 ; 
 
 while (total_bytes < sizeof(double)*9) 
 { 
   
  if ((bytes=(Sock.recv(buffer,sizeof(double)*9)))<=0) 
  { 
   cout<<"unable to read socket"; 
  } 
 
       total_bytes+= bytes; 
 
 } 
 
 
memcpy(detector0[0],&buffer[sizeof(double)*0],sizeof(double)); 
memcpy(detector0[1],&buffer[sizeof(double)*1],sizeof(double)); 
memcpy(detector0[2],&buffer[sizeof(double)*2],sizeof(double)); 
 
n1= *(detector0[0]); 
n2= *(detector0[1]); 
n3= *(detector0[2]);
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Appendix B 
 

Computer Graphics Concepts and 
Techniques 

 

 
In this Appendix, details on scene graph and computer graphics techniques are presented. 

Several pieces of pseudo code and code snippets are included to facilitate the discussion 

of topics introduced in Chapter 6 and to demonstrate how the mobile user’s viewing 

frustum is defined and visible objects identified using computer graphics based 

intersection techniques.  

 

Additionally, details on using keyboard event handlers within scene graph update 

callbacks to control certain actions and viewing scene algorithms are provided. 

 

The presented information is also expected to help readers gain a better understanding of 

the whole process and data flow underlying the final location-aware visualization 

application.  
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Scene Graph Concept  

 

A scene graph is a data structure used to organize and manage the contents of 

hierarchically organized scene data. In the realm of computer graphics, scene graphs are 

means to create and manipulate hierarchical organization of shapes, groups of shapes, and 

clusters of groups that collectively define the content of a scene. Scene graphs address 

low level problems that generally arise in scene composition and management.  

 

In this research, as mentioned in previous chapters, an open source, cross platform 

graphics toolkit called OpenSceneGraph (OSG) was used to take advantage of scene 

graphs in effectively creating and managing 3D contents of graphical scenes and 

consequently use and apply computer graphics-based techniques such as raycasting,. 

Based around the concept of scene graphs, OpenSceneGraph provides an object oriented 

framework on top of OpenGL (Figure B.1) freeing the developer from implementing and 

optimizing low level graphics calls, and provides many additional utilities for rapid 

development of graphics applications. 

 

Figure B.1 – Graphics Framework 
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However, OpenGL and OSG coordinate systems are different (Figure B.2). The default 

OpenGL coordinate system is: 

  X+ = "to the right" 

  Y+ = "up" 

  Z+ = "out of the screen" 

And that of OSG is: 
 X+ = "East" 

 Y+ = "North" 

 Z+ = "Up" 

 By default, the OSG core does not impose anything on the OpenGL default. 
 

 
Figure B.2 – Default Coordinates Systems in OpenGL and OSG 

 

OSG Core Classes 
 

Like any scene graph, each OSG scene graph is a collection of nodes in a graph structure 

or tree connected together via child-parent relationship. A node is an object that can be 

part of or entirely comprise a scene graph. Each node is a collection of one or more fields 

(values) and methods that together perform a specific function. Each node encapsulates 

the semantics of what is to be drawn.  A method applied to a parent node will affect all its 
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child nodes. The nodes are thereby ideally arranged in a hierarchical manner that 

corresponds spatially and semantically to the modeled scene. Nodes or core classes 

underlying a typical OSG scene graph tree are as follows: 

• osg::Nodes: Base class defining all the internal nodes in the scene graph. It 

mainly consists of: 

• osg::Group is used to group objects together. It holds a set of child nodes 

like osg::Transform which is a parent of a basic transform, 

osg::PositionAttitudeTransform setting transforms via Vec3 position and 

Quat attitude. 

• osg::Geode is a geometry node designed to hold geometry data. Geodes 

are leaves of the scene tree and have no children. 

• osg::Drawables: Abstract base class for drawable graphics. One of its derived 

classes, osg::Geometry, defines the geometry of objects (i.e. vertices, faces, 

normals, etc.) and provides functions to manipulate such geometry. 

osg::Drawables can only be grouped and inserted to the scene graph via the leaf 

node osg::Geode. 

• osg::StateSet: core class encapsulating OpenGL states and attributes and are 

attached to osg::Nodes and osg::Drawables.  

•  osg::Texture : core class encapsulating OpenGL texture functionality. 

 

In this research, a scene graph tree was structured using the following OSG classes or 

nodes. Nodes are attached via links to the highest level node called the root node (Figure 

B.3). 
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Figure B.3 – Typical Scene Graph Structure 
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Viewing Frustum Computation using OSG Concepts 
 

Following up on Section 6.3.1 in Chapter 6, this section presents all steps adopted in 

creating and loading the user’s viewing frustum or pyramid using OSG. 

 

As mentioned in Chapter 6, first steps prior drawing and loading the pyramid in OSG 

included 1) computing the coordinates of the eight corner vertices using the near and far 

distances, field of view angles (HFOV and VFOV) and the mobile user’s tracked position 

and 2) adjusting the coordinates by taking into account the user’s head orientation angles 

using a set of transformation matrices, in particular rotation matrices. The following 

pseudo code (Figure B.4) summarizes the latter steps and further details are provided 

subsequently in code snippets: 

 

[1] INPUT near and far distances and horizontal and vertical field of 

views  

[2] COMPUTE pyramid or viewing frustum’s near and far planes corner 

vertices coordinates based on the user’s tracked position, head 

orientation, near and far distances and field of view angles 

• COMPUTE point 1 of the viewing frustum: xr[0],yr[0],zr[0] 

(first corner of the near plane) 

• COMPUTE point 2 of the viewing frustum: xr[1],yr[1],zr[1] 

(second corner of the near plane) 

• COMPUTE point 3 of the viewing frustum: xr[2],yr[2],zr[2] 

(third corner of the near plane) 
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• COMPUTE point 4 of the viewing frustum: xr[3],yr[3],zr[3] 

(fourth corner of the near plane) 

• COMPUTE point 5 of the viewing frustum: xr[4],yr[4],zr[4] 

(first corner of the far plane) 

• COMPUTE point 6 of the viewing frustum: xr[5],yr[5],zr[5] 

(second corner of the far plane) 

• COMPUTE point 7 of the viewing frustum: xr[6],yr[6],zr[6] 

(third corner of the far plane) 

• COMPUTE point 8 of the viewing frustum: xr[7],yr[7],zr[7] 

(fourth corner of the far plane)  

Figure B.4 – Pseudo Code for Defining the Coordinates of the Viewing 
Frustum Corner Vertices 

 

The code snippets below present three main functions:  

1) FarNearCalc calculates the eight vertices based on neardist, fardist, 

xuser, yuser, zuser, HFOV, and VFOV: 

void FarNearCalc(double xuser, double yuser, double zuser) 
{ 
//Near plane coordinates 
    x[0]=x[1]=x[2]=x[3]= xuser+neardist; 
    y[3]=y[0]= yuser+ (neardist* tan(HFOV/2)); 
    y[2]=y[1]= yuser -(neardist* tan(HFOV/2)); 
    z[3]=z[2]= zuser -(neardist* tan(VFOV/2)); 
    z[0]=z[1]= zuser+ (neardist* tan(VFOV/2)); 
 
 
//Far plane coordinates 
    x[7]=x[6]=x[5]=x[4]= xuser+fardist; 
    y[7]=y[4]= yuser+ (fardist * tan(HFOV/2)); 
    y[6]=y[5]= yuser -(fardist * tan(HFOV/2)); 
    z[7]=z[6]= zuser -(fardist * tan(VFOV/2)); 
    z[4]=z[5]= zuser +(fardist * tan(VFOV/2)); 
 
} 
 



 268

2) orientation gets the final matrix matresult based on the multiplication of the three 

rotation matrices (rotxmat, rotymat, and rotzmat) and translation matrices 

transmat back to and from the origin by x2,y2,z2 ( user’s location): 

void orientation (double x2, double y2, double z2) 

{ 
           
  roll= dRoll*(3.14/180); 
  pitch=dPitch*(3.14/180); 
  yaw=dYaw*(3.14/180); 
    
  rot.postmult(rot.rotzmat(yaw,matz),rot.rotymat(pitch,maty),matzy); 
  rot.premult(rot.rotxmat(roll,matx),matzy,matxyz); 
  matf=matxyz; 
 
     
  rot.premult (matf,(rot.transmat(-x2, -y2, -z2,matt)),matres); 
  rot.premult((rot.transmat(x2, y2, z2,matt)), matres,matresult); 
} 
 

3) getcoord adjusts the coordinates computed in 1) using the matrix obtained from 2). 

In this case, matresult will be passed as a parameter to the function when called 

(matcoord is matresult): 

void getcoord (myMatrix matcoord) 
{ 
    
 for (int i = 0; i <8 ;i++) 
 { 
   
 

    xr[i] = matcoord.mat[0][0]*x[i]+matcoord.mat[0][1]*y[i] +   
matcoord.mat[0][2]*z[i]+ matcoord.mat[0][3]*1 ; 

    yr[i] = matcoord.mat[1][0]*x[i]+matcoord.mat[1][1]*y[i] +  
matcoord.mat[1][2]*z[i]+ matcoord.mat[1][3]*1 ; 

    zr[i] = matcoord.mat[2][0]*x[i]+matcoord.mat[2][1]*y[i] + 
matcoord.mat[2][2]*z[i]+ matcoord.mat[2][3]*1 ; 

 
 
 } 
} 
 

  

 



 269

Having computed the coordinates of the viewing frustum corner vertices, the next step 

consisted of creating the geometry using OSG classes by 1) creating an array of vertices, 

pyramidVertices to store all Vec3 vertices triples computed earlier in addition to the 

pyramid’s peak vertex triple reflecting the user’s viewpoint, and 2) adding the vertices to 

the geometry, pyramidGeometry: 

osg::Geometry* pyramidGeometry = new osg::Geometry(); 

osg::Vec3Array* pyramidVertices = new osg::Vec3Array; 
for (int i =0 ; i<8 ; i++) 
pyramidVertices->push_back(osg::Vec3( xr[i], yr[i], zr[i])); 
pyramidVertices->push_back(osg::Vec3( xuser, yuser, zuser));   
pyramidGeometry->setVertexArray(pyramidVertices); 
 
Based on the vertices defined above, pyramid base, pyramid top as well triangular and 

rectangular pyramid faces were then specified (Figure B.5).  

 

 

Figure B.5 – Viewing Frustum Graphical Components 
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For example, points P5-P8 of the pyramid were used to define the base and therefore an 

instance of the DrawElementsUint class was created together with an OpenGL 

PrimitiveSet (i.e. LINE_STRIP in this case). For all the different pyramid faces, each 

created PrimitiveSet was added to the pyramidGeometry.  

   osg::DrawElementsUInt* pyramidBase =  
   new osg::DrawElementsUInt(osg::PrimitiveSet::LINE_STRIP, 0); 
   pyramidBase->push_back(7); 
   pyramidBase->push_back(6); 
   pyramidBase->push_back(5);  
   pyramidBase->push_back(4); 
   pyramidGeometry->addPrimitiveSet(pyramidBase); 
    
The same procedure was repeated for all the other faces and vertices were each time 

specified in a counterclockwise order. Below are examples of rectangular and triangular 

faces, i.e. (P1-P2-P6-P5) and (P4-P9-P3) respectively (P9 being the user’s point): 

   osg::DrawElementsUInt* pyramidFaceOne =  
   new osg::DrawElementsUInt(osg::PrimitiveSet::LINE_STRIP, 0); 
   pyramidFaceOne->push_back(0); 
   pyramidFaceOne->push_back(1); 
   pyramidFaceOne->push_back(5); 
   pyramidFaceOne->push_back(4); 
 
   pyramidGeometry->addPrimitiveSet(pyramidFaceOne); 
 
 
   osg::DrawElementsUInt* pyramidFace1 =  
   new osg::DrawElementsUInt(osg::PrimitiveSet::LINE_STRIP, 0); 
   pyramidFace1->push_back(3); 
   pyramidFace1->push_back(8); 
   pyramidFace1->push_back(2); 
   pyramidGeometry->addPrimitiveSet(pyramidFace1); 
 

After defining and creating all the faces and sides of the pyramid, the last step included 

adding the geometry to the scene following the diagram below (Figure B.6): 
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Figure B.6 – Viewing Frustum Scene Graph Structure 
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The related code consists of 1) creating a geometry node (geode) to hold the pyramid 

geometry, 2) setting a transform (uXform) to this node so that it is affected by the user’s 

movement and finally 3) adding the transform to the root node: 

osg::Group* root = new osg::Group(); 
osg::Geode* pyramidGeode = new osg::Geode(); 
pyramidGeode->addDrawable(pyramidGeometry); 
 
osg::PositionAttitudeTransform* uXform = new 
osg::PositionAttitudeTransform(); 
osg::Vec3 pposition;   
pposition.set(osg::Vec3(xuser,yuser,zuser)); 
uXform->setPosition(pposition); 
uXform->addChild(pyramidGeode); 
 
root->addChild(uXform); 

 

All the above steps can be summarized in the following pseudocode (Figure B.7). 
[1] DRAW pyramid with the tip symbolizing the user’s information and 

using the eight computed coordinates  

• STORE tip of pyramid with all other eight coordinates in a 3D 

vector 

• DRAW lines between the different stored coordinates to obtain 

the pyramid base, top and different faces. 

[2] SET the drawn pyramid/ viewing frustum tip at the user’s location 

[3] ATTACH pyramid to this user’s transform 

[4] LOAD pyramid in the scene by adding the user’s transform to the 

root 

 

Figure B.7 – Defining Viewing Frustum  

 

Interference Detection Tests  
 

As mentioned in Chapter 6, in order to interpret which objects in the user’s surrounding 

environment are currently visible, the computed viewing frustum was represented as a 
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geometric model and then tested for geometric interference with CAD representations of 

building objects using V-Collide collision detection technique, in particular its 

component RAPID.  

 

RAPID is a robust and accurate polygon interference detection library for large 

environments composed of unstructured models. It is applicable to polygon soups, i.e. 

models which contain no adjacency information, and obey no topological constraints. 

The RAPID library has a very simple user interface. The API requires only that RAPID.H 

and link to libRAPID.a be included to be able to use the library. The C++ object into 

which polygons/objects are loaded is called RAPID_model. In this case, for each 

frustum-buiding object pair two RAPID_model objects were created:  

RAPID_model *obb1 = new RAPID_model; 

RAPID_model *obb2 = new RAPID_model; 

 

Before calling the interference detect routine and running overlap tests, transformations 

defining the placement of both boxes in world space were constructed as follows: 

double R1[3][3], R2[3][3], T1[3], T2[3]; 

  R1[0][0] = R1[1][1] = R1[2][2] = 1.0; 
  R1[0][1] = R1[1][0] = R1[2][0] = 0.0; 
  R1[0][2] = R1[1][2] = R1[2][1] = 0.0; 
 
  R2[0][0] = R2[1][1] = R2[2][2] = 1.0; 
  R2[0][1] = R2[1][0] = R2[2][0] = 0.0; 
  R2[0][2] = R2[1][2] = R2[2][1] = 0.0; 
  T1[0] = 1.0;  T1[1] = 0.0; T1[2] = 0.0; 
  T2[0] = 0.0;  T2[1] = 0.0; T2[2] = 0.0; 

 

Next, a collision query was performed to determine first contact: 

RAPID_Collide(R1, T1, obb1, R2, T2, obb2, RAPID_FIRST_CONTACT); 
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If any contact is detected, then exact and accurate geometric primitive intersection tests 

(i.e. intersection between pair of triangles) are then performed to confirm collisions. In 

this case, boxes were loaded with triangles using AddTri() method. Each load consists 

of a torus of 2*n1*n2 triangles (i.e. n1= n2=50): 

for(uc=0; uc<n1; uc++) 
    for(vc=0; vc<n2; vc++) 
      { 

        //generate all tori 

        // . . . 

        // . . . 

 

 obb1->AddTri(p1, p2, p3, count); 
 obb1->AddTri(p4, p2, p3, count+1); 
 obb2->AddTri(p1, p2, p3, count); 
 obb2->AddTri(p4, p2, p3, count+1); 
 

       } 
 

Then again, the RAPID collision routine was performed and collision points confirmed: 

RAPID_Collide(R1, T1, obb1, R2, T2, obb2, RAPID_ALL_CONTACTS); 

for(i=0; i<RAPID_num_contacts; i++) 
    { 
      printf("\t contact %4d: tri %4d and tri %4d\n",  
      i, RAPID_contact[i].id1, RAPID_contact[i].id2); 
 
    } 

 

As mentioned in Section 6.3.3 in Chapter 6, in order to increase precision in identifying 

relevant contextual objects, an interference detection technique, called raycasting was 

used. The following pseudo code (Figure B.8) summarizes the steps involved in using 

this technique: 

 [1] DEFINE a set of line segments (rays) with the first endpoint as 

the user’s location and the second endpoint as one of the corners 
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or any other intermediate points on the far plane of the computed 

viewing frustum  

[2] CREATE an intersectvisitor to do the line segments intersection 

traversals 

[3] ADD all line segments to this intersector 

[4] SET the loaded CAD models to accept the intersector  

[5] CHECK first for (object-line of sight ray) intersection detection  

[6] IF intersection detected 

[7] IDENTIFY and PRIORITIZE the contextual objects   

[8] END IF 

[9] ELSE  

[10] IDENTIFY the contextual objects within a 20 degrees angle 

away from the line of sight (depends on the visible volume of 

space and field of view angles)  

[11] END ELSE 

Figure B.8 – Pseudo Code for Identifying Contextual Objects using Raycasting 

 

The code snippet below represents the steps followed in identifying objects or nodes with 

the line of sight ray: 1) A lineSegment defined by two Vec3 points, the first being the 

user’s viewpoint and the second being the centerpoint of the far plane, was created, 2) An 

instance of the IntersectVisitor was created to do the line intersection traversals 

starting from the root node, 3) A hitlist was created to fill it with all intersections for the 

line of sight ray at (X,Y), and 4) Hit nodes were identified. 

 

 

lineSegment[0]->set(osg::Vec3(userPos.x(),userPos.y(),userPos.z()), 

osg::Vec3(userPos.x()+fardist,userPos.y(),userPos.z())); 

osgUtil::IntersectVisitor intersector; 
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intersector.addLineSegment(lineSegment[0]); 

root->accept(intersector); 

 

hits=intersector.getHitList(lineSegment[0]); 

if (!hits.empty()) 
 { 
     
    cout<<"Intersection detected" <<endl; 
         for ( int i=1; i < hits.size()-2;i+2) 
     { 
       osgUtil::Hit Hits = hits.at(i); 
       osg::NodePath np = Hits.getNodePath(); 
  osg::Node *node = (np.size()>=1)?np[np.size()-1]:0; 
  node-> getName(); 
               

} 

 

The same procedure was adopted for all other rays cast away from the line of sight and 

all detected nodes/objects were stored in a vector of strings. 

 

Update Callbacks and Keyboard Event Handlers 
 

In this research, as the mobile user was moving, position and head orientation tracking 

information (Appendix A), viewing frustum coordinates, intersection tests and retrieval 

processes (Appendix C) were continuously updated using callbacks controlled by 

keyboard event handlers. 

 

Callbacks can be thought of as user-defined functions that are automatically executed 

depending on the type of traversal (update, cull, draw) being performed. Callbacks can be 

associated with individual nodes or they can be associated with selected types (or 

subtypes) of nodes. During each traversal of a scene graph, if a node is encountered that 

has a user-defined callback associated with it, that callback is executed. In this research, 

the mobile user’s node together with the pyramid node had the same update callback 
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associated with them. However, these nodes and related processes needed to be 

controlled in the scene graph based on user keyboard input. Therefore, keyboard event 

handlers were set up to communicate with the update callback. In this case, two event 

handlers were created, one to control the processing of position and orientation tracking 

information obtained from the respective technologies (Appendix A) and the other to 

control, at each tracked user’s context, the computation of the viewing frustum vertices 

coordinates, intersection tests and contextual information retrieval process (Appendix C).  

 

In order to achieve this communication mechanism between the aforementioned 

keyboard event handlers and the update callback, a class to store keyboard state 

information (i.e. trackingRequest and retrievalRequest) was first created:  

class userInputDeviceStateType 
{ 
   public: 
   userInputDeviceStateType::userInputDeviceStateType()  
    : trackingRequest(false), retrievalRequest(false){} 
     
  
  bool trackingRequest; 
  bool retrievalRequest; 
     
}; 

 

The next step consisted of creating an event handler class (keyboardEventHandler) to 

keep the keyboard state current based on most-recent keyboard events. The base class 

osgGA::GUIEventHandler was used to define custom actions for GUI keyboard events. 

Keyboard event handlers were set to have access to the right data. This data is 

encapsulated in an instance of the created class userInputDeviceStateType. Data 

members (pointers to an instance of userInputDeviceStateType) were then added to 

the event handler as follows: 
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 class keyboardEventHandler : public osgGA::GUIEventHandler 

{ 
 public: 
 
keyboardEventHandler(userInputDeviceStateType* tids1,    
userInputDeviceStateType* tids2) 
   { 
   userInputDeviceState1 = tids1; 
        userInputDeviceState2 = tids2; 
   }  
  // ... 
 protected: 
  userInputDeviceStateType* userInputDeviceState1; 
 userInputDeviceStateType* userInputDeviceState2;  
}; 
 

The bulk of the keyboardEventHandler class is the handle method overridden from the 

base class osgGA::GUIEventHandler version. The method takes two arguments, in 

particular an instance of the osgGA::GUIEventAdapter class that allows receiving GUI 

events. This method, shown below, updates the userInputDeviceState1 and 

userInputDeviceState2 states to indicate requests to: 

1) Get tracking information and move the user/frustum by pressing 't' then   

temporarily stop the processing of tracking information and “lock” the user’s context by 

pressing another key 'c' (trackingRequest). 

2) Update the frustum vertices coordinates, run the intersection tests and retrieve 

contextual information at each user’s “locked” context by pressing 'r' then stop those 

processes by pressing 's' (retrievalRequest). 

 

 

 

bool keyboardEventHandler::handle(const osgGA::GUIEventAdapter& 
ea,osgGA::GUIActionAdapter& aa) 
{ 
   switch(ea.getEventType()) 
   { 
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   case(osgGA::GUIEventAdapter::KEYDOWN): 
      { 
         switch(ea.getKey()) 
         { 
     
         case 't': 
            userInputDeviceState1->trackingRequest = true; 
            return false; 
            break; 
 
         case 'c': 
            userInputDeviceState1->trackingRequest = false; 
    
            return false; 
            break; 
 
         case 'r': 
            userInputDeviceState2->retrievalRequest = true; 
            return false; 
            break; 
 
         case 's': 
            userInputDeviceState2->retrievalRequest = false; 
    
            return false; 
            break; 
 
         default: 
            return false; 
         }  
      } 
 
         default: 
            return false; 
 
   } 
} 

 

An update callback class (updateuserPosCallback), derived from osg::NodeCallback 

class, was also created. Similar to the keyboardEventHandler class, it was designed to 

have access to the keyboard state data so it can update the scene graph correctly. 

Therefore, this class has two data members each pointing to the same instances of 

userInputDeviceStateType(userInputDeviceState1and userInputDeviceState2). 

These two pointers were then used within the callback. In this case, the callback moves 

the user/frustum nodes (both being under the same position attitude transform) if the first 
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keyboard state indicates a user request to extract tracking information (if 

(userInputDeviceState1->trackingRequest)), if the 't' key is pressed. 

Additionally, the callback updates the frustum vertices coordinates, runs interference tests 

and identifies contextual information if the second keyboard state indicates a user request 

to  retrieve information (if (userInputDeviceState1->retrievalRequest)),  if the 

'r' key is pressed . The class definition is as follows: 

class updateuserPosCallback : public osg::NodeCallback { 
public: 
   
updateuserPosCallback::updateuserPosCallback(userInputDeviceStateType* 
userIDevState1,userInputDeviceStateType* userIDevState2) 
   { 
 
      userInputDeviceState1 = userIDevState1; 
 userInputDeviceState2 = userIDevState2; 
       
   } 
 
   virtual void operator()(osg::Node* node, osg::NodeVisitor* nv) 
   { 
      
      osg::PositionAttitudeTransform* pat = 
         dynamic_cast<osg::PositionAttitudeTransform*> (node); 
      if(pat) 
      { 
    if (userInputDeviceState1->trackingRequest) 
         { 

 
//… Obtain Tracking Info from either Ekahau, UWB, or Indoor 
GPS (Appendix A) 
 

    } 
if (userInputDeviceState2->retrievalRequest) 

         { 
//… Update frustum vertices coordinates using the three 
functions FarNearCalc,orientation,and getcoord (Appendix B) 

    
//… Run Intersection tests, Rapid and raycasting, and 
identify contextual objects (Appendix B) 
 
//… Retrieve contextual information from either CIS/2 or MS 
Access database (Appendix C) 

         } 
       }  
      traverse(node, nv); 
   }   
 
protected: 
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userInputDeviceStateType* userInputDeviceState1;  
userInputDeviceStateType* userInputDeviceState2;  
 
}; 
 

Having completed the framework for communicating between keyboard and update 

callback, a subsequent step consisted of creating two instances of the 

userInputDeviceStateType and setting them as arguments for both the constructor of 

the update callback and that of the event handler as follows: 

userInputDeviceStateType*tIDevState1=new userInputDeviceStateType; 
userInputDeviceStateType*tIDevState2=new userInputDeviceStateType; 

uXform->setUpdateCallback 
(new updateuserPosCallback(tIDevState1,tIDevState2)); 
 
keyboardEventHandler*userEventHandler=new 
keyboardEventHandler(tIDevState1, tIDevState2); 
 

Configuring the Viewer and Camera 
 

This section covers the final phase in any OSG visualization application, viewing the 

scene. This consists of first creating a viewer object (osgProducer::Viewer viewer), 

initializing it with standard settings (standard settings include a standard keyboard and 

mouse interface), assigning the built scene graph to it, and creating the viewer windows 

to start the required threads: 

viewer.setUpViewer(osgProducer::Viewer::STANDARD_SETTINGS); 
viewer.setSceneData(root); 
viewer.realize(); 

 

Since keyboard event handlers were introduced in this research than an important step 

included adding the event handler created instance (userEventHandler) to the viewer's 

EventHandlerList: 

viewer.getEventHandlerList().push_front(userEventHandler); 
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Next, a viewer simulation loop was set up: 

while(!viewer.done()) 
   { 
      viewer.sync(); 
      viewer.update();  
      viewer.frame(); 
   } 
 

 Within this loop, methods were invoked on the viewer object for specific purposes: 

• viewer.sync(): method used to wait for all draw and cull threads to complete. 

• viewer.update(): main method in the loop used  to initiate scene graph 

traversal to update nodes. Additionally, any node for which an update callback 

has been set up is also updated after handling keyboard events. 

• viewer.frame(): method  invoked to initiate the cull and draw traversals of the 

scene. 

 

An update callback was executed each time a scene graph update traversal was 

performed. Since the code associated with update callbacks happens once per frame and 

before the cull traversal is executed, the code could be inserted in the main simulation 

loop between the viewer.update() and viewer.frame() calls. While the effect of the 

code is the same, callbacks provide an interface that is easier to update and maintain.  

 

Another way to view the scene was done from a first person view, in this case the mobile 

user. This was achieved by implementing a camera that continuously follows the user’s 

node, which means positioning a camera with a matrix updated with the correct mobile 

user’s world position and orientation. This matrix is therefore the multiplication of the 
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rotation matrix, involving the pitch, roll and yaw angles, by the translation matrix (x,y,z 

position values) . Using the Matrix class methods makeTranslate() and makeRotate(), 

the above matrix was computed as follows: 

cameraRotation.makeRotate( 
osg::DegreesToRadians(dPitch), osg::Vec3(0,-1,0), 
osg::DegreesToRadians(dRoll), osg::Vec3(1,0,0) ,   
osg::DegreesToRadians(dYaw), osg::Vec3(0,0,1));  

 
cameraTrans.makeTranslate( userPos.x(),userPos.y(),userPos.y()); 
myCameraMatrix = cameraRotation * cameraTrans; 

 

It is important to note that when implementing cameras, translations and rotations 

become inverted compared to translating objects. This can be thought of as translating 

and rotating the world objects while the camera stays in place. Therefore, to use the 

camera position/orientation matrix created above to position and orient the Viewer’s 

camera matrix, the matrix needs to be inverted first: 

osg::Matrixd i = myCameraMatrix.inverse(myCameraMatrix); 

 

Producer and osg::Matrix class matrices (like those created above) normally represent 

a ‘Y’ up coordinate system. Therefore, in addition to inverting the matrix, a rotation from 

‘Y’ up to ‘Z’ up is needed so that a world orientation is provided. This was done by 

rotating -90 degrees about the x-axis.  

 

The setViewByMatrix() method  of the viewer class was then used, taking as parameter 

the adjusted matrix, and the method call was placed between the viewer.update() and 

viewer.frame() calls within the simulation loop: 

viewer.setViewByMatrix( (  
   Producer::Matrix(i.ptr())) 
   * Producer::Matrix::rotate(-M_PI/2.0, 1, 0, 0)); 
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Appendix C 
 

Information Access and Retrieval Processes 
from Databases  

 

 

In this Appendix, the details of the information retrieval process from projects databases, 

in this case MS Access database, are documented. As described in Chapter 7, there are 

three main components underlying this process: database structure design (MVC model 

component), user interface design (MVC view component), and business logic design 

(MVC controller component) 

 

MS Access Database Design  

 

As was mentioned in Chapter 7, an object-relational database structure was implemented. 

This consisted of creating many interconnected tables with object-oriented features, i.e. 

tables mapped to classes. Figure C.1 shows the database structure presented earlier.
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Figure C.1 – Database Structure 
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MS Access Database Design  

 

As was mentioned in Chapter 7, an object-relational database structure was implemented. 

This consisted of creating many interconnected tables with object-oriented features, i.e. 

tables mapped to classes. Figure C.1 shows the database structure presented earlier.  

 

Each of the tables above points to different types of information. For instance, Table C.1, 

Item table, includes general information on building objects (ItemName) such as the 

material, type, and dimensions.  

 

Table C.1 – Item Table 

 

 

Therefore, general information pertaining to any building object (Item) includes material, 

type, dimensions an Item class would look as follows: 
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public class Item 

 { 
  private long itemID; 
  private string itemName; 
  private string material; 
  private string type; 
  private string dimensions; 
   

            public long ItemID 
  { 
   get { return this.itemID; } 
   set { this.itemID = value; } 
  } 
 
  public string ItemName 
  { 
   get { return this.itemName; } 
   set { this.itemName = value; } 
  }  

// . . . 

      } 

 

Table C.2, Activity table, defines all different Item construction activities, i.e. 

ActivityName = painting.  

 

Table C.2 – Activity Table 

 

 



 288

Table C.3, Schedules table, represents available schedule information about all building 

objects. This includes information on StartDate, EndDate, FreeFloat, TotalFloat, and a 

schedule file. 

 

Table C.3 – Schedules Table 

 

 

The respective Schedules class is shown below: 

public class Schedules 
 { 
  private long scheduleID; 
  private string  startDate; 
  private string  endDate; 
  private long freefloat; 
  private long totalfloat; 
  private string fileName; 
 
            public long ScheduleID 
  { 
   get { return this.scheduleID; } 
   set { this.scheduleID = value; } 
  } 
 
  public string StartDate 
  { 
   get { return this.startDate; } 
   set { this.startDate = value; } 
  } 
 
    

// . . .  

 
       } 
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Table C.4, Specs table, consists of many project specification files. 

 

Table C.4 – Specs Table 

 

 

Table C.5, CostEstimation table, consists of many project cost estimation spreadsheet 

files. 

 

Table C.5 – CostEstimation Table 

 

 

Table C.6, Orders table, comprises many change orders files and can house other types of 

files such as faxes, minute papers, etc. 
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Table C.6 – OrdersTable 

 

 

Table C.7, ItemToActivityMapping table, is the main table of the database. As mentioned 

in Chapter 7, its role is to map all information from other tables to each item-activity pair. 

Several one-to-many relationships were thereby created by using the primary key of each 

table and setting it as foreign key in this table, i.e. ScheduleID, SpecsID, 

CostEstimationID, and OrderID. 

 

Table C.7 – ItemToActivityMapping Table 
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Besides the schedule, specifications, cost estimation and change orders information, there 

is also graphical information, building images and CAD drawings. However, since any 

item-activity pair can have many CAD drawings or pictures, separate tables were created 

for images and CAD models; ImgFiles table (Table C.8) and ItemCadModels table (Table 

C.9). 

Table C.8 – ImgFiles Table 

 

 

Table C.9 – ItemCadModels Table 

 

 

In order to map this information to all the textual information residing in the 

ItemToActivityMapping table (Table C.7) for the same item-activity-pair, 

ActivityToImgFilesMapping table (Table C.10) and ActivityToCadModelsMapping table 
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(Table C.11) were created. For example, the table ActivityToImgFilesMapping holds the 

ItemToActivityMapping table’s primary key ItemtoActivityID as a foreign key and maps 

to it the ImgFiles table’s primary key FileID. This way, each item-activity pair has 

attached to it all textual information as well as several image files. The same applies to 

CAD drawings. 

 

Table C.10 – ActivityToImgFilesMapping Table 

 

 

Table C.11 – ActivityToCadModelsMapping Table 
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Therefore, based on all the above tables and mappings, the ItemToActivityMapping 

class looks as follows: 

public class ItemToActivityMapping  
 { 
  private long itemToActivityID; 
  private long itemID; 
  private long activityID;   
  private long scheduleID; 
  private long specsID; 
  private long costEstimationID; 
  private long orderID; 
  private string activityName; 
  private DataTable imgFiles; 
  private DataTable ItemCadModels; 
  private DataTable scheduleSet; 
  private DataTable costSet; 
  private DataTable specsSet; 
  private DataTable ordersSet; 
            // . . .  
 
  public DataTable ImgFiles 
  { 
   get { return this.imgFiles; } 
   set { this.imgFiles = value; } 
  } 
 
  public DataTable ScheduleSet 
  { 
   get { return this.scheduleSet; } 
   set { this.scheduleSet = value; } 
  } 

 
// . . . 

 
} 
 

User Interface Design 

 

The information retrieval application user interface, as described in Chapter 7, is 

illustrated below (Figure C.2):  
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Figure C.2 – Information Retrieval Application User Interface 

 

A variety of classes to design and manipulate this Windows form were created. Those are 

called control classes. As depicted in Figure C.2, each of the group boxes (Object 

Detected, Activities, User Info, Info Type, General Info, Schedule Info, etc.) represents a 

different control class. For instance, the ActivitiesInfo control class consists of a main 

group box and a drop-down menu box (ComboBox) including all activities for a specific 

item: 

public class ActivitiesInfo : System.Windows.Forms.UserControl 
 { 
  public System.Windows.Forms.GroupBox gb_activities; 
  public System.Windows.Forms.ComboBox cb_activities; 

            // . . . 

} 
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On the other hand, the control class Drawings mainly consists of a group box grouping a 

list box, where all available building images are presented, and a picture box where a 

selected drawing is displayed, i.e. displayImage(lb.SelectedItem.ToString()) : 

public class Drawings : System.Windows.Forms.UserControl 
 { 
  public System.Windows.Forms.GroupBox gb_drawings; 
  private System.Windows.Forms.ListBox listBox1; 
  private System.Windows.Forms.PictureBox pictureBox1; 

// . . . 

private void listBox1_SelectedIndexChanged(object sender, 
System.EventArgs e) 

  { 
   ListBox lb = (ListBox)sender; 
   string fileName = lb.SelectedItem.ToString(); 
   displayImage(fileName);   

} 

// . . . 

} 
 

In the case of the main control class Info Type, a group box created includes a checked 

list box containing the different types of information: 

public class InfoType : System.Windows.Forms.UserControl 
{ 
   private System.Windows.Forms.GroupBox gb_InfoType; 
   public System.Windows.Forms.CheckedListBox checkedListBox1; 

   // . . . 

   public void showRelatedPanels(string clb) 
{ 

// . . . 

if(clb.Equals("Schedule")) 
  { 

AppData.scheduleInfo.schedulePanel.Visible = true;  
        
AppData.scheduleInfo.setSchedule(itemToActMapp.ScheduleSet); 
AppData.scheduleInfo.gb_scheduleinfo.BackColor = backColor; 
} 

 
else 

  if(clb.Equals("Cost Estimation")) 
  { 
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  AppData.costInfo.costPanel.Visible = true;   
   

AppData.costInfo.setCost(itemToActMapp.CostSet); 
  AppData.costInfo.gb_costinfo.BackColor = backColor; 
  } 

 

// . . . 

      } 

} 
 

The showRelatedPanels function of this class consists of displaying and viewing 

information on respective interface panels depending on what item of the list is checked, 

i.e. Schedule, Cost Estimation, CAD Drawings (Figure C.3). This was achieved, as 

shown in the code above, by calling a controller class method 

getItemToActivityMapping (refer to next section) to get the appropriate information 

(i.e. scheduleSet) about the selected item-activity pair (itemToActMapp.ScheduleSet): 

 

ItemToActivityMapping itemToActMapp = 

AppData.dbController.getItemToActivityMapping(AppData.itemID, 

act.ActivityID); 

AppData.scheduleInfo.setSchedule(itemToActMapp.ScheduleSet); 

 

In this case, setSchedule() method of the ScheduleInfo control class is used to 

display the extracted information on the corresponding panel or group box. 
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Figure C.3 – Schedule and Cost Estimation Information Retrieval  

 

Database Model - User Interface Communication 

 

As mentioned in Chapter 7, the controller is responsible of the communication of data 

between the user interface and database model. For this purpose, several controller 

classes were created, in particular the DBController class which makes use of the 

ReflectionController class methods, SetProperty() and getObj(). The code 

below represents all the methods of the DBController class: 
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public DBController() 

{ 
    
 public Item getItem(string itemName){. . .} 
 public DataTable getItemCadModels(long itemID){. . .} 
 public string getActivityName(long activityID){. . .} 
 public DataTable getActivities(long itemID){. . .} 
 public User getUsers(){. . .} 
 public string getRanking(string userName){. . .} 

public DataTable getItemActivityOrders(long orderID){. . .} 
 public DataTable getItemActivitySpecs(long specsID){. . .} 
      public DataTable getItemActivitySchedule(long scheduleID){. . .} 
 public DataTable getItemActivityCost(long costID){. . .} 
 public DataTable getActivityImgFiles(long itemToActivityID){. . .} 
 public Activity getActivityID(string activityName){. . .} 

public DataTable ConvertDataReaderToDataSet(OleDbDataReader 
reader){. . .} 
public ItemToActivityMapping getItemToActivityMapping(long 
itemID, long activityID){. . .} 

            
            
} 
 
An important method is getItemToActivityMapping. It consists of: 

1) Querying the database to get information on selected item-activity pair: 

command = new OleDbCommand(); 
command.Connection = connection; 
command.CommandText = "SELECT * FROM ItemToActivityMapping WHERE 
ItemID=? AND ActivityID =?"; 
parameter = new OleDbParameter("ItemID",itemID); 
parameter2 = new OleDbParameter("ActivityID",activityID); 
command.Parameters.Add(parameter); 
command.Parameters.Add(parameter2); 
dataReader= command.ExecuteReader(); 

 

 2) Creating a data set using the ConvertDataReaderToDataSet method of the same 

class then automatically getting object properties using the SetProperty()and  

getObj() functions of the ReflectionController class : 

DataTable dt = ConvertDataReaderToDataSet(dataReader); 
Type tp = typeof(ItemToActivityMapping); 
refController = new ReflectionController(tp); 
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foreach (DataRow row in dt.Rows)  
{ 

foreach (DataColumn col in dt.Columns) 
 { 
  string field = col.ToString(); 
  string val = row[col].ToString(); 
  refController.SetProperty(tp.GetProperty(field),val);  
 } 
} 
 
dataReader.Close(); 
ItemToActivityMapping itemToActivityMapping = 
(ItemToActivityMapping)refController.getObj(); 
 
3)  Get Access to all available information, i.e. activityImgFiles, scheduleSet, 

costSet, specsSet, and ordersSet using functions of the same class, 

getActivityImgFiles(),getItemActivitySchedule(), getItemActivityCost(), 

getItemActivitySpecs(), getItemActivityOrders(): 

DataTable activityImgFiles = 
getActivityImgFiles(itemToActivityMapping.ItemToActivityID); 
itemToActivityMapping.ImgFiles = activityImgFiles; 
 
DataTable scheduleSet = 
getItemActivitySchedule(itemToActivityMapping.ScheduleID); 
itemToActivityMapping.ScheduleSet = scheduleSet; 
 
DataTable costSet = 
getItemActivityCost(itemToActivityMapping.CostEstimationID); 
itemToActivityMapping.CostSet = costSet; 
 
DataTable specsSet = 
getItemActivitySpecs(itemToActivityMapping.SpecsID); 
itemToActivityMapping.SpecsSet = specsSet; 
 
DataTable ordersSet = 
getItemActivityOrders(itemToActivityMapping.OrderID); 
itemToActivityMapping.OrdersSet = ordersSet; 
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